WO2023119762A1 - 固体電解コンデンサ用重合体分散液の製造方法及び固体電解コンデンサの製造方法 - Google Patents

固体電解コンデンサ用重合体分散液の製造方法及び固体電解コンデンサの製造方法 Download PDF

Info

Publication number
WO2023119762A1
WO2023119762A1 PCT/JP2022/034952 JP2022034952W WO2023119762A1 WO 2023119762 A1 WO2023119762 A1 WO 2023119762A1 JP 2022034952 W JP2022034952 W JP 2022034952W WO 2023119762 A1 WO2023119762 A1 WO 2023119762A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
polymer
electrolytic capacitor
solid electrolytic
producing
Prior art date
Application number
PCT/JP2022/034952
Other languages
English (en)
French (fr)
Inventor
浩貴 山田
美代 藤田
隆 大久保
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023119762A1 publication Critical patent/WO2023119762A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Definitions

  • the present invention relates to a method for producing a dispersion containing a conjugated conductive polymer for solid electrolytic capacitors and a method for producing solid electrolytic capacitors.
  • Electrolytic capacitors generally have valve metals such as aluminum, tantalum, and niobium as anode and cathode foils, and have an electrolyte interposed between the anode and cathode foils.
  • valve metals such as aluminum, tantalum, and niobium
  • electrolyte interposed between the anode and cathode foils.
  • the surface area is increased by etching or the like, and a dielectric oxide film is formed on the surface.
  • ESR equivalent series resistance
  • solid electrolytic capacitors using solid electrolytes containing conductive polymers such as polypyrrole, polyaniline, and polythiophene
  • an electrolytic capacitor element is impregnated with a monomer solution for obtaining a conductive polymer and an oxidizing agent solution, and oxidative polymerization or electrolytic polymerization is performed in the electrolytic capacitor element.
  • a method of forming a solid electrolyte by using a method of forming a solid electrolyte see, for example, Patent Literature 1).
  • Patent Document 2 describes that a solid electrolytic capacitor with a large capacitance and a low ESR can be obtained by finely dividing and dispersing aggregates of a conductive polymer in a dispersion liquid by irradiating ultrasonic waves. It is
  • the present invention has been made in view of such circumstances, and provides a method for producing a polymer dispersion for a solid electrolytic capacitor, which provides a solid electrolytic capacitor having a large capacitance and a low ESR, and the above-described method for producing a polymer dispersion.
  • An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor using a polymer dispersion.
  • dispersion treatment is performed even after the addition of an electrical conductivity improver, so that a solid electrolytic capacitor produced using the polymer dispersion has improved capacitance, And it is based on having discovered that ESR falls.
  • the electrical conductivity improver is one selected from tetrahydrofuran, ⁇ -butyrolactone, N-methylformamide, N-methylpyrrolidone, ethylene glycol, propylene glycol, glycerin, diethylene glycol, triethylene glycol, dimethylsulfoxide and sorbitol.
  • the weight for a solid electrolytic capacitor according to [1] or [2], wherein the amount of the electrical conductivity improver added is 1 to 30 parts by mass per 1 part by mass of the solid content of the dispersion (a).
  • a method for producing a coalescing dispersion is one selected from tetrahydrofuran, ⁇ -butyrolactone, N-methylformamide, N-methylpyrrolidone, ethylene glycol, propylene glycol, glycerin, diethylene glycol, triethylene glycol, dimethylsulfoxide and
  • a method for producing a polymer dispersion for a solid electrolytic capacitor according to the above item [7] The method for producing a polymer dispersion for a solid electrolytic capacitor according to [6], wherein the compound of thiophenes is represented by the following formula (1).
  • R 1 and R 2 are each independently a hydrogen atom, a hydroxyl group, an optionally substituted alkyl group having 1 to 18 carbon atoms, the number of optionally substituted carbon atoms 1 to 18 alkoxy groups, optionally substituted alkylthio groups of 1 to 18 carbon atoms, or optionally substituted groups formed by combining R 2 and R 3 C 3-10 alicyclic ring, optionally substituted C 6-10 aromatic ring, optionally substituted C 2-10 oxygen atom-containing heterocyclic ring, substituted a sulfur atom-containing heterocyclic ring having 2 to 10 carbon atoms which may have a group, or a sulfur atom-containing and oxygen atom-containing heterocyclic ring having 2 to 10 carbon atoms which may have a substituent.
  • the ratio of the anionic group in the polyanion is 0.25 to 30 mol per 1 mol of the monomer constituting the constituent unit of the conjugated conductive polymer [1] to [8]
  • an oxidizing agent containing one or more selected from peroxodisulfuric acid and salts thereof is used in a liquid containing water to form a unit that becomes a structural unit of the conjugated conductive polymer.
  • the method for producing a polymer dispersion for solid electrolytic capacitors according to any one of [1] to [9], wherein the polymer is polymerized.
  • the polymer dispersion for solid electrolytic capacitors obtained by the production method according to any one of [1] to [10] is applied to a porous anode body made of a valve metal having a dielectric coating on the surface. and a step (5) of forming a solid electrolyte layer by removing the dispersion medium from the solid electrolytic capacitor polymer dispersion liquid attached to the porous anode body (5).
  • the production method of the present invention it is possible to produce a polymer dispersion for a solid electrolytic capacitor that provides a solid electrolytic capacitor with a large capacitance and a low ESR. Further, according to the present invention, there is provided a method for manufacturing a solid electrolytic capacitor having a large capacitance and a low ESR using the polymer dispersion.
  • “Protective colloidal polyanion” in “seed particles protective colloidal polyanion” means a state in which the polyanion is coordinated to the seed particles to cover the surface of the seed particles.
  • Solid content means an evaporation residue after evaporation of water in a liquid, and "solid content concentration” is measured by the measuring method described in Examples.
  • the “class” attached to the compound name means a group of compounds containing the compound structure, and also includes the compound having a substituent.
  • pyrrole refers to a group of compounds containing a pyrrole structure.
  • “(Meth)acrylic acid” is a generic term for acrylic acid and methacrylic acid.
  • (meth)acrylate is a generic term for acrylate and methacrylate
  • “(meth)acryloyl” is a generic term for acryloyl and methacryloyl.
  • Method for producing polymer dispersion for solid electrolytic capacitor in the method for producing a polymer dispersion for solid electrolytic capacitors of the present embodiment, in a liquid containing at least one of seed particles and polyanions that have been protectively colloided with polyanions, a unit that becomes a constituent unit of a conjugated conductive polymer A step (1) of polymerizing a polymer to obtain a polymer-containing liquid, a step (2) of subjecting the polymer-containing liquid to a first dispersion treatment to obtain a dispersion (a), and a dispersion ( A step (3) of adding an electrical conductivity improver to a) and performing a second dispersion treatment to obtain a dispersion (b).
  • Step (1) In the step (1) in the method for producing a polymer dispersion according to the present embodiment, in a liquid containing at least one of seed particles and polyanions that have been protectively colloided by polyanions, they become constituent units of the conjugated conductive polymer.
  • a polymer-containing liquid is obtained by polymerizing a monomer.
  • the polymer-containing liquid contains, as a polymer, a composite of a conjugated conductive polymer and seed particles that have been made into a protective colloid by a polyanion, and/or a composite of a conjugated conductive polymer and a polyanion. obtain.
  • the polymer in the polymer dispersion and polymer-containing liquid of the present embodiment includes a conjugated conductive polymer.
  • the conjugated conductive polymer is not particularly limited as long as it is an organic polymer compound having a ⁇ -conjugated system in its main chain.
  • the conjugated conductive polymer may be used alone or in combination of two or more. Further, even if it is a homopolymer of a monomer that is a constituent unit of a conjugated conductive polymer described later, a copolymer obtained by copolymerizing two or more monomers that are constituent units of a conjugated conductive polymer. It may be a polymer.
  • conjugated conductive polymers examples include polypyrroles, polythiophenes, polyisothianaphthenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. etc. Among these, polypyrroles, polythiophenes, and polyanilines are preferred, and polythiophenes are more preferred, from the viewpoint of ease of handling and availability.
  • the conjugated conductive polymer preferably has a substituent such as an alkyl group, a carboxy group, a sulfo group, an alkoxy group, a hydroxyl group, or a cyano group from the viewpoint of high conductivity.
  • Polypyrroles include, for example, polypyrrole, poly(N-methylpyrrole), poly(3-methylpyrrole), poly(3-ethylpyrrole), poly(3-n-propylpyrrole), poly(3-butylpyrrole) , poly(3-octylpyrrole), poly(3-decylpyrrole), poly(3-dodecylpyrrole), poly(3,4-dimethylpyrrole), poly(3,4-dibutylpyrrole), poly(3-carboxy pyrrole), poly(3-methyl-4-carboxypyrrole), poly(3-methyl-4-carboxyethylpyrrole), poly(3-methyl-4-carboxybutylpyrrole), poly(3-hydroxypyrrole), poly (3-methoxypyrrole), poly(3-ethoxypyrrole), poly(3-butoxypyrrole), poly(3-hexyloxypyrrole), poly(3-
  • polythiophenes include polythiophene, poly(3-methylthiophene), poly(3-hexylthiophene), poly(3-heptylthiophene), poly(3-octylthiophene), poly(3-decylthiophene), poly (3-dodecylthiophene), poly(3-octadecylthiophene), poly(3-bromothiophene), poly(3-chlorothiophene), poly(3-iodothiophene), poly(3-cyanothiophene), poly(3 -phenylthiophene), poly(3,4-dimethylthiophene), poly(3,4-dibutylthiophene), poly(3-hydroxythiophene), poly(3-methoxythiophene), poly(3-ethoxythiophene), poly (3-butoxythiophene), poly(3-hexyloxythiophene
  • polyanilines examples include polyaniline, poly(2-methylaniline), poly(3-isobutylaniline), poly(2-anilinesulfonic acid), poly(3-anilinesulfonic acid) and the like.
  • the conjugated conductive polymer is, from the viewpoint of high conductivity, polypyrrole, polythiophene, poly(N-methylpyrrole), poly(3-methylthiophene), poly(3-methoxythiophene), poly (3,4-ethylenedioxythiophene) is preferred, and from the viewpoint of excellent heat resistance, poly(3,4-ethylenedioxythiophene) is more preferred.
  • a monomer for obtaining a conjugated conductive polymer that is, a monomer that becomes a structural unit of the conjugated conductive polymer contains one or more compounds selected from pyrroles, anilines and thiophenes. is preferred.
  • Examples of the substituent X that the compound has include an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 10 carbon atoms, a heteroaryl group having 5 to 10 carbon atoms, and a alkoxy group, alkylthio group having 1 to 18 carbon atoms, carboxy group, hydroxyl group, halogen atom, cyano group and the like, and two or more of these substituents X are bonded to each other by condensation or the like to form a ring. may be formed.
  • alkyl groups, aryl groups, heteroaryl groups, alkoxy groups and alkylthio groups may also have further substituents Y such as, for example, carboxy groups, hydroxyl groups, halogen atoms, cyano groups and the like.
  • Examples of monomers that are constituent units of the conjugated conductive polymer include pyrrole, N-methylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3- Octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3,4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxypyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole , 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, 3-methyl -pyrroles such as 4-hexyloxypyrrole; thiophene, 3-methylthiophene, 3-ethylthioph
  • the monomer that becomes a constituent unit of the conjugated conductive polymer is a thiophene compound represented by the following formula (1). is preferably included.
  • R 1 and R 2 are each independently a hydrogen atom, a hydroxyl group, an optionally substituted alkyl group having 1 to 18 carbon atoms, an optionally substituted carbon an alkoxy group having 1 to 18 atoms, an optionally substituted alkylthio group having 1 to 18 carbon atoms, or a substituent formed by combining R 2 and R 3 with each other an alicyclic ring having 3 to 10 carbon atoms which may be substituted, an aromatic ring having 6 to 10 carbon atoms which may have a substituent, an oxygen atom-containing heterocyclic ring having 2 to 10 carbon atoms which may have a substituent , an optionally substituted heterocyclic ring containing 2 to 10 carbon atoms containing a sulfur atom, or an optionally substituted heterocyclic ring containing 2 to 10 carbon atoms containing a sulfur atom and an oxygen atom.
  • the substituent referred to here is the same as the substituent Y described above, and examples thereof include a carboxy group, a hydroxyl group, a halogen atom, a cyano group, and the like.
  • the number of carbon atoms does not include the number of carbon atoms in the substituent Y (the same applies hereinafter).
  • Examples of the oxygen atom-containing heterocyclic ring include oxirane ring, oxetane ring, furan ring, hydrofuran ring, pyran ring, pyrone ring, dioxane ring, trioxane ring and the like.
  • sulfur atom-containing heterocyclic rings examples include thiirane ring, thietane ring, thiophene ring, thiane ring, thiopyran ring, thiopyrylium ring, benzothiopyran ring, dithiane ring, dithiolane ring, trithiane ring and the like.
  • sulfur atom- and oxygen atom-containing heterocyclic rings include oxathiolane ring, oxathian ring and the like.
  • the monomers that constitute the structural units of the conjugated conductive polymer more preferably include a compound represented by the following formula (2), and 3,4-ethylene More preferably it contains dioxythiophene.
  • R 3 and R 4 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, or R 3 and R 4 are bonded to each other It is an optionally substituted oxygen atom-containing heterocyclic ring having 3 to 6 carbon atoms formed by
  • R 3 and R 4 are preferably an optionally substituted C 3-6 oxygen atom-containing heterocyclic ring formed by combining R 3 and R 4 with each other.
  • the oxygen atom-containing heterocyclic ring includes, for example, a dioxane ring, a trioxane ring and the like, preferably a dioxane ring.
  • the substituent referred to here is the same as the substituent Y described above, and examples thereof include a carboxy group, a hydroxyl group, a halogen atom, a cyano group, and the like.
  • the polymerization reaction to obtain the conjugated conductive polymer is carried out using a liquid (hereinafter referred to as , simply referred to as the monomer liquid).
  • the monomer liquid preferably contains dissolved, emulsified, or dispersed monomers that form the constituent units of the conjugated conductive polymer.
  • Preparation of the monomer liquid can be carried out, for example, by stirring with a stirrer such as a homomixer or homogenizer, irradiation with ultrasonic waves, or the like.
  • the monomer liquid may contain either the seed particles protected by colloidal protection with the polyanion or the polyanion, or may contain both of them.
  • the polyanion is further contained from the viewpoint of suppressing aggregation of the polymer. That is, it preferably contains seed particles and polyanions that have been converted into protective colloids with polyanions, and more preferably contains the same polyanions that form the protective colloids of the seed particles.
  • the amount of the polyanion added separately from the seed particles is preferably 99% by mass or less, more preferably 10 to 90% by mass, and still more preferably 20 to 80% by mass, based on the total 100% by mass of the polyanions used. be.
  • Examples of the dispersion medium used for preparing the monomer liquid include water; amides such as N-vinylpyrrolidone, hexamethylphosphoramide, N-vinylformamide and N-vinylacetamide; phenols such as cresol, phenol and xylenol.
  • nitriles such as acetonitrile, glutarodinitrile, methoxyacetonit
  • the dispersion medium may be used singly or in combination of two or more.
  • the dispersion medium preferably contains water, and the content of water in 100% by mass of the dispersion medium is preferably 1% by mass or more, more preferably 50% by mass, and even more preferably 100% by mass.
  • the dispersion medium used for preparing the monomer liquid is preferably of the same type as the dispersion medium used for producing seed particles, which will be described later.
  • the content of the dispersion medium in 100 parts by mass of the monomer liquid is preferably 1 to 99.9 parts by mass, more preferably 10 to 99 parts by mass, still more preferably from the viewpoint of appropriate viscosity and reactivity during the polymerization reaction. is 30 to 98 parts by mass.
  • a polyanion is a polymer having two or more anionic groups.
  • the polyanions coordinate to the surfaces of the seed particles to form protective colloids and function as dopants for the conjugated conductive polymer.
  • anionic group examples include a group consisting of sulfonic acid or a salt thereof, a group consisting of phosphoric acid or a salt thereof, a monosubstituted phosphate group, a group consisting of a carboxylic acid or a salt thereof, a monosubstituted sulfate ester group, and the like. be done. Among these, a strongly acidic group is preferred, a group consisting of sulfonic acid or a salt thereof, a group consisting of phosphoric acid or a salt thereof is more preferred, and a group consisting of a sulfonic acid or a salt thereof is even more preferred.
  • Salts include, for example, salts of sodium, potassium, magnesium, calcium, ammonium and the like.
  • the anionic group may be attached to the main chain of the polymer that constitutes the polyanion, or may be attached to the side chain. When the anionic group is bound to the side chain, the anionic group is preferably bound to the end of the side chain from the viewpoint of obtaining a high doping effect for the conjugated conductive polymer.
  • Polyanions may have substituents other than anionic groups.
  • the substituents may be attached to the main chain of the polymer that constitutes the polyanion, or may be attached to side chains. When a substituent is bonded to the side chain, the substituent is preferably bonded to the end of the side chain from the viewpoint of exhibiting the properties of the substituent.
  • substituents include alkyl groups, hydroxyl groups, alkoxy groups, cyano groups, phenyl groups, hydroxyphenyl groups, ester groups, alkenyl groups, imide groups, amide groups, amino groups, oxycarbonyl groups, carbonyl groups, halogen atoms, and the like. is mentioned.
  • an alkyl group, a hydroxyl group, a cyano group, a hydroxyphenyl group, and an oxycarbonyl group are preferable, and an alkyl group, a hydroxyl group, and a cyano group are more preferable.
  • Alkyl groups are expected to have the effect of increasing the solubility and dispersibility in a dispersion medium and the compatibility and dispersibility with a conjugated conductive polymer.
  • An alkyl group having 1 to 12 carbon atoms is preferable from the viewpoint of solubility in a dispersion medium, dispersibility in a conjugated conductive polymer, steric hindrance, and the like.
  • Alkyl groups include chain alkyl groups such as methyl group, ethyl group, propyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, octyl group, decyl group and dodecyl group;
  • a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group can be mentioned.
  • the hydroxyl group facilitates the formation of hydrogen bonds with other hydrogen atoms, etc., and can be expected to have the effect of increasing the solubility in the dispersion medium, the compatibility with the conjugated conductive polymer, the dispersibility, and the adhesiveness.
  • the hydroxyl group is preferably bonded to the terminal of the alkyl group having 1 to 6 carbon atoms bonded to the main chain of the polymer constituting the polyanion.
  • a cyano group and a hydroxyphenyl group can be expected to have the effect of increasing the compatibility with the conjugated conductive polymer, the solubility in the dispersion medium, and the heat resistance.
  • the cyano group is the main chain of the polymer constituting the polyanion, the terminal of the alkyl group having 1 to 7 carbon atoms bonded to the main chain of the polymer, or the terminal of the alkyl group having 2 to 7 carbon atoms bonded to the main chain of the polymer. is preferably attached to the end of the alkenyl group of .
  • the oxycarbonyl group is preferably an alkyloxycarbonyl group or an aryloxycarbonyl group, and is preferably bonded directly or via another functional group to the main chain of the polymer constituting the polyanion.
  • composition of the main chain of the polymer that constitutes the polyanion is not particularly limited.
  • main chain structure of the polymer that constitutes the polyanion include polyalkylenes, polyimides, polyamides, and polyesters. Among these, polyalkylene is preferable from the viewpoint of synthesis, availability, and the like.
  • a polyalkylene is a polymer whose constitutional units are composed of ethylenically unsaturated monomers, and may contain a carbon-carbon double bond in its main chain structure.
  • Examples of polyalkylene include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinylphenol, poly(3,3,3-trifluoropropylene), polyacrylonitrile, polyacrylate, polymethacrylate, polystyrene, polybutadiene, poly and isoprene.
  • Polyimides include, for example, pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, 2,2,3,3-tetracarboxydiphenyl ether dianhydride, 2,2-[4 ,4'-di(dicarboxyphenyloxy)phenyl]propane dianhydride and other acid anhydrides with diamines such as oxydianiline, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine. mentioned.
  • Polyamides include, for example, polyamide 6, polyamide 6,6, polyamide 6,10 and the like.
  • polyester include polyethylene terephthalate and polybutylene terephthalate.
  • polyanion since it improves the dispersibility in the dispersion medium of the monomer that is the constituent unit of the conjugated conductive polymer, as described above, it has a group composed of sulfonic acid or a salt thereof as an anionic group. things are preferred.
  • polyanions having a sulfonic acid group that is, a sulfo group (—SO 2 OH) include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyethylacrylatesulfonic acid, and polybutylacrylatesulfonic acid.
  • polystyrene sulfonic acid poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, and copolymers thereof.
  • polystyrene sulfonic acid, polyisoprene sulfonic acid, polyethyl acrylate sulfonic acid, and polybutyl acrylate sulfonic acid are preferred, and polystyrene sulfonic acid is more preferred, from the viewpoint of high conductivity.
  • the sulfo group is replaced with a sulfonate group, and for example, sodium polystyrene sulfonate is preferably used.
  • the polyanion preferably has a weight average molecular weight of 1,000 to 1,000,000, more preferably 5,000 to 500,000, and still more preferably 50,000, from the viewpoint of the solubility of the monomer liquid in the dispersion medium and the effect of doping the conjugated conductive polymer. ⁇ 300,000.
  • the weight average molecular weight referred to here is the standard polystyrene equivalent molecular weight obtained by gel permeation chromatography. Specifically, it is a value measured by the method described in Examples.
  • the polyanion can be produced, for example, by a known production method described in JP-A-2005-76016, or a commercially available product can be used.
  • Polyanions which are used to polymerize the monomers that form the constituent units of the conjugated conductive polymer, are used to form protective colloids for seed particles from the viewpoint of polymer conductivity and dispersibility in the monomer liquid.
  • the total amount of the anion per 1 mol of the monomer constituting the constituent unit of the conjugated conductive polymer is The amount is preferably from 0.25 to 30 mol, more preferably from 0.5 to 25 mol, and still more preferably from 0.8 to 20 mol.
  • the amount of the polyanion used relative to 100 parts by mass of the conjugated conductive polymer is preferably 10 to 30,000 parts by mass, more preferably 20 to 25,000 parts by mass, from the viewpoint of polymer conductivity and dispersibility in the monomer liquid. parts by mass, more preferably 50 to 20,000 parts by mass.
  • Seed particles are particles that are protective colloidized with polyanions.
  • the seed particles are preferably polymer particles containing structural units derived from, for example, ethylenically unsaturated monomers.
  • Preferable examples of polymer particles include homopolymer or copolymer particles obtained by polymerizing ethylenically unsaturated monomers.
  • the polymers used for the polymer particles may be used singly or in combination of two or more, and may be either crystalline or amorphous. In the case of crystallinity, the degree of crystallinity is preferably 50% or less.
  • the ethylenically unsaturated monomers may be those having a polymerizable ethylenic carbon-carbon double bond, for example, having a linear, branched or cyclic alkyl group (meth) Acrylates; Aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; Heterocyclic vinyl compounds such as vinylpyrrolidone; Hydroxyalkyl (meth)acrylates; Dialkylaminoalkyl (meth)acrylates such as 2-ethylhexyl (meth)acrylate; Vinyl esters such as vinyl and vinyl alkanoate; monoolefins such as ethylene, propylene, butylene, and isobutylene; conjugated diolefins such as butadiene, isoprene, and chloroprene; (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid vinyl cyanide compounds such as acrylonitrile;
  • the ethylenically unsaturated monomer may contain a crosslinkable monomer, and these ethylenically unsaturated monomers are crosslinked with each other and in combination with an ethylenically unsaturated compound having an active hydrogen group. You may let By using a crosslinked copolymer, the water resistance, moisture resistance, heat resistance, etc. of the solid electrolyte using this can be easily improved.
  • the content of the crosslinkable monomer in the ethylenically unsaturated monomer is preferably 50% by mass or less, more preferably 35% by mass or less, and even more preferably 25% by mass or less.
  • the crosslinkable monomer referred to here is an ethylenic carbon-carbon compound having two or more carbon double bonds, or an ethylenic carbon-carbon double bond having one or more, and other reactions It refers to a compound having one or more functional groups.
  • crosslinkable monomers include epoxy group-containing ⁇ , ⁇ -ethylenically unsaturated compounds such as glycidyl (meth)acrylate; hydrolyzable alkoxysilyls such as vinyltriethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane; Group-containing ⁇ , ⁇ -ethylenically unsaturated compounds; polyfunctional vinyl compounds such as ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, allyl (meth)acrylate, divinylbenzene, diallyl phthalate, etc. .
  • crosslinkable monomers such as carbonyl group-containing ⁇ , ⁇ -ethylenically unsaturated compounds (ketone group-containing ones), etc. (having two or more hydrazide groups, such as acid hydrazides) may be combined for cross-linking.
  • a liquid containing seed particles that have been protectively colloidized with polyanions can be obtained as a resin emulsion.
  • the resin emulsion can be produced by a radical polymerization reaction in a normal pressure or pressure-resistant reactor, and any batch, semi-continuous or continuous method may be used. From the viewpoint of a stable polymerization reaction, uniformity of seed particles, etc., it is preferable to polymerize by continuously or intermittently adding a seed particle raw material solution containing an ethylenically unsaturated monomer to a polyanion-containing solution.
  • the blending amount of the polyanion and the ethylenically unsaturated monomer used in the production of the resin emulsion is 100 mass of the polyanion from the viewpoint of suppression of thickening during the polymerization reaction and stability of the seed particles that have been made into a protective colloid by the polyanion.
  • the amount of the ethylenically unsaturated monomer is preferably 10 to 100 parts by mass, more preferably 20 to 90 parts by mass, and still more preferably 30 to 80 parts by mass.
  • the 50% median diameter (d 50 ) on a volume basis is preferably 0 from the viewpoint of the dispersibility of the seed particles and the difficulty of sedimentation. 0.01 to 10 ⁇ m, more preferably 0.05 to 1 ⁇ m, more preferably 0.1 to 0.8 ⁇ m.
  • d50 is calculated
  • the solvent or dispersion medium for the polyanion-containing liquid and seed particle raw material liquid is preferably an aqueous medium, more preferably water or a mixed solvent of water and a water-soluble solvent.
  • the ratio of the water-soluble solvent in the mixed solvent is preferably 30% by mass or less from the viewpoint of stable polymerization reaction.
  • water-soluble solvents include alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, glycols such as ethylene glycol and propylene glycol, and ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether. mentioned.
  • the polyanion contributes to the stability of the seed particles and resin emulsion, but from the viewpoint of a stable polymerization reaction, an emulsifier, an aliphatic amine, etc. may be added to the polymerization system as necessary.
  • the types and amounts of emulsifiers and aliphatic amines to be used are appropriately adjusted according to the amount of polyanion to be used, the composition of ethylenically unsaturated monomers, and the like.
  • the emulsifier and the aliphatic amine may be used singly or in combination of two or more.
  • emulsifiers include anionic surfactants such as alkyl sulfates, alkyl benzene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, and polyoxyalkylene alkyl phosphates; Nonionic surfactants such as oxyalkylene alkyl ethers, polyoxyalkylene alkylphenol ethers, polyoxyalkylene fatty acid esters, and polyoxyalkylene sorbitan fatty acid esters can be mentioned.
  • aliphatic amines include primary amines such as octylamine, laurylamine, myristylamine, stearylamine and oleylamine; secondary amines such as dioctylamine, dilaurylamine, distearylamine and dioleylamine; N-dimethyllaurylamine, N,N-dimethylmyristylamine, N,N-dimethylpalmitylamine, N,N-dimethylstearylamine, N,N-dimethylbehenylamine, N,N-dimethyloleylamine, N-methyl tertiary amines such as decylamine and N-methyldioleylamine;
  • primary amines such as octylamine, laurylamine, myristylamine, stearylamine and oleylamine
  • secondary amines such as dioctylamine, dilaurylamine, distearylamine and dioleyl
  • water-soluble polymers such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinylpyrrolidone, etc., within a range that does not impair the properties of the conjugated conductive polymer to be produced. may be added to the polymerization system.
  • polymerization initiator for the radical polymerization reaction known ones can be used, for example, inorganic peroxides such as hydrogen peroxide, persulfate, ammonium persulfate, potassium persulfate and sodium persulfate; organic peroxides such as t-butyl hydroperoxide; and azo compounds such as 2,2'-azobisisobutyronitrile and 4,4'-azobis(4-cyanovaleric acid).
  • inorganic peroxides such as hydrogen peroxide, persulfate, ammonium persulfate, potassium persulfate and sodium persulfate
  • organic peroxides such as t-butyl hydroperoxide
  • azo compounds such as 2,2'-azobisisobutyronitrile and 4,4'-azobis(4-cyanovaleric acid).
  • These polymerization initiators may be combined with sodium sulfoxylate formaldehyde, ascorbic acids, sulfites, tarta
  • the reaction temperature in the radical polymerization reaction is usually 10-100°C, preferably 30-90°C.
  • the reaction time is not particularly limited, and is appropriately adjusted according to the amount of raw materials, the type of polymerization initiator, the reaction temperature, and the like.
  • the resin emulsion obtained by the radical polymerization reaction is preferably desalted from the viewpoint of stably retaining the seed particles that have been protected colloid by the polyanion.
  • the desalting method is not particularly limited, and known methods can be used. Examples thereof include dialysis, centrifugal separation washing, and ion exchange using an ion exchange resin.
  • the polymerization reaction of the monomers to be the structural units of the conjugated conductive polymer for obtaining the polymer-containing liquid is preferably carried out in the presence of an oxidizing agent.
  • oxidizing agents include peroxodisulfates such as peroxodisulfuric acid, ammonium peroxodisulfate, sodium peroxodisulfate and potassium peroxodisulfate; metal halide compounds such as boron trifluoride; ferric chloride and ferric sulfate.
  • transition metal compounds such as cupric chloride; metal oxides such as silver oxide and cesium oxide; peroxides such as hydrogen peroxide and ozone; organic peroxides such as benzoyl peroxide; Among these, peroxodisulfate, peroxodisulfate and transition metal compound are preferable, and peroxodisulfate and transition metal compound are more preferable.
  • the oxidizing agents may be used singly or in combination of two or more.
  • the amount of the oxidizing agent to be used is preferably 50 to 1500 parts by mass, more preferably 70 parts by mass, based on 100 parts by mass of the monomer constituting the constituent unit of the conjugated conductive polymer, from the viewpoint of moderate acceleration of the polymerization reaction. It is up to 1000 parts by mass, more preferably 100 to 500 parts by mass.
  • the temperature during the polymerization reaction of the monomers that form the constituent units of the conjugated conductive polymer is usually 5 to 80° C., preferably 10 to 10° C., from the viewpoint of an appropriate reaction rate and suppression of viscosity increase of the reaction solution. 60°C, more preferably 15 to 40°C. The temperature may be changed as appropriate according to the progress of the reaction.
  • the stirring method is not particularly limited as long as the reaction system is homogenized, and examples thereof include a method of circulating and stirring the monomer liquid using a high shear mixer or the like.
  • step (2) the polymer-containing liquid obtained in step (1) is subjected to a first dispersion treatment to obtain a dispersion (a).
  • the purpose of the first dispersion treatment is to crush aggregated particles of the polymer in the polymer-containing liquid into primary particles.
  • Devices used for dispersion treatment include, for example, homogenizers, ball mills, high shear mixers, and ultrasonic dispersion devices. For example, it is preferable to apply a strong shearing force at a shear rate of 5000 s ⁇ 1 or more for stirring, use a high-pressure homogenizer or the like, or perform a dispersion treatment by irradiating ultrasonic waves at a frequency of about 15 to 100 Hz. Distributed processing may be performed in a flow system or a batch system, and may be performed multiple times.
  • the pressure is preferably 1 to 200 MPa, more preferably 2 to 150 MPa, still more preferably 5 to 100 MPa, from the viewpoints of efficient dispersion treatment and suppression of temperature rise of the dispersion.
  • the total treatment time in the dispersion treatment using the high-pressure homogenizer is preferably 15 to 900 minutes, more preferably 30 to 600 minutes, still more preferably 60 to 300 minutes, from the viewpoint of efficiency of the dispersion treatment.
  • a cooler may be used when the dispersion process involves an increase in the temperature of the dispersion liquid.
  • the cooler is not particularly limited as long as it can control the temperature rise, and a known cooler can be used. Examples thereof include plate heat exchangers, spiral heat exchangers, tubular heat exchangers, immersion heat exchangers, and jacket tanks. Among these, plate heat exchangers and spiral heat exchangers are preferable from the viewpoint of heat exchange efficiency and device size.
  • the dispersion (a) obtained by the first dispersion treatment preferably has a solid content concentration containing the polymer of 0.2 to 15 mass from the viewpoint of effectively performing the second dispersion treatment in the step (3). %, more preferably 0.5 to 10 mass %, more preferably 1 to 8 mass %.
  • the dispersion (a) may be diluted for adjusting the solid content concentration. Dilution may be performed before, during, or after dispersion treatment. From the viewpoint of improving the efficiency of the dispersing treatment and suppressing reaggregation, it is preferable to dilute the solution during the dispersing treatment and perform the dispersing treatment in a plurality of times. From the viewpoint of avoiding a significant change in dispersibility, the dispersion medium used for dilution is preferably the same as the dispersion medium used for preparing the monomer liquid, more preferably water or an aqueous medium.
  • the dispersion (a) is preferably desalted after the first dispersion treatment.
  • the desalting method is not particularly limited, and known methods can be used, such as dialysis, centrifugal washing, ion exchange, and the like.
  • step (3) an electrical conductivity improver is added to dispersion (a) obtained in step (2), and a second dispersion treatment is performed to obtain dispersion (b).
  • the second dispersion treatment is a dispersion treatment that is performed again after adding an electrical conductivity improver to the dispersion liquid (a) that has been subjected to the first dispersion treatment.
  • a dispersion (b) suitable for forming a solid electrolyte of a solid electrolytic capacitor having a large capacitance and a low ESR can be obtained.
  • step (3) When step (3) is performed without step (2), it is difficult to sufficiently crush the aggregated polymer particles to primary particles in a state in which the electrical conductivity improver is added. Therefore, a uniformly dispersed liquid cannot be obtained.
  • the apparatus and distributed processing method used for the second distributed processing may be the same as those used for the first distributed processing. If a high pressure homogenizer is used, the pressure may be similar to the first dispersing process.
  • the total processing time of the second dispersion treatment using a high-pressure homogenizer is the same as the first dispersion treatment, since the particles of the polymer in the dispersion (a) have been deaggregated by the first dispersion treatment. may be shorter than the total processing time in From the viewpoint of efficiency of the dispersion treatment and suppression of temperature rise of the dispersion liquid, it is preferably shorter than the total treatment time of the first dispersion treatment.
  • the total processing time of the second dispersion treatment using a high-pressure homogenizer is preferably 20 to 150 minutes, more preferably 30 to 120 minutes, and even more preferably 40 to 90 minutes.
  • Cooling when the dispersion treatment involves temperature rise of the dispersion can also be performed in the same manner as in the first dispersion treatment.
  • the dispersion (b) obtained by the second dispersion treatment preferably has a solid content concentration of 0.2 to 15% by mass, more preferably 0.5 to 15% by mass, from the viewpoint of production efficiency of the solid electrolyte of the solid electrolytic capacitor. 10% by mass, more preferably 1 to 8% by mass.
  • the dispersion (b) may be diluted for adjusting the solid content concentration. Dilution may be performed before, during, or after dispersion treatment. From the viewpoint of efficiency of dispersion treatment, it is preferable to dilute before dispersion treatment. From the viewpoint of avoiding a significant change in dispersibility, the dispersion medium used for dilution is preferably the same as the dispersion medium used for preparing the monomer liquid, more preferably water or an aqueous medium.
  • the electrical conductivity improver is added for the purpose of improving the electrical conductivity of the dispersion (a).
  • Examples of electrical conductivity improvers include ethers such as tetrahydrofuran; lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; caprolactam, N-methylcaprolactam, N,N-dimethylacetamide, N-methylacetamide, N, N-dimethylformamide, N-methylformamide, N-methylformanilide, N-methylpyrrolidone, N-octylpyrrolidone, amides or lactams such as pyrrolidone; sulfones or sulfoxides such as tetramethylene sulfone, dimethylsulfoxide; sucrose , glucose, fructose, lactose and other sugars and their derivatives; sorbitol, mannitol and other sugar alcohols; succinimide, male
  • ethers, lactones, amides or lactams, sugar alcohols, and polyalcohols are preferred, and polyalcohols are particularly preferred.
  • Specific compounds include tetrahydrofuran, ⁇ -butyrolactone, N-methylformamide, N-methylpyrrolidone, ethylene glycol, propylene glycol, glycerin, diethylene glycol, triethylene glycol, dimethyl sulfoxide, and sorbitol from the viewpoint of improving electrical conductivity. is preferred, and ethylene glycol, diethylene glycol and triethylene glycol are more preferred.
  • the electrical conductivity improvers may be used singly or in combination of two or more.
  • the amount of the electrical conductivity improver added is preferably 1 to 30 parts by mass per 1 part by mass of the solid content of the dispersion (a), from the viewpoint of improving the electrical conductivity of the dispersion (a) and suppressing an increase in viscosity. , more preferably 5 to 25 parts by mass, more preferably 7 to 20 parts by mass.
  • An alkaline compound may be added to the dispersion liquid (b) from the viewpoint of pH adjustment and corrosion inhibition of metals that come into contact with the dispersion liquid (b).
  • the alkaline compound is not particularly limited, and known organic or inorganic alkaline compounds can be used. Alkaline compounds may be used alone or in combination of two or more.
  • the alkaline compound is preferably added in step (3).
  • organic alkaline compounds include aromatic amines, aliphatic amines, heterocyclic amines, alkali metal alkoxides, and the like.
  • Aromatic amines include nitrogen-containing heteroaryls such as pyridines, imidazoles, pyrimidines, pyrazines, and triazines. Among these, pyridines, imidazoles, and pyrimidines are preferred from the viewpoint of solubility and the like.
  • aliphatic amines examples include ethylamine, n-octylamine, diethylamine, diisobutylamine, methylethylamine, trimethylamine, triethylamine, allylamine, 2-ethylaminoethanol, 2,2'-iminodiethanol, and N-ethylethylenediamine. be done.
  • Heterocyclic amines include azetidines, pyrrolidines, piperidines, piperazines, morpholines, thiomorpholines and the like.
  • morpholines are preferred from the viewpoint of versatility.
  • Specific examples of morpholines include morpholine, 4-methylmorpholine, 4-ethylmorpholine, 4-n-propylmorpholine, 4-isopropylmorpholine, 4-n-butylmorpholine, 4-isobutylmorpholine, 4-pentylmorpholine, 4 -hexylmorpholine, (R)-3-methylmorpholine, (S)-3-methylmorpholine, cis-2,6-dimethylmorpholine, 4-(1-cyclohexenyl)morpholine, 1-morpholino-1-cyclopentene, 4 -phenylmorpholine, 4-(p-tolyl)morpholine, 4-(2-aminoethyl)morpholine, 4-(3-amino
  • morpholine, 4-ethylmorpholine, 4-n-butylmorpholine, 4-isobutylmorpholine, 4-phenylmorpholine, 4-(2-hydroxypropyl)morpholine, 4-(2-hydroxypropyl)morpholine, 4- -(2-hydroxyethyl)morpholine, 4-(3-hydroxypropyl)morpholine are preferred, and one or more selected from morpholine, 4-ethylmorpholine and 4-(2-hydroxyethyl)morpholine is more preferred. .
  • alkali metal alkoxides examples include sodium alkoxides such as sodium methoxide and sodium ethoxide; potassium alkoxides; calcium alkoxides.
  • inorganic alkaline compounds examples include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia.
  • the amount of the alkaline compound added to the dispersion (a) is determined by controlling the pH is preferably from 3 to 13, more preferably from 3 to 8, and even more preferably from 4 to 7.
  • the dispersion (b) may contain other additives other than electrical conductivity improvers and alkaline compounds.
  • Other additives are not particularly limited in type and amount as long as they do not significantly affect the electrical conductivity and viscosity of the dispersion (b).
  • Other additives may be added in step (2).
  • Other additives include, for example, water-soluble polymer compounds, water-dispersible compounds, surfactants, antifoaming agents, coupling agents, antioxidants, and the like. Other additives may be used singly or in combination of two or more.
  • the water-soluble polymer compound and the water-dispersible compound can have the effects of adjusting the viscosity of the dispersion (b) and improving the coating performance.
  • the total amount added should be within a range in which the above effects can be achieved without significantly adversely affecting the electrical conductivity and viscosity of the dispersion (b). From the point of view, it is preferably 50 parts by mass or less, more preferably 0.01 to 40 parts by mass, still more preferably 0.5 to 20 parts by mass, based on 1 part by mass of the solid content in the dispersion (b).
  • water-soluble polymer compounds include polyoxyalkylenes, water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacryl, water-soluble polyacrylamide, polyvinyl alcohol, and polyacrylic acid. be done. Among these, polyoxyalkylenes are preferred. Examples of polyoxyalkylenes include oligopolyethylene glycol, triethylene glycol monochlorhydrin, diethylene glycol monochlorhydrin, oligoethylene glycol monochlorohydrin, triethylene glycol monobromohydrin, diethylene glycol monobromohydrin, and oligoethylene glycol monobromohydrin.
  • the water dispersible compound referred to here is a compound having a low hydrophilicity partially substituted with a highly hydrophilic functional group, or a compound having a highly hydrophilic functional group around the low hydrophilic compound. is adsorbed (e.g., an emulsion) that disperses in water without precipitating.
  • water-dispersible compounds include polyesters, polyurethanes, acrylic resins, silicone resins, and emulsions thereof. Block copolymers and graft copolymers of acrylic resins and polyesters, polyurethanes and the like are also included.
  • surfactants include anionic surfactants such as carboxylates, sulfonates, sulfates, and phosphates; cationic surfactants such as amine salts and quaternary ammonium salts; amphoteric surfactants such as carboxylates and imidazolium betaine; and nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene glycerol fatty acid esters, ethylene glycol fatty acid esters and polyoxyethylene fatty acid amides.
  • Antifoaming agents include, for example, silicone resins, polydimethylsiloxane, and silicone oils. Examples of antioxidants include phenol antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, and vitamins.
  • the polymer dispersion for a solid electrolytic capacitor obtained by the above-described production method of the present embodiment is applied to a porous anode body made of a valve metal having a dielectric film on its surface. It includes a step (4) of depositing, and a step (5) of removing the dispersion medium from the dispersion deposited on the porous anode body to form a solid electrolyte layer.
  • step (4) the solid electrolytic capacitor polymer dispersion obtained by the production method of the present embodiment is adhered to a porous anode body made of a valve metal having a dielectric film on its surface.
  • valve metals include aluminum, beryllium, bismuth, magnesium, germanium, hafnium, niobium, antimony, silicon, tin, tantalum, titanium, vanadium, tungsten, zirconium, and alloys containing at least one of these metals. or compounds.
  • aluminum, niobium, and tantalum are preferable from the viewpoint of versatility.
  • a porous anode body can be manufactured by forming a dielectric coating on the surface of a porous valve metal by a known method.
  • a porous valve metal can be obtained, for example, by sintering a valve metal powder with a high specific surface area or by etching a valve metal foil.
  • the dielectric coating can be formed as a dielectric oxide coating on the surface of the porous valve metal, for example, by anodizing the porous valve metal in a phosphate solution.
  • the formation voltage in the anodization is set according to the thickness of the dielectric oxide film and the withstand voltage of the capacitor, and is preferably 1-800V, more preferably 1-500V, and more preferably 1-300V.
  • the polymer dispersion can be attached to the porous anode body by known methods such as coating, spraying, and immersion.
  • the immersion method is preferable because the polymer dispersion can be evenly permeated and adhered to the porous anode body.
  • impregnation may be performed under reduced pressure in order to allow the polymer dispersion to sufficiently permeate into fine details such as the pores of the porous anode body.
  • the polymer dispersion When the polymer dispersion is adhered to the porous anode by immersion, it is usually soaked in the polymer dispersion at about 10 to 35° C. for 10 seconds to 10 seconds, depending on the type and viscosity of the dispersion medium of the polymer dispersion.
  • the porous anode body is immersed in the polymer dispersion for about 5 minutes.
  • step (5) the dispersion medium is removed from the polymer dispersion adhered to the porous anode body obtained in step (4) to form a solid electrolyte layer.
  • the removal of the dispersion medium as used herein does not only mean that there is no dispersion medium at all, but a part of the dispersion medium remains within a range that does not interfere with the production of the solid electrolytic capacitor. It's okay to be there.
  • the dispersion medium is preferably dried by heat treatment.
  • the heating conditions are appropriately set in consideration of the boiling point and volatility of the dispersion medium, the oxidative deterioration of the polymer, and the like. Heat treatment for seconds to several hours.
  • a heating device for example, a hot plate, an oven, a hot air dryer, or the like can be used, and from the viewpoint of efficiency of drying, drying may be performed under reduced pressure.
  • the steps (4) and (5) may be repeated in order, or the steps (4) and (5) may be repeated. Two or more operations may be performed. Alternatively, the step (5) may be performed after performing the step (4) two or more times. Further, the solid electrolyte layer formed in step (5) may be impregnated with any electrolytic solution.
  • a known electrolytic solution for electrolytic capacitors can be used, for example, a polar organic solvent that may contain a salt.
  • salts include ammonium salts; quaternary ammonium salts such as tetramethylammonium salts, triethylmethylammonium salts and tetraethylammonium salts; amidinium salts such as ethyldimethylimidazolinium salts and tetramethylimidazolinium salts; primary amine salts such as salts, ethylamine salts, propylamine salts; secondary amine salts such as dimethylamine salts, diethylamine salts, ethylmethylamine salts, dibutylamine salts; trimethylamine salts, triethylamine salts, tributylamine salts, ethyl tertiary amine salts such as dimethylamine salts and ethyldiisopropylamine salts; sodium salts; potassium salts and the like.
  • Acids constituting salts include, for example, oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthate acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, resorcinic acid, phloroglucic acid, gallic acid, gentisic acid, protocatechuic acid, pyrocatechuic acid, trimellitic acid, pyromellitic acid, etc.
  • carboxylic acids and organic acids such as sulfonic acids.
  • boric acid phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid and the like can be used.
  • a protic solvent can be used, for example, monohydric alcohols such as ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol;
  • monohydric alcohols such as ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, alkylene oxide adducts such as polyethylene glycol and polyoxyethylene glycerin, and oxyalcohol compounds. etc.
  • aprotic solvents can also be used as polar organic solvents, for example, sulfones such as dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; N-methylformamide; , N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, hexamethylphosphoricamide, etc.
  • sulfones such as dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; N-methylformamide; , N,N-dimethylformamide, N-e
  • amides such as ethylene carbonate, propylene carbonate, butylene carbonate, isobutylene carbonate; acetonitrile, 3- nitriles such as methoxypropionitrile and glutaronitrile; and oxides such as dimethylsulfoxide.
  • the electrolytic solution may contain additives.
  • additives include complex compounds of boric acid and polysaccharides such as mannite and sorbitol; complex compounds of boric acid and polyhydric alcohol; borate esters; o-nitrobenzoic acid and m-nitrobenzoic acid. , p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, p-nitrobenzyl alcohol and the like; phosphate esters and the like. These may be used singly or in combination of two or more.
  • the manufacturing method of the solid electrolytic capacitor of the present embodiment can be performed in the same manner as known solid electrolytic capacitor manufacturing processes, except for the steps (4) and (5). Therefore, by applying the solid electrolytic capacitor manufacturing method of the present embodiment to an existing capacitor element, it is possible to manufacture a solid electrolytic capacitor having a larger capacitance and a lower ESR than conventional ones.
  • the temperature at the intersection of the baseline before the shift (lower temperature side) of the obtained DSC curve and the tangent line at the inflection point of the glass transition was determined as the glass transition temperature Tg [°C] of the seed particles.
  • ⁇ Particle size The particle size of the seed particles is represented by a 50% volume cumulative particle size (d 50 ) measured with a particle size distribution analyzer (Microtrac (registered trademark) UPA type, manufactured by Nikkiso Co., Ltd.).
  • [Solid content concentration] The solid content concentration of various liquids is determined by weighing about 10 g of a sample and measuring the water content with an infrared moisture meter ("FD-720", manufactured by Kett Science Laboratory Co., Ltd.; heating conditions: 110 ° C./30 minutes). Evaporation residue was calculated as solid content.
  • [pH] The pH of the dispersion liquid (a) was measured with a pH meter (“HM-30G”, manufactured by Toa DKK Co., Ltd.; 25° C.).
  • the resulting reaction solution was added with 1500 mL of a cation exchange resin (“Amberlite (registered trademark) IR120B-H” manufactured by Organo Corporation; hereinafter the same) and an anion exchange resin (“Amberlite (registered trademark) IRA410 —OH” manufactured by Organo Corporation; hereinafter the same.) was added, and after stirring for 12 hours, the ion-exchange resin was filtered off. Pure water was added to obtain a seed particle-containing liquid containing seed particles (Tg 30° C., particle size (d 50 ) 0.46 ⁇ m) protective colloidalized with a polyanion (solid content concentration 15.0% by mass). .
  • the above process produced seed particles that were protective colloidalized with polyanions.
  • a monomer liquid 1 (with seed particles) was obtained (1.9 mol of sodium sulfonate groups in the total amount of sodium polystyrene sulfonate used per 1 mol of 3,4-ethylenedioxythiophene).
  • dispersion liquid (a) A polymer-containing liquid having a solid content concentration of 5.80% by mass was diluted with pure water to 1500 mL (solid content concentration of 4.73% by mass). After that, a first dispersion treatment (first time) was performed for 45 minutes with a high-pressure homogenizer ("TwinPanda 600", manufactured by Niro Soavi; 400 bar (40 MPa); hereinafter the same). Furthermore, pure water was added to dilute to a solid content concentration of 3.99% by mass. 1500 mL of it was subjected to a first dispersion treatment (second time) for 135 minutes using a high-pressure homogenizer. Then, ion exchange was carried out with 125.6 mL of a cation exchange resin and 109.9 mL of an anion exchange resin for 3 hours to desalt the dispersion liquid (a) (pH 1.9).
  • Example 2 In the production of the dispersion (b) of Example 1, the amount of diethylene glycol added to 100 parts by mass of the dispersion (a) having a solid content concentration of 1.6% by mass was 15 parts by mass (the solid content of the dispersion (a) was 1 mass 9.4 parts by mass per part), and otherwise in the same manner as in Example 1, to prepare a dispersion (b).
  • Dispersion (b) was produced in the same manner as in Example 1 except that diethylene glycol was changed to ethylene glycol in the production of dispersion (b) of Example 1.
  • Example 7 A seed particle-free monomer liquid 2 was prepared in the following manner without producing the seed particle-containing liquid in Example 1. 225.7 g of pure water and 63.0 g of a 12% by mass aqueous solution of sodium polystyrenesulfonate were stirred and mixed at 32° C. in a 1 L polyethylene container. To this, 2.80 g of 3,4-ethylenedioxythiophene was added and emulsified and mixed for 30 minutes with a homomixer to obtain a monomer liquid 2 (without seed particles) (3,4-ethylenedioxythiophene 2.0 mol of sodium sulfonate groups in the total amount of sodium polystyrene sulfonate used per 1 mol).
  • Example 8 In the production of the dispersion (b) of Example 7, the amount of diethylene glycol added was changed to 9.4 parts by mass per 1 part by mass of the solid content of the dispersion (a), and in the same manner as in Example 7, A dispersion (b) was prepared.
  • Solid electrolytic capacitor samples were produced in the following manner using the dispersions (b) and (b') produced in the above examples and comparative examples, respectively.
  • a porous anode body of an aluminum electrolytic capacitor element (withstand voltage 35 V, design capacity 400 ⁇ F) is impregnated with dispersion (b) or dispersion (b') at 25° C. for 5 minutes in an air atmosphere, and then dried with hot air.
  • a solid electrolytic capacitor sample having a solid electrolyte layer formed on the surface of the dielectric oxide film of the porous anode body was obtained by drying at 120° C. for 30 minutes in a vessel ("ST-110", manufactured by Espec Co., Ltd.). rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

静電容量が大きく、かつ、等価直列抵抗が低い固体電解コンデンサが得られる固体電解コンデンサ用の重合体分散液の製造方法、及び、前記重合体分散液を用いた固体電解コンデンサの製造方法を提供する。本発明の固体電解コンデンサ用重合体分散液の製造方法は、ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンの少なくともいずれかを含む液中で、共役系導電性重合体の構成単位となる単量体を重合して、重合体含有液を得る工程(1)と、前記重合体含有液に第1の分散処理を施して、分散液(a)を得る工程(2)と、前記分散液(a)に電気伝導率向上剤を添加し、第2の分散処理を施して、分散液(b)を得る工程(3)と、を含む。

Description

固体電解コンデンサ用重合体分散液の製造方法及び固体電解コンデンサの製造方法
 本発明は、固体電解コンデンサ用の共役系導電性重合体を含有する分散液の製造方法、及び、固体電解コンデンサの製造方法に関する。
 電解コンデンサは、一般的に、アルミニウム、タンタル、ニオブ等の弁金属を、陽極箔及び陰極箔として備え、陽極箔と陰極箔との間に電解質が介在した構成を有している。陽極箔の弁金属は、静電容量を大きくするため、エッチング処理等により表面積が増大され、その表面に、誘電体酸化被膜が形成されている。
 また、等価直列抵抗(ESR)を低くすることができることから、例えば、ポリピロール、ポリアニリン、ポリチオフェン等の導電性高分子を含む固体電解質を用いた固体電解コンデンサの使用も広がっている。
 導電性高分子を含む固体電解質の形成方法としては、電解コンデンサ素子に導電性高分子を得るための単量体溶液と酸化剤溶液とを含浸させ、電解コンデンサ素子内で酸化重合や電解重合させて固体電解質を形成する方法が知られている(例えば、特許文献1参照)。
 また、導電性高分子の粒子の水分散液を、陽極体の誘電体酸化被膜に浸透させて乾燥させる、ウェットプロセスによる固体電解質の形成方法も知られている。例えば、特許文献2には、分散液中の導電性高分子の凝集体を超音波照射により微粒子化して分散させることにより、静電容量が大きく、ESRが低い固体電解コンデンサが得られることが記載されている。
特開2005-123630号公報 特開2013-55308号公報
 しかしながら、特許文献1に記載されているような電解コンデンサ素子内での重合反応では、導電性高分子が凝集した海綿状態で形成されるため、固体電解質の均一性に劣り、導電性が低下しやすい。
 また、近年、車載電装化が進み、電子制御での高出力化が求められ、車両用電子制御装置におけるコンデンサにおいては、さらなる静電容量の向上及びESRの低下が望まれている。しかしながら、特許文献2に記載されているような導電性高分子の微粒子の分散液を用いて製造された固体電解コンデンサであっても、必ずしも満足できる静電容量及びESRであるとは言えなかった。
 本発明は、このような状況に鑑みてなされたものであり、静電容量が大きく、かつ、ESRが低い固体電解コンデンサが得られる固体電解コンデンサ用の重合体分散液の製造方法、及び、前記重合体分散液を用いた固体電解コンデンサの製造方法を提供することを目的とする。
 本発明は、重合体分散液の製造において、電気伝導率向上剤の添加後にも分散処理を行うことにより、該重合体分散液を用いて製造した固体電解コンデンサが、静電容量が向上し、かつ、ESRが低下することを見出したことに基づく。
 本発明は、以下の手段を提供する。
 [1]ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンの少なくともいずれかを含む液中で、共役系導電性重合体の構成単位となる単量体を重合して、重合体含有液を得る工程(1)と、前記重合体含有液に第1の分散処理を施して、分散液(a)を得る工程(2)と、前記分散液(a)に電気伝導率向上剤を添加し、第2の分散処理を施して、分散液(b)を得る工程(3)と、を含む、固体電解コンデンサ用重合体分散液の製造方法。
 [2]前記電気伝導率向上剤が、テトラヒドロフラン、γ-ブチロラクトン、N-メチルホルムアミド、N-メチルピロリドン、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、ジメチルスルホキシド及びソルビトールから選ばれる1種以上である、[1]に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [3]前記電気伝導率向上剤の添加量が、前記分散液(a)の固形分1質量部当たり1~30質量部である、[1]又は[2]に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [4]前記工程(3)において、さらに、アルカリ性化合物を添加する、[1]~[3]のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [5]前記アルカリ性化合物が、モルホリン、4-エチルモルホリン及び4-(2-ヒドロキシエチル)モルホリンから選ばれる1種以上である、[4]に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [6]前記共役系導電性重合体の構成単位となる単量体が、ピロール類、アニリン類及びチオフェン類から選ばれる1種以上の化合物を含む、[1]~[5]のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [7]前記チオフェン類の化合物が、下記式(1)で表される、[6]に記載の固体電解コンデンサ用重合体分散液の製造方法。
Figure JPOXMLDOC01-appb-C000002

(式中、R及びRは、それぞれ独立して、水素原子、水酸基、置換基を有してもよい炭素原子数1~18のアルキル基、置換基を有してもよい炭素原子数1~18のアルコキシ基、置換基を有してもよい炭素原子数1~18のアルキルチオ基、又は、RとRとが互いに結合して形成された、置換基を有してもよい炭素原子数3~10の脂環、置換基を有してもよい炭素原子数6~10の芳香環、置換基を有してもよい炭素原子数2~10の酸素原子含有複素環、置換基を有してもよい炭素原子数2~10の硫黄原子含有複素環、もしくは、置換基を有してもよい炭素原子数2~10の硫黄原子及び酸素原子含有複素環である。)
 [8]前記ポリアニオンが、スルホン酸又はその塩からなる基を2個以上有する重合体である[1]~[7]のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [9]前記ポリアニオン中のアニオン性基の割合が、前記共役系導電性重合体の構成単位となる単量体1モルに対して、0.25~30モルである[1]~[8]のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [10]前記工程(1)において、水を含む液中で、ペルオキソ二硫酸及びその塩から選ばれる1種以上を含む酸化剤を用いて、前記共役系導電性重合体の構成単位となる単量体を重合する、[1]~[9]のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
 [11][1]~[10]のいずれか1項に記載の製造方法により得られた固体電解コンデンサ用重合体分散液を、表面に誘電体被膜を有する弁金属からなる多孔性陽極体に付着させる工程(4)と、前記多孔性陽極体に付着した前記固体電解コンデンサ用重合体分散液から、分散媒を除去して、固体電解質層を形成する工程(5)と、を含む、固体電解コンデンサの製造方法。
 本発明の製造方法によれば、静電容量が大きく、かつ、ESRが低い固体電解コンデンサが得られる固体電解コンデンサ用の重合体分散液を製造することができる。
 また、本発明によれば、前記重合体分散液を用いて、静電容量が大きく、かつ、ESRが低い固体電解コンデンサの製造方法も提供される。
 まず、本明細書における用語及び表記についての定義及び意義を以下に示す。
 「ポリアニオンにより保護コロイド化されたシード粒子」における「ポリアニオンにより保護コロイド化された」とは、ポリアニオンがシード粒子に配位して、該シード粒子表面を覆っている状態を意味する。
 「固形分」とは、液中の水分を蒸発させた蒸発残分を意味し、「固形分濃度」は、実施例に記載の測定方法により測定される。
 化合物名に付す「類」とは、当該化合物構造を含む化合物群を意味し、置換基を有する当該化合物も含み、例えば、ピロール類とは、ピロール構造を含む化合物群を指す。
 「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸の総称である。同様に、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称であり、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの総称である。
[固体電解コンデンサ用重合体分散液の製造方法]
 本実施形態の固体電解コンデンサ用重合体分散液の製造方法は、ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンの少なくともいずれかを含む液中で、共役系導電性重合体の構成単位となる単量体を重合して、重合体含有液を得る工程(1)と、前記重合体含有液に第1の分散処理を施して、分散液(a)を得る工程(2)と、分散液(a)に電気伝導率向上剤を添加し、第2の分散処理を施して、分散液(b)を得る工程(3)と、を含む。
 電気伝導率向上剤の添加前の第1の分散処理のみならず、添加後の第2の分散処理を経ることにより、静電容量が大きく、かつ、ESRが低い固体電解コンデンサの固体電解質の形成に好適な重合体分散液を製造することができる。
〔工程(1)〕
 本実施形態の重合体分散液の製造方法における工程(1)では、ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンの少なくともいずれかを含む液中で、共役系導電性重合体の構成単位となる単量体を重合して、重合体含有液を得る。
 重合体含有液には、重合体として共役系導電性重合体とポリアニオンにより保護コロイド化されたシード粒子との複合体、及び/又は、共役系導電性重合体とポリアニオンとの複合体が含まれ得る。
<共役系導電性重合体>
 本実施形態の重合体分散液及び重合体含有液における重合体は、共役系導電性重合体が含まれる。共役系導電性重合体は、主鎖にπ共役系を有する有機高分子化合物であれば、特に限定されるものではない。共役系導電性重合体は、1種単独であっても、2種以上が併用されてもよい。また、後述する共役系導電性重合体の構成単位となる単量体の単独重合体であっても、2種以上の共役系導電性重合体の構成単位となる単量体を共重合した共重合体であってもよい。
 共役系導電性重合体としては、例えば、ポリピロール類、ポリチオフェン類、ポリイソチアナフテン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及び、これらの共重合体等が挙げられる。これらの中でも、取り扱い容易性や入手容易性等の観点から、ポリピロール類、ポリチオフェン類、ポリアニリン類が好ましく、ポリチオフェン類がより好ましい。
 また、共役系導電性重合体は、高導電性の観点から、アルキル基、カルボキシ基、スルホ基、アルコキシ基、水酸基、シアノ基等の置換基を有していることが好ましい。
 ポリピロール類としては、例えば、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。
 ポリチオフェン類としては、例えば、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブチレンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリ(3,4-エチレンオキシチアチオフェン)等が挙げられる。
 ポリアニリン類としては、例えば、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。
 共役系導電性重合体は、上記の化合物の中でも、高導電性の観点から、ポリピロール、ポリチオフェン、ポリ(N-メチルピロール)、ポリ(3-メチルチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)が好ましく、さらに、優れた耐熱性の観点から、ポリ(3,4-エチレンジオキシチオフェン)がより好ましい。
<共役系導電性重合体の構成単位となる単量体>
 共役系導電性重合体を得るための単量体、すなわち、共役系導電性重合体の構成単位となる単量体は、ピロール類、アニリン類及びチオフェン類から選ばれる1種以上の化合物を含むことが好ましい。前記化合物が有する置換基Xとしては、例えば、炭素原子数1~18のアルキル基、炭素原子数6~10のアリール基、炭素原子数5~10のヘテロアリール基、炭素原子数1~18のアルコキシ基、炭素原子数1~18のアルキルチオ基、カルボキシ基、水酸基、ハロゲン原子、シアノ基等が挙げられ、また、これらの2つ以上の置換基Xが縮合等により相互に結合して環を形成していてもよい。また、これらのアルキル基、アリール基、ヘテロアリール基、アルコキシ基及びアルキルチオ基は、例えば、カルボキシ基、水酸基、ハロゲン原子、シアノ基等のさらなる置換基Yを有していてもよい。
 共役系導電性重合体の構成単位となる単量体としては、例えば、ピロール、N-メチルピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール等のピロール類;チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブチレンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、3,4-エチレンオキシチアチオフェン等のチオフェン類;アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等のアニリン類等が挙げられる。これらは、1種単独でも、2種以上が併用されてもよい。
 共役系導電性重合体の構成単位となる単量体は、上記の化合物の中でも、導電性が高い共役系導電性重合体を得る観点から、下記式(1)で表されるチオフェン類の化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R及びRは、それぞれ独立して、水素原子、水酸基、置換基を有してもよい炭素原子数1~18のアルキル基、置換基を有してもよい炭素原子数1~18のアルコキシ基、置換基を有してもよい炭素原子数1~18のアルキルチオ基、又は、RとRとが互いに結合して形成された、置換基を有してもよい炭素原子数3~10の脂環、置換基を有してもよい炭素原子数6~10の芳香環、置換基を有してもよい炭素原子数2~10の酸素原子含有複素環、置換基を有してもよい炭素原子数2~10の硫黄原子含有複素環、もしくは、置換基を有してもよい炭素原子数2~10の硫黄原子及び酸素原子含有複素環である。
 ここで言う置換基は、上述した置換基Yと同様であり、例えば、カルボキシ基、水酸基、ハロゲン原子、シアノ基等が挙げられる。なお、前記炭素原子数には、置換基Yの炭素数は含まないものとする(以下、同様。)。
 酸素原子含有複素環としては、例えば、オキシラン環、オキセタン環、フラン環、ヒドロフラン環、ピラン環、ピロン環、ジオキサン環、トリオキサン環等が挙げられる。
 硫黄原子含有複素環としては、例えば、チイラン環、チエタン環、チオフェン環、チアン環、チオピラン環、チオピリリウム環、ベンゾチオピラン環、ジチアン環、ジチオラン環、トリチアン環等が挙げられる。
 硫黄原子及び酸素原子含有複素環としては、例えば、オキサチオラン環、オキサチアン環等が挙げられる。
 共役系導電性重合体の構成単位となる単量体は、式(1)で表される化合物の中でも、下記式(2)で表される化合物を含むことがより好ましく、3,4-エチレンジオキシチオフェンを含むことがさらに好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R及びRは、それぞれ独立して、水素原子、置換基を有してもよい炭素原子数1~4のアルキル基、又は、RとRとが互いに結合して形成された、置換基を有してもよい炭素原子数3~6の酸素原子含有複素環である。
 R及びRは、RとRとが互いに結合して形成された、置換基を有してもよい炭素原子数3~6の酸素原子含有複素環であることが好ましい。
 酸素原子含有複素環としては、例えば、ジオキサン環、トリオキサン環等が挙げられ、好ましくはジオキサン環である。
 ここで言う置換基は、上述した置換基Yと同様であり、例えば、カルボキシ基、水酸基、ハロゲン原子、シアノ基等が挙げられる。
 共役系導電性重合体を得る重合反応は、共役系導電性重合体の構成単位となる単量体と、ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンの少なくともいずれか、とを含む液(以下、単に、単量体液とも言う。)中で行われる。
 単量体液は、均一な重合反応を行う観点から、共役系導電性重合体の構成単位となる単量体が溶解、乳化又は分散しているものであることが好ましい。単量体液の調製は、例えば、ホモミキサやホモジナイザ等の撹拌機による撹拌、超音波照射等により行うことができる。
 単量体液中には、ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンのいずれか一方のみが含まれていてもよく、また、両方が含まれていてもよい。
 単量体液が、ポリアニオンにより保護コロイド化されたシード粒子を含む場合、重合体の凝集抑制の観点から、さらにポリアニオンを含むことが好ましい。すなわち、ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンを含むことが好ましく、シード粒子を保護コロイド化するものと同じポリアニオンを含むことがより好ましい。この場合、シード粒子と別に添加されるポリアニオンの量は、使用するポリアニオンの合計100質量%中、好ましくは99質量%以下、より好ましくは10~90質量%、さらに好ましくは20~80質量%である。
 単量体液の調製に用いられる分散媒としては、例えば、水;N-ビニルピロリドン、ヘキサメチルホスホルアミド、N-ビニルホルムアミド、N-ビニルアセトアミド等のアミド類;クレゾール、フェノール、キシレノール等のフェノール類;ジプロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ジグリセリン、イソプレングリコール、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール等の多価アルコール類;エチレンカーボネート、プロピレンカーボネート等のカーボネート類;ジオキサン、ジエチルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等のエーテル類;3-メチル-2-オキサゾリジノン等の複素環化合物;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類が挙げられる。分散媒は、1種単独でも、2種以上を併用してもよい。分散媒は、水を含むことが好ましく、この場合の分散媒100質量%中の水の含有量は、好ましくは1質量%以上、より好ましくは50質量%、さらに好ましくは100質量%である。
 また、単量体液の調製に用いられる分散媒は、調製の容易性の観点から、後述するシード粒子の製造に用いられる分散媒と同じ種類であることが好ましい。
 単量体液100質量部中の分散媒の含有量は、重合反応時の適度な粘度及び反応性の観点から、好ましくは1~99.9質量部、より好ましくは10~99質量部、さらに好ましくは30~98質量部である。
<ポリアニオン>
 ポリアニオンとは、アニオン性基を2個以上有する重合体である。ポリアニオンは、シード粒子の表面に配位して保護コロイドを形成し、かつ、共役系導電性重合体へのドーパントとして機能する。
 アニオン性基としては、例えば、スルホン酸又はその塩からなる基、リン酸又はその塩からなる基、一置換リン酸エステル基、カルボン酸又はその塩からなる基、一置換硫酸エステル基等が挙げられる。これらの中でも、強酸性基が好ましく、スルホン酸又はその塩からなる基、リン酸又はその塩からなる基がより好ましく、スルホン酸又はその塩からなる基がさらに好ましい。
 塩としては、例えば、ナトリウム、カリウム、マグネシウム、カルシウム、アンモニウム等の塩が挙げられる。
 アニオン性基は、ポリアニオンを構成する重合体の主鎖に結合していても、側鎖に結合していてもよい。アニオン性基が側鎖に結合している場合、共役系導電性重合体に対して高いドープ効果を得る観点から、アニオン性基は側鎖末端に結合していることが好ましい。
 ポリアニオンは、アニオン性基以外の置換基を有していてもよい。
 置換基は、ポリアニオンを構成する重合体の主鎖に結合していても、側鎖に結合していてもよい。側鎖に置換基が結合している場合、該置換基の特性を発揮させる観点から、置換基は側鎖末端に結合していることが好ましい。
 置換基としては、例えば、アルキル基、水酸基、アルコキシ基、シアノ基、フェニル基、ヒドロキシフェニル基、エステル基、アルケニル基、イミド基、アミド基、アミノ基、オキシカルボニル基、カルボニル基、ハロゲン原子等が挙げられる。これらの中でも、アルキル基、水酸基、シアノ基、ヒドロキシフェニル基、オキシカルボニル基が好ましく、アルキル基、水酸基、シアノ基がより好ましい。
 アルキル基は、分散媒への溶解性及び分散性、共役系導電性重合体との相溶性及び分散性等を高くする作用が期待できる。分散媒への溶解性、共役系導電性重合体への分散性、立体障害等の観点から、炭素原子数1~12のアルキル基が好ましい。
 アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等の鎖状アルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。
 水酸基は、他の水素原子等との水素結合を形成しやすくし、分散媒への溶解性、共役系導電性重合体との相溶性、分散性及び接着性を高くする作用が期待できる。水酸基は、ポリアニオンを構成する重合体の主鎖に結合した炭素原子数1~6のアルキル基の末端に結合していることが好ましい。
 シアノ基及びヒドロキシフェニル基は、共役系導電性重合体との相溶性、分散媒への溶解性及び耐熱性を高くする作用が期待できる。シアノ基は、ポリアニオンを構成する重合体の主鎖、重合体の主鎖に結合した炭素原子数1~7のアルキル基の末端、又は、重合体の主鎖に結合した炭素原子数2~7のアルケニル基の末端に結合していることが好ましい。
 オキシカルボニル基は、アルキルオキシカルボニル基、アリールオキシカルボニル基が好ましく、ポリアニオンを構成する重合体の主鎖に直接又は他の官能基を介在して結合していることが好ましい。
 ポリアニオンを構成する重合体の主鎖の組成は、特に限定されるものではない。ポリアニオンを構成する重合体の主鎖構造としては、例えば、ポリアルキレン、ポリイミド、ポリアミド、ポリエステル等が挙げられる。これらの中でも、合成や入手容易性等の観点から、ポリアルキレンが好ましい。
 ポリアルキレンは、構成単位がエチレン性不飽和単量体からなる重合体であり、主鎖構造に炭素-炭素二重結合が含まれていてもよい。
 ポリアルキレンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリ(3,3,3-トリフルオロプロピレン)、ポリアクリロニトリル、ポリアクリレート、ポリメタクリレート、ポリスチレン、ポリブタジエン、ポリイソプレン等が挙げられる。
 ポリイミドとしては、例えば、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2,3,3-テトラカルボキシジフェニルエーテル二無水物、2,2-[4,4’-ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物等の酸無水物と、オキシジアニリン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとの重縮合により得られるものが挙げられる。
 ポリアミドとしては、例えば、ポリアミド6、ポリアミド6,6、ポリアミド6,10等が挙げられる。
 ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
 ポリアニオンとしては、共役系導電性重合体の構成単位となる単量体の分散媒への分散性を向上させることから、上述したように、アニオン性基としてスルホン酸又はその塩からなる基を有するものが好ましい。
 スルホン酸からなる基、すなわち、スルホ基(-SOOH)を有するポリアニオンとしては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、及びこれらの共重合体等が挙げられる。これらの中でも、高導電性の観点から、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましく、ポリスチレンスルホン酸がより好ましい。また、水溶性等の観点から、スルホ基がスルホン酸塩基に置き換えられているものが好ましく、例えば、ポリスチレンスルホン酸ナトリウムが好適に用いられる。
 ポリアニオンは、単量体液の分散媒への溶解性、共役系導電性重合体へのドープ効果の観点から、重量平均分子量が、好ましくは1000~1000000、より好ましくは5000~500000、さらに好ましくは50000~300000である。
 なお、ここで言う重量平均分子量は、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算分子量である。具体的には、実施例に記載の方法で測定された値である。
 ポリアニオンは、例えば、特開2005-76016号公報等に記載されている公知の製造方法により製造することができ、また、市販品を用いることもできる。
 共役系導電性重合体の構成単位となる単量体の重合に使用されるポリアニオンは、重合体の導電性及び単量体液中での分散性の観点から、シード粒子の保護コロイド化に使用されるもの、重合開始前に単量体液中に予め仕込んでおくもの及び/又は重合反応中に添加するものの合計量が、共役系導電性重合体の構成単位となる単量体1モル当たり、アニオン性基が0.25~30モルとなる量であることが好ましく、より好ましくは0.5~25モル、さらに好ましくは0.8~20モルとなる量である。
 また、共役系導電性重合体100質量部に対するポリアニオンの使用量は、重合体の導電性及び単量体液中での分散性の観点から、好ましくは10~30000質量部、より好ましくは20~25000質量部、さらに好ましくは50~20000質量部である。
<シード粒子>
 シード粒子は、ポリアニオンにより保護コロイド化される粒子である。
 シード粒子は、例えば、エチレン性不飽和単量体に由来する構成単位を含む重合体粒子が好ましい。重合体粒子の好ましい例として、エチレン性不飽和単量体を重合して得られる単独重合体又は共重合体の粒子が挙げられる。重合体粒子に用いられる重合体は、1種単独でも、2種以上併用されてもよく、また、結晶性又は非晶性のいずれでもよい。結晶性の場合は、結晶化度が50%以下であることが好ましい。
 エチレン性不飽和単量体としては、重合性のエチレン性炭素-炭素二重結合を有しているものであればよく、例えば、直鎖状、分岐状又は環状のアルキル基を有する(メタ)アクリレート;スチレン、α-メチルスチレン等の芳香族ビニル化合物;ビニルピロリドン等の複素環式ビニル化合物;ヒドロキシアルキル(メタ)アクリレート;2-エチルヘキシル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート;酢酸ビニル、アルカン酸ビニル等のビニルエステル;エチレン、プロピレン、ブチレン、イソブチレン等のモノオレフィン;ブタジエン、イソプレン、クロロプレン等の共役ジオレフィン;(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等のα,β-不飽和モノ又はジカルボン酸;アクリロニトリル等のシアン化ビニル化合物;アクロレイン、ダイアセトンアクリルアミド等のカルボニル基含有ビニル化合物等が挙げられる。エチレン性不飽和単量体は、1種単独でも、2種以上を併用してもよい。
 エチレン性不飽和単量体は、架橋性単量体を含んでいてもよく、これらのエチレン性不飽和単量体同士で、さらにまた、活性水素基を有するエチレン性不飽和化合物と組み合わせて架橋させてもよい。架橋共重合体とすることにより、これを用いた固体電解質の耐水性、耐湿性及び耐熱性等が向上しやすくなる。
 エチレン性不飽和単量体中の架橋性単量体の含有量は、好ましくは50質量%以下、より好ましくは35質量%以下、さらに好ましくは25質量%以下である。
 なお、ここで言う架橋性単量体とは、エチレン性炭素-炭素二重結合を2個以上有する化合物、又は、エチレン性炭素-炭素二重結合を1個以上有し、かつ、その他の反応性基を1個以上有する化合物を指す。
 架橋性単量体としては、例えば、グリシジル(メタ)アクリレート等のエポキシ基含有α,β-エチレン性不飽和化合物;ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等の加水分解性アルコキシシリル基含有α,β-エチレン性不飽和化合物;エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート等の多官能ビニル化合物等が挙げられる。また、カルボニル基含有α,β-エチレン性不飽和化合物(ケトン基含有のもの)等の架橋性単量体を、ポリヒドラジン化合物(特に、シュウ酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリアクリル酸ヒドラジド等の2個以上のヒドラジド基を有するもの)と組み合わせて架橋させてもよい。
 ポリアニオンにより保護コロイド化されたシード粒子を含む液は、樹脂エマルジョンとして得ることができる。樹脂エマルジョンは、常圧又は耐圧反応器にて、ラジカル重合反応で製造することができ、バッチ式、半連続式又は連続式のいずれの方法でもよい。安定した重合反応及びシード粒子の均一性等の観点から、ポリアニオン含有液に、エチレン性不飽和単量体を含むシード粒子原料液を連続的又は断続的に添加して重合させることが好ましい。
 樹脂エマルジョンの製造に使用されるポリアニオン及びエチレン性不飽和単量体の配合量は、重合反応時の増粘の抑制及びポリアニオンにより保護コロイド化されたシード粒子の安定性の観点から、ポリアニオン100質量部に対して、エチレン性不飽和単量体が、好ましくは10~100質量部、より好ましくは20~90質量部、さらに好ましくは30~80質量部である。
 樹脂エマルジョン中のポリアニオンにより保護コロイド化されたシード粒子の粒子径は、シード粒子の分散性及び沈降しにくさ等の観点から、体積基準での50%メジアン径(d50)が、好ましくは0.01~10μm、より好ましくは0.05~1μmで、さらに好ましくは0.1~0.8μmである。
 なお、d50は、後述する実施例に記載の方法により求められる。
 ポリアニオン含有液及びシード粒子原料液の溶媒又は分散媒は、水性媒体が好ましく、水、又は、水と水溶性溶媒との混合溶媒がより好ましい。混合溶媒中での水溶性溶媒の割合は、安定した重合反応の観点から、30質量%以下が好ましい。
 水溶性溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン等のケトン類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のエーテル類等が挙げられる。
 ポリアニオンがシード粒子及び樹脂エマルジョンの安定性に寄与するが、安定した重合反応の観点から、必要に応じて、乳化剤や脂肪族アミン等を重合系内に添加してもよい。乳化剤及び脂肪族アミンの種類や使用量は、ポリアニオンの使用量及びエチレン性不飽和単量体の組成等に応じて適宜調整される。乳化剤及び脂肪族アミンは、1種単独でも、2種以上を併用してもよい。
 乳化剤としては、例えば、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシアルキレンアルキル硫酸塩、ポリオキシアルキレンアルキルリン酸エステル等のアニオン性界面活性剤;ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル等のノニオン性界面活性剤が挙げられる。
 脂肪族アミンとしては、例えば、オクチルアミン、ラウリルアミン、ミリスチルアミン、ステアリルアミン、オレイルアミン等の第一級アミン;ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン等の第二級アミン;N,N-ジメチルラウリルアミン、N,N-ジメチルミリスチルアミン、N,N-ジメチルパルミチルアミン、N,N-ジメチルステアリルアミン、N,N-ジメチルベヘニルアミン、N,N-ジメチルオレイルアミン、N-メチルジデシルアミン、N-メチルジオレイルアミン等の第三級アミン等が挙げられる。
 また、安定した重合反応の観点から、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン等の水溶性高分子を、製造する共役系導電性重合体の特性を損なわない範囲内において、重合系内に添加してもよい。
 ラジカル重合反応の重合開始剤は、公知のものを使用することができ、例えば、過酸化水素、過硫酸、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物類;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物類;2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物類等が挙げられる。また、これらの重合開始剤に、ナトリウムスルホキシレートホルムアルデヒド、アスコルビン酸類、亜硫酸塩、酒石酸又はその塩、硫酸鉄(II)等と組み合わせて、レドックス重合を行ってもよい。また、必要に応じて、アルコール類、メルカプタン類等の連鎖移動剤を使用してもよい。
 ラジカル重合反応における反応温度は、通常、10~100℃であり、好ましくは30~90℃である。反応時間は、特に限定されるものではなく、原料の量、重合開始剤の種類及び反応温度等に応じて適宜調整される。
 ラジカル重合反応により得られた樹脂エマルジョンは、ポリアニオンにより保護コロイド化されたシード粒子を安定的に保持する観点から、脱塩しておくことが好ましい。脱塩の方法は、特に限定されるものではなく、公知の方法を用いることができ、例えば、透析法、遠心分離洗浄法、イオン交換樹脂を用いたイオン交換法等が挙げられる。
<重合体含有液>
 重合体含有液を得るための、共役系導電性重合体の構成単位となる単量体の重合反応は、酸化剤の存在下で行うことが好ましい。
 酸化剤としては、例えば、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩;三フッ化ホウ素等の金属ハロゲン化合物;塩化第二鉄、硫酸第二鉄、塩化第二銅等の遷移金属化合物;酸化銀、酸化セシウム等の金属酸化物;過酸化水素、オゾン等の過酸化物;過酸化ベンゾイル等の有機過酸化物;酸素等が挙げられる。これらの中でも、ペルオキソ二硫酸、ペルオキソ二硫酸塩、遷移金属化合物が好ましく、ペルオキソ二硫酸塩、遷移金属化合物がより好ましい。酸化剤は、1種単独でも、2種以上を併用してもよい。
 酸化剤の使用量は、重合反応の適度な促進の観点から、共役系導電性重合体の構成単位となる単量体100質量部に対して、好ましくは50~1500質量部、より好ましくは70~1000質量部、さらに好ましくは100~500質量部である。
 共役系導電性重合体の構成単位となる単量体の重合反応時の温度は、適度な反応速度及び反応液の粘度上昇の抑制の観点から、通常、5~80℃とし、好ましくは10~60℃、より好ましくは15~40℃とする。温度は、反応の進行に応じて、適宜変化させてよい。
 共役系導電性重合体の構成単位となる単量体の重合反応は、反応系の均一化及び重合体の凝集抑制の観点から、撹拌しながら行うことが好ましい。撹拌方法は、反応系の均一化が図られる限り、特に限定されるものではなく、例えば、ハイシェアミキサ等を用いて、単量体液を循環させて撹拌する方法等が挙げられる。
〔工程(2)〕
 工程(2)では、工程(1)で得られた重合体含有液に第1の分散処理を施して、分散液(a)を得る。
 第1の分散処理は、重合体含有液中の重合体の凝集粒子を一次粒子に解砕することを目的するものである。分散処理に用いる装置としては、例えば、ホモジナイザ、ボールミル、ハイシェアミキサ、超音波分散装置等が挙げられる。例えば、せん断速度5000s-1以上の強いせん断力を与えて撹拌したり、高圧ホモジナイザ等を用いたり、周波数15~100Hz程度の超音波照射により分散処理を行うことが好ましい。分散処理は、フロー式でもバッチ式でもよく、また、複数回行ってもよい。
 高圧ホモジナイザを用いる場合、圧力は、分散処理の効率化及び分散液の温度上昇の抑制の観点から、好ましくは1~200MPa、より好ましくは2~150MPa、さらに好ましくは5~100MPaである。
 高圧ホモジナイザを用いた分散処理における合計処理時間は、分散処理の効率化の観点から、好ましくは15~900分、より好ましくは30~600分、さらに好ましくは60~300分である。
 分散処理が分散液の温度上昇を伴う場合、冷却器を使用してもよい。冷却器は、温度上昇を制御できるものとであれば特に限定されるものではなく、公知のものを用いることができる。例えば、プレート型熱交換器、スパイラル式熱交換器、チューブ式熱交換器、投げ込み式熱交換器、ジャケットタンク等が挙げられる。これらの中でも、熱交換効率や装置サイズの観点から、プレート型式熱交換器、スパイラル式熱交換器が好ましい。
 第1の分散処理により得られる分散液(a)は、工程(3)における第2の分散処理を効果的に行う観点から、重合体を含む固形分濃度が、好ましくは0.2~15質量%、より好ましくは0.5~10質量%、より好ましくは1~8質量%である。
 分散液(a)は、固形分濃度の調整のために希釈してもよい。希釈は、分散処理の前、途中、及び後のいずれのタイミングでもよい。分散処理の効率化及び再凝集の抑制の観点から、分散処理の途中で希釈し、分散処理を複数回に分けて行うことが好ましい。
 希釈に用いる分散媒は、分散性の著しい変化を回避する観点から、単量体液の調製に用いられた分散媒と同じものが好ましく、水又は水性媒体がより好ましい。
 分散液(a)は、固形分の分散性を保持する観点から、第1の分散処理後に脱塩しておくことが好ましい。脱塩の方法は、特に限定されるものではなく、公知の方法を用いることができ、例えば、透析法、遠心分離洗浄法、イオン交換法等が挙げられる。
〔工程(3)〕
 工程(3)では、工程(2)で得られた分散液(a)に電気伝導率向上剤を添加し、第2の分散処理を施して、分散液(b)を得る。
 第2の分散処理は、第1の分散処理を施した分散液(a)に、電気伝導率向上剤を添加した後に、再度施される分散処理である。第2の分散処理を施すことにより、静電容量が大きく、かつ、ESRが低い固体電解コンデンサの固体電解質の形成に好適な分散液(b)が得られる。このように固体電解質の性能が向上するのは、分散液(b)中で、重合体、ポリアニオン及び電気伝導率向上剤が、第2の分散処理を経ることによって、何らかの良好な相互作用が発揮されるためであると考えられる。
 なお、工程(2)を経ることなく、工程(3)を行った場合、電気伝導率向上剤が添加された状態で、凝集した重合体粒子を一次粒子まで十分に解砕することは困難であり、均一な分散状態の分散液を得られない。
 第2の分散処理に用いる装置及び分散処理方法は、第1の分散処理と同様でもよい。
 高圧ホモジナイザを用いる場合、圧力は、第1の分散処理と同様でもよい。
 なお、高圧ホモジナイザを用いた第2の分散処理の合計処理時間は、分散液(a)中の重合体は第1の分散処理で粒子の凝集がほどかれていることから、第1の分散処理における合計処理時間よりも短くてもよい。分散処理の効率化及び分散液の温度上昇の抑制の観点から、第1の分散処理の合計処理時間よりも短いことが好ましい。高圧ホモジナイザを用いた第2の分散処理の合計処理時間は、本発明の効果及び分散処理の効率化を両立する観点から、好ましくは20~150分、より好ましくは30~120分、さらに好ましくは40~90分である。
 分散処理が分散液の温度上昇を伴う場合の冷却も、第1の分散処理と同様に行うことができる。
 第2の分散処理により得られる分散液(b)は、固体電解コンデンサの固体電解質の製造効率の観点から、固形分濃度が、好ましくは0.2~15質量%、より好ましくは0.5~10質量%、より好ましくは1~8質量%である。
 分散液(b)は、固形分濃度の調整のために希釈してもよい。希釈は、分散処理の前、途中、及び後のいずれのタイミングでもよい。分散処理の効率化の観点から、分散処理の前に希釈することが好ましい。
 希釈に用いる分散媒は、分散性の著しい変化を回避する観点から、単量体液の調製に用いられた分散媒と同じものが好ましく、水又は水性媒体がより好ましい。
<電気伝導率向上剤>
 電気伝導率向上剤は、分散液(a)の電気伝導率を向上させる目的で添加される。
 電気伝導率向上剤としては、例えば、テトラヒドロフラン等のエーテル類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;カプロラクタム、N-メチルカプロラクタム、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、N-メチルホルムアニリド、N-メチルピロリドン、N-オクチルピロリドン、ピロリドン等のアミド類又はラクタム類;テトラメチレンスルホン、ジメチルスルホキシド等のスルホン類又はスルホキシド類;スクロース、グルコース、フルクトース、ラクトース等の糖類及びその誘導体;ソルビトール、マンニトール等の糖アルコール類;スクシンイミド、マレイミド等のイミド類;2-フランカルボン酸、3-フランカルボン酸等のフラン類;エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール等のポリアルコール類等が挙げられる。これらの中でも、エーテル類、ラクトン類、アミド類又はラクタム類、糖アルコール類、ポリアルコール類が好ましく、ポリアルコール類が特に好ましい。具体的な化合物としては、電気伝導率の向上の観点から、テトラヒドロフラン、γ-ブチロラクトン、N-メチルホルムアミド、N-メチルピロリドン、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、ジメチルスルホキシド、ソルビトールが好ましく、エチレングリコール、ジエチレングリコール、トリエチレングリコールがより好ましい。電気伝導率向上剤は、1種単独でも、2種以上を併用してもよい。
 電気伝導率向上剤の添加量は、分散液(a)の電気伝導率の向上及び粘度上昇の抑制の観点から、分散液(a)の固形分1質量部当たり、好ましくは1~30質量部、より好ましくは5~25質量部、さらに好ましくは7~20質量部添加する。
<アルカリ性化合物>
 分散液(b)は、pH調整及び接触する金属等の腐食抑制の観点から、アルカリ性化合物が添加されていてもよい。
 アルカリ性化合物は、特に限定されるものではなく、公知の有機又は無機アルカリ性化合物を用いることができる。アルカリ性化合物は、1種単独でも、2種以上を併用してもよい。アルカリ性化合物は、工程(3)において添加することが好ましい。
 有機アルカリ性化合物としては、例えば、芳香族アミン、脂肪族アミン、複素環式アミン、アルカリ金属アルコキシド等が挙げられる。
 芳香族アミンとしては、ピリジン類、イミダゾール類、ピリミジン類、ピラジン類、トリアジン類等の窒素含有ヘテロアリール類が挙げられる。これらの中でも、溶解性等の観点から、ピリジン類、イミダゾール類、ピリミジン類が好ましい。
 脂肪族アミンとしては、例えば、エチルアミン、n-オクチルアミン、ジエチルアミン、ジイソブチルアミン、メチルエチルアミン、トリメチルアミン、トリエチルアミン、アリルアミン、2-エチルアミノエタノール、2,2’-イミノジエタノール、N-エチルエチレンジアミン等が挙げられる。
 複素環式アミンとしては、アゼチジン類、ピロリジン類、ピペリジン類、ピペラジン類、モルホリン類、チオモルホリン類等が挙げられる。これらの中でも、汎用性の観点からモルホリン類が好ましい。
 モルホリン類の具体例としては、モルホリン、4-メチルモルホリン、4-エチルモルホリン、4-n-プロピルモルホリン、4-イソプロピルモルホリン、4-n-ブチルモルホリン、4-イソブチルモルホリン、4-ペンチルモルホリン、4-ヘキシルモルホリン、(R)-3-メチルモルホリン、(S)-3-メチルモルホリン、cis-2,6-ジメチルモルホリン、4-(1-シクロヘキセニル)モルホリン、1-モルホリノ-1-シクロペンテン、4-フェニルモルホリン、4-(p-トリル)モルホリン、4-(2-アミノエチル)モルホリン、4-(3-アミノプロピル)モルホリン、2-モルホリノアニリン、4-モルホリノアニリン、4-(2-モルホリノエトキシ)アニリン、4-(4-ピリジル)モルホリン、4-アミノモルホリン、4-(2-ヒドロキシプロピル)モルホリン、4-(2-ヒドロキシエチル)モルホリン、4-(3-ヒドロキシプロピル)モルホリン、2-ヒドロキシ-3-モルホリノプロパンスルホン酸、2-モルホリノエタンスルホン酸、3-モルホリノプロパンスルホン酸、4-アセチルモルホリン、4-アセトアセチルモルホリン、4-アクリロイルモルホリン、4-アリルモルホリン、フェニルモルホリン、3-(モルホリノ)プロピオン酸エチル、4-ホルミルモルホリン、4-(4-ホルミルフェニル)モルホリン、及びこれらの塩が挙げられる。これらの中でも、入手容易性及び取り扱い性等の観点から、モルホリン、4-エチルモルホリン、4-n-ブチルモルホリン、4-イソブチルモルホリン、4-フェニルモルホリン、4-(2-ヒドロキシプロピル)モルホリン、4-(2-ヒドロキシエチル)モルホリン、4-(3-ヒドロキシプロピル)モルホリンが好ましいく、モルホリン、4-エチルモルホリン及び4-(2-ヒドロキシエチル)モルホリンから選ばれる1種以上であることがより好ましい。
 アルカリ金属アルコキシドとしては、例えば、ナトリウムメトキシド、ナトリウムエトキシド等のナトリウムアルコキシド;カリウムアルコキシド;カルシウムアルコキシド等が挙げられる。
 無機アルカリ性化合物としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等が挙げられる。
 分散液(a)へのアルカリ性化合物の添加量は、分散液(b)が接触する金属等の腐食抑制及び重合体からのポリアニオンの脱ドープの抑制等の観点から、分散液(a)のpHが、好ましくは3~13、より好ましくは3~8、さらに好ましくは4~7になる量とする。
<他の添加剤>
 分散液(b)は、固体電解コンデンサ用に適した物性を付与する観点から、電気伝導率向上剤及びアルカリ性化合物に該当しない他の添加剤が添加されていてもよい。他の添加剤は、分散液(b)の電気伝導率や粘度に著しい悪影響を及ぼさない限り、種類及び添加量は、特に限定されるものではない。他の添加剤は、工程(2)で添加されてもよい。
 他の添加剤としては、例えば、水溶性高分子化合物、水分散性化合物、界面活性剤、消泡剤、カップリング剤、酸化防止剤等が挙げられる。他の添加剤は、1種単独でも、2種以上を併用してもよい。
 水溶性高分子化合物及び水分散性化合物は、分散液(b)の粘度調整や塗布性能を向上させる作用を奏し得る。
 水溶性高分子化合物及び/又は水分散性化合物を添加する場合、合計した添加量は、分散液(b)の電気伝導率や粘度に著しい悪影響を及ぼすことなく、上記作用を奏する範囲内とする観点から、分散液(b)中の固形分1質量部に対して、好ましくは50質量部以下、より好ましくは0.01~40質量部、さらに好ましくは0.5~20質量部である。
 水溶性高分子化合物としては、例えば、ポリオキシアルキレン類、水溶性ポリウレタン、水溶性ポリエステル、水溶性ポリアミド、水溶性ポリイミド、水溶性ポリアクリル、水溶性ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸等が挙げられる。これらの中でも、ポリオキシアルキレン類が好ましい。
 ポリオキシアルキレン類としては、例えば、オリゴポリエチレングリコール、トリエチレングリコールモノクロルヒドリン、ジエチレングリコールモノクロルヒドリン、オリゴエチレングリコールモノクロルヒドリン、トリエチレングリコールモノブロムヒドリン、ジエチレングリコールモノブロムヒドリン、オリゴエチレングリコールモノブロムヒドリン、ポリエチレングリコール、グリシジルエーテル類、ポリエチレングリコールグリシジルエーテル類、ポリエチレンオキシド、トリエチレングリコール・ジメチルエーテル、テトラエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジエチルエーテル・ジエチレングリコール・ジブチルエーテル、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ポリプロピレンジオキシド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸アミド等が挙げられる。
 ここで言う水分散性化合物とは、親水性の低い化合物の一部が親水性の高い官能基で置換されたもの、又は、親水性の低い化合物の周囲に親水性の高い官能基を有する化合物が吸着したもの(例えば、エマルジョン等)であって、水中で沈殿せずに分散するものである。
 水分散性化合物としては、例えば、ポリエステル、ポリウレタン、アクリル樹脂、シリコーン樹脂、及びこれらのエマルジョン等が挙げられる。また、アクリル樹脂とポリエステルやポリウレタン等とのブロック共重合体やグラフト共重合体等が挙げられる。
 界面活性剤としては、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等のアニオン界面活性剤;アミン塩、第四級アンモニウム塩等のカチオン界面活性剤;カルボキシベタイン、アミノカルボン酸塩、イミダゾリウムベタイン等の両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸アミド等のノニオン界面活性剤等が挙げられる。
 消泡剤としては、例えば、シリコーン樹脂、ポリジメチルシロキサン、シリコーンオイル等が挙げられる。
 酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ビタミン類等が挙げられる。
[固体電解コンデンサの製造方法]
 本実施形態の固体電解コンデンサの製造方法は、上述した本実施形態の製造方法により得られた固体電解コンデンサ用重合体分散液を、表面に誘電体被膜を有する弁金属からなる多孔性陽極体に付着させる工程(4)と、多孔性陽極体に付着した分散液から、分散媒を除去して、固体電解質層を形成する工程(5)とを含む。
 本実施形態の製造方法で得られた重合体分散液を用いて、上記のような工程で固体電解質層を形成することにより、静電容量が大きく、かつ、ESRが低い固体電解コンデンサを好適に製造することができる。
〔工程(4)〕
 工程(4)では、本実施形態の製造方法により得られた固体電解コンデンサ用重合体分散液を、表面に誘電体被膜を有する弁金属からなる多孔性陽極体に付着させる。
 弁金属としては、例えば、アルミニウム、ベリリウム、ビスマス、マグネシウム、ゲルマニウム、ハフニウム、ニオブ、アンチモン、ケイ素、スズ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、及びこれらの金属のうちの少なくとも1つを含む合金又は化合物が挙げられる。これらの中でも、汎用性の観点から、アルミニウム、ニオブ、タンタルが好ましい。
 多孔性陽極体は、公知の方法で、多孔性の弁金属の表面に誘電体被膜を形成することにより製造することができる。
 多孔性の弁金属は、例えば、高比表面積の弁金属粉末の焼結や、弁金属箔をエッチングすることにより得られる。
 誘電体被膜は、例えば、多孔性の弁金属のリン酸塩溶液中での陽極酸化によって、多孔性の弁金属の表面に、誘電体酸化被膜として形成することができる。陽極酸化における化成電圧は、誘電体酸化被膜の厚さやコンデンサの耐電圧に応じて設定され、好ましくは1~800V、より好ましくは1~500V、より好ましくは1~300Vである。
 多孔性陽極体への重合体分散液の付着は、例えば、塗布、噴霧、浸漬等の公知の方法で行うことができる。これらの方法の中でも、重合体分散液を多孔性陽極体に万遍なく均一に浸透させ、付着させることができることから、浸漬させる方法が好ましい。また、多孔性陽極体の孔内等の細部にまで重合体分散液を十分に浸透させるために、減圧下で含侵させてもよい。
 多孔性陽極体に重合体分散液を浸漬により付着させる場合、重合体分散液の分散媒の種類や粘度等にもよるが、通常、10~35℃程度の重合体分散液に、10秒~5分程度、多孔性陽極体を重合体分散液に浸漬させる。
〔工程(5)〕
 工程(5)では、工程(4)で得られた多孔性陽極体に付着した重合体分散液から、分散媒を除去して、固体電解質層を形成する。
 ここで言う分散媒の除去とは、分散媒が全くない状態とすることのみを意味するものでなく、固体電解コンデンサの製造に支障をきたすことのない範囲内で分散媒が一部残存してもいてもよい。
 分散媒の除去は、除去効率の観点から、加熱処理による乾燥が好ましい。加熱条件は、分散媒の沸点や揮発性、重合体の酸化劣化等を考慮して適宜設定され、通常、室温~300℃、好ましくは40~250℃、さらに好ましくは50~200℃で、5秒~数時間、加熱処理する。加熱装置としては、例えば、ホットプレート、オーブン、熱風乾燥機等を用いることができ、乾燥の効率化の観点から、減圧下で乾燥させてもよい。
 固体電解質層の厚さの均一化等の観点から、工程(5)の後、再度、工程(4)、工程(5)を順に繰り返してもよく、工程(4)及び工程(5)の繰り返し操作を2回以上行ってもよい。また、工程(4)を2回以上行った後、工程(5)を行ってもよい。
 さらに、工程(5)で形成された固体電解質層に、任意の電解液を含浸させてもよい。
 固体電解質層に含浸させる電解液としては、電解コンデンサ用の公知の電解液を用いることができ、例えば、塩を含んでいてもよい極性有機溶媒が挙げられる。
 塩としては、例えば、アンモニウム塩;テトラメチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラエチルアンモニウム塩等の第四級アンモニウム塩;エチルジメチルイミダゾリニウム塩、テトラメチルイミダゾリニウム塩等のアミジニウム塩;メチルアミン塩、エチルアミン塩、プロピルアミン塩等の第一級アミン塩;ジメチルアミン塩、ジエチルアミン塩、エチルメチルアミン塩、ジブチルアミン塩等の第二級アミン塩;トリメチルアミン塩、トリエチルアミン塩、トリブチルアミン塩、エチルジメチルアミン塩、エチルジイソプロピルアミン塩等の第三級アミン塩;ナトリウム塩;カリウム塩等が挙げられる。
 塩を構成する酸としては、例えば、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、レゾルシン酸、フロログルシン酸、没食子酸、ゲンチシン酸、プロトカテク酸、ピロカテク酸、トリメリット酸、ピロメリット酸等のカルボン酸;スルホン酸等の有機酸が挙げられる。また、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。また、ボロジサリチル酸、ボロジシュウ酸、ボロジグリコール酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジアゼライン酸、ボロジ安息香酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2-ヒドロキシ)イソ酪酸、ボロジレゾルシン酸、ボロジメチルサリチル酸、ボロジナフトエ酸、ボロジマンデル酸、ボロジ(3-ヒドロキシ)プロピオン酸等のホウ素錯体等も挙げられる。
 電解液の極性有機溶媒としては、プロトン性溶媒を用いることができ、例えば、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等の一価アルコール類;としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール、ポリエチレングリコールやポリオキシエチレングリセリン等のアルキレンオキシド付加物等の多価アルコール類及びオキシアルコール化合物類等が挙げられる。
 また、極性有機溶媒として非プロトン性溶媒も用いることができ、例えば、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホン類;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N-メチル-2-ピロリドン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート等のラクトン類及び環状アミド類;アセトニトリル、3-メトキシプロピオニトリル、グルタロニトリル等のニトリル類;ジメチルスルホキシド等のオキシド類等が挙げられる。
 電解液は、添加剤を含んでいてもよい。添加剤としては、例えば、ホウ酸とマンニットやソルビット等の多糖類との錯化合物;ホウ酸と多価アルコールとの錯化合物;ホウ酸エステル類;o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、p-ニトロベンジルアルコール等のニトロ類;リン酸エステル類等が挙げられる。これらは1種単独でも、2種以上を併用してもよい。
 本実施形態の固体電解コンデンサの製造方法においては、工程(4)及び(5)を経ること以外は、公知の固体電解コンデンサの製造工程と同様に行うことができる。したがって、既存のコンデンサ素子において、本実施形態の固体電解コンデンサの製造方法を適用することにより、従来よりも、静電容量が大きく、かつ、ESRが低い固体電解コンデンサを製造することができる。
 以下、実施例及び比較例により、本実施形態をさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。
[測定方法]
 実施例及び比較例における各種物性の測定方法は、以下のとおりである。
〔重量平均分子量〕
 ポリスチレンスルホン酸ナトリウムの重量平均分子量(Mw)は、ゲル浸透クロマトグラフィーにて、以下の測定条件で測定した標準ポリスチレン換算分子量として求めた。
 <測定条件>
  測定装置:「Shodex(登録商標) GPC 101」、昭和電工株式会社製
  使用カラム:「OHpak SB-806M HQ」、昭和電工株式会社製
  カラム温度:40℃
  溶出液:水
  溶出速度:1mL/分
  標準試料:ポリスチレン
〔ガラス転移温度〕
 ガラス転移温度は、シード粒子を窒素ガス雰囲気下で乾燥させた試料について、JIS K 7121:2012に準拠して、示差走査熱量測定(DSC:Differential scanning calorimetry)により求めた。アルミパンに密封した試料を、示差走査熱量計(「EXSTAR DSC/SS7020」、株式会社日立ハイテクサイエンス社製;窒素ガス雰囲気下、昇温速度20℃/分;温度範囲 0~150℃)にて測定した。得られたDSC曲線のシフトする前(低温側)のベースラインと、ガラス転移の変曲点での接線との交点の温度を、シード粒子のガラス転移温度Tg[℃]として求めた。
〔粒径〕
 シード粒子の粒径は、粒子径分布測定装置(マイクロトラック(登録商標)UPA型、日機装株式会社製)にて測定した50%体積累積粒子径(d50)で表す。
〔固形分濃度〕
 各種の液の固形分濃度は、試料約10gを秤量し、赤外線水分計(「FD-720」、株式会社ケツト科学研究所製;加熱条件 110℃/30分)にて水分量を測定し、蒸発残分を固形分として、算出した。
〔pH〕
 分散液(a)のpHは、pHメータ(「HM-30G」、東亜ディーケーケー株式会社製;25℃)にて測定した。
[固体電解コンデンサ用分散液の製造]
〔実施例1〕
<シード粒子含有液の製造>
 スチレン86g、2-エチルヘキシルアクリレート49g、ジビニルベンゼン15g、及びポリスチレンスルホン酸ナトリウム(「ポリナス(登録商標)PS-5」、東ソー・ファインケム株式会社製;Mw 約120000;以下、同じ。)22質量%水溶液500gを撹拌混合し、単量体液(1)を調製した。
 一方、ポリスチレンスルホン酸ナトリウム22質量%水溶液1000gを撹拌しながら80℃に昇温し、これに過硫酸カリウム2gを添加し、単量体液(2)を調製した。
 単量体液(2)に、単量体液(1)及び過硫酸カリウム2.5質量%水溶液40gを、それぞれ、2時間及び2.5時間かけて滴下し、80℃で2時間保持した後、室温(25℃)まで冷却した。
 得られた反応液に、陽イオン交換樹脂(「アンバーライト(登録商標) IR120B-H」、オルガノ株式会社製;以下、同じ。)1500mL、及び陰イオン交換樹脂(「アンバーライト(登録商標) IRA410-OH」、オルガノ株式会社製;以下、同じ。)1500mLを添加し、12時間撹拌した後、イオン交換樹脂をろ別した。純水を添加して、ポリアニオンにより保護コロイド化されたシード粒子(Tg 30℃、粒径(d50) 0.46μm)を含むシード粒子含有液を得た(固形分濃度15.0質量%)。上記工程によりポリアニオンにより保護コロイド化されたシード粒子が生成された。
<単量体液1の製造>
 1Lポリエチレン製容器内で、純水223.2g、ポリスチレンスルホン酸ナトリウム12質量%水溶液31.5g、及び前記シード粒子含有液34.0gを、32℃で撹拌混合した。これに、3,4-エチレンジオキシチオフェン2.80gを添加して、ホモミキサ(「ロボミックス(登録商標)」、プライミクス株式会社製;4000rpm;以下、同じ。)にて、30分間乳化混合し、単量体液1(シード粒子あり)を得た(3,4-エチレンジオキシチオフェン1モル当たり、使用したポリスチレンスルホン酸ナトリウム合計量中のスルホン酸ナトリウム基1.9モル)。
<重合体含有液の製造>
 単量体液1 291.5gを、ハイシェアミキサ(「マイルダー(登録商標) MDN303V」、株式会社製;5000rpm、32℃)及び循環ポンプが接続されたステンレス製容器に投入し、撹拌翼及びハイシェアミキサで、循環させながら撹拌し、ペルオキソ二硫酸ナトリウム5.89g、及び硫酸鉄(III)六水和物の1質量%水溶液6.88gを添加して、24時間、重合反応を行い、重合体含有液を得た(重合体100質量部に対するポリスチレンスルホン酸ナトリウムの合計使用量261質量部)。
<分散液(a)の製造>
 固形分濃度5.80質量%の重合体含有液を純水で1500mLに希釈した(固形分濃度4.73質量%)。その後、高圧ホモジナイザ(「TwinPanda 600」、Niro Soavi社製;400bar(40MPa);以下、同じ。)にて、45分間、第1の分散処理(1回目)を行った。
 さらに、純水を加えて固形分濃度3.99質量%に希釈した。そのうちの1500mLを高圧ホモジナイザにて、135分間、第1の分散処理(2回目)を行った。
 次いで、陽イオン交換樹脂125.6mL、及び陰イオン交換樹脂109.9mLにて、3時間、イオン交換して脱塩し、分散液(a)を得た(pH1.9)。
<分散液(b)の製造>
 分散液(a)に、モルホリン10g及び純水を加えて、固形分濃度1.6質量%、pH4.7に調整した。希釈した分散液(a)100質量部に対して、電気伝導率向上剤としてジエチレングリコール25質量部(分散液(a)の固形分1質量部当たり15.6質量部)を添加した。その後、高圧ホモジナイザにて、60分間、第2の分散処理を行い、分散液(b)を得た(固形分濃度1.28質量%、pH4.7)。
〔実施例2〕
 実施例1の分散液(b)の製造において、固形分濃度1.6質量%の分散液(a)100質量部に対するジエチレングリコールの添加量を15質量部(分散液(a)の固形分1質量部当たり9.4質量部)とし、それ以外は実施例1と同様にして、分散液(b)を製造した。
〔実施例3〕
 実施例1の分散液(b)の製造において、ジエチレングリコールをエチレングリコールに変更し、それ以外は実施例1と同様にして、分散液(b)を製造した。
〔実施例4~6〕
 実施例2の分散液(b)の製造において、ジエチレングリコールをトリエチレングリコールに変更し、また、第2の分散処理を下記表1に示す時間とし、それ以外は実施例2と同様にして、分散液(b)をそれぞれ製造した。
〔比較例1~4〕
 実施例1~3及び5の分散液(b)の製造において、高圧ホモジナイザによる第2の分散処理を行わず、それ以外は実施例1と同様にして、比較例1~4の分散液(b’)をそれぞれ製造した。
〔実施例7〕
 実施例1におけるシード粒子含有液の製造を行わず、シード粒子を含まない単量体液2を以下のようにして、製造した。
 1Lポリエチレン製容器内で、純水225.7g、及びポリスチレンスルホン酸ナトリウム12質量%水溶液63.0gを、32℃で撹拌混合した。これに、3,4-エチレンジオキシチオフェン2.80gを添加して、ホモミキサにて、30分間乳化混合し、単量体液2(シード粒子なし)を得た(3,4-エチレンジオキシチオフェン1モル当たり、使用したポリスチレンスルホン酸ナトリウム合計量中のスルホン酸ナトリウム基2.0モル)。
 実施例1の重合体含有液の製造において、単量体液1を単量体液2に変更し、それ以降は実施例1と同様にして、分散液(b)を製造した(分散液(a)の固形分1質量部当たりジエチレングリコール15.6質量部)。
〔実施例8〕
 実施例7の分散液(b)の製造において、ジエチレングリコールの添加量を分散液(a)の固形分1質量部当たり9.4質量部に変更し、それ以外は実施例7と同様にして、分散液(b)を製造した。
〔比較例5及び6〕
 実施例7及び8の分散液(b)の製造において、高圧ホモジナイザによる第2の分散処理を行わず、それ以外は実施例7と同様にして、比較例5及び6の分散液(b’)をそれぞれ製造した。
[固体電解コンデンサ試料の製造]
 上記実施例及び比較例で製造した分散液(b)及び分散液(b’)のそれぞれを用いて、以下のようにして、固体電解コンデンサ試料を製造した。
 アルミ電解コンデンサ素子(耐電圧35V、設計容量400μF)の多孔性陽極体を、大気雰囲気下、25℃で、分散液(b)又は分散液(b’)に5分間含浸させた後、熱風乾燥器(「ST-110」、エスペック株式会社製)にて、120℃で30分間乾燥させて、多孔性陽極体の誘電体酸化被膜の表面に固体電解質層が形成された固体電解コンデンサ試料を得た。
 各固体電解コンデンサ試料について、プレシジョンLCRメータ(「E4980A」、アジレント・テクノロジー株式会社製)にて、120Hzでの静電容量[μF]、並びに、100kHz及び120Hzでの等価直列抵抗(ESR)[mΩ]を測定した。
 これらの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示した結果から分かるように、電気伝導率向上剤を添加した後、第2の分散処理を施して得られた分散液(b)を用いることにより(実施例1~8)、第2の分散処理を行わずに製造した分散液(b’)を用いた場合(比較例1~6)に比べて、静電容量が4%以上大きく、かつ、ESRが低い固体電解コンデンサを製造できることが認められた。
 また、比較例4及び実施例4~6の比較から、第2の分散処理時間が長いほど、静電容量が大きく、かつ、ESRが低い傾向が見られた。なお、実施例6は、実施例5と比較して、静電容量の増加及びESRの低下の程度は大きくないため、重合体分散液の製造効率を考慮すれば、第2の分散処理時間は60分間で十分であると言える。

Claims (11)

  1.  ポリアニオンにより保護コロイド化されたシード粒子及びポリアニオンの少なくともいずれかを含む液中で、共役系導電性重合体の構成単位となる単量体を重合して、重合体含有液を得る工程(1)と、
     前記重合体含有液に第1の分散処理を施して、分散液(a)を得る工程(2)と、
     前記分散液(a)に電気伝導率向上剤を添加し、第2の分散処理を施して、分散液(b)を得る工程(3)と、を含む、
    固体電解コンデンサ用重合体分散液の製造方法。
  2.  前記電気伝導率向上剤が、テトラヒドロフラン、γ-ブチロラクトン、N-メチルホルムアミド、N-メチルピロリドン、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、ジメチルスルホキシド及びソルビトールから選ばれる1種以上である、請求項1に記載の固体電解コンデンサ用重合体分散液の製造方法。
  3.  前記電気伝導率向上剤の添加量が、前記分散液(a)の固形分1質量部当たり1~30質量部である、請求項1又は2に記載の固体電解コンデンサ用重合体分散液の製造方法。
  4.  前記工程(3)において、さらに、アルカリ性化合物を添加する、請求項1~3のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
  5.  前記アルカリ性化合物が、モルホリン、4-エチルモルホリン及び4-(2-ヒドロキシエチル)モルホリンから選ばれる1種以上である、請求項4に記載の固体電解コンデンサ用重合体分散液の製造方法。
  6.  前記共役系導電性重合体の構成単位となる単量体が、ピロール類、アニリン類及びチオフェン類から選ばれる1種以上の化合物を含む、請求項1~5のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
  7.  前記チオフェン類の化合物が、下記式(1)で表される、請求項6に記載の固体電解コンデンサ用重合体分散液の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R及びRは、それぞれ独立して、水素原子、水酸基、置換基を有してもよい炭素原子数1~18のアルキル基、置換基を有してもよい炭素原子数1~18のアルコキシ基、置換基を有してもよい炭素原子数1~18のアルキルチオ基、又は、RとRとが互いに結合して形成された、置換基を有してもよい炭素原子数3~10の脂環、置換基を有してもよい炭素原子数6~10の芳香環、置換基を有してもよい炭素原子数2~10の酸素原子含有複素環、置換基を有してもよい炭素原子数2~10の硫黄原子含有複素環、もしくは、置換基を有してもよい炭素原子数2~10の硫黄原子及び酸素原子含有複素環である。)
  8.  前記ポリアニオンが、スルホン酸又はその塩からなる基を2個以上有する重合体である請求項1~7のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
  9.  前記ポリアニオン中のアニオン性基の割合が、前記共役系導電性重合体の構成単位となる単量体1モルに対して、0.25~30モルである請求項1~8のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
  10.  前記工程(1)において、水を含む液中で、ペルオキソ二硫酸及びその塩から選ばれる1種以上を含む酸化剤を用いて、前記共役系導電性重合体の構成単位となる単量体を重合する、請求項1~9のいずれか1項に記載の固体電解コンデンサ用重合体分散液の製造方法。
  11.  請求項1~10のいずれか1項に記載の製造方法により得られた固体電解コンデンサ用重合体分散液を、表面に誘電体被膜を有する弁金属からなる多孔性陽極体に付着させる工程(4)と、
     前記多孔性陽極体に付着した前記固体電解コンデンサ用重合体分散液から、分散媒を除去して、固体電解質層を形成する工程(5)と、を含む、
    固体電解コンデンサの製造方法。
PCT/JP2022/034952 2021-12-21 2022-09-20 固体電解コンデンサ用重合体分散液の製造方法及び固体電解コンデンサの製造方法 WO2023119762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207275 2021-12-21
JP2021207275 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119762A1 true WO2023119762A1 (ja) 2023-06-29

Family

ID=86901842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034952 WO2023119762A1 (ja) 2021-12-21 2022-09-20 固体電解コンデンサ用重合体分散液の製造方法及び固体電解コンデンサの製造方法

Country Status (2)

Country Link
TW (1) TW202325748A (ja)
WO (1) WO2023119762A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074212A (ja) * 2011-09-28 2013-04-22 Nippon Chemicon Corp 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ
WO2019044044A1 (ja) * 2017-08-31 2019-03-07 昭和電工株式会社 固体電解コンデンサの製造方法
JP2019179855A (ja) * 2018-03-30 2019-10-17 昭和電工株式会社 固体電解コンデンサの製造方法および固体電解コンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074212A (ja) * 2011-09-28 2013-04-22 Nippon Chemicon Corp 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ
WO2019044044A1 (ja) * 2017-08-31 2019-03-07 昭和電工株式会社 固体電解コンデンサの製造方法
JP2019179855A (ja) * 2018-03-30 2019-10-17 昭和電工株式会社 固体電解コンデンサの製造方法および固体電解コンデンサ

Also Published As

Publication number Publication date
TW202325748A (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
KR101782434B1 (ko) 고체 전해 콘덴서의 제조 방법
JP7298475B2 (ja) 固体電解コンデンサの製造方法
JP6573287B2 (ja) 導電性重合体含有分散液の製造方法
JP7238793B2 (ja) 固体電解コンデンサ製造用分散液組成物及び固体電解コンデンサの製造方法
JPWO2014136796A1 (ja) 固体電解コンデンサおよびその製造方法
JP7131941B2 (ja) 共役系導電性重合体を含有する分散液の製造方法、固体電解コンデンサの製造方法および固体電解コンデンサ
WO2023119762A1 (ja) 固体電解コンデンサ用重合体分散液の製造方法及び固体電解コンデンサの製造方法
JP2024089375A (ja) 固体電解コンデンサの製造方法
KR102319989B1 (ko) 고체 전해 콘덴서의 제조 방법, 및 공액계 도전성 중합체를 함유하는 분산액의 제조 방법
WO2024135579A1 (ja) 導電性重合体含有分散液、固体電解コンデンサ及びその製造方法
WO2024135580A1 (ja) 導電性重合体含有分散液、固体電解コンデンサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569067

Country of ref document: JP

Kind code of ref document: A