WO2023119703A1 - Method and apparatus for producing semiconductor crystal wafer - Google Patents

Method and apparatus for producing semiconductor crystal wafer Download PDF

Info

Publication number
WO2023119703A1
WO2023119703A1 PCT/JP2022/028053 JP2022028053W WO2023119703A1 WO 2023119703 A1 WO2023119703 A1 WO 2023119703A1 JP 2022028053 W JP2022028053 W JP 2022028053W WO 2023119703 A1 WO2023119703 A1 WO 2023119703A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor crystal
wire
crystal ingot
cutting
grooves
Prior art date
Application number
PCT/JP2022/028053
Other languages
French (fr)
Japanese (ja)
Inventor
愼介 酒井
哲也 千葉
Original Assignee
有限会社サクセス
有限会社ドライケミカルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021209574A external-priority patent/JP7100864B1/en
Priority claimed from JP2022067973A external-priority patent/JP7104909B1/en
Application filed by 有限会社サクセス, 有限会社ドライケミカルズ filed Critical 有限会社サクセス
Publication of WO2023119703A1 publication Critical patent/WO2023119703A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method of manufacturing a semiconductor crystal wafer, in which the surface of a wafer sliced from a semiconductor crystal ingot ground into a cylindrical shape is subjected to high-precision grinding.
  • Si wafers and SiC wafers which are semiconductor crystal wafers of this type
  • a crystal-grown single crystal mass is formed into a cylindrical ingot as a wafer shape forming step, as shown in Patent Document 1 below.
  • Ingot forming process to be processed crystal orientation forming process of forming a notch in part of the outer circumference so as to serve as a mark indicating the crystal orientation of the ingot, and slicing the single crystal ingot into a thin disc-shaped wafer.
  • the layer removal step includes a process-affected layer removal step for removing the process-affected layer introduced into the wafer in the preceding step, and finally, as a mirror polishing step, the mechanical action of the polishing pad and the chemical action of the slurry.
  • a method for manufacturing a semiconductor crystal wafer is known that includes a chemical mechanical polishing (CMP) step in which polishing is performed using a combination of
  • an object of the present invention is to provide a semiconductor crystal wafer manufacturing method and manufacturing apparatus that can easily and reliably manufacture high-quality semiconductor crystal wafers.
  • a method for manufacturing a semiconductor crystal wafer according to a first aspect of the invention is a method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot; a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step; with In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices.
  • the wire support portion is a pair of cylindrical rods arranged parallel to the axial direction of the semiconductor crystal ingot, and the pair of rods is a grooving drum grindstone for forming the plurality of grooves. Support grooves corresponding to the plurality of protrusions are formed on the entire side surface.
  • a method for manufacturing a semiconductor crystal wafer according to a second aspect of the invention is a method for manufacturing a semiconductor crystal wafer in which wafers are sliced from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot; a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step; with In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot; The wire supporting portion is characterized in that it advances along the side profile of the semiconductor crystal ingot.
  • a method for manufacturing a semiconductor crystal wafer according to a third aspect of the present invention is a method for manufacturing a semiconductor crystal wafer in which wafers are cut into slices from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot; a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step; with In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot; The wire support part advances in conjunction with displacement of the wire in the advancing direction.
  • a method for manufacturing a semiconductor crystal wafer according to a fourth aspect of the present invention is a method for manufacturing a semiconductor crystal wafer in which wafers are sliced from a cylindrically ground semiconductor crystal ingot, comprising: In the grooving step for obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires, When cutting the semiconductor crystal ingot into slices by advancing the plurality of wires while rotating them, the wires are supported by wire support portions that support the wires at both ends of the contact portion between the wires and the semiconductor crystal ingot.
  • the wire support portion includes a pair of clamping plates which are plates having a shape corresponding to both end faces of the semiconductor crystal ingot and clamp the both end faces, a guide portion formed on the outer circumference of the clamping plate, and the guide portion. and a rod running along the edge of the semiconductor crystal ingot, the rod supporting the wire and running along the side profile of the semiconductor crystal ingot.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves; a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone; a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
  • the wire support portion is a pair of cylindrical rods arranged parallel to the axial direction of the semiconductor crystal ingot, and the pair of rods has a plurality of projections of the grooving drum grindstone on the entire side surface.
  • a semiconductor crystal wafer manufacturing apparatus is an apparatus for realizing the semiconductor crystal wafer manufacturing method according to the first aspect of the invention, and includes the semiconductor crystal wafer manufacturing method according to the first aspect of the invention and the semiconductor crystal wafer manufacturing method according to the fifth aspect of the invention.
  • a plurality of concave grooves are formed around the entire side surface of the semiconductor crystal ingot by a grooving drum grindstone having a plurality of convex portions formed on the side surface thereof.
  • the wires arranged in the plurality of grooves are rotated and advanced by the wire saw section, so that the semiconductor crystal ingot can be cut into slices with high precision by the wires using the grooves as guides.
  • a plurality of wires are simultaneously supported at the same position by using a pair of rods as the wire supporting portions. be able to.
  • support grooves corresponding to the plurality of projections of the groove processing drum grindstone are formed on the entire side surface of the rod.
  • the semiconductor crystal wafer manufacturing apparatus of the sixth invention is, in the fifth invention,
  • the wire support portion is characterized in that the rod body is rotatable via a bearing in a no-load state.
  • the rods are configured to be rotatable in a no-load state through bearings, so that the wires can be reliably supported while maintaining the circulating speed of the wires. can. In addition, it is possible to prevent the rod from being scraped by the wire.
  • the semiconductor crystal wafer manufacturing apparatus of the sixth invention it is possible to actually manufacture high-quality semiconductor crystal wafers simply, reliably and stably.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves; a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone; a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion; The wire supporting portion is characterized in that it advances along the side profile of the semiconductor crystal ingot.
  • a semiconductor crystal wafer manufacturing apparatus of the seventh invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the second invention, which is the semiconductor crystal wafer manufacturing method of the second invention and the semiconductor crystal wafer manufacturing of the seventh invention.
  • the wire support portions can be positioned at both ends of the contact portion between the wire and the semiconductor crystal ingot by advancing the wire support portions along the side profile of the semiconductor crystal ingot.
  • the semiconductor crystal wafer manufacturing method of the second invention and the semiconductor crystal wafer manufacturing apparatus of the seventh invention it is possible to actually manufacture high-quality semiconductor crystal wafers efficiently, easily, and reliably. realizable.
  • a semiconductor crystal wafer manufacturing apparatus of an eighth invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves; a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone; a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion; The wire supporting portion advances in conjunction with displacement of the wire saw portion in the advancing direction of the wire.
  • the semiconductor crystal wafer manufacturing apparatus of the eighth invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the third invention, which is the semiconductor crystal wafer manufacturing method of the third invention and the semiconductor crystal wafer manufacturing of the eighth invention.
  • the device by interlocking the amount of displacement of the wire in the direction of travel and the amount of displacement of the wire support portion in the direction of travel, the positional relationship in the direction of travel can be maintained, and the wire is always stably supported by a constant support force. can be supported.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a cylindrically ground semiconductor crystal ingot, a wire saw section for cutting the semiconductor crystal ingot by advancing a plurality of wires while rotating the semiconductor crystal ingot; a wire supporting portion that supports the wire at both ends of a contact portion between the wire of the wire saw portion and the semiconductor crystal ingot;
  • the wire support portion includes a pair of clamping plates which are plates having a shape corresponding to both end faces of the semiconductor crystal ingot and clamp the both end faces, a guide portion formed on the outer circumference of the clamping plate, and the guide portion. and a rod running along the edge of the semiconductor crystal ingot, the rod supporting the wire and running along the side profile of the semiconductor crystal ingot.
  • the semiconductor crystal wafer manufacturing apparatus of the ninth invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the fourth invention, which is the semiconductor crystal wafer manufacturing method of the fourth invention and the semiconductor crystal wafer manufacturing of the ninth invention.
  • the device when a semiconductor crystal ingot is cut into slices by a plurality of wires, both ends of the contact portion of the wire with the ingot are supported by the rods of the wire support portion. It is possible to prevent bowing in and maintain a near-horizontal state.
  • the rods of the wire support portion along the side contour of the semiconductor crystal ingot through the guide portion, the rods can be always positioned at both ends of the contact portion between the wire and the semiconductor crystal ingot. can.
  • the semiconductor crystal wafer manufacturing apparatus of the tenth invention is, in the ninth invention,
  • the wire support section has a progression control section that advances the rod body in conjunction with advancement of the wire of the wire saw section.
  • the semiconductor crystal wafer manufacturing apparatus of the tenth invention by interlocking the movement of the wire with the movement of the bar of the wire support portion, the positional relationship in the direction of movement can be maintained, and the wire can always be held in a fixed position. It can be stably supported by the supporting force.
  • the semiconductor crystal wafer manufacturing apparatus of the eleventh invention is, in the tenth invention,
  • the semiconductor crystal ingot is ground into a cylindrical shape
  • the holding plate of the wire support part is a circular plate
  • the advance control section of the wire support section is a rotary table that is provided at a center of rotation where the rod advances circularly along the guide section and that is capable of adjusting rotational torque.
  • the rod when the rod rotates circularly along the guide portion formed on the outer circumference of the circular plate, by providing a rotary table for controlling the rotational torque,
  • the position of the rod can be precisely controlled by interlocking with the wire. Therefore, the rod can be pressed against the wire with a constant load.
  • the semiconductor crystal wafer manufacturing apparatus of the eleventh invention it is possible to easily, reliably and stably manufacture high-quality semiconductor crystal wafers.
  • the semiconductor crystal wafer manufacturing apparatus of the twelfth invention is any one of the ninth to eleventh inventions,
  • the bar of the wire support part is provided on one or both of the upper side and the lower side of the wire of the wire saw part.
  • the arrangement of the rods supporting the wires can be either above or below the wires as long as they are located at both ends of the contact portion between the wire and the ingot. , the wire is straightened to a near-horizontal state, and the wire can be prevented from bowing at the contact portion.
  • the semiconductor crystal wafer manufacturing apparatus of the twelfth invention it is possible to easily, reliably and stably manufacture high-quality semiconductor crystal wafers.
  • FIG. 4 is a flow chart showing the overall steps of a method for manufacturing a Si wafer (semiconductor crystal wafer) according to the present embodiment.
  • FIG. 2 is an explanatory diagram showing the details of a groove processing step in the method of manufacturing the Si wafer of FIG. 1;
  • FIG. 2 is an explanatory view showing the contents of a cutting step in the method of manufacturing the Si wafer of FIG. 1;
  • FIG. 2 is an explanatory diagram showing the contents of a first surface processing step and a second surface processing step in the Si wafer manufacturing method of FIG. 1;
  • the method for manufacturing a Si wafer which is a semiconductor crystal wafer, is a Si wafer obtained by cutting a Si ingot ground into a cylindrical shape into slices and removing undulations from one surface of the wafer. , comprising a grooving step (STEP 110/FIG. 1), a cutting step (STEP 120/FIG. 1), a first surface machining step (STEP 130/FIG. 1), and a second surface machining step (STEP 150/FIG. 1).
  • a cylindrical Si ingot 10 obtained by determining the crystal orientation and applying cylindrical grinding to the pre-crystallized Si crystal in the ingot processing step is prepared. .
  • a plurality of grooves 11 are formed around the entire side surface of the Si ingot 10 .
  • grooving drum grindstones 20 having convex portions 21 corresponding to the concave grooves 11 formed on the side surfaces are pressed against the Si ingot 10 while being rotated on rotating shafts parallel to each other. to form the recessed groove 11 .
  • the Si ingot 10 is cut into slices by a plurality of wires 31 arranged in the plurality of grooves 11 formed in the groove processing step to obtain Si wafers 100. .
  • the wire saw device which is a cutting device, causes the wire saw unit 30 to align the plurality of wires 31 with the plurality of grooves 11 formed in the grooving step, and rotate the wires 31. By moving forward, the Si ingot 10 is cut into slices.
  • a plurality of concave bobbin grooves corresponding to the plurality of protrusions 21 are formed on the entire side surface of the wire saw bobbin 32 around which the wire 31 is wound. Moreover, the Si ingot 10 is fitted and fixed to a slicing base (dummy plate) 35 into which the Si ingot 10 is fitted via an adhesive or the like.
  • the wire support parts 40 provided in the wire saw device support the wire 31 in the advancing direction at both ends of the contact part between the wire 31 and the Si ingot 10 .
  • the wire support part 40 is a pair of cylindrical rods 41, 41 arranged parallel to the axial direction of the Si ingot 10. At both ends of the rod 41, bearings for the rod 41 are provided. 42, 42 (eg, ball bearings, etc.) are provided. The bearings 42, 42 make the rod 41 rotatable in an unloaded state.
  • recessed support grooves corresponding to the plurality of protrusions 21 of the grooving drum grindstone 20 are formed on the entire side surface of the rod 41 .
  • the wire saw bobbin 32 of the wire saw section 30 and the rod 41 of the wire support section 40 are respectively supported by a frame (not shown) and frame operating means, and the wire 31 (wire saw bobbin 32) is as follows. and the wire support portion 40 move forward.
  • the wire support part 40 (rod body 41) advances so that the amount of displacement of the wire 31 in the direction of movement and the amount of displacement of the wire support part 40 in the direction of movement are interlocked. This maintains the positional relationship between the wire 31 and the wire support portion 40 (the rod 41) in the traveling direction.
  • the wire support portion 40 advances along the side profile of the Si ingot 10 .
  • the movement of the wire saw bobbin 32 and the wire support 40 may be stored in advance by teaching the frame movement means according to the size of the Si ingot 10. It may be configured to read out the motion data by selecting the progress of the motion.
  • a plurality of wires 31 can be simultaneously supported at the same position by the rod body 41 .
  • the rod 41 is configured to be rotatable in a no-load state through the bearing 42, the wire 31 can be reliably supported while maintaining the circulating speed of the wire 31. In addition, scraping of the rod 41 by the wire 31 can be prevented.
  • the rod 41 has support grooves identical to the concave grooves 11 of the Si ingot 10 formed on the entire side surface, and the wire saw bobbin 32 also has bobbin grooves identical to the concave grooves 11 formed therein. Therefore, the wire 31 can be reliably positioned in the recessed groove 11 by the bobbin groove, and the wire 31 can be reliably supported by the support groove without shifting laterally during cutting.
  • wire supporting portion 40 is advanced along the side contour of the Si ingot 10 while being interlocked with the displacement of the wire 31 of the wire saw portion 30 in the advancing direction, so that the contact portion between the wire and the Si ingot 10 is reduced.
  • Wire supports can always be positioned at both ends.
  • both ends of the contact portion of the wire 31 with the Si ingot 10 are always supported by the wire support portions 40, so that the wire 31 is prevented from arching at the contact portion and maintained in a nearly horizontal state. can do.
  • the Si ingot 10 can be precisely cut into slices in one operation by using the plurality of wires 31 that are accurately arranged in the plurality of grooves 11, and there is no need to perform another chamfering process.
  • one surface 110 of one of the cut surfaces is used as a support surface, and the remaining other surface 120 is subjected to mechanical polishing (high-precision grinding).
  • grinding is performed by a mechanical polishing device 50 (ultra-high synthetic high-precision grinding device) that performs mechanical polishing.
  • the mechanical polisher 50 includes a spindle 51 and a diamond grindstone 53 on a platen 52 which is a surface plate.
  • one surface 110 as the upper surface, it is attracted and supported by the vacuum porous chuck 54, which is the suction plate of the spindle 51, and the other surface 120 is ground with the diamond grindstone 53 with the other surface 120 as the lower surface.
  • the spindle 51 and the diamond grindstone 53 are rotationally driven by a drive device (not shown), and the spindle 51 is pressed against the diamond grindstone 53 by a compressor (not shown) or the like, whereby the remaining other surface 120 is ground. .
  • the diamond grindstone 53 may be dressed with a dresser or the like.
  • the mechanical polisher 50 may have functional water supply pipes so that a plurality of functional waters can be used during processing, if necessary.
  • the other surface 120 which has been subjected to high-precision grinding in the first surface machining step, is used as the upper surface, and the one surface 110 is subjected to high-precision grinding similar to the first surface machining step. Grinding is applied.
  • the other surface 120 as the upper surface, it is attracted to the vacuum porous chuck 54 that is the suction plate of the spindle 51, and the one surface 110 is ground with the diamond grindstone 53 with the one surface 110 as the lower surface.
  • dressing may be applied by pressing a dresser or the like against the diamond grindstone 53 as necessary.
  • either one of the cut surfaces having high flatness obtained by the cutting step can be used as a support surface.
  • mechanical polishing high-precision grinding
  • the remaining surfaces as the (adsorption surface)
  • it is possible to greatly simplify the complicated manufacturing process such as multiple times of primary to quaternary lapping.
  • the size of the Si wafer 100 is currently up to 8 inches, and the diameter of each wafer depends on the area of the head. It is then set (possibly up to 12 inches) and subjected to the precision grinding process.
  • Si wafer manufacturing method of the present embodiment As described above in detail, according to the Si wafer manufacturing method of the present embodiment, a high-quality Si wafer can be manufactured easily and reliably.
  • FIG. 6 Another aspect of the cutting step in STEP 110 will be described with reference to FIGS. 6 and 7.
  • FIG. 6 Another aspect of the cutting step in STEP 110 will be described with reference to FIGS. 6 and 7.
  • the wire support portion 40' includes a pair of rods 41', 41', an arm 42', a guide receiving portion 43', a holding plate 44', a guide portion 45', and a rotary table 46'.
  • the rod 41' is a cylindrical rod arranged parallel to the axial direction of the Si ingot 10, and both ends of the rod 41' are pivoted by arms 42'. It is preferable that a bearing such as a ball bearing is provided between the rod 41' and the arm 42' so that the rod 41' can rotate freely in an unloaded state.
  • Disc-shaped guide receiving portions 43' are provided at both ends of the rod 41', and the rod 41' is configured to pass through the guide receiving portions 43'.
  • a bearing such as a ball bearing is provided between the guide receiving portion 43' and the rod 41' so that the rod 41' is rotatable in an unloaded state.
  • the clamping plate 44' is a circular plate corresponding to both end faces of the Si ingot 10 and clamps the both end faces.
  • the guide portion 45' is formed on the outer periphery of the clamping plate 44', and when the guide receiving portion 42' of the rod 41' abuts thereon, the rod 41' is moved to the clamping plate 44' via the guide receiving portion 42'. Helps progress along the perimeter.
  • the guide portion 45' and the guide receiving portion 43' may be provided with grooves on one side and projections on the other side so as to ensure the movement in the circumferential direction.
  • a groove is provided in the guide portion 45' (the side surface of the clamping plate 44'), and a projection extending along the outer periphery is provided in the guide receiving portion 43'.
  • the rotary table 46' (corresponding to the advance control section of the present invention) is a rotation control device capable of adjusting rotational torque, and controls the rotation of the arm 42'. That is, when the rod 41' advances circularly along the guide portion 45', the central axis of rotation is connected to the control shaft 46A' of the rotary table 46'.
  • the rotational torque can be adjusted by the air pressure (inflow and outflow of air) of the two ducts 46B', 46B'.
  • rotary table 46' is screwed by a screw 46C' passing through the frame 47' and integrated with the frame (see FIG. 7).
  • the pair of rods 41 ′, 41 ′ are provided above the wire 31 , and when the Si ingot 10 is cut by the plurality of wires 31 circulating through the wire saw bobbin 32 , the wire Both ends of the contact portion of 31 with the Si ingot 10 are abutted and supported from above to prevent the wire 31 from winding around the Si ingot 10 and bowing at the contact portion to maintain a nearly horizontal state. can do.
  • the rotary table 46' adjusts the air pressure of the two ducts 46B', 46B' in accordance with the advance of the wire saw device 30 (upward advance in the drawing (cutting speed)), thereby controlling the control shaft 46A'. is rotated to advance the rod 41' around the circumference of the clamping plate 44' via the arm 42'.
  • the position of the rod 41' can be interlocked with the wire 31 and accurately controlled, and the rod 41' can be pressed against the wire 31 with a constant load.
  • the rotary table 46' may advance the rod according to a certain load from the wire 31 (in the case of exceeding the specified load value) (instead of actively rotating the control shaft 46A'). good. Thereby, the rod can be pressed against the wire with a constant load, and the movement of the wire and the rod may be interlocked.
  • the pair of rods 41', 41' are arranged below the wire 31 instead of being provided above the setting wire 31 so that the wire 31 is supported by the rod 41', thereby You may make it suppress the slack to.
  • the arm 42' is extended, and another set of rods (wire 31) is attached to the tip of the extended arm. ) may be provided, and both ends of the contact portion of the wire 31 with the Si ingot 10 may be abutted and supported from above and below.
  • concave support grooves corresponding to the plurality of convex portions 21 of the grooving drum grindstone 20 are formed on the entire side surface of the rod 41'.
  • FIG. 7 shows, from the left in chronological order, the start of cutting, the beginning of cutting, and the end of cutting.
  • CMP chemical mechanical polishing
  • the semiconductor crystal is not limited to Si, and the semiconductor crystal may be, for example, silicon carbide. (SiC), gallium hexagonal, indium phosphide, and other compound semiconductors.
  • SYMBOLS 1 Si crystal (semiconductor crystal), 10... Si ingot (semiconductor crystal ingot), 11... Groove, 20... Grooving drum grindstone, 21... Convex part, 30... Wire saw part (wire saw device), 31... Wire , 32... Wire saw bobbin, 35... Base for slicing, 40, 40'... Wire support part (wire saw device), 41, 41'... Rod body, 42... Bearing, 42'... Arm, 43'... Guide receiving part (convex part), 44'... clamping plate, 45'... guide part (groove part), 46'... rotary table, 46A'... control shaft, 46B'... duct, 46C'... screw, 47'... frame, 50...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

The purpose of the present invention is to provide a method and apparatus for producing a semiconductor crystal wafer, the method and apparatus being capable of easily and reliably producing a semiconductor crystal wafer of high quality. A method for producing a semiconductor crystal wafer according to the present invention enables the achievement of an Si wafer that is obtained by slicing an Si ingot, which has been ground into a cylindrical shape, into Si wafers with the surface of each Si wafer being subjected to high accuracy grinding. This method for producing a semiconductor crystal wafer comprises: a groove processing step (STEP 100 in Fig. 1); a cutting step (STEP 120 in Fig. 1); a first surface processing step (STEP 120 in Fig. 1); and a second surface processing step (STEP 130 in Fig. 1).

Description

半導体結晶ウェハの製造方法および製造装置Semiconductor crystal wafer manufacturing method and manufacturing apparatus
 本発明は、円筒形状に研削加工された半導体結晶インゴットからスライス状に切り出したウェハの表面に高精度研削加工を施した半導体結晶ウェハの製造方法に関するものである。 The present invention relates to a method of manufacturing a semiconductor crystal wafer, in which the surface of a wafer sliced from a semiconductor crystal ingot ground into a cylindrical shape is subjected to high-precision grinding.
 従来、この種の半導体結晶ウェハであるSiウェハやSiCウェハの製造方法としては、下記特許文献1に示すように、ウェハ形状形成工程として、結晶成長させた単結晶の塊を円柱状のインゴットに加工するインゴット成形工程と、インゴットの結晶方位を示す目印となるよう、外周の一部に切欠きを形成する結晶方位成形工程と、単結晶のインゴットをスライスして薄円板状のウェハに加工するスライス工程と、修正モース硬度未満の砥粒を用いてウェハを平坦化する平坦化工程と、刻印を形成する刻印形成工程と、外周部を面取りする面取り工程とを含み、次に、加工変質層除去工程として、先行の工程でウェハに導入された加工変質層を除去する加工変質層除去工程を含み、最後に、鏡面研磨工程として、研磨パッドの機械的な作用とスラリーの化学的な作用を併用して研磨を行う化学機械研磨(CMP)工程を含む半導体結晶ウェハの製造方法が知られている。 Conventionally, as a method for manufacturing Si wafers and SiC wafers, which are semiconductor crystal wafers of this type, a crystal-grown single crystal mass is formed into a cylindrical ingot as a wafer shape forming step, as shown in Patent Document 1 below. Ingot forming process to be processed, crystal orientation forming process of forming a notch in part of the outer circumference so as to serve as a mark indicating the crystal orientation of the ingot, and slicing the single crystal ingot into a thin disc-shaped wafer. a slicing step, a flattening step of flattening the wafer using abrasive grains less than the modified Mohs hardness, a stamping forming step of forming a stamp, and a chamfering step of chamfering the outer peripheral portion, and then processing deterioration The layer removal step includes a process-affected layer removal step for removing the process-affected layer introduced into the wafer in the preceding step, and finally, as a mirror polishing step, the mechanical action of the polishing pad and the chemical action of the slurry. A method for manufacturing a semiconductor crystal wafer is known that includes a chemical mechanical polishing (CMP) step in which polishing is performed using a combination of
特開2020-15646号公報Japanese Patent Application Laid-Open No. 2020-15646
 しかしながら、かかる従来の半導体結晶ウェハの製造方法では、製造工程が多く複雑であり、装置構成が複雑となり製造コストが嵩むという問題ある。 However, such a conventional method for manufacturing a semiconductor crystal wafer involves many complicated manufacturing steps, and there is a problem that the equipment configuration becomes complicated and the manufacturing cost increases.
 一方で、製造工程を簡略化した場合には、半導体結晶ウェハに要求される品質を安定して得ることが困難となる。 On the other hand, if the manufacturing process is simplified, it will be difficult to stably obtain the quality required for semiconductor crystal wafers.
 そこで、本発明は、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる半導体結晶ウェハの製造方法および製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a semiconductor crystal wafer manufacturing method and manufacturing apparatus that can easily and reliably manufacture high-quality semiconductor crystal wafers.
 第1発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
を備え、
 前記切断工程は、前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部により支持され、
 前記ワイヤー支持部は、前記半導体結晶インゴットの軸線方向と平行に配置された、円筒形状の一対の棒体であって、該一対の棒体は、前記複数の凹溝を形成する溝加工ドラム砥石の複数の凸部に対応した支持溝が側面全体に形成されていることを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a first aspect of the invention is a method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
with
In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot;
The wire support portion is a pair of cylindrical rods arranged parallel to the axial direction of the semiconductor crystal ingot, and the pair of rods is a grooving drum grindstone for forming the plurality of grooves. Support grooves corresponding to the plurality of protrusions are formed on the entire side surface.
 第2発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
を備え、
 前記切断工程は、前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部により支持され、
 前記ワイヤー支持部は、前記半導体結晶インゴットの側面外形に沿って進行することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a second aspect of the invention is a method for manufacturing a semiconductor crystal wafer in which wafers are sliced from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
with
In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot;
The wire supporting portion is characterized in that it advances along the side profile of the semiconductor crystal ingot.
 第3発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
を備え、
 前記切断工程は、前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部により支持され、
 前記ワイヤー支持部は、前記ワイヤーの進行方向の変位と連動して進行することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a third aspect of the present invention is a method for manufacturing a semiconductor crystal wafer in which wafers are cut into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
with
In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot;
The wire support part advances in conjunction with displacement of the wire in the advancing direction.
 第4発明の半導体結晶ウェハの製造方法は、筒状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る溝加工工程において、
 前記複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを支持するワイヤー支持部により該ワイヤーが支持され、
 前記ワイヤー支持部は、前記半導体結晶インゴットの両端面に対応した形状のプレートであって該両端面を挟持する一対の挟持プレートと、該挟持プレートの外周に形成されたガイド部と、該ガイド部に沿って進行する棒体とにより、該棒体が前記ワイヤーを支持すると共に該半導体結晶インゴットの側面外形に沿って進行することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a fourth aspect of the present invention is a method for manufacturing a semiconductor crystal wafer in which wafers are sliced from a cylindrically ground semiconductor crystal ingot, comprising:
In the grooving step for obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires,
When cutting the semiconductor crystal ingot into slices by advancing the plurality of wires while rotating them, the wires are supported by wire support portions that support the wires at both ends of the contact portion between the wires and the semiconductor crystal ingot. was supported by
The wire support portion includes a pair of clamping plates which are plates having a shape corresponding to both end faces of the semiconductor crystal ingot and clamp the both end faces, a guide portion formed on the outer circumference of the clamping plate, and the guide portion. and a rod running along the edge of the semiconductor crystal ingot, the rod supporting the wire and running along the side profile of the semiconductor crystal ingot.
 第5発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
 前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部と
を備え、
 前記ワイヤー支持部は、前記半導体結晶インゴットの軸線方向と平行に配置された、円筒形状の一対の棒体であって、該一対の棒体は、側面全体に前記溝加工ドラム砥石の複数の凸部に対応した支持溝が形成されていることを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a fifth aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
The wire support portion is a pair of cylindrical rods arranged parallel to the axial direction of the semiconductor crystal ingot, and the pair of rods has a plurality of projections of the grooving drum grindstone on the entire side surface. A support groove corresponding to the portion is formed.
 第5発明の半導体結晶ウェハの製造装置は、第1発明の半導体結晶ウェハの製造方法を実現する装置であって、第1発明の半導体結晶ウェハの製造方法および第5発明の半導体結晶ウェハの製造装置によれば、具体的に、複数の凸部が側面に形成された溝加工ドラム砥石により、半導体結晶インゴットの側面全体に周回する複数の凹溝が形成される。 A semiconductor crystal wafer manufacturing apparatus according to a fifth aspect of the invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method according to the first aspect of the invention, and includes the semiconductor crystal wafer manufacturing method according to the first aspect of the invention and the semiconductor crystal wafer manufacturing method according to the fifth aspect of the invention. Specifically, according to the apparatus, a plurality of concave grooves are formed around the entire side surface of the semiconductor crystal ingot by a grooving drum grindstone having a plurality of convex portions formed on the side surface thereof.
 そして、ワイヤーソー部により、複数の凹溝に配置された複数のワイヤーを周回させながら前進させることで、凹溝をガイドとしてワイヤーにより半導体結晶インゴットを精度よくスライス状に切断することができる。 Then, the wires arranged in the plurality of grooves are rotated and advanced by the wire saw section, so that the semiconductor crystal ingot can be cut into slices with high precision by the wires using the grooves as guides.
 ここで、ワイヤー支持部により、凹溝に配置されたワイヤーは、そのインゴットとの接触部の両端がワイヤー支持部により支持されることから、ワイヤーが接触部において弓なりになるのを防止して、水平に近い状態を維持することができる。 Here, since both ends of the contact portion of the wire with the ingot are supported by the wire support portion, the wire arranged in the recessed groove is prevented from bowing at the contact portion. It is possible to maintain a near-horizontal state.
 そのため、切断時にワイヤーが弓なりになって両端部側に切断応力が偏ることを防止して、うねりや筋のない切断面を実現することができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 Therefore, it is possible to prevent the wire from bowing during cutting and biasing the cutting stress toward both ends, realizing a cut surface without undulations and streaks. It is possible to greatly simplify complex manufacturing processes such as grinding stone processing, that is, lapping multiple times from primary to quaternary.
 このように、第1発明の半導体結晶ウェハの製造方法および第5発明の半導体結晶ウェハの製造装置によれば、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the first invention and the semiconductor crystal wafer manufacturing apparatus of the fifth invention, it is possible to easily and reliably manufacture a high-quality semiconductor crystal wafer.
 また、第1発明の半導体結晶ウェハの製造方法および第5発明の半導体結晶ウェハの製造装置によれば、ワイヤー支持部を一対の棒体とすることで、複数のワイヤーを同時に同一位置で支持することができる。 Further, according to the semiconductor crystal wafer manufacturing method of the first invention and the semiconductor crystal wafer manufacturing apparatus of the fifth invention, a plurality of wires are simultaneously supported at the same position by using a pair of rods as the wire supporting portions. be able to.
 このように、第1発明の半導体結晶ウェハの製造方法および第5発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを効率よく簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the first invention and the semiconductor crystal wafer manufacturing apparatus of the fifth invention, it is possible to actually manufacture high-quality semiconductor crystal wafers efficiently, simply, and reliably.
 さらに、第1発明の半導体結晶ウェハの製造方法および第5発明の半導体結晶ウェハの製造装置によれば、棒体の側面全体に溝加工ドラム砥石の複数の凸部に対応した支持溝を形成することで、周回するワイヤーが切断の際に横ずれすることがなく確実に支持することができる。 Further, according to the semiconductor crystal wafer manufacturing method of the first invention and the semiconductor crystal wafer manufacturing apparatus of the fifth invention, support grooves corresponding to the plurality of projections of the groove processing drum grindstone are formed on the entire side surface of the rod. As a result, the circulating wire can be reliably supported without shifting laterally during cutting.
 このように、第1発明の半導体結晶ウェハの製造方法および第5発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実により安定して製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the first invention and the semiconductor crystal wafer manufacturing apparatus of the fifth invention, it is possible to actually manufacture high-quality semiconductor crystal wafers simply, reliably and more stably. .
 第6発明の半導体結晶ウェハの製造装置は、第5発明において、
 前記ワイヤー支持部は、軸受けを介して、棒体が無負荷状態で回転自在に構成されることを特徴とする。
The semiconductor crystal wafer manufacturing apparatus of the sixth invention is, in the fifth invention,
The wire support portion is characterized in that the rod body is rotatable via a bearing in a no-load state.
 第6発明の半導体結晶ウェハの製造装置によれば、棒体が軸受けを介して無負荷の状態で回転可能に構成することで、ワイヤーの周回速度を維持させながらワイヤーを確実に支持することができる。加えて、ワイヤーによる棒体への削り込みも防止することができる。 According to the semiconductor crystal wafer manufacturing apparatus of the sixth aspect of the invention, the rods are configured to be rotatable in a no-load state through bearings, so that the wires can be reliably supported while maintaining the circulating speed of the wires. can. In addition, it is possible to prevent the rod from being scraped by the wire.
 このように、第6発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に安定して製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the sixth invention, it is possible to actually manufacture high-quality semiconductor crystal wafers simply, reliably and stably.
 第7発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
 前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部と
を備え、
 前記ワイヤー支持部は、前記半導体結晶インゴットの側面外形に沿って進行することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a seventh aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
The wire supporting portion is characterized in that it advances along the side profile of the semiconductor crystal ingot.
 第7発明の半導体結晶ウェハの製造装置は、第2発明の半導体結晶ウェハの製造方法を実現する装置であって、第2発明の半導体結晶ウェハの製造方法および第7発明の半導体結晶ウェハの製造装置によれば、ワイヤー支持部を半導体結晶インゴットの側面外形に沿って進行させることで、ワイヤーと半導体結晶インゴットとの接触部の両端にワイヤー支持部を常に位置させることができる。 A semiconductor crystal wafer manufacturing apparatus of the seventh invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the second invention, which is the semiconductor crystal wafer manufacturing method of the second invention and the semiconductor crystal wafer manufacturing of the seventh invention. According to the apparatus, the wire support portions can be positioned at both ends of the contact portion between the wire and the semiconductor crystal ingot by advancing the wire support portions along the side profile of the semiconductor crystal ingot.
 このように、第2発明の半導体結晶ウェハの製造方法および第7発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを効率よく簡易かつ確実に製造することができることが実現できる。 As described above, according to the semiconductor crystal wafer manufacturing method of the second invention and the semiconductor crystal wafer manufacturing apparatus of the seventh invention, it is possible to actually manufacture high-quality semiconductor crystal wafers efficiently, easily, and reliably. realizable.
 第8発明の導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
 前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部と
を備え、
 前記ワイヤー支持部は、前記ワイヤーソー部の前記ワイヤーの進行方向の変位と連動して進行することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus of an eighth invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
The wire supporting portion advances in conjunction with displacement of the wire saw portion in the advancing direction of the wire.
 第8発明の半導体結晶ウェハの製造装置は、第3発明の半導体結晶ウェハの製造方法を実現する装置であって、第3発明の半導体結晶ウェハの製造方法および第8発明の半導体結晶ウェハの製造装置によれば、ワイヤーの進行方向変位量とワイヤー支持部の進行方向変位量とを連動させることで、進行方向の位置関係を維持することができ、常にワイヤーを一定の支持力で安定して支持させることができる。 The semiconductor crystal wafer manufacturing apparatus of the eighth invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the third invention, which is the semiconductor crystal wafer manufacturing method of the third invention and the semiconductor crystal wafer manufacturing of the eighth invention. According to the device, by interlocking the amount of displacement of the wire in the direction of travel and the amount of displacement of the wire support portion in the direction of travel, the positional relationship in the direction of travel can be maintained, and the wire is always stably supported by a constant support force. can be supported.
 このように、第3発明の半導体結晶ウェハの製造方法および第8発明の半導体結晶ウェハの製造装置によれば、高品質な半導体結晶ウェハを簡易かつ確実に安定して製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the third invention and the semiconductor crystal wafer manufacturing apparatus of the eighth invention, high-quality semiconductor crystal wafers can be manufactured simply, reliably and stably.
 第9発明の半導体結晶ウェハの製造装置は、筒状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 前記半導体結晶インゴットに対して、複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを支持するワイヤー支持部と
を備え、
 前記ワイヤー支持部は、前記半導体結晶インゴットの両端面に対応した形状のプレートであって該両端面を挟持する一対の挟持プレートと、該挟持プレートの外周に形成されたガイド部と、該ガイド部に沿って進行する棒体とにより、該棒体が前記ワイヤーを支持すると共に該半導体結晶インゴットの側面外形に沿って進行することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a ninth aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a cylindrically ground semiconductor crystal ingot,
a wire saw section for cutting the semiconductor crystal ingot by advancing a plurality of wires while rotating the semiconductor crystal ingot;
a wire supporting portion that supports the wire at both ends of a contact portion between the wire of the wire saw portion and the semiconductor crystal ingot;
The wire support portion includes a pair of clamping plates which are plates having a shape corresponding to both end faces of the semiconductor crystal ingot and clamp the both end faces, a guide portion formed on the outer circumference of the clamping plate, and the guide portion. and a rod running along the edge of the semiconductor crystal ingot, the rod supporting the wire and running along the side profile of the semiconductor crystal ingot.
 第9発明の半導体結晶ウェハの製造装置は、第4発明の半導体結晶ウェハの製造方法を実現する装置であって、第4発明の半導体結晶ウェハの製造方法および第9発明の半導体結晶ウェハの製造装置によれば、複数のワイヤーにより半導体結晶インゴットをスライス状に切断する際に、ワイヤーは、そのインゴットとの接触部の両端がワイヤー支持部の棒体により支持されることから、ワイヤーが接触部において弓なりになるのを防止して、水平に近い状態を維持することができる。 The semiconductor crystal wafer manufacturing apparatus of the ninth invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the fourth invention, which is the semiconductor crystal wafer manufacturing method of the fourth invention and the semiconductor crystal wafer manufacturing of the ninth invention. According to the device, when a semiconductor crystal ingot is cut into slices by a plurality of wires, both ends of the contact portion of the wire with the ingot are supported by the rods of the wire support portion. It is possible to prevent bowing in and maintain a near-horizontal state.
 ここで、ワイヤー支持部の棒体を、ガイド部を介して半導体結晶インゴットの側面外形に沿って進行させることで、ワイヤーと半導体結晶インゴットとの接触部の両端に棒体を常に位置させることができる。 Here, by advancing the rods of the wire support portion along the side contour of the semiconductor crystal ingot through the guide portion, the rods can be always positioned at both ends of the contact portion between the wire and the semiconductor crystal ingot. can.
 そのため、切断時にワイヤーが弓なりになって両端部側に切断応力が偏ることを防止して、うねりや筋のない切断面を実現することができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 Therefore, it is possible to prevent the wire from bowing during cutting and biasing the cutting stress toward both ends, realizing a cut surface without undulations and streaks. It is possible to greatly simplify complex manufacturing processes such as grinding stone processing, that is, lapping multiple times from primary to quaternary.
 このように、第4発明の半導体結晶ウェハの製造方法および第9発明の半導体結晶ウェハの製造装置によれば、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the fourth invention and the semiconductor crystal wafer manufacturing apparatus of the ninth invention, it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
 第10発明の半導体結晶ウェハの製造装置は、第9発明において、
 前記ワイヤー支持部は、前記ワイヤーソー部の前記ワイヤーの進行と連動して前記棒体を進行させる進行制御部を有することを特徴とする。
The semiconductor crystal wafer manufacturing apparatus of the tenth invention is, in the ninth invention,
The wire support section has a progression control section that advances the rod body in conjunction with advancement of the wire of the wire saw section.
 第10発明の半導体結晶ウェハの製造装置によれば、ワイヤーの進行とワイヤー支持部の棒体の進行とを連動させることで、進行方向の位置関係を維持することができ、常にワイヤーを一定の支持力で安定して支持させることができる。 According to the semiconductor crystal wafer manufacturing apparatus of the tenth invention, by interlocking the movement of the wire with the movement of the bar of the wire support portion, the positional relationship in the direction of movement can be maintained, and the wire can always be held in a fixed position. It can be stably supported by the supporting force.
 このように、第10発明の半導体結晶ウェハの製造装置によれば、高品質な半導体結晶ウェハを簡易かつ確実に安定して製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the tenth invention, high-quality semiconductor crystal wafers can be manufactured simply, reliably and stably.
 第11発明の半導体結晶ウェハの製造装置は、第10発明において、
 前記半導体結晶インゴットは、円筒形状に研削加工され、
 前記ワイヤー支持部の前記挟持プレートは、円形プレートであって、
 前記ワイヤー支持部の前記進行制御部が、前記棒体が前記ガイド部に沿って円形に進行する回転中心に設けられ、回転トルクを調整可能なロータリテーブルであることを特徴とする。
The semiconductor crystal wafer manufacturing apparatus of the eleventh invention is, in the tenth invention,
The semiconductor crystal ingot is ground into a cylindrical shape,
The holding plate of the wire support part is a circular plate,
The advance control section of the wire support section is a rotary table that is provided at a center of rotation where the rod advances circularly along the guide section and that is capable of adjusting rotational torque.
 第11発明の半導体結晶ウェハの製造装置によれば、棒体が円形プレートの外周に形成されたガイド部に沿って円形に回転する際に、その回転トルクを制御するロータリテーブルを設けることで、棒体の位置をワイヤーに連動させて正確に制御することができる。そのため、ワイヤーに対して一定の負荷で棒体を押し付けることができる。 According to the semiconductor crystal wafer manufacturing apparatus of the eleventh aspect of the present invention, when the rod rotates circularly along the guide portion formed on the outer circumference of the circular plate, by providing a rotary table for controlling the rotational torque, The position of the rod can be precisely controlled by interlocking with the wire. Therefore, the rod can be pressed against the wire with a constant load.
 このように、第11発明の半導体結晶ウェハの製造装置によれば、高品質な半導体結晶ウェハを簡易かつ確実に安定して製造することが実現できる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the eleventh invention, it is possible to easily, reliably and stably manufacture high-quality semiconductor crystal wafers.
 第12発明の半導体結晶ウェハの製造装置は、第9~第11発明のいずれかにおいて、
 前記ワイヤー支持部の前記棒体は、前記ワイヤーソー部の前記ワイヤーの上側と下側とのいずれか一方または両方に設けられることを特徴とする。
The semiconductor crystal wafer manufacturing apparatus of the twelfth invention is any one of the ninth to eleventh inventions,
The bar of the wire support part is provided on one or both of the upper side and the lower side of the wire of the wire saw part.
 第12発明の半導体結晶ウェハの製造装置によれば、ワイヤーを支持する棒体の配置は、ワイヤーとインゴットとの接触部の両端位置であれば、ワイヤーの上側または下側のいずれであっても、ワイヤーが水平に近い状態に矯正され、ワイヤーが接触部において弓なりになるのを防止することができる。 According to the semiconductor crystal wafer manufacturing apparatus of the twelfth aspect of the invention, the arrangement of the rods supporting the wires can be either above or below the wires as long as they are located at both ends of the contact portion between the wire and the ingot. , the wire is straightened to a near-horizontal state, and the wire can be prevented from bowing at the contact portion.
 このように、第12発明の半導体結晶ウェハの製造装置によれば、高品質な半導体結晶ウェハを簡易かつ確実に安定して製造することが実現できる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the twelfth invention, it is possible to easily, reliably and stably manufacture high-quality semiconductor crystal wafers.
本実施形態のSiウェハ(半導体結晶ウェハ)の製造方法の工程全体を示すフローチャート。4 is a flow chart showing the overall steps of a method for manufacturing a Si wafer (semiconductor crystal wafer) according to the present embodiment. 図1のSiウェハの製造方法における溝加工工程の内容を示す説明図。FIG. 2 is an explanatory diagram showing the details of a groove processing step in the method of manufacturing the Si wafer of FIG. 1; 図1のSiウェハの製造方法における切断工程の内容を示す説明図。FIG. 2 is an explanatory view showing the contents of a cutting step in the method of manufacturing the Si wafer of FIG. 1; 図3の切断工程の内容を示す説明図。Explanatory drawing which shows the content of the cutting process of FIG. 図1のSiウェハの製造方法における第1面加工工程および第2面加工工程の内容を示す説明図。FIG. 2 is an explanatory diagram showing the contents of a first surface processing step and a second surface processing step in the Si wafer manufacturing method of FIG. 1; 切断工程の他の態様を示す説明図。Explanatory drawing which shows the other aspect of a cutting process. 図6の切断工程の内容を示す説明図。Explanatory drawing which shows the content of the cutting process of FIG.
 図1に示すように、本実施形態において、半導体結晶ウェハであるSiウェハの製造方法は、円筒形状に研削加工されたSiインゴットからスライス状に切り出したウェハの一面のうねり除去を施したSiウェハを得る方法であって、溝加工工程(STEP110/図1)と、切断工程(STEP120/図1)と、第1面加工工程(STEP130/図1)と、第2面加工工程(STEP150/図1)とを備える。 As shown in FIG. 1, in the present embodiment, the method for manufacturing a Si wafer, which is a semiconductor crystal wafer, is a Si wafer obtained by cutting a Si ingot ground into a cylindrical shape into slices and removing undulations from one surface of the wafer. , comprising a grooving step (STEP 110/FIG. 1), a cutting step (STEP 120/FIG. 1), a first surface machining step (STEP 130/FIG. 1), and a second surface machining step (STEP 150/FIG. 1).
 図2~図5を参照して各工程の詳細および各工程で用いられる装置について説明する。 Details of each step and devices used in each step will be described with reference to FIGS.
 まず、図2に示すSTEP100の溝加工工程では、予め結晶させたSi結晶に対して、インゴット加工工程において、結晶方位を定めて円筒研削加工を施して得られる円筒形状のSiインゴット10を準備する。 First, in the grooving step of STEP 100 shown in FIG. 2, a cylindrical Si ingot 10 obtained by determining the crystal orientation and applying cylindrical grinding to the pre-crystallized Si crystal in the ingot processing step is prepared. .
 そして、STEP100の溝加工工程では、かかるSiインゴット10に対して、側面全体に周回する複数の凹溝11を形成する。 Then, in the grooving step of STEP 100 , a plurality of grooves 11 are formed around the entire side surface of the Si ingot 10 .
 具体的に、STEP100の溝加工工程では、凹溝11に対応した凸部21が側面に形成された溝加工ドラム砥石20を互いに平行な回転軸上でそれぞれ回転させながらSiインゴット10に圧接することにより凹溝11を形成する。 Specifically, in the grooving step of STEP 100, grooving drum grindstones 20 having convex portions 21 corresponding to the concave grooves 11 formed on the side surfaces are pressed against the Si ingot 10 while being rotated on rotating shafts parallel to each other. to form the recessed groove 11 .
 なお、溝加工工程により得られたSiインゴット10(特に凹溝11)に対して化学処理的手法によりノンダメージの鏡面加工を施すことが望ましい。 It is desirable to subject the Si ingot 10 (especially the grooves 11) obtained by the grooving process to a non-damaging mirror finish by a chemical treatment method.
 次に、図3に示す、STEP110の切断工程では、溝加工工程において形成された複数の凹溝11に配置された複数のワイヤー31によりSiインゴット10をスライス状に切断してSiウェハ100を得る。 Next, in the cutting step of STEP 110 shown in FIG. 3, the Si ingot 10 is cut into slices by a plurality of wires 31 arranged in the plurality of grooves 11 formed in the groove processing step to obtain Si wafers 100. .
 具体的に切断工程では、切断加工装置であるワイヤーソー装置は、ワイヤーソー部30が、複数のワイヤー31を溝加工工程で形成した複数の凹溝11にそれぞれ合せて、ワイヤー31を周回させながら前進させることによりSiインゴット10をスライス状に切断する。 Specifically, in the cutting step, the wire saw device, which is a cutting device, causes the wire saw unit 30 to align the plurality of wires 31 with the plurality of grooves 11 formed in the grooving step, and rotate the wires 31. By moving forward, the Si ingot 10 is cut into slices.
 なお、ワイヤー31を周回させるワイヤーソーボビン32の側面全体に複数の凸部21に対応した複数の凹型のボビン溝が形成されている。また、Siインゴット10は、Siインゴット10が嵌まり込むスライス用ベース(ダミープレート)35に接着剤などを介して嵌まり込んで固定されている。 A plurality of concave bobbin grooves corresponding to the plurality of protrusions 21 are formed on the entire side surface of the wire saw bobbin 32 around which the wire 31 is wound. Moreover, the Si ingot 10 is fitted and fixed to a slicing base (dummy plate) 35 into which the Si ingot 10 is fitted via an adhesive or the like.
 このとき、ワイヤーソー装置が備えるワイヤー支持部40が、ワイヤー31とSiインゴット10との接触部の両端においてワイヤー31を進行方向に支持する。 At this time, the wire support parts 40 provided in the wire saw device support the wire 31 in the advancing direction at both ends of the contact part between the wire 31 and the Si ingot 10 .
 より具体的にワイヤー支持部40は、Siインゴット10の軸線方向と平行に配置された、円筒形状の一対の棒体41,41であって、棒体41の両端には、棒体41の軸受け42,42(例えばボールベアリングなど)が設けられている。軸受け42,42により棒体41は、無負荷状態で回転自在に構成される。 More specifically, the wire support part 40 is a pair of cylindrical rods 41, 41 arranged parallel to the axial direction of the Si ingot 10. At both ends of the rod 41, bearings for the rod 41 are provided. 42, 42 (eg, ball bearings, etc.) are provided. The bearings 42, 42 make the rod 41 rotatable in an unloaded state.
 また、棒体41の側面全体に溝加工ドラム砥石20の複数の凸部21に対応した凹型の支持溝が形成されている。 In addition, recessed support grooves corresponding to the plurality of protrusions 21 of the grooving drum grindstone 20 are formed on the entire side surface of the rod 41 .
 ここで、ワイヤーソー部30のワイヤーソーボビン32と、ワイヤー支持部40の棒体41は、それぞれ図示しないフレームおよびフレーム動作手段により支持されて、以下のように、ワイヤー31(ワイヤーソーボビン32)とワイヤー支持部40とが動作進行する。 Here, the wire saw bobbin 32 of the wire saw section 30 and the rod 41 of the wire support section 40 are respectively supported by a frame (not shown) and frame operating means, and the wire 31 (wire saw bobbin 32) is as follows. and the wire support portion 40 move forward.
 まず、ワイヤー31の進行方向変位量とワイヤー支持部40の進行方向変位量とが連動するように、ワイヤー支持部40(棒体41)が進行する。これにより、進行方向におけるワイヤー31とワイヤー支持部40(棒体41)との位置関係が維持される。 First, the wire support part 40 (rod body 41) advances so that the amount of displacement of the wire 31 in the direction of movement and the amount of displacement of the wire support part 40 in the direction of movement are interlocked. This maintains the positional relationship between the wire 31 and the wire support portion 40 (the rod 41) in the traveling direction.
 さらに、図4に示すように、ワイヤー支持部40は、Siインゴット10の側面外形に沿って進行する。 Furthermore, as shown in FIG. 4 , the wire support portion 40 advances along the side profile of the Si ingot 10 .
 なお、ワイヤーソーボビン32およびワイヤー支持部40の進行動作は、予めSiインゴット10に応じて、フレーム動作手段にティーチングにより記憶保持させてもよく、Siインゴット10の規格寸法に応じた動作データテーブルから動作進行を選択して動作データを読み出すように構成してもよい。 The movement of the wire saw bobbin 32 and the wire support 40 may be stored in advance by teaching the frame movement means according to the size of the Si ingot 10. It may be configured to read out the motion data by selecting the progress of the motion.
 以上のようにワイヤーソー部30に加えてワイヤー支持部40を構成されたワイヤーソー装置によれば、棒体41により複数のワイヤー31を同時に同一位置で支持することができる。 According to the wire saw device configured with the wire support section 40 in addition to the wire saw section 30 as described above, a plurality of wires 31 can be simultaneously supported at the same position by the rod body 41 .
 また、棒体41が軸受け42を介して無負荷の状態で回転可能に構成されることで、ワイヤー31の周回速度を維持させながらワイヤー31を確実に支持することができる。加えて、ワイヤー31による棒体41への削り込みも防止することができる。 In addition, since the rod 41 is configured to be rotatable in a no-load state through the bearing 42, the wire 31 can be reliably supported while maintaining the circulating speed of the wire 31. In addition, scraping of the rod 41 by the wire 31 can be prevented.
 さらに、棒体41は、側面全体にSiインゴット10の凹溝11と同一の支持溝が形成され、ワイヤーソーボビン32にも凹溝11と同じボビン溝が形成されている。このため、周回するワイヤー31をボビン溝により確実に凹溝11に位置させることに加えて、支持溝によりワイヤー31が切断の際に横ずれすることがなく確実に支持させることができる。 Further, the rod 41 has support grooves identical to the concave grooves 11 of the Si ingot 10 formed on the entire side surface, and the wire saw bobbin 32 also has bobbin grooves identical to the concave grooves 11 formed therein. Therefore, the wire 31 can be reliably positioned in the recessed groove 11 by the bobbin groove, and the wire 31 can be reliably supported by the support groove without shifting laterally during cutting.
 加えて、ワイヤー支持部40を、ワイヤーソー部30のワイヤー31の進行方向の変位と連動させつつ、Siインゴット10の側面外形に沿って進行させることで、ワイヤーとSiインゴット10との接触部の両端にワイヤー支持部を常に位置させることができる。 In addition, the wire supporting portion 40 is advanced along the side contour of the Si ingot 10 while being interlocked with the displacement of the wire 31 of the wire saw portion 30 in the advancing direction, so that the contact portion between the wire and the Si ingot 10 is reduced. Wire supports can always be positioned at both ends.
 なお、ワイヤー31およびワイヤー支持部40は、最後にスライス用ベース35に沿って進行して、Siインゴット10を切断し切っても、ワイヤー31がスライス用ベースに残ることで、Siインゴット10の切断終了部位の剥がれなどを防止することができる。 Even if the wire 31 and the wire supporting portion 40 finally advance along the slicing base 35 and completely cut the Si ingot 10 , the wire 31 remains on the slicing base, thereby cutting the Si ingot 10 . It is possible to prevent peeling of the end portion.
 これにより、ワイヤー31は、Siインゴット10との接触部の両端がワイヤー支持部40により常に支持されることから、ワイヤー31が接触部において弓なりになるのを防止して、水平に近い状態を維持することができる。 As a result, both ends of the contact portion of the wire 31 with the Si ingot 10 are always supported by the wire support portions 40, so that the wire 31 is prevented from arching at the contact portion and maintained in a nearly horizontal state. can do.
 ひいては、切断時にワイヤーが弓なりになって両端部側に切断応力が偏ることを防止して、うねりや筋のない切断面を実現することができる。 As a result, it is possible to prevent the wire from bowing during cutting and the cutting stress to be biased toward both ends, thereby realizing a cut surface without undulations and streaks.
 このように、複数の凹溝11に正確に配置された複数のワイヤー31で精度よくSiインゴット10を1回でスライス状に精度よく切断することができ、改めて面取り工程を行う必要もない。 In this way, the Si ingot 10 can be precisely cut into slices in one operation by using the plurality of wires 31 that are accurately arranged in the plurality of grooves 11, and there is no need to perform another chamfering process.
 次に、図5に示すように、STEP120の第1面加工工程では、切断面のいずれか一方の一面110を支持面として、残る他面120にメカニカルポリッシュ(高精度研削加工)を施す。 Next, as shown in FIG. 5, in the first surface processing step of STEP 120, one surface 110 of one of the cut surfaces is used as a support surface, and the remaining other surface 120 is subjected to mechanical polishing (high-precision grinding).
 具体的には、第1面加工工程では、メカニカルポリッシュを施すメカニカルポリッシュ装置50(超高合成高精度研削加工装置)により、研削加工を行う。 Specifically, in the first surface machining process, grinding is performed by a mechanical polishing device 50 (ultra-high synthetic high-precision grinding device) that performs mechanical polishing.
 メカニカルポリッシュ装置50は、スピンドル51と、定盤であるプラテン52上のダイアモンド砥石53とを備える。 The mechanical polisher 50 includes a spindle 51 and a diamond grindstone 53 on a platen 52 which is a surface plate.
 まず、ここで一面110を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させて支持させ、他面120を下面として、ダイアモンド砥石53により他面120を研削加工する。 First, with one surface 110 as the upper surface, it is attracted and supported by the vacuum porous chuck 54, which is the suction plate of the spindle 51, and the other surface 120 is ground with the diamond grindstone 53 with the other surface 120 as the lower surface.
 このとき、スピンドル51およびダイアモンド砥石53は、図示しない駆動装置により回転駆動されると共に、図示しないコンプレッサーなどによりスピンドル51がダイアモンド砥石53に押圧されることにより残る他面120に研削加工が施される。 At this time, the spindle 51 and the diamond grindstone 53 are rotationally driven by a drive device (not shown), and the spindle 51 is pressed against the diamond grindstone 53 by a compressor (not shown) or the like, whereby the remaining other surface 120 is ground. .
 なお、研削加工後には、ドレッサーなどによりダイアモンド砥石53へのドレッシングが施されてもよい。 After grinding, the diamond grindstone 53 may be dressed with a dresser or the like.
 また、メカニカルポリッシュ装置50は、必要に応じて、加工時に複数の機能水を使用可能なように機能水供給配管を有してもよい。 In addition, the mechanical polisher 50 may have functional water supply pipes so that a plurality of functional waters can be used during processing, if necessary.
 次に、STEP130の第2面加工工程では、第1面加工工程により、高精度研削加工が施された他面120を上面として、一面110に対して、第1面加工工程と同様の高精度研削加工を施す。 Next, in the second surface machining step of STEP 130, the other surface 120, which has been subjected to high-precision grinding in the first surface machining step, is used as the upper surface, and the one surface 110 is subjected to high-precision grinding similar to the first surface machining step. Grinding is applied.
 すなわち、他面120を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させ、一面110を下面として、ダイアモンド砥石53により一面110を研削加工する。 That is, with the other surface 120 as the upper surface, it is attracted to the vacuum porous chuck 54 that is the suction plate of the spindle 51, and the one surface 110 is ground with the diamond grindstone 53 with the one surface 110 as the lower surface.
 この場合にも、必要に応じて、ドレッサーなどをダイアモンド砥石53に押圧することによりドレッシングが施されてもよい。 Also in this case, dressing may be applied by pressing a dresser or the like against the diamond grindstone 53 as necessary.
 かかるSTEP120の第1面加工工程およびSTEP130の第2面加工工程のメカニカルポリッシュ(高精度研削加工)処理によれば、切断工程により得られた高い平坦性を有する切断面のいずれか一方を支持面(吸着面)として、残りの面に順次、メカニカルポリッシュ(高精度研削加工)を施していくことで、いわゆる転写を防止して高品質なSiウェハを得ることができると共に、従来の遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 According to the mechanical polishing (high-precision grinding) processing in the first surface processing step of STEP 120 and the second surface processing step of STEP 130, either one of the cut surfaces having high flatness obtained by the cutting step can be used as a support surface. By sequentially applying mechanical polishing (high-precision grinding) to the remaining surfaces as the (adsorption surface), it is possible to prevent so-called transfer and obtain a high-quality Si wafer, as well as conventional free grinding stone processing. In other words, it is possible to greatly simplify the complicated manufacturing process such as multiple times of primary to quaternary lapping.
 より具体的には、砥石を替えて粗研削や複数回の仕上げ研削を行う必要がなく、例えば、♯30000以上の砥石により直接1回の研削加工により仕上げまで行うことができるため、簡易であるばかりでなく、Siウェハ100から利用できる真性半導体層を大きく確保するすることができるという優位性がある。 More specifically, there is no need to perform rough grinding or finish grinding multiple times by changing the grindstone. In addition, there is an advantage that a large intrinsic semiconductor layer that can be used from the Si wafer 100 can be secured.
 なお、STEP120の第1面加工工程およびSTEP130の第2面加工工程の高精度研削加工処理において、Siウェハ100のサイズは、現在8インチまでであり、それぞれの口径のウェハはヘッドの面積に応じて、セットされ、(12インチまでが可能)高精度研削加工処理が行われる。 In the high-precision grinding process of the first surface processing step of STEP 120 and the second surface processing step of STEP 130, the size of the Si wafer 100 is currently up to 8 inches, and the diameter of each wafer depends on the area of the head. It is then set (possibly up to 12 inches) and subjected to the precision grinding process.
 以上が本実施形態のSiウェハの製造方法の詳細である。以上、詳しく説明したように、かかる本実施形態のSiウェハの製造方法によれば、高品質なSiウェハを簡易かつ確実に製造することができる。 The above is the details of the Si wafer manufacturing method of the present embodiment. As described above in detail, according to the Si wafer manufacturing method of the present embodiment, a high-quality Si wafer can be manufactured easily and reliably.
 次に、図6および図7を参照して、STEP110の切断工程の他の態様について説明する。 Next, another aspect of the cutting step in STEP 110 will be described with reference to FIGS. 6 and 7. FIG.
 具体的に、ワイヤー支持部40´は、一対の棒体41´,41´と、アーム42´と、ガイド受け部43´と、挟持プレート44´と、ガイド部45´と、ロータリテーブル46´とを備える。 Specifically, the wire support portion 40' includes a pair of rods 41', 41', an arm 42', a guide receiving portion 43', a holding plate 44', a guide portion 45', and a rotary table 46'. and
 棒体41´は、Siインゴット10の軸線方向と平行に配置された円筒形状の棒体であって、棒体41´の両端は、アーム42´により軸着されている。なお、棒体41´とアーム42´との間には、ボールベアリングなど軸受けを設けることで、棒体41´が無負荷状態で回転自在に構成されることが好ましい。 The rod 41' is a cylindrical rod arranged parallel to the axial direction of the Si ingot 10, and both ends of the rod 41' are pivoted by arms 42'. It is preferable that a bearing such as a ball bearing is provided between the rod 41' and the arm 42' so that the rod 41' can rotate freely in an unloaded state.
 また、棒体41´の両端には、円盤状のガイド受け部43´が設けられ、ガイド受け部43´を棒体41´が貫通するように構成される。ここでも、ガイド受け部43´と棒体41´との間には、ボールベアリングなどの軸受けを設けることで、棒体41´が無負荷状態で回転自在に構成されることが好ましい。 Disc-shaped guide receiving portions 43' are provided at both ends of the rod 41', and the rod 41' is configured to pass through the guide receiving portions 43'. Here, too, it is preferable that a bearing such as a ball bearing is provided between the guide receiving portion 43' and the rod 41' so that the rod 41' is rotatable in an unloaded state.
 挟持プレート44´は、Siインゴット10の両端面に対応した円形のプレートであって該両端面を挟持する。ガイド部45´は、挟持プレート44´の外周に形成され、棒体41´のガイド受け部42´が当接することにより、ガイド受け部42´を介して棒体41´が挟持プレート44´の外周に沿って進行することを補助する。 The clamping plate 44' is a circular plate corresponding to both end faces of the Si ingot 10 and clamps the both end faces. The guide portion 45' is formed on the outer periphery of the clamping plate 44', and when the guide receiving portion 42' of the rod 41' abuts thereon, the rod 41' is moved to the clamping plate 44' via the guide receiving portion 42'. Helps progress along the perimeter.
 ここで、ガイド部45´およびガイド受け部43´(本発明の進行制御部に相当する)には、周方向の進行を確実とするように、一方に溝部、他方に凸部を設けることが好ましい。本実施形態では、ガイド部45´(挟持プレート44´の側面)に溝部を設けると共に、ガイド受け部43´に外周を走る凸部を設けている。 Here, the guide portion 45' and the guide receiving portion 43' (corresponding to the advance control portion of the present invention) may be provided with grooves on one side and projections on the other side so as to ensure the movement in the circumferential direction. preferable. In this embodiment, a groove is provided in the guide portion 45' (the side surface of the clamping plate 44'), and a projection extending along the outer periphery is provided in the guide receiving portion 43'.
 ロータリテーブル46´(本発明の進行制御部に相当する)は、回転トルクを調整可能な回転制御機器であって、アーム42´の回転を制御する。すなわち、棒体41´がガイド部45´に沿って円形に進行する際に、その回転中心軸がロータリテーブル46´の制御軸46A´に連結されている。 The rotary table 46' (corresponding to the advance control section of the present invention) is a rotation control device capable of adjusting rotational torque, and controls the rotation of the arm 42'. That is, when the rod 41' advances circularly along the guide portion 45', the central axis of rotation is connected to the control shaft 46A' of the rotary table 46'.
 本実施形態のロータリテーブル46´では、2つのダクト46B´,46B´の空気圧(空気の流出入)により回転トルクが調整可能となっている。 In the rotary table 46' of this embodiment, the rotational torque can be adjusted by the air pressure (inflow and outflow of air) of the two ducts 46B', 46B'.
 また、ロータリテーブル46´は、フレーム47´を貫通するネジ46C´によりねじ止めされてフレームと一体となっている(図7参照)。 Further, the rotary table 46' is screwed by a screw 46C' passing through the frame 47' and integrated with the frame (see FIG. 7).
 なお、本実施形態では、一対の棒体41´,41´は、ワイヤー31の上側に設けられ、ワイヤーソーボビン32を介して周回する複数のワイヤー31によりSiインゴット10を切断する際に、ワイヤー31のSiインゴット10との接触部の両端を上側から当接支持し、ワイヤー31がSiインゴット10に巻き付いて、ワイヤー31が接触部において弓なりになるのを防止して、水平に近い状態を維持することができる。 In the present embodiment, the pair of rods 41 ′, 41 ′ are provided above the wire 31 , and when the Si ingot 10 is cut by the plurality of wires 31 circulating through the wire saw bobbin 32 , the wire Both ends of the contact portion of 31 with the Si ingot 10 are abutted and supported from above to prevent the wire 31 from winding around the Si ingot 10 and bowing at the contact portion to maintain a nearly horizontal state. can do.
 このとき、ロータリテーブル46´は、ワイヤーソー装置30の進行(図面上方への進行(切断スピード))に対応させて、2つのダクト46B´,46B´を空気圧を調整して、制御軸46A´を回転させ、アーム42´を介して棒体41´を挟持プレート44´の外周回りに進行させる。 At this time, the rotary table 46' adjusts the air pressure of the two ducts 46B', 46B' in accordance with the advance of the wire saw device 30 (upward advance in the drawing (cutting speed)), thereby controlling the control shaft 46A'. is rotated to advance the rod 41' around the circumference of the clamping plate 44' via the arm 42'.
 これにより、棒体41´の位置をワイヤー31に連動させて正確に制御することができ、ワイヤー31に対して一定の負荷で棒体41´を押し付けることができる。 Thereby, the position of the rod 41' can be interlocked with the wire 31 and accurately controlled, and the rod 41' can be pressed against the wire 31 with a constant load.
 なお、ロータリテーブル46´は、(積極的に制御軸46A´を回転させる代わりに)ワイヤー31からの一定の負荷に応じて(負荷規定値を超える場合に)棒体を進行させるようにしてもよい。これにより、ワイヤーに一定の負荷で棒体を押し付けることができ、ワイヤーと棒体との進行とを連動させてもよい。 Incidentally, the rotary table 46' may advance the rod according to a certain load from the wire 31 (in the case of exceeding the specified load value) (instead of actively rotating the control shaft 46A'). good. Thereby, the rod can be pressed against the wire with a constant load, and the movement of the wire and the rod may be interlocked.
 なお、一対の棒体41´,41´は、セッティングワイヤー31の上側に設ける代わりに、ワイヤー31の下側に配して、ワイヤー31を棒体41´により下支えして、ワイヤー31の下側へのたるみを抑制するようにしてもよい。 Note that the pair of rods 41', 41' are arranged below the wire 31 instead of being provided above the setting wire 31 so that the wire 31 is supported by the rod 41', thereby You may make it suppress the slack to.
 さらに、本実施形態の一対の棒体41´,41´(ワイヤー31の上側配置)に加えて、アーム42´を延伸させて、延伸させたアームの先端にもう一組の棒体(ワイヤー31の下側配置)を設けて、ワイヤー31のSiインゴット10との接触部の両端を上側および下側から当接支持させてもよい。 Furthermore, in addition to the pair of rods 41', 41' (arranged above the wire 31) of the present embodiment, the arm 42' is extended, and another set of rods (wire 31) is attached to the tip of the extended arm. ) may be provided, and both ends of the contact portion of the wire 31 with the Si ingot 10 may be abutted and supported from above and below.
 また、本実施形態において、棒体41´の側面全体に溝加工ドラム砥石20の複数の凸部21に対応した凹型の支持溝が形成されることが好ましい。 Further, in the present embodiment, it is preferable that concave support grooves corresponding to the plurality of convex portions 21 of the grooving drum grindstone 20 are formed on the entire side surface of the rod 41'.
 以上のように構成されたワイヤー支持部40によれば、図7に示すように、Siインゴット10の側面外形に沿って進行する。具体的に、図7では、時系列順に左から、切断開始時、切断初期、切断終了を示している。 According to the wire support part 40 configured as described above, as shown in FIG. Specifically, FIG. 7 shows, from the left in chronological order, the start of cutting, the beginning of cutting, and the end of cutting.
 なお、以上説明したこれらの実施形態のSiウェハの製造方法において、上述の一連の処理の後、必要に応じて、化学機械研磨(CMP)工程やウェハ洗浄工程が行われてもよい。 It should be noted that in the Si wafer manufacturing methods of these embodiments described above, a chemical mechanical polishing (CMP) process and a wafer cleaning process may be performed as necessary after the series of processes described above.
 また、本実施形態は、半導体結晶ウェハの製造方法として、SiインゴットからSiウェハを製造する場合について説明したが、半導体結晶は、Siに限定されるものはなく、半導体結晶は、例えば、シリコンカーバイド(SiC)、ガリヒソ、インジュウムリン、その他の化合物半導体であってもよい。 In addition, in the present embodiment, as a method for manufacturing a semiconductor crystal wafer, a case of manufacturing a Si wafer from a Si ingot has been described, but the semiconductor crystal is not limited to Si, and the semiconductor crystal may be, for example, silicon carbide. (SiC), gallium hexagonal, indium phosphide, and other compound semiconductors.
1…Si結晶(半導体結晶)、10…Siインゴット(半導体結晶インゴット)、11…凹溝、20…溝加工ドラム砥石、21…凸部、30…ワイヤーソー部(ワイヤーソー装置)、31…ワイヤー、32…ワイヤーソーボビン、35…スライス用ベース、40,40´…ワイヤー支持部(ワイヤーソー装置)、41,41´…棒体、42…軸受け、42´…アーム、43´…ガイド受け部(凸部)、44´…挟持プレート、45´…ガイド部(溝部)、46´…ロータリテーブル、46A´…制御軸、46B´…ダクト、46C´…ネジ、47´…フレーム、50…メカニカルポリッシュ装置(超高合成高精度研削加工装置)、51…スピンドル、52…プラテン、53…ダイアモンド砥石、54…真空ポーラスチャック(吸着プレート)、100…Siウェハ(半導体結晶ウェハ)、110…一面、120…他面。 DESCRIPTION OF SYMBOLS 1... Si crystal (semiconductor crystal), 10... Si ingot (semiconductor crystal ingot), 11... Groove, 20... Grooving drum grindstone, 21... Convex part, 30... Wire saw part (wire saw device), 31... Wire , 32... Wire saw bobbin, 35... Base for slicing, 40, 40'... Wire support part (wire saw device), 41, 41'... Rod body, 42... Bearing, 42'... Arm, 43'... Guide receiving part (convex part), 44'... clamping plate, 45'... guide part (groove part), 46'... rotary table, 46A'... control shaft, 46B'... duct, 46C'... screw, 47'... frame, 50... mechanical Polishing device (ultra-high synthetic high-precision grinding processing device), 51... Spindle, 52... Platen, 53... Diamond whetstone, 54... Vacuum porous chuck (suction plate), 100... Si wafer (semiconductor crystal wafer), 110... One side, 120... The other side.

Claims (12)

  1.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
    を備え、
     前記切断工程は、前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部により支持され、
     前記ワイヤー支持部は、前記半導体結晶インゴットの軸線方向と平行に配置された、円筒形状の一対の棒体であって、該一対の棒体は、前記複数の凹溝を形成する溝加工ドラム砥石の複数の凸部に対応した支持溝が側面全体に形成されていることを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
    with
    In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot;
    The wire support portion is a pair of cylindrical rods arranged parallel to the axial direction of the semiconductor crystal ingot, and the pair of rods is a grooving drum grindstone for forming the plurality of grooves. 1. A method of manufacturing a semiconductor crystal wafer, wherein support grooves corresponding to the plurality of projections of are formed on the entire side surface.
  2.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
    を備え、
     前記切断工程は、前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部により支持され、
     前記ワイヤー支持部は、前記半導体結晶インゴットの側面外形に沿って進行することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
    with
    In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot;
    A method of manufacturing a semiconductor crystal wafer, wherein the wire supporting portion advances along a side profile of the semiconductor crystal ingot.
  3.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
    を備え、
     前記切断工程は、前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部により支持され、
     前記ワイヤー支持部は、前記ワイヤーの進行方向の変位と連動して進行することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
    with
    In the cutting step, when cutting the semiconductor crystal ingot into slices by making the plurality of wires arranged in the plurality of concave grooves formed in the groove processing step proceed while circulating, the wires and the semiconductor are cut into slices. supported by wire support portions that support the wire in the traveling direction at both ends of the contact portion with the crystal ingot;
    A method of manufacturing a semiconductor crystal wafer, wherein the wire supporting portion advances in conjunction with displacement of the wire in the advancing direction.
  4.  筒状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る溝加工工程において、
     前記複数のワイヤーを周回させながら進行させることにより前記半導体結晶インゴットをスライス状に切断する際に、該ワイヤーと該半導体結晶インゴットとの接触部の両端において該ワイヤーを支持するワイヤー支持部により該ワイヤーが支持され、
     前記ワイヤー支持部は、前記半導体結晶インゴットの両端面に対応した形状のプレートであって該両端面を挟持する一対の挟持プレートと、該挟持プレートの外周に形成されたガイド部と、該ガイド部に沿って進行する棒体とにより、該棒体が前記ワイヤーを支持すると共に該半導体結晶インゴットの側面外形に沿って進行することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot that has been ground into a cylindrical shape, comprising:
    In the grooving step for obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires,
    When cutting the semiconductor crystal ingot into slices by advancing the plurality of wires while rotating them, the wires are supported by wire support portions that support the wires at both ends of the contact portion between the wires and the semiconductor crystal ingot. was supported by
    The wire support portion includes a pair of clamping plates which are plates having a shape corresponding to both end faces of the semiconductor crystal ingot and clamp the both end faces, a guide portion formed on the outer circumference of the clamping plate, and the guide portion. and a rod that advances along the edge of the semiconductor crystal ingot, the rod supporting the wire and advancing along the side profile of the semiconductor crystal ingot.
  5.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
     前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部と
    を備え、
     前記ワイヤー支持部は、前記半導体結晶インゴットの軸線方向と平行に配置された、円筒形状の一対の棒体であって、該一対の棒体は、側面全体に前記溝加工ドラム砥石の複数の凸部に対応した支持溝が形成されていることを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
    a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
    a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
    The wire support portion is a pair of cylindrical rods arranged parallel to the axial direction of the semiconductor crystal ingot, and the pair of rods has a plurality of projections of the grooving drum grindstone on the entire side surface. 1. An apparatus for manufacturing a semiconductor crystal wafer, characterized in that support grooves corresponding to the portions are formed.
  6.  請求項5記載の半導体結晶ウェハの製造装置において、
     前記ワイヤー支持部は、軸受けを介して、前記棒体が無負荷状態で回転自在に構成されることを特徴とする半導体結晶ウェハの製造装置。
    In the semiconductor crystal wafer manufacturing apparatus according to claim 5,
    The apparatus for manufacturing a semiconductor crystal wafer, wherein the wire supporting portion is configured such that the rod is rotatable in a non-loaded state through a bearing.
  7.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
     前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部と
    を備え、
     前記ワイヤー支持部は、前記半導体結晶インゴットの側面外形に沿って進行することを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
    a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
    a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
    The apparatus for manufacturing a semiconductor crystal wafer, wherein the wire supporting portion advances along the side profile of the semiconductor crystal ingot.
  8.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
     前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを進行方向に支持するワイヤー支持部と
    を備え、
     前記ワイヤー支持部は、前記ワイヤーソー部の前記ワイヤーの進行方向の変位と連動して進行することを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
    a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
    a wire supporting portion that supports the wire in the traveling direction at both ends of the contact portion between the wire and the semiconductor crystal ingot of the wire saw portion;
    The apparatus for manufacturing a semiconductor crystal wafer, wherein the wire supporting portion advances in conjunction with displacement of the wire of the wire saw portion in the traveling direction of the wire.
  9.  筒状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     前記半導体結晶インゴットに対して、複数のワイヤーを周回させながら進行させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記ワイヤーと前記半導体結晶インゴットとの接触部の両端において該ワイヤーを支持するワイヤー支持部と
    を備え、
     前記ワイヤー支持部は、前記半導体結晶インゴットの両端面に対応した形状のプレートであって該両端面を挟持する一対の挟持プレートと、該挟持プレートの外周に形成されたガイド部と、該ガイド部に沿って進行する棒体とにより、該棒体が前記ワイヤーを支持すると共に該半導体結晶インゴットの側面外形に沿って進行することを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a cylindrically ground semiconductor crystal ingot,
    a wire saw section for cutting the semiconductor crystal ingot by advancing a plurality of wires while rotating the semiconductor crystal ingot;
    a wire supporting portion that supports the wire at both ends of a contact portion between the wire of the wire saw portion and the semiconductor crystal ingot;
    The wire support portion includes a pair of clamping plates which are plates having a shape corresponding to both end faces of the semiconductor crystal ingot and clamp the both end faces, a guide portion formed on the outer circumference of the clamping plate, and the guide portion. an apparatus for manufacturing a semiconductor crystal wafer, wherein the rod supports the wire and advances along the side contour of the semiconductor crystal ingot.
  10.  請求項9記載の半導体結晶ウェハの製造装置において、
     前記ワイヤー支持部は、前記ワイヤーソー部の前記ワイヤーの進行と連動して前記棒体を進行させる進行制御部を有することを特徴とする半導体結晶ウェハの製造装置。
    In the semiconductor crystal wafer manufacturing apparatus according to claim 9,
    The apparatus for manufacturing a semiconductor crystal wafer, wherein the wire support section has a progress control section for advancing the rod in conjunction with the advancement of the wire of the wire saw section.
  11.  請求項10記載の半導体結晶ウェハの製造装置において、
     前記半導体結晶インゴットは、円筒形状に研削加工され、
     前記ワイヤー支持部の前記挟持プレートは、円形プレートであって、
     前記ワイヤー支持部の前記進行制御部が、前記棒体が前記ガイド部に沿って円形に進行する回転中心に設けられ、回転トルクを調整可能なロータリテーブルであることを特徴とする半導体結晶ウェハの製造装置。
    In the semiconductor crystal wafer manufacturing apparatus according to claim 10,
    The semiconductor crystal ingot is ground into a cylindrical shape,
    The holding plate of the wire support part is a circular plate,
    The progress control section of the wire support section is a rotary table that is provided at a center of rotation where the rod advances circularly along the guide section and that is adjustable in rotational torque. Manufacturing equipment.
  12.  請求項9乃至11のうちいずれか1項記載の半導体結晶ウェハの製造装置において、
     前記ワイヤー支持部の前記棒体は、前記ワイヤーソー部の前記ワイヤーの上側と下側とのいずれか一方または両方に設けられることを特徴とする半導体結晶ウェハの製造装置。
    The semiconductor crystal wafer manufacturing apparatus according to any one of claims 9 to 11,
    The apparatus for manufacturing a semiconductor crystal wafer, wherein the bar of the wire support part is provided on one or both of the upper side and the lower side of the wire of the wire saw part.
PCT/JP2022/028053 2021-12-23 2022-07-19 Method and apparatus for producing semiconductor crystal wafer WO2023119703A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021209574A JP7100864B1 (en) 2021-12-23 2021-12-23 Manufacturing method and equipment for semiconductor crystal wafers
JP2021-209574 2021-12-23
JP2022067973A JP7104909B1 (en) 2022-04-18 2022-04-18 Semiconductor crystal wafer manufacturing method and manufacturing apparatus
JP2022-067973 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023119703A1 true WO2023119703A1 (en) 2023-06-29

Family

ID=86692398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028053 WO2023119703A1 (en) 2021-12-23 2022-07-19 Method and apparatus for producing semiconductor crystal wafer

Country Status (2)

Country Link
TW (1) TWI795330B (en)
WO (1) WO2023119703A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548930A (en) * 1978-10-02 1980-04-08 Nippon Telegr & Teleph Corp <Ntt> Automatic wafer cutting method
JP2000153517A (en) * 1998-11-20 2000-06-06 Tokyo Seimitsu Co Ltd Wire saw
JP2002307283A (en) * 2001-04-19 2002-10-23 Shin Etsu Handotai Co Ltd Wire saw
JP2006305685A (en) * 2005-04-28 2006-11-09 Komatsu Electronic Metals Co Ltd Wire saw device, guide bar for wire saw device and slurry supplying device for wire saw device
JP2010099808A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Fine Technology Co Ltd Wire saw device
JP2011526215A (en) * 2008-06-30 2011-10-06 ショット ソーラー アーゲー Wire saw cutting equipment
JP2012250328A (en) * 2011-06-03 2012-12-20 Sharp Corp Wire saw device, workpiece cutting method, and manufacturing method for wafer
JP2014097542A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Apparatus and method for wire electric discharge machining, method for manufacturing thin plate and method for manufacturing semiconductor wafer
JP2016074068A (en) * 2014-10-08 2016-05-12 株式会社ディスコ Slice method
JP2020053610A (en) * 2018-09-28 2020-04-02 住友金属鉱山株式会社 Wafer manufacturing method and wafer holding jig

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290358A (en) * 1996-04-25 1997-11-11 Komatsu Electron Metals Co Ltd Manufacture of semiconductor wafer and chamfering work device for semiconductor ingot

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548930A (en) * 1978-10-02 1980-04-08 Nippon Telegr & Teleph Corp <Ntt> Automatic wafer cutting method
JP2000153517A (en) * 1998-11-20 2000-06-06 Tokyo Seimitsu Co Ltd Wire saw
JP2002307283A (en) * 2001-04-19 2002-10-23 Shin Etsu Handotai Co Ltd Wire saw
JP2006305685A (en) * 2005-04-28 2006-11-09 Komatsu Electronic Metals Co Ltd Wire saw device, guide bar for wire saw device and slurry supplying device for wire saw device
JP2011526215A (en) * 2008-06-30 2011-10-06 ショット ソーラー アーゲー Wire saw cutting equipment
JP2010099808A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Fine Technology Co Ltd Wire saw device
JP2012250328A (en) * 2011-06-03 2012-12-20 Sharp Corp Wire saw device, workpiece cutting method, and manufacturing method for wafer
JP2014097542A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Apparatus and method for wire electric discharge machining, method for manufacturing thin plate and method for manufacturing semiconductor wafer
JP2016074068A (en) * 2014-10-08 2016-05-12 株式会社ディスコ Slice method
JP2020053610A (en) * 2018-09-28 2020-04-02 住友金属鉱山株式会社 Wafer manufacturing method and wafer holding jig

Also Published As

Publication number Publication date
TW202325925A (en) 2023-07-01
TWI795330B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US4054010A (en) Apparatus for grinding edges of planar workpieces
US20060258268A1 (en) Manufacturing method for semiconductor wafers, slicing method for slicing work and wire saw used for the same
WO2023112345A1 (en) Semiconductor crystal wafer manufacturing device and manufacturing method
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
JP7481518B2 (en) Truing method and chamfering device
JP2010214550A (en) Chamfering device of silicon ingot, and chamfering method of prismatic silicon ingot using the same
CN108262678B (en) Silicon wafer grinding device and grinding method thereof
JP2016203342A (en) Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer
JP3924641B2 (en) Manufacturing method of semiconductor wafer
WO2005070619A1 (en) Method of grinding wafer and wafer
US6537139B2 (en) Apparatus and method for ELID grinding a large-diameter workpiece to produce a mirror surface finish
WO2023119703A1 (en) Method and apparatus for producing semiconductor crystal wafer
JP7104909B1 (en) Semiconductor crystal wafer manufacturing method and manufacturing apparatus
JP7072180B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JPH08197400A (en) Chamfered part polishing method for semiconductor wafer
JP7100864B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7007625B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7041931B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
WO2023053476A1 (en) Method and apparatus for producing semiconductor crystal wafer
JP7041932B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7243996B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JP7260889B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JPH07100737A (en) Method for polishing semiconductor wafer
JP7398852B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP7158701B2 (en) chamfering grinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910433

Country of ref document: EP

Kind code of ref document: A1