WO2023108964A1 - 一种锂离子电池 - Google Patents

一种锂离子电池 Download PDF

Info

Publication number
WO2023108964A1
WO2023108964A1 PCT/CN2022/086542 CN2022086542W WO2023108964A1 WO 2023108964 A1 WO2023108964 A1 WO 2023108964A1 CN 2022086542 W CN2022086542 W CN 2022086542W WO 2023108964 A1 WO2023108964 A1 WO 2023108964A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium
lithium ion
negative electrode
active material
Prior art date
Application number
PCT/CN2022/086542
Other languages
English (en)
French (fr)
Inventor
李明露
杨红新
高飞
刘静
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Priority to EP22893994.8A priority Critical patent/EP4235847A1/en
Publication of WO2023108964A1 publication Critical patent/WO2023108964A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of batteries, for example, to a lithium-ion battery.
  • Lithium-ion batteries have the advantages of high energy density, long cycle life, and good safety performance. With the gradual increase of the lithium-ion battery market, consumers have higher and higher requirements for the fast charging performance and energy density of lithium-ion batteries. Therefore, the development of lithium-ion batteries with high energy density and fast charging capability has always been the direction of research and development personnel's attention.
  • the performance of lithium-ion batteries is closely related to its positive and negative active materials.
  • the selection of high-quality positive and negative active materials has a key impact on ensuring high safety, high charging speed and long-term cycle reliability of lithium-ion batteries.
  • the existing technology often achieves a maximum charging speed by reducing the coating weight and increasing the amount of conductive agent, but these methods often lead to a significant decrease in the energy density of lithium-ion batteries, and the cruising range of lithium-ion batteries is difficult to meet the requirements. If fast charging is forced on a lithium-ion battery that does not have fast charging capability, lithium dendrites will easily grow on the surface of the negative electrode, and the capacity of the lithium-ion battery will be seriously lost.
  • the isolation film brings safety hazards to lithium-ion batteries. Therefore, how to improve the fast charging performance of lithium-ion batteries while ensuring their good cycle performance and safety performance is an urgent technical problem to be solved.
  • the present disclosure provides a lithium ion battery.
  • the present disclosure provides a lithium-ion battery, the lithium-ion battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte;
  • the positive pole piece and the negative pole piece satisfy: 0.4 ⁇ (ln Ds) 2 /C D50 /(A OI ) 2 ⁇ 18.2, such as 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 .
  • the average particle size of the active material, A OI is the OI value of the negative active material in the negative pole piece; the negative pole active material in the negative pole piece includes graphite.
  • the OI value of the negative electrode active material provided is the peak area of the 004 characteristic diffraction peak in the X-ray diffraction pattern of the negative electrode sheet and the area of the 110 characteristic diffraction peak in the X-ray diffraction pattern of the negative electrode sheet. The ratio of the peak areas.
  • Ds represents the degree of difficulty in the intrinsic ion diffusion of the positive electrode material.
  • the ion diffusion coefficient of the positive electrode material is determined, the larger the particle size of the positive electrode material, the longer the time required for diffusion. Therefore, considering the characteristics of the ion diffusion coefficient of different positive electrode materials, it is necessary to adjust the particle size CD50 of the material in order to improve the material rate characteristics;
  • the OI value of the negative electrode sheet can reflect the degree of stacking orientation of the negative electrode active material particles in the negative electrode sheet.
  • lithium ions are extracted from the positive electrode active material and embedded in the negative electrode active material.
  • the charging speed and cycle life of the ion battery have a great influence. If the ion diffusion coefficient of the positive electrode material is large, the D50 is small, and the OI value of the negative electrode sheet is large, lithium ions will migrate from the inside of the positive electrode active material particles to the outside.
  • the time required is short, and the negative electrode active material particles are preferentially oriented parallel to the negative electrode current collector in the negative electrode diaphragm. At this time, the lithium-ion battery is charged quickly, and the lithium ions are quickly released from the positive electrode active material.
  • the dynamics of the positive and negative electrodes of the lithium-ion battery can be optimized during the fast charging process. Matching ensures that the lithium-ion battery has a high charging capacity, and at the same time ensures that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
  • the migration rate and migration distance of lithium ions in the positive electrode active material match the ability of the negative electrode to accept lithium ions, and the lithium ion battery It can maintain excellent charging ability in the long-term cycle process, and improve the cycle life and safety performance of the battery.
  • the Ds ranges from 10 -10 to 10 -13 cm 2 /S, such as 1 ⁇ 10 -10 cm 2 /S, 2 ⁇ 10 -10 cm 2 /S, 3 ⁇ 10 -10 cm 2 /S, 4 ⁇ 10 -10 cm 2 /S, 5 ⁇ 10 -10 cm 2 /S, 6 ⁇ 10 -10 cm 2 /S, 7 ⁇ 10 -10 cm 2 /S, 8 ⁇ 10 -10 cm 2 /S, 9 ⁇ 10 -10 cm 2 /S, 9.9 ⁇ 10 -10 cm 2 /S, 3 ⁇ 10 -11 cm 2 /S, 4 ⁇ 10 -11 cm 2 /S, 5 ⁇ 10 -11 cm 2 /S, 1 ⁇ 10-12 cm 2 /S, 2 ⁇ 10-12 cm 2 /S, 6 ⁇ 10-12 cm 2 /S, 7 ⁇ 10-12 cm 2 /S, 8 ⁇ 10-12 cm 2 /S, 9 ⁇ 10-12 cm 2 /S, 1 ⁇ 10-13 cm 2 /S, 2 ⁇ 10-13 cm 2 /S, 3 ⁇ 10-13 cm 2 /S
  • Ds if Ds is too small, it is not conducive to the migration of lithium ions in the positive electrode active material, especially at low temperature, the migration rate will further decrease, the kinetic performance of the material will be insufficient, and the battery power and low temperature performance will deteriorate; if Ds is too high Large, on the one hand, it is necessary to increase the proportion of nickel-cobalt precious metals in the positive electrode active material, resulting in increased material design costs and lack of market competitiveness. On the other hand, when Ds is larger, the ion migration rate of the cathode material is faster, the kinetic performance of the cathode active material is excellent, and the battery charging capacity is better.
  • the CD50 ranges from 2 to 15 ⁇ m, such as 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m or 15 ⁇ m.
  • the synthesis cost of the positive electrode material is high and the processing is difficult, and the compacted density of the electrode sheet is relatively low. If it is too large, the migration distance of lithium ions in the positive electrode active material will be too long, resulting in a decrease in the power performance of the material and a deterioration in the charging capacity.
  • the A OI ranges from 5 to 30, such as 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 etc.
  • the processability of the negative electrode will be deteriorated, the energy density will decrease, and the cost of the negative electrode will increase.
  • the A OI value is too large, the lithium intercalation ability of the negative electrode decreases, and the charging process causes lithium ions to precipitate on the surface of the negative electrode to form lithium dendrites, resulting in loss of lithium ion capacity.
  • the continuous growth of lithium ion dendrites consumes too much lithium ions, the capacity rapidly decays during the long-term fast charging cycle, and the battery cycle life decreases.
  • said a can be 0.9, 0.95, 1, 1.05, 1.1, 1.15 or 1.2 etc.
  • said x can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9 etc.
  • said y can be is 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9, etc.
  • the z can be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9, etc.
  • the positive pole piece includes a positive active material, a conductive agent and a binder.
  • the conductive agent includes but is not limited to acetylene black, Ketjen black, carbon nanotubes or graphene
  • the binder includes but not limited to polyvinylidene fluoride or polyvinylidene fluoride. Tetrafluoroethylene, etc.
  • the negative electrode sheet includes a negative electrode active material, a conductive agent and a binder.
  • the conductive agent includes but not limited to acetylene black, Ketjen black, carbon nanotubes or graphene, etc.
  • the binder includes but not limited to styrene-butadiene rubber, carboxymethyl Sodium cellulose or polyacrylic acid, etc.
  • the preparation method of the provided positive electrode sheet and negative electrode sheet which can be obtained by using a conventional homogenate coating method.
  • the source of the provided separator and electrolyte is not limited. Exemplarily, it can be a conventional product used in a lithium-ion battery.
  • the separator includes a woven film, a non-woven fabric , microporous membrane, composite membrane, separator paper or laminated membrane any one or a combination of at least two.
  • the lithium ion battery is a lithium ion power battery.
  • the preparation method of the lithium-ion battery provided in the present disclosure includes but not limited to the winding method and the stacking method, that is, the preparation method of the conventional lithium-ion battery, and the present disclosure is applicable to both.
  • the present disclosure provides a lithium-ion battery, the lithium-ion battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte;
  • the positive pole piece and the negative pole piece satisfy: 0.4 ⁇ (ln Ds) 2 /C D50 /(A OI ) 2 ⁇ 18.2, wherein, Ds is the lithium ion solid phase diffusion coefficient of the positive active material in the positive pole piece, C D50 is the average particle size of the positive electrode active material in the positive electrode sheet, and A OI is the OI value of the negative electrode active material in the negative electrode sheet; the negative electrode active material in the negative electrode sheet includes graphite.
  • the OI value of the negative electrode active material provided is the peak area of the 004 characteristic diffraction peak in the X-ray diffraction pattern of the negative electrode sheet and the area of the 110 characteristic diffraction peak in the X-ray diffraction pattern of the negative electrode sheet. The ratio of the peak areas.
  • Ds represents the degree of difficulty in the intrinsic ion diffusion of the positive electrode material.
  • the ion diffusion coefficient of the positive electrode material is determined, the larger the particle size of the positive electrode material, the longer the time required for diffusion. Therefore, considering the characteristics of the ion diffusion coefficient of different positive electrode materials, it is necessary to adjust the particle size CD50 of the material in order to improve the material rate characteristics;
  • the OI value of the negative electrode sheet can reflect the degree of stacking orientation of the negative electrode active material particles in the negative electrode sheet.
  • lithium ions are extracted from the positive electrode active material and embedded in the negative electrode active material.
  • the charging speed and cycle life of the ion battery have a great influence. If the ion diffusion coefficient of the positive electrode material is large, the D50 is small, and the OI value of the negative electrode sheet is large, lithium ions will migrate from the inside of the positive electrode active material particles to the outside.
  • the time required is short, and the negative electrode active material particles are preferentially oriented parallel to the negative electrode current collector in the negative electrode diaphragm. At this time, the lithium-ion battery is charged quickly, and the lithium ions are quickly released from the positive electrode active material.
  • the dynamics of the positive and negative electrodes of the lithium-ion battery can be optimized during the fast charging process. Matching ensures that the lithium-ion battery has a high charging capacity, and at the same time ensures that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
  • the migration rate and migration distance of lithium ions in the positive electrode active material match the ability of the negative electrode to accept lithium ions, and the lithium ion battery It can maintain excellent charging ability in the long-term cycle process, and improve the cycle life and safety performance of the battery.
  • the Ds ranges from 10 -10 to 10 -13 cm 2 /S.
  • Ds if Ds is too small, it is not conducive to the migration of lithium ions in the positive electrode active material, especially at low temperature, the migration rate will further decrease, the kinetic performance of the material will be insufficient, and the battery power and low temperature performance will deteriorate; if Ds is too high Large, on the one hand, it is necessary to increase the proportion of nickel-cobalt precious metals in the positive electrode active material, resulting in increased material design costs and lack of market competitiveness. On the other hand, when Ds is larger, the ion migration rate of the cathode material is faster, the kinetic performance of the cathode active material is excellent, and the battery charging capacity is better.
  • the range of the CD50 is 2-15 ⁇ m.
  • the synthesis cost of the positive electrode material is high and the processing is difficult, and the compacted density of the electrode sheet is relatively low. If it is too large, the migration distance of lithium ions in the positive electrode active material will be too long, resulting in a decrease in the power performance of the material and a deterioration in the charging capacity.
  • the range of A OI is 5-30.
  • the processability of the negative electrode will be deteriorated, the energy density will decrease, and the cost of the negative electrode will increase.
  • the A OI value is too large, the lithium intercalation ability of the negative electrode decreases, and the charging process causes lithium ions to precipitate on the surface of the negative electrode to form lithium dendrites, resulting in loss of lithium ion capacity.
  • the continuous growth of lithium ion dendrites consumes too much lithium ions, the capacity rapidly decays during the long-term fast charging cycle, and the battery cycle life decreases.
  • the positive pole piece includes a positive active material, a conductive agent and a binder.
  • the conductive agent includes but is not limited to acetylene black, Ketjen black, carbon nanotubes or graphene
  • the binder includes but not limited to polyvinylidene fluoride or polyvinylidene fluoride. Tetrafluoroethylene, etc.
  • the negative electrode sheet includes a negative electrode active material, a conductive agent and a binder.
  • the conductive agent includes but not limited to acetylene black, Ketjen black, carbon nanotubes or graphene, etc.
  • the binder includes but not limited to styrene-butadiene rubber, carboxymethyl Sodium cellulose or polyacrylic acid, etc.
  • the preparation method of the provided positive electrode sheet and negative electrode sheet which can be obtained by using a conventional homogenate coating method.
  • the source of the provided separator and electrolyte is not limited. Exemplarily, it can be a conventional product used in a lithium-ion battery.
  • the separator includes a woven film, a non-woven fabric , microporous membrane, composite membrane, separator paper or laminated membrane any one or a combination of at least two.
  • the lithium ion battery is a lithium ion power battery.
  • a method for preparing a lithium-ion battery includes:
  • the positive pole piece, separator, and negative pole piece are prepared into stacked cores by a Z-shaped lamination machine, and then the lithium-ion battery is obtained through a tab welding machine, a soft pack battery side seal, top seal, liquid injection, and pre-sealing. .
  • a method for preparing a positive pole piece includes:
  • a method for preparing a negative electrode sheet includes:
  • the negative electrode active material, the conductive agent and the binder are mixed, a solvent is added, homogenized, coated on the surface of the negative electrode current collector, dried and rolled to obtain a negative electrode sheet.
  • This embodiment provides a lithium-ion battery, the lithium-ion battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte;
  • Ds is the lithium ion solid phase diffusion coefficient in the positive pole piece
  • CD50 is the average particle size of the positive active material in the positive pole piece
  • a OI is the OI value of the negative electrode active material in the negative electrode sheet, the result of (ln Ds) 2 /C D50 /(A OI ) 2 ;
  • the positive active material in the positive pole piece is NCM111, the conductive agent is acetylene black, and the binder is polyvinylidene fluoride;
  • the negative electrode active material in the negative electrode sheet is artificial graphite, the conductive agent is carbon nanotubes, and the binding agent is styrene-butadiene rubber and sodium carboxymethyl cellulose;
  • the diaphragm is a polypropylene film, and the electrolyte is (1 mol/L LiPF 6 , EC/EMC/MA).
  • the mass ratio of NCM11, acetylene black and polyvinylidene fluoride is 96:2:2;
  • the mass ratio of artificial graphite, carbon nanotubes, styrene-butadiene rubber and sodium carboxymethyl cellulose is 95:2:1.5:1.5.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, CD50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its Ds, C D50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • This embodiment provides a lithium ion battery, and its Ds, C D50 , A OI and (ln Ds) 2 /C D50 /(A OI ) 2 are also shown in Table 1.
  • the lithium-ion batteries provided in Examples 1-9 and Comparative Examples 1-2 were characterized for kinetic performance, rate performance and cycle performance, and the test conditions were as follows:
  • Cycle performance test At 25°C, the lithium-ion batteries prepared in the examples and comparative examples were charged at a rate of 3C and discharged at a rate of 1C, and a full-full-discharge cycle test was performed until the capacity of the lithium-ion battery decayed to the initial value. 80% of the capacity, record the number of cycles.
  • the lithium ion battery provided by the present disclosure satisfies 1.5 ⁇ (ln Ds) 2 /C D50 /(A OI ) 2 ⁇ 18.2 Under certain conditions, it can be realized that after the negative electrode is fully charged at 4C and fully discharged at 1C for 10 times, the lithium-ion battery will not decompose lithium when it is fully charged at 4C, and when the battery is charged at a rate of 3C and discharged at a rate of 1C, at least It will decay to 80% of the initial capacity after 2000 cycles.
  • This disclosure can make the dynamics of the positive and negative electrodes of the lithium-ion battery achieve optimal matching during the fast charging process by regulating the relationship between Ds, CD50 in the positive electrode of the lithium-ion battery, and A OI in the negative electrode, ensuring that the lithium-ion battery has High charging capacity, while ensuring that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本公开提供一种锂离子电池。锂离子电池的正极极片与负极极片满足:0.4<(ln Ds) 2/C D50/(A OI) 2<18.2。通过调控锂离子电池正负极的关系,使电池在快速充电过程中正、负极的动力学达到最优匹配,保证电池具有较高的充电能力,还保证电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。

Description

一种锂离子电池 技术领域
本公开涉及电池领域,例如涉及一种锂离子电池。
背景技术
锂离子电池具有能量密度高、循环寿命长、安全性能好等优点。随着锂离子电池市场的逐渐增加,消费者对锂离子电池的快充性能和能量密度要求越来越高。所以,开发能量密度较高,同时具备快速充电能力的锂离子电池一直是研发人员关注的方向。
锂离子电池的性能与其正负极活性材料密切相关,选择高质量的正负极活性材料对保证锂离子电池的高安全性、大充电速度以及长期循环使用可靠性有关键性的影响。现有技术往往通过降低涂布重量、增加导电剂用量等方式来实现大的充电速度,但这些方法往往会导致锂离子电池能量密度大幅降低,锂离子电池的巡航里程难以满足要求。如果对不具有快速充电能力的锂离子电池强制进行快速充电,负极表面很容易长出锂枝晶,锂离子电池容量损失严重,而且在锂离子电池使用过程中锂枝晶不断生长还可能刺穿隔离膜,给锂离子电池带来安全隐患。因此,如何提升锂离子电池的快充性能,同时保证其良好的循环性能和安全性能,是亟待解决的技术问题。
发明内容
本公开提供一种锂离子电池。
本公开在一实施例中提供一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
所述正极极片与负极极片满足:0.4<(ln Ds) 2/C D50/(A OI) 2<18.2,例如0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或18.1等,其中,Ds为正极极片中正极活性物质的锂离子固相扩散系数,C D50为正极极片中的正极活性物质的平均粒度,A OI为负极极片中的负极活性物质的OI值;所述负极极片中的负极活性物质包括石墨。
本公开提供的一实施例中,所提供的负极活性物质的OI值为负极极片的X射线衍射图谱中004特征衍射峰的峰面积与负极极片的X射线衍射图谱中110特征衍射峰的峰面积的比值。
Ds表征正极材料本征的离子扩散难以程度,离子扩散系数越大,说明材料 功率特性越好,锂离子容易从正极材料嵌入和脱出。而正极材料离子扩散系数确定的情况下,正极材料粒度越大,扩散所需时间越长,因此结合不同正极材料离子扩散系数特点,需针对性调整材料粒度C D50,以提升材料倍率特性;
负极极片的OI值可以反映负极极片中负极活性材料颗粒的堆积取向程度,充电过程中,锂离子从正极活性材料中脱出,在负极活性材料中嵌入,因此负极极片的OI值对锂离子电池的充电速度以及循环使用寿命均有很大影响,如果正极材料的离子扩散系数较大,D50较小,负极极片的OI值较大,则锂离子从正极活性材料颗粒内部迁移到外部所需时间较短,负极活性材料颗粒在负极膜片中发生平行于负极集流体的择优取向,此时对锂离子电池进行快速充电,锂离子从正极活性材料中快速脱出后来不及在负极活性材料中嵌入,会导致部分锂离子直接在负极表面还原析出而形成锂枝晶,造成锂离子电池容量损失。此外,锂离子电池循环充放电过程中,锂枝晶不断生长还会刺穿隔离膜,形成较大的安全隐患,且锂枝晶不断生长还消耗了过多的锂离子,锂离子电池循环使用过程中容量还会过快衰减。
因此,本公开提供的一实施例中,通过调控锂离子电池正极中的Ds、C D50和负极中的A OI的关系,可以使锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。
在一实施例中,1.5<(ln Ds) 2/C D50/(A OI) 2<18.2,例如1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5或15等。
本公开提供的一实施例中,(ln Ds) 2/C D50/(A OI) 2大于1.5时,锂离子在正极活性材料迁移速率及迁移距离与负极接受锂离子能力相匹配,锂离子电池可以在长期循环过程中保持优异的充电能力,提高电池循环寿命和安全性能。
在一实施例中,所述Ds的范围为10 -10~10 -13cm 2/S,例如1×10 -10cm 2/S、2×10 -10cm 2/S、3×10 -10cm 2/S、4×10 -10cm 2/S、5×10 -10cm 2/S、6×10 -10cm 2/S、7×10 -10cm 2/S、8×10 -10cm 2/S、9×10 -10cm 2/S、9.9×10 -10cm 2/S、3×10 -11cm 2/S、4×10 -11cm 2/S、5×10 -11cm 2/S、1×10 -12cm 2/S、2×10 -12cm 2/S、6×10 -12cm 2/S、7×10 -12cm 2/S、8×10 -12cm 2/S、9×10 -12cm 2/S、1×10 -13cm 2/S、2×10 -13cm 2/S、3×10 -13cm 2/S、4×10 -13cm 2/S、5×10 -13cm 2/S、6×10 -13cm 2/S、7×10 -13cm 2/S、8×10 -13cm 2/S、9×10 -13cm 2/S或9.9×10 -13cm 2/S等。
本公开提供的一实施例中,Ds过小,不利于锂离子在正极活性材料中的迁移,尤其是低温下迁移速率进一步下降,材料动力学性能不足,电池功率及低温性能变差;Ds过大,一方面需要增加镍钴贵金属在正极活性材料中的比例,导致材料设计成本增加,缺乏市场竞争力。另一方面当Ds较大时,正极材料离子迁移速率较快,正极活性材料动力学性能优异,电池充电能力较优。
在一实施例中,所述C D50的范围为2~15μm,例如2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm或15μm等。
本公开提供的一实施例中,C D50太小,正极材料合成成本高且加工困难,极片压实密度偏低。而太大,又会导致锂离子在正极活性材料中迁移距离过长,导致材料功率性能下降,充电能力变差。
在一实施例中,所述A OI的范围为5~30,例如5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30等。
本公开提供的一实施例中,A OI值太小,会导致负极加工性能变差,能量密度下降,负极成本增加。A OI值太大时,负极嵌锂能力下降,充电过程导致锂离子在负极表面析出而形成锂枝晶,造成锂离子容量损失。此外,锂离子枝晶不断生长消耗过多的锂离子,长期快充循环过程容量快速衰减,电池循环寿命下降。
在一实施例中,所述正极极片中的正极活性物质的化学式为Li aNi xCo yM 1-x-yO 2,其中0.9≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,M包括Mn、Al或W中任意一种或至少两种的组合。
例如,所述a可以为0.9、0.95、1、1.05、1.1、1.15或1.2等,所述x可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等,所述y可以为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等,所述z可以为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
在一实施例中,所述正极极片包括正极活性物质、导电剂和粘结剂。
本公开提供的一实施例中,所提供正极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于聚偏氟乙烯或聚四氟乙烯等
在一实施例中,所述负极极片包括负极活性物质、导电剂和粘结剂。
本公开提供的一实施例中,所提供负极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于丁苯橡胶,羧甲基纤维素钠或聚丙烯酸等。
本公开提供的一实施例中,对所提供的正极极片和负极极片的制备方法不作限定,采用常规的匀浆涂覆法即可得到。
本公开提供的一实施例中,对所提供的隔膜以及电解液的来源不作限定,示例性地,可以为常规的应用于锂离子电池中的产品,例如所述隔膜包括织造膜、无纺布、微孔膜、复合膜、隔膜纸或碾压膜中的任意一种或至少两种的组合。
在一实施例中,所述锂离子电池为锂离子动力电池。
示例性地,本公开所提供的锂离子电池的制备方法包括但不限于卷绕法和叠片法,即常规锂离子电池的制备方法,本公开均适用。
具体实施方式
本公开在一实施例中提供一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
所述正极极片与负极极片满足:0.4<(ln Ds) 2/C D50/(A OI) 2<18.2,其中,Ds为正极极片中正极活性物质的锂离子固相扩散系数,C D50为正极极片中的正极活性物质的平均粒度,A OI为负极极片中的负极活性物质的OI值;所述负极极片中的负极活性物质包括石墨。
本公开提供的一实施例中,所提供的负极活性物质的OI值为负极极片的X射线衍射图谱中004特征衍射峰的峰面积与负极极片的X射线衍射图谱中110特征衍射峰的峰面积的比值。
Ds表征正极材料本征的离子扩散难以程度,离子扩散系数越大,说明材料功率特性越好,锂离子容易从正极材料嵌入和脱出。而正极材料离子扩散系数确定的情况下,正极材料粒度越大,扩散所需时间越长,因此结合不同正极材料离子扩散系数特点,需针对性调整材料粒度C D50,以提升材料倍率特性;
负极极片的OI值可以反映负极极片中负极活性材料颗粒的堆积取向程度,充电过程中,锂离子从正极活性材料中脱出,在负极活性材料中嵌入,因此负极极片的OI值对锂离子电池的充电速度以及循环使用寿命均有很大影响,如果正极材料的离子扩散系数较大,D50较小,负极极片的OI值较大,则锂离子从 正极活性材料颗粒内部迁移到外部所需时间较短,负极活性材料颗粒在负极膜片中发生平行于负极集流体的择优取向,此时对锂离子电池进行快速充电,锂离子从正极活性材料中快速脱出后来不及在负极活性材料中嵌入,会导致部分锂离子直接在负极表面还原析出而形成锂枝晶,造成锂离子电池容量损失。此外,锂离子电池循环充放电过程中,锂枝晶不断生长还会刺穿隔离膜,形成较大的安全隐患,且锂枝晶不断生长还消耗了过多的锂离子,锂离子电池循环使用过程中容量还会过快衰减。
因此,本公开提供的一实施例中,通过调控锂离子电池正极中的Ds、C D50和负极中的A OI的关系,可以使锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。
在一实施例中,1.5<(ln Ds) 2/C D50/(A OI) 2<18.2。
本公开提供的一实施例中,(ln Ds) 2/C D50/(A OI) 2大于1.5时,锂离子在正极活性材料迁移速率及迁移距离与负极接受锂离子能力相匹配,锂离子电池可以在长期循环过程中保持优异的充电能力,提高电池循环寿命和安全性能。
在一实施例中,所述Ds的范围为10 -10~10 -13cm 2/S。
本公开提供的一实施例中,Ds过小,不利于锂离子在正极活性材料中的迁移,尤其是低温下迁移速率进一步下降,材料动力学性能不足,电池功率及低温性能变差;Ds过大,一方面需要增加镍钴贵金属在正极活性材料中的比例,导致材料设计成本增加,缺乏市场竞争力。另一方面当Ds较大时,正极材料离子迁移速率较快,正极活性材料动力学性能优异,电池充电能力较优。
在一实施例中,所述C D50的范围为2~15μm。
本公开提供的一实施例中,C D50太小,正极材料合成成本高且加工困难,极片压实密度偏低。而太大,又会导致锂离子在正极活性材料中迁移距离过长,导致材料功率性能下降,充电能力变差。
在一实施例中,所述A OI的范围为5~30。
本公开提供的一实施例中,A OI值太小,会导致负极加工性能变差,能量密度下降,负极成本增加。A OI值太大时,负极嵌锂能力下降,充电过程导致锂离子在负极表面析出而形成锂枝晶,造成锂离子容量损失。此外,锂离子枝晶不断生长消耗过多的锂离子,长期快充循环过程容量快速衰减,电池循环寿命下 降。
在一实施例中,所述正极极片中的正极活性物质的化学式为Li aNi xCo yM 1-x-yO 2,其中0.9≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,M包括Mn、Al或W中任意一种或至少两种的组合。
在一实施例中,所述正极极片包括正极活性物质、导电剂和粘结剂。
本公开提供的一实施例中,所提供正极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于聚偏氟乙烯或聚四氟乙烯等
在一实施例中,所述负极极片包括负极活性物质、导电剂和粘结剂。
本公开提供的一实施例中,所提供负极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于丁苯橡胶,羧甲基纤维素钠或聚丙烯酸等。
本公开提供的一实施例中,对所提供的正极极片和负极极片的制备方法不作限定,采用常规的匀浆涂覆法即可得到。
本公开提供的一实施例中,对所提供的隔膜以及电解液的来源不作限定,示例性地,可以为常规的应用于锂离子电池中的产品,例如所述隔膜包括织造膜、无纺布、微孔膜、复合膜、隔膜纸或碾压膜中的任意一种或至少两种的组合。
在一实施例中,所述锂离子电池为锂离子动力电池。
本公开在一实施例中,提供一种锂离子电池的制备方法,所述制备方法包括:
将正极极片、隔膜、负极极片通过Z字型叠片机制备成叠芯,而后通过极耳焊机、软包电池侧封、顶封、注液、预封,得到所述锂离子电池。
本公开在一实施例中,还提供一种正极极片的制备方法,所述制备方法包括:
将正极活性物质、导电剂和粘结剂混合,加入溶剂,匀浆,涂覆于正极集流体表面,干燥辊压后得到正极极片;
本公开在一实施例中,还提供一种负极极片的制备方法,所述制备方法包括:
将负极活性物质、导电剂和粘结剂混合,加入溶剂,匀浆,涂覆于负极集流体表面,干燥辊压后得到负极极片。
实施例1
本实施例提供一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
所述正极极片与负极极片中的下述数值如表1所示:Ds为正极极片中的锂离子固相扩散系数,C D50为正极极片中的正极活性物质的平均粒度,A OI为负极极片中的负极活性物质的OI值,(ln Ds) 2/C D50/(A OI) 2的结果;
所述正极极片中的正极活性物质为NCM111,导电剂为乙炔黑,粘结剂为聚偏氟乙烯;
所述负极极片中的负极活性物质为人造石墨,导电剂为碳纳米管,粘结剂为丁苯橡胶和羧甲基纤维素钠;
所述隔膜为聚丙烯膜,电解液为(1mol/L的LiPF 6,EC/EMC/MA)。
所述锂离子电池(包括正极极片与负极极片)的制备方法依照具体实施方式进行:
所述正极极片中,NCM11、乙炔黑和聚偏氟乙烯的质量比为96:2:2;
所述负极极片中,人造石墨、、碳纳米管、丁苯橡胶和羧甲基纤维素钠的质量比为95:2:1.5:1.5。
实施例2
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例3
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例4
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和 (ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例5
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例6
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例7
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例8
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例9
本实施例提供一种锂离子电池,其正极活性物质、Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
对比例1
本实施例提供一种锂离子电池,其Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
对比例2
本实施例提供一种锂离子电池,其Ds、C D50、A OI和(ln Ds) 2/C D50/(A OI) 2也如表1所示。
其余制备方法与参数与实施例1保持一致。
将实施例1-9与对比例1-2所提供的锂离子电池进行动力学性能表征、倍率性能和循环性能表征,测试条件如下:
(1)动力学性能测试:在25℃下,将实施例和对比例制备得到的锂离子电池以4C满充、以1C满放重复10次后,再将锂离子电池以4C满充,然后拆解出负极极片并观察负极极片表面的析锂情况。其中,负极表面析锂区域面积小于5%认为是轻微析锂,负极表面析锂区域面积为5~40%认为是中度析锂,负极表面析锂区域面积大于40%认为是严重析锂。
(2)循环性能测试:在25℃下,将实施例和对比例制备得到的锂离子电池以3C倍率充电、以1C倍率放电,进行满充满放循环测试,直至锂离子电池的容量衰减至初始容量的80%,记录循环圈数。
其结果如表1所示。
表1
Figure PCTCN2022086542-appb-000001
Figure PCTCN2022086542-appb-000002
从实施例1-3、实施例4-6与实施例7-9的数据结果可知,当(ln Ds) 2/C D50/(A OI) 2大于1.5时,无论正极活性物质如何变化,电池的性能均能保证快充循环后不析锂。正极材料脱出锂离子能力和负极接受锂离子能力相匹配,电池保持优异的循环性能,本公开所提供的锂离子电池,满足1.5<(ln Ds) 2/C D50/(A OI) 2<18.2条件时,可以实现负极在4C满充、以1C满放重复10次后,再将锂离子电池以4C满充的情况下不析锂,且电池以3C倍率充电、以1C倍率放电时,至少循环2000周,才会衰减至初始容量的80%。
从实施例1-3与对比例1和2的数据结果可知,(ln Ds) 2/C D50/(A OI) 2过小或者过大,均不利于电池长期循环性能,过小时,锂离子从正极材料脱出速率较慢或者负极材料嵌锂能力不足,进而快充循环过程负极表面出现析锂,长期循环导致容量衰减。当比值过大时,一般为正极材料粒度偏小,或者负极OI值偏低,虽然不会导致负极析锂,但是由于正极粒度偏小,负极材料循环性能下降,进而导致长期快充循环衰减加速。
结论:本公开通过调控锂离子电池正极中的Ds、C D50和负极中的A OI的关系,可以使锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。

Claims (10)

  1. 一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
    所述正极极片与负极极片满足:0.4<(ln Ds) 2/C D50/(A OI) 2<18.2,其中,Ds为正极极片中正极活性物质的锂离子固相扩散系数,C D50为正极极片中的正极活性物质的平均粒度,A OI为负极极片中的负极活性物质的OI值;
    所述负极极片中的负极活性物质包括石墨。
  2. 如权利要求1所述锂离子电池,其中,1.5<(ln Ds) 2/C D50/(A OI) 2<18.2。
  3. 如权利要求1或2所述的锂离子电池,其中,所述Ds的范围为10 -10~10 -13cm 2/S。
  4. 如权利要求1-3任一项所述的锂离子电池,其中,所述C D50的范围为2~15μm。
  5. 如权利要求1-4任一项所述的锂离子电池,其中,所述A OI的范围为5~30。
  6. 如权利要求1-5任一项所述锂离子电池,其中,所述正极极片中的正极活性物质的化学式为Li aNi xCo yM 1-x-yO 2,其中0.9≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,M包括Mn、Al或W中任意一种或至少两种的组合。
  7. 如权利要求1-6任一项所述的锂离子电池,其中,所述正极极片包括正极活性物质、导电剂和粘结剂。
  8. 如权利要求1-7任一项所述的锂离子电池,其中,所述负极极片包括负极活性物质、导电剂和粘结剂。
  9. 如权利要求1-8任一项所述的锂离子电池,其中,所述隔膜包括织造膜、无纺布、微孔膜、复合膜、隔膜纸或碾压膜中的任意一种或至少两种的组合。
  10. 如权利要求1-9任一项所述的锂离子电池,其中,所述锂离子电池为锂 离子动力电池。
PCT/CN2022/086542 2021-12-13 2022-04-13 一种锂离子电池 WO2023108964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22893994.8A EP4235847A1 (en) 2021-12-13 2022-04-13 Lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111523014.8 2021-12-13
CN202111523014.8A CN114242932B (zh) 2021-12-13 2021-12-13 一种锂离子电池

Publications (1)

Publication Number Publication Date
WO2023108964A1 true WO2023108964A1 (zh) 2023-06-22

Family

ID=80755539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086542 WO2023108964A1 (zh) 2021-12-13 2022-04-13 一种锂离子电池

Country Status (3)

Country Link
EP (1) EP4235847A1 (zh)
CN (1) CN114242932B (zh)
WO (1) WO2023108964A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242932B (zh) * 2021-12-13 2024-01-30 蜂巢能源科技股份有限公司 一种锂离子电池
CN115101713B (zh) * 2022-08-26 2022-11-11 蜂巢能源科技股份有限公司 一种锂离子电池极片及电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808072A (zh) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 锂离子电池
CN108832075A (zh) * 2018-06-29 2018-11-16 宁德时代新能源科技股份有限公司 锂离子电池
CN112750976A (zh) * 2020-12-29 2021-05-04 珠海冠宇电池股份有限公司 锂电池电芯及锂离子电池
CN114242932A (zh) * 2021-12-13 2022-03-25 蜂巢能源科技股份有限公司 一种锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064728B2 (ja) * 2005-06-27 2012-10-31 三菱化学株式会社 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
EP1906472B1 (en) * 2005-06-27 2013-08-21 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
CN112151796A (zh) * 2020-09-21 2020-12-29 江苏塔菲尔新能源科技股份有限公司 一种快充石墨及电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808072A (zh) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 锂离子电池
CN108832075A (zh) * 2018-06-29 2018-11-16 宁德时代新能源科技股份有限公司 锂离子电池
CN112750976A (zh) * 2020-12-29 2021-05-04 珠海冠宇电池股份有限公司 锂电池电芯及锂离子电池
CN114242932A (zh) * 2021-12-13 2022-03-25 蜂巢能源科技股份有限公司 一种锂离子电池

Also Published As

Publication number Publication date
CN114242932B (zh) 2024-01-30
CN114242932A (zh) 2022-03-25
EP4235847A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2021223655A1 (zh) 一种正极片、制备方法及包含其的锂离子电池
CN111969214A (zh) 一种异型结构的正极片及包括该正极片的锂离子电池
CN113410432A (zh) 一种负极片、制备方法及包含其的锂离子电池
WO2020134780A1 (zh) 一种正极材料及其制备方法和用途
JP2022009746A (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JPWO2018225515A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2023108964A1 (zh) 一种锂离子电池
CN110890525B (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
WO2024109530A1 (zh) 负极极片及包含其的二次电池
CN112234212A (zh) 一种正极极片及包括该正极极片的锂离子电池
JP7456671B2 (ja) リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
JP7070321B2 (ja) 全固体電池
WO2023165339A1 (zh) 一种负极片和电池
WO2023108963A1 (zh) 一种锂离子电池
CN114068857A (zh) 一种电极片的制备方法及其应用
JP7466981B2 (ja) 負極及びこれを含む二次電池
JP2023528771A (ja) 正極およびこれを含むリチウム二次電池
JP2023538082A (ja) 負極およびこれを含む二次電池
JP2022535048A (ja) 複合負極活物質、その製造方法、これを含む負極、および二次電池
CN116093247A (zh) 一种极片及锂离子电池
JP3582823B2 (ja) 非水系二次電池用正極および非水系二次電池
CN115602787A (zh) 一种负极极片及锂离子电池
CN112768686A (zh) 一种正极材料、正极片、锂离子电池
CN113903886B (zh) 一种负极片及包括该负极片的锂离子电池
CN116632368B (zh) 二次电池及电子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022893994

Country of ref document: EP

Effective date: 20230526