WO2023100980A1 - 半導体モジュール、電力変換装置および電力変換装置の製造方法 - Google Patents

半導体モジュール、電力変換装置および電力変換装置の製造方法 Download PDF

Info

Publication number
WO2023100980A1
WO2023100980A1 PCT/JP2022/044377 JP2022044377W WO2023100980A1 WO 2023100980 A1 WO2023100980 A1 WO 2023100980A1 JP 2022044377 W JP2022044377 W JP 2022044377W WO 2023100980 A1 WO2023100980 A1 WO 2023100980A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
semiconductor module
protruding
power
molding material
Prior art date
Application number
PCT/JP2022/044377
Other languages
English (en)
French (fr)
Inventor
恭生 鶴岡
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023100980A1 publication Critical patent/WO2023100980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a semiconductor module, a power converter, and a method of manufacturing the power converter.
  • IGBT Insulated Gate Bipolar Transistor
  • Patent Document 1 discloses a semiconductor module used in a power converter. Specifically, in Patent Document 1, a circuit board on which six switching elements and six free wheel diodes are mounted, and a cooling plate bonded to the circuit board via a bonding material such as solder are combined into a mold resin. A semiconductor module integrally covered with is disclosed.
  • the conventional technology described above has room for further improvement in terms of increasing the productivity of the power converter.
  • the present disclosure provides a technology that can improve the productivity of power converters.
  • a semiconductor module includes an insulating plate, a circuit section, a power terminal, and a molding material.
  • the circuit section includes a wiring layer arranged on the insulating plate and at least one switching element mounted on the wiring layer.
  • the power terminal is connected to the circuit section.
  • the molding material covers at least part of each of the insulating plate, the circuit section, and the power terminal.
  • the power terminal protrudes from the first side surface of the molding material and from the second side surface opposite to the first side surface in a plan view of the insulating plate.
  • FIG. 1 is a diagram showing the circuit configuration of a semiconductor module according to an embodiment.
  • FIG. 2 is a schematic plan view of the semiconductor module according to the embodiment.
  • FIG. 3 is a schematic side view of the semiconductor module according to the embodiment. 4 is a schematic cross-sectional view taken along line IV-IV shown in FIG. 3.
  • FIG. 5 is a diagram showing the circuit configuration of the power converter according to the embodiment.
  • FIG. 6 is a schematic plan view of the power converter according to the embodiment.
  • FIG. 7 is a schematic side view of the power converter according to the embodiment.
  • FIG. 8 is a flow chart showing the manufacturing process of the power conversion device according to the embodiment.
  • FIG. 9 is a schematic side perspective view of a semiconductor module according to a first modification.
  • FIG. 9 is a schematic side perspective view of a semiconductor module according to a first modification.
  • FIG. 10 is a schematic side perspective view of a semiconductor module according to a second modification.
  • FIG. 11 is a schematic side view of a power conversion device according to a second modification.
  • FIG. 12 is a schematic side see-through view of a semiconductor module according to a third modification.
  • FIG. 13 is a schematic side view of a power converter according to a third modified example.
  • Embodiments for implementing a semiconductor module, a power conversion device, and a method for manufacturing a power conversion device according to the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited by this embodiment. Further, each embodiment can be appropriately combined within a range that does not contradict the processing contents. Also, in each of the following embodiments, the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the semiconductor module described in Patent Document 1 includes a circuit board on which six switching elements and six free wheel diodes are mounted, and a cooling plate bonded to the circuit board with a bonding material such as solder. It has an integrated configuration.
  • a semiconductor module having such a configuration requires a relatively large mold, resulting in a high mold cost.
  • the installation space of the molding device is likely to be restricted, and it may be difficult to efficiently arrange the molding device in a limited installation place such as a factory.
  • one of the six switching elements integrated with the mold resin becomes defective, the remaining five switching elements are also discarded, resulting in a low yield.
  • FIG. 1 is a diagram showing the circuit configuration of a semiconductor module according to an embodiment.
  • the semiconductor module according to the embodiment constitutes part of a power converter that converts DC power supplied from a DC power supply into AC power.
  • the semiconductor module 1 includes a power supply terminal 3, a circuit section 5, and an input/output terminal 7.
  • the power supply terminal 3 is a terminal connected to a DC power supply (not shown). Specifically, the power supply terminal 3 includes a positive terminal 31 connected to the positive side of the DC power supply and a negative terminal 32 connected to the negative side. In an embodiment, the power terminals 3 comprise two positive terminals 31 and two negative terminals 32 . This point will be described later with reference to FIG. 4 and the like.
  • the circuit section 5 includes two switching elements 51 and two diodes 52 .
  • Two switching elements 51 are connected in series between the positive terminal 31 and the negative terminal 32 . Also, each of the two diodes 52 is connected in anti-parallel to each of the two switching elements 51 .
  • the switching element 51 is, for example, an IGBT.
  • a diode 52 is a freewheeling diode for protecting the IGBT.
  • the switching element 51 may be a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or a GTO (Gate Turn-Off) thyristor.
  • the input/output terminal 7 includes a load terminal 71 and a control terminal 72 .
  • the load terminal 71 is an output terminal for outputting AC power to a load such as a motor.
  • a load terminal 71 is connected to a connection node between two switching elements 51 .
  • the control terminal 72 is an input terminal to which a drive signal for driving the switching element 51 is input.
  • the semiconductor module 1 configured as described above alternately turns on the two switching elements 51 in accordance with the drive signal input from the control terminal 72, thereby driving the direct current input between the positive terminal 31 and the negative terminal 32.
  • the electric power is converted into AC power and output from the load terminal 71 .
  • FIG. 2 is a schematic plan view of the semiconductor module 1 according to the embodiment.
  • FIG. 3 is a schematic side view of the semiconductor module 1 according to the embodiment.
  • 4 is a schematic cross-sectional view taken along line IV-IV shown in FIG. 3.
  • FIG. 2 is a schematic plan view of the semiconductor module 1 according to the embodiment.
  • FIG. 3 is a schematic side view of the semiconductor module 1 according to the embodiment.
  • 4 is a schematic cross-sectional view taken along line IV-IV shown in FIG. 3.
  • the semiconductor module 1 further includes an insulating plate 2, a molding material 4, and an alignment mark 8. As shown in FIGS. 2 and 3, the semiconductor module 1 further includes an insulating plate 2, a molding material 4, and an alignment mark 8. As shown in FIGS.
  • the insulating plate 2 is a plate-like member having a square shape in plan view, and has a first principal surface, a second principal surface located on the opposite side of the first principal surface, and the first principal surface and the second principal surface. It has multiple sides that connect.
  • the insulating plate 2 is made of an insulating material.
  • the insulating plate 2 is made of Al 2 O 3 (alumina), AlN (aluminum nitride), SiN (silicon nitride), or the like.
  • a wiring layer 53 is provided on the first main surface (here, the upper surface) of the insulating plate 2 .
  • the wiring layer 53 forms part of the circuit section 5 .
  • Switching element 51 and diode 52 are mounted on wiring layer 53 .
  • a conductive layer 23 is provided on the second main surface (here, the lower surface) of the insulating plate 2 .
  • the insulating plate 2, the wiring layer 53 and the conductive layer 23 are, for example, DCB (Direct Copper Bonding) substrates.
  • the wiring layer 53 and the conductive layer 23 are made of Cu (copper).
  • the insulating plate 2, the wiring layer 53 and the conductive layer 23 may be a DAB (Direct Aluminum Bonding) substrate in which the wiring layer 53 and the conductive layer 23 are made of Al (aluminum).
  • the insulating plate 2, the wiring layer 53 and the conductive layer 23 may be an AMB (Active Metal Brazing) substrate.
  • the molding material 4 is an insulating sealing member that covers at least part of each of the insulating plate 2, the circuit section 5, and the power supply terminal 3. Mold material 4 is made of, for example, resin such as epoxy resin.
  • the molding material 4 has a quadrangular shape when viewed from above in a direction perpendicular to the insulating plate 2 .
  • the four side surfaces of the molding material 4 are hereinafter referred to as a first side surface 41, a second side surface 42, a third side surface 43 and a fourth side surface 44, respectively.
  • the second side 42 is a side opposite to the first side 41
  • the fourth side 44 is a side opposite to the third side 43 .
  • the circuit section 5 is composed of two switching elements 51, two diodes 52, a wiring layer 53, a bus bar 54, and the like. Two switching elements 51 and two diodes 52 are electrically connected by wiring layer 53, bus bar 54 and the like so as to implement the circuit configuration of circuit section 5 shown in FIG.
  • FIG. 4 shows an example in which the positive terminal 31 and the negative terminal 32 are connected to the wiring layer 53 of the circuit section 5, the positive terminal 31 and the negative terminal 32 are connected to the bus bar 54. Alternatively, it may be connected to the switching element 51 or the diode 52 .
  • the two positive terminals 31 are electrically connected to each other via the wiring layer 53, for example.
  • the two negative terminals 32 are also electrically connected via the wiring layer 53, for example.
  • Two of the plurality of control terminals 72 are input terminals to which drive signals for driving the switching elements 51 are input.
  • the plurality of control terminals 72 may include, for example, output terminals for extracting signals output from temperature sensors, current sensors, or the like (not shown).
  • an example in which the semiconductor module 1 has five control terminals 72 is shown.
  • the number of control terminals 72 is not limited to five.
  • the load terminal 71 protrudes from the third side surface 43 of the molding material 4 .
  • a plurality of control terminals 72 protrude from the fourth side surface 44 of the molding material 4 .
  • the load terminal 71 and the plurality of control terminals 72 protrude from surfaces other than the first side surface 41 and the second side surface 42 of the molding material 4 .
  • the molding material 4 covers the first main surface of the insulating plate 2 not entirely but partially. In other words, the first main surface of insulating plate 2 and wiring layer 53 located on the first main surface are partially exposed from molding material 4 . In the example shown in FIG. 2, the first main surface of the insulating plate 2 and the wiring layer 53 are exposed from the molding material 4 at both ends in the X-axis direction.
  • FIG. 2 shows an example in which the molding material 4 reaches the first main surface of the insulating plate 2 and both ends of the wiring layer 53 in the Y-axis direction, the molding material 4 is not necessarily insulating. It does not have to reach both ends of the first main surface of the plate 2 and the wiring layer 53 in the Y-axis direction.
  • the alignment mark 8 is provided in a region exposed from the molding material 4 on the first main surface of the insulating plate 2 .
  • the alignment mark 8 may be provided on the wiring layer 53 exposed from the molding material 4 .
  • the alignment mark 8 may be a part of the wiring pattern, or may be a pattern formed on the wiring layer 53 separately from the wiring pattern.
  • the alignment mark 8 may be, for example, a through hole penetrating through the insulating plate 2 .
  • the alignment mark 8 is provided at a position that does not overlap with the power supply terminal 3, the load terminal 71, the control terminal 72, etc. in plan view.
  • the alignment mark 8 is used for positioning when the semiconductor module 1 is arranged on the base plate 111 in the manufacturing process of the power conversion device 100, which will be described later, but this point will be described later. Note that the shape of the alignment mark 8 is not limited to that illustrated.
  • the two positive terminals 31 provided in the semiconductor module 1 protrude from the first side surface 41 and the opposite second side surface 42 of the molding material 4, respectively.
  • the two negative terminals 32 of the semiconductor module 1 also protrude from the first side surface 41 and the opposite second side surface 42 of the molding material 4 .
  • the positive electrode terminal 31 protruding from the first side surface 41 and the positive electrode terminal 31 protruding from the second side surface 42 are arranged along the direction from one side to the other of the first side surface 41 and the second side surface 42 (here, the Y-axis direction). It has a first surface and a second surface opposite the first surface.
  • the first surface may be the bottom surface of the positive terminal 31 .
  • the second surface is the top surface of the positive electrode terminal 31 .
  • the first surface may be the left side surface of the positive electrode terminal 31 .
  • the second surface is the right side surface of the positive electrode terminal 31 .
  • the first surface may be the upper surface of the positive electrode terminal 31 or the right side surface.
  • the negative electrode terminal 32 protruding from the first side surface 41 and the negative electrode terminal 32 protruding from the second side surface 42 are arranged between the third surface and the third surface along the direction from one side to the other of the first side surface 41 and the second side surface 42 . and a fourth surface located opposite the surface.
  • the third surface may be the bottom surface of the negative terminal 32 .
  • the fourth surface is the top surface of the negative terminal 32 .
  • the first surface may be the left side surface of the negative terminal 32 .
  • the second surface is the right side surface of the negative terminal 32 .
  • the first surface may be the upper surface of the negative terminal 32 or the right side surface.
  • the positive terminal 31 and the negative terminal 32 protrude outward from the insulating plate 2 in plan view.
  • the insulating plate 2 connects the positive terminals 31 and the negative terminals 32 together. can be inhibited.
  • the portion of the positive electrode terminal 31 that protrudes from the first side surface 41 of the molding material 4 protrudes from the first side surface 41 and the portion that protrudes from the second side surface 42 of the positive electrode terminal 31 that protrudes from the second side surface 42 . is a surface parallel to the first side surface 41 and the second side surface 42, in other words, a surface orthogonal to the direction from one side to the other of the first side surface 41 and the second side surface 42 (here, the Y-axis direction), They are arranged symmetrically with respect to a virtual plane S that bisects the insulating plate 2 (see FIGS. 2 and 4).
  • the end faces of the positive terminals 31 of the two adjacent semiconductor modules 1 can be brought into contact with each other over the entire surface in the manufacturing process of the power conversion device 100, which will be described later. Therefore, two adjacent semiconductor modules 1 can be more reliably connected to each other.
  • a portion of the negative terminal 32 protruding from the first side surface 41 of the molding material 4 protrudes from the first side surface 41 and a portion of the negative electrode terminal 32 protruding from the second side surface 42 protrudes from the second side surface 42 .
  • the portion that is formed is arranged plane-symmetrically with respect to the virtual plane S. As shown in FIG. With this configuration, the end surfaces of the negative terminals 32 of the two adjacent semiconductor modules 1 can be brought into contact with each other in the manufacturing process of the power conversion device 100, which will be described later. Therefore, two adjacent semiconductor modules 1 can be more reliably connected to each other.
  • FIG. 5 is a diagram showing the circuit configuration of the power converter 100 according to the embodiment.
  • the power conversion device 100 includes three semiconductor modules 1 connected in parallel. Two adjacent semiconductor modules 1 are connected at their positive terminals 31 and at their negative terminals 32 . The three semiconductor modules 1 connected in parallel in this manner form a three-phase bridge circuit.
  • DC power supply 200 and the capacitor 300 are connected in parallel to the positive terminal 31 and the negative terminal 32 closest to the DC power supply 200 .
  • DC power supply 200 is, for example, a battery (storage battery).
  • DC power supply 200 may be a lithium ion battery, a nickel hydrogen battery, a solar battery, a fuel cell, a DC-DC converter, an AC-DC converter, a capacitor, or the like.
  • Capacitor 300 is, for example, a film capacitor. Capacitor 300 smoothes the DC power supply voltage applied between positive terminal 31 and negative terminal 32 .
  • Each load terminal 71 of the three semiconductor modules 1 is connected to the load 400 .
  • load 400 is a three-phase motor, and three load terminals 71 are connected to the U-phase, V-phase, and W-phase coils of load 400 .
  • Power conversion device 100 turns on and off a plurality of switching elements 51 according to drive signals supplied from drive circuit 500 to convert DC power supplied from DC power supply 200 into three-phase AC power and load 400 .
  • the drive circuit 500 outputs a drive signal to turn on the switching element 51 and a drive signal to turn off the switching element 51 via the control terminal 72 (see FIG. 2). It is supplied to the switching element 51 .
  • the power conversion device 100 is used as an inverter that supplies three-phase AC power to a three-phase motor that rotates the wheels of a vehicle.
  • DC power supply 200 is, for example, a battery mounted on a vehicle.
  • the power conversion device 100 is not limited to the above applications.
  • FIG. 6 is a schematic plan view of the power converter 100 according to the embodiment.
  • FIG. 7 is a schematic side view of the power converter 100 according to the embodiment.
  • the power conversion device 100 includes three semiconductor modules 1 and a cooling section 101.
  • the cooling part 101 is, for example, a heat sink, and is provided mainly to release heat generated in the switching element 51 to the outside.
  • the cooling part 101 includes a base plate 111 and a plurality of heat radiation fins 112 .
  • the base plate 111 is, for example, a plate-like member having a rectangular shape in a plan view, and has a first main surface, a second main surface opposite to the first main surface, and a first main surface and a second main surface. It has a plurality of side surfaces connecting the Three semiconductor modules 1 are arranged on the first main surface (here, the upper surface) of the base plate 111 .
  • a plurality of radiation fins 112 are provided on the second main surface (here, the lower surface) of base plate 111 .
  • the base plate 111 and the plurality of radiating fins 112 are made of a member with relatively high thermal conductivity such as Cu (copper) or Al (aluminum).
  • the base plate 111 and the plurality of radiating fins 112 may be integrated or separate.
  • the cooling unit 101 includes a plurality of heat radiating fins 112
  • the cooling unit 101 only needs to include at least the base plate 111 and does not necessarily need to include the plurality of heat radiating fins 112 .
  • the cooling unit 101 may dissipate heat by flowing a coolant through a channel formed inside the base plate 111 .
  • Alignment marks 113 used for positioning the semiconductor module 1 are provided on the first main surface of the base plate 111 .
  • the alignment mark 113 is provided at a position not covered by the semiconductor module 1 when the base plate 111 is viewed from above.
  • Alignment mark 113 may be a pattern provided on the first main surface of base plate 111 .
  • the alignment mark 113 may be a recess formed in the first main surface of the base plate 111 .
  • the recess may be, for example, a through hole or a groove.
  • a component previously provided on the first main surface of base plate 111 may be used as alignment mark 113 .
  • the shape of the alignment mark 113 is not limited to the illustrated one.
  • the three semiconductor modules 1 are arranged on the first main surface of the base plate 111 with the bonding material 102 interposed therebetween.
  • the bonding material 102 is solder, for example.
  • the bonding material 102 may be an organic polymer compound to which a thermally conductive material is added.
  • the thermally conductive material is not particularly limited as long as it has a high thermal conductivity, and examples thereof include fillers such as silver, aluminum, copper, graphite fiber, and alumina.
  • the organic polymer compound is not particularly limited, and examples thereof include grease, paste, adhesive, thermoplastic resin, and the like.
  • the bonding material 102 is provided between the conductive layer 23 (see FIG. 3) provided on the second main surface of the insulating plate 2 and the first main surface of the base plate 111 . 7, the conductive layer 23 is omitted.
  • the three semiconductor modules 1 are arranged linearly on the base plate 111 . Specifically, the three semiconductor modules 1 are arranged such that the first side surface 41 of the molding material 4 included in one semiconductor module 1 and the second side surface 41 of the molding material 4 included in the other semiconductor module 1 adjacent to the one semiconductor module 1 . It is arranged so as to face the side surface 42 .
  • the three semiconductor modules 1 are electrically connected by connecting the positive terminals 31 to each other and the negative terminals 32 to each other. Specifically, the positive terminal 31 protruding from the first side surface 41 of one of the two adjacent semiconductor modules 1 is joined to the positive terminal 31 protruding from the second side surface 42 of the other semiconductor module 1 . be done. Also, the negative terminal 32 protruding from the first side surface 41 of one of the two adjacent semiconductor modules 1 is joined to the negative terminal 32 protruding from the second side surface 42 of the other semiconductor module 1 .
  • the power conversion device 100 connects the positive terminals 31 and the negative terminals 32 of two adjacent semiconductor modules 1 among the three semiconductor modules 1 arranged on the base plate 111. It is composed by
  • FIG. 8 is a flow chart showing the manufacturing process of the power conversion device 100 according to the embodiment.
  • step S101 an arrangement step of arranging three semiconductor modules 1 on the base plate 111 of the cooling unit 101 via the bonding material 102 is performed.
  • an image of the alignment mark 113 is captured from above the horizontally placed base plate 111 using an imaging unit such as a CCD (Charge Coupled Device) camera.
  • the three semiconductor modules 1 are sequentially arranged on the first main surface of the base plate 111 with reference to the imaged alignment marks 113 .
  • the positional relationship between the alignment marks 113 provided on the base plate 111 and the alignment marks 8 provided on the semiconductor module 1 is determined in advance.
  • Semiconductor module 1 is arranged on the first main surface of base plate 111 so that alignment mark 8 is positioned at a predetermined position with alignment mark 113 as a reference.
  • the semiconductor module 1 is bonded to the base plate 111 with the bonding material 102 .
  • the melting point of the bonding material 102 according to the embodiment is lower than the glass transition temperature of the molding material 4 included in the semiconductor module 1 .
  • the three semiconductor modules 1 can be connected to the positive terminals 31 and the negative terminals of the adjacent semiconductor modules 1. 32 are in contact with each other.
  • the end faces of the positive terminal 31 and the end faces of the negative terminal 32 are in contact with each other.
  • the placement step may be performed using a robot arm, for example.
  • the semiconductor module 1 is placed on the base plate 111 by using a robot arm so that the imaged alignment mark 8 fits in a predetermined position with reference to the alignment mark 113 while the alignment mark 8 is imaged by the imaging unit. should be placed.
  • a connection step is performed to connect the positive terminals 31 and the negative terminals 32 of the adjacent semiconductor modules 1 (step S102).
  • the positive terminals 31 and the negative terminals 32 of the adjacent semiconductor modules 1 are joined by welding.
  • the welding method is not particularly limited, as an example, the positive terminals 31 and the negative terminals 32 may be joined by laser welding. In this case, the welding process can be facilitated by piling up the solder on the portion to be welded.
  • the positive terminals 31 and the negative terminals 32 may be joined by electric welding (arc welding). Also in this case, the welding process can be facilitated by applying solder to the welded portion.
  • the positive terminals 31 and the negative terminals 32 may be joined by electron beam welding, gas welding, pressure welding, or the like. Also, the positive terminals 31 and the negative terminals 32 may be joined by a welding method in which heat, sound wave, electricity, light and pressure are applied singly or simultaneously.
  • the power conversion device 100 By joining the positive terminals 31 and the negative terminals 32 of the adjacent semiconductor modules 1 in this way, the three semiconductor modules 1 are electrically connected. Thereby, the power conversion device 100 according to the embodiment is obtained.
  • the power conversion device 100 has a configuration in which three semiconductor modules 1, which are so-called 2-in-1 type power modules, are mounted on one base plate 111.
  • the mold required for forming the molding material 4 can be made smaller than the 6-in-1 type power module described in Patent Document 1. That is, the mold cost can be kept low.
  • the molding die becomes smaller, the installation space of the molding device is less likely to be restricted, so that the molding device can be efficiently arranged in a limited installation place such as a factory.
  • the yield can be increased. can.
  • productivity can be improved.
  • the power conversion device 100 can be miniaturized. Further, by connecting the three semiconductor modules 1 with the positive terminals 31 and with the negative terminals 32, the three semiconductor modules 1 can be arranged at high density, so that the power converter 100 can be miniaturized. be able to. Moreover, according to the power conversion device 100 according to the embodiment, the positive terminals 31 and the negative terminals 32 of the three semiconductor modules 1 can each be put together at one place.
  • the load terminals 71 and the plurality of control terminals 72 of the three semiconductor modules 1 connected by the positive terminals 31 and the negative terminals 32 are constant, the load terminals 71 and the plurality of control terminals 72 are It becomes possible to perform wiring connection collectively using a wire harness, for example. Also by this, the productivity of the power converter 100 can be improved.
  • the power converter 100 includes one cooling unit 101 for three semiconductor modules 1 .
  • the cooling unit 101 includes one cooling unit 101 for three semiconductor modules 1 .
  • only one cooling source is required to supply coolant to the cooling unit 101, so the cooling efficiency is high.
  • FIG. 9 shows a schematic perspective side view of the semiconductor module 1 along the direction from the first side surface 41 to the second side surface 42 of the molding material 4 (here, the Y-axis positive direction).
  • the positive terminal 31 and the negative terminal 32 protruding from the first side surface 41 of the molding material 4 and the positive terminal 31 and the negative terminal 32 protruding from the second side surface 42 are arranged on the imaginary plane S (FIGS. 2 and 4). ) have been described.
  • the positive electrode terminal 31 and the negative electrode terminal protrude from the first side surface 41 .
  • 32 and the positions of the end surfaces of the positive electrode terminal 31 and the negative electrode terminal 32 projecting from the second side surface 42 have been described.
  • the positional relationship between the positive terminal 31 and the negative terminal 32 projecting from the first side surface 41 and the positive terminal 31 and the negative terminal 32 projecting from the second side surface 42 is not limited to the above example.
  • the end surface of the positive electrode terminal 31 protruding from the first side surface 41 and the end surface of the positive electrode terminal 31 protruding from the second side surface 42 are at least partially separated from each other. should overlap. Thereby, it is possible to bring the end faces of the positive terminals 31 of two adjacent semiconductor modules 1 into contact with each other. The same applies to the negative terminal 32 .
  • FIG. 9 when the semiconductor module 1 is seen through from the side, the end surface of the positive electrode terminal 31 protruding from the first side surface 41 and the end surface of the positive electrode terminal 31 protruding from the second side surface 42 are at least partially separated from each other. should overlap. Thereby, it is possible to bring the end faces of the positive terminals 31 of two adjacent semiconductor modules 1 into contact with each other. The same applies to the negative terminal 32 .
  • hatching indicates the overlapping region between the end surface of the negative electrode terminal 32 protruding from the first side surface 41 and the end surface of the negative electrode terminal 32 protruding from the second side surface 42 .
  • FIG. 10 is a schematic side see-through view of a semiconductor module 1 according to a second modification.
  • FIG. 11 is a schematic side view of the power conversion device 100 according to the second modification.
  • FIG. 11 shows an enlarged connection portion of the two positive terminals 31 and the two negative terminals 32 of the power converter 100 .
  • the positive terminal 31 protrudes from the first side surface 41 .
  • the second surface (here, the upper surface) of the positive electrode terminal 31 protruding from the second side surface 42 may overlap.
  • the third surface (here, the bottom surface) of the negative terminal 32 projecting from the first side surface 41 and the fourth surface (here, the top surface) of the negative electrode terminal 32 projecting from the second side surface 42 may overlap.
  • the positive terminals 31 of the two adjacent semiconductor modules 1 are arranged on the first surface (here, the bottom surface) and the second surface (here, the top surface). contact at.
  • the negative terminals 32 of two adjacent semiconductor modules 1 are in contact with each other on the third surface (here, the bottom surface) and the fourth surface (here, the top surface). Thereby, two adjacent semiconductor modules 1 can be electrically connected.
  • the contact points between the two positive terminals 31 may be the upper and lower surfaces of the positive terminals 31 .
  • the contact points of the two negative terminals 32 may be the upper and lower surfaces of the negative terminals 32 .
  • the positional relationship between the positive terminal 31 protruding from the first side surface 41 and the positive terminal 31 protruding from the second side surface 42 may be reverse to the positional relationship shown in FIGS.
  • the positional relationship between the negative terminal 32 protruding from the first side surface 41 and the negative terminal 32 protruding from the second side surface 42 may be reverse to the positional relationship shown in FIGS.
  • the positive terminal 31 protruding from the first side surface 41 may be positioned below the positive terminal 31 protruding from the second side surface 42
  • the negative terminal 32 protruding from the first side surface 41 may protrude from the second side surface 42 .
  • the negative terminal 32 protruding from the first side surface 41 protrudes from the second side surface 42 . It may be located above the terminal 32 .
  • FIG. 12 is a schematic side see-through view of a semiconductor module 1 according to a third modified example.
  • FIG. 13 is a schematic side view of the power conversion device 100 according to the third modification.
  • FIG. 13 shows an enlarged view of the connection points of the two positive terminals 31 and the two negative terminals 32 of the power converter 100 .
  • the positive terminal 31 protrudes from the first side surface 41 .
  • the second surface (here, right side) of the positive electrode terminal 31 projecting from the second side surface 42 may overlap.
  • the third surface (here, the left side) of the negative electrode terminal 32 projecting from the first side surface 41 and the fourth surface (here, the right side) of the negative electrode terminal 32 projecting from the second side surface 42 overlap each other. good too.
  • the positive terminals 31 of the two adjacent semiconductor modules 1 are arranged on the first surface (here, the left side) and the second surface (here, the right side). Similarly, the negative terminals 32 of two adjacent semiconductor modules 1 are in contact with each other on the third surface (here, the left side) and the fourth surface (here, the right side). Thereby, two adjacent semiconductor modules 1 can be electrically connected.
  • the contact points between the two positive terminals 31 may be the left and right side surfaces of the positive terminal 31 .
  • the contact points of the two negative terminals 32 may be the left and right side surfaces of the negative terminals 32 .
  • the positional relationship between the positive terminal 31 protruding from the first side surface 41 and the positive terminal 31 protruding from the second side surface 42 may be reverse to the positional relationship shown in FIGS.
  • the positional relationship between the negative terminal 32 protruding from the first side surface 41 and the negative terminal 32 protruding from the second side surface 42 may be reverse to the positional relationship shown in FIGS.
  • the positive terminal 31 protruding from the first side surface 41 may be positioned to the left of the positive terminal 31 protruding from the second side surface 42
  • the negative terminal 32 protruding from the first side surface 41 may protrude from the second side surface 42 . It may be located on the left side of the negative terminal 32 .
  • the negative terminal 32 protruding from the first side surface 41 protrudes from the second side surface 42 . It may be located to the right of terminal 32 .
  • the positional relationship between the positive terminal 31 and the negative terminal 32 protruding from the same side surface of the molding material 4 is not particularly limited.
  • the positive terminal 31 and the negative terminal 32 protruding from the same side surface of the molding material 4 may at least partially overlap in plan view.
  • the positive terminal 31 and the negative terminal 32 protruding from the same side surface of the molding material 4 may be spaced apart from each other in plan view. In this case, the heights of the positive electrode terminal 31 and the negative electrode terminal 32 from the insulating plate 2 may be the same or different.
  • the arrangement of the load terminal 71 and the plurality of control terminals 72 is not particularly limited.
  • the load terminal 71 protrudes from the third side surface 43 of the molding material 4 and the plurality of control terminals 72 protrude from the fourth side surface 44 (see FIG. 2).
  • the load terminal 71 and the plurality of control terminals 72 may protrude from the same side surface out of the third side surface 43 and the fourth side surface 44 .
  • Portions of the load terminal 71 and the plurality of control terminals 72 protruding from the third side surface 43 or the fourth side surface 44 may be in contact with the wiring layer 53 or may be separated from the wiring layer 53 .
  • the load terminal 71 and the plurality of control terminals 72 may protrude from the upper surface of the molding material 4 (the surface opposite to the surface in contact with the wiring layer 53).
  • the semiconductor module according to the embodiment includes an insulating plate (insulating plate 2 as an example), a circuit section (circuit section 5 as an example), and a power supply terminal (an as a power supply terminal 3) and a mold material (as an example, a mold material 4).
  • the circuit section includes a wiring layer (for example, wiring layer 53) arranged on an insulating plate and at least one switching element (for example, switching element 51) mounted on the wiring layer.
  • the power terminal is connected to the circuit section.
  • the molding material covers at least part of each of the insulating plate, the circuit section, and the power terminal.
  • the power supply terminal has a first side surface (for example, a first side surface 41) and a second side surface (for example, a second side surface 42) located on the opposite side of the first side surface (for example, a second side surface 42) of the molding material in plan view with respect to the insulating plate. protrude from Therefore, according to the semiconductor module according to the embodiment, the productivity of the power converter can be improved.
  • the power terminal may protrude outward from the insulating plate in plan view. Accordingly, in the manufacturing process of the power conversion device, when connecting the power supply terminals of the adjacent semiconductor modules, it is possible to prevent the insulating plate from interfering with the connection between the power supply terminals.
  • the power supply terminals may include a positive terminal (positive terminal 31 as an example) and a negative terminal (negative terminal 32 as an example).
  • each of the positive terminal and the negative terminal may protrude from the first side surface and the second side surface in plan view.
  • the end surface of the positive electrode terminal protruding from the first side surface and the end surface of the positive electrode terminal protruding from the second side surface are at least one At least a portion of the end surface of the negative electrode terminal protruding from the first side surface and the end surface of the negative electrode terminal protruding from the second side surface may overlap.
  • the portion of the positive electrode terminal that protrudes from the first side and the portion that protrudes from the second side of the positive electrode terminal that protrudes from the second side are arranged from one of the first side and the second side to the other. It may be arranged plane-symmetrically with respect to a virtual plane (for example, a virtual plane S) that is perpendicular to the facing direction and bisects the insulating plate. Further, the portion of the negative terminal protruding from the first side surface that protrudes from the first side surface and the portion of the negative electrode terminal that protrudes from the second side surface that protrudes from the second side surface are arranged symmetrically with respect to the virtual plane.
  • a virtual plane for example, a virtual plane S
  • the end surfaces of the positive terminals of two adjacent semiconductor modules can be brought into contact with each other entirely in the manufacturing process of the power converter.
  • the end surfaces of the negative terminals of two adjacent semiconductor modules can be brought into contact with each other over the entire surface. Therefore, two adjacent semiconductor modules can be more reliably connected to each other.
  • the positive electrode terminal protruding from the first side surface and the positive electrode terminal protruding from the second side surface are located on the opposite side of the first surface and the first surface along the direction from one of the first side surface and the second side surface to the other side. It may have two sides. Further, the negative terminal protruding from the first side surface and the negative terminal protruding from the second side surface are located on the opposite side of the third surface along the direction from one of the first side surface and the second side surface to the other side. You may have the 4th surface which carries out.
  • the positive terminal projecting from the first side surface and the positive terminal projecting from the second side surface may overlap, and the third surface of the negative terminal protruding from the first side surface and the fourth surface of the negative terminal protruding from the second side surface may overlap.
  • the semiconductor module according to the embodiment may include an input/output terminal (for example, the input/output terminal 7) connected to the circuit section.
  • the input/output terminal may protrude from a surface of the molding material other than the first side surface and the second side surface in plan view.
  • the semiconductor module according to the embodiment may have an alignment mark in a region exposed from the molding material on the surface of the insulating plate on which the wiring layer is arranged.
  • the switching element may be an insulated gate bipolar transistor.
  • the circuit section may also include two insulated gate bipolar transistors and two diodes connected in anti-parallel to each of the two insulated gate bipolar transistors.
  • the power conversion device may include a base plate (the base plate 111 as an example) and the plurality of semiconductor modules described above arranged on the base plate.
  • the plurality of semiconductor modules are arranged such that a first side surface of a molding material included in one semiconductor module faces a second side surface of a molding material included in another semiconductor module adjacent to the one semiconductor module.
  • a power terminal provided in a semiconductor module is connected to a power terminal provided in another semiconductor module.
  • a power terminal provided on one semiconductor module and a power terminal provided on another semiconductor module may be connected with their end surfaces in contact with each other. With such a configuration, the length of protrusion of the power supply terminal from the molding material can be minimized, and the power supply terminals of two adjacent semiconductor modules can be efficiently connected to each other.
  • the base plate may constitute at least part of a cooling section (for example, the cooling section 101) that cools the switching elements.
  • a cooling section for example, the cooling section 101
  • the base plate may constitute at least part of a cooling section (for example, the cooling section 101) that cools the switching elements.
  • the power conversion device may include a bonding material (eg, bonding material 102) provided between the insulating plate and the base plate to bond the semiconductor module and the base plate.
  • a bonding material eg, bonding material 102
  • the melting point of the bonding material may be lower than the glass transition temperature of the molding material.
  • Reference Signs List 1 Semiconductor module 2: Insulating plate 3: Power supply terminal 4: Mold material 5: Circuit part 7: Input/output terminal 8: Alignment mark 23: Conductive layer 31: Positive terminal 32: Negative terminal 41: First side surface 42: Second side Side 43 : Third side 44 : Fourth side 51 : Switching element 52 : Diode 53 : Wiring layer 54 : Bus bar 71 : Load terminal 72 : Control terminal 100 : Power converter 101 : Cooling part 102 : Joint material 111 : Base plate 112: Radiation fin 113: Alignment mark 200: DC power supply 300: Capacitor 400: Load 500: Drive circuit 550: Control circuit S: Virtual surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

本開示の一態様による半導体モジュールは、絶縁板と、回路部と、電源端子と、モールド材とを備える。回路部は、絶縁板上に配置された配線層および配線層に実装された少なくとも1つのスイッチング素子を含む。電源端子は、回路部に接続される。モールド材は、絶縁板、回路部および電源端子のそれぞれ少なくとも一部を覆う。また、電源端子は、絶縁板に対する平面視において、モールド材の第1側面および第1側面の反対側に位置する第2側面から突出する。

Description

半導体モジュール、電力変換装置および電力変換装置の製造方法
 本開示は、半導体モジュール、電力変換装置および電力変換装置の製造方法に関する。
 従来、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar 
Transistor)等のスイッチング素子を備えた電力変換装置が知られている。
 特許文献1には、電力変換装置に用いられる半導体モジュールが開示されている。具体的には、特許文献1には、6つのスイッチング素子および6つの還流ダイオードが実装された回路基板と、この回路基板にはんだ等の接合材を介して接合された冷却板とが、モールド樹脂で一体的に覆われた半導体モジュールが開示されている。
国際公開第2018/073965号
 上述した従来技術には、電力変換装置の生産性を高めるという点で更なる改善の余地がある。
 本開示は、電力変換装置の生産性を高めることができる技術を提供する。
 本開示の一態様による半導体モジュールは、絶縁板と、回路部と、電源端子と、モールド材とを備える。回路部は、絶縁板上に配置された配線層および配線層に実装された少なくとも1つのスイッチング素子を含む。電源端子は、回路部に接続される。モールド材は、絶縁板、回路部および電源端子のそれぞれ少なくとも一部を覆う。また、電源端子は、絶縁板に対する平面視において、モールド材の第1側面および第1側面の反対側に位置する第2側面から突出する。
 本開示によれば、電力変換装置の生産性を高めることができる。
図1は、実施形態に係る半導体モジュールの回路構成を示す図である。 図2は、実施形態に係る半導体モジュールの模式的な平面図である。 図3は、実施形態に係る半導体モジュールの模式的な側面図である。 図4は、図3に示すIV-IV線矢視における模式的な断面図である。 図5は、実施形態に係る電力変換装置の回路構成を示す図である。 図6は、実施形態に係る電力変換装置の模式的な平面図である。 図7は、実施形態に係る電力変換装置の模式的な側面図である。 図8は、実施形態に係る電力変換装置の製造工程を示すフローチャートである。 図9は、第1変形例に係る半導体モジュールの模式的な側面透視図である。 図10は、第2変形例に係る半導体モジュールの模式的な側面透視図である。 図11は、第2変形例に係る電力変換装置の模式的な側面図である。 図12は、第3変形例に係る半導体モジュールの模式的な側面透視図である。 図13は、第3変形例に係る電力変換装置の模式的な側面図である。
 以下に、本開示による半導体モジュール、電力変換装置および電力変換装置の製造方法を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、たとえば製造精度、設置精度などのずれを許容するものとする。
 また、以下参照する各図面では、説明を分かりやすくするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする直交座標系を示す場合がある。
 特許文献1に記載の半導体モジュールは、6つのスイッチング素子および6つの還流ダイオードが実装された回路基板と、この回路基板にはんだ等の接合材を介して接合された冷却板とを、モールド樹脂により一体化した構成を有する。このような構成を有する半導体モジュールは、比較的大きなモールド金型が必要となることから、金型コストが高い。また、モールド金型が大きくなる分、モールディング装置の設置スペースの制約を受けやすく、工場等の限られた設置場所に対してモールディング装置を効率良く配置することが困難な場合がある。さらに、モールド樹脂によって一体化された6つのスイッチング素子のうち1つに不具合が発生した場合に残りの5つのスイッチング素子まで廃棄されることとなるため、歩留まりが低い。
 このように、従来技術には、電力変換装置の生産性を高めるという点で更なる改善の余地がある。このため、電力変換装置の生産性を高める技術が望まれている。
<半導体モジュールの回路構成>
 まず、実施形態に係る半導体モジュールの回路構成について図1を参照して説明する。図1は、実施形態に係る半導体モジュールの回路構成を示す図である。
 実施形態に係る半導体モジュールは、直流電源から供給される直流電力を交流電力に変換する電力変換装置の一部を構成する。
 図1に示すように、実施形態に係る半導体モジュール1は、電源端子3と、回路部5と、入出力端子7とを備える。
 電源端子3は、図示しない直流電源に接続される端子である。具体的には、電源端子3は、直流電源の正極側に接続される正極端子31と負極側に接続される負極端子32とを備える。実施形態において、電源端子3は、2つの正極端子31と2つの負極端子32とを備える。この点については図4等を参照して後述する。
 回路部5は、2つのスイッチング素子51と、2つのダイオード52とを含む。2つのスイッチング素子51は、正極端子31と負極端子32との間に直列に接続される。また、2つのダイオード52の各々は、2つのスイッチング素子51の各々に逆並列に接続される。
 スイッチング素子51は、たとえば、IGBTである。また、ダイオード52は、IGBTを保護するための還流ダイオードである。なお、スイッチング素子51は、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはGTO(Gate Turn-Off)サイリスタなどであってもよい。
 入出力端子7は、負荷端子71と、制御端子72とを含む。負荷端子71は、モータ等の負荷に対して交流電力を出力するための出力端子である。負荷端子71は、2つのスイッチング素子51の間の接続ノードに接続される。制御端子72は、スイッチング素子51を駆動させるための駆動信号が入力される入力端子である。
 上記のように構成された半導体モジュール1は、制御端子72から入力される駆動信号に従って2つのスイッチング素子51を交互にオンすることにより、正極端子31と負極端子32との間に入力された直流電力を交流電力に変換して負荷端子71から出力する。なお、2つの半導体モジュール1を並列に接続した場合、単相交流電力を生成することができ、3つの半導体モジュール1を並列に接続した場合には、三相交流電力を生成することができる。
 次に、図1に示す回路構成を有する半導体モジュール1の構造例について図2~図4を参照して説明する。図2は、実施形態に係る半導体モジュール1の模式的な平面図である。図3は、実施形態に係る半導体モジュール1の模式的な側面図である。図4は、図3に示すIV-IV線矢視における模式的な断面図である。
 図2および図3に示すように、半導体モジュール1は、絶縁板2と、モールド材4と、アライメントマーク8とをさらに備える。
 絶縁板2は、平面視四角形状の板状部材であり、第1主面と、第1主面とは反対側に位置する第2主面と、第1主面と第2主面とを繋ぐ複数の側面とを有する。絶縁板2は、絶縁性を有する部材で形成される。たとえば、絶縁板2としては、Al(アルミナ)、AlN(窒化アルミニウム)またはSiN(窒化ケイ素)等が用いられる。
 絶縁板2の第1主面(ここでは、上面)には、配線層53が設けられている。配線層53は、回路部5の一部を構成する。スイッチング素子51およびダイオード52は、配線層53に実装される。また、絶縁板2の第2主面(ここでは、下面)には、導電層23が設けられている。
 絶縁板2、配線層53および導電層23は、たとえば、DCB(Direct Copper Bonding)基板である。この場合、配線層53および導電層23は、Cu(銅)で形成される。これに限らず、絶縁板2、配線層53および導電層23は、配線層53および導電層23がAl(アルミニウム)で形成されたDAB(Direct Aluminum Bonding)基板であってもよい。また、絶縁板2、配線層53および導電層23は、AMB(Active Metal Brazing)基板であってもよい。
 モールド材4は、絶縁板2、回路部5および電源端子3のそれぞれ少なくとも一部を覆う絶縁性の封止部材である。モールド材4は、たとえば、エポキシ樹脂等の樹脂で形成される。
 図2に示すように、モールド材4は、絶縁板2に対して垂直な方向から見た平面視において、四角形状を有する。以下では、モールド材4が有する4つの側面を、それぞれ第1側面41、第2側面42、第3側面43および第4側面44と記載する。第2側面42は、第1側面41の反対側に位置する側面であり、第4側面44は、第3側面43の反対側に位置する側面である。
 回路部5は、図4に示すように、2つのスイッチング素子51、2つのダイオード52、配線層53およびバスバー54等によって構成される。2つのスイッチング素子51および2つのダイオード52は、図1に示す回路部5の回路構成が実現されるように、配線層53およびバスバー54等によって電気的に接続される。
 なお、図4では、正極端子31および負極端子32が、回路部5のうち配線層53に接続される場合の例を示しているが、正極端子31および負極端子32は、バスバー54に接続されてもよいし、スイッチング素子51またはダイオード52に接続されてもよい。
 ここでは図示されていないが、2つの正極端子31同士は、たとえば配線層53を介して電気的に接続される。同様に、2つの負極端子32も、たとえば配線層53を介して電気的に接続される。
 複数の制御端子72のうち2つは、スイッチング素子51を駆動させる駆動信号が入力される入力端子である。この他、複数の制御端子72には、たとえば、図示しない温度センサまたは電流センサ等から出力される信号を取り出すための出力端子が含まれていてもよい。ここでは、半導体モジュール1が5つの制御端子72を備える場合の例を示しているが、半導体モジュール1は、2つのスイッチング素子51に駆動信号を入力するための2つの入力端子を備えていればよく、制御端子72の個数は5つに限定されない。
 負荷端子71は、モールド材4の第3側面43から突出する。また、複数の制御端子72は、モールド材4の第4側面44から突出する。このように、負荷端子71および複数の制御端子72は、モールド材4における第1側面41および第2側面42以外の面から突出する。これにより、後述する電力変換装置100の製造工程において、隣り合う2つの半導体モジュール1の正極端子31同士および負極端子32同士を接続する際に、負荷端子71および複数の制御端子72によって正極端子31同士および負極端子32同士の接続が阻害されることを抑制することができる。
 モールド材4は、絶縁板2の第1主面を全面ではなく部分的に覆っている。言い換えれば、絶縁板2の第1主面および第1主面上に位置する配線層53は、モールド材4から部分的に露出している。図2に示す例において、絶縁板2の第1主面および配線層53は、X軸方向の両端部においてモールド材4から露出している。なお、図2では、モールド材4が、絶縁板2の第1主面および配線層53のY軸方向おける両端部に達している場合の例を示しているが、モールド材4は、必ずしも絶縁板2の第1主面および配線層53のY軸方向おける両端部に達していなくてもよい。
 アライメントマーク8は、絶縁板2の第1主面のうちモールド材4から露出した領域に設けられる。アライメントマーク8は、モールド材4から露出した配線層53に設けられてもよい。この場合、アライメントマーク8は、配線パターンの一部であってもよいし、配線パターンとは別に配線層53に形成されたパターンであってもよい。このように、アライメントマーク8を配線層53に設けることで、配線層53とアライメントマーク8とを同時に形成することが可能である。また、アライメントマーク8は、たとえば、絶縁板2を貫通する貫通孔であってもよい。
 アライメントマーク8は、平面視において電源端子3、負荷端子71および制御端子72等と重複しない位置に設けられる。アライメントマーク8は、後述する電力変換装置100の製造工程において、ベース板111に対して半導体モジュール1を配置する際の位置決めに用いられるが、この点については後述する。なお、アライメントマーク8の形状は、図示のものに限定されない。
 図2~図4に示すように、半導体モジュール1が備える2つの正極端子31は、モールド材4の第1側面41およびその反対側の第2側面42からそれぞれ突出している。同様に、半導体モジュール1が備える2つの負極端子32も、モールド材4の第1側面41およびその反対側の第2側面42からそれぞれ突出している。
 第1側面41から突出する正極端子31および第2側面42から突出する正極端子31は、第1側面41および第2側面42の一方から他方に向かう方向(ここでは、Y軸方向)に沿った第1面と第1面の反対側に位置する第2面とを有する。一例として、第1面は、正極端子31の下面であってもよい。この場合、第2面は、正極端子31の上面である。また、第1面は、正極端子31の左側面であってもよい。この場合、第2面は、正極端子31の右側面である。その他、第1面は、正極端子31の上面であってもよいし、右側面であってもよい。
 また、第1側面41から突出する負極端子32および第2側面42から突出する負極端子32は、第1側面41および第2側面42の一方から他方に向かう方向に沿った第3面と第3面の反対側に位置する第4面とを有する。一例として、第3面は、負極端子32の下面であってもよい。この場合、第4面は、負極端子32の上面である。また、第1面は、負極端子32の左側面であってもよい。この場合、第2面は、負極端子32の右側面である。その他、第1面は、負極端子32の上面であってもよいし、右側面であってもよい。
 正極端子31および負極端子32は、平面視において絶縁板2よりも外方に突出している。これにより、後述する電力変換装置100の製造工程において、隣り合う半導体モジュール1の正極端子31同士および負極端子32同士を接続する際に、絶縁板2によって正極端子31同士および負極端子32同士の接続が阻害されることを抑制することができる。
 実施形態において、モールド材4の第1側面41から突出する正極端子31のうち第1側面41から突出した部分と第2側面42から突出する正極端子31のうち第2側面42から突出した部分とは、第1側面41および第2側面42と平行な面、言い換えれば、第1側面41および第2側面42の一方から他方に向かう方向(ここでは、Y軸方向)に直交する面であって絶縁板2を二等分する仮想面Sに対して面対称に配置される(図2および図4参照)。かかる構成とすることにより、後述する電力変換装置100の製造工程において、隣り合う2つの半導体モジュール1の正極端子31の端面同士を全面的に接触させることができる。したがって、隣り合う2つの半導体モジュール1同士をより確実に導通させることができる。
 同様に、実施形態において、モールド材4の第1側面41から突出する負極端子32のうち第1側面41から突出した部分と第2側面42から突出する負極端子32のうち第2側面42から突出した部分とは、仮想面Sに対して面対称に配置される。かかる構成とすることにより、後述する電力変換装置100の製造工程において、隣り合う2つの半導体モジュール1が有する負極端子32の端面同士を全面的に接触させることができる。したがって、隣り合う2つの半導体モジュール1同士をより確実に導通させることができる。
 
<電力変換装置>
 次に、実施形態に係る電力変換装置100の構成について説明する。まず、実施形態に係る電力変換装置100の回路構成について図5を参照して説明する。図5は、実施形態に係る電力変換装置100の回路構成を示す図である。
 図5に示すように、電力変換装置100は、並列に接続された3つの半導体モジュール1を備える。隣り合う2つの半導体モジュール1は、互いの正極端子31同士および負極端子32同士で接続される。このように並列に接続された3つの半導体モジュール1は、三相ブリッジ回路を構成する。
 図5に示す例において、最も直流電源200に近い正極端子31および負極端子32には、直流電源200およびコンデンサ300が並列に接続される。直流電源200は、たとえば、バッテリ(蓄電池)である。なお、直流電源200は、リチウムイオン電池、ニッケル水素電池、太陽電池、燃料電池、DC-DCコンバータ、AC-DCコンバータ、キャパシタなどであってもよい。コンデンサ300は、たとえばフィルムコンデンサである。コンデンサ300は、正極端子31と負極端子32との間に印加される直流の電源電圧を平滑化する。
 3つの半導体モジュール1の各負荷端子71は、負荷400に接続される。具体的には、負荷400は三相モータであり、3つの負荷端子71は、負荷400のU相、V相およびW相の各コイルに接続される。
 電力変換装置100は、駆動回路500から供給される駆動信号に従って複数のスイッチング素子51をオンおよびオフさせることにより、直流電源200から供給される直流電力を三相の交流電力に変換して負荷400に供給する。駆動回路500は、制御回路550から出力される制御信号に基づいて、スイッチング素子51をオン状態にする駆動信号およびスイッチング素子51をオフ状態にする駆動信号を制御端子72(図2参照)経由でスイッチング素子51に供給する。
 一例として、電力変換装置100は、車両の車輪を回転させる三相モータに対して三相の交流電力を供給するインバータとして用いられる。この場合、直流電源200は、一例として、車両に搭載されたバッテリである。なお、電力変換装置100は、上記の用途に限定されない。
 次に、図5に示す回路構成を有する電力変換装置100の構造例について図6および図7を参照して説明する。図6は、実施形態に係る電力変換装置100の模式的な平面図である。図7は、実施形態に係る電力変換装置100の模式的な側面図である。
 図6および図7に示すように、実施形態に係る電力変換装置100は、3つの半導体モジュール1と、冷却部101とを備える。
 冷却部101は、たとえばヒートシンクであり、主にスイッチング素子51において発生した熱を外部に放出するために設けられる。冷却部101は、ベース板111と複数の放熱フィン112とを備える。ベース板111は、たとえば平面視四角形状の板状部材であり、第1主面と、第1主面とは反対側に位置する第2主面と、第1主面と第2主面とを繋ぐ複数の側面とを有する。ベース板111の第1主面(ここでは、上面)には、3つの半導体モジュール1が配置される。複数の放熱フィン112は、ベース板111の第2主面(ここでは、下面)に設けられる。
 ベース板111および複数の放熱フィン112は、たとえばCu(銅)またはAl(アルミニウム)などの熱伝導率が比較的高い部材で形成される。ベース板111および複数の放熱フィン112は、一体的であってもよいし、別体であってもよい。
 ここでは、冷却部101が複数の放熱フィン112を備える場合の例を示したが、冷却部101は少なくともベース板111を備えていればよく、必ずしも複数の放熱フィン112を備えることを要しない。たとえば、冷却部101は、ベース板111の内部に形成された流路に冷媒を流すことで放熱を行うものであってもよい。
 ベース板111の第1主面には、半導体モジュール1の位置決めに用いられるアライメントマーク113が設けられている。アライメントマーク113は、ベース板111を平面視した場合に、半導体モジュール1によって覆われない位置に設けられる。アライメントマーク113は、ベース板111の第1主面に付された模様であってもよい。また、アライメントマーク113は、ベース板111の第1主面に形成された凹部であってもよい。凹部は、たとえば貫通孔であってもよいし、溝であってもよい。また、ベース板111の第1主面に予め設けられている部品がアライメントマーク113として流用されてもよい。アライメントマーク113の形状は、図示のものに限定されない。
 3つの半導体モジュール1は、ベース板111の第1主面に接合材102を介して配置される。接合材102は、たとえば、はんだである。また、接合材102は、熱伝導材が添加された有機高分子化合物であってもよい。熱伝導材は、高い熱伝導率を有する材料であれば特に限定されないが、一例として、銀、アルミニウム、銅、グラファイト繊維またはアルミナなどのフィラーであってもよい。また、有機高分子化合物についても特に限定されないが、一例として、グリース、ペースト、接着剤または熱可塑樹脂などであってもよい。接合材102は、絶縁板2の第2主面に設けられた導電層23(図3参照)とベース板111の第1主面との間に設けられる。なお、図7では、導電層23を省略して示している。
 3つの半導体モジュール1は、ベース板111上において直線状に並べられる。具体的には、3つの半導体モジュール1は、一の半導体モジュール1が備えるモールド材4の第1側面41と、一の半導体モジュール1と隣り合う他の半導体モジュール1が備えるモールド材4の第2側面42とが対向するように配置される。
 3つの半導体モジュール1は、互いの正極端子31同士および負極端子32同士が接続されることによって電気的に接続される。具体的には、隣り合う2つの半導体モジュール1のうち一方の半導体モジュール1の第1側面41から突出する正極端子31は、他方の半導体モジュール1の第2側面42から突出する正極端子31と接合される。また、隣り合う2つの半導体モジュール1のうち一方の半導体モジュール1の第1側面41から突出する負極端子32は、他方の半導体モジュール1の第2側面42から突出する負極端子32と接合される。
 このように、実施形態に係る電力変換装置100は、ベース板111上に配置された3つの半導体モジュール1のうち、隣り合う2つの半導体モジュール1の正極端子31同士および負極端子32同士を接続することにより構成される。
 ここで、かかる電力変換装置100の製造方法について図8を参照して説明する。図8は、実施形態に係る電力変換装置100の製造工程を示すフローチャートである。
 まず、冷却部101のベース板111上に接合材102を介して3つの半導体モジュール1を配置する配置工程が行われる(ステップS101)。
 具体的には、まず、水平に載置されたベース板111の上方からCCD(Charge Coupled Device)カメラ等の撮像部を用いてアライメントマーク113を撮像する。そして、撮像されたアライメントマーク113を基準として、3つの半導体モジュール1をベース板111の第1主面に順次配置していく。ここで、ベース板111に設けられたアライメントマーク113と、半導体モジュール1に設けられたアライメントマーク8との位置関係は予め決められている。半導体モジュール1は、アライメントマーク113を基準とする予め定められた位置にアライメントマーク8が収まるようにベース板111の第1主面に配置される。
 半導体モジュール1は、接合材102によってベース板111に接合される。実施形態に係る接合材102の融点は、半導体モジュール1が備えるモールド材4のガラス転移温度よりも低い。このような接合材102を用いることで、配置工程において接合材102が発する熱によってモールド材4が軟化することを抑制することができる。
 このように、アライメントマーク8,113に従ってベース板111の第1主面に3つの半導体モジュール1を配置することで、3つの半導体モジュール1は、隣り合う半導体モジュール1の正極端子31同士および負極端子32同士が接触した状態となる。本実施形態では、正極端子31の端面同士および負極端子32の端面同士が接触する。
 なお、配置工程は、たとえばロボットアームを用いて行われてもよい。この場合、アライメントマーク8を撮像部によって撮像しつつ、撮像されたアライメントマーク8がアライメントマーク113を基準とする予め定められた位置に納まるようにロボットアームを用いて半導体モジュール1をベース板111に配置すればよい。
 つづいて、隣り合う半導体モジュール1の正極端子31同士および負極端子32同士を接続する接続工程が行われる(ステップS102)。接続工程では、隣り合う半導体モジュール1の正極端子31同士および負極端子32同士を溶接によって接合する。溶接の方法は特に限定されないが、一例として、正極端子31同士および負極端子32同士は、レーザ溶接によって接合されてもよい。この場合、溶接する部位にはんだを盛ることで、溶接工程を容易化することができる。
 正極端子31同士および負極端子32同士は、電気溶接(アーク溶接)によって接合されてもよい。この場合も、溶接する部位にはんだを盛ることで、溶接工程を容易化することが可能である。その他、正極端子31同士および負極端子32同士は、電子ビーム溶接、ガス溶接または圧接等によって接合されてもよい。また、正極端子31同士および負極端子32同士は、熱、音波、電気、光および圧力を単独または同時に与える態様による溶接方法によって接合されても構わない。
 このように、隣り合う半導体モジュール1の正極端子31同士および負極端子32同士が接合されることにより、3つの半導体モジュール1は電気的に接続される。これにより、実施形態に係る電力変換装置100が得られる。
 このように、実施形態に係る電力変換装置100は、いわゆる2in1タイプのパワーモジュールである3つの半導体モジュール1を1つのベース板111に実装した構成を有する。かかる構成とすることにより、特許文献1に記載された6in1タイプのパワーモジュールと比較して、モールド材4を形成するために必要なモールド金型を小さくすることができる。すなわち、金型コストを低く抑えることができる。また、モールド金型が小さくなることで、モールディング装置の設置スペースの制約を受けにくくなるため、工場等の限られた設置場所に対してモールディング装置を効率良く配置することが可能となる。また、仮にいずれか1つのスイッチング素子51に不具合が発生した場合であっても、廃棄されるスイッチング素子51は、不具合が発生したスイッチング素子51を含めて2つで済むため、歩留まりを高めることができる。このように、実施形態に係る電力変換装置100によれば、生産性を高めることができる。
 また、3つの半導体モジュール1を1つのベース板111上に実装する構成とすることで、3つの半導体モジュール1を納めるケースが不要となるため、電力変換装置100を小型化することができる。また、3つの半導体モジュール1を正極端子31同士および負極端子32同士で接続する構成とすることで、3つの半導体モジュール1を高密度に配置することができることから、電力変換装置100を小型化することができる。また、実施形態に係る電力変換装置100によれば、3つの半導体モジュール1の正極端子31および負極端子32をそれぞれ1箇所にまとめることができる。
 また、正極端子31同士および負極端子32同士で接続された3つの半導体モジュール1は、負荷端子71および複数の制御端子72の位置関係が一定となるため、負荷端子71および複数の制御端子72に対する配線接続をたとえばワイヤーハーネスを用いて一括して行うことが可能となる。これによっても、電力変換装置100の生産性を高めることができる。
 また、実施形態に係る電力変換装置100は、3つの半導体モジュール1に対して1つの冷却部101を備える。これにより、冷却部101に対して冷媒を供給するための冷却ソースも1つで済むため、冷却効率が高い。
(第1変形例)
 図9には、モールド材4の第1側面41から第2側面42に向かう方向(ここでは、Y軸正方向)に沿って半導体モジュール1を透視した模式的な側面透視図を示している。
 上述した実施形態では、モールド材4の第1側面41から突出する正極端子31および負極端子32と第2側面42から突出する正極端子31および負極端子32とが仮想面S(図2および図4参照)に対して面対称に配置される場合の例について説明した。言い換えれば、上述した実施形態では、第1側面41および第2側面42の一方から他方に向かう方向に沿って半導体モジュール1を透視した場合に、第1側面41から突出する正極端子31および負極端子32の端面の位置と第2側面42から突出する正極端子31および負極端子32の端面の位置とが一致する場合の例について説明した。
 しかしながら、第1側面41から突出する正極端子31および負極端子32と第2側面42から突出する正極端子31および負極端子32との位置関係は、上記の例に限定されない。たとえば、図9に示すように、半導体モジュール1を側面透視した場合に、第1側面41から突出する正極端子31の端面と第2側面42から突出する正極端子31の端面とは、少なくとも一部が重なっていればよい。これにより、隣り合う2つの半導体モジュール1の正極端子31の端面同士を接触させることが可能である。負極端子32についても同様である。なお、図9では、第1側面41から突出する正極端子31の端面と第2側面42から突出する正極端子31の端面とが重なる領域をハッチングで示している。同様に、図9では、第1側面41から突出する負極端子32の端面と第2側面42から突出する負極端子32の端面とが重なる領域をハッチングで示している。
(第2変形例)
 図10は、第2変形例に係る半導体モジュール1の模式的な側面透視図である。また、図11は、第2変形例に係る電力変換装置100の模式的な側面図である。図11では、電力変換装置100のうち、2つの正極端子31および2つの負極端子32の接続箇所を拡大して示している。
 上述した実施形態では、隣り合う2つの半導体モジュール1の正極端子31の端面同士および負極端子32の端面同士を接触させる場合の例について説明した。しかしながら、2つの正極端子31の接触箇所および2つの負極端子32の接触箇所は、必ずしも端面であることを要しない。
 図10に示すように、第1側面41から第2側面42に向かう方向(ここでは、Y軸正方向)に沿って半導体モジュール1を透視した場合に、第1側面41から突出する正極端子31の第1面(ここでは、下面)と第2側面42から突出する正極端子31の第2面(ここでは、上面)とが重なってもよい。同様に、第1側面41から突出する負極端子32の第3面(ここでは、下面)と第2側面42から突出する負極端子32の第4面(ここでは、上面)とが重なってもよい。
 この場合、図11に示すように、電力変換装置100において、隣り合う2つの半導体モジュール1の正極端子31同士は、第1面(ここでは、下面)と第2面(ここでは、上面)とにおいて接触する。同様に、隣り合う2つの半導体モジュール1の負極端子32同士は、第3面(ここでは、下面)と第4面(ここでは、上面)とにおいて接触する。これにより、隣り合う2つの半導体モジュール1を電気的に接続することができる。
 このように、2つの正極端子31の接触箇所は、正極端子31の上下面であってもよい。同様に、2つの負極端子32の接触箇所は、負極端子32の上下面であってもよい。
 なお、第1側面41から突出する正極端子31と第2側面42から突出する正極端子31との位置関係は、図10および図11に示す位置関係と逆であってもよい。同様に、第1側面41から突出する負極端子32と第2側面42から突出する負極端子32との位置関係も、図10および図11に示す位置関係と逆であってもよい。たとえば、第1側面41から突出する正極端子31が第2側面42から突出する正極端子31の下に位置してもよいし、第1側面41から突出する負極端子32が第2側面42から突出する負極端子32の下に位置してもよい。また、第1側面41から突出する正極端子31が第2側面42から突出する正極端子31の下に位置する場合に、第1側面41から突出する負極端子32が第2側面42から突出する負極端子32の上に位置してもよい。
(第3変形例)
 図12は、第3変形例に係る半導体モジュール1の模式的な側面透視図である。また、図13は、第3変形例に係る電力変換装置100の模式的な側面図である。図13では、電力変換装置100のうち、2つの正極端子31および2つの負極端子32の接続箇所を拡大して示している。
 図12に示すように、第1側面41から第2側面42に向かう方向(ここでは、Y軸正方向)に沿って半導体モジュール1を透視した場合に、第1側面41から突出する正極端子31の第1面(ここでは、左側面)と第2側面42から突出する正極端子31の第2面(ここでは、右側面)とは重なってもよい。同様に、第1側面41から突出する負極端子32の第3面(ここでは、左側面)と第2側面42から突出する負極端子32の第4面(ここでは、右側面)とは重なってもよい。
 この場合、図13に示すように、電力変換装置100において、隣り合う2つの半導体モジュール1の正極端子31同士は、第1面(ここでは、左側面)と第2面(ここでは、右側面)とにおいて接触する。同様に、隣り合う2つの半導体モジュール1の負極端子32同士は、第3面(ここでは、左側面)と第4面(ここでは、右側面)とにおいて接触する。これにより、隣り合う2つの半導体モジュール1を電気的に接続することができる。
 このように、2つの正極端子31の接触箇所は、正極端子31の左右側面であってもよい。同様に、2つの負極端子32の接触箇所は、負極端子32の左右側面であってもよい。
 なお、第1側面41から突出する正極端子31と第2側面42から突出する正極端子31との位置関係は、図12および図13に示す位置関係と逆であってもよい。同様に、第1側面41から突出する負極端子32と第2側面42から突出する負極端子32との位置関係も、図12および図13に示す位置関係と逆であってもよい。たとえば、第1側面41から突出する正極端子31が第2側面42から突出する正極端子31の左側に位置してもよいし、第1側面41から突出する負極端子32が第2側面42から突出する負極端子32の左側に位置してもよい。また、第1側面41から突出する正極端子31が第2側面42から突出する正極端子31の左側に位置する場合に、第1側面41から突出する負極端子32が第2側面42から突出する負極端子32の右側に位置してもよい。
(その他の変形例)
 モールド材4における同一の側面から突出する正極端子31および負極端子32の位置関係は、特に限定されない。たとえば、モールド材4における同一の側面から突出する正極端子31および負極端子32は、平面視において少なくとも一部が重なっていてもよい。また、モールド材4における同一の側面から突出する正極端子31および負極端子32は、平面視において間隔をあけて配置されてもよい。この場合、正極端子31および負極端子32の絶縁板2からの高さは、同一であってもよいし、異なっていてもよい。
 また、負荷端子71および複数の制御端子72の配置も特に限定されない。たとえば、上述した実施形態では、モールド材4の第3側面43から負荷端子71が突出し、第4側面44から複数の制御端子72が突出する場合の例を示した(図2参照)。これに限らず、たとえば、第3側面43および第4側面44のうち同一の側面から負荷端子71および複数の制御端子72が突出してもよい。負荷端子71および複数の制御端子72の第3側面43または第4側面44から突出する部分は、配線層53に接していても良いし、配線層53から離れていてもよい。また、負荷端子71および複数の制御端子72は、モールド材4の上面(配線層53と接する面と反対側の面)から突出してもよい。
 上述してきたように、実施形態に係る半導体モジュール(一例として、半導体モジュール1)は、絶縁板(一例として、絶縁板2)と、回路部(一例として、回路部5)と、電源端子(一例として、電源端子3)と、モールド材(一例として、モールド材4)とを備える。回路部は、絶縁板上に配置された配線層(一例として、配線層53)および配線層に実装された少なくとも1つのスイッチング素子(一例として、スイッチング素子51)を含む。電源端子は、回路部に接続される。モールド材は、絶縁板、回路部および電源端子のそれぞれ少なくとも一部を覆う。また、電源端子は、絶縁板に対する平面視において、モールド材の第1側面(一例として、第1側面41)および第1側面の反対側に位置する第2側面(一例として、第2側面42)から突出する。したがって、実施形態に係る半導体モジュールによれば、電力変換装置の生産性を高めることができる。
 電源端子は、平面視において絶縁板よりも外方に突出していてもよい。これにより、電力変換装置の製造工程において、隣り合う半導体モジュールの電源端子同士を接続する際に、絶縁板によって電源端子同士の接続が阻害されることを抑制することができる。
 電源端子は、正極端子(一例として、正極端子31)および負極端子(一例として、負極端子32)を含んでいてもよい。この場合、正極端子および負極端子の各々は、平面視において第1側面および第2側面から突出していてもよい。
 第1側面および第2側面の一方から他方に向かう方向に沿って半導体モジュールを透視した場合に、第1側面から突出する正極端子の端面と第2側面から突出する正極端子の端面とは少なくとも一部が重なり、第1側面から突出する負極端子の端面と第2側面から突出する負極端子の端面とは少なくとも一部が重なってもよい。かかる構成とすることにより、電力変換装置の製造工程において、隣り合う2つの半導体モジュールの正極端子の端面同士を接触させることができる。同様に、電力変換装置の製造工程において、隣り合う2つの半導体モジュールの負極端子の端面同士を接触させることができる。これにより、隣り合う2つの半導体モジュールの正極端子同士および負極端子同士を接続することができる。
 第1側面から突出する正極端子のうち第1側面から突出した部分と第2側面から突出する正極端子のうち第2側面から突出した部分とは、第1側面および第2側面の一方から他方に向かう方向に直交し且つ絶縁板を二等分する仮想面(一例として、仮想面S)に対して面対称に配置されてもよい。また、第1側面から突出する負極端子のうち第1側面から突出した部分と第2側面から突出する負極端子のうち第2側面から突出した部分とは、仮想面に対して面対称に配置されてもよい。かかる構成とすることにより、電力変換装置の製造工程において、隣り合う2つの半導体モジュールの正極端子の端面同士を全面的に接触させることができる。同様に、電力変換装置の製造工程において、隣り合う2つの半導体モジュールの負極端子の端面同士を全面的に接触させることができる。したがって、隣り合う2つの半導体モジュール同士をより確実に導通させることができる。
 第1側面から突出する正極端子および第2側面から突出する正極端子は、第1側面および第2側面の一方から他方に向かう方向に沿った第1面と第1面の反対側に位置する第2面とを有していてもよい。また、第1側面から突出する負極端子および第2側面から突出する負極端子は、第1側面および第2側面の一方から他方に向かう方向に沿った第3面と第3面の反対側に位置する第4面とを有していてもよい。この場合、第1側面および第2側面の一方から他方に向かう方向に沿って半導体モジュールを透視した場合に、第1側面から突出する正極端子の第1面と第2側面から突出する正極端子の第2面とは重なってもよく、第1側面から突出する負極端子の第3面と第2側面から突出する負極端子の第4面とは重なってもよい。かかる構成とすることにより、隣り合う2つの半導体モジュールの正極端子同士および負極端子同士を接続することができる。
 実施形態に係る半導体モジュールは、回路部に接続された入出力端子(一例として、入出力端子7)を備えていてもよい。この場合、入出力端子は、平面視において、モールド材における第1側面および第2側面以外の面から突出していてもよい。かかる構成とすることにより、電力変換装置の製造工程において、隣り合う2つの半導体モジュールの電源端子同士を接続する際に、入出力端子によって電源端子同士の接続が阻害されることを抑制することができる。
 実施形態に係る半導体モジュールは、絶縁板の配線層が配置される面のうち、モールド材から露出した領域にアライメントマークを備えていてもよい。かかる構成とすることにより、電力変換装置の製造工程において、ベース板上に複数の半導体モジュールを高精度に配置することができる。
 スイッチング素子は、絶縁ゲート型バイポーラトランジスタであってもよい。また、回路部は、2つの絶縁ゲート型バイポーラトランジスタと、2つの絶縁ゲート型バイポーラトランジスタの各々に逆並列に接続された2つのダイオードとを含んでいてもよい。
 また、実施形態に係る電力変換装置は、ベース板(一例として、ベース板111)と、ベース板に配置された上述した複数の半導体モジュールとを備えていてもよい。複数の半導体モジュールは、一の半導体モジュールが備えるモールド材の第1側面と、一の半導体モジュールと隣り合う他の半導体モジュールが備えるモールド材の第2側面とが対向するように配置され、一の半導体モジュールが備える電源端子と、他の半導体モジュールが備える電源端子とが接続される。
 一の半導体モジュールが備える電源端子と、他の半導体モジュールが備える電源端子とは、端面同士が接触した状態で接続されてもよい。かかる構成とすることにより、電源端子のモールド材からの突出長さを必要最小限に抑えることができ、隣り合う2つの半導体モジュールの電源端子同士を効率良く接続することができる。
 ベース板は、スイッチング素子を冷却する冷却部(一例として、冷却部101)の少なくとも一部を構成してもよい。このように、1つのベース板に対して複数の半導体モジュールを設けることで、冷却部に対して冷媒を供給するための冷却ソースが1つで済むため、冷却効率が高い。
 実施形態に係る電力変換装置は、絶縁板とベース板との間に設けられ、半導体モジュールとベース板とを接合する接合材(一例として、接合材102)を備えていてもよい。この場合、接合材の融点は、モールド材のガラス転移温度よりも低くてもよい。かかる構成とすることにより、電力変換装置の製造工程において接合材が発する熱によってモールド材が軟化することを抑制することができる。
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 1 :半導体モジュール
 2 :絶縁板
 3 :電源端子
 4 :モールド材
 5 :回路部
 7 :入出力端子
 8 :アライメントマーク
 23 :導電層
 31 :正極端子
 32 :負極端子
 41 :第1側面
 42 :第2側面
 43 :第3側面
 44 :第4側面
 51 :スイッチング素子
 52 :ダイオード
 53 :配線層
 54 :バスバー
 71 :負荷端子
 72 :制御端子
 100 :電力変換装置
 101 :冷却部
 102 :接合材
 111 :ベース板
 112 :放熱フィン
 113 :アライメントマーク
 200 :直流電源
 300 :コンデンサ
 400 :負荷
 500 :駆動回路
 550 :制御回路
 S :仮想面
 

Claims (15)

  1.  絶縁板と、
     前記絶縁板上に配置された配線層および前記配線層に実装された少なくとも1つのスイッチング素子を含む回路部と、
     前記回路部に接続された電源端子と、
     前記絶縁板、前記回路部および前記電源端子のそれぞれ少なくとも一部を覆うモールド材と
     を備え、
     前記電源端子は、前記絶縁板に対する平面視において、前記モールド材の第1側面および前記第1側面の反対側に位置する第2側面から突出する、半導体モジュール。
  2.  前記電源端子は、前記平面視において、前記絶縁板よりも外方に突出する、請求項1に記載の半導体モジュール。
  3.  前記電源端子は、正極端子および負極端子を含み、
     前記正極端子および前記負極端子の各々は、前記平面視において、前記第1側面および前記第2側面から突出する、請求項1または2に記載の半導体モジュール。
  4.  前記第1側面および前記第2側面の一方から他方に向かう方向に沿って前記半導体モジュールを透視した場合に、前記第1側面から突出する前記正極端子の端面と前記第2側面から突出する前記正極端子の端面とは少なくとも一部が重なり、前記第1側面から突出する前記負極端子の端面と前記第2側面から突出する前記負極端子の端面とは少なくとも一部が重なる、請求項3に記載の半導体モジュール。
  5.  前記第1側面から突出する前記正極端子のうち前記第1側面から突出した部分と前記第2側面から突出する前記正極端子のうち前記第2側面から突出した部分とは、前記第1側面および前記第2側面の一方から他方に向かう方向に直交し且つ前記絶縁板を二等分する仮想面に対して面対称に配置され、
     前記第1側面から突出する前記負極端子のうち前記第1側面から突出した部分と前記第2側面から突出する前記負極端子のうち前記第2側面から突出した部分とは、前記仮想面に対して面対称に配置される、請求項3に記載の半導体モジュール。
  6.  前記第1側面から突出する前記正極端子および前記第2側面から突出する前記正極端子は、前記第1側面および前記第2側面の一方から他方に向かう方向に沿った第1面と前記第1面の反対側に位置する第2面とを有し、
     前記第1側面から突出する前記負極端子および前記第2側面から突出する前記負極端子は、前記第1側面および前記第2側面の一方から他方に向かう方向に沿った第3面と前記第3面の反対側に位置する第4面とを有し、
     前記第1側面および前記第2側面の一方から他方に向かう方向に沿って前記半導体モジュールを透視した場合に、前記第1側面から突出する前記正極端子の前記第1面と前記第2側面から突出する前記正極端子の前記第2面とは重なり、前記第1側面から突出する前記負極端子の前記第3面と前記第2側面から突出する前記負極端子の前記第4面とは重なる、請求項3に記載の半導体モジュール。
  7.  前記回路部に接続された入出力端子を備え、
     前記入出力端子は、前記平面視において、前記モールド材における前記第1側面および前記第2側面以外の面から突出する、請求項1~6のいずれか一つに記載の半導体モジュール。
  8.  前記絶縁板の前記配線層が配置される面のうち、前記モールド材から露出した領域にアライメントマークを備える、請求項1~7のいずれか一つに記載の半導体モジュール。
  9.  前記スイッチング素子は、絶縁ゲート型バイポーラトランジスタであり、
     前記回路部は、2つの前記絶縁ゲート型バイポーラトランジスタと、2つの前記絶縁ゲート型バイポーラトランジスタの各々に逆並列に接続された2つのダイオードとを含む、請求項1~8のいずれか一つに記載の半導体モジュール。
  10.  ベース板と、
     前記ベース板に配置された請求項1~9のいずれか一つに記載の複数の半導体モジュールと
     を備え、
     前記複数の半導体モジュールは、一の半導体モジュールが備える前記モールド材の前記第1側面と、前記一の半導体モジュールと隣り合う他の半導体モジュールが備える前記モールド材の前記第2側面とが対向するように配置され、
     前記一の半導体モジュールが備える前記電源端子と、前記他の半導体モジュールが備える前記電源端子とが接続される、電力変換装置。
  11.  前記一の半導体モジュールが備える前記電源端子と、前記他の半導体モジュールが備える前記電源端子とは、端面同士が接触した状態で接続される、請求項10に記載の電力変換装置。
  12.  前記ベース板は、前記スイッチング素子を冷却する冷却部の少なくとも一部を構成する、請求項10または11に記載の電力変換装置。
  13.  前記絶縁板と前記ベース板との間に設けられ、前記半導体モジュールと前記ベース板とを接合する接合材
     を備え、
     前記接合材の融点は、前記モールド材のガラス転移温度よりも低い、請求項10~12のいずれか一つに記載の電力変換装置。
  14.  請求項1~9のいずれか一つに記載の複数の半導体モジュールを、一の半導体モジュールが備える前記モールド材の前記第1側面と、前記一の半導体モジュールと隣り合う他の半導体モジュールが備える前記モールド材の前記第2側面とが対向するようにベース板上に配置する工程と、
     前記一の半導体モジュールが備える前記電源端子と、前記他の半導体モジュールが備える前記電源端子とを接続する工程と
     を含む、電力変換装置の製造方法。
  15.  前記接続する工程は、前記一の半導体モジュールが備える前記電源端子と、前記他の半導体モジュールが備える前記電源端子とを溶接により接続する、請求項14に記載の電力変換装置の製造方法。
     
PCT/JP2022/044377 2021-12-03 2022-12-01 半導体モジュール、電力変換装置および電力変換装置の製造方法 WO2023100980A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197050 2021-12-03
JP2021-197050 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100980A1 true WO2023100980A1 (ja) 2023-06-08

Family

ID=86612269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044377 WO2023100980A1 (ja) 2021-12-03 2022-12-01 半導体モジュール、電力変換装置および電力変換装置の製造方法

Country Status (1)

Country Link
WO (1) WO2023100980A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208411A (ja) * 2002-12-25 2004-07-22 Denso Corp ハーフブリッジ回路用半導体モジュール
JP2005340639A (ja) * 2004-05-28 2005-12-08 Toyota Industries Corp 半導体装置及び三相インバータ装置
JP2017199829A (ja) * 2016-04-28 2017-11-02 日産自動車株式会社 パワーモジュール構造
WO2018043535A1 (ja) * 2016-09-02 2018-03-08 ローム株式会社 パワーモジュール、駆動回路付パワーモジュール、および産業機器、電気自動車またはハイブリッドカー
JP2018117048A (ja) * 2017-01-18 2018-07-26 株式会社デンソー 半導体装置
WO2020085377A1 (ja) * 2018-10-24 2020-04-30 ローム株式会社 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208411A (ja) * 2002-12-25 2004-07-22 Denso Corp ハーフブリッジ回路用半導体モジュール
JP2005340639A (ja) * 2004-05-28 2005-12-08 Toyota Industries Corp 半導体装置及び三相インバータ装置
JP2017199829A (ja) * 2016-04-28 2017-11-02 日産自動車株式会社 パワーモジュール構造
WO2018043535A1 (ja) * 2016-09-02 2018-03-08 ローム株式会社 パワーモジュール、駆動回路付パワーモジュール、および産業機器、電気自動車またはハイブリッドカー
JP2018117048A (ja) * 2017-01-18 2018-07-26 株式会社デンソー 半導体装置
WO2020085377A1 (ja) * 2018-10-24 2020-04-30 ローム株式会社 半導体装置

Similar Documents

Publication Publication Date Title
US9379083B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP5831626B2 (ja) 半導体装置及び半導体装置の製造方法
US9312192B2 (en) Semiconductor device
JP6750514B2 (ja) 半導体装置
WO2016079995A1 (ja) 半導体装置及びパワーモジュール
US8610263B2 (en) Semiconductor device module
JP2000164800A (ja) 半導体モジュール
JP5659938B2 (ja) 半導体ユニットおよびそれを用いた半導体装置
JP7187992B2 (ja) 半導体モジュールおよび車両
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
WO2005119896A1 (ja) インバータ装置
JP4885046B2 (ja) 電力用半導体モジュール
CN110506330B (zh) 功率电子模块以及包含该模块的电功率变换器
JP2008042074A (ja) 半導体装置及び電力変換装置
JP2015099846A (ja) 半導体装置および半導体装置の製造方法
US20210407875A1 (en) Semiconductor device
JP2005175130A (ja) 半導体モジュール、半導体装置および負荷駆動装置
US11996344B2 (en) Semiconductor device
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
US11335660B2 (en) Semiconductor module
WO2018047485A1 (ja) パワーモジュールおよびインバータ装置
WO2023100980A1 (ja) 半導体モジュール、電力変換装置および電力変換装置の製造方法
JPWO2020148879A1 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
WO2023058381A1 (ja) 電力変換装置
US20240079383A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901410

Country of ref document: EP

Kind code of ref document: A1