WO2023115346A1 - 显示装置、显示面板及其制造方法 - Google Patents

显示装置、显示面板及其制造方法 Download PDF

Info

Publication number
WO2023115346A1
WO2023115346A1 PCT/CN2021/140152 CN2021140152W WO2023115346A1 WO 2023115346 A1 WO2023115346 A1 WO 2023115346A1 CN 2021140152 W CN2021140152 W CN 2021140152W WO 2023115346 A1 WO2023115346 A1 WO 2023115346A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
electrode
display panel
driving backplane
Prior art date
Application number
PCT/CN2021/140152
Other languages
English (en)
French (fr)
Inventor
王云浩
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180004076.XA priority Critical patent/CN116649010A/zh
Priority to PCT/CN2021/140152 priority patent/WO2023115346A1/zh
Publication of WO2023115346A1 publication Critical patent/WO2023115346A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device, a display panel, and a method for manufacturing the display panel.
  • display panels have become an indispensable part of electronic devices such as mobile phones and televisions.
  • the organic electroluminescent display panel has been widely used due to its advantages such as wide color gamut, low power consumption, and fast response speed.
  • the brightness of the organic electroluminescence display panel still needs to be improved.
  • the disclosure provides a display device, a display panel, and a method for manufacturing the display panel.
  • a display panel comprising:
  • a light-emitting layer disposed on one side of the driving backplane, and including a plurality of light-emitting devices
  • the light-gathering layer is arranged on the side of the light-emitting layer away from the driving backplane, and has a plurality of microlenses; one of the light-emitting devices and at least one of the microlenses are arranged in a direction perpendicular to the driving backplane Corresponding settings;
  • the light filter layer covers the light concentrating layer and includes a plurality of light filter parts, one of the light filter parts and one of the light emitting devices are arranged correspondingly in the direction perpendicular to the driving backplane, and the light filter partially covering at least one of said microlenses;
  • each filter part is greater than the refractive index of the light-gathering layer, and the micro-lens can converge at least part of the light emitted by its corresponding light-emitting device.
  • the display panel further includes:
  • the touch layer is arranged on the side of the light-emitting layer away from the driving backplane;
  • the light-absorbing layer is arranged on the surface of the touch-control layer away from the driving backplane; the light-gathering layer covers the light-absorbing layer and the touch-control layer; the orthographic projection of the light-absorbing layer on the driving backplane Separate the orthographic projections of each of the filter parts on the driving backplane.
  • the touch layer includes:
  • connection layer comprising a plurality of connection units
  • the electrode layer is arranged on the surface of the isolation layer away from the driving backplane, including a plurality of first touch electrodes extending along the row direction and distributed along the column direction at intervals, and extending along the column direction and along the row
  • a plurality of electrode unit groups distributed in the direction, each of the electrode unit groups includes a plurality of electrode units distributed along the column direction; two adjacent electrode units in the same electrode unit group are connected by a unit connection; the same electrode unit group and its connected connection unit form a second touch electrode;
  • the light absorbing layer covers at least a partial area of the electrode layer.
  • the display panel further includes:
  • connection layer including a plurality of connection units; the light concentrating layer covers the connection layer;
  • the electrode layer is arranged on the surface of the light concentrating layer away from the driving backplane, including a plurality of first touch electrodes extending along the row direction and distributed along the column direction at intervals, and extending along the column direction and along the A plurality of electrode unit groups distributed in the row direction, each of the electrode unit groups includes a plurality of electrode units distributed in the column direction; two adjacent electrode units in the same electrode unit group pass through one of the electrode units The connecting unit is connected; the same electrode unit group and the connected connecting unit form the second touch electrode;
  • the light absorbing layer covers at least a part of the electrode layer and separates each of the light filters.
  • the display panel further includes:
  • connection layer comprising a plurality of connection units
  • the electrode layer is arranged on the surface of the isolation layer away from the driving backplane, and includes a plurality of first touch electrodes extending along the row direction and distributed along the column direction at intervals, and extending along the column direction and along the A plurality of electrode unit groups distributed in the row direction; each of the electrode unit groups includes a plurality of electrode units distributed in the column direction; two adjacent electrode units in the same electrode unit group pass through one of the electrode units The connecting unit is connected; the same electrode unit group and the connected connecting unit form the second touch electrode;
  • the light concentrating layer covers the electrode layer; the orthographic projection of the electrode layer on the driving backplane separates the orthographic projections of each of the filters on the driving backplane, and the electrode layer is light-absorbing conductive structure.
  • the display panel further includes:
  • connection layer including a plurality of connection units; the light concentrating layer covers the connection layer;
  • the electrode layer is arranged on the surface of the light concentrating layer away from the driving backplane, and includes a plurality of first touch electrodes extending along the row direction and distributed along the column direction at intervals, and extending along the column direction and along the A plurality of electrode unit groups distributed along the row direction; each electrode unit group includes a plurality of electrode units distributed along the column direction; two adjacent electrode units in the same electrode unit group pass through a The connecting unit is connected; the same electrode unit group and the connecting unit connected thereto form a second touch electrode;
  • the electrode layer separates each of the filter parts, and the electrode layer is a light-absorbing conductive structure.
  • the electrode layer is a mesh structure with a plurality of mesh holes, each mesh hole is surrounded by a plurality of sections of electrode wires, and adjacent mesh holes share at least one section. the electrode wire;
  • One filter part and one mesh hole are arranged correspondingly in a direction perpendicular to the driving backplane; the width of the electrode line is not less than the distance between two adjacent filter parts.
  • the electrode layer includes a first conductive layer, a second conductive layer and a light-absorbing material layer, and the second conductive layer covers the part of the first conductive layer away from the back plate. On the surface, at least a partial area of the light-absorbing material layer covers the surface of the second conductive layer facing away from the driving backplane.
  • the light-absorbing material layer covers sidewalls of the first conductive layer and the second conductive layer.
  • the material of at least one of the light-absorbing material layer and the first conductive layer is a light-absorbing conductive material.
  • the light-absorbing conductive material layer includes molybdenum dioxide.
  • the material of the second conductive layer is aluminum.
  • the filter part includes a substrate and scattering particles dispersed in the substrate.
  • the material of the scattering particles includes zirconia.
  • the light-emitting layer includes a plurality of light-emitting units distributed in arrays, and each light-emitting unit includes at least two light-emitting devices with different light-emitting colors; The color is the same as the luminous color of its corresponding light emitting device.
  • the light concentrating layer has a plurality of lenses within a range covered by a filter part.
  • the display panel further includes:
  • connection layer is disposed on a side of the encapsulation layer away from the driving backplane.
  • the thickness of the electrode layer is not less than 0.1 ⁇ m and not more than 0.6 ⁇ m.
  • the thickness of the filter layer is not less than 1.0 ⁇ m and not greater than 6.0 ⁇ m.
  • the thickness of the light absorbing layer is not less than 0.5 ⁇ m and not more than 2.0 ⁇ m.
  • the thickness of the light concentrating layer is not less than 0.5 ⁇ m and not more than 5.0 ⁇ m.
  • a method of manufacturing a display panel including:
  • a light emitting layer including a plurality of light emitting devices on one side of the driving backplane
  • a light-concentrating layer with a plurality of microlenses is formed on the side of the light-emitting layer away from the driving backplane; one of the light-emitting devices and at least one of the microlenses are correspondingly arranged in a direction perpendicular to the driving backplane , and the microlens is used to converge at least part of the light emitted by the corresponding light emitting device;
  • the filter layer includes a plurality of filter parts, one of the filter parts and one of the light-emitting devices are arranged correspondingly in a direction perpendicular to the driving backplane, And the filter part covers at least one of the lenses; the refractive index of the filter layer is greater than the refractive index of the light collecting layer.
  • a display device including the display panel described in any one of the above.
  • FIG. 1 is a schematic diagram of an embodiment of a display panel of the present disclosure.
  • FIG. 2 is a schematic diagram of an electrode layer in an embodiment of a display panel of the present disclosure.
  • FIG. 3 is a schematic diagram of an optical path of a light extraction structure in an embodiment of a display panel of the present disclosure.
  • FIG. 4 is a schematic diagram of Embodiment 1 of the display panel of the present disclosure.
  • FIG. 5 is a schematic diagram of Embodiment 2 of the display panel of the present disclosure.
  • FIG. 6 is a schematic diagram of Embodiment 3 of the display panel of the present disclosure.
  • FIG. 7 is a schematic diagram of Embodiment 4 of the display panel of the present disclosure.
  • FIG. 8 is a schematic diagram of an electrode layer, a filter part and a microlens in Embodiments 1 and 2 of the display panel of the present disclosure.
  • FIG. 9 is a schematic diagram of electrode layers, filter parts and microlenses in Embodiments 3 and 4 of the display panel of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the row direction and column direction herein refer to two mutually intersecting directions.
  • the row direction may be the horizontal direction in the drawing
  • the column direction may be the longitudinal direction in the drawing, and the two are perpendicular to each other.
  • this should not be regarded as a limitation on the row direction and the column direction.
  • the row direction does not necessarily refer to the horizontal direction
  • the column direction does not necessarily refer to the vertical direction.
  • the display panel may include a driving backplane BP, a light emitting layer OL, a light concentrating layer LE, and a filter layer CF, wherein:
  • the light emitting layer OL is disposed on one side of the driving backplane BP, and includes a plurality of light emitting devices LED.
  • the light collecting layer LE is disposed on the side of the light emitting layer OL facing away from the driving backplane BP, and has a plurality of microlenses LEN; a light emitting device LED and at least one microlens LEN are correspondingly arranged in a direction perpendicular to the driving backplane BP.
  • the filter layer CF covers the light concentrating layer LE, and includes a plurality of filter parts CFP, one filter part CFP and one light emitting device LED are arranged correspondingly in the direction perpendicular to the driving backplane BP, and the filter part CFP covers at least one Microlenses (LENs).
  • LENs Microlenses
  • each filter part CFP is greater than that of the light-gathering layer LE, and the microlens LEN can converge at least part of the light emitted by its corresponding light-emitting device LED.
  • the display panel of the embodiment of the present disclosure when the light emitted by the light emitting device LED enters the filter part CFP from its corresponding microlens LEN, it will be refracted. Since the refractive index of the filter part CFP is greater than the refractive index of the light collecting layer LE, The light that enters the filter part CFP from the microlens LEN will be converged, so that the light emitted by the light emitting device LED will be gathered to achieve the effect of concentrating light, so that the brightness of the display panel can be improved.
  • the filter part CFP can only pass through the light of the same color, which can reduce the light entering the display panel from the outside, thereby weakening the reflection of the outside light inside the display panel and improving the display effect.
  • the filter portion CFP can be used to reduce the reflection, it is not necessary to use a thicker circular polarizer to reduce the reflection, thereby reducing the thickness of the film layer on the side of the light-emitting device LED away from the driving backplane BP, which is beneficial. It is beneficial to weaken the limitation of these film layers on the light-emitting range of the light-emitting device LED, thereby avoiding the narrowing of the light-emitting range caused by the light-gathering effect of the microlens LEN. Therefore, the luminance can be improved without reducing the luminous range.
  • the driving backplane BP has a driving circuit for driving the light emitting layer OL to emit light.
  • the driving backplane BP may include a substrate and a driving layer, wherein:
  • the substrate can be a flat plate serving as a load bearing, and its shape can be rectangular or other shapes.
  • the material of the substrate may include transparent hard materials such as glass, or flexible materials such as polyimide (PI).
  • PI polyimide
  • the substrate can be a single-layer or multi-layer structure, which is not specifically limited here.
  • the driving layer can be directly stacked on one side of the substrate; or, in order to avoid the impact of impurities in the substrate on the driving layer, a buffer layer BUF can also be provided between the substrate and the driving layer, and the driving layer can be arranged on the side of the buffer layer BUF away from the surface of the substrate.
  • the driving layer includes at least a driving area and a peripheral area.
  • the peripheral area can be an annular area surrounding the driving area, or two discontinuous areas separated from both sides of the driving area, as long as it is located outside the driving area.
  • the driving layer has a driving circuit for driving the light-emitting device LED to emit light.
  • the driving circuit may include a plurality of pixel circuits and peripheral circuits.
  • the pixel circuits are located in the driving area. Of course, some areas of the pixel circuits may be located in the peripheral area.
  • the number of pixel circuits may be the same as the number of light emitting devices LEDs, and they are connected to each light emitting device LED in a one-to-one correspondence, so as to control each light emitting device LED to emit light independently.
  • the same pixel circuit can also be connected to multiple light emitting devices LEDs, so as to drive the multiple light emitting devices LEDs to emit light.
  • the peripheral circuit is located in the peripheral area, and the peripheral circuit is connected with the pixel circuit, and is used for inputting a driving signal to the pixel circuit, so as to control the light emitting device LED to emit light.
  • the peripheral circuit may include a light emission control circuit, a gate drive circuit, a source drive circuit, a power supply circuit, and the like.
  • the pixel circuit may have a structure such as 7T1C, 7T2C, 6T1C or 6T2C, as long as it can drive the light-emitting device LED to emit light, and there is no special limitation on its structure.
  • nTmC indicates that a pixel circuit includes n transistors (indicated by the letter “T") and m capacitors (indicated by the letter “C”).
  • one pixel circuit can also be connected to multiple light emitting devices LEDs at the same time, and can drive multiple light emitting devices LEDs to emit light at the same time or in time division.
  • the above-mentioned thin film transistors in the driving layer may be top-gate or bottom-gate thin film transistors, and each thin film transistor may include an active layer, a gate, a source and a drain, wherein the gate may be a double-gate structure, or may be With a single gate or other structure, the active layers, gates, and source electrodes and drain electrodes of each thin film transistor are arranged in the same layer, so as to simplify the process.
  • the driving layer may include an active layer, a first gate insulating layer, a gate, a second gate insulating layer, an interlayer dielectric layer, a source-drain layer, and a planar layer, wherein:
  • the active layer is arranged on one side of the substrate, and the first gate insulating layer covers the active layer; the gate is arranged on the surface of the first gate insulating layer away from the substrate, and is directly opposite to the active layer; the second gate insulating layer covers the gate electrode and the first gate insulating layer; the interlayer dielectric layer covers the second gate insulating layer; the source and drain layers are arranged on the surface of the interlayer dielectric layer away from the substrate, and include source and drain, and the source and drain pass through the contact hole Connected to both ends of the active layer; the flat layer covers the source and drain layers and the interlayer dielectric layer.
  • the driving layer may also include other film layers, as long as it can drive the light-emitting device LED to emit light, which will not be described in detail here.
  • the light emitting layer OL can be disposed on the side of the driving backplane BP, for example, the light emitting layer OL is disposed on the surface of the planar layer away from the substrate.
  • the light emitting layer OL may include a plurality of light emitting devices LED distributed in an array, and each light emitting device LED may emit light under the driving of the pixel circuit.
  • the light-emitting device LED is an organic light-emitting diode (OLED), which may include a first electrode ANO, a light-emitting functional layer EL, and a second electrode CAT sequentially stacked in a direction away from the substrate, wherein:
  • OLED organic light-emitting diode
  • the first electrode ANO can be disposed on the surface of the planar layer away from the substrate, and connected to a pixel circuit through a contact hole.
  • the first electrode ANO can be a single-layer or multi-layer structure, and it can be used as an anode of the light emitting device LED.
  • the light-emitting functional layer EL is arranged on the surface of the first electrode ANO away from the substrate, and may include a hole injection layer, a hole transport layer, a composite light-emitting layer OL, an electron layer stacked in sequence along the direction away from the substrate. Transport layer and electron injection layer, in addition, an electron blocking layer may also be provided between the hole transport layer and composite light-emitting layer OL.
  • the second electrode CAT covers the light-emitting functional layer EL and can extend to the peripheral area.
  • the second electrode CAT can be connected to a power signal terminal to receive the second power signal VSS.
  • the first electrode ANO and the second electrode CAT can work together to make the light-emitting device LED emit light, and the specific light-emitting principle of the organic light-emitting diode will not be described in detail here.
  • the material of the second electrode CAT may be magnesium (Mg), silver alloy, or other materials.
  • the light-emitting device LED can also use quantum dot light-emitting diodes (Quantum Dot Light Emitting Diodes, QLED), which can include first electrodes stacked in the direction away from the driving backplane BP, quantum dots
  • QLED Quantum Dot Light Emitting Diodes
  • the light-emitting layer, the second electrode, and the quantum dot light-emitting layer can be made of inorganic materials, which can include a hole transport layer, a quantum dot layer and an electron transport layer stacked in a direction away from the driving backplane BP.
  • the holes provided by the first electrode and the electrons provided by the second electrode can recombine in the quantum dot layer to form excitons, thereby emitting light.
  • the specific principle of the quantum dot light emitting diode will not be described in detail here.
  • the light emitting layer OL may further include a pixel definition layer PDL, which may be arranged with the first electrode ANO on the surface of the driving layer away from the substrate, and provided with a plurality of The openings of the first electrodes ANO are exposed in one-to-one correspondence.
  • the shape of the openings may be polygons such as quadrilaterals, pentagons, and hexagons, or shapes such as circles and ellipses. There is no special limitation on the shape of the openings.
  • the light emitting function layer EL is stacked on the region where the first electrode ANO is located in the opening.
  • the light-emitting functional layers EL of each light-emitting device LED are distributed at intervals independently of each other.
  • the luminescent colors of the different luminescent functional layers EL are different.
  • the second electrode CAT covers each light-emitting functional layer EL at the same time, so that each light-emitting device LED can share the same second electrode CAT.
  • Each light-emitting device LED can be defined by the above-mentioned multiple openings, and the boundary of any light-emitting device LED is the boundary of its corresponding opening.
  • Each light emitting device LED includes a plurality of light emitting device LEDs with different light emitting colors, for example, a first light emitting device LED emitting red light, a second light emitting device LED emitting green light, and a third light emitting device LED emitting blue light.
  • the light-emitting layer OL can be divided into a plurality of light-emitting units, each light-emitting unit is distributed in an array, and each light-emitting unit includes at least two light-emitting devices LED with different light-emitting colors.
  • a light emitting unit may include a first light emitting device, a second light emitting device and a third light emitting device.
  • the color of any filter part CFP is the same as the light emitting color of its corresponding light emitting device LED.
  • the display panel may further include an encapsulation layer TFE, which may cover the surface of the light-emitting layer OL away from the driving backplane BP, and cover all the light-emitting devices LED, so that the light-emitting The layer OL is used for protection, and prevents external water and oxygen from corroding the light-emitting device LED.
  • the boundary edge of the packaging layer TFE extends into the peripheral area, but does not exceed the peripheral area, which can also protect the peripheral circuits in the peripheral area.
  • the encapsulation can be achieved by means of Thin-Film Encapsulation (TFE).
  • TFE Thin-Film Encapsulation
  • the encapsulation layer TFE can include a first inorganic layer, an organic layer and a second inorganic layer, and the first inorganic layer covers the light-emitting layer OL.
  • the organic layer can be arranged on the surface of the first inorganic layer away from the surface of the driving backplane BP, and the boundary of the organic layer is limited to the inner side of the boundary of the first inorganic layer, and the second inorganic layer covers the organic layer and is not covered by the organic layer.
  • the first inorganic layer covered by layers can block the intrusion of water and oxygen through the second inorganic layer, and realize planarization through the flexible organic layer.
  • the display panel may further include a touch layer TSP, which may be disposed on the side of the encapsulation layer TFE away from the driving backplane BP.
  • the touch layer TSP may adopt a self-capacitance or mutual-capacitance touch structure, for example,
  • the TSP of the touch layer can be a plug-in type; or it can also be an On-CELL method such as FMLOC (Flexible Multi-Layer On CELL). There is no special limitation on its specific structure here, as long as it can realize the touch function.
  • the touch layer TSP may include a connection layer BL, an isolation layer SEP and an electrode layer PL, wherein:
  • connection layer BL can be arranged on the side of the packaging layer TFE away from the driving backplane BP, and includes a plurality of connection units BLU, the material of which is metal or other conductive materials, and the connection layer BL can include multiple groups of connection units BLU distributed along the row direction , each group includes a plurality of connection units BLUs distributed along the column defense line at intervals.
  • the isolation layer SEP can cover the connection layer BL, and its material is a transparent insulating material.
  • the isolation layer SEP is provided with a plurality of contact holes, and each contact hole exposes a part of a connection unit BLU, and the same connection unit BLU is at least two along the row. Directional distribution of contact holes is exposed.
  • the electrode layer PL can be disposed on the surface of the isolation layer SEP away from the driving backplane BP, and includes a plurality of first touch electrodes PL1 and a plurality of second touch electrodes PL2, wherein:
  • Each first touch electrode PL1 extends along the row direction X and is distributed along the column direction Y at intervals.
  • a first touch electrode PL1 may include a plurality of electrode units PL1u distributed along the row direction X, two adjacent electrode units PL1u may be connected by a connecting unit, and the shape of the electrode units PL1u may be rhombus or other polygons.
  • Each second touch electrode PL2 may extend along the column direction Y and be distributed along the row direction X, so that each first touch electrode PL1 crosses the second touch electrode PL2 .
  • a second touch electrode PL2 can include an electrode unit group, and an electrode unit group can include a plurality of The electrode unit PL2u, the shape of the electrode unit PL2u may be the same as the shape of the electrode unit PL1u of the first touch electrode PL1.
  • connection unit BLU Two adjacent electrode units PL2u in the same electrode unit group are connected to a connection unit BLU through at least two contact holes, so that the same electrode unit group and the connection unit BLU connected thereto can form the second touch electrode PL2.
  • the orthographic projections of the connection unit of the first touch electrode PL1 and the connection unit BLU of the second touch electrode PL2 cross on the driving backplane BP, and the electrode unit PL1u of the adjacent first touch electrode PL1 and the second touch electrode
  • One of the first touch electrode PL1 and the second touch electrode PL2 can be used as a sensing electrode, and the other can be used as a driving electrode.
  • a driving signal can be applied to the driving electrode, and the sensing signal can be detected through the sensing electrode.
  • the processing of the sensing signal and the driving signal can determine the capacitance change between the first touch electrode PL1 and the touch electrode, thereby determining the touch position.
  • the electrode layer PL can be a mesh structure with multiple mesh holes, one mesh hole is a through hole, each mesh hole is surrounded by a plurality of electrode lines LP, and its shape can be quadrilateral , pentagon or hexagon and other polygonal structures, also can be oval, circular and other shapes. Adjacent meshes share at least one section of electrode line LP.
  • Each of the first touch electrode PL1 and the second touch electrode PL2 is a part of the mesh structure.
  • the gap GAP between the adjacent electrode units PL1u, PL2u may be formed by cutting off part of the electrode line LP.
  • the meshes of the light-emitting device LED and the electrode layer PL can be set correspondingly to the light-emitting device LED, and each light-emitting device LED corresponds to a mesh, and the light emitted by the light-emitting device LED can pass through. through the mesh.
  • one light-emitting device LED may also correspond to multiple meshes, or one mesh may also correspond to multiple light-emitting devices LEDs.
  • the touch layer TSP may further include a buffer layer BUF and an overcoat layer OC, which may cover the encapsulation layer TFE, and the connection layer BL may be disposed on the surface of the buffer layer BUF away from the driving backplane BP.
  • the material of the buffer layer BUF may include insulating materials such as silicon nitride and silicon oxide, so as to prevent impurities in the packaging layer TFE from affecting the connection layer BL.
  • the protective layer OC can cover the electrode layer PL for protecting the electrode layer PL, and the material of the protective layer OC can be optical glue or other insulating materials.
  • the brightness of the display panel can be improved by setting a light extraction structure; at the same time, the reflection of the external light inside the display panel can also be reduced.
  • the light extraction structure may include a light-gathering layer LE and a filter layer CF, the light-gathering layer LE has a microlens LEN, the light-filter layer CF covers the light-gathering layer LE, and the refractive index of the filter layer CF is greater than that of the light-gathering layer LE According to the law of refraction, when the light enters the filter layer CF through the microlens LEN, the light converges relative to the incident direction, that is, gathers, so that the final outgoing light converges and the brightness is improved. As shown in Figure 1, specifically:
  • the light concentrating layer LE can be disposed on the side of the light emitting layer OL away from the driving backplane BP, for example, the light concentrating layer LE can be disposed on the side of the encapsulation layer away from the driving backplane BP.
  • the light concentrating layer LE may have a plurality of microlenses LEN, and the microlens LEN may be a convex structure formed by protruding from the surface of the light concentrating layer LE facing away from the driving backplane BP in a direction away from the driving backplane BP, and the convex structure may It is a hemispherical structure or a spherical segment structure, of course, it may also be a prism or other structures, and its shape is not specifically limited here.
  • a light-emitting device LED can be arranged corresponding to at least one microlens LEN in a direction perpendicular to the driving backplane BP, that is, the orthographic projection of a light-emitting device LED on the driving backplane BP is at least the same as that of one microlens LEN on the driving backplane BP
  • the orthographic projections of are at least partially coincident.
  • the light concentrating layer LE may have a plurality of lens regions distributed in an array, and each lens region is provided with a plurality of microlenses LEN.
  • the orthographic projection of any light-emitting device LED on the light-concentrating layer LE can cover a lens area, that is, one light-emitting device LED can correspond to multiple microlenses LEN.
  • the number of microlenses LEN corresponding to each light-emitting device LED can match the size of the light-emitting device LED. The larger the light-emitting device LED, the more the number of corresponding micro-lenses LEN.
  • the material of the light concentrating layer LE may be resin, acrylic and other lens materials, which are not specifically limited here.
  • the filter layer CF may cover the light-gathering layer LE, that is, the filter layer CF covers the surface of the light-gathering layer LE facing away from the driving backplane BP, that is, the filter layer CF is in direct contact with the light-gathering layer LE.
  • the filter layer CF may include a plurality of filter parts CFP, and a filter part CFP is arranged correspondingly to a light-emitting device LED in a direction perpendicular to the drive backplane BP, that is, an orthographic projection of a filter part CFP on the light-emitting layer OL Covering a light emitting device LED, the area of the orthographic projection of the filter part CFP on the light emitting layer OL is not smaller than the corresponding light emitting device LED.
  • Each filter part CFP can only pass light of one color, and the color of any filter part CFP is the same as the light emitting color of the corresponding light emitting device LED, so that it can only pass the light emitted by the light emitting device LED.
  • Each filter part CFP may cover at least one lens, for example, each filter part CFP may cover each microlens LEN in a lens region.
  • the filter part CFP corresponding to the first light-emitting device is the first filter part CFP1
  • the filter part CFP corresponding to the second light-emitting device is the second filter part CFP2
  • the third filter part CFP is the third filter part CFP3.
  • the refractive index of each filter part CFP is greater than the refractive index of the light-gathering layer LE, so that when the light is incident from the microlens LEN to the filter part CFP, the light will be refracted.
  • the propagation direction of the outgoing light converges toward the optical axis of the microlens LEN, that is, converges, so that light can be concentrated by narrowing the light-emitting range, so that the brightness of the display panel can be improved.
  • the filter part CFP can only pass through monochromatic light, and filter out light of other colors, it can block most of the light from the outside, thereby improving the performance of the second electrode ACT, the first electrode ANO of the light emitting device LED, and the drive backlight.
  • the phenomenon that the pixel circuit of the board BP reflects the external light and affects the display effect; moreover, even if the external light enters the display panel through a filter part CFP, it is reflected by the second electrode ACT, the first electrode ANO, etc., at least When a part of the reflected light irradiates the filter part CFP having a color different from that of the filter part CFP passing through when it is incident, it cannot exit, so that the reflection can also be reduced.
  • the center of curvature of the microlens LEN can be located on the side of the light emitting surface of the light emitting device LED that is close to the driving backplane BP.
  • the micro-lens LEN has a hemispherical structure or a spherical segment structure, its center of curvature is its center; if the lens LEN has a prism structure, its center of curvature can be the center of its inscribed circle or circumscribed circle.
  • the filter part CFP may include a base material and scattering particles dispersed in the base material, the base material may be resin or other organic materials, the material of the scattering particles may be metal oxide, the metal The oxide may be zirconia.
  • the scattering effect of the scattering particles on the light plays the role of making the refractive index of the filter part CFP larger than that of the light collecting layer LE.
  • both the base material and the scattering particles may use other materials, or may also be scattering particles using a variety of different materials.
  • other materials with a higher refractive index than the light-gathering layer LE may also be used.
  • the display panel may further include a light-absorbing layer BM, which may be arranged on the same layer as the filter part CFP, and the light-absorbing layer BM may separate each filter part CFP, and can absorb
  • the light-absorbing layer BM may include materials such as black resin, metal or metal oxide.
  • the light-absorbing layer BM can block the gap between the filter parts CFP, prevent light from exiting the gap, further reduce the reflection of external light, and at the same time, can also avoid the overlap of light emitted by adjacent light-emitting devices LEDs with different colors , resulting in color cast.
  • part of the film layer can be omitted, and the light-gathering layer LE and the filter layer CF can be used to play the role of the omitted film layer, thereby reducing the overall thickness of the display panel, which is beneficial to reduce light loss, which is beneficial to increase the light output range.
  • the distance between the light-absorbing layer BM and the light-emitting layer OL can also be shortened, reducing the limitation of the light-absorbing layer BM on the light-emitting range of the light-emitting device LED, thereby increasing the light-emitting range, and shortening the distance between the light-absorbing layer BM and the light-emitting layer OL can directly change the light absorption.
  • the position of the layer BM can also be to cancel the light-absorbing layer BM, and use other film layers closer to the light-emitting layer OL to play the role of the light-absorbing layer BM.
  • the following uses multiple implementations as examples to illustrate the display panel of the present disclosure:
  • the light absorbing layer BM can be arranged on the surface of the touch layer TSP away from the driving backplane BP, for example: the first filter part CFP1, the second filter part CFP2 and the third filter part CFP3 Orthographic projections on the touch layer TSP are located in three different meshes of the electrode layer PL, and the width of the electrode line LP is smaller than the gap between the two filter parts CFP, so that each filter part CFP is smaller than the mesh. Meanwhile, each filter part CFP1 corresponds to a plurality of microlenses LEN.
  • the light absorbing layer BM can be disposed on the surface of the isolation layer SEP away from the driving backplane BP, and the light absorbing layer BM can cover at least a part of the electrode layer PL.
  • the gap between the filter parts CFP is not provided with the light absorbing layer BM, thereby reducing the distance between the light absorbing layer BM and the light emitting device LED.
  • the orthographic projection of the light absorbing layer BM on the driving backplane BP separates the orthographic projections of the filter parts CFP on the driving backplane BP, so as to ensure the shielding effect of the light absorbing layer BM on the gaps of the filter parts CFP.
  • the light-gathering layer LE can cover the light-absorbing layer BM and the touch layer TSP, that is, the light-gathering layer LE covers the light-absorbing layer BM and the electrode layer PL, and can play the role of the protective layer OC, so that the protection of the touch layer TSP can be omitted. layer OC, thereby reducing the thickness of the display panel and facilitating the process simplification.
  • connection layer BL can be covered by the light-gathering layer LE
  • the electrode layer PL can be set on the surface of the light-gathering layer LE away from the driving backplane BP
  • the filter layer CF can be set on the surface of the light-gathering layer LE away from Driving the surface of the backplane BP
  • the light absorbing layer BM can cover at least a partial area of the electrode layer PL, and separate each filter part CFP.
  • the orthographic projections of the first filter part CFP1, the second filter part CFP2 and the third filter part CFP3 on the touch layer TSP are located in three different meshes of the electrode layer PL, and the width of the electrode line LP is less than
  • the gap between the two filter parts CFP makes each filter part CFP smaller than the mesh.
  • each filter part CFP1 corresponds to a plurality of microlenses LEN.
  • the light-gathering layer LE can be used to replace the isolation layer SEP of the touch layer TSP, and the filter layer CF can be used to replace the protective layer OC of the touch layer TSP, so that the isolation layer SEP and the protective layer OC can be omitted, and the thickness of the display panel can be reduced; although , the light-absorbing layer BM and the filter layer CF are set in the same layer, but because the overall thickness is reduced, the distance between the light-absorbing layer BM and the light-emitting layer OL is shortened, and the light-emitting range can still be increased.
  • the light concentrating layer LE can be disposed on the surface of the isolation layer SEP away from the driving backplane BP and cover the electrode layer PL.
  • the light-gathering layer LE can be used to replace the protective layer OC of the touch layer TSP; at the same time, the electrode layer PL can adopt a light-absorbing conductive structure, and the orthographic projection of the electrode layer PL on the driving backplane BP separates each filter part CFP on the driving backplane. Orthographic projection on the plate BP, so that the electrode layer PL can be used to play the role of the light-absorbing layer BM, so that the light-absorbing layer BM can be omitted to simplify the structure and process.
  • the electrode layer PL is closer to the light-emitting layer OL, which is beneficial to increase Large luminous range.
  • the orthographic projections of the first filter part CFP1, the second filter part CFP2 and the third filter part CFP3 on the touch layer TSP are aligned with the three different meshes of the electrode layer PL.
  • a corresponding overlap, and the area of the filter part CFP is not smaller than the corresponding mesh, that is, the width of the electrode line LP is not smaller than the gap between the two filter parts CFP, so that the electrode line LP can be used to replace the light absorbing layer BM.
  • each filter part CFP1 corresponds to a plurality of microlenses LEN.
  • connection layer BL can be covered by the light-gathering layer LE
  • the electrode layer PL can be set on the surface of the light-gathering layer LE away from the driving backplane BP
  • the filter layer CF and the electrode layer PL can be set on the light-gathering layer LE The surface facing away from the drive backplane BP.
  • the light-gathering layer LE can be used to replace the isolation layer SEP of the touch layer TSP
  • the filter layer CF can be used to replace the protective layer OC of the touch layer TSP, so that the isolation layer SEP and the protective layer OC can be omitted, and the thickness of the display panel can be reduced.
  • the electrode layer PL can separate the filter parts CFP, that is, the electrode layer PL is located in the gap between the filter parts CFP, and the electrode layer PL is a light-absorbing conductive structure, so that the light-absorbing layer BM can be replaced by the electrode layer PL, thereby saving
  • the light absorbing layer BM is used to simplify the structure and process.
  • the orthographic projections of the first filter part CFP1, the second filter part CFP2 and the third filter part CFP3 on the touch layer TSP are aligned with the three different meshes of the electrode layer PL.
  • a corresponding overlap, and the area of the filter part CFP is not smaller than the corresponding mesh, that is, the width of the electrode line LP is not smaller than the gap between the two filter parts CFP, so that the electrode line LP can be used to replace the light absorbing layer BM.
  • each filter part CFP1 corresponds to a plurality of microlenses LEN.
  • FIG. 8 and FIG. 9 are only exemplary illustrations of the distribution and size relationship of the filter part CFP, the electrode layer PL, and the microlens LEN, and do not constitute specific information on their structure, quantity, and size.
  • the shape of the filter part CFP and the electrode layer PL can be other shapes, and the shapes of the two can be the same or different, and the size of different filter parts CFP can also be different, as long as the size of the corresponding light-emitting device LED matches That's it.
  • the number of microlenses LEN corresponding to each filter portion and mesh can be more or less, and the distribution method can also adopt other methods, which are not limited to the methods listed in the figure.
  • the electrode layer PL can adopt a multi-layer structure, and at least part of the film layers therein are light-absorbing materials, or one or more layers of the electrode layer PL can directly use light-absorbing conductive materials.
  • the film layers therein are light-absorbing materials, or one or more layers of the electrode layer PL can directly use light-absorbing conductive materials.
  • the electrode layer PL may include a first conductive layer PLb, a second conductive layer PLm, and a light-absorbing material layer PLt, wherein:
  • the second conductive layer PLm covers the surface of the first conductive layer PLb away from the driving backplane BP, and at least part of the light-absorbing material layer PLt covers the surface of the second conductive layer PLm away from the driving backplane BP. That is to say, at least partial regions of the first conductive layer PLb, the second conductive layer PLm and the light-absorbing material layer PLt are sequentially stacked in a direction away from the driving backplane BP.
  • the second conductive layer PLm can be protected by the first conductive layer PLb and the light-absorbing material layer PLt, and the light-absorbing material layer PLt can play a light-absorbing role.
  • Materials of the first conductive layer PLb and the second conductive layer PLm are metal or other conductive materials for signal transmission, and the resistivity of the second conductive layer PLm is smaller than that of the first conductive layer PLb and the light-absorbing material layer PLt.
  • the light-absorbing material layer PLt may be a light-absorbing material so as to absorb light and function as the light-absorbing layer BM.
  • the light-absorbing material layer PLt can be extended along the sidewalls of the first conductive layer PLb and the second conductive layer PLm toward the direction close to the driving backplane BP, so as to cover the first conductive layer and the second conductive layer.
  • the sidewalls of the layers, that is, the first conductive layer PLb and the second conductive layer PLm may be covered by the light-absorbing material layer PLt.
  • the material of at least one of the light-absorbing material layer PLt and the first conductive layer PLb is a light-absorbing conductive material.
  • both the light-absorbing material layer PLt and the first conductive layer PLb can use light-absorbing conductive materials, which are beneficial to reduce resistance while absorbing light.
  • the material of the light-absorbing material layer PLt may also be a light-absorbing insulating material.
  • the above-mentioned light-absorbing conductive material may include molybdenum dioxide or other black metals or metal oxides, as long as they can conduct electricity and absorb light.
  • the material of the second conductive layer PLm can be metals with low resistivity such as aluminum and silver, and the material of the first conductive layer PLb can be titanium or other chemically stable metals.
  • the following table compares the reflectivity of molybdenum dioxide and black resin with different thicknesses:
  • the thickness increases, the reflectivity of molybdenum dioxide decreases gradually, and the light absorption effect is enhanced, and the thickness is smaller than that of black resin, and it can play the role of black resin in a thinner case, which is beneficial to Reduce the thickness of the display panel.
  • the light-absorbing material layer PLt and the first conductive layer PLb may use the same material, for example, molybdenum dioxide, and the material of the second conductive layer PLm is aluminum.
  • the material of the light-absorbing material layer PLt is molybdenum dioxide
  • the material of the first conductive layer PLb is titanium
  • the material of the second conductive layer PLm is aluminum.
  • a filter part CFP and a mesh of the electrode layer PL are arranged correspondingly in the direction perpendicular to the driving backplane BP, so that the electrode lines LP surrounding the mesh and the corresponding The gaps between the two adjacent filter parts CFP correspond, and the light-absorbing layer BM can be replaced by the electrode line LP.
  • the width of the electrode line LP can be made not less than the distance between two adjacent filter parts CFP.
  • the thickness of the electrode layer PL is not less than 0.1 ⁇ m and not more than 0.6 ⁇ m, for example, 0.1 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m or 0.6 ⁇ m, etc., so as to ensure the electrical performance At the same time, the cost and process difficulty are reduced.
  • the thickness of the filter layer CF is not less than 1.0 ⁇ m and not greater than 6.0 ⁇ m, such as 1.0 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m, 5.0 ⁇ m or 6.0 ⁇ m.
  • the thickness of the light absorbing layer BM is not less than 0.5 ⁇ m and not more than 2.0 ⁇ m, such as 0.5 ⁇ m, 0.7 ⁇ m, 1.0 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ m, 1.7 ⁇ m or 2.0 ⁇ m.
  • the thickness of the light concentrating layer LE is not less than 0.5 ⁇ m and not more than 5.0 ⁇ m, such as 0.5 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, 4.0 ⁇ m or 5.0 ⁇ m.
  • the critical dimension (CD) of the contact hole exposing the connection unit BLU is 2.0 ⁇ m-8.0 ⁇ m, such as 2.0 ⁇ m, 4.0 ⁇ m, 6.0 ⁇ m or 8.0 ⁇ m.
  • Embodiments of the present disclosure also provide a method for manufacturing a display panel.
  • the manufacturing method of the present disclosure may include step S110-step S140, wherein:
  • Step S110 forming a driving backplane
  • Step S120 forming a light-emitting layer OL including a plurality of light-emitting devices on one side of the driving backplane;
  • Step S130 forming a light-concentrating layer with a plurality of microlenses on the side of the light-emitting layer OL facing away from the driving backplane; Correspondingly arranged in the direction, and the microlens is used to converge at least part of the light emitted by the corresponding light emitting device;
  • Step S140 forming a filter layer covering the light concentrating layer;
  • the filter layer includes a plurality of filter parts, one of the filter parts and one of the light-emitting devices in a direction perpendicular to the driving backplane Correspondingly arranged, and the filter part covers at least one of the lenses; the refractive index of the filter layer is greater than the refractive index of the light collecting layer.
  • Embodiments of the present disclosure further provide a display device, which may include the display panel in any of the above embodiments.
  • the specific structure and beneficial effects of the display panel have been described in detail in the implementation of the display panel above, and will not be described in detail here.
  • the display device of the present disclosure can be used in electronic devices with image display functions such as mobile phones, tablet computers, and televisions, and will not be listed here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示装置、显示面板及其制造方法。显示面板包括驱动背板(BP)、发光层(OL)、聚光层(LE)和滤光层(CF);发光层(OL)设于驱动背板(BP)一侧,且包括多个发光器件(LED);聚光层(LE)设于发光层(OL)背离驱动背板(BP)的一侧,且具有多个微透镜(LEN);一发光器件(LED)与至少一微透镜(LEN)在垂直于驱动背板(BP)的方向上对应设置;滤光层(CF)覆盖聚光层(LE),且包括多个滤光部(CFP),一滤光部(CFP)与一发光器件(LED)在垂直于驱动背板(BP)的方向上对应设置,且滤光部(CFP)覆盖至少一个微透镜(LEN);各滤光部(CFP)的折射率大于聚光层(LE)的折射率,微透镜(LEN)能使其对应的发光器件(LED)发出的至少部分光线收敛。

Description

显示装置、显示面板及其制造方法 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示装置、显示面板及显示面板的制造方法。
背景技术
目前,显示面板已经成为手机、电视等电子设备中必不可少的组成部分。其中,有机电致发光显示面板引起具有色域广、低功耗、响应速度快等优点而获得的了广泛的应用。但是,有机电致发光显示面板的亮度仍有待提升。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供显示装置、显示面板及显示面板的制造方法。
根据本公开的一个方面,提供一种显示面板,包括:
驱动背板;
发光层,设于所述驱动背板一侧,且包括多个发光器件;
聚光层,设于所述发光层背离所述驱动背板的一侧,且具有多个微透镜;一所述发光器件与至少一所述微透镜在垂直于所述驱动背板的方向上对应设置;
滤光层,覆盖所述聚光层,且包括多个滤光部,一所述滤光部与一所述发光器件在垂直于所述驱动背板的方向上对应设置,且所述滤光部覆盖至少一个所述微透镜;
各所述滤光部的折射率大于所述聚光层的折射率,所述微透镜能使其对应的所述发光器件发出的至少部分光线收敛。
在本公开的一种示例性实施方式中,所述显示面板还包括:
触控层,设于所述发光层背离所述驱动背板的一侧;
吸光层,设于所述触控层背离所述驱动背板的表面;所述聚光层覆盖所述吸光层和所述触控层;所述吸光层在所述驱动背板上的正投影分隔各所述滤光部在所述驱动背板上的正投影。
在本公开的一种示例性实施方式中,所述触控层包括:
连接层,包括多个连接单元;
隔离层,覆盖所述连接层;
电极层,设于所述隔离层背离所述驱动背板的表面,包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组,每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
所述吸光层覆盖所述电极层的至少部分区域。
在本公开的一种示例性实施方式中,所述显示面板还包括:
连接层,包括多个连接单元;所述聚光层覆盖所述连接层;
电极层,设于所述聚光层背离所述驱动背板的表面,包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组,每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
吸光层,覆盖所述电极层的至少部分区域,且分隔各所述滤光部。
在本公开的一种示例性实施方式中,所述显示面板还包括:
连接层,包括多个连接单元;
隔离层,覆盖所述连接层;
电极层,设于所述隔离层背离所述驱动背板的表面,且包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组;每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的 连接单元形成第二触控电极;
所述聚光层覆盖所述电极层;所述电极层在所述驱动背板上的正投影分隔各所述滤光部在所述驱动背板上的正投影,且所述电极层为吸光导电结构。
在本公开的一种示例性实施方式中,所述显示面板还包括:
连接层,包括多个连接单元;所述聚光层覆盖所述连接层;
电极层,设于所述聚光层背离所述驱动背板的表面,且包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组;每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
所述电极层分隔各所述滤光部,且所述电极层为吸光导电结构。
在本公开的一种示例性实施方式中,所述电极层为具有多个网孔的网状结构,每个所述网孔由多段电极线围成,相邻的所述网孔共用至少一段所述电极线;
一所述滤光部与一所述网孔在垂直于所述驱动背板的方向上对应设置;所述电极线的宽度不小于相邻两所述滤光部之间的距离。
在本公开的一种示例性实施方式中,所述电极层包括第一导电层、第二导电层和吸光材料层,所述第二导电层覆盖所述第一导电层背离所述背板的表面,所述吸光材料层的至少部分区域覆盖所述第二导电层背离所述驱动背板的表面。
在本公开的一种示例性实施方式中,所述吸光材料层覆盖所述第一导电层和所述第二导电层的侧壁。
在本公开的一种示例性实施方式中,所述吸光材料层和所述第一导电层至少一个的材料为吸光导电材料。
在本公开的一种示例性实施方式中,所述吸光导电材料层包括二氧化钼。
在本公开的一种示例性实施方式中,所述第二导电层的材料为铝。
在本公开的一种示例性实施方式中,所述滤光部包括基材和分散于 所述基材内的散射粒子。
在本公开的一种示例性实施方式中,所述散射粒子的材料包括氧化锆。
在本公开的一种示例性实施方式中,所述发光层包括多个阵列分布的多个发光单元,每个发光单元包括至少两个发光颜色不同的发光器件;任一所述滤光部的颜色与其对应的发光器件的发光颜色相同。
在本公开的一种示例性实施方式中,所述聚光层被一所述滤光部覆盖的范围内具有多个所述透镜。
在本公开的一种示例性实施方式中,所述显示面板还包括:
封装层,覆盖所述发光层;
所述连接层设于所述封装层背离所述驱动背板的一侧。
在本公开的一种示例性实施方式中,所述电极层的厚度不小于0.1μm,且不大于0.6μm。
在本公开的一种示例性实施方式中,所述滤光层的厚度不小于1.0μm,且不大于6.0μm。
在本公开的一种示例性实施方式中,所述吸光层的厚度不小于0.5μm,且不大于2.0μm。
在本公开的一种示例性实施方式中,所述聚光层的厚度不小于0.5μm,且不大于5.0μm。
根据本公开的一个方面,提供一种显示面板的制造方法,包括:
形成驱动背板;
在所述驱动背板一侧形成包括多个发光器件的发光层;
在所述发光层背离所述驱动背板的一侧形成具有多个微透镜的聚光层;一所述发光器件与至少一所述微透镜在垂直于所述驱动背板的方向上对应设置,且所述微透镜用于使对应的所述发光器件发出的至少部分光线收敛;
形成覆盖所述聚光层的滤光层;所述滤光层包括多个滤光部,一所述滤光部与一所述发光器件在垂直于所述驱动背板的方向上对应设置,且所述滤光部覆盖至少一个所述透镜;所述滤光层的折射率大于所述聚光层的折射率。
根据本公开的一个方面,提供一种显示装置,包括上述任意一项所述的显示面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开显示面板一实施方式的示意图。
图2为本公开显示面板一实施方式中电极层的示意图。
图3为本公开显示面板一实施方式中光取出结构的光路示意图。
图4为本公开显示面板的实施方式一的示意图。
图5为本公开显示面板的实施方式二的示意图。
图6为本公开显示面板的实施方式三的示意图。
图7为本公开显示面板的实施方式四的示意图。
图8为本公开显示面板的实施方式一、二中电极层、滤光部和微透镜的示意图。
图9为本公开显示面板的实施方式三、四中电极层、滤光部和微透镜的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
本文中的行方向和列方向是指两个相互交叉的方向,例如:行方向可以是附图中的横向,列方向可为附图中的纵向,二者相互垂直。但是,这不应被视为是对行方向和列方向的限定,行方向不必然是指水平方向,列方向也不必然是竖直方向。本领域技术人员可以知晓的是,若显示面板发生旋转等位置变化,行方向和列方向的实际朝向可以发生改变。
本公开实施方式提供了一种显示面板,如图1-图3所示,该显示面板可包括驱动背板BP、发光层OL、聚光层LE和滤光层CF,其中:
发光层OL设于驱动背板BP一侧,且包括多个发光器件LED。
聚光层LE设于发光层OL背离驱动背板BP的一侧,且具有多个微透镜LEN;一发光器件LED与至少一微透镜LEN在垂直于驱动背板BP的方向上对应设置。
滤光层CF覆盖聚光层LE,且包括多个滤光部CFP,一滤光部CFP与一发光器件LED在垂直于驱动背板BP的方向上对应设置,且滤光部CFP覆盖至少一个微透镜(LEN)。
各滤光部CFP的折射率大于聚光层LE的折射率,微透镜LEN能使其对应的发光器件LED发出的至少部分光线收敛。
本公开实施方式的显示面板,发光器件LED发出的光线在从其对应的微透镜LEN进入滤光部CFP时,会发生折射,由于滤光部CFP的折射率大于聚光层LE的折射率,使得从微透镜LEN进入滤光部CFP的光线会收敛,从而使发光器件LED发出的光线聚拢,达到聚光的效果,使显示面板的亮度得以提高。同时,滤光部CFP仅能通过与其颜色相同的光线,可减少由外界进入显示面板的光线,从而减弱对显示面板内部对外界光线的反射,改善显示效果。此外,由于可通过滤光部CFP起到降低反射的作用,可免于采用厚度较大的圆偏光片来降低反射,从而降低 发光器件LED背离驱动背板BP一侧的膜层的厚度,有利于减弱这些膜层对发光器件LED的发光范围的限制,从而避免因微透镜LEN的聚光作用而造成发光范围变窄。由此,可在不减小发光范围的基础上,提高亮度。
下面对显示面板的各部分进行详细说明:
如图1所示,驱动背板BP具有驱动电路,用于驱动发光层OL发光。驱动背板BP可包括衬底和驱动层,其中:
如图1所示,衬底可为起承载作用的平板,其形状可以是矩形或其它形状。衬底的材料可包括玻璃等透明的硬质材料,也可以包括聚酰亚胺(PI)等柔性材料。衬底可以是单层或多层结构,在此不做特殊限定。
驱动层可直接层叠于衬底一侧;或者,为了避免衬底中的杂质对驱动层造成影响,还可在衬底和驱动层之间设置缓冲层BUF,驱动层可设于缓冲层BUF背离衬底的表面。驱动层至少包括驱动区和***区,***区可以是围绕于驱动区外的环形区域,也可以是分隔于驱动区两侧的两个间断的区域,只要位于驱动区外即可。
驱动层具有用于驱动发光器件LED发光的驱动电路,驱动电路可包括多个像素电路和***电路,像素电路设于驱动区内,当然,可以存在一部分像素电路的部分区域位于***区。像素电路的数量可与发光器件LED的数量相同,且一一对应地与各发光器件LED连接,以便分别控制各个发光器件LED独立发光。当然,同一像素电路也可连接多个发光器件LED,从而驱动多个发光器件LED发光。***电路位于***区,且***电路与像素电路连接,用于向像素电路输入驱动信号,以便控制发光器件LED发光。***电路可包括发光控制电路、栅极驱动电路和源极驱动电路以及电源电路等。
像素电路可以是7T1C、7T2C、6T1C或6T2C等结构,只要能驱动发光器件LED发光即可,在此不对其结构做特殊限定。其中,nTmC表示一个像素电路包括n个晶体管(用字母“T”表示)和m个电容(用字母“C”表示)。当然,一个像素电路也可同时连接多个发光器件LED,可同时或分时驱动多个发光器件LED发光。
上述的驱动层的薄膜晶体管可以是顶栅或底栅型薄膜晶体管,每个 薄膜晶体管均可包括有源层、栅极、源极和漏极,其中,栅极可以为双栅结构,也可以为单栅或其它结构,各薄膜晶体管的有源层同层设置,栅极同层设置、源极和漏极均同层设置,以便简化工艺。
下面以一个顶栅型薄膜晶体管为例,对驱动层的结构进行示例性说明:
驱动层可包括有源层、第一栅绝缘层、栅极、第二栅绝缘层、层间介质层、源漏层和平坦层,其中:
有源层设于衬底一侧,第一栅绝缘层覆盖有源层;栅极设于第一栅绝缘层背离衬底的表面,且与有源层正对;第二栅绝缘层覆盖栅极和第一栅绝缘层;层间介质层覆盖第二栅绝缘层;源漏层设于层间介质层背离衬底的表面,且包括源极和漏极,源极和漏极通过接触孔连接于有源层的两端;平坦层覆盖源漏层和层间介质层。当然,驱动层还可包括其它膜层,只要能驱动发光器件LED发光即可,在此不再详述。
如图1所示,发光层OL可设于驱动背板BP一侧,例如,发光层OL设于平坦层背离衬底的表面。发光层OL可包括多个阵列分布的发光器件LED,各发光器件LED可在像素电路的驱动下发光。
在本公开的一些实施方式中,发光器件LED为有机发光二极管(OLED),其可包括沿背离衬底的方向依次层叠的第一电极ANO、发光功能层EL和第二电极CAT,其中:
第一电极ANO可设于平坦层背离衬底的表面,且通过接触孔与一像素电路连接。第一电极ANO可为单层或多层结构,其可作为发光器件LED的阳极。
如图1所示,发光功能层EL设于第一电极ANO背离衬底的表面,并可包括沿背离衬底的方向依次层叠的空穴注入层、空穴传输层、复合发光层OL、电子传输层和电子注入层,此外,空穴传输层和复合发光层OL之间还可设置电子阻挡层。
如图1所示,第二电极CAT覆盖发光功能层EL,并可延伸至***区,第二电极CAT可与电源信号端连接,以便接收第二电源信号VSS。第一电极ANO和第二电极CAT可共同作用,使发光器件LED发光,有机发光二极管的具体发光原理在此不再详述。第二电极CAT的材料可以 是镁(Mg)、银合金或其它材料。
当然,在本公开的其它实施方式中,发光器件LED还可以采用量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED),其可包括向背离驱动背板BP的方向层叠的第一电极、量子点发光层和第二电极,量子点发光层可采用无机材料,其可包括向背离驱动背板BP的方向层叠的空穴传输层、量子点层和电子传输层。第一电极提供的空穴和第二电极提供的电子可在量子点层复合形成激子,从而发光,量子点发光二极管发光的具体原理在此不再详述。
如图1所示,为了便于限定出各个发光器件LED的范围,发光层OL还可包括像素定义层PDL,其可与第一电极ANO设于驱动层背离衬底的表面,且设有多个一一对应地露出各第一电极ANO的开口,开口的形状可以是四边形、五边形、六边形等多边形、也可以是圆形、椭圆形等图形,在此不对其形状做特殊限定。发光功能层EL层叠于第一电极ANO位于开口内的区域上。每个发光器件LED的发光功能层EL相互独立的间隔分布。不同发光功能层EL的发光颜色不同。第二电极CAT同时覆盖各发光功能层EL,使得各个发光器件LED可共用同一第二电极CAT。通过上述的多个开口可限定出各个发光器件LED,任一发光器件LED的边界为其对应的开口的边界。
各发光器件LED中包括多种发光颜色不同的发光器件LED,例如,发红光的第一发光器件LED,发绿光的第二发光器件LED和发蓝光的第三发光器件。可将发光层OL划分为多个发光单元,各发光单元阵列分布,每个发光单元包括至少两个发光颜色不同的发光器件LED。例如,一个发光单元可包括一第一发光器件,一个第二发光器件和一个第三发光器件。任一滤光部CFP的颜色与其对应的发光器件LED的发光颜色相同。
如图1所示,在本公开的一些实施方式中,显示面板还可包括封装层TFE,其可覆盖于发光层OL背离驱动背板BP的表面,且覆盖所有的发光器件LED,从而对发光层OL进行保护,并避免外界的水、氧对发光器件LED造成侵蚀。同时,封装层TFE的边界沿延伸至***区内,但不超出***区,也可对***区的***电路进行保护。
举例而言,可采用薄膜封装(Thin-Film Encapsulation,TFE)的方式实现封装,封装层TFE可包括第一无机层、有机层和第二无机层,第一无机层覆盖于发光层OL背离驱动背板BP的表面,有机层可设于第一无机层背离驱动背板BP的表面,且有机层的边界限定于第一无机层的边界的内侧,第二无机层覆盖有机层和未被有机层覆盖的第一无机层,可通过第二无机层阻挡水氧侵入,通过具有柔性的有机层实现平坦化。
如图1所示,显示面板还可包括触控层TSP,其可设于封装层TFE背离驱动背板BP的一侧,触控层TSP可采用自容或互容式触控结构,例如,触控层TSP可以是外挂式;或者,还可以是FMLOC(Flexible Multi-Layer On CELL)等On-CELL方式,在此不对其具体结构做特殊限定,只要能实现触控功能即可。
如图1和图2所示,以一种互容结构的触控层TSP为例,触控层TSP可包括连接层BL、隔离层SEP和电极层PL,其中:
连接层BL可设于封装层TFE背离驱动背板BP的一侧,且包括多个连接单元BLU,其材料为金属或其它导电材料,连接层BL可包括沿行方向分布的多组连接单元BLU,每组包括沿列防线间隔分布的多个连接单元BLU。
隔离层SEP可覆盖连接层BL,其材料为透明的绝缘材料,隔离层SEP设有多个接触孔,每个接触孔露出一连接单元BLU的局部,且同一连接单元BLU至少被两个沿列方向分布的接触孔露出。
如图2所示,电极层PL可设于隔离层SEP背离驱动背板BP的表面,且包括多个第一触控电极PL1和多个第二触控电极PL2,其中:
各第一触控电极PL1沿行方向X延伸,且沿列方向Y间隔分布。一第一触控电极PL1可包括多个沿行方向X分布的电极单元PL1u,相邻两电极单元PL1u可通过连接单元连接,电极单元PL1u的形状可为菱形或其它多边形。
各第二触控电极PL2可沿列方向Y延伸,并沿行方向X分布,使得每个第一触控电极PL1都和第二触控电极PL2交叉。为了防止第一触控电极PL1和第二触控电极PL2在交叉处短路,可使一第二触控电极PL2包括一电极单元组,一个电极单元组可包括沿列方向Y间隔分布的多个 电极单元PL2u,电极单元PL2u的形状可第一触控电极PL1的电极单元PL1u的形状相同。同一电极单元组中相邻的两个电极单元PL2u通过至少两个接触孔与一连接单元BLU连接,使得同一电极单元组及其连接的连接单元BLU可形成第二触控电极PL2。第一触控电极PL1的连接单元和第二触控电极PL2的连接单元BLU在驱动背板BP上的正投影交叉,相邻的第一触控电极PL1的电极单元PL1u和第二触控电极PL2的电极单元PL2u之间具有间隙GAP,从而可形成电容。
第一触控电极PL1和第二触控电极PL2中的一个可作为感应电极,一个可作为驱动电极,在触控时,可向驱动电极施加驱动信号,并通过感应电极检测感应信号,通过对感应信号和驱动信号的处理,可确定第一触控电极PL1和触控电极间的电容变化,从而确定出触控位置。
在本公开的一些实施方式中,电极层PL可为具有多个网孔的网状结构,一个网孔即为一个通孔,每个网孔由多段电极线LP围成,其形状可以是四边形、五边形或六边形等多边形结构,也可以是椭圆形、圆形等形状。相邻的网孔共用至少一段电极线LP。每个第一触控电极PL1和第二触控电极PL2均为该网状结构的一部分。相邻的电极单元PL1u、PL2u之间的间隙GAP可通过截断部分电极线LP形成。
为了减少触控层TSP对发光器件LED的遮挡,可使发光器件LED与电极层PL的网孔与发光器件LED对应设置,每个发光器件LED对应一个网孔,发光器件LED发出的光线可透过该网孔。当然,一个发光器件LED也可以对应多个网孔,或者,一个网孔也可以对应多个发光器件LED。
进一步的,如图1所示,触控层TSP还可包括缓冲层BUF和保护层OC,其可覆盖封装层TFE,连接层BL可设于缓冲层BUF背离驱动背板BP的表面。缓冲层BUF的材料可包括氮化硅、氧化硅等绝缘材料,避免封装层TFE的杂质对连接层BL造成影响。保护层OC可覆盖电极层PL,用于保护电极层PL,保护层OC的材料可为光学胶或其它绝缘材料。
如图1所示,在本公开的显示面板中,可通过设置光取出结构来提 高显示面板的亮度;同时,还可降低显示面板内部对外界光线的反射作用。该光取出结构可包括聚光层LE和滤光层CF,聚光层LE具有微透镜LEN,滤光层CF覆盖聚光层LE,且滤光层CF的折射率大于聚光层LE的折射率,根据折射定律,光线在经过微透镜LEN进入滤光层CF时相对于入射方向收敛,即聚拢,从而使最终出射的光线汇聚,使亮度提高。如图1所示,具体而言:
聚光层LE可设于发光层OL背离驱动背板BP的一侧,例如,聚光层LE可设于封装层背离驱动背板BP的一侧。聚光层LE可具有多个微透镜LEN,微透镜LEN可为聚光层LE背离驱动背板BP的表面向背离驱动背板BP的方向凸起而形成的凸起结构,该凸起结构可以是半球结构或者球缺结构,当然,也可以是棱台或者其它结构,在此不对其形状进行特殊限定。
一个发光器件LED可与至少一微透镜LEN在垂直于驱动背板BP的方向上对应设置,即一个发光器件LED在驱动背板BP上的正投影至少与一个微透镜LEN在驱动背板BP上的正投影至少部分重合。
在本公开的一些实施方式中,聚光层LE可具有多个阵列分布的透镜区,每个透镜区设有多个微透镜LEN。任一发光器件LED在聚光层LE上的正投影可覆盖一个透镜区,即一个发光器件LED可与多个微透镜LEN对应。每个发光器件LED对应的微透镜LEN的数量可与发光器件LED的大小相匹配,发光器件LED越大,其对应的微透镜LEN的数量就越多,发光器件LED的大小即为限定该发光器件LED的像素定义层的开口在驱动背板BP上的正投影的面积的大小。
聚光层LE的材料可以是树脂、亚克力等透镜材料,在此不做特殊限定。
滤光层CF可覆盖聚光层LE,即滤光层CF覆盖聚光层LE背离驱动背板BP的表面,也就是说,滤光层CF与聚光层LE直接接触。滤光层CF可包括多个滤光部CFP,一滤光部CFP与一发光器件LED在垂直于驱动背板BP的方向上对应设置,即一滤光部CFP在发光层OL上的正投影覆盖一发光器件LED,滤光部CFP在发光层OL上的正投影的面积不小于其对应于的发光器件LED。每个滤光部CFP仅能通过一种颜色的 光线,任一滤光部CFP的颜色与其对应的发光器件LED的发光颜色相同,从而只能通过该发光器件LED发出的光线。每个滤光部CFP可覆盖至少一个透镜,例如,每个滤光部CFP可覆盖一个透镜区内的各个微透镜LEN。
如图8和图9所示,与第一发光器件对应的滤光部CFP为第一滤光部CFP1,与第二发光器件对应的滤光部CFP为第二滤光部CFP2,与第三发光器件对应的滤光部CFP为第三滤光部CFP3。
如图3所示,各滤光部CFP的折射率大于聚光层LE的折射率,使得光线在从微透镜LEN入射至滤光部CFP时,光线会发射折射,根据折射定律,相较于入射光线而言,出射光线的传播方向向微透镜LEN的光轴收敛,即聚拢,从而可通过缩小发光范围的方式实现聚光,使显示面板的亮度得以提升。同时,由于滤光部CFP仅能通过单色光,而滤除其它颜色的光线,从而可以阻挡外界的大部分光线,从而改善因发光器件LED的第二电极ACT、第一电极ANO以及驱动背板BP的像素电路等对外界光线的反射而影响显示效果的现象;而且,外界的光线即便通过一滤光部CFP进入显示面板内部,而被第二电极ACT、第一电极ANO等反射,至少有一部分反射光在照射到与入射时穿过的滤光部CFP颜色不同的滤光部CFP时,无法出射,从而也可以起到降低反射的作用。
为了保证微透镜LEN能使光线收敛,可使微透镜LEN的曲率中心位于发光器件LED的出光面靠近驱动背板BP的一侧。举例而言,若微透镜LEN为半球结构或球缺结构,其曲率中心即为其圆心;若为透镜LEN为棱台结构,其曲率中心可为其内切圈或外接圆的圆心。
在本公开的一些实施方式中,滤光部CFP可包括基材和分散于基材内的散射粒子,基材可以是树脂或其它有机材料,该散射粒子的材料可采用金属氧化物,该金属氧化物可以是氧化锆。通过散射粒子对光线的散射作用,起到使滤光部CFP的折射率大于聚光层LE的作用。
在本公开的其它实施方式中,基材和散射粒子均可以采用其它材料,或者,也可以是采用多种不同材料的散射粒子。当然,也可以是采用其它折射率大于聚光层LE的材料。
在本公开的一些实施方式中,如图1所示,显示面板还可包括吸光 层BM,其可与滤光部CFP同层设置,且吸光层BM可分隔各滤光部CFP,并能吸收光线,吸光层BM可包括黑色的树脂、金属或金属氧化物等材料。通过吸光层BM可对滤光部CFP之间的间隙进行遮挡,防止光线从间隙处出射,进一步降低对外界光的反射,同时,也可以避免相邻的颜色不同的发光器件LED发出的光线重叠,导致偏色。
在本公开的显示面板中,可省去部分膜层,并利用聚光层LE和滤光层CF起到被省去的膜层的作用,从而减薄显示面板的整体厚度,有利于减少光损失,有利于增大出光范围。同时,还可缩短吸光层BM与发光层OL的距离,减少吸光层BM对发光器件LED的发光范围的限制,从而增大出光范围,缩短吸光层BM与发光层OL的距离可以是直接改变吸光层BM的位置,还可以是取消吸光层BM,而采用其它距离发光层OL更近的膜层起到吸光层BM的作用。下面以多个实施方式为例,对本公开显示面板进行示例性说明:
实施方式一
如图4和图8所示,可将吸光层BM设于触控层TSP背离驱动背板BP的表面,例如:第一滤光部CFP1、第二滤光部CFP2和第三滤光部CFP3在触控层TSP的正投影位于电极层PL的三个不同的网孔内,且电极线LP的宽度小于两滤光部CFP间的间隙,使得各滤光部CFP小于网孔。同时,每个滤光部CFP1与多个微透镜LEN对应。
吸光层BM可设于隔离层SEP背离驱动背板BP的表面,且吸光层BM可覆盖电极层PL的至少部分区域。滤光部CFP之间的间隙则不设置吸光层BM,从而缩小吸光层BM与发光器件LED的距离。同时,吸光层BM在驱动背板BP上的正投影分隔各滤光部CFP在驱动背板BP上的正投影,从而保证吸光层BM对滤光部CFP的间隙的遮挡效果。此外,聚光层LE可覆盖吸光层BM和触控层TSP,即聚光层LE覆盖吸光层BM和电极层PL,可起到保护层OC的作用,从而可省去触控层TSP的保护层OC,从而降低显示面板的厚度,且有利于简化工艺。
实施方式二
如图5和图8所示,可通过聚光层LE覆盖连接层BL,电极层PL 可设于聚光层LE背离驱动背板BP的表面,滤光层CF可设于聚光层LE背离驱动背板BP的表面,吸光层BM可覆盖电极层PL的至少部分区域,且分隔各滤光部CFP。例如:第一滤光部CFP1、第二滤光部CFP2和第三滤光部CFP3在触控层TSP的正投影位于电极层PL的三个不同的网孔内,且电极线LP的宽度小于两滤光部CFP间的间隙,使得各滤光部CFP小于网孔。同时,每个滤光部CFP1与多个微透镜LEN对应。
可利用聚光层LE替代触控层TSP的隔离层SEP,利用滤光层CF替代触控层TSP的保护层OC,从而可省去隔离层SEP和保护层OC,降低显示面板的厚度;虽然,吸光层BM与滤光层CF同层设置,但由于整体厚度减薄,使得吸光层BM与发光层OL的距离得以缩短,仍然可以增大发光范围。
实施方式三
如图6所示,聚光层LE可设于隔离层SEP背离驱动背板BP的表面,且覆盖电极层PL。可利用聚光层LE替代触控层TSP的保护层OC;同时,可使电极层PL采用吸光导电结构,且电极层PL在驱动背板BP上的正投影分隔各滤光部CFP在驱动背板BP上的正投影,从而可利用电极层PL起到吸光层BM的作用,从而可省去吸光层BM,以便简化结构和工艺,同时,电极层PL距离发光层OL较近,有利于增大发光范围。
如图9所示,举例而言,第一滤光部CFP1、第二滤光部CFP2和第三滤光部CFP3在触控层TSP的正投影与电极层PL的三个不同的网孔一一对应的重合,且滤光部CFP的面积不小于对应的网孔,即电极线LP的宽度不小于两滤光部CFP间的间隙,从而可利用电极线LP替代吸光层BM。同时,每个滤光部CFP1与多个微透镜LEN对应。
实施方式四
如图7所示,可通过聚光层LE覆盖连接层BL,电极层PL可设于聚光层LE背离驱动背板BP的表面,滤光层CF和电极层PL可设于聚光层LE背离驱动背板BP的表面。可利用聚光层LE替代触控层TSP的隔离层SEP,利用滤光层CF替代触控层TSP的保护层OC,从而可省去隔离层SEP和保护层OC,降低显示面板的厚度。同时,电极层PL可分隔各滤光部CFP,即电极层PL位于滤光部CFP之间的间隙,且电极层 PL为吸光导电结构,从而可通过电极层PL替代吸光层BM,从而省去吸光层BM,以便简化结构和工艺。
如图9所示,举例而言,第一滤光部CFP1、第二滤光部CFP2和第三滤光部CFP3在触控层TSP的正投影与电极层PL的三个不同的网孔一一对应的重合,且滤光部CFP的面积不小于对应的网孔,即电极线LP的宽度不小于两滤光部CFP间的间隙,从而可利用电极线LP替代吸光层BM。同时,每个滤光部CFP1与多个微透镜LEN对应。
需要说明的是,图8和图9仅为滤光部CFP、电极层PL和微透镜LEN的分布方式和大小关系进行的示例性说明,并不构成对其结构、数量和尺寸等信息的具体限定,滤光部CFP和电极层PL的形状可以是其它形状,且二者的形状可以相同也可以不同,不同的滤光部CFP的大小也可以不同,只要与其对应的发光器件LED的大小匹配即可。每个滤光部和网孔对应的微透镜LEN的数量可以更多,也可以更少,且分布方式也可以采用其它方式,并不限于图中列举的方式。
下面针对上文中实施方式三和实施方式四中的吸光结构的电极层PL进行详细说明:
如图6和图7所示,电极层PL可采用多层结构,且其中的至少部分膜层为吸光材料,或者,电极层PL的一层或多层可直接采用吸光导电材料。举例而言:
电极层PL可包括第一导电层PLb、第二导电层PLm和吸光材料层PLt,其中:
第二导电层PLm覆盖第一导电层PLb背离驱动背板BP的表面,吸光材料层PLt的至少部分区域覆盖第二导电层PLm背离驱动背板BP的表面。也就是说,第一导电层PLb、第二导电层PLm和吸光材料层PLt的至少部分区域在背离驱动背板BP的方向上依次堆叠。
通过第一导电层PLb和吸光材料层PLt可起到保护第二导电层PLm的作用,且吸光材料层PLt可起到吸光的作用。第一导电层PLb和第二导电层PLm的材料均为金属或其它导电材料,以便传输信号,且第二导电层PLm的电阻率小于第一导电层PLb和吸光材料层PLt。吸光材料层PLt可以是吸光材料,以便吸收光线,起到吸光层BM的作用。
当然,为了提高吸光效果,可使吸光材料层PLt沿第一导电层PLb和第二导电层PLm的侧壁向靠近驱动背板BP的方向延伸,从而覆盖第一导电层和所述第二导电层的侧壁,也就是说,可通过吸光材料层PLt将第一导电层PLb和第二导电层PLm包覆起来。
进一步的,吸光材料层PLt和第一导电层PLb至少一个的材料为吸光导电材料。例如,吸光材料层PLt和第一导电层PLb均可采用吸光导电材料,在吸收光线的同时,有利于降低电阻。当然,吸光材料层PLt的材料也可以是吸光的绝缘材料。
上述的吸光导电材料可以包括二氧化钼或者其它黑色的金属或金属氧化物,只要能起到导电和吸光的作用即可。第二导电层PLm的材料可采用铝、银等电阻率较低的金属,第一导电层PLb的材料可采用钛或其它化学性质稳定的金属。下表为不同厚度的二氧化钼与黑色树脂的反射率的对比:
Figure PCTCN2021140152-appb-000001
可以看出,随着厚度的增大,二氧化钼的反射率逐渐减小,且吸光效果增强,且厚度比黑色树脂小,在较薄的情况下就可以起到黑色树脂的作用,有利于减小显示面板的厚度。
在本公开的一些实施方式中,吸光材料层PLt和第一导电层PLb可采用相同的材料,例如,二氧化钼,第二导电层PLm的材料为铝。或者,吸光材料层PLt的材料为二氧化钼,第一导电层PLb的材料为钛,第二导电层PLm的材料为铝。
进一步的,在本公开的一些实施方式中,一滤光部CFP与电极层PL的一网孔在垂直于驱动背板BP的方向上对应设置,使得围成该网孔的电极线LP与相邻两滤光部CFP的间隙对应,可利用电极线LP替代吸光层BM。同时,为了保证吸光效果,可使电极线LP的宽度不小于相邻两滤光部CFP之间的距离。
下面对部分膜层的厚度和其它尺寸进行示例性说明:
针对上述的实施方式一至四,电极层PL的厚度不小于0.1μm,且 不大于0.6μm,例如,0.1μm、0.2μm、0.3μm、0.4μm、0.5μm或0.6μm等,从而可保证电学性能的同时,降低成本和工艺难度。
针对上述的实施方式一至四,滤光层CF的厚度,即滤光部CFP的厚度,不小于1.0μm,且不大于6.0μm,例如1.0μm,2.0μm、3.0μm、4.0μm、5.0μm或6.0μm。
对于实施方式一和二,吸光层BM的厚度不小于0.5μm,且不大于2.0μm,例如0.5μm、0.7μm、1.0μm、1.2μm、1.5μm、1.7μm或2.0μm。
针对上述的实施方式一至四,聚光层LE的厚度不小于0.5μm,且不大于5.0μm,例如0.5μm、2.0μm、3.0μm、4.0μm或5.0μm。
针对方式一和二的隔离层SEP,露出连接单元BLU的接触孔的关键尺寸(CD)为2.0μm-8.0μm,例如2.0μm、4.0μm、6.0μm或8.0μm。
经过实验验证,本公开实施方式的显示面板对改善色偏和降低亮度衰减有明显的提升,具体效果如下表所示:
Figure PCTCN2021140152-appb-000002
本公开实施方式还提供一种显示面板的制造方法,,该显示面板的结构可参考上文显示面板的实施方式,在此不再详述。本公开的制造方法可包括步骤S110-步骤S140,其中:
步骤S110、形成驱动背板;
步骤S120、在所述驱动背板一侧形成包括多个发光器件的发光层OL;
步骤S130、在所述发光层OL背离所述驱动背板的一侧形成具有多个微透镜的聚光层;一所述发光器件与至少一所述微透镜在垂直于所述驱动背板的方向上对应设置,且所述微透镜用于使对应的所述发光器件发出的至少部分光线收敛;
步骤S140、形成覆盖所述聚光层的滤光层;所述滤光层包括多个滤 光部,一所述滤光部与一所述发光器件在垂直于所述驱动背板的方向上对应设置,且所述滤光部覆盖至少一个所述透镜;所述滤光层的折射率大于所述聚光层的折射率。
由于上述制造方法的各步骤中涉及的结构的细节已在上文显示面板的实施方式中进行了详细说明,在此不再对其细节和有益效果进行详细说明。
需要说明的是,尽管在附图中以特定顺序描述了本公开中制造方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本公开实施方式还提供一种显示装置,该显示装置可包括上述任意实施方式的显示面板。该显示面板的具体结构及有益效果已在上文显示面板的实施方式中进行了详细说明,在此不再详述。本公开的显示装置可以用于手机、平板电脑、电视等具有图像显示功能的电子设备,在此不再一一列举。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (23)

  1. 一种显示面板,其中,包括:
    驱动背板;
    发光层,设于所述驱动背板一侧,且包括多个发光器件;
    聚光层,设于所述发光层背离所述驱动背板的一侧,且具有多个微透镜;一所述发光器件与至少一所述微透镜在垂直于所述驱动背板的方向上对应设置;
    滤光层,覆盖所述聚光层,且包括多个滤光部,一所述滤光部与一所述发光器件在垂直于所述驱动背板的方向上对应设置,且所述滤光部覆盖至少一个所述微透镜;
    各所述滤光部的折射率大于所述聚光层的折射率,所述微透镜能使其对应的所述发光器件发出的至少部分光线收敛。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    触控层,设于所述发光层背离所述驱动背板的一侧;
    吸光层,设于所述触控层背离所述驱动背板的表面;所述聚光层覆盖所述吸光层和所述触控层;所述吸光层在所述驱动背板上的正投影分隔各所述滤光部在所述驱动背板上的正投影。
  3. 根据权利要求2所述的显示面板,其中,所述触控层包括:
    连接层,包括多个连接单元;
    隔离层,覆盖所述连接层;
    电极层,设于所述隔离层背离所述驱动背板的表面,包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组,每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
    所述吸光层覆盖所述电极层的至少部分区域。
  4. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    连接层,包括多个连接单元;所述聚光层覆盖所述连接层;
    电极层,设于所述聚光层背离所述驱动背板的表面,包括沿行方向 延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组,每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
    吸光层,覆盖所述电极层的至少部分区域,且分隔各所述滤光部。
  5. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    连接层,包括多个连接单元;
    隔离层,覆盖所述连接层;
    电极层,设于所述隔离层背离所述驱动背板的表面,且包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组;每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
    所述聚光层覆盖所述电极层;所述电极层在所述驱动背板上的正投影分隔各所述滤光部在所述驱动背板上的正投影,且所述电极层为吸光导电结构。
  6. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    连接层,包括多个连接单元;所述聚光层覆盖所述连接层;
    电极层,设于所述聚光层背离所述驱动背板的表面,且包括沿行方向延伸且沿列方向间隔分布的多个第一触控电极,以及沿所述列方向延伸且沿所述行方向分布的多个电极单元组;每个所述电极单元组包括沿所述列方向分布的多个电极单元;同一所述电极单元组中相邻的两个所述电极单元通过一所述连接单元连接;同一所述电极单元组及其连接的连接单元形成第二触控电极;
    所述电极层分隔各所述滤光部,且所述电极层为吸光导电结构。
  7. 根据权利要求5或6所述的显示面板,其中,所述电极层为具有多个网孔的网状结构,每个所述网孔由多段电极线围成,相邻的所述网孔共用至少一段所述电极线;
    一所述滤光部与一所述网孔在垂直于所述驱动背板的方向上对应设置;所述电极线的宽度不小于相邻两所述滤光部之间的距离。
  8. 根据权利要求5或7所述的显示面板,其中,所述电极层包括第一导电层、第二导电层和吸光材料层,所述第二导电层覆盖所述第一导电层背离所述背板的表面,所述吸光材料层的至少部分区域覆盖所述第二导电层背离所述驱动背板的表面。
  9. 根据权利要求8所述的显示面板,其中,所述吸光材料层覆盖所述第一导电层和所述第二导电层的侧壁。
  10. 根据权利要求8所述的显示面板,其中,所述吸光材料层和所述第一导电层至少一个的材料为吸光导电材料。
  11. 根据权利要求10所述的显示面板,其中,所述吸光导电材料层包括二氧化钼。
  12. 根据权利要求8所述的显示面板,其中,所述第二导电层的材料为铝。
  13. 根据权利要求1-12任一项所述的显示面板,其中,所述滤光部包括基材和分散于所述基材内的散射粒子。
  14. 根据权利要求13所述的显示面板,其中,所述散射粒子的材料包括氧化锆。
  15. 根据权利要求1-14任一项所述的显示面板,其中,所述发光层包括多个阵列分布的多个发光单元,每个发光单元包括至少两个发光颜色不同的发光器件;任一所述滤光部的颜色与其对应的发光器件的发光颜色相同。
  16. 根据权利要求1-14任一项所述的显示面板,其中,所述聚光层被一所述滤光部覆盖的范围内具有多个所述透镜。
  17. 根据权利要求3-6任一项所述的显示面板,其中,所述显示面板还包括:
    封装层,覆盖所述发光层;
    所述连接层设于所述封装层背离所述驱动背板的一侧。
  18. 根据权利要求8所述的显示面板,其中,所述电极层的厚度不小于0.1μm,且不大于0.6μm。
  19. 根据权利要求1-14任一项所述的显示面板,其中,所述滤光层的厚度不小于1.0μm,且不大于6.0μm。
  20. 根据权利要求2-4任一项所述的显示面板,其中,所述吸光层的厚度不小于0.5μm,且不大于2.0μm。
  21. 根据权利要求1-14任一项所述的显示面板,其中,所述聚光层的厚度不小于0.5μm,且不大于5.0μm。
  22. 一种显示面板的制造方法,其中,包括:
    形成驱动背板;
    在所述驱动背板一侧形成包括多个发光器件的发光层;
    在所述发光层背离所述驱动背板的一侧形成具有多个微透镜的聚光层;一所述发光器件与至少一所述微透镜在垂直于所述驱动背板的方向上对应设置,且所述微透镜用于使对应的所述发光器件发出的至少部分光线收敛;
    形成覆盖所述聚光层的滤光层;所述滤光层包括多个滤光部,一所述滤光部与一所述发光器件在垂直于所述驱动背板的方向上对应设置,且所述滤光部覆盖至少一个所述透镜;所述滤光层的折射率大于所述聚光层的折射率。
  23. 一种显示装置,其中,包括权利要求1-21任一项所述的显示面板。
PCT/CN2021/140152 2021-12-21 2021-12-21 显示装置、显示面板及其制造方法 WO2023115346A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004076.XA CN116649010A (zh) 2021-12-21 2021-12-21 显示装置、显示面板及其制造方法
PCT/CN2021/140152 WO2023115346A1 (zh) 2021-12-21 2021-12-21 显示装置、显示面板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140152 WO2023115346A1 (zh) 2021-12-21 2021-12-21 显示装置、显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2023115346A1 true WO2023115346A1 (zh) 2023-06-29

Family

ID=86900932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140152 WO2023115346A1 (zh) 2021-12-21 2021-12-21 显示装置、显示面板及其制造方法

Country Status (2)

Country Link
CN (1) CN116649010A (zh)
WO (1) WO2023115346A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117715475A (zh) * 2023-08-07 2024-03-15 荣耀终端有限公司 防窥显示屏及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140027725A1 (en) * 2012-07-25 2014-01-30 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20140361264A1 (en) * 2013-06-10 2014-12-11 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN106450036A (zh) * 2016-11-24 2017-02-22 武汉华星光电技术有限公司 Oled器件封装结构、oled器件及显示屏
CN107589576A (zh) * 2017-09-30 2018-01-16 武汉华星光电技术有限公司 阵列基板及其制作方法、触控显示面板
CN109192766A (zh) * 2018-09-30 2019-01-11 云谷(固安)科技有限公司 显示面板及显示面板的制作方法
CN209607764U (zh) * 2019-05-10 2019-11-08 江苏集萃有机光电技术研究所有限公司 一种oled发光器件
CN111276515A (zh) * 2020-02-07 2020-06-12 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN111599850A (zh) * 2020-06-01 2020-08-28 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其制备方法、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140027725A1 (en) * 2012-07-25 2014-01-30 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20140361264A1 (en) * 2013-06-10 2014-12-11 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN106450036A (zh) * 2016-11-24 2017-02-22 武汉华星光电技术有限公司 Oled器件封装结构、oled器件及显示屏
CN107589576A (zh) * 2017-09-30 2018-01-16 武汉华星光电技术有限公司 阵列基板及其制作方法、触控显示面板
CN109192766A (zh) * 2018-09-30 2019-01-11 云谷(固安)科技有限公司 显示面板及显示面板的制作方法
CN209607764U (zh) * 2019-05-10 2019-11-08 江苏集萃有机光电技术研究所有限公司 一种oled发光器件
CN111276515A (zh) * 2020-02-07 2020-06-12 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN111599850A (zh) * 2020-06-01 2020-08-28 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117715475A (zh) * 2023-08-07 2024-03-15 荣耀终端有限公司 防窥显示屏及电子设备

Also Published As

Publication number Publication date
CN116649010A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US11963391B2 (en) Organic light emitting diode display device
US9774011B2 (en) Organic light-emitting diode (OLED) display
TWI596763B (zh) 有機發光二極體顯示裝置
KR102403000B1 (ko) 유기발광 디스플레이 장치
US11782543B2 (en) Touch display panel and electronic device
CN114242913B (zh) 显示面板及电子装置
KR20200080754A (ko) 표시 장치
US11782558B2 (en) Touch structure, touch display panel and electronic device
US11789571B2 (en) Touch structure, touch display panel and electronic device
CN112928225A (zh) 显示基板和显示装置
WO2023115346A1 (zh) 显示装置、显示面板及其制造方法
CN116018018A (zh) 显示面板和电子装置
WO2022198710A1 (zh) 显示面板及显示装置
US11768567B2 (en) Electronic device
CN115064567A (zh) 一种显示面板、显示面板的制作方法及显示装置
US12019833B2 (en) Touch structure, touch display panel and electronic device
KR20220130308A (ko) 표시 장치와 그를 포함하는 타일형 표시 장치
KR20220069199A (ko) 표시 장치
US11822169B2 (en) Display device
WO2023225805A1 (zh) 显示面板及显示装置
WO2023197165A1 (zh) 显示面板及显示装置
CN219780847U (zh) 显示装置
WO2023024053A1 (zh) 显示装置、显示面板及其制造方法
WO2023205966A1 (zh) 显示装置、显示面板及其制造方法
US20240224583A1 (en) Organic Light Emitting Diode Display Device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004076.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18565028

Country of ref document: US