WO2023120108A1 - ピント調整方法 - Google Patents

ピント調整方法 Download PDF

Info

Publication number
WO2023120108A1
WO2023120108A1 PCT/JP2022/044528 JP2022044528W WO2023120108A1 WO 2023120108 A1 WO2023120108 A1 WO 2023120108A1 JP 2022044528 W JP2022044528 W JP 2022044528W WO 2023120108 A1 WO2023120108 A1 WO 2023120108A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
adhesive
shrinkage
amount
optical system
Prior art date
Application number
PCT/JP2022/044528
Other languages
English (en)
French (fr)
Inventor
涼平 岡本
徳 川▲崎▼
敏輝 安江
泰樹 古武
寛 中川
駿太 佐藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2023569247A priority Critical patent/JPWO2023120108A1/ja
Publication of WO2023120108A1 publication Critical patent/WO2023120108A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present disclosure relates to a camera focus adjustment method.
  • a camera module mainly uses a CCD sensor or a CMOS sensor. In the case of such a camera module, it is required to appropriately perform focus adjustment for adjusting the mounting position of the image sensor with respect to the lens.
  • Patent Documents 1 to 3 it has become possible to shorten the work time without lowering the accuracy of focus adjustment.
  • thermosetting adhesive when fixing a lens module to a camera substrate on which an image sensor is mounted, generally a thermosetting adhesive is used, and the adhesive is cured by heating. In this process, each member constituting the camera module expands and contracts due to heat, and the adhesive shrinks due to heat curing. Therefore, if the adhesive is thermally cured after adjusting the position of the image sensor with respect to the lens, the positional relationship between the lens and the image sensor is shifted. As a result, it was difficult to assemble with high accuracy.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a focus adjustment method capable of assembling an image sensor with high accuracy.
  • a focus adjustment method for solving the above problems is a focus adjustment method for a camera module including an optical system, an image sensor, and a camera board on which the image sensor is mounted, wherein the optical system is adjusted by a position adjustment device.
  • a prediction step of predicting an amount of shrinkage deviation caused by approaching the camera substrate wherein the prediction step is performed before the adjustment step, and in the adjustment step, the amount of deviation predicted by the prediction step is calculated. Adjust the position and angle of the camera substrate with respect to the optical system to compensate.
  • the amount of shrinkage deviation caused by the approach of the optical system and the camera substrate until the thermal curing is completed is predicted, and the optical system is moved by a distance corresponding to the amount of shrinkage deviation.
  • the position and angle are adjusted so that the camera board is kept away from the . Therefore, the shrinkage deviation amount can be canceled, and the image sensor can be assembled with high accuracy.
  • FIG. 1 is an exploded perspective view of the camera
  • FIG. 2 is a conceptual diagram of a camera module
  • FIG. 3 is a block diagram showing the configuration of the focus adjustment system
  • FIG. 4 is a conceptual diagram showing how the camera substrate is transported
  • FIG. 5 is a conceptual diagram showing an adjustment mode of the camera board
  • FIG. 6 is a conceptual diagram showing how the image sensor captures an image of a cross light source
  • 7, (a) is a conceptual diagram of the cross light source in the imaging area
  • (b) is a conceptual diagram of the cross light source in the scanning area
  • FIG. 8 is a diagram showing an example of the MTF curve
  • FIG. 1 is an exploded perspective view of the camera
  • FIG. 2 is a conceptual diagram of a camera module
  • FIG. 3 is a block diagram showing the configuration of the focus adjustment system
  • FIG. 4 is a conceptual diagram showing how the camera substrate is transported
  • FIG. 5 is a conceptual diagram showing an adjustment mode of the camera board
  • FIG. 6 is a conceptual diagram showing
  • FIG. 9 is a conceptual diagram showing the depth of focus
  • FIG. 10 is a diagram showing an example of an MTF curve in an in-focus state
  • FIG. 11 is a conceptual diagram showing an irradiation mode of laser light
  • FIG. 12 is a flowchart of focus adjustment processing
  • FIG. 13 is a conceptual diagram showing the process of thermal expansion and accompanying shrinkage during temporary curing
  • FIG. 14 is a flowchart of prediction processing
  • FIG. 15 is a conceptual diagram for explaining the clearance.
  • the direction parallel to the optical axis is the Z direction
  • the vertical direction (vertical direction) perpendicular to the Z direction is the X direction
  • the horizontal direction (horizontal direction) is the Y direction.
  • the camera 10 is equipped with a CMOS camera module with a lens (hereinafter simply camera module 20).
  • the camera module 20 includes a lens module 30 as an optical system, an image sensor 40, and a camera board 50 on which the image sensor 40 is mounted.
  • the image sensor 40 is an imaging device such as a CMOS.
  • the camera module 20 is configured by fixing the lens module 30 to the camera substrate 50 .
  • the lens module 30 is fixed to the camera substrate 50 via an adhesive (thermosetting adhesive) 70 .
  • the focus adjustment system 100 includes a 6-axis stage 110 as a position adjustment device, a carrier device 120, a distance sensor 130, an arithmetic device 140, a laser 150 capable of emitting laser light, Prepare.
  • the 6-axis stage 110 has a mechanism for changing the position and tilt of the camera board 50 on which the image sensor 40 is mounted.
  • the 6-axis stage 110 can perform position adjustment in the X direction, Y direction, and Z direction, and angle adjustment of the roll angle, yaw angle, and pitch angle (6 axes in total).
  • the transport device 120 transports the 6-axis stage 110 on which the camera board 50 is installed. As shown in FIG. 4 , the transport device 120 transports the 6-axis stage 110 together until the image sensor 40 of the camera substrate 50 reaches a position facing the lens of the lens module 30 .
  • the distance measurement sensor 130 measures the installation distance and installation angle of the image sensor 40 on the camera board 50 being transported by the transport device 120 .
  • the image sensor 40 is fixed to the camera substrate 50 with an adhesive, soldering, or the like, but there is a possibility that some errors may occur due to assembly accuracy. Therefore, in what state (installation distance and installation angle) the camera substrate 50 is fixed is measured.
  • the distance measurement sensor 130 measures the installation distance and installation angle of the image sensor 40 with reference to a predetermined reference point. Specifically, the positions in the X, Y, and Z directions, as well as the roll angle, yaw angle, and pitch angle are measured.
  • the reference point is, for example, a predetermined point on the camera board 50 .
  • the computing device 140 includes a CPU, RAM, ROM, etc., and implements various functions by executing programs stored in the ROM. Moreover, various input/output devices are provided, and the arithmetic unit 140 is configured to be capable of inputting various instructions and outputting results. Further, as shown in FIG. 3, the arithmetic device 140 is connected to the 6-axis stage 110, the transport device 120, the distance measuring sensor 130, and the laser 150, and is configured to be able to input/output various signals. Various signals include, for example, an instruction signal that notifies an instruction, a measurement signal that notifies a measurement result, and the like.
  • the calculation device 140 has various functions such as a function as a transport unit 141, a function as a measurement unit 142, a function as an adjustment unit 143, a function as a focal point specifying unit 144, and an assembly unit 145. and a function of In addition, it is not necessary to provide all the functions in one arithmetic unit 140, and the functions may be shared among a plurality of arithmetic units.
  • the arithmetic device 140 as the transport unit 141 controls the transport device 120 so that the camera substrate 50 and the 6-axis stage 110 are transported until the image sensor 40 reaches the position facing the lens of the lens module 30.
  • the computing device 140 as the measurement unit 142 controls the distance measurement sensor 130 to measure the installation position and installation angle of the image sensor 40 on the camera board 50 during transportation.
  • the arithmetic unit 140 as the adjusting unit 143 controls the 6-axis stage 110 so as to adjust the position and angle of the camera board 50 with respect to the lens module 30. Specifically, as shown in FIG. 5, after the 6-axis stage 110 is transported by the transport device 120, the adjustment unit 143 considers the installation position and installation angle of the image sensor 40 measured by the measurement unit 142. Then, the position and angle of the image sensor 40 with respect to the lens module 30 are adjusted to the optimum position and angle. The optimum position and the optimum angle correspond to the set position and set angle predetermined by the lens module 30, respectively.
  • the optimum position and the optimum angle are predetermined by the lens module 30 so that the image sensor 40 is substantially focused when the image sensor 40 is installed at the optimum position and the optimum angle.
  • the optimum position and the optimum angle are measured in advance by the manufacturer of the lens module 30 or the like, as indicated by the dashed lines in FIG.
  • the adjuster 143 adjusts the position and angle of the image sensor 40 with respect to the lens module 30 to the optimum position and optimum angle.
  • the image sensor 40 installed on the camera board 50 may have deviations in installation position and installation angle, so the position and angle of the camera board 50 are adjusted in consideration of the error. do.
  • the optimum position and the optimum angle are measured by selecting several of the lens modules 30 as finished products, and the average value thereof is used. Alternatively, it may be calculated by calculation from a design drawing or the like. Therefore, some manufacturing errors may occur depending on the lens module 30 . In other words, even if the position and angle of the image sensor 40 are adjusted to the optimum position and angle, there is a possibility that the image will not be in focus.
  • the calculation device 140 as the focal point specifying unit 144 causes the image sensor 40 to capture a chart image arranged at a predetermined position via the lens module 30, analyzes the image data, and analyzes the image sensor 40 to be the in-focus point.
  • the assembly state of is specified. A detailed description will be given below.
  • a light source 61 is covered with a sheet (for example, black paper) in which a cross slit is formed, and the camera module 20 is irradiated with light from the light source 61, thereby obtaining the image shown in FIG.
  • a cross light source 60 is generated as a chart image. That is, the cross light source (cross slit light) 60 generated by passing through the cross slit of the sheet becomes the chart image.
  • the cross light sources 60 are generated at a plurality of locations, and are arranged at predetermined positions. For example, as shown in FIG. 7, the camera modules 20 are arranged at five positions in the middle, upper right, lower right, upper left, and lower left of an imaging area 63 that can be imaged.
  • the computing device 140 as the focal point specifying unit 144 causes the image sensor 40 to capture an image of each cross light source 60 via the lens module 30, analyzes the captured data, and calculates the MTF curve of each cross light source 60.
  • the MTF (Modulation Transfer Function) curve is one of the indexes for evaluating lens performance. In order to know the imaging performance of the lens, the degree of faithful reproduction of the contrast of the subject (chart image) is measured as spatial frequency characteristics. It is an expression.
  • the arithmetic unit 140 captures an image of each cross light source 60 at a plurality of positions in the Z-axis direction (Z-axis positions), analyzes the captured data of each cross light source 60, and obtains an MTF value ( %) is calculated.
  • MTF value % is calculated.
  • the slits in the vertical direction (X direction) and the slits in the horizontal direction (Y direction) in each cross light source 60 are calculated separately. Therefore, in this embodiment, a total of 10 MTF values are calculated at each Z-axis position.
  • the arithmetic device 140 After moving and scanning the camera substrate 50 within a predetermined scanning range, the arithmetic device 140 plots the calculated MTF values on coordinates in which the vertical axis is the MTF value and the horizontal axis is the Z-axis position. and connect them to calculate the MTF curve. In this embodiment, a total of 10 MTF values are calculated at each Z-axis position, so a total of 10 MTF curves are calculated as shown in FIG.
  • the arithmetic unit 140 determines that the depth of focus is maximized when the MTF value is a predetermined value (for example, 35%) in the product standard.
  • a value for correcting the position and tilt of the image sensor 40 is calculated as follows. Specifically, the apex of each MTF curve is brought closer so that the distance corresponding to the depth of focus shown in FIG. 9 is maximized. Then, as shown in FIG. 10, when the depth of focus is maximized, the amount of movement of each MTF curve in the Z-axis direction is calculated. A correction value for each position and a correction value for each angle of the roll angle, yaw angle, and pitch angle are calculated.
  • the arithmetic device 140 Based on the calculated position and angle correction values, the arithmetic device 140 identifies the mounting state of the image sensor 40 that is the focal point. Thereafter, as shown in FIG. 6, the arithmetic device 140 adjusts the position and angle of the camera board 50 based on each correction value, and adjusts the position and angle of the 6-axis stage 110 so that the image sensor 40 is in the specified assembly state. to control.
  • the arithmetic unit 140 as the assembly unit 145 irradiates the adhesive 70 applied to the camera substrate 50 with laser light, as shown in FIG.
  • the laser 150 is controlled as follows. That is, in a state in which the lens module 30 and the camera substrate 50 are adhered via the adhesive 70, the adhesive 70 is irradiated with laser light to be heated. As a result, the adhesive 70 is temporarily cured, and the camera substrate 50 is assembled to the lens module 30 .
  • the computing device 140 controls the 6-axis stage 110 to move the position in the Z-axis direction within a predetermined scanning range set based on the optimum position and optimum angle.
  • the scanning range is, for example, within a predetermined range in the Z-axis direction centered on the optimum position.
  • the arithmetic unit 140 captures images while continuously moving the camera board 50 without stopping within a predetermined scanning range, acquires a plurality of image data, and converts the plurality of image data. are analyzing.
  • the arithmetic device 140 captures images while moving the camera substrate 50 at a constant speed within the scanning range.
  • the exposure time is shortened to the extent that the chart image can be specified.
  • the cross-shaped light source 60 is used as the chart image, so the exposure time can be shortened compared to the case of capturing a chart image printed on paper, for example.
  • the exposure time is shorter than the general exposure time of 33.3 ms or 16.7 ms, and specifically, the exposure time is 0.7 ms.
  • the scanning area 62 is set by limiting the imaging area 63 that can be imaged by the image sensor 40 . Specifically, since the region where the cross light source 60 exists is predetermined, the region where the cross light source 60 does not exist is not imaged. For example, as shown in FIG. 7A, a partial area 65 at the upper end and a partial area 64 at the lower end where the cross light source 60 does not exist in the original imaging area 63 are omitted, and a scanning area 62 is obtained.
  • the vertical width of the original imaging area 63 is 1876 (pix) in the vertical direction (X-axis direction)
  • the vertical width of the scanning area 62 is 1369 (pix). Note that it is desirable to set the scanning area 62 to the extent that the cross light source 60 can sufficiently capture an image, taking errors into account.
  • a focus adjustment process described below is executed by the computing device 140 .
  • step S101 corresponds to the transport step.
  • step S ⁇ b>101 the adhesive 70 for bonding the lens module 30 is already applied to the camera substrate 50 . However, if the adhesive 70 is applied in a later step (for example, step S107), it does not have to be applied at this stage.
  • the arithmetic device 140 as the measurement unit 142 controls the distance measurement sensor 130 to measure the installation position and installation angle of the image sensor 40 on the camera board 50 during transportation (step S102).
  • This step S102 corresponds to the measurement step.
  • the arithmetic unit 140 as the adjustment unit 143 controls the 6-axis stage 110 to adjust the position and angle of the camera board 50 (step S103).
  • the arithmetic device 140 considers the installation position and installation angle of the image sensor 40 measured in step S102, and adjusts the camera substrate so that the position and angle of the image sensor 40 are the optimum position and optimum angle. Adjust the position and angle of 50.
  • the calculation device 140 as the focus specifying unit 144 causes the image sensor 40 to image each cross light source 60 as a chart image via the lens module 30, analyzes the image data, and calculates the MTF curve of each chart image.
  • step S104 the arithmetic unit 140 causes the camera board 50 to move at a constant speed within the scanning range set with the optimum position as a reference, and to take an image.
  • the scanning area 62 at this time is narrower than the imaging area 63 of the image sensor 40, and the exposure time is also shortened to shorten the frame rate.
  • the timing of analyzing the imaging data and calculating the MTF curve of each chart image may be parallel to the acquisition of the imaging data, or may be analyzed collectively after acquiring all the imaging data. In this embodiment, in parallel with the acquisition of the imaging data, the imaging data are sequentially analyzed to calculate the MTF curve of each chart image.
  • the computing device 140 calculates a correction value for correcting the position and tilt of the image sensor 40 so that the depth of focus is maximized (step S105). These steps S103 and S104 correspond to the focal point specifying step.
  • the arithmetic device 140 readjusts the position and angle of the camera board 50 based on the correction values calculated in step S105 so that the image sensor 40 is in a specific assembly state in which the image sensor 40 is in focus.
  • the 6-axis stage 110 is controlled (step S106). These steps S106 and S103 correspond to the adjustment step. That is, the adjustment step may be performed once or multiple times as required.
  • the computing device 140 controls the laser 150 so that the adhesive 70 applied between the lens module 30 and the camera substrate 50 is cured (temporarily cured) by irradiating the laser beam (step S107). ). That is, in a state in which the bonding surface of the lens module 30 and the bonding surface of the camera substrate 50 are bonded via the adhesive 70, the adhesive 70 is heated and cured by irradiating laser light. Step S107 corresponds to the assembly step. After that, the camera board 50 and the lens module 30 are stored in a constant temperature bath to fully cure the adhesive 70 , thereby securely fixing the lens module 30 to the camera board 50 . Thus, the camera module 20 is completed.
  • step S107 laser light is irradiated to temporarily harden the adhesive 70.
  • the position tends to shift before the temporary hardening is completed. It turns out that there is
  • the adhesive 70, the lens module 30, and the camera substrate 50 are temporarily heated as shown in FIG. 13(b). Inflate.
  • the lens module 30 and the camera substrate 50 are bonded to each other at the adhesive surfaces of the adhesive 70 as the adhesive 70 is temporarily cured.
  • the adhesive 70 adheres to the lens module 30 and the camera substrate 50 at their adhesive surfaces, and also shrinks during hardening. Therefore, the lens module 30 and the camera substrate 50 are pulled by the adhesive surfaces as indicated by the arrows as the adhesive 70 cures and shrinks, and come closer to each other.
  • the lens module 30, the camera substrate 50, and the adhesive 70 contract by the amount that has expanded.
  • the lens module 30 and the camera substrate 50 are pulled by their adhesive surfaces, and the lens module 30 and the camera substrate 50 come closer to each other by the contracted amount.
  • the distance between the lens module 30 and the camera substrate 50 becomes closer until the temporary hardening is completed, resulting in misalignment.
  • the camera substrate 50 is warped and misaligned due to the heat of the laser beam.
  • the shrinkage distance the shrinkage displacement amount
  • the shrinkage distance E100 the shrinkage distance that the lens module 30 and the camera substrate 50 approach each other after the readjustment in step S106 until the temporary hardening is completed.
  • the arithmetic unit 140 After the process of step S105 and before the process of step S106, the arithmetic unit 140 performs the prediction process shown in FIG. First, the arithmetic unit 140 calculates a first distance L1 (see FIG. 15) from the surface of the image sensor 40 (the surface on the lens module 30 side) to the surface of the camera substrate 50 (the surface on the lens module 30 side) in the Z-axis direction. ) is obtained (step S201). The computing device 140 calculates and acquires the first distance L1 from the measured installation position and installation angle of the image sensor 40 on the camera board 50 in step S102.
  • a first distance L1 see FIG. 15
  • the computing device 140 calculates and acquires the first distance L1 from the measured installation position and installation angle of the image sensor 40 on the camera board 50 in step S102.
  • the first distance L1 varies depending on which position on the camera substrate 50 is used as a reference. may occur. However, considering that the difference is very small, an arbitrary position is specified as the first distance L1. In this embodiment, the distance from the surface position of the image sensor 40 at the center of the image sensor 40 to the surface position of the camera substrate 50 is specified as the first distance L1.
  • the computing device 140 acquires the second distance L2 (see FIG. 15) from the surface of the image sensor 40 to the bonding surface of the lens module 30 in the Z-axis direction (step S202).
  • the lens module 30 is adhered to the camera substrate 50 on four sides so as to surround the rectangular image sensor 40 .
  • the second distance L2 may vary depending on which position is used as a reference.
  • the bonding surface of the lens module 30 at any position among the four sides is used as a reference.
  • the distance in the Z-axis direction between the adhesive surface at one of the four corners of the lens module 30 and the center of the image sensor 40 is specified as the second distance L2. ing. Since the image sensor 40 is arranged at the optimum position and the optimum angle, the second distance L2 can be specified from the optimum position and the optimum angle of the image sensor 40 and the shape (design dimension) of the lens module 30. Note that the second distance L2 may be actually measured by a sensor or the like.
  • the computing device 140 calculates the difference between the first distance L1 and the second distance L2, and uses the difference as the separation distance L3 in the Z-axis direction from the lens module 30 to the camera board 50 (see FIG. 15). (step S203).
  • the computing device 140 multiplies the separation distance L3 by a coefficient C10 based on the physical properties of the adhesive 70 to calculate the displacement amount E10 due to curing shrinkage of the adhesive 70 (step S204).
  • a coefficient C10 based on the physical properties of the adhesive 70 is specified by experiments or the like.
  • the computing device 140 acquires the deviation amount E11 due to the thermal expansion of the adhesive 70 and the accompanying contraction during heat dissipation (step S205).
  • the amount of deviation E11 due to the thermal expansion of the adhesive 70 and the accompanying shrinkage during heat dissipation may be simply referred to as the amount of deviation E11 due to the thermal expansion of the adhesive 70 .
  • the amount of deviation E11 due to thermal expansion of the adhesive 70 increases in proportion to the temperature rise value of the adhesive 70 due to the laser beam.
  • the proportionality coefficient (coefficient C11) varies depending on the shape of the adhesive 70 (thickness of the adhesive portion and the amount of the adhesive 70) and physical properties of the adhesive 70.
  • the arithmetic unit 140 multiplies the temperature rise value of the adhesive 70 due to the laser beam by a coefficient C11 based on the shape and physical properties of the adhesive 70, thereby calculating the shift amount E11 due to the thermal expansion of the adhesive 70. get.
  • the temperature rise value of the adhesive 70 due to the laser beam is approximately constant, so it can be identified through experiments or the like.
  • the coefficient C11 can be determined by experiments or the like. Therefore, the computing device 140 may store them in advance, read them from the storage unit in step S205, and calculate the displacement amount E11 due to the thermal expansion of the adhesive 70 .
  • the amount of deviation E11 due to thermal expansion of the adhesive 70 is approximately constant, so it can be determined by experiments or the like. Therefore, the calculation device 140 may store the displacement amount E11 due to the thermal expansion of the adhesive 70 in advance, and read and acquire it from the storage unit in step S205. In this embodiment, the amount of deviation E11 is stored in advance.
  • the computing device 140 also acquires the amount of deviation E12 due to the thermal expansion of the lens module 30 and the accompanying contraction during heat dissipation (step S206).
  • the amount of deviation E12 due to thermal expansion of the lens module 30 and the accompanying contraction during heat dissipation may be simply referred to as the amount of deviation E12 due to thermal expansion of the lens module 30 .
  • the deviation E12 due to thermal expansion of the lens module 30 increases in proportion to the temperature rise value of the lens module 30 due to laser light. Also, it was found through experiments that the proportionality coefficient (coefficient C12) varies depending on the shape (size and shape) of the lens module 30 and the material of the lens module 30 .
  • the calculation device 140 multiplies the temperature rise value of the lens module 30 due to the laser beam by a coefficient C12 based on the shape and physical properties of the lens module 30, thereby calculating the shift amount E12 due to the thermal expansion of the lens module 30. get.
  • the temperature rise value of the lens module 30 due to the laser light is approximately constant, so it can be identified through experiments or the like.
  • the coefficient C12 can be identified by experiments or the like. Therefore, the calculation device 140 may store them in advance, read them from the storage unit in step S206, and calculate the shift amount E12 due to the thermal expansion of the lens module 30.
  • the amount of deviation E12 due to thermal expansion of the lens module 30 is approximately constant, and can be identified through experiments or the like. Therefore, the computing device 140 may store the shift amount E12 due to the thermal expansion of the lens module 30 in advance, and read and acquire it from the storage unit in step S206. In this embodiment, the amount of deviation E12 is stored in advance.
  • the computing device 140 acquires the displacement amount E13 due to the thermal expansion of the camera substrate 50 and the accompanying contraction during heat dissipation (step S207).
  • the displacement amount E13 due to the thermal expansion of the camera substrate 50 and the accompanying contraction during heat dissipation may be simply referred to as the displacement amount E13 due to the thermal expansion of the camera substrate 50 .
  • the amount of deviation E13 due to thermal expansion of the camera substrate 50 increases in proportion to the temperature rise of the camera substrate 50 due to laser light.
  • the proportionality coefficient (coefficient C13) varies depending on the shape (size and shape) of the camera substrate 50 and the material of the camera substrate 50 .
  • the arithmetic device 140 multiplies the temperature rise value of the camera substrate 50 due to the laser light by a coefficient C13 based on the shape and physical properties of the camera substrate 50, thereby calculating the shift amount E13 due to the thermal expansion of the camera substrate 50. get.
  • the temperature rise value of the camera substrate 50 due to the laser light is approximately constant, so it can be identified through experiments or the like.
  • the coefficient C13 can be determined by experiment or the like. Therefore, the arithmetic unit 140 may store them in advance, read them from the storage unit in step S207, and calculate the shift amount E13 due to the thermal expansion of the camera substrate 50.
  • the amount of deviation E13 due to thermal expansion of the camera substrate 50 is approximately constant, and thus can be identified through experiments or the like. Therefore, the calculation device 140 may store the deviation amount E13 due to the thermal expansion of the camera substrate 50 in advance, and read and acquire it from the storage unit in step S207. In this embodiment, the amount of deviation E13 is stored in advance.
  • the computing device 140 calculates the displacement amount E14 due to thermal warp of the camera substrate 50 due to the temperature rise due to the laser beam (step S208). If the shape and material of the camera substrate 50 are the same, the amount of deviation E14 due to the thermal warp of the camera substrate 50 due to the temperature rise due to the laser beam is almost constant, so it is specified by experiment or the like and stored in the storage unit. . Step S208 acquires by reading it.
  • the computing device 140 adds up the various displacement amounts E10 to E14 obtained in steps S204 to S208 to predict the contraction distance E100 (step S209). Then, the prediction process ends. Note that steps S201 to S209 correspond to prediction steps.
  • the arithmetic unit 140 adjusts the position of the camera board 50 so that the distance between the lens module 30 and the camera board 50 is previously separated by the contraction distance E100 thus predicted. to adjust. That is, in step S106, the arithmetic unit 140 determines the retraction distance of the camera board 50 from the lens module 30 as compared to the specific assembly state at which the focal point is obtained so that the predicted retraction distance E100 is offset. Move away by E100. It should be noted that the contraction distance E100 may be reflected in the correction value calculated in step S105 so that the correction value may be offset by the contraction distance E100 at the time of readjustment in step S106.
  • step S102 the computing device 140 measures the installation position and installation angle of the image sensor 40 on the camera board 50.
  • step S103 the position and angle of the camera board 50 are adjusted so that the position and angle of the image sensor 40 with respect to the lens module 30 are the optimum position and angle, considering the measured installation position and installation angle. do. That is, how the image sensor 40 is installed on the camera substrate 50 is measured in advance, and the image sensor 40 is placed in a predetermined optimum position in consideration of the measured installation position and installation angle. Also, the camera substrate 50 can be adjusted with high accuracy so as to obtain the optimum angle. Therefore, when the camera board 50 is attached to the lens module 30, it is possible to reduce the trouble of adjusting the focus of the image sensor 40. FIG. In addition, since the measurement is carried out during transportation, it is not necessary to provide time for the measurement, and the time for adjustment can be shortened.
  • step S104 when calculating the MTF curve, the computing device 140 takes images while changing the Z-axis position within the scanning range.
  • the scanning range in step S104 is set based on the optimum position and the optimum angle. Therefore, the scanning range can be narrowed.
  • the position of the MTF curve (the vertex position or the position of the peak) may deviate greatly because there is a possibility that it is out of focus. . Therefore, when the image sensor 40 is arranged at an arbitrary position facing the lens module 30, it is necessary to widen the scanning range assuming a large deviation.
  • the position and angle of the image sensor 40 are adjusted to the optimum position and optimum angle. Therefore, there is a high possibility that the object is in focus, and a high possibility that the displacement of the MTF curve is small. Furthermore, in this embodiment, in step S102, the installation position and installation angle of the image sensor 40 on the camera board 50 are measured, and the position and angle of the camera board 50 are adjusted in consideration of them. The misalignment of the MTF curves is likely to be even smaller. Therefore, compared to the case where the image sensor 40 is arranged at an arbitrary position facing the lens module 30, the scanning range can be narrowed.
  • step S103 since the focal position is searched from a state in which the focus is adjusted to some extent, the scanning range can be narrowed. can be shortened.
  • step S104 when calculating the MTF curve, the computing device 140 causes the 6-axis stage 110 to continuously move the camera substrate 50 without stopping while capturing images. Therefore, compared to the case where the camera board 50 is stopped and then the image is captured, it is not necessary to provide a waiting time for waiting until the vibration converges, and the time required for adjustment can be shortened.
  • step S104 the cross light source 60 is used as the chart image, and the exposure time is shortened to the extent that the cross light source 60 can be identified, so the frame rate can be reduced. That is, the speed at which the camera substrate 50 is moved can be increased, and the time required for adjustment can be shortened.
  • step S104 of the imaging area 63, a partial area 65 at the upper end and a partial area 64 at the lower end, which are areas in which no chart image exists, are omitted to form a scanning area 62.
  • FIG. Thereby, the frame rate can be shortened. That is, the speed at which the camera substrate 50 is moved can be increased, and the time required for adjustment can be shortened.
  • a contraction distance E100 that occurs from the time of adjustment to the completion of temporary curing is predicted, and the camera substrate 50 is contracted from the lens module 30 compared to a specific assembly state that is the focal point so that the contraction distance E100 is offset. Moved away by distance E100. As a result, even if the distance between the lens module 30 and the camera substrate 50 is reduced until the temporary curing of the adhesive 70 is completed, the image sensor 40 can be assembled with high precision in focus. can.
  • the shrinkage distance E100 includes the shift amount E10 due to curing shrinkage of the adhesive 70 . Thereby, the position of the camera substrate 50 can be offset more accurately. Further, the deviation E10 due to curing shrinkage of the adhesive 70 is calculated in consideration of the separation distance L3 and the coefficient C10 based on the physical properties of the adhesive 70, so that the deviation can be accurately predicted.
  • the deviation amount due to the thermal expansion of the camera module 20 and the accompanying contraction during heat dissipation is predicted and included in the contraction distance E100.
  • the amount of deviation due to the thermal expansion of the camera module 20 and the accompanying contraction during heat dissipation is predicted based on the temperature rise value during the thermal expansion of the camera module 20 and the coefficient according to the shape and material of the camera module 20. .
  • the contraction distance E100 includes the amount of deviation E11 due to the thermal expansion of the adhesive 70.
  • the position of the camera substrate 50 can be offset more accurately.
  • the deviation E11 due to the thermal expansion of the adhesive 70 is calculated by taking into account the temperature rise value of the adhesive 70 due to the laser beam and the coefficient C11 based on the shape and physical properties of the adhesive 70, so that the deviation can be accurately calculated. can be predicted.
  • the contraction distance E100 includes the shift amount E12 due to the thermal expansion of the lens module 30.
  • the position of the camera substrate 50 can be offset more accurately.
  • the shift amount E12 due to thermal expansion of the lens module 30 is calculated by taking into account the temperature rise value of the lens module 30 due to the laser beam and the coefficient C12 based on the shape and material of the lens module 30, so that the shift can be accurately calculated. can be predicted.
  • the shrinkage distance E100 includes the amount of deviation E13 due to the thermal expansion of the camera substrate 50 .
  • the position of the camera substrate 50 can be offset more accurately.
  • the displacement amount E13 due to thermal expansion of the camera substrate 50 is calculated by taking into account the temperature rise value of the camera substrate 50 due to the laser beam and the coefficient C13 based on the shape and material of the camera substrate 50, so that the displacement can be accurately calculated. can be predicted.
  • the shrinkage distance E100 includes the displacement amount E14 due to the thermal warp of the camera substrate 50. Thereby, the position of the camera substrate 50 can be offset more accurately.
  • the captured image data of the chart image is analyzed to identify the assembly state of the image sensor 40, which is the focal point, and the position of the camera board 50 is readjusted (steps S104 to S106). These processes may be omitted if the required accuracy is satisfied.
  • the installation position and installation angle of the image sensor 40 on the camera board 50 are measured, and in consideration of these, the camera board 50 is adjusted so that the position and angle of the image sensor 40 are the optimum position and optimum angle.
  • steps S104 to S106 are to be performed, these processes may be omitted.
  • step S104 of the above embodiment the scanning area 62 is set by omitting part of the imaging area 63, but it is not necessary to omit it.
  • the scanning area 62 may be set by omitting part of the left and right ends of the imaging area 63 .
  • the chart image need not be the cross light source 60, and may be printed with any mark. Also, the number, shape, and arrangement may be arbitrarily changed.
  • the exposure time may be arbitrarily changed.
  • the temperature rise value of the adhesive 70, the temperature rise value of the camera substrate 50, and the temperature rise value of the lens module 30 may be the same value. This saves the trouble of measuring.
  • the contraction distances E100 at a plurality of positions may be predicted, and the separation distance may be varied for each position so that the contraction distances E100 are offset at the plurality of positions.
  • the separation distance L3 between the lens module 30 and the camera board 50 may differ at both ends in the left-right direction (Y direction). be.
  • the shift amount E11 due to effective shrinkage of the adhesive 70 varies depending on the distance L3. Therefore, there is a possibility that the contraction distance E100 differs between the left and right ends.
  • the separation distance L3 may be calculated at arbitrary positions (predicted positions) at both ends in the left-right direction, and the contraction distance E100 may be predicted accordingly. Then, the separation distance may be varied for each predicted position so that the contraction distances E100 are offset at the predicted positions at both ends in the left-right direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

カメラモジュール(20)のピント調整方法において、光学系(30)に対するカメラ基板(50)の位置及び角度を調整する調整ステップと、調整ステップにより調整された後、接着剤を介して前記光学系を前記カメラ基板に貼り合わせた状態で、前記接着剤を熱硬化させて前記光学系に前記カメラ基板を固定する組付けステップと、前記調整ステップにより調整された状態から、前記組付けステップにおける前記カメラ基板の固定が完了するまでの間に、前記光学系と前記カメラ基板とが近づいて生じる収縮ずれ量(E100)を予測する予測ステップと、を備える。前記予測ステップは、前記調整ステップよりも前に実施され、前記調整ステップでは、前記予測ステップによる予測された前記収縮ずれ量が相殺されるように、合焦点となる状態に比較して前記光学系から前記カメラ基板を前記収縮ずれ量だけ遠ざける。

Description

ピント調整方法 関連出願の相互参照
 本出願は、2021年12月21日に出願された日本出願番号2021-207023号に基づくもので、ここにその記載内容を援用する。
 本開示は、カメラのピント調整方法に関する。
 従来、車両に複数台のカメラモジュールが搭載されるようになっており、カメラモジュールの需要増加の要因となっている。カメラモジュールは、主にCCDセンサやCMOSセンサが用いられている。このようなカメラモジュールの場合、レンズに対するイメージセンサの取り付け位置を調整するピント調整を適切に行うことが求められている。
 目視して、手作業でピント調整を行う場合もあるが、精度にバラツキがあり、作業の手間や時間がかかることから、近年では、ピント調整が自動で行われる場合が多い(例えば、特許文献1~3)。特許文献1~3によれば、ピント調整の精度を低下させることなく、作業時間を短縮することが可能となった。
特開2002-267923号公報 特開2009-3152号公報 特開2008-171866号公報
 ところで、レンズモジュールを、イメージセンサが搭載されるカメラ基板に固定する場合、一般的に熱硬化型接着剤を用い、接着剤を加熱して硬化させている。この過程において、カメラモジュールを構成する各部材が熱により伸縮したり、接着剤が熱硬化により収縮したりする。このため、レンズに対するイメージセンサの位置を調整した後に、接着剤を熱硬化させると、レンズとイメージセンサとの位置関係にずれが生じる。したがって、結果的に精度よく組付けることが困難であった。
 本開示は、上記事情に鑑みてなされたものであり、精度よくイメージセンサを組付けることができるピント調整方法を提供することを目的とするものである。
 上記課題を解決するためのピント調整方法は、光学系と、イメージセンサと、前記イメージセンサが搭載されたカメラ基板と、を備えたカメラモジュールのピント調整方法であって、位置調整装置により前記光学系に対する前記カメラ基板の位置及び角度を調整する調整ステップと、前記調整ステップにより調整された後、調整された位置及び角度に基づいて前記光学系と前記カメラ基板とを接着剤にて組付ける組付けステップと、前記組付けステップにおいて前記接着剤を熱硬化させて前記光学系と前記カメラ基板とを固定する際に、前記調整ステップによる調整後、熱硬化が完了するまでに前記光学系と前記カメラ基板とが近づいて生じる収縮ずれ量を予測する予測ステップと、を備え、前記予測ステップは、前記調整ステップよりも前に実施され、前記調整ステップでは、前記予測ステップによる予測されたずれ量を相殺するように、前記光学系に対する前記カメラ基板の位置及び角度を調整する。
 このように、イメージセンサの位置及び角度の調整後、熱硬化が完了するまでに光学系とカメラ基板とが近づいて生じる収縮ずれ量を予測し、その収縮ずれ量に相当する距離だけ、光学系に対してカメラ基板を遠ざけるように、位置及び角度を調整している。このため、収縮ずれ量を相殺することができ、精度よくイメージセンサを組付けることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、カメラの分解斜視図であり、 図2は、カメラモジュールの概念図であり、 図3は、ピント調整システムの構成を示すブロック図であり、 図4は、カメラ基板の搬送態様を示す概念図であり、 図5は、カメラ基板の調整態様を示す概念図であり、 図6は、イメージセンサに十字光源を撮像させる様子を示す概念図であり、 図7は、(a)は、撮像領域における十字光源の概念図、(b)は、走査領域における十字光源の概念図であり、 図8は、MTF曲線の一例を示す図であり、 図9は、焦点深度を示す概念図であり、 図10は、合焦点状態におけるMTF曲線の一例を示す図であり、 図11は、レーザ光の照射態様を示す概念図であり、 図12は、ピント調整処理のフローチャートであり、 図13は、仮硬化時における熱膨張及びそれに伴う収縮の過程を示す概念図であり、 図14は、予測処理のフローチャートであり、 図15は、離間距離を説明するための概念図である。
 以下、本開示にかかる「ピント調整方法」を具体化した複数の実施形態について、図面を参照しつつ説明する。本実施形態において、光軸と平行な方向をZ方向とし、Z方向と直交する方向であって、縦方向(上下方向)をX方向とし、横方向(左右方向)をY方向とする。
 図1に示すように、カメラ10には、レンズ付きCOMSカメラモジュール(以下、単にカメラモジュール20)が搭載されている。図2に示すように、カメラモジュール20は、光学系としてのレンズモジュール30と、イメージセンサ40と、イメージセンサ40が搭載されたカメラ基板50と、を備える。イメージセンサ40は、COMS等の撮像素子のことである。カメラ基板50にレンズモジュール30が固定されることにより、カメラモジュール20が構成されている。レンズモジュール30は、接着剤(熱硬化型接着剤)70を介してカメラ基板50に固定されている。
 次に、ピント調整システム100について説明する。図3に示すように、ピント調整システム100は、位置調整装置としての6軸ステージ110と、搬送装置120と、測距センサ130と、演算装置140と、レーザ光を照射可能なレーザ150と、を備える。
 6軸ステージ110は、イメージセンサ40が搭載されたカメラ基板50の位置や傾きを変更する機構を備えたものである。本実施形態において、6軸ステージ110は、X方向、Y方向、Z方向の位置調整、及びロール角、ヨー角、ピッチ角の角度調整(合わせて6軸)を行うことができる。
 搬送装置120は、カメラ基板50が設置された6軸ステージ110を搬送するものである。図4に示すように、搬送装置120は、カメラ基板50のイメージセンサ40がレンズモジュール30のレンズに対向する対向位置に到達するまで、6軸ステージ110ごと搬送する。
 測距センサ130は、搬送装置120により搬送中のカメラ基板50上のイメージセンサ40の設置距離及び設置角度を測定する。つまり、イメージセンサ40は、接着剤やはんだ付け等により、カメラ基板50に固定されることとなるが、組付け精度により多少の誤差が生じる可能性がある。そこで、カメラ基板50においてどのような状態(設置距離及び設置角度)で固定されているかについて測定する。なお、測距センサ130は、予め決められた基準点を基準として、イメージセンサ40の設置距離及び設置角度を測定する。具体的には、X方向、Y方向、Z方向の位置、及びロール角、ヨー角、ピッチ角を測定する。基準点は、例えば、カメラ基板50においてあらかじめ定められた地点である。
 演算装置140は、CPU、RAM、ROM等を備え、ROMに記憶されたプログラムを実行することにより、各種機能を実現する。また、各種入出力デバイスを備えており、演算装置140は、各種指示の入力、及び結果の出力を可能に構成されている。また、図3に示すように、演算装置140は、6軸ステージ110、搬送装置120、測距センサ130、及びレーザ150と接続させており、各種信号を入出力可能に構成されている。各種信号としては、例えば、指示を通知する指示信号や、測定結果を通知する測定信号などがある。
 演算装置140は、各種機能として、例えば、搬送部141としての機能と、測定部142としての機能と、調整部143としての機能と、合焦点特定部144としての機能と、組付け部145としての機能と、を備える。なお、1台の演算装置140に、全ての機能を備える必要はなく、複数台の演算装置に機能を分担させて、備えてもよい。
 搬送部141としての演算装置140は、イメージセンサ40がレンズモジュール30のレンズに対向する対向位置に到達するまで、カメラ基板50及び6軸ステージ110が搬送されるように搬送装置120を制御する。
 測定部142としての演算装置140は、搬送中、カメラ基板50におけるイメージセンサ40の設置位置及び設置角度を測定させるように測距センサ130を制御する。
 調整部143としての演算装置140は、レンズモジュール30に対するカメラ基板50の位置及び角度を調整するように、6軸ステージ110を制御する。具体的には、図5に示すように、搬送装置120により6軸ステージ110が搬送された後、調整部143は、測定部142により測定されたイメージセンサ40の設置位置及び設置角度を考慮して、レンズモジュール30に対するイメージセンサ40の位置及び角度が、最適位置及び最適角度となるように調整する。最適位置及び最適角度が、レンズモジュール30により予め定められた設定位置及び設定角度にそれぞれ対応する。
 なお、当該最適位置及び最適角度にてイメージセンサ40が設置されると、イメージセンサ40の焦点がほぼ合うように、当該最適位置及び最適角度がレンズモジュール30により予め定められている。最適位置及び最適角度は、図4において破線で示すように、レンズモジュール30の製造メーカ等により予め測定されている。調整部143は、レンズモジュール30に対するイメージセンサ40の位置及び角度が、最適位置及び最適角度となるように調整する。前述したように、カメラ基板50に設置されたイメージセンサ40には、設置位置及び設置角度のずれが生じている場合があるので、その誤差を考慮して、カメラ基板50の位置及び角度を調整する。
 この最適位置及び最適角度は、完成品のレンズモジュール30のうちいくつか選択されて測定され、その平均値が使用されることが一般的である。または、設計図などから計算などにより、算出されることもある。このため、レンズモジュール30によって、多少の製造誤差が生じる場合がある。つまり、イメージセンサ40の位置及び角度が、最適位置及び最適角度となるように調整されても、焦点が合わない可能性がある。
 そこで、合焦点特定部144として演算装置140は、所定位置に配置されたチャート像を、レンズモジュール30を介してイメージセンサ40に撮像させ、その撮像データを解析して合焦点となるイメージセンサ40の組付け状態を特定するようにしている。以下、詳しく説明する。
 本実施形態では、図6に示すように、十字のスリットが形成されたシート(例えば、黒色の紙)を光源61にかぶせ、光源61から光をカメラモジュール20に照射することにより、図7に示すように、チャート像としての十字光源60を生成している。すなわち、シートの十字スリットを通過することにより生成された十字光源(十字スリット光)60が、チャート像となる。この十字光源60は、複数個所において生成するようにしており、それぞれ予め決められた位置に配置されている。例えば、図7に示すように、カメラモジュール20が撮像可能な撮像領域63の真ん中、右上、右下、左上、左下の五か所に配置されるようにしている。
 合焦点特定部144として演算装置140は、各十字光源60を、レンズモジュール30を介してイメージセンサ40に撮像させ、その撮像データを解析して各十字光源60のMTF曲線を算出する。MTF(Modulation Transfer Function)曲線は、レンズ性能を評価する指標のひとつで、レンズの結像性能を知るために、被写体(チャート像)の持つコントラストをどの程度忠実に再現できるかを空間周波数特性として表現したものである。
 具体的には、演算装置140は、複数のZ軸方向における位置(Z軸位置)において各十字光源60を撮像し、各十字光源60の撮像データを解析して、コントラストに相当するMTF値(%)を算出する。なお、MTF値を算出する際、各十字光源60における縦方向(X方向)のスリットと横方向(Y方向)のスリットとを区別して算出する。このため、本実施形態では、各Z軸位置において合計10個のMTF値を算出することなる。
 そして、所定の走査範囲内でカメラ基板50を移動させて走査した後、演算装置140は、縦軸をMTF値とし、横軸をZ軸位置とする座標上で、算出したMTF値をプロットして、それらを結ぶことにより、MTF曲線を算出する。本実施形態では、各Z軸位置において合計10個のMTF値を算出するため、図8に示すように、合計10本のMTF曲線を算出することとなる。
 10本のMTF曲線を得た後、図9に示すように、演算装置140は、MTF値が製品規格において予め決められた値(例えば、35%)であるときに、焦点深度が最大となるように、イメージセンサ40の位置及び傾きを補正する値を算出する。具体的には、図9に示す焦点深度に対応する距離が最大となるように、各MTF曲線の頂点を近づける。そして、図10に示すように、焦点深度が最大となった場合において、各MTF曲線のZ軸方向の移動量を算出し、各移動量から、X軸方向、Y軸方向、X軸方向の各位置の補正値、及びロール角、ヨー角、ピッチ角の各角度の補正値を算出する。そして、演算装置140は、算出した位置及び角度の補正値に基づいて、合焦点となるイメージセンサ40の組付け状態を特定する。その後、演算装置140は、図6に示すように、各補正値に基づいて、カメラ基板50の位置及び角度を調整して、イメージセンサ40が特定した組付け状態となるように6軸ステージ110を制御する。
 組付け部145としての演算装置140は、イメージセンサ40が、特定された組付け状態となった後、図11に示すように、カメラ基板50に塗布された接着剤70にレーザ光を照射させるようにレーザ150を制御する。つまり、接着剤70を介してレンズモジュール30とカメラ基板50とを張り合わせた状態で、接着剤70にレーザ光を照射して、加熱させる。これにより、接着剤70を仮硬化させて、レンズモジュール30にカメラ基板50を組付ける。
 ところで、前述したようにMTF曲線を算出するために、複数の異なるZ軸位置において、十字光源60を撮像する必要があり、Z軸方向にカメラ基板50を移動させる必要がある。しかしながら、カメラ基板50を移動させた後、停止させると、停止時に振動が生じる。振動が生じた状態でチャート像を撮像すると、誤差要因となるため、停止するごとに振動が収まるまで待機時間を設ける必要がある。このため、作業時間が長くなっていた。そこで、本実施形態では、作業時間短縮のために、以下のような工夫をしている。
 第1の工夫として、演算装置140は、最適位置及び最適角度を基準として設定された所定の走査範囲内でZ軸方向の位置を移動させるように、6軸ステージ110を制御する。走査範囲は、例えば、最適位置を中心とするZ軸方向において予め決められた範囲内である。
 第2の工夫として、演算装置140は、所定の走査範囲内で、カメラ基板50を停止させることなく継続的に移動させながら撮像させ、複数の撮像データを取得し、それらの複数の撮像データを解析している。本実施形態において、演算装置140は、走査範囲内で、カメラ基板50を定速で移動させながら、撮像させている。
 第3の工夫として、チャート像を特定できる限度において露光時間を短くしている。なお、本実施形態では、十字光源60をチャート像として用いているため、例えば、紙に印刷されたチャート像を撮像する場合に比較して、露光時間を短くすることができる。本実施形態では、一般的な露光時間である33.3msや16.7msよりも短くしており、具体的には、露光時間を0.7msとしている。
 第4の工夫として、イメージセンサ40で撮像可能な撮像領域63を制限して、走査領域62を設定している。具体的には、十字光源60が存在する領域は、予め決められているため、十字光源60が存在しない領域を撮像しないようにしている。例えば、図7(a)に示すように、本来の撮像領域63のうち、十字光源60が存在しない上端部の一部領域65及び下端部の一部領域64を省略して、走査領域62としている。本実施形態では、縦方向(X軸方向)において、本来の撮像領域63の縦幅が、1876(pix)である場合、走査領域62の縦幅を1369(pix)としている。なお、誤差を考慮したうえで、十字光源60が十分撮像できる程度に、走査領域62を設定することが望ましい。
 次に、本実施形態におけるピント調整方法の流れについて図12を参照して説明する。以下に示すピント調整処理は、演算装置140により実行される。
 まず、搬送部141としての演算装置140は、カメラ基板50が搬送装置120に載置された後、イメージセンサ40がレンズモジュール30の対向位置に到達するまで、カメラ基板50及び6軸ステージ110が搬送されるように搬送装置120の制御を開始する(ステップS101)。このステップS101が搬送ステップに相当する。ステップS101において、カメラ基板50には、レンズモジュール30を接着するための接着剤70がすでに塗布されている。ただし、後の工程(例えば、ステップS107等)で接着剤70を塗布するのであれば、この段階で塗布されていなくてもよい。
 また、測定部142としての演算装置140は、搬送中、カメラ基板50におけるイメージセンサ40の設置位置及び設置角度を測定させるように測距センサ130を制御する(ステップS102)。このステップS102が測定ステップに相当する。
 そして、イメージセンサ40が対向位置に到達した後、調整部143としての演算装置140は、6軸ステージ110を制御してカメラ基板50の位置及び角度を調整する(ステップS103)。このステップS103において、演算装置140は、ステップS102で測定されたイメージセンサ40の設置位置及び設置角度を考慮して、イメージセンサ40の位置及び角度が、最適位置及び最適角度となるようにカメラ基板50の位置及び角度を調整する。
 その後、合焦点特定部144として演算装置140は、チャート像としての各十字光源60を、レンズモジュール30を介してイメージセンサ40に撮像させ、その撮像データを解析して各チャート像のMTF曲線を算出する(ステップS104)。ステップS104において、演算装置140は、最適位置を基準として設定された走査範囲内でカメラ基板50を定速移動させつつ、撮像させる。このときの走査領域62は、イメージセンサ40の撮像領域63よりも狭く、また、露光時間も短くして、フレームレートを短縮している。なお、その撮像データを解析して各チャート像のMTF曲線を算出するタイミングは、撮像データの取得と平行してもよいし、全ての撮像データの取得後に、まとめて解析してもよい。本実施形態では、撮像データの取得と平行して、撮像データを順次解析して、各チャート像のMTF曲線を算出している。
 演算装置140は、MTF曲線を得た後、焦点深度が最大となるように、イメージセンサ40の位置及び傾きを補正する補正値を算出する(ステップS105)。このステップS103及びステップS104が、合焦点特定ステップに相当する。
 その後、演算装置140は、ステップS105にて算出された補正値に基づいて、カメラ基板50の位置及び角度を再調整し、イメージセンサ40が合焦点となる特定の組付け状態となるように、6軸ステージ110を制御する(ステップS106)。このステップS106及びステップS103が調整ステップに相当する。つまり、必要に応じて調整ステップは、1回又は複数回実施されてもよい。
 そして、演算装置140は、レンズモジュール30とカメラ基板50との間に塗布された接着剤70に対して、レーザ光を照射して硬化(仮硬化)させるようにレーザ150を制御する(ステップS107)。つまり、接着剤70を介してレンズモジュール30の接着面とカメラ基板50の接着面を貼り合わせた状態で、レーザ光を照射して接着剤70を加熱して、硬化させている。ステップS107が組付けステップに相当する。その後、カメラ基板50及びレンズモジュール30を恒温槽に保管して接着剤70を本硬化させ、レンズモジュール30をカメラ基板50に対して確実に固定する。これにより、カメラモジュール20が完成する。
 ところで、イメージセンサ40の位置及び角度を調整した後、ステップS107において、レーザ光を照射して、接着剤70を仮硬化させているが、調整後、仮硬化が完了するまでに位置がずれる傾向があることがわかった。
 詳しく説明すると、図13(a)に示すように、レーザ光を照射すると、図13(b)に示すように、接着剤70、レンズモジュール30、及びカメラ基板50が加熱されて一時的に熱膨張する。その後、図13(c)に示すように、接着剤70が仮硬化することに伴い、レンズモジュール30とカメラ基板50は、それぞれ接着剤70との接着面で接着されることとなる。このとき、図13(c)における拡大図に示すように、接着剤70は、レンズモジュール30とカメラ基板50とそれぞれ接着面で接着するとともに、自身は硬化収縮する。このため、レンズモジュール30とカメラ基板50は、接着剤70の硬化収縮に伴って、矢印に示すように、それぞれ接着面に引っ張られて、互いに近づくこととなる。
 その後、放熱すると、図13(d)の拡大図に示すように、レンズモジュール30、カメラ基板50、及び接着剤70はそれぞれ膨張していた分が収縮することとなる。このとき、それぞれの接着面に引っ張られて、さらにレンズモジュール30とカメラ基板50は、収縮した分だけ近づくこととなる。これにより、調整後、仮硬化が完了するまでにレンズモジュール30とカメラ基板50との距離が近づき、ずれが生じることとなっていた。また、これとは別に、レーザ光による熱により、カメラ基板50が反ってずれが生じていることも分かった。
 そこで、これらのずれを予測しておき、ステップS106において再調整する際、予測されるずれをオフセットすることにより、仮硬化完了時においてずれが極力生じないようにしている。ここで、Z軸方向において、ステップS106の再調整後から仮硬化完了までにレンズモジュール30とカメラ基板50とが近づく距離(縮まる距離、収縮ずれ量)を、単に収縮距離E100と示す。まず、この収縮距離E100の予測について説明する。
 演算装置140は、ステップS105の処理後、ステップS106の処理前において、図14に示す予測処理を実施する。演算装置140は、まず、Z軸方向において、イメージセンサ40の表面(レンズモジュール30側の表面)からカメラ基板50の表面(レンズモジュール30側の表面)までの第1の距離L1(図15参照)を取得する(ステップS201)。演算装置140は、ステップS102において、測定されたカメラ基板50におけるイメージセンサ40の設置位置及び設置角度から第1の距離L1を算出し、取得する。
 なお、長方形状のイメージセンサ40は、カメラ基板50に対して傾いて固定されている可能性があるため、カメラ基板50上のどの位置を基準にするかによって第1の距離L1に、違いが生じる可能性がある。しかしながら、その違いは、微差であることを考慮して、任意の位置を基準として第1の距離L1として特定している。本実施形態では、イメージセンサ40の中心におけるイメージセンサ40の表面位置からカメラ基板50の表面位置までの距離を、第1の距離L1として特定している。
 次に、演算装置140は、Z軸方向において、イメージセンサ40の表面からレンズモジュール30の接着面までの第2の距離L2(図15参照)を取得する(ステップS202)。なお、レンズモジュール30は、長方形状のイメージセンサ40を囲むように、4辺にてカメラ基板50に接着される。また、ピント調節のため、レンズモジュール30に対してカメラ基板50を傾けて組付けられる場合があるので、どの位置を基準にするかによって、第2の距離L2に違いが生じる可能性がある。
 しかしながら、その違いは、微差であることを考慮して、4辺のうち任意の位置におけるレンズモジュール30の接着面を基準としている。本実施形態では、レンズモジュール30の4つの角部のうち、いずれかの角部における接着面と、イメージセンサ40の中心との間におけるZ軸方向の距離を、第2の距離L2として特定している。イメージセンサ40は、最適位置及び最適角度にて配置されるため、第2の距離L2は、イメージセンサ40の最適位置及び最適角度、並びにレンズモジュール30の形状(設計寸法)から特定可能である。なお、第2の距離L2をセンサなどにより、実測してもよい。
 そして、演算装置140は、第1の距離L1と第2の距離L2との差分を算出して、当該差分をレンズモジュール30からカメラ基板50までのZ軸方向における離間距離L3(図15参照)として取得する(ステップS203)。
 演算装置140は、この離間距離L3に接着剤70の物性に基づく係数C10を乗算することにより、接着剤70の硬化収縮によるずれ量E10を算出する(ステップS204)。すなわち、接着剤70の硬化収縮により、カメラ基板50とレンズモジュール30とが近づく距離は、離間距離L3に応じて比例して大きくなることが実験によりわかった。また、その比例係数(係数C10)は、接着剤70の物性により異なることも実験によりわかった。そこで、本実施形態では、離間距離L3に接着剤70の物性に基づく係数C10を乗算することにより、接着剤70の硬化収縮によるずれ量E10を算出している。接着剤70の物性に基づく係数C10は、実験などにより特定される。
 次に、演算装置140は、接着剤70の熱膨張及びそれに伴う放熱時の収縮によるずれ量E11を取得する(ステップS205)。以下、接着剤70の熱膨張及びそれに伴う放熱時の収縮によるずれ量E11を、単に接着剤70の熱膨張によるずれ量E11と示す場合がある。接着剤70の熱膨張によるずれ量E11は、実験によりレーザ光による接着剤70の温度上昇値に比例して大きくなることが実験によりわかった。また、その比例係数(係数C11)は、接着剤70の形状(接着箇所の厚さや接着剤70の量)や、接着剤70の物性により異なることも実験によりわかった。そこで、演算装置140は、レーザ光による接着剤70の温度上昇値に、接着剤70の形状や物性に基づく係数C11を乗算することにより、接着剤70の熱膨張によるずれ量E11を算出し、取得する。
 なお、レーザ光による接着剤70の温度上昇値は、おおよそ一定であるため、実験などにより特定可能である。同様に、接着剤70の形状や物性もほぼ同じであるため、係数C11は、実験などにより特定可能である。このため、演算装置140は、それらを予め記憶しておき、ステップS205において、記憶部から読み出し、接着剤70の熱膨張によるずれ量E11を算出してもよい。同様に、接着剤70の熱膨張によるずれ量E11は、おおよそ一定であるため、実験などにより特定可能である。このため、演算装置140は、接着剤70の熱膨張によるずれ量E11を予め記憶しておき、ステップS205において、記憶部から読み出して取得してもよい。本実施形態では、ずれ量E11を予め記憶している。
 また、演算装置140は、レンズモジュール30の熱膨張及びそれに伴う放熱時の収縮によるずれ量E12を取得する(ステップS206)。以下、レンズモジュール30の熱膨張及びそれに伴う放熱時の収縮によるずれ量E12を、単にレンズモジュール30の熱膨張によるずれ量E12と示す場合がある。レンズモジュール30の熱膨張によるずれ量E12は、実験によりレーザ光によるレンズモジュール30の温度上昇値に比例して大きくなることがわかった。また、その比例係数(係数C12)は、レンズモジュール30の形状(大きさや形)や、レンズモジュール30の材質により異なることも実験によりわかった。そこで、演算装置140は、レーザ光によるレンズモジュール30の温度上昇値に、レンズモジュール30の形状や物性に基づく係数C12を乗算することにより、レンズモジュール30の熱膨張によるずれ量E12を算出し、取得する。
 なお、レーザ光によるレンズモジュール30の温度上昇値は、おおよそ一定であるため、実験などにより特定可能である。同様に、レンズモジュール30の形状等もほぼ同じであるため、係数C12は、実験などにより特定可能である。このため、演算装置140は、それらを予め記憶しておき、ステップS206において、記憶部から読み出し、レンズモジュール30の熱膨張によるずれ量E12を算出してもよい。同様に、レンズモジュール30の熱膨張によるずれ量E12は、おおよそ一定であるため、実験などにより特定可能である。このため、演算装置140は、レンズモジュール30の熱膨張によるずれ量E12を予め記憶しておき、ステップS206において、記憶部から読み出して取得してもよい。本実施形態では、ずれ量E12を予め記憶している。
 また、演算装置140は、カメラ基板50の熱膨張及びそれに伴う放熱時の収縮によるずれ量E13を取得する(ステップS207)。以下、カメラ基板50の熱膨張及びそれに伴う放熱時の収縮によるずれ量E13を、単にカメラ基板50の熱膨張によるずれ量E13と示す場合がある。カメラ基板50の熱膨張によるずれ量E13は、実験によりレーザ光によるカメラ基板50の温度上昇値に比例して大きくなることがわかった。また、その比例係数(係数C13)は、カメラ基板50の形状(大きさや形)や、カメラ基板50の材質により異なることも実験によりわかった。そこで、演算装置140は、レーザ光によるカメラ基板50の温度上昇値に、カメラ基板50の形状や物性に基づく係数C13を乗算することにより、カメラ基板50の熱膨張によるずれ量E13を算出し、取得する。
 なお、レーザ光によるカメラ基板50の温度上昇値は、おおよそ一定であるため、実験などにより特定可能である。同様に、カメラ基板50の形状等もほぼ同じであるため、係数C13は、実験などにより特定可能である。このため、演算装置140は、それらを予め記憶しておき、ステップS207において、記憶部から読み出し、カメラ基板50の熱膨張によるずれ量E13を算出してもよい。同様に、カメラ基板50の熱膨張によるずれ量E13は、おおよそ一定であるため、実験などにより特定可能である。このため、演算装置140は、カメラ基板50の熱膨張によるずれ量E13を予め記憶しておき、ステップS207において、記憶部から読み出して取得してもよい。本実施形態では、ずれ量E13を予め記憶している。
 そして、演算装置140は、レーザ光による温度上昇によるカメラ基板50の熱反りによるずれ量E14を算出する(ステップS208)。レーザ光による温度上昇によるカメラ基板50の熱反りによるずれ量E14は、カメラ基板50の形状や材質が同じであれば、ほぼ一定であるため、実験などにより特定され、記憶部に記憶されている。ステップS208は、それを読み込むことにより取得する。
 そして、演算装置140は、ステップS204~ステップS208で取得した各種ずれ量E10~E14を合算して、収縮距離E100を予測する(ステップS209)。そして、予測処理を終了する。なお、ステップS201~S209が予測ステップに相当する。
 演算装置140は、このようにして予測された収縮距離E100の分だけ、レンズモジュール30とカメラ基板50との間の距離を予め離間させるように、ステップS106の再調整後、カメラ基板50の位置を調整する。つまり、ステップS106において、演算装置140は、予測された収縮距離E100が相殺(オフセット)されるように、合焦点となる特定の組付け状態に比較してレンズモジュール30からカメラ基板50を収縮距離E100だけ遠ざける。なお、ステップS105において算出された補正値に、収縮距離E100を反映させることにより、ステップS106による再調整時に、収縮距離E100の分だけオフセットさせてもよい。
 本実施形態におけるピント調整方法の効果について説明する。
 ステップS102において、演算装置140は、カメラ基板50におけるイメージセンサ40の設置位置及び設置角度を測定する。そして、ステップS103において、測定された設置位置及び設置角度を考慮して、レンズモジュール30に対するイメージセンサ40の位置及び角度が、最適位置及び最適角度となるようにカメラ基板50の位置及び角度を調整する。すなわち、カメラ基板50において、どのようにイメージセンサ40が設置されているかについて、その状態を予め測定し、測定された設置位置及び設置角度を考慮して、イメージセンサ40が予め定められた最適位置及び最適角度となるようにカメラ基板50を精度よく調整することができる。このため、レンズモジュール30に対してカメラ基板50を組付ける際に、イメージセンサ40の焦点が合うように調整する手間を少なくすることが可能となる。また、搬送中に、測定するため、測定する時間をわざわざ設ける必要がなく、調整のための時間を短縮することができる。
 ステップS104において、MTF曲線を算出する際、演算装置140は、走査範囲内で、Z軸位置を変更させながら、撮影する。ステップS104における走査範囲は、最適位置及び最適角度を基準として設定されている。このため、走査範囲を狭くすることができる。つまり、イメージセンサ40をレンズモジュール30に対向する任意の位置に配置する場合、焦点があっていない可能性があるため、MTF曲線の位置(頂点位置や山の位置)が大きくずれる可能性がある。このため、イメージセンサ40をレンズモジュール30に対向する任意の位置に配置する場合、大きなずれを想定して、走査範囲を大きくする必要がある。
 しかしながら、本実施形態では、イメージセンサ40の位置及び角度が、最適位置及び最適角度となるように調整されている。このため、焦点があっている可能性が高く、MTF曲線の位置ずれが小さい可能性が高い。さらに言えば、本実施形態では、ステップS102において、カメラ基板50におけるイメージセンサ40の設置位置及び設置角度を測定し、それらを考慮して、カメラ基板50の位置及び角度を調整しているため、MTF曲線の位置ずれがさらに小さい可能性が高い。このため、イメージセンサ40をレンズモジュール30に対向する任意の位置に配置する場合に比較して、走査範囲を狭くすることができる。
 したがって、本実施形態では、ステップS103において、ある程度焦点を合わせた状態から焦点の位置を探索することとなるので、走査範囲を狭くすることができ、その結果、合焦点を特定するために要する時間を短くすることができる。
 また、ステップS104において、MTF曲線を算出する際、演算装置140は、6軸ステージ110によってカメラ基板50を停止させることなく継続的に移動させながら撮像させる。このため、カメラ基板50を停止させてから撮像する場合に比較して、振動が収束するまで待機する待機時間を設ける必要がなくなり、調整のために要する時間を短縮することができる。
 また、ステップS104において、十字光源60をチャート像として用いており、十字光源60を特定できる限度において露光時間を短くしているため、フレームレートを短縮することができる。すなわち、カメラ基板50を移動させる際の速度を早くすることができ、調整のために要する時間を短縮することができる。
 また、ステップS104において、撮像領域63のうち、チャート像が存在しない領域である上端部の一部領域65及び下端部の一部領域64を省略して、走査領域62としている。これにより、フレームレートを短縮することができる。すなわち、カメラ基板50を移動させる際の速度を早くすることができ、調整のために要する時間を短縮することができる。
 調整後から仮硬化完了時にまでに生じる収縮距離E100を予測し、当該収縮距離E100が相殺されるように、合焦点となる特定の組付け状態に比較してレンズモジュール30からカメラ基板50を収縮距離E100だけ遠ざけた。これにより、接着剤70の仮硬化が完了するまでの間に、レンズモジュール30とカメラ基板50との間の距離が近づいても、イメージセンサ40が精度よく合焦点となるように組付けることができる。
 収縮距離E100に、接着剤70の硬化収縮によるずれ量E10を含ませている。これにより、より正確にカメラ基板50の位置をオフセットさせることができる。また、接着剤70の硬化収縮によるずれ量E10は、離間距離L3及び接着剤70の物性に基づく係数C10を考慮して算出しており、正確にずれを予測することができる。
 カメラモジュール20の熱膨張及びそれに伴う放熱時の収縮によるずれ量を予測して、収縮距離E100に含ませている。カメラモジュール20の熱膨張及びそれに伴う放熱時の収縮によるずれ量は、カメラモジュール20の熱膨張時における温度上昇値、及びカメラモジュール20の形状及び材料に応じた係数に基づいて、予測している。
 より詳しくは、収縮距離E100に、接着剤70の熱膨張によるずれ量E11を含ませている。これにより、より正確にカメラ基板50の位置をオフセットさせることができる。また、接着剤70の熱膨張によるずれ量E11は、レーザ光による接着剤70の温度上昇値に、接着剤70の形状や物性に基づく係数C11を考慮して算出しており、正確にずれを予測することができる。
 また、収縮距離E100に、レンズモジュール30の熱膨張によるずれ量E12を含ませている。これにより、より正確にカメラ基板50の位置をオフセットさせることができる。また、レンズモジュール30の熱膨張によるずれ量E12は、レーザ光によるレンズモジュール30の温度上昇値に、レンズモジュール30の形状や材質に基づく係数C12を考慮して算出しており、正確にずれを予測することができる。
 また、収縮距離E100に、カメラ基板50の熱膨張によるずれ量E13を含ませている。これにより、より正確にカメラ基板50の位置をオフセットさせることができる。また、カメラ基板50の熱膨張によるずれ量E13は、レーザ光によるカメラ基板50の温度上昇値に、カメラ基板50の形状や材質に基づく係数C13を考慮して算出しており、正確にずれを予測することができる。
 収縮距離E100に、カメラ基板50の熱反りによるずれ量E14を含ませている。これにより、より正確にカメラ基板50の位置をオフセットさせることができる。
 (変形例)
 上記実施形態におけるピント調整方法の一部を変更してもよい。以下、変形例について説明する。
 ・上記実施形態では、チャート像の撮像データを解析して合焦点となるイメージセンサ40の組付け状態を特定し、カメラ基板50の位置などを再調整していた(ステップS104~S106)が、要求精度が満たされるのであれば、これらの処理を省略してもよい。
 ・上記実施形態では、カメラ基板50におけるイメージセンサ40の設置位置及び設置角度を測定し、これらを考慮して、イメージセンサ40の位置及び角度が最適位置及び最適角度となるように、カメラ基板50の位置などを調整したが、ステップS104~S106の処理を実施するのであれば、これらの処理を省略してもよい。
 ・上記実施形態のステップS104において、撮像領域63の一部を省略して走査領域62を設定したが、省略しなくてもよい。
 ・上記実施形態のステップS104において、撮像領域63の左右両端の一部を省略して走査領域62を設定してもよい。
 ・上記実施形態のステップS104において、チャート像は、十字光源60である必要なく、任意のマークを印刷したものであってもよい。また、数や形、配置を任意に変更してもよい。
 ・上記実施形態のステップS104において、露光時間を任意に変更してもよい。
 ・上記実施形態の予測処理において、収縮距離E100を予測する際、接着剤70の仮硬化によるずれ量E10を考慮しなくてもよい。これにより、離間距離L3を算出する必要がなくなり、処理負担を軽減することができる。
 ・上記実施形態の予測処理において、接着剤70の温度上昇値、カメラ基板50の温度上昇値、及びレンズモジュール30の温度上昇値は、同じ値であってもよい。これにより、測定の手間を省くことができる。
 ・上記実施形態の予測処理において、収縮距離E100を予測する際、カメラ基板50の熱反りによるずれ量E14を考慮しなくてもよい。
 ・上記実施形態の予測処理において、複数位置の収縮距離E100を予測し、複数位置において各収縮距離E100がそれぞれ相殺されるように、位置ごとに遠ざける距離を異ならせてもよい。例えば、レンズモジュール30に対してカメラ基板50を傾けて組付ける場合があるため、左右方向(Y方向)の両端において、レンズモジュール30とカメラ基板50との間の離間距離L3が異なる可能性がある。接着剤70の効果収縮によるずれ量E11は、離間距離L3により異なる。したがって、収縮距離E100が左右方向両端で異なる可能性がある。そこで、左右方向の両端の任意の位置(予測位置)において、離間距離L3を算出し、それに伴って、それぞれ収縮距離E100を予測してもよい。そして、左右方向の両端の予測位置において各収縮距離E100がそれぞれ相殺されるように、予測位置ごとに遠ざける距離を異ならせてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  光学系(30)と、イメージセンサ(40)と、前記イメージセンサが搭載されたカメラ基板(50)と、を備えたカメラモジュール(20)のピント調整方法において、
     前記光学系に対する前記カメラ基板の位置及び角度を調整する調整ステップと、
     前記調整ステップにより調整された後、接着剤を介して前記光学系を前記カメラ基板に貼り合わせた状態で、前記接着剤を熱硬化させて前記光学系に前記カメラ基板を固定する組付けステップと、
     前記調整ステップにより調整された状態から、前記組付けステップにおける前記カメラ基板の固定が完了するまでの間に、前記光学系と前記カメラ基板とが近づいて生じる収縮ずれ量(E100)を予測する予測ステップと、を備え、
     前記予測ステップは、前記調整ステップよりも前に実施され、
     前記調整ステップでは、前記予測ステップによる予測された前記収縮ずれ量が相殺されるように、合焦点となる状態に比較して前記光学系から前記カメラ基板を前記収縮ずれ量だけ遠ざけるピント調整方法。
  2.  前記予測ステップでは、前記光学系の接着面と前記カメラ基板の接着面との間の離間距離(L3)、及び前記接着剤の物性に応じた係数に基づいて、前記接着剤の硬化収縮によるずれ量(E10)を予測して、前記収縮ずれ量に含ませる請求項1に記載のピント調整方法。
  3.  前記予測ステップでは、前記カメラモジュールの熱膨張及びその放熱時の収縮によるずれ量を予測して、前記収縮ずれ量に含ませる請求項1又は2に記載のピント調整方法。
  4.  前記予測ステップでは、前記カメラモジュールの熱膨張時における温度上昇値、及び前記カメラモジュールの形状及び材料に応じた係数に基づいて、前記カメラモジュールの熱膨張及びその放熱時の収縮によるずれ量を予測する請求項3に記載のピント調整方法。
  5.  前記カメラモジュールの熱膨張及びその放熱時の収縮によるずれ量には、前記接着剤の熱膨張及びその放熱時の収縮によるずれ量(E11)と、前記カメラ基板の熱膨張及びその放熱時の収縮によるずれ量(E13)と、前記光学系の熱膨張及びその放熱時の収縮によるずれ量(E12)と、が含まれる請求項3又は4に記載のピント調整方法。
  6.  前記予測ステップでは、前記カメラ基板の熱反りによるずれ量(E14)を予測して、前記収縮ずれ量に含ませる請求項1~5のうちいずれか1項に記載のピント調整方法。
  7.  前記予測ステップでは、複数位置の前記収縮ずれ量を予測し、
     前記調整ステップでは、前記複数位置において前記収縮ずれ量がそれぞれ相殺されるように、位置ごとに遠ざける距離を異ならせる請求項1~6のうちいずれか1項に記載のピント調整方法。
PCT/JP2022/044528 2021-12-21 2022-12-02 ピント調整方法 WO2023120108A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023569247A JPWO2023120108A1 (ja) 2021-12-21 2022-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021207023 2021-12-21
JP2021-207023 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120108A1 true WO2023120108A1 (ja) 2023-06-29

Family

ID=86902128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044528 WO2023120108A1 (ja) 2021-12-21 2022-12-02 ピント調整方法

Country Status (2)

Country Link
JP (1) JPWO2023120108A1 (ja)
WO (1) WO2023120108A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328292A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 撮像ユニット製造方法および撮像ユニット
JP2015111758A (ja) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 撮像装置の製造方法、撮像装置及び携帯端末
JP2017130543A (ja) * 2016-01-20 2017-07-27 三菱電機株式会社 光送信機およびその製造方法
JP2021026112A (ja) * 2019-08-05 2021-02-22 株式会社デンソー カメラモジュールの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328292A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 撮像ユニット製造方法および撮像ユニット
JP2015111758A (ja) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 撮像装置の製造方法、撮像装置及び携帯端末
JP2017130543A (ja) * 2016-01-20 2017-07-27 三菱電機株式会社 光送信機およびその製造方法
JP2021026112A (ja) * 2019-08-05 2021-02-22 株式会社デンソー カメラモジュールの製造方法

Also Published As

Publication number Publication date
JPWO2023120108A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
JP5549230B2 (ja) 測距装置、測距用モジュール及びこれを用いた撮像装置
KR101141345B1 (ko) 3차원 형상 계측 장치, 3차원 형상 계측 방법, 3차원 형상 계측 프로그램, 및 기록 매체
US8098284B2 (en) Method of manufacturing camera module
KR102169238B1 (ko) 공통 기판을 사용하는 레인지 카메라
WO2023120108A1 (ja) ピント調整方法
WO2023120107A1 (ja) ピント調整方法
JP6250415B2 (ja) パターン描画装置およびパターン描画方法
JP7043055B2 (ja) 検査カメラモジュールの調整装置及びその調整方法
US20180272614A1 (en) Optical device production apparatus and optical device production method
KR102242152B1 (ko) 리소그래피 장치 및 물품 제조 방법
JP5722784B2 (ja) スキャナを調節する方法及び該スキャナ
KR20180030431A (ko) 노광 장치 및 물품 제조 방법
JP7214431B2 (ja) 描画方法および描画装置
US9201335B2 (en) Dynamic adjustable focus for LED writing bars using piezoelectric stacks
JP7188316B2 (ja) カメラモジュールの製造方法
KR20160006683A (ko) 노광 장치
JP2006234959A (ja) 露光方法および露光装置
EP4310568A1 (en) Lens alignment method, lens alignment apparatus, lens alignment software, and vehicle camera
US11966096B2 (en) Lens body bonding structure, image reading device, and method for bonding lens body
US20070159614A1 (en) Laser projection system
JP2014179764A (ja) 撮像素子の位置調整装置
KR20130023305A (ko) 측정장치 및 이의 보정방법
WO2021049177A1 (ja) 画像読取装置
CN117881527A (zh) 提高增材制造设备中的能量供应的位置精度
WO2019026609A1 (ja) 露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569247

Country of ref document: JP