WO2023096425A1 - 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자 - Google Patents

산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자 Download PDF

Info

Publication number
WO2023096425A1
WO2023096425A1 PCT/KR2022/018899 KR2022018899W WO2023096425A1 WO 2023096425 A1 WO2023096425 A1 WO 2023096425A1 KR 2022018899 W KR2022018899 W KR 2022018899W WO 2023096425 A1 WO2023096425 A1 WO 2023096425A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
antimony
aluminum
less
oxide
Prior art date
Application number
PCT/KR2022/018899
Other languages
English (en)
French (fr)
Inventor
허수원
윤영준
조성범
최준영
박인표
김현우
윤홍지
황민녕
최다림
홍정표
박진성
김혜미
Original Assignee
한국세라믹기술원
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, 한양대학교 산학협력단 filed Critical 한국세라믹기술원
Publication of WO2023096425A1 publication Critical patent/WO2023096425A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to an oxide semiconductor, a manufacturing method thereof, and a semiconductor device including the same.
  • An oxide semiconductor is a semiconductor material in which conductivity is controlled and a bandgap is adjusted through doping in an oxide material such as zinc oxide, cadmium oxide, and indium oxide, and is generally a transparent semiconductor material having a wide bandgap.
  • Oxide semiconductors have a wide bandgap, so they cannot absorb visible light or infrared light with low energy, so they transmit light in the visible light range (360 to 800 nm). Due to its excellent optical and electrical properties, oxide semiconductors are recently very important materials in the field of transparent semiconductors, and are highly likely to be applied to various industrial fields such as transparent displays, transparent sensors, and transparent solar cells.
  • an oxide material such as zinc oxide is a semiconductor material that can control conductivity through doping or control a band gap through alloying.
  • Such an oxide semiconductor is transparent because it has a very high light transmittance in the visible light region as its main feature is a wide bandgap.
  • IGZO indium gallium zinc oxide
  • IGZO is an oxide material made of indium, gallium, zinc, and oxygen, and is a semiconductor material with a wide band gap of 3 eV or more. It is possible to manufacture thin film transistors using IGZO as an oxide semiconductor, so it is already being used as a device for backplane panels in the display field.
  • charge mobility is superior to that of amorphous silicon thin film transistors, and thus, they are used as backplane circuits and switching elements in the display field.
  • Patent Document 1 Korean Patent No. 0939998 (2010. 1. 26.)
  • the present inventors secured an area that can be investigated from oxide big data through data mining, and properties such as electrical conductivity and band gap related to thin film transistors (TFTs) By analyzing and filtering candidates through data screening, it was possible to obtain promising element combinations such as .
  • TFTs thin film transistors
  • the present inventors also made a database of these structures, secured a list of materials with high crystallization potential through phase equilibrium, etc. (see FIG. 1), and then analyzed physical properties such as electrical conductivity and band gap through machine learning techniques. As a result, an oxide containing aluminum (Al) and antimony (Sb) could be finally determined as a material to replace IGZO.
  • an object of the present invention is to provide a novel oxide semiconductor that has excellent electrical conductivity and band gap and can be applied to a thin film transistor and a manufacturing method thereof.
  • Another object of the present invention is to provide a semiconductor device, a thin film transistor, and a display device using the oxide semiconductor.
  • the present invention provides an oxide semiconductor including an oxide containing aluminum (Al) and antimony (Sb).
  • the present invention also includes preparing a sol-gel solution by mixing a first precursor solution containing an aluminum precursor and a second precursor solution containing an antimony precursor; and forming an oxide semiconductor thin film by coating the sol-gel solution on a substrate.
  • the present invention also provides a method for producing an oxide semiconductor, comprising forming an oxide semiconductor thin film containing aluminum and antimony by sputtering depositing an aluminum precursor and an antimony precursor on a substrate.
  • the present invention also provides a semiconductor device comprising a substrate, a dielectric layer formed on the substrate, a semiconductor layer including the oxide semiconductor formed on the dielectric layer, and an electrode formed on the semiconductor layer.
  • the present invention also provides a thin film transistor including the semiconductor device.
  • the present invention provides a display device including the thin film transistor.
  • the Al-Sb-O-based oxide semiconductor according to the present invention has excellent electrical conductivity and band gap, so it can be applied to semiconductor devices such as thin film transistors.
  • Such an Al-Sb-O-based oxide semiconductor device may be provided in a display device to improve performance.
  • 1 is a phase diagram of an Al-Sb-O-based oxide semiconductor according to an embodiment.
  • FIG. 2 is a cross-sectional view of a device including an oxide semiconductor according to an embodiment (100: substrate, 200: dielectric layer, 300: semiconductor layer, 400: electrode layer).
  • 3 is an example of an AFM image of the surface of an oxide semiconductor thin film.
  • 4a to 5c are test results of oxide semiconductor devices manufactured by a solution process of various Al:Sb molar ratios.
  • 6A to 7D are test results of an oxide semiconductor device subjected to heat treatment under various conditions after a solution process.
  • 8A to 8D are test results of oxide semiconductor devices manufactured with various thin film thicknesses through a solution process.
  • 9A and 9B are test results of an oxide semiconductor device manufactured by a solution process using various additives.
  • FIG. 10 is a TG-DTA analysis result of an oxide semiconductor according to an exemplary embodiment.
  • 11 is an XRD analysis result of an oxide semiconductor according to an embodiment.
  • 13A to 13E are test results of oxide semiconductor devices manufactured by deposition processes of various Al:Sb molar ratios.
  • 14a to 14c are test results of oxide semiconductor devices manufactured by deposition processes of various Ar:O 2 partial pressure ratios.
  • 15A to 15D are test results of an oxide semiconductor device heat-treated at various temperatures after a deposition process.
  • 16A to 16C are test results of oxide semiconductor devices fabricated with various thin film thicknesses through a deposition process.
  • one component is formed above/under another component or is connected or coupled to each other includes all forms, connections, or couplings between these components directly or indirectly through another component. .
  • the criterion for the top/bottom of each component may vary according to the direction in which the object is observed.
  • An oxide semiconductor according to the present invention includes an oxide containing aluminum (Al) and antimony (Sb).
  • the oxide semiconductor according to the present invention may be composed of an oxide containing aluminum (Al) and antimony (Sb). That is, the oxide semiconductor according to the present invention may be composed of only aluminum (Al), antimony (Sb), and oxygen (O).
  • the content of the oxide containing aluminum (Al) and antimony (Sb) is 50% by weight or more, 70% by weight or more, 80% by weight or more, 90% by weight or more, 95% or more, 97% or more, 99% or more, 99.5% or more, 99.9% or more, or 100% by weight.
  • the molar ratio between aluminum (Al) and antimony (Sb) is adjusted within a specific range.
  • the molar ratio of aluminum (Al) and antimony (Sb) in the oxide may be 10:1 to 1:10.
  • the molar ratio (Al:Sb) of aluminum (Al) and antimony (Sb) in the oxide is 10:1 to 1:10, 10:1 to 1:8, 10:1 to 1:6, 10 : 1 to 1:4, 10:1 to 1:2, 10:1 to 1:1, 8:1 to 1:10, 6:1 to 1:10, 4:1 to 1:10, 2:1 to 1:10, 1:1 to 1:10, 8:1 to 1:8, 6:1 to 1:6, 4:1 to 1:4, 3:1 to 1:3, 2:1 to 1 : 2, 1.5 : 1 to 1 : 1.5, or about 1 : 1.
  • the oxide may have a molar ratio of aluminum (Al), antimony (Sb), and oxygen (O) within a specific range.
  • the oxide is represented by Formula 1 below.
  • x may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, and may also be 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less, specifically 1 to 8, 1 to 6, 1 to 4, 1 to 3, 1 to 2, 2 to 8, 3 to 8, 4 to 8, or 2 to 6.
  • y may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, and may also be 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less, specifically 1 to 8, 1 to 6, 1 to 4, 1 to 3, 1 to 2, 2 to 8, 3 to 8, 4 to 8, or 2 to 6.
  • z may be, for example, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, or 8 or more, and also 15 or less, 14 or less, 13 or less, 12 or less, 11 It may be 10 or less, 9 or less, or 8 or less, specifically 1 to 15, 1 to 13, 1 to 11, 1 to 10, 1 to 9, 1 to 8, 1 to 6, 1 to 5, 3 to 15 , 5 to 15, 7 to 15, 8 to 15, 10 to 15, or 12 to 15.
  • x, y, and z may be integers within the ranges exemplified above.
  • x may be 1 or 2
  • y may be 1 or 2
  • z may be an integer from 3 to 5. More specifically, in Chemical Formula 1, x may be 1, y may be 1, and z may be 4.
  • x, y, and z may be determined within a range satisfying a balance considering oxidation numbers or valences of metal atoms (Al, Sb) and oxygen atoms (O).
  • Al is +3 valent
  • Sb is +3 valent or +5 valent
  • O is -2 valent
  • x, y, and z values may be limited in order to satisfy the valence balance of the chemical formula in which these atoms are combined.
  • AlSbO 4 may be included in the chemical formula satisfying the valence balance when Sb is +5, and AlSbO 3 may be included in the chemical formula satisfying the valence balance when Sb is +3.
  • other chemical formulas are possible depending on the molar ratio of the constituent atoms (Al, Sb, O) if the atoms satisfy the balance.
  • the oxide of Formula 1 is at least one selected from the group consisting of AlSbO 4 , AlSbO 3 , Al 4 Sb 2 O 9 , Al 2 Sb 4 O 13 , Al 4 Sb 2 O 11 and Al 2 Sb 4 O 9 may, but is not limited thereto.
  • the oxide semiconductor according to the present invention may further include additional components other than oxides containing aluminum (Al) and antimony (Sb).
  • the additional component may be, for example, aluminum oxide, antimony oxide, or other oxides.
  • the oxide semiconductor may have crystallinity, and may specifically exhibit one or more crystal peaks in an X-ray diffraction (XRD) spectrum. In another embodiment, the oxide semiconductor may have amorphousness, and may not specifically have a crystal peak appearing in an X-ray diffraction (XRD) spectrum.
  • the oxide semiconductor may have a surface roughness within a certain range when manufactured as a thin film (see FIG. 3), and for example, an RMS roughness (Rq) of 0.5 nm or more, 0.7 nm or more, 1 nm or more, 1.2 nm or more, or 1.4 nm or more.
  • Rq RMS roughness
  • nm or more and may also be 3 nm or less, 2.5 nm or less, 2 nm or less, 1.7 nm or less, or 1.5 nm or less, and as a specific example, may be 1 nm to 2 nm.
  • the oxide semiconductor according to the present invention exhibits electrical conductivity and band gap applicable to thin film transistors and the like.
  • an oxide semiconductor according to the present invention may have n-type characteristics.
  • the n-type electrical conductivity of the oxide semiconductor is 50 1/f ⁇ /m/s or more, 70 1/f ⁇ /m/s or more, 80 1/f ⁇ /m/s or more, or 90 1/f ⁇ /m/s or more. , 95 1/f ⁇ /m/s or more, 97 1/f ⁇ /m/s or more, 98 1/f ⁇ /m/s or more, or 99 1/f ⁇ /m/s or more.
  • the n-type electrical conductivity of the oxide semiconductor may be 300 1/f ⁇ /m/s or less, 200 1/f ⁇ /m/s or less, or 120 1/f ⁇ /m/s or less.
  • the oxide semiconductor may have an n-type electrical conductivity of 80 1/f ⁇ /m/s to 120 1/f ⁇ /m/s.
  • oxide semiconductor according to the present invention may also have p-type characteristics depending on the composition.
  • the p-type electrical conductivity of the oxide semiconductor is 5 1/f ⁇ /m/s or more, 10 1/f ⁇ /m/s or more, 15 1/f ⁇ /m/s or more, or 20 1/f ⁇ /m/s may be ideal
  • the p-type electrical conductivity of the oxide semiconductor is 100 1/f ⁇ /m/s or less, 70 1/f ⁇ /m/s or less, 50 1/f ⁇ /m/s or less, or 30 1/f ⁇ /m/s or less. s or less.
  • the oxide semiconductor may have a p-type electrical conductivity of 10 1/f ⁇ /m/s to 50 1/f ⁇ /m/s.
  • the electrical conductivity may be calculated by a first-principle calcualtion and Boltzmann transport equation method and a Hall effect measurement method.
  • a band gap of the oxide semiconductor may be 1 eV or more, 1.2 eV or more, 1.3 eV or more, 1.4 eV or more, 1.5 eV or more, or 1.6 eV or more.
  • the band gap of the oxide semiconductor may be 3 eV or less, 2.5 eV or less, 2 eV or less, or 1.8 eV or less.
  • the band gap of the oxide semiconductor may be 1.5 eV to 2 eV.
  • the band gap can be measured, for example, by measuring the absorbance of the sample with a UV-visible spectrometer and calculating the optical band gap by drawing a Tauc plot.
  • the oxide semiconductor may have an n-type electrical conductivity of 80 1/f ⁇ /m/s or more, and a measured band gap of 1.5 eV or more.
  • a semiconductor device including an oxide semiconductor according to the present invention for example, a thin film transistor (TFT), may have excellent performance.
  • TFT thin film transistor
  • the field effect mobility ( ⁇ FE ) of the Al-Sb-O-based oxide semiconductor device is, for example, 0.001 cm 2 /Vs or more, 0.01 cm 2 /Vs or more, 0.1 cm 2 /Vs or more, 0.2 cm 2 /Vs or more , 0.3 cm 2 /Vs or more, 0.4 cm 2 /Vs or more, or 0.5 cm 2 /Vs or more, and also 10 cm 2 /Vs or less, 7 cm 2 /Vs or less, 5 cm 2 / Vs or less, 3 cm 2 /Vs or less, 2 cm 2 /Vs or less, 1 cm 2 /Vs or less, 0.9 cm 2 /Vs or less, 0.8 cm 2 /Vs or less, 0.7 cm 2 /Vs or less, or 0.6 cm 2 /Vs or less.
  • the field effect mobility ( ⁇ FE ) of the Al-Sb-O-based oxide semiconductor device is 0.01 cm 2 /Vs to 10 cm 2 /Vs, 0.1 cm 2 /Vs to 10 cm 2 /Vs, 0.01 cm 2 /Vs to 1 cm 2 /Vs, or 0.1 cm 2 /Vs to 5 cm 2 /Vs.
  • the on/off ratio of the Al-Sb-O-based oxide semiconductor device is, for example, 1.0x10 2 or more, 1.0x10 3 or more, 1.0x10 4 or more, 3.0x10 4 or more, 5.0x10 4 or more, 7.0x10 4 or more, or 9.0x10 4 or more, and may be 1.0x10 7 or less, 5.0x10 6 or less, 3.0x10 6 or less, 1.0x10 6 or less, 5.0x10 5 or less, 3.0x10 5 or less, or 1.0x10 5 or less. there is.
  • the on/off ratio of the Al-Sb-O-based oxide semiconductor device is 1.0x10 2 to 1.0x10 7 , 1.0x10 2 to 1.0x10 5 , 1.0x10 3 to 1.0x10 7 , or 1.0x10 3 to 1.0x10 5 .
  • the V th (threshold voltage) of the Al-Sb-O-based oxide semiconductor device is, for example, -40 V or more, -30 V or more, -20 V or more, -10 V or more, 0 V or more, +3 V or more, It may be +5 V or more, or +7 V or more, and may be +40 V or less, +30 V or less, +20 V or less, or +10 V or less.
  • the threshold voltage (V th ) of the Al-Sb-O-based oxide semiconductor device may be -40 V to +40 V, -10 V to +30 V, or 0 V to 20 V.
  • the SS (subthreshold swing) of the Al-Sb-O-based oxide semiconductor device is, for example, 0.1 V/decade or more, 0.5 V/decade or more, 1 V/decade or more, 1.5 V/decade or more, or 2 V/decade or more. 30 V/decade or less, 10 V/decade or less, 5 V/decade or less, or 3 V/decade or less.
  • the SS (subthreshold swing) of the Al-Sb-O-based oxide semiconductor device is 0.1 V/decade to 30 V/decade, 0.1 V/decade to 10 V/decade, 0.1 V/decade to 3 V/decade , or 1 V/decade to 30 V/decade.
  • the Al-Sb-O-based oxide semiconductor device has n-type characteristics, a field effect mobility ( ⁇ FE ) is 0.1 cm 2 /Vs to 10 cm 2 /Vs, and an on/off ratio (on / off raito) may be 1.0x10 3 to 1.0x10 7 , V th (threshold voltage) may be -40 V to +40 V, and SS (subthreshold swing) may be 0.1 V/decade to 10 V/decade .
  • ⁇ FE field effect mobility
  • ⁇ FE field effect mobility
  • ⁇ FE field effect mobility
  • an on/off ratio on / off raito
  • V th threshold voltage
  • SS subthreshold swing
  • the Al-Sb-O-based oxide semiconductor device has a p-type characteristic, a field effect mobility ( ⁇ FE ) is 0.01 cm 2 /Vs to 1 cm 2 /Vs, and an on/off ratio (on / off raito) may be 1.0x10 2 to 1.0x10 5 , V th (threshold voltage) may be -40 V to +40 V, and SS (subthreshold swing) may be 0.1 V/decade to 3 V/decade .
  • ⁇ FE field effect mobility
  • the oxide semiconductor may be manufactured by a solution process or a deposition process.
  • the oxide semiconductor may be manufactured by a solution process, for example, a sol-gel process.
  • the method of manufacturing an oxide semiconductor may include preparing a sol-gel solution by mixing a first precursor solution containing an aluminum precursor and a second precursor solution containing an antimony precursor; and coating the sol-gel solution on a substrate to form an oxide semiconductor thin film.
  • the types of aluminum precursors and antimony precursors used in the production of the oxide semiconductor are not particularly limited.
  • the aluminum precursor is selected from the group consisting of aluminum chloride, aluminum chloride hexahydrate, aluminum acetate, aluminum diacetate, aluminum acetylacetonate, aluminum sulfate hydrate, aluminum hydroxide hydrate, and aluminum isopropoxide. It may be at least one.
  • the antimony precursor is antimony chloride (III), antimony chloride (V), antimony acetate (III), antimony sulfide (III), antimony sulfide (V), antimony fluoride (III), antimony It may be at least one selected from the group consisting of mony fluoride (V) and antimony ethoxide.
  • the first precursor solution may include a first solvent and the second precursor solution may include a second solvent.
  • the first solvent and the second solvent are not particularly limited as long as they can dissolve or disperse the aluminum precursor and the antimony precursor.
  • the first solvent and the second solvent are at least one selected from the group consisting of acetonitrile, ethylene glycol, 2-methoxyethanol, ethanol, methanol, dimethylformamide, dimethylsulfoxide and deionized water, respectively.
  • the sol-gel solution may contain at least one solvent selected from the group consisting of acetonitrile, ethylene glycol, 2-methoxyethanol, ethanol, methanol, dimethylformamide, dimethyl sulfoxide and deionized water.
  • the sol-gel solution may include a mixed solvent of one or two solvents, and for example, a mixed solvent of acetonitrile and ethylene glycol.
  • the aluminum precursor includes aluminum acetate, aluminum diacetate, etc.
  • the antimony precursor includes antimony acetate, etc.
  • the sol-gel solution includes 2-methoxyethanol, methanol, ethanol, etc. of alcohol-based solvents.
  • the aluminum precursor includes aluminum acetate
  • the antimony precursor includes antimony chloride, and the like
  • the sol-gel solution uses an aprotic polar solvent such as dimethylformamide or dimethylsulfoxide.
  • the aluminum precursor may include aluminum chloride
  • the antimony precursor may include antimony chloride
  • the sol-gel solution may include a mixed solvent of acetonitrile and ethylene glycol.
  • the weight ratio of acetonitrile and ethylene glycol in the mixed solvent may be 10:1 to 1:10.
  • the concentration of the sol-gel solution (ie, the content of the precursor) may be 0.01 M or more, 0.05 M or more, 0.1 M or more, or 0.5 or more, and also 10 M or less, 5 M or less, 3 M or less, 2 M or less, 1.5 M or less. M or less, or 1 M or less.
  • the concentration of the sol-gel solution may be in the range of 0.05 M to 3 M.
  • the first precursor solution and the second precursor solution may further include one or more additives, and the additive is, for example, selected from the group consisting of deionized water, hydrogen peroxide, monoethanolamine (MEA), and acetylacetone It can be.
  • the sol-gel solution may further include at least one additive selected from the group consisting of deionized water, hydrogen peroxide, monoethanolamine, and acetylacetone.
  • the content of the additive may be 0.01% by weight or more, 0.1% by weight or more, or 0.5% by weight or more based on the total weight of the sol-gel solution, and also 20% by weight or less, 10% by weight or less, 5% by weight or less, or 1% by weight or less. may be less than or equal to weight percent.
  • the sol-gel solution may further include 1% to 20% by weight of deionized water based on the total weight of the sol-gel solution. In another embodiment, the sol-gel solution may further include 0.1% to 5% by weight of monoethanolamine based on the total weight of the sol-gel solution.
  • the first precursor solution and the second precursor solution are prepared as a sol-gel solution by stirring at a constant temperature using a heating device such as a hot plate.
  • the temperature (sol-gel reaction temperature) at the time of preparing the sol-gel solution may be 20°C or higher, 40°C or higher, 60°C or higher, or 80°C or higher, and may also be 200°C or lower, 150°C or lower, or 120°C or lower.
  • the time required to prepare the sol-gel solution may be 1 hour or more, 2 hours or more, or 3 hours or more, and may also be 10 hours or less, 8 hours or less, or 6 hours or less.
  • the preparation of the sol-gel solution may be performed at 25° C. to 140° C. for 1 hour to 72 hours.
  • the coating may use spin coating, dip coating, bar coating or doctor blade.
  • the spin coating speed may be, for example, 500 rpm or more, 1000 rpm or more, or 1500 rpm or more, and may also be 6000 rpm or less, 4000 rpm or less, or 3000 rpm or less.
  • the coating layer obtained after the coating may be subjected to heat treatment.
  • the heat treatment may be performed in an air or nitrogen atmosphere.
  • the heat treatment may be 60°C or more, 90°C or more, 100°C or more, 120°C or more, or 150°C or more, and may be 1000°C or less, 900°C or less, 700°C or less, 500°C or less, 300°C or less, or 200°C or less. there is.
  • the heat treatment time may be 10 seconds or more, 30 seconds or more, 1 minute or more, 5 minutes or more, 10 minutes or more, or 30 minutes or more, and also 7 hours or less, 5 hours or less, 3 hours or less, 2 hours or less, or 1 hour or less.
  • the heat treatment may be performed at a temperature of 150 °C to 1000 °C for 30 minutes to 5 hours. More specifically, the heat treatment may be performed for 1 hour, 3 hours, or 5 hours.
  • the heat treatment may be performed once or twice or more, for example, heat treatment at a temperature of 90 ° C to 200 ° C for 30 seconds to 1 hour, heat treatment at a temperature of 90 ° C to 200 ° C for 1 minute to 1 hour Any one of the steps of heat treatment at a temperature of 150 ° C to 900 ° C for 30 minutes to 5 hours, and heat treatment at a temperature of 80 ° C to 300 ° C for 10 minutes to 3 hours, or two or more steps can be performed sequentially.
  • the heat treatment may be performed using a heating device such as an oven or an electric furnace.
  • a heat treatment step for drying and gelation of the coating layer may be performed before the heat treatment.
  • the heat treatment for drying and gelation may be a general heat treatment using a hot plate or the like.
  • the temperature of the heat treatment for drying and gelation may be 100 ° C or higher, 110 ° C or higher, 120 ° C or higher, or 130 ° C or higher, and also 200 ° C or lower, 180 ° C or lower, 160 ° C or lower, 150 ° C or lower, Or it may be 140 °C or less.
  • the heat treatment time for drying and gelation may be 30 seconds or more, 1 minute or more, 3 minutes or more, 5 minutes or more, or 10 minutes or more, and also 2 hours or less, 1 hour or less, 30 minutes or less, or 20 minutes may be below.
  • the oxide semiconductor is manufactured by a deposition process.
  • the oxide semiconductor may be manufactured by vacuum deposition (vapor deposition), more specifically, by sputtering deposition.
  • the method of manufacturing the oxide semiconductor includes forming an oxide semiconductor thin film containing aluminum and antimony by sputtering depositing an aluminum precursor and an antimony precursor on a substrate.
  • the aluminum precursor may include aluminum oxide, and the antimony precursor may include antimony oxide.
  • the aluminum oxide may include, for example, Al 2 O 3
  • the antimony oxide may include, for example, Sb 2 O 3 .
  • the oxide semiconductor fabricated by the sputtering deposition may have, for example, a composition represented by Chemical Formula 2 below.
  • the sputter deposition may use, for example, DC sputtering, RF sputtering, magnetron sputtering, bias sputtering, reactive sputtering, etc.
  • the sputter deposition may use a discharge gas, and for example, an inert gas such as argon gas, helium gas, neon gas, or xenon gas may be used.
  • an inert gas such as argon gas, helium gas, neon gas, or xenon gas
  • the sputtering deposition may additionally use a reactive gas, for example, oxygen gas.
  • the sputter deposition may be performed by injecting argon gas and oxygen gas.
  • the partial pressure of the oxygen gas may be 0% or more, 0.5% or more, 1% or more, 2% or more, or 5% or more, and also 20% or less, 15% or less, or 10% based on the partial pressure of the argon gas. may be below.
  • the partial pressure ratio of the argon gas and the oxygen gas may be in the range of 20:0.1 to 20:2. More specifically, the partial pressure ratio of the argon gas and the oxygen gas is 20:0.1 to 20:1.5, 20:0.1 to 20:0.7, 20:0.1 to 20:0.3, 20:0.3 to 20:2, 20:0.7 to 20 : 2, or 20:0.3 to 20:0.7.
  • the RF power applied during the sputtering deposition may be 20 W or more, 25 W or more, 30 W or more, or 50 W or more, and may be 500 W or less, 300 W or less, 200 W or less, 150 W or less, or 100 W or less, , It may be 25 W to 200 W as a specific example.
  • the operating pressure during the sputter deposition may be 0.1 mTorr or more, 0.2 mTorr or more, 0.5 mTorr or more, or 1 mTorr or more, and may also be 10 mTorr or less, 5 mTorr or less, 3 mTorr or less, or 2 mTorr or less, as a specific example, 0.2 mTorr to 3 mTorr.
  • the method of manufacturing an oxide semiconductor according to the embodiment may further include heat treatment after sputter deposition.
  • the heat treatment may be performed in an air or nitrogen atmosphere.
  • the heat treatment may be 60°C or more, 90°C or more, 100°C or more, 120°C or more, or 150°C or more, and may be 1000°C or less, 900°C or less, 700°C or less, 500°C or less, 300°C or less, or 200°C or less. there is.
  • the heat treatment time may be 10 seconds or more, 30 seconds or more, 1 minute or more, 5 minutes or more, 10 minutes or more, or 30 minutes or more, and also 7 hours or less, 5 hours or less, 3 hours or less, 2 hours or less, or 1 hour or less.
  • the heat treatment may be performed at a temperature of 150 °C to 1000 °C for 30 minutes to 5 hours. More specifically, the heat treatment may be performed for 1 hour, 3 hours, or 5 hours.
  • the heat treatment may be performed using a heating device such as an oven or an electric furnace.
  • the heat treatment may be performed through electron beam processing.
  • a target to be heated is placed inside the chamber of the electron beam accelerator, filled with discharge gas, and then RF power is applied to make it into a plasma state, and the discharge gas is separated into electrons and ions.
  • RF power is applied to make it into a plasma state
  • the discharge gas is separated into electrons and ions.
  • a DC voltage is applied, the electrons are accelerated while passing through the accelerating tube, and rapidly reach the surface of the target in the form of an electron beam and collide therewith.
  • Such electron beam treatment has the same effect as heat treatment, but has the advantage of improving composition, crystallinity, and electrical characteristics after electron beam treatment.
  • Argon gas, helium gas, neon gas, or xenon gas may be used as the discharge gas in the electron beam treatment.
  • the flow rate of the discharge gas may be, for example, 1 sccm or more, 5 sccm or more, or 10 sccm or more, and may also be 50 sccm or less, 30 sccm or less, or 15 sccm or less.
  • the density of the plasma can be controlled by adjusting the radio frequency (RF) power and the degree of acceleration of the electron beam can be controlled by adjusting the direct current (DC) voltage, so that the manufacture of metal oxide layers with various characteristics is possible. possible.
  • RF radio frequency
  • DC direct current
  • the RF power for plasma density control may be adjusted to 100 W or more, 150 W or more, 200 W or more, 250 W or more, or 300 W or more, and also 700 W or less, 500 W or less, It can be adjusted to 450 W or less, 400 W or less, or 350 W or less.
  • the DC voltage for electron beam acceleration during the electron beam processing may be adjusted to 100 V or more, 200 V or more, 300 V or more, 400 V or more, or 500 V or more, and also be 1500 V or less, 1300 V or less, or 1100 V or less. , 900 V or less, 800 V or less, 700 V or less, or 600 V or less.
  • the electron beam treatment time may be 10 seconds or more, 30 seconds or more, 1 minute or more, 2 minutes or more, or 3 minutes or more, and may be 30 minutes or less, 20 minutes or less, 10 minutes or less, 7 minutes or less, or 5 minutes or less.
  • the electron beam treatment may be performed for 30 seconds to 10 minutes at an RF power of 150 W to 500 W and a DC voltage of 200 V to 1000 V.
  • the thickness of the oxide semiconductor thin film thus prepared may be 1 nm or more, 5 nm or more, 10 nm or more, 20 nm or more, or 30 nm or more, and also 500 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, or less than 50 nm.
  • the thickness of the oxide semiconductor thin film may be 5 nm to 50 nm.
  • the thickness of the oxide semiconductor thin film may be 10 nm to 100 nm.
  • the thickness of the oxide semiconductor thin film is 10 nm to 50 nm, 10 nm to 40 nm, 10 nm to 25 nm, 20 nm to 100 nm, 20 nm to 50 nm, 20 nm to 40 nm, 40 nm to 100 nm. nm, or 20 nm to 40 nm.
  • the oxide semiconductor according to the present invention has excellent electrical conductivity and band gap, so it can be applied to semiconductor devices. Accordingly, the present invention provides a semiconductor device including the oxide semiconductor described above.
  • a semiconductor device includes a substrate and a semiconductor layer formed on the substrate, and the semiconductor layer includes the oxide semiconductor described above.
  • the semiconductor device may further include a dielectric layer between the substrate and the semiconductor layer.
  • the semiconductor device may further include an electrode on the semiconductor layer.
  • a semiconductor device includes a substrate 100; It includes a dielectric layer 200 formed on the substrate 100, a semiconductor layer 300 including an oxide semiconductor formed on the dielectric layer 200, and an electrode 400 formed on the semiconductor layer 300.
  • the oxide semiconductor includes an oxide containing aluminum (Al) and antimony (Sb).
  • the substrate is a base for forming a semiconductor device, and is not particularly limited in terms of material, but may be, for example, silicon, glass, plastic, or metal foil.
  • the substrate may be plate-shaped or formed to have a specific pattern by depositing and patterning a metal material such as molybdenum (Mo) or aluminum (Al) on the substrate.
  • the substrate may include a metal or metal oxide that is a conductive material to be used as a gate electrode, and specifically, molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti) and It may include at least one of silver (Ag).
  • the thickness of the substrate is not particularly limited, and may be, for example, 0.01 mm or more, 0.1 mm or more, 0.5 mm or more, or 1 mm or more, and may also be 10 mm or less, 5 mm or less, 3 mm or less, or 2 mm or less.
  • the dielectric layer is formed on the substrate and serves to insulate the substrate, the semiconductor layer, and the electrode.
  • the dielectric layer may include an insulating material used in a general semiconductor process.
  • the dielectric layer is selected from the group consisting of silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ) and silicon nitride (Si 3 N 4 ). It may include at least one of the dielectrics to be.
  • the dielectric layer is formed by vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, organic metal chemical vapor deposition, plasma chemical vapor deposition, molecular beam growth, hydride vapor deposition, sputtering, spin coating, dip coating, and the like.
  • the thickness of the dielectric layer may be 10 nm or more, 20 nm or more, 30 nm or more, or 50 nm or more, and may also be 500 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less.
  • the dielectric layer may have a thickness of 50 nm to 200 nm.
  • the semiconductor layer is composed of the oxide semiconductor described above, that is, includes an oxide containing aluminum (Al) and antimony (Sb).
  • the semiconductor layer may be formed by a solution process or a deposition process as described above.
  • the semiconductor layer may further include an additional oxide semiconductor other than the oxide semiconductor of the present invention.
  • Oxide semiconductors that can be added in this way are, for example, indium gallium zinc oxide (IGZO), indium tin zinc oxide (ITZO), zinc oxide (ZnO), indium zinc oxide (IZO), indium oxide (InO), indium tin oxide (ITO), indium gallium oxide (IGO), zinc tin oxide (ZTO), silicon indium zinc oxide (SIZO), gallium zinc oxide (GZO), hafnium indium zinc oxide (HIZO), and aluminum zinc tin oxide (AZTO).
  • IGZO indium gallium zinc oxide
  • ITZO indium tin zinc oxide
  • ZnO zinc oxide
  • IZO indium zinc oxide
  • ITO indium oxide
  • IGO indium gallium oxide
  • ZTO zinc tin oxide
  • SIZO silicon indium zinc oxide
  • GZO gallium zinc oxide
  • AZTO aluminum zinc tin oxide
  • the thickness of the semiconductor layer may be 1 nm or more, 5 nm or more, 10 nm or more, 20 nm or more, or 30 nm or more, and may be 500 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, or 50 nm or less.
  • the thickness of the semiconductor layer may be 5 nm to 50 nm.
  • the thickness of the semiconductor layer may be 10 nm to 100 nm.
  • the thickness of the semiconductor layer is 10 nm to 50 nm, 10 nm to 40 nm, 10 nm to 25 nm, 20 nm to 100 nm, 20 nm to 50 nm, 20 nm to 40 nm, 40 nm to 100 nm , or 20 nm to 40 nm.
  • the electrode may include a source electrode and a drain electrode, which are spaced apart from each other and may be electrically connected to the semiconductor layer.
  • the electrode may be formed of a metal material, for example, molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), It may include at least one member from the group consisting of copper (Cu), indium tin oxide (ITO), indium zinc oxide (IZO), and indium tin zinc oxide (ITZO), but is not limited thereto.
  • Mo molybdenum
  • Al aluminum
  • Cr chromium
  • Au gold
  • Ti titanium
  • Ni nickel
  • Nd neodymium
  • Cu copper
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ITZO indium tin zinc oxide
  • the electrode may be obtained by depositing a conductive film on the semiconductor layer, forming a photoresist pattern thereon, and patterning the conductive film using the photoresist pattern as a mask.
  • the conductive film is formed by using methods such as vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, organic metal chemical vapor deposition, plasma chemical vapor deposition, molecular beam growth, hydride vapor deposition, sputtering, spin coating, and dip coating. can be formed
  • the thickness of the electrode may be 5 nm or more, 10 nm or more, 30 nm or more, or 50 nm or more, and may also be 500 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less.
  • the electrode may have a thickness of 10 nm to 200 nm.
  • the semiconductor device of the present invention can be used as a field effect transistor (FET) applied to a display device or the like, and can be specifically used as a thin film transistor (TFT).
  • FET field effect transistor
  • TFT thin film transistor
  • the present invention provides a field effect transistor and a thin film transistor including the semiconductor device described above.
  • the semiconductor device of the present invention may be used as a transistor used as a pixel driving device in a liquid crystal display (LCD) or an organic light emitting display (OLED) device.
  • LCD liquid crystal display
  • OLED organic light emitting display
  • the semiconductor device according to the present invention is excellent in terms of field effect mobility ( ⁇ FE ), on / off ratio (on / off raito), V th (threshold voltage), SS (subthreshold swing), and is conventionally used It can be applied to a display device by replacing an oxide semiconductor (eg, IGZO) that has been used.
  • ⁇ FE field effect mobility
  • IGZO oxide semiconductor
  • the present invention also provides a display device including the thin film transistor.
  • the display device is a liquid crystal display (LCD) device
  • the liquid crystal display device may include a polarizer, a liquid crystal display panel, a backlight unit, and other optical sheets.
  • the liquid crystal display panel may include a color filter, a liquid crystal cell, and a driving substrate, and a thin film transistor may be provided on the driving substrate.
  • the display device is an organic light emitting display (OLED) device
  • the organic light emitting display device may include a polarizer and an organic light emitting display panel.
  • the organic light emitting display panel may include an organic light emitting substrate and a driving substrate, and thin film transistors may be provided on the driving substrate.
  • the display device using the thin film transistor including the Al-Sb-O-based oxide semiconductor of the present invention can exhibit excellent performance.
  • Example A Preparation of an Al-Sb-O-based oxide semiconductor through a solution process
  • the prepared sol-gel solution was filtered with a 1 ⁇ m syringe filter.
  • UV/ozone (UVO) treatment was performed for 10 minutes to improve the surface characteristics of the Si substrate on which the 100 nm SiO 2 dielectric layer was deposited.
  • 150 ⁇ L of the filtered Al-Sb-O-based sol-gel solution was applied to the substrate, and then spin-coated at 3000 RPM for 20 seconds using a spin coater. After coating, heat treatment was performed on a hot plate at 150° C. for 10 minutes to form a coating layer (thin film).
  • heat treatment was performed through an electric furnace. At this time, the heat treatment was performed for 1 to 5 hours at various temperature conditions within the range of 200 to 800 ° C.
  • TFT thin film transistor
  • Example A various oxide semiconductors were prepared by performing a solution process using the solvent, precursor, and process conditions described in Tables 1 and 2 below.
  • Table 3 shows the band gap and electrical conductivity of the Al-Sb-O-based oxide semiconductor according to an embodiment, and it can be seen that they are applicable to thin film transistors.
  • the optical band gap was calculated by measuring the absorbance of the sample with a UV-visible spectrometer and drawing a Tauc plot, and the electrical conductivity was calculated using the First-principle calcualtion and Boltzmann transport equation method. has been calculated
  • Example A1 Change in composition ratio of Al and Sb
  • Example A The same procedure as in Example A was repeated, but using 2-methoxyethanol or acetonitrile/ethylene glycol as a solvent, preparing a sol-gel solution containing an aluminum precursor and an antimony precursor, followed by spin coating to obtain a thickness An oxide semiconductor thin film of 27 nm was obtained and heat-treated at 400°C. At this time, the element molar ratio of Al:Sb in the Al-Sb-O-based oxide semiconductor thin film was adjusted to 5:1, 3:1, 1:1, 1:3, or 1:5 by changing the precursor molar ratio. Thereafter, an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • 4A to 5C are test results of oxide semiconductor devices manufactured by solution processes of various Al:Sb molar ratios and solvents.
  • the field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS varied according to the Al:Sb molar ratio and the solvent, and the highest ⁇ FE was obtained when the Al:Sb molar ratio was approximately 1:1. showed up
  • Example A The same procedure as Example A above was repeated, but using 5 mL of 2-methoxyethanol as the solvent and a 0.8 M concentration sol-gel solution containing 0.4 M aluminum acetylacetonate and 0.4 M antimony chloride as the precursor. After fabrication, spin coating was performed to obtain an oxide semiconductor thin film having a thickness of 27 nm. The obtained oxide semiconductor thin film was heat-treated at a temperature of 200°C, 400°C, 600°C or 800°C in an air or nitrogen atmosphere. Thereafter, an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • 6A to 7D are test results of an oxide semiconductor device subjected to heat treatment under various conditions after a solution process.
  • the field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS changed depending on the atmosphere (oxygen or nitrogen) and heat treatment temperature during heat treatment, and when the heat treatment temperature was approximately 400 ⁇ 600 °C It showed the highest ⁇ FE .
  • Example A The same procedure as Example A above was repeated, but using 5 mL of 2-methoxyethanol as the solvent and a 0.8 M concentration sol-gel solution containing 0.4 M aluminum acetylacetonate and 0.4 M antimony chloride as the precursor.
  • spin coating was performed to obtain an oxide semiconductor thin film, which was heat treated at 400°C.
  • the thickness of the oxide semiconductor thin film was formed to be 45 nm, 35 nm, 27 nm, and 15 nm by adjusting the rpm during spin coating.
  • an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • 8A to 8D are test results of oxide semiconductor devices manufactured with various thin film thicknesses through a solution process.
  • the field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS varied depending on the thickness of the oxide semiconductor thin film, and the highest ⁇ FE was shown when the thickness of the thin film was approximately 20 to 30 nm.
  • Example A The same procedure as Example A above was repeated, but using 5 mL of 2-methoxyethanol as the solvent and a 0.8 M concentration sol-gel solution containing 0.4 M aluminum acetylacetonate and 0.4 M antimony chloride as the precursor. After fabrication, spin coating was performed to obtain an oxide semiconductor thin film, which was heat treated at 400°C. At this time, 0.2 mL of deionized water or 0.120 mL of monoethanolamine was additionally added to the sol-gel solution, and the process was performed. Thereafter, an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • 9A and 9B are test results of oxide semiconductor devices manufactured by a solution process of various additives.
  • the field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS varied depending on the additive, and ⁇ FE was higher than when no additive was used.
  • Test Example 1 Electrical Characteristics of Oxide Semiconductor Device
  • the electrical characteristics of the thin film transistor (TFT) prepared in Example were tested.
  • the electrical characteristics of the TFT were defined by measuring two transfer curves and output curves.
  • V G was applied to a total of 161 points in 0.5 V increments in the range of -40 to 40 V
  • V D was measured by applying various values between 0.1 V and 20.1 V.
  • V D was applied to a total of 81 points in 0.5 V increments in the range of 0 to 40 V
  • V G was measured by applying in 5 V steps in the range of 0 to 25 V.
  • the measurement was performed using a Hewlett Packard 4145B semiconductor parameter analyzer.
  • Example A The same procedure as Example A above was repeated, but using 5 mL of 2-methoxyethanol as the solvent and a 0.8 M concentration sol-gel solution containing 0.4 M aluminum acetylacetonate and 0.4 M antimony chloride as the precursor. After fabrication, an oxide semiconductor was obtained by spin coating. The obtained oxide semiconductor was subjected to heat treatment while varying the temperature from 0 °C to 1200 °C and analyzed by TG-DTA.
  • Crystallinity and crystallization temperature of the Al-Sb-O-based oxide semiconductor were confirmed through X-ray diffraction (XRD) analysis.
  • Example A The same procedure as Example A above was repeated, but using 5 mL of 2-methoxyethanol as the solvent and a 0.8 M concentration sol-gel solution containing 0.4 M aluminum acetylacetonate and 0.4 M antimony chloride as the precursor. After fabrication, spin coating was performed to obtain an oxide semiconductor thin film having a thickness of 100 nm. The obtained oxide semiconductor was heat-treated by varying the temperature at 200°C, 400°C, 600°C, 800°C, and 1000°C in air, and XRD analysis was performed.
  • composition ratio of the Al-Sb-O-based oxide semiconductor was confirmed through X-ray photoelectron spectroscopy (XPS).
  • Example A The same procedure as Example A above was repeated, but using 5 mL of 2-methoxyethanol as the solvent and a 0.8 M concentration sol-gel solution containing 0.4 M aluminum acetylacetonate and 0.4 M antimony chloride as the precursor. After fabrication, spin coating was performed to obtain an oxide semiconductor thin film having a thickness of 27 nm and heat treatment was performed at 400°C.
  • Example B Preparation of Al-Sb-O-based oxide semiconductor device through sputter deposition
  • a target of Al 2 O 3 with a purity of 99.99% and a target of Sb 2 O 3 with a purity of 99.99% were fabricated with a thickness of 4 mm and a length of 2 inches, respectively.
  • copper (Cu) with a thickness of 2 mm was bonded as a back plate.
  • An Al-Sb-O-based thin film was deposited on the Si/SiO 2 substrate, which was performed by co-sputtering by applying RF power to the Al 2 O 3 and Sb 2 O 3 targets, respectively.
  • RF power was supplied in various combinations within the range of 25 to 150 W for Al 2 O 3 and 15 to 70 W for Sb 2 O 3 .
  • heat treatment was performed through an electric furnace. At this time, the heat treatment was performed for 1 to 5 hours at various temperature conditions within the range of 200 to 800 ° C.
  • a thin film transistor was fabricated by depositing an ITO electrode having a thickness of 100 nm on the obtained oxide semiconductor thin film, and then the characteristics were tested.
  • Example B1 Al:Sb molar ratio change
  • Example B The same procedure as in Example B was repeated to obtain an Al-Sb-O-based oxide semiconductor thin film, which was heat-treated at 400°C.
  • the Al:Sb element molar ratio in the Al-Sb-O-based oxide semiconductor thin film is 5:1, 3:1, 1:1, 1:3, or 1: Adjusted to 5.
  • an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • 13A to 13E are test results of oxide semiconductor devices manufactured by deposition processes of various Al:Sb molar ratios.
  • the field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS varied according to the Al:Sb molar ratio, and the highest ⁇ FE was exhibited when the Al:Sb molar ratio was approximately 1:1. .
  • Example B The same procedure as in Example B was repeated to obtain an Al-Sb-O-based oxide semiconductor thin film, which was heat-treated at 400°C. At this time, sputtering was performed by adjusting the Ar:O 2 partial pressure ratio to 20:0.1, 20:0.5, and 20:1.0. Thereafter, an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • Example B The same procedure as Example B was repeated, but the Ar:O 2 partial pressure ratio was set to 20:0.1 and the RF power was set to 150 W for Al and 30 W for Sb. -O-type oxide semiconductor thin film was obtained.
  • the obtained oxide semiconductor thin film was heat-treated at a temperature of 200°C, 400°C, 600°C or 800°C in an air atmosphere. Thereafter, an ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • TFT thin film transistor
  • 15A to 15D are test results of an oxide semiconductor device heat-treated at various temperatures after a deposition process.
  • the field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS varied according to the heat treatment temperature, and the highest ⁇ FE was exhibited when the heat treatment temperature was approximately 400 ° C.
  • Example B The same procedure as in Example B was repeated, but sputter deposition was performed in which the Ar:O 2 partial pressure ratio was set to 20:0.1 and the RF power applied to the Al precursor and the Sb precursor was set to 150 W and 30 W, respectively. -O-type oxide semiconductor thin film was obtained
  • the thickness of the oxide semiconductor thin film deposited by sputtering was formed to be 15 nm, 30 nm, and 45 nm.
  • ITO electrode was formed on the oxide semiconductor thin film to manufacture a thin film transistor (TFT), and then the electrical properties were tested.
  • 16A to 16C are test results of oxide semiconductor devices manufactured with various thin film thicknesses through a solution process.
  • field effect mobility ( ⁇ FE ), on/off ratio, V th , and SS varied depending on the thickness of the oxide semiconductor thin film, and the highest ⁇ FE was shown when the thickness of the thin film was approximately 30 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

알루미늄(Al) 및 안티모니(Sb)를 함유하는 Al-Sb-O계 산화물 반도체는 전기전도도 및 밴드갭이 우수하여 박막 트랜지스터 등에 적용 가능하다.

Description

산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자
본 발명은 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자에 관한 것이다.
산화물 반도체는 산화아연, 산화카드뮴 및 산화인듐과 같은 산화물 소재에 도핑을 통해 전도성을 제어하고 밴드갭을 조절한 반도체 소재로서, 일반적으로 넓은 밴드갭을 갖는 투명 반도체 소재이다.
산화물 반도체는 넓은 밴드갭을 갖고 있어 에너지가 작은 가시광이나 적외선을 흡수할 수 없어 가시광 영역(360~800 nm)에서 빛을 투과시키는 성질을 갖고 있다. 우수한 광학적, 전기적 특성으로 인해 최근 산화물 반도체는 투명 반도체 분야에서 매우 중요한 소재이며, 투명 디스플레이, 투명센서, 투명 태양전지 등의 다양한 산업분야에 응용될 가능성이 높은 반도체 소재이다.
예를 들어 산화아연과 같은 산화물 소재는 도핑을 통해 전도성을 조절하거나 합금을 하여 밴드갭을 제어할 수 있는 반도체 소재이다. 이러한 산화물 반도체는 넓은 밴드갭이 주요 특징으로 가시광 영역에서 매우 높은 광투과도를 갖고 있어 투명하다.
일본 도쿄 공업대학의 히데오 호소노 교수는 한국 특허 제 0939998 호에서 높은 전하이동도를 갖는 투명 반도체인 IGZO(indium gallium zinc oxide) 및 이를 이용한 박막 트랜지스터를 개시하였다. IGZO는 인듐, 갈륨, 아연, 산소로 이루어진 산화물 소재로, 3 eV 이상의 넓은 밴드갭을 갖는 반도체 소재이다. 산화물 반도체를 IGZO를 활용하여 박막 트랜지스터 제작이 가능하여 디스플레이 분야에서는 이미 백플레인 패널용 소자로 활용되고 있다. IGZO를 이용하여 박막 트랜지스터를 만들 경우, 비정질 실리콘 박막 트랜지스터보다 전하 이동도가 우수하여 디스플레이 분야에서 백플래인 회로 및 스위칭 소자 등으로 활용되고 있다.
[선행기술문헌]
(특허문헌 1) 한국 특허 제 0939998 호 (2010. 1. 26.)
본 발명자들은 현재 산화물 반도체로 사용 중인 IGZO를 대체할 새로운 소재를 찾기 위해, 데이터 마이닝을 통한 산화물 빅 데이터로부터 조사 가능한 영역을 확보하고, 박막 트랜지스터(TFT)와 관련된 전기전도도 및 밴드갭 등의 물성을 분석하고, 데이터 스크리닝을 통해 후보군을 필터링하여 등의 유망한 원소 조합을 얻을 수 있었다.
본 발명자들은 또한 이들의 구조를 데이터베이스화하고 상평형도 등을 통해 결정화 가능성이 높은 소재의 리스트를 확보한 뒤(도 1 참조), 머신러닝 기법을 통해 전기전도도와 밴드갭과 같은 물성을 분석한 결과, 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물을 IGZO를 대체할 소재로 최종 결정할 수 있었다.
따라서 본 발명의 과제는 전기전도도 및 밴드갭이 우수하여 박막 트랜지스터 등에 적용 가능한 새로운 산화물 반도체 및 이의 제조방법을 제공하는 것이다. 또한 본 발명의 과제는 상기 산화물 반도체를 이용한 반도체 소자, 박막 트랜지스터 및 디스플레이 장치를 제공하는 것이다.
본 발명은 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물을 포함하는, 산화물 반도체를 제공한다.
본 발명은 또한 알루미늄 전구체를 함유하는 제 1 전구체 용액, 및 안티모니 전구체를 함유하는 제 2 전구체 용액을 혼합하여 졸-겔 용액을 제조하는 단계; 및 상기 졸-겔 용액을 기재 상에 코팅하여 산화물 반도체 박막을 형성하는 단계를 포함하는, 상기 산화물 반도체의 제조방법을 제공한다.
본 발명은 또한 기재 상에 알루미늄 전구체 및 안티모니 전구체를 스퍼터링 증착하여 알루미늄 및 안티모니를 함유하는 산화물 반도체 박막을 형성하는 단계를 포함하는, 상기 산화물 반도체의 제조방법을 제공한다.
본 발명은 또한 기재, 상기 기재 상에 형성된 유전층, 상기 유전층 상에 형성된 상기 산화물 반도체를 포함하는 반도체층, 및 상기 반도체층 상에 형성된 전극을 포함하는, 반도체 소자를 제공한다.
본 발명은 또한 상기 반도체 소자를 포함하는 박막 트랜지스터를 제공한다. 또한 본 발명은 상기 박막 트랜지스를 포함하는 디스플레이 장치를 제공한다.
본 발명에 따른 Al-Sb-O계 산화물 반도체는 전기전도도 및 밴드갭이 우수하여 박막 트랜지스터와 같은 반도체 소자에 적용 가능하다. 이와 같은 Al-Sb-O계 산화물 반도체 소자는 디스플레이 장치에 구비되어 성능을 향상시킬 수 있다.
도 1은 일 구현예에 따른 Al-Sb-O계 산화물 반도체의 상평형도이다.
도 2는 일 구현예에 따른 산화물 반도체를 포함하는 소자의 단면도이다(100: 기재, 200: 유전층, 300: 반도체층, 400: 전극층).
도 3은 산화물 반도체 박막 표면에 대한 AFM 이미지의 일례이다.
도 4a 내지 5c는 다양한 Al:Sb 몰비의 용액 공정으로 제조된 산화물 반도체 소자의 시험 결과이다.
도 6a 내지 7d는 용액 공정 이후 다양한 조건으로 열처리된 산화물 반도체 소자의 시험 결과이다.
도 8a 내지 8d는 용액 공정을 통해 다양한 박막 두께로 제조된 산화물 반도체 소자의 시험 결과이다.
도 9a 및 9b는 다양한 첨가제를 이용한 용액 공정으로 제조된 산화물 반도체 소자의 시험 결과이다.
도 10은 일 실시예에 따른 산화물 반도체의 TG-DTA 분석 결과이다.
도 11은 일 실시예에 따른 산화물 반도체의 XRD 분석 결과이다.
도 12는 일 실시예에 따른 산화물 반도체의 XPS 분석 결과이다.
도 13a 내지 13e는 다양한 Al:Sb 몰비의 증착 공정으로 제조된 산화물 반도체 소자의 시험 결과이다.
도 14a 내지 14c는 다양한 Ar:O2 분압비의 증착 공정으로 제조된 산화물 반도체 소자의 시험 결과이다.
도 15a 내지 15d는 증착 공정 이후 다양한 온도로 열처리된 산화물 반도체 소자의 시험 결과이다.
도 16a 내지 16c는 증착 공정을 통해 다양한 박막 두께로 제조된 산화물 반도체 소자의 시험 결과이다.
이하 본 발명의 다양한 구현예와 실시예를 도면을 참고로 하여 구체적으로 설명한다.
본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장되거나 생략될 수 있으며, 실제로 적용되는 크기와 다를 수 있다.
본 명세서에서 하나의 구성요소가 다른 구성요소의 상/하에 형성되거나 서로 연결 또는 결합된다는 기재는, 이들 구성요소 간에 직접 또는 또 다른 구성요소를 개재하여 간접적으로 형성, 연결 또는 결합되는 것을 모두 포함한다. 또한 각 구성요소의 상/하에 대한 기준은 대상을 관찰하는 방향에 따라 달라질 수 있는 것으로 이해하여야 한다.
본 명세서에서 각 구성요소를 지칭하는 용어는 다른 구성요소들과 구별하기 위해 사용되는 것이며, 본 발명을 한정하려는 의도로 사용되는 것은 아니다. 또한 본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.
본 명세서에서 "포함"한다는 기재는 특정 특성, 영역, 단계, 공정, 요소 및/또는 성분을 구체화하기 위한 것이며, 특별히 반대되는 기재가 없는 한, 그 외 다른 특성, 영역, 단계, 공정, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
본 명세서에서 제 1, 제 2 등의 용어는 다양한 구성 요소를 설명하기 위해 사용되는 것이고, 상기 구성 요소들은 상기 용어에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로 구별하는 목적으로 사용된다.
산화물 반도체
본 발명에 따른 산화물 반도체는 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물을 포함한다.
일 구현예로서, 본 발명에 따른 산화물 반도체는 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물로 구성될 수 있다. 즉 본 발명에 따른 산화물 반도체는 알루미늄(Al), 안티모니(Sb) 및 산소(O)로만 구성될 수 있다.
본 발명의 산화물 반도체의 총 중량을 기준으로, 상기 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물의 함량은 50 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90 중량% 이상, 95 중량% 이상, 97 중량% 이상, 99 중량% 이상, 99.5 중량% 이상, 99.9 중량% 이상이거나, 또는 100 중량%일 수 있다.
본 발명에 따른 산화물 반도체에는 알루미늄(Al) 및 안티모니(Sb) 간의 몰비가 특정 범위 내로 조절되는 것이 좋다.
일 구현예로서, 상기 산화물 내의 알루미늄(Al) 및 안티모니(Sb)의 몰비가 10 : 1 내지 1 : 10일 수 있다.
예를 들어, 상기 산화물 내의 알루미늄(Al) 및 안티모니(Sb)의 몰비(Al:Sb)는 10 : 1 내지 1 : 10, 10 : 1 내지 1 : 8, 10 : 1 내지 1 : 6, 10 : 1 내지 1 : 4, 10 : 1 내지 1 : 2, 10 : 1 내지 1 : 1, 8 : 1 내지 1 : 10, 6 : 1 내지 1 : 10, 4 : 1 내지 1 : 10, 2 : 1 내지 1 : 10, 1 : 1 내지 1 : 10, 8 : 1 내지 1 : 8, 6 : 1 내지 1 : 6, 4 : 1 내지 1 : 4, 3 : 1 내지 1 : 3, 2 : 1 내지 1 : 2, 1.5 : 1 내지 1 : 1.5이거나, 또는 약 1 : 1일 수 있다.
또한 상기 산화물은 알루미늄(Al), 안티모니(Sb), 및 산소(O)의 몰비가 특정 범위 내로 조절될 수 있다.
일 구현예에 있어서, 상기 산화물은 하기 화학식 1로 표시된다.
[화학식 1]
AlxSbyOz
여기서 1 ≤ x ≤ 8, 1 ≤ y ≤ 8, 및 1 ≤ z ≤ 15이다.
상기 화학식 1에서 x는 예를 들어 1 이상, 2 이상, 3 이상 또는 4 이상일 수 있고, 또한 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하 또는 2 이하일 수 있으며, 구체적으로 1 내지 8, 1 내지 6, 1 내지 4, 1 내지 3, 1 내지 2, 2 내지 8, 3 내지 8, 4 내지 8, 또는 2 내지 6일 수 있다.
상기 화학식 1에서 y는 예를 들어 1 이상, 2 이상, 3 이상 또는 4 이상일 수 있고, 또한 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하 또는 2 이하일 수 있으며, 구체적으로 1 내지 8, 1 내지 6, 1 내지 4, 1 내지 3, 1 내지 2, 2 내지 8, 3 내지 8, 4 내지 8, 또는 2 내지 6일 수 있다.
상기 화학식 1에서 z는 예를 들어 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 또는 8 이상일 수 있고, 또한 15 이하, 14 이하, 13 이하, 12 이하, 11 이하, 10 이하, 9 이하 또는 8 이하일 수 있으며, 구체적으로 1 내지 15, 1 내지 13, 1 내지 11, 1 내지 10, 1 내지 9, 1 내지 8, 1 내지 6, 1 내지 5, 3 내지 15, 5 내지 15, 7 내지 15, 8 내지 15, 10 내지 15, 또는 12 내지 15일 수 있다.
또한 상기 x, y 및 z는 앞서 예시한 범위 내의 정수일 수 있다.
구체적으로, 상기 화학식 1에서 x는 1 또는 2이고, y는 1 또는 2이고, 및 z는 3 내지 5의 정수일 수 있다. 보다 구체적으로, 상기 화학식 1에서 x는 1이고, y는 1이고, 및 z는 4일 수 있다.
아울러, 상기 화학식 1에서 x, y, z는 금속 원자(Al, Sb) 및 산소 원자(O)의 산화수 또는 원자가를 고려한 밸런스를 만족시키는 범위 내에서 결정될 수 있다. 구체적으로, Al은 +3가이고, Sb는 +3가 또는 +5가이고, O는 -2가이므로, 이들 원자가 조합된 화학식의 원자가 밸런스를 만족하기 위해서는 x, y, z 값이 제한될 수 있다. 예를 들어 상기 화학식 1에서 Sb가 +5가일 경우에 원자가 밸런스를 만족하는 화학식에는 AlSbO4가 포함될 수 있고, Sb가 +3가일 경우에 원자가 밸런스를 만족하는 화학식에는 AlSbO3가 포함될 수 있다. 그러나, 그 외에도 원자가 밸런스를 만족한다면 구성 원자(Al, Sb, O)의 몰비에 따라 다양한 화학식이 가능하다.
구체적으로 상기 화학식 1의 산화물은 AlSbO4, AlSbO3, Al4Sb2O9, Al2Sb4O13, Al4Sb2O11 및 Al2Sb4O9로 이루어진 군에서 선택되는 적어도 1종일 수 있으나, 이에 한정되지 않는다.
추가로, 본 발명에 따른 산화물 반도체는 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물 외의 추가적인 성분을 더 포함할 수 있다. 상기 추가적인 성분은 예를 들어 산화알루미늄, 산화안티모니, 또는 그 외 다른 산화물일 수 있다.
일 구현예에 있어서, 상기 산화물 반도체는 결정성을 가질 수 있고, 구체적으로 X선 회절(XRD) 스펙트럼에서 하나 이상의 결정 피크를 나타낼 수 있다. 다른 구현예에 있어서, 상기 산화물 반도체는 비결정성을 가질 수 있고, 구체적으로 X선 회절(XRD) 스펙트럼에서 나타나는 결정 피크가 없을 수 있다.
상기 산화물 반도체는 박막으로 제조 시에 일정 범위 내의 표면 조도를 가질 수 있고(도 3 참조), 예를 들어 RMS 조도(Rq)가 0.5 nm 이상, 0.7 nm 이상, 1 nm 이상, 1.2 nm 이상 또는 1.4 nm 이상일 수 있고, 또한 3 nm 이하, 2.5 nm 이하, 2 nm 이하, 1.7 nm 이하 또는 1.5 nm 이하일 수 있으며, 구체적인 일례로서 1 nm 내지 2 nm일 수 있다.
본 발명에 따른 산화물 반도체는 박막 트랜지스터 등에 적용 가능한 전기전도도 및 밴드갭을 나타낸다.
예를 들어 본 발명에 따른 산화물 반도체는 n-타입 특성을 가질 수 있다.
상기 산화물 반도체의 n-타입의 전기전도도는 50 1/fΩ/m/s 이상, 70 1/fΩ/m/s 이상, 80 1/fΩ/m/s 이상, 90 1/fΩ/m/s 이상, 95 1/fΩ/m/s 이상, 97 1/fΩ/m/s 이상, 98 1/fΩ/m/s 이상, 또는 99 1/fΩ/m/s 이상일 수 있다. 또한 상기 산화물 반도체의 n-타입의 전기전도도는 300 1/fΩ/m/s 이하, 200 1/fΩ/m/s 이하, 또는 120 1/fΩ/m/s 이하일 수 있다. 구체적인 일례로서, 상기 산화물 반도체는 n-타입의 전기전도도가 80 1/fΩ/m/s 내지 120 1/fΩ/m/s일 수 있다.
또한 본 발명에 따른 산화물 반도체는 조성에 따라 p-타입 특성도 가질 수 있다.
상기 산화물 반도체의 p-타입의 전기전도도는 5 1/fΩ/m/s 이상, 10 1/fΩ/m/s 이상, 15 1/fΩ/m/s 이상, 또는 20 1/fΩ/m/s 이상일 수 있다. 또한 상기 산화물 반도체의 p-타입의 전기전도도는 100 1/fΩ/m/s 이하, 70 1/fΩ/m/s 이하, 50 1/fΩ/m/s 이하, 또는 30 1/fΩ/m/s 이하일 수 있다. 구체적인 일례로서, 상기 산화물 반도체는 p-타입의 전기전도도가 10 1/fΩ/m/s 내지 50 1/fΩ/m/s일 수 있다.
상기 전기전도도는 제일원리 및 볼츠만 수송(First-principle calcualtion and Boltzmann transport equation) 방식 및 홀 효과법(Hall effect measurement)으로 산출될 수 있다.
상기 산화물 반도체의 밴드갭은 1 eV 이상, 1.2 eV 이상, 1.3 eV 이상, 1.4 eV 이상, 1.5 eV 이상, 또는 1.6 eV 이상일 수 있다. 또한, 상기 산화물 반도체의 밴드갭은 3 eV 이하, 2.5 eV 이하, 2 eV 이하, 또는 1.8 eV 이하일 수 있다. 구체적인 일례로서, 상기 산화물 반도체의 밴드갭은 1.5 eV 내지 2 eV일 수 있다. 상기 밴드갭은 예를 들어 UV-가시광 분광계로 시료의 흡광도를 측정하고 타우 플롯(Tauc plot)을 그려 광학적 밴드갭을 계산하는 방식으로 측정할 수 있다.
일 구현예에 있어서, 상기 산화물 반도체는 n-타입의 전기전도도가 80 1/fΩ/m/s 이상이고, 측정한 밴드갭이 1.5 eV 이상일 수 있다.
이에 따라 본 발명에 따른 산화물 반도체를 포함하는 반도체 소자, 예를 들어 박막 트랜지스터(TFT)는 성능이 우수할 수 있다.
상기 Al-Sb-O계 산화물 반도체 소자의 전계효과이동도(μFE)는 예를 들어 0.001 cm2/Vs 이상, 0.01 cm2/Vs 이상, 0.1 cm2/Vs 이상, 0.2 cm2/Vs 이상, 0.3 cm2/Vs 이상, 0.4 cm2/Vs 이상, 또는 0.5 cm2/Vs 이상일 수 있고, 또한 10 cm2/Vs 이하, 7 cm2/Vs 이하, 5 cm2/Vs 이하, 3 cm2/Vs 이하, 2 cm2/Vs 이하, 1 cm2/Vs 이하, 0.9 cm2/Vs 이하, 0.8 cm2/Vs 이하, 0.7 cm2/Vs 이하, 또는 0.6 cm2/Vs 이하일 수 있다. 구체적인 예로서, 상기 Al-Sb-O계 산화물 반도체 소자의 전계효과이동도(μFE)는 0.01 cm2/Vs 내지 10 cm2/Vs, 0.1 cm2/Vs 내지 10 cm2/Vs, 0.01 cm2/Vs 내지 1 cm2/Vs, 또는 0.1 cm2/Vs 내지 5 cm2/Vs일 수 있다.
상기 Al-Sb-O계 산화물 반도체 소자의 온/오프비(on/off raito)는 예를 들어 1.0x102 이상, 1.0x103 이상, 1.0x104 이상, 3.0x104 이상, 5.0x104 이상, 7.0x104 이상, 또는 9.0x104 이상일 수 있고, 또한 1.0x107 이하, 5.0x106 이하, 3.0x106 이하, 1.0x106 이하, 5.0x105 이하, 3.0x105 이하, 또는 1.0x105 이하일 수 있다. 구체적인 예로서, 상기 Al-Sb-O계 산화물 반도체 소자의 온/오프비(on/off raito)는 1.0x102 내지 1.0x107, 1.0x102 내지 1.0x105, 1.0x103 내지 1.0x107, 또는 1.0x103 내지 1.0x105일 수 있다.
상기 Al-Sb-O계 산화물 반도체 소자의 Vth(threshold voltage)는 예를 들어 -40 V 이상, -30 V 이상, -20 V 이상, -10 V 이상, 0 V 이상, +3 V 이상, +5 V 이상, 또는 +7 V 이상일 수 있고, 또한 +40 V 이하, +30 V 이하, +20 V 이하, 또는 +10 V 이하일 수 있다. 구체적인 예로서, 상기 Al-Sb-O계 산화물 반도체 소자의 Vth(threshold voltage)는 -40 V 내지 +40 V, -10 V 내지 +30 V, 또는 0 V 내지 20 V일 수 있다.
상기 Al-Sb-O계 산화물 반도체 소자의 SS(subthreshold swing)는 예를 들어 0.1 V/decade 이상, 0.5 V/decade 이상, 1 V/decade 이상, 1.5 V/decade 이상, 또는 2 V/decade 이상일 수 있고, 또한 30 V/decade 이하, 10 V/decade 이하, 5 V/decade 이하, 또는 3 V/decade 이하일 수 있다. 구체적인 예로서, 상기 Al-Sb-O계 산화물 반도체 소자의 SS(subthreshold swing)는 0.1 V/decade 내지 30 V/decade, 0.1 V/decade 내지 10 V/decade, 0.1 V/decade 내지 3 V/decade, 또는 1 V/decade 내지 30 V/decade일 수 있다.
일 구현예에 있어서, 상기 Al-Sb-O계 산화물 반도체 소자는 n-타입 특성을 가지고, 전계효과이동도(μFE)가 0.1 cm2/Vs 내지 10 cm2/Vs이고, 온/오프비(on/off raito)가 1.0x103 내지 1.0x107이고, Vth(threshold voltage)가 -40 V 내지 +40 V이고, SS(subthreshold swing)가 0.1 V/decade 내지 10 V/decade일 수 있다.
다른 구현예에 있어서, 상기 Al-Sb-O계 산화물 반도체 소자는 p-타입 특성을 가지고, 전계효과이동도(μFE)가 0.01 cm2/Vs 내지 1 cm2/Vs이고, 온/오프비(on/off raito)가 1.0x102 내지 1.0x105이고, Vth(threshold voltage)가 -40 V 내지 +40 V이고, SS(subthreshold swing)가 0.1 V/decade 내지 3 V/decade일 수 있다.
산화물 반도체의 제조방법(용액 공정)
본 발명에 따르면 상기 산화물 반도체는 용액 공정 또는 증착 공정에 의해 제조될 수 있다.
일 구현예에 따르면 상기 산화물 반도체는 용액 공정, 예를 들어 졸-겔 공정에 의해 제조될 수 있다.
예를 들어, 상기 산화물 반도체의 제조방법은 알루미늄 전구체를 함유하는 제 1 전구체 용액, 및 안티모니 전구체를 함유하는 제 2 전구체 용액을 혼합하여 졸-겔 용액을 제조하는 단계; 및 상기 졸-겔 용액을 기재 상에 코팅하여 산화물 반도체 박막을 형성하는 단계를 포함한다.
상기 산화물 반도체의 제조에 사용되는 알루미늄 전구체 및 안티모니 전구체의 종류는 특별히 한정되지 않는다.
예를 들어, 상기 알루미늄 전구체가 알루미늄 클로라이드, 알루미늄 클로라이드 헥사하이드레이트, 알루미늄 아세테이트, 알루미늄 디아세테이트, 알루미늄 아세틸아세토네이트, 알루미늄 설페이트 하이드레이트, 알루미늄 하이드록사이드 하이드레이트, 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 적어도 1종일 수 있다.
또한 상기 안티모니 전구체가 안티모니 클로라이드(III), 안티모니 클로라이드(V), 안티모니 아세테이트(III), 안티모니 설파이드(III), 안티모니 설파이드(V), 안티모니 플루오라이드(III), 안티모니 플루오라이드(V) 및 안티모니 에톡사이드로 이루어진 군에서 선택되는 적어도 1종일 수 있다.
상기 제 1 전구체 용액은 제 1 용매를 포함하고 상기 제 2 전구체 용액은 제 2 용매를 포함할 수 있다.
상기 제 1 용매 및 상기 제 2 용매는 상기 알루미늄 전구체 및 상기 안티모니 전구체를 용해 또는 분산시킬 수 있는 용매라면 특별히 한정되지 않는다.
구체적으로, 상기 제 1 용매 및 상기 제 2 용매는 각각 아세토나이트릴, 에틸렌글리콜, 2-메톡시에탄올, 에탄올, 메탄올, 디메틸포름아마이드, 디메틸설폭사이드 및 탈이온수로 이루어진 군에서 선택되는 적어도 1종일 수 있다.
이에 따라, 상기 졸-겔 용액이 아세토나이트릴, 에틸렌글리콜, 2-메톡시에탄올, 에탄올, 메탄올, 디메틸포름아마이드, 디메틸설폭사이드 및 탈이온수로 이루어진 군에서 선택되는 적어도 1종의 용매를 포함할 수 있다. 상기 졸-겔 용액은 1종 또는 2종의 용매의 혼합 용매를 포함할 수 있으며, 일례로서 아세토나이트릴 및 에틸렌글리콜의 혼합 용매를 포함할 수 있다.
일 실시예에 있어서, 상기 알루미늄 전구체가 알루미늄 아세테이트, 알루미늄 디아세테이트 등을 포함하고, 상기 안티모니 전구체가 안티모니 아세테이트 등을 포함하고, 상기 졸-겔 용액이 2-메톡시에탄올, 메탄올, 에탄올 등의 알콜계 용매를 포함할 수 있다.
다른 실시예에 있어서, 상기 알루미늄 전구체가 알루미늄 아세테이트 등을 포함하고, 상기 안티모니 전구체가 안티모니 클로라이드 등을 포함하고, 상기 졸-겔 용액이 디메틸포름아마이드, 디메틸설폭사이드 등의 비양자성 극성 용매를 포함할 수 있다.
또 다른 실시예에 있어서, 상기 알루미늄 전구체가 알루미늄 클로라이드 등을 포함하고, 상기 안티모니 전구체가 안티모니 클로라이드 등을 포함하고, 상기 졸-겔 용액이 아세토나이트릴 및 에틸렌글리콜의 혼합 용매를 포함할 수 있다. 상기 혼합 용매에서 아세토나이트릴 및 에틸렌글리콜의 중량비는 10 : 1 내지 1 : 10일 수 잇다.
상기 졸-겔 용액의 농도(즉 전구체의 함량)는 0.01 M 이상, 0.05 M 이상, 0.1 M 이상, 또는 0.5 이상일 수 있고, 또한 10 M 이하, 5 M 이하, 3 M 이하, 2 M 이하, 1.5 M 이하, 또는 1 M 이하일 수 있다. 구체적인 예로서, 상기 졸-겔 용액의 농도가 0.05 M 내지 3 M 범위일 수 있다.
상기 제 1 전구체 용액 및 상기 제 2 전구체 용액은 1종 이상의 첨가제를 추가로 포함할 수 있고, 상기 첨가제는 예를 들어 탈이온수, 과산화수소, 모노에탄올아민(MEA), 및 아세틸아세톤으로 이루어진 군에서 선택될 수 있다. 이에 따라, 상기 졸-겔 용액이 탈이온수, 과산화수소, 모노에탄올아민 및 아세틸아세톤으로 이루어진 군에서 선택되는 1종 이상의 첨가제를 추가로 포함할 수 있다. 상기 첨가제의 함량은 상기 졸-겔 용액의 총 중량을 기준으로 0.01 중량% 이상, 0.1 중량% 이상 또는 0.5 중량% 이상일 수 있고, 또한 20 중량% 이하, 10 중량% 이하, 5 중량% 이하 또는 1 중량% 이하일 수 있다. 일 구체예에 있어서, 상기 졸-겔 용액은 상기 졸-겔 용액의 총 중량을 기준으로 탈이온수 1 중량% 내지 20 중량%를 추가로 포함할 수 있다. 다른 구체예에 있어서, 상기 졸-겔 용액은 상기 졸-겔 용액의 총 중량을 기준으로 모노에탄올아민 0.1 중량% 내지 5 중량%를 추가로 포함할 수 있다.
상기 제 1 전구체 용액 및 상기 제 2 전구체 용액은 핫플레이트와 같은 가열 장치를 통해 일정 온도 조건에서 교반을 통해 졸-겔 용액으로 제조된다. 상기 졸-겔 용액의 제조 시의 온도(졸-겔 반응 온도)는 20℃ 이상, 40℃ 이상, 60℃ 이상 또는 80℃ 이상일 수 있고, 또한 200℃ 이하, 150℃ 이하 또는 120℃ 이하일 수 있다. 상기 졸-겔 용액의 제조에 소요되는 시간은 1시간 이상, 2시간 이상 또는 3시간 이상일 수 있고, 또한 10시간 이하, 8시간 이하 또는 6시간 이하일 수 있다. 구체적인 일례로서, 상기 졸-겔 용액의 제조가 25℃ 내지 140℃에서 1시간 내지 72시간 수행될 수 있다.
상기 코팅은 스핀코팅, 딥코팅, 바코팅 또는 닥터블레이드를 이용할 수 있다. 상기 스핀코팅 속도는 예를 들어 500 rpm 이상, 1000 rpm 이상 또는 1500 rpm 이상일 수 있고, 또한 6000 rpm 이하, 4000 rpm 이하 또는 3000 rpm 이하일 수 있다.
상기 코팅 이후에 수득한 코팅층은 열처리를 거칠 수 있다.
상기 열처리는 공기 또는 질소 분위기에서 수행될 수 있다.
상기 열처리는 60℃ 이상, 90℃ 이상, 100℃ 이상, 120℃ 이상 또는 150℃ 이상일 수 있고, 또한 1000℃ 이하, 900℃ 이하, 700℃ 이하, 500℃ 이하, 300℃ 이하 또는 200℃ 이하일 수 있다. 상기 열처리 시간은 10초 이상, 30초 이상, 1분 이상, 5분 이상, 10분 이상 또는 30분 이상일 수 있고, 또한 7시간 이하, 5시간 이하, 3시간 이하, 2시간 이하 또는 1시간 이하일 수 있다. 구체적인 일례로서, 상기 열처리가 150℃ 내지 1000℃의 온도에서 30분 내지 5시간 동안 수행될 수 있다. 보다 구체적으로 상기 열처리는 1시간, 3시간, 또는 5시간 동안 수행될 수 있다.
상기 열처리는 1회 또는 2회 이상 수행될 수 있으며, 예를 들어 90℃ 내지 200℃의 온도에서 30초 내지 1시간 동안 열처리하는 단계, 90℃ 내지 200℃의 온도에서 1분 내지 1시간 동안 열처리하는 단계, 150℃ 내지 900℃의 온도에서 30분 내지 5시간 동안 열처리하는 단계, 및 80℃ 내지 300℃의 온도에서 10분 내지 3시간 동안 열처리하는 단계 중에서 어느 하나를 수행하거나, 또는 둘 이상의 단계를 순차적으로 수행할 수 있다.
상기 열처리는 오븐, 전기로 등의 가열 장치를 통해 수행될 수 있다.
추가로 상기 열처리 이전에 상기 코팅층의 건조 및 겔화를 위한 열처리 단계를 미리 수행할 수 있다. 상기 건조 및 겔화를 위한 열처리는 핫플레이트 등을 이용한 일반적인 열처리일 수 있다. 예를 들어, 상기 건조 및 겔화를 위한 열처리의 온도는 100℃ 이상, 110℃ 이상, 120℃ 이상, 또는 130℃ 이상일 수 있고, 또한 200℃ 이하, 180℃ 이하, 160℃ 이하, 150℃ 이하, 또는 140℃ 이하일 수 있다. 또한 상기 건조 및 겔화를 위한 열처리의 시간은 30초 이상, 1분 이상, 3분 이상, 5분 이상, 또는 10분 이상일 수 있고, 또한 2시간 이하, 1시간 이하, 30분 이하, 또는 20분 이하일 수 있다.
산화물 반도체의 제조방법(증착 공정)
다른 구현예에 따르면, 상기 산화물 반도체는 증착 공정에 의해 제조된다. 구체적으로 상기 산화물 반도체는 진공 증착(기상 증착), 보다 구체적으로 스퍼터링 증착에 의해 제조될 수 있다.
예를 들어, 상기 산화물 반도체의 제조방법은 기재 상에 알루미늄 전구체 및 안티모니 전구체를 스퍼터링 증착하여 알루미늄 및 안티모니를 함유하는 산화물 반도체 박막을 형성하는 단계를 포함한다.
상기 알루미늄 전구체가 산화알루미늄을 포함하고, 상기 안티모니 전구체가 산화안티모니를 포함할 수 있다.
상기 산화알루미늄은 예를 들어 Al2O3를 포함할 수 있고, 상기 산화안티모니는 예를 들어 Sb2O3를 포함할 수 있다.
이에 따라 상기 스퍼터링 증착에 의해 제조된 산화물 반도체는 예를 들어 아래 화학식 2와 같은 조성을 가질 수 있다.
[화학식 2]
(Al2O3)1-a(Sb2O3)a
상기 식에서 0 < a < 1이다.
상기 스퍼터링 증착은 예를 들어 DC 스퍼터링, RF 스퍼터링, 마그네트론 스퍼터링, 바이어스 스퍼터링, 반응성 스퍼터링 등을 이용할 수 있다,
상기 스퍼터링 증착은 방전 가스를 사용할 수 있고, 예를 들어 아르곤 가스, 헬륨 가스, 네온 가스, 제논 가스 등의 불활성 가스를 사용할 수 있다. 또한 상기 스퍼터링 증착은 반응 가스를 추가로 사용할 수 있고, 예를 들어 산소 가스를 추가로 사용할 수 있다.
구체적으로, 상기 스퍼터링 증착이 아르곤 가스 및 산소 가스를 주입하며 수행될 수 있다. 예를 들어, 산소 가스의 분압은 아르곤 가스의 분압을 기준으로 0% 이상, 0.5% 이상, 1% 이상, 2% 이상, 또는 5% 이상일 수 있고, 또한 20% 이하, 15% 이하 또는 10% 이하일 수 있다.
구체적으로, 상기 아르곤 가스 및 산소 가스의 분압 비가 20 : 0.1 내지 20 : 2 범위일 수 있다. 보다 구체적으로, 상기 아르곤 가스 및 산소 가스의 분압 비가 20 : 0.1 내지 20 : 1.5, 20 : 0.1 내지 20 : 0.7, 20 : 0.1 내지 20 : 0.3, 20 : 0.3 내지 20 : 2, 20 : 0.7 내지 20 : 2, 또는 20 : 0.3 내지 20 : 0.7일 수 있다.
상기 스퍼터링 증착 시에 인가되는 RF 전력은 20 W 이상, 25 W 이상, 30 W 이상 또는 50 W 이상일 수 있고, 또한 500 W 이하, 300 W 이하, 200 W 이하, 150 W 이하 또는 100 W 이하일 수 있으며, 구체적인 일례로서 25 W 내지 200 W일 수 있다.
상기 스퍼터링 증착 시의 작동 압력은 0.1 mTorr 이상, 0.2 mTorr 이상, 0.5 mTorr 이상 또는 1 mTorr 이상이고, 또한 10 mTorr 이하, 5 mTorr 이하, 3 mTorr 이하 또는 2 mTorr 이하일 수 있으며, 구체적인 일례로서 0.2 mTorr 내지 3 mTorr일 수 있다.
상기 구현예에 따른 산화물 반도체의 제조방법은 스퍼터링 증착 이후에 열처리하는 단계를 추가로 포함할 수 있다.
상기 열처리는 공기 또는 질소 분위기에서 수행될 수 있다.
상기 열처리는 60℃ 이상, 90℃ 이상, 100℃ 이상, 120℃ 이상 또는 150℃ 이상일 수 있고, 또한 1000℃ 이하, 900℃ 이하, 700℃ 이하, 500℃ 이하, 300℃ 이하 또는 200℃ 이하일 수 있다. 상기 열처리 시간은 10초 이상, 30초 이상, 1분 이상, 5분 이상, 10분 이상 또는 30분 이상일 수 있고, 또한 7시간 이하, 5시간 이하, 3시간 이하, 2시간 이하 또는 1시간 이하일 수 있다. 구체적인 일례로서, 상기 열처리가 150℃ 내지 1000℃의 온도에서 30분 내지 5시간 동안 수행될 수 있다. 보다 구체적으로 상기 열처리는 1시간, 3시간, 또는 5시간 동안 수행될 수 있다.
상기 열처리는 오븐, 전기로 등의 가열 장치를 통해 수행될 수 있다.
또는 상기 열처리는 전자빔 처리를 통해 수행될 수 있다.
예를 들어 전자빔 가속기의 챔버 내부에 가열할 타겟을 넣고 방전 가스를 채운 뒤 RF 전력를 인가하여 플라즈마 상태로 만들어 방전 가스를 전자와 이온으로 분리시킨다. DC 전압이 인가되면 전자가 가속 튜브를 통과하면서 가속되어 전자빔의 형태로 타겟의 표면에 빠르게 도달하여 부딪히게 된다. 이와 같은 전자빔 처리는 열처리와 같은 효과를 가지면서도, 전자빔 처리 이후의 조성, 결정성, 전기적 특성 면에서 향상되는 이점이 있다.
상기 전자빔 처리 시의 방전 가스로는 아르곤 가스, 헬륨 가스, 네온 가스, 또는 제논 가스를 이용할 수 있다. 상기 방전 가스의 유량은 예를 들어 1 sccm 이상, 5 sccm 이상, 또는 10 sccm 이상일 수 있고, 또한 50 sccm 이하, 30 sccm 이하, 또는 15 sccm 이하일 수 있다.
또한 상기 전자빔 처리 시에 무선주파수(RF) 전력을 조절하여 플라즈마의 밀도를 제어할 수 있고 직류(DC) 전압을 조절하여 전자빔의 가속 정도를 제어할 수 있어서, 다양한 특성의 금속산화물층의 제조가 가능하다.
예를 들어 상기 전자빔 처리 시에 플라즈마 밀도 조절을 위한 RF 전력은 100 W 이상, 150 W 이상, 200 W 이상, 250 W 이상, 또는 300 W 이상으로 조절할 수 있고, 또한 700 W 이하, 500 W 이하, 450 W 이하, 400 W 이하, 또는 350 W 이하로 조절할 수 있다. 아울러 상기 전자빔 처리 시에 전자빔 가속을 위한 DC 전압은 100 V 이상, 200 V 이상, 300 V 이상, 400 V 이상, 또는 500 V 이상으로 조절할 수 있고, 또한 1500 V 이하, 1300 V 이하, 1100 V 이하, 900 V 이하, 800 V 이하, 700 V 이하, 또는 600 V 이하로 조절할 수 있다. 또한 상기 전자빔 처리 시간은 10초 이상, 30초 이상, 1분 이상, 2분 이상, 또는 3분 이상일 수 있고, 또한 30분 이하, 20분 이하, 10분 이하, 7분 이하, 또는 5분 이하일 수 있다. 구체적인 예로서, 상기 전자빔 처리는 150 W 내지 500 W의 RF 전력 및 200 V 내지 1000 V의 DC 전압에서 30초 내지 10분간 수행될 수 있다.
이와 같이 제조된 산화물 반도체 박막의 두께는 1 nm 이상, 5 nm 이상, 10 nm 이상, 20 nm 이상, 또는 30 nm 이상일 수 있고, 또한 500 nm 이하, 300 nm 이하, 200 nm 이하, 100 nm 이하, 또는 50 nm 이하일 수 있다. 일례로서, 상기 산화물 반도체 박막의 두께는 5 nm 내지 50 nm일 수 있다. 일 구체예로서, 상기 산화물 반도체 박막의 두께가 10 nm 내지 100 nm일 수 있다. 보다 구체적으로 상기 산화물 반도체 박막의 두께는 10 nm 내지 50 nm, 10 nm 내지 40 nm, 10 nm 내지 25 nm, 20 nm 내지 100 nm, 20 nm 내지 50 nm, 20 nm 내지 40 nm, 40 nm 내지 100 nm, 또는 20 nm 내지 40 nm일 수 있다.
반도체 소자
본 발명에 따른 산화물 반도체는 전기전도도 및 밴드갭이 우수하여 반도체 소자에 적용 가능하다. 이에 따라 본 발명은 앞서 설명한 산화물 반도체를 포함하는 반도체 소자를 제공한다.
본 발명에 따른 반도체 소자는 기재 및 상기 기재 상에 형성된 반도체층을 포함하고, 상기 반도체층은 앞서 설명한 산화물 반도체를 포함한다. 또한 상기 반도체 소자는 상기 기재 및 상기 반도체층 사이에 유전층을 추가로 포함할 수 있다. 또한 상기 반도체 소자는 상기 반도체층 상에 전극을 추가로 포함할 수 있다.
도 2는 일 구현예에 따른 산화물 반도체를 포함하는 반도체 소자의 단면도를 나타낸 것이다. 도 2를 참조하여, 일 구현예에 따른 반도체 소자는 기재(100); 상기 기재(100) 상에 형성된 유전층(200), 상기 유전층(200) 상에 형성된 산화물 반도체를 포함하는 반도체층(300), 및 상기 반도체층(300) 상에 형성된 전극(400)을 포함한다. 여기서 상기 산화물 반도체는 앞서 설명한 바와 같이 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물을 포함한다.
상기 기재는 반도체 소자를 형성하기 위한 베이스로서, 소재 면에서 특별하게 한정되지 않으나, 예를 들어 실리콘, 유리, 플라스틱, 금속 호일 등이 가능하다. 상기 기재는 플레이트 형상이거나, 기재 상에 몰리브덴(Mo) 또는 알루미늄(Al)과 같은 금속 물질을 증착 및 패터닝하여 특정 패턴을 갖도록 형성된 것일 수 있다. 또는 상기 기재는 게이트 전극으로 사용되기 위하여 전도성 물질인 금속 또는 금속 산화물을 포함할 수 있고, 구체적으로 몰리브덴(Mo), 알루미늄(Al), 크로뮴(Cr), 금(Au), 티타늄(Ti) 및 은(Ag) 중 적어도 어느 하나를 포함할 수 있다. 상기 기재의 두께는 특별히 한정되지 않으며, 예를 들어 0.01 mm 이상, 0.1 mm 이상, 0.5 mm 이상 또는 1 mm 이상일 수 있으며, 또한 10 mm 이하, 5 mm 이하, 3 mm 이하 또는 2 mm 이하일 수 있다.
상기 유전층은 기재 상에 형성되어 기재와 반도체층 및 전극을 절연시키는 역할을 한다. 상기 유전층은 일반적인 반도체 공정에서 사용되는 절연 물질을 포함할 수 있다. 예를 들어, 상기 유전층은 산화실리콘(SiO2), 산화하프늄(HfO2), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2) 및 질화실리콘(Si3N4)로 이루어진 군에서 선택되는 유전체 중 적어도 어느 하나를 포함할 수 있다. 상기 유전층은 진공 증착법, 화학 기상 증착법, 물리 기상 증착법, 원자층 증착법, 유기금속 화학 증착법, 플라즈마 화학 증착법, 분자선 성장법, 수소화물 기상 성장법, 스퍼터링, 스핀 코팅, 딥 코팅 등의 방법을 이용하여 형성될 수 있다. 상기 유전층의 두께는 10 nm 이상, 20 nm 이상, 30 nm 이상 또는 50 nm 이상일 수 있고, 또한 500 nm 이하, 300 nm 이하, 200 nm 이하 또는 100 nm 이하일 수 있다. 일례로서, 상기 유전층의 두께는 50 nm 내지 200 nm일 수 있다.
상기 반도체층은 앞서 설명한 산화물 반도체로 구성되고, 즉 알루미늄(Al) 및 안티모니(Sb)를 함유하는 산화물을 포함한다. 상기 반도체층은 앞서 설명한 바와 같은 용액 공정 또는 증착 공정에 의해 형성될 수 있다. 상기 반도체층은 본 발명의 산화물 반도체 외의 추가적인 산화물 반도체를 더 포함할 수 있다. 이와 같이 추가될 수 있는 산화물 반도체는 예를 들어 인듐 갈륨 징크 옥사이드(IGZO), 인듐 틴 징크 옥사이드(ITZO), 징크 옥사이드(ZnO), 인듐 징크 옥사이드(IZO), 인듐 옥사이드(InO), 인듐 틴 옥사이드(ITO), 인듐갈륨 옥사이드(IGO), 징크 틴 옥사이드(ZTO), 실리콘 인듐 징크 옥사이드(SIZO), 갈륨 징크 옥사이드(GZO), 하프늄 인듐 징크 옥사이드(HIZO) 및 알루미늄 징크 틴 옥사이드(AZTO) 중 하나 이상일 수 있다. 상기 반도체층의 두께는 1 nm 이상, 5 nm 이상, 10 nm 이상, 20 nm 이상, 또는 30 nm 이상일 수 있고, 또한 500 nm 이하, 300 nm 이하, 200 nm 이하, 100 nm 이하, 또는 50 nm 이하일 수 있다. 일례로서, 상기 반도체층의 두께는 5 nm 내지 50 nm일 수 있다. 일 구체예로서, 상기 반도체층의 두께가 10 nm 내지 100 nm일 수 있다. 보다 구체적으로 상기 반도체층의 두께는 10 nm 내지 50 nm, 10 nm 내지 40 nm, 10 nm 내지 25 nm, 20 nm 내지 100 nm, 20 nm 내지 50 nm, 20 nm 내지 40 nm, 40 nm 내지 100 nm, 또는 20 nm 내지 40 nm일 수 있다.
상기 전극은 소스 전극 및 드레인 전극을 포함할 수 있고, 이들은 서로 이격되어 배치되며 상기 반도체층과 전기적으로 연결될 수 있다. 상기 전극은 금속 물질로 형성될 수 있으며, 예를 들어, 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd), 구리(Cu), ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 및 ITZO(Indium Tin Zinc Oxide)로 이루어진 군에서 적어도 1종을 포함할 수 있으나, 이에 제한되지 않는다. 상기 전극은 상기 반도체층 상에 도전막을 증착하고 그 위에 포토레지스트 패턴을 형성한 후 이를 마스크로 하여 도전막을 패터닝함으로써 얻을 수 있다. 상기 도전막은 진공 증착법, 화학 기상 증착법, 물리 기상 증착법, 원자층 증착법, 유기금속 화학 증착법, 플라즈마 화학 증착법, 분자선 성장법, 수소화물 기상 성장법, 스퍼터링, 스핀 코팅, 딥 코팅 등의 방법을 이용하여 형성될 수 있다.
상기 전극의 두께는 5 nm 이상, 10 nm 이상, 30 nm 이상 또는 50 nm 이상일 수 있고, 또한 500 nm 이하, 300 nm 이하, 200 nm 이하 또는 100 nm 이하일 수 있다. 일례로서, 상기 전극의 두께는 10 nm 내지 200 nm일 수 있다.
본 발명의 반도체 소자는 디스플레이 장치 등에 적용되는 전계효과 트랜지스터(FET)로 사용될 수 있고, 구체적으로 박막 트랜지스터(TFT)로 사용될 수 있다.
이에 따라 본 발명은 앞서 설명한 반도체 소자를 포함하는 전계효과 트랜지스터 및 박막 트랜지스터를 제공한다.
구체적으로, 본 발명의 반도체 소자는 액정 디스플레이(LCD)나 유기발광 디스플레이(OLED) 장치 등에서 픽셀 구동 소자로 쓰이는 트랜지스터로 사용될 수 있다.
본 발명에 따른 반도체 소자는 전계효과이동도(field effect mobility, μFE), 온/오프비(on/off raito), Vth(threshold voltage), SS(subthreshold swing) 면에서 우수하여 종래에 사용되었던 산화물 반도체(예: IGZO)를 대체하여 디스플레이 장치 등에 적용될 수 있다.
이에 따라 본 발명은 또한 상기 박막 트랜지스터를 포함하는, 디스플레이 장치를 제공한다.
일례로서, 상기 디스플레이 장치는 액정 디스플레이(LCD) 장치이고, 상기 액정 디스플레이 장치는 편광판, 액정 디스플레이 패널, 백라이트 유닛, 기타 광학 시트를 포함할 수 있다. 구체적으로 상기 액정 디스플레이 패널은 컬러 필터와 액정셀 및 구동 기판을 포함할 수 있으며, 상기 구동 기판에 박막 트랜지스터가 구비될 수 있다.
다른 예로서, 상기 디스플레이 장치는 유기발광 디스플레이(OLED) 장치이고, 상기 유기발광 디스플레이 장치는 편광판 및 유기발광 디스플레이 패널을 포함할 수 있다. 구체적으로, 상기 유기발광 디스플레이 패널은 유기발광 기판 및 구동 기판을 포함하고, 상기 구동 기판에 박막 트랜지스터가 구비될 수 있다.
이와 같이 본 발명의 Al-Sb-O계 산화물 반도체를 포함하는 박막 트랜지스터를 이용한 디스플레이 장치는 우수한 성능을 나타낼 수 있다.
이하 본 발명의 이해를 돕기 위한 실시예를 기술한다. 다만 이들 실시예의 범위로 본 발명이 한정되는 것은 아니다.
실시예 A: 용액 공정을 통한 Al-Sb-O계 산화물 반도체의 제조
단계 (1) 졸-겔 용액의 제조
용매로서 2-메톡시에탄올 5 mL에 알루미늄 아세틸아세토네이트 0.1 M 및 안티모니 아세테이트 0.1 M을 첨가하고, 촉매로서 모노에탄올아민 120 μL를 첨가한 후, 80℃의 교반기에서 2시간 동안 700 RPM으로 교반시켜 Al-Sb-O계 졸-겔 용액을 제조하였다.
단계 (2) 졸-겔 코팅층의 형성
제조된 졸-겔 용액을 1 ㎛ 실린지 필터로 필터링하였다. 100 nm의 SiO2 유전층이 증착된 Si 기판의 표면 특성 향상을 위해 UV/오존(UVO) 처리를 10분간 수행하였다. 이후 기판에 필터링된 Al-Sb-O계 졸-겔 용액을 150 μL 도포 후, 스핀코터를 이용하여 3000 RPM으로 20초 동안 스핀코팅하였다. 코팅 후 150℃의 핫플레이트에 10분간 열처리하여 코팅층(박막)을 형성하였다.
단계 (3) 열처리
형성된 박막의 산화 및 박막 물성 향상을 위해 전기로를 통한 열처리하였다. 이때 열처리는 200~800℃ 범위 내의 다양한 온도 조건에서 1~5 시간 진행하였다.
이후 산화물 반도체 박막 상에 두께 100 nm의 ITO 전극을 증착 형성하여 박막 트랜지스터(TFT)를 제조한 뒤 특성을 시험하였다.
상기 실시예 A의 방식에 따라 아래 표 1 및 2에 기재된 용매, 전구체, 공정 조건으로 용액 공정을 수행하여 다양한 산화물 반도체를 제조하였다.
Figure PCTKR2022018899-appb-img-000001
Figure PCTKR2022018899-appb-img-000002
아래 표 3에 일 실시예에 따른 Al-Sb-O계 산화물 반도체의 밴드갭 및 전기전도도를 나타내었으며, 이를 볼 때 박막 트랜지스터 등에 적용 가능한 수준임을 확인할 수 있다. 여기서 밴드갭은 UV-가시광 분광계로 시료의 흡광도를 측정하여 타우플롯(Tauc plot)을 그려 광학적 밴드갭을 산출하였고, 전기전도도는 제일원리 및 볼츠만 수송(First-principle calcualtion and Boltzmann transport equation) 방식으로 산출되었다.
화학식 공간군 밴드갭 전기전도도 (1/fΩ/m/s)
n-타입 p-타입
AlSbO4 Cmmm 3.72 eV 99.456 20.3094
실시예 A1: Al 및 Sb의 조성비 변화
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 또는 아세토나이트릴/에틸렌글리콜을 사용하고, 알루미늄 전구체 및 안티모니 전구체를 포함하는 졸-겔 용액을 제조한 뒤 스핀 코팅하여 두께 27 nm의 산화물 반도체 박막을 얻고 400℃에서 열처리하였다. 이때 전구체 몰비를 변경하여 Al-Sb-O계 산화물 반도체 박막 내의 Al : Sb의 원소 몰비를 5:1, 3:1, 1:1, 1:3 또는 1:5로 조절하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 4a 내지 5c는 다양한 Al:Sb 몰비 및 용매의 용액 공정으로 제조된 산화물 반도체 소자의 시험 결과이다. 시험 결과, Al:Sb 몰비 및 용매에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, Al:Sb 몰비가 대략 1:1인 경우에 가장 높은 μFE를 나타내었다.
실시예 A2: 열처리 조건의 변화
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 5 mL를 사용하였고, 전구체로서 알루미늄 아세틸아세토네이트 0.4 M 및 안티모니 클로라이드 0.4 M를 함유하는 농도 0.8 M의 졸-겔 용액을 제조한 뒤 스핀 코팅하여 두께 27 nm의 산화물 반도체 박막을 얻었다. 수득한 산화물 반도체 박막을 공기 또는 질소 분위기에서 200℃, 400℃, 600℃ 또는 800℃의 온도로 열처리하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 6a 내지 7d는 용액 공정 이후 다양한 조건으로 열처리된 산화물 반도체 소자의 시험 결과이다. 시험 결과, 열처리 시의 분위기(산소 또는 질소) 및 열처리 온도에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, 열처리 온도가 대략 400~600℃인 경우에 가장 높은 μFE를 나타내었다.
실시예 A3: 박막 두께의 변화
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 5 mL를 사용하였고, 전구체로서 알루미늄 아세틸아세토네이트 0.4 M 및 안티모니 클로라이드 0.4 M를 함유하는 농도 0.8 M의 졸-겔 용액을 제조한 뒤 스핀 코팅하여 산화물 반도체 박막을 얻고 400℃에서 열처리하였다. 이때 스핀 코팅 시의 rpm을 조절하여 산화물 반도체 박막의 두께를 45 nm, 35 nm, 27 nm, 15 nm로 형성하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 8a 내지 8d는 용액 공정을 통해 다양한 박막 두께로 제조된 산화물 반도체 소자의 시험 결과이다. 시험 결과, 산화물 반도체 박막의 두께에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, 박막의 두께가 대략 20~30 nm인 경우에 가장 높은 μFE를 나타내었다.
실시예 A4: 첨가제의 사용
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 5 mL를 사용하였고, 전구체로서 알루미늄 아세틸아세토네이트 0.4 M 및 안티모니 클로라이드 0.4 M를 함유하는 농도 0.8 M의 졸-겔 용액을 제조한 뒤 스핀 코팅하여 산화물 반도체 박막을 얻고 400℃에서 열처리하였다. 이때 졸-겔 용액에 탈이온수 0.2 mL 또는 모노에탄올아민 0.120 mL을 추가로 첨가하고 공정을 진행하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 9a 및 9b는 다양한 첨가제의 용액 공정으로 제조된 산화물 반도체 소자의 시험 결과이다. 시험 결과, 첨가제에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, 첨가제를 사용하지 않았을 경우에 대비하여 높은 μFE를 나타내었다.
시험예 1: 산화물 반도체 소자의 전기적 특성
실시예에서 제조한 박막 트랜지스터(TFT)의 전기적 특성을 시험하였다. TFT의 전기적 특성은 트랜스퍼(transfer) 곡선과 아웃풋(output) 곡선 두가지를 측정하여 정의하였다. 트랜스퍼 곡선에서 VG 는 -40~40 V 범위에서 0.5 V 단위로 총 161 포인트로 적용하였고 VD는 0.1 V부터 20.1 V 사이의 다양한 값을 적용하여 측정하였다. 아웃풋 곡선에서 VD는 0~40 V 범위에서 0.5 V 단위로 총 81 포인트 적용하였고, VG는 0~25 V 의 범위에서 5 V 단계로 적용하여 측정하였다. 상기 측정은 Hewlett Packard 4145B semiconductor parameter analyzer를 사용하여 수행하였다.
시험예 2: TG-DTA
열중량-시차열분석기(TG-DTA)를 이용하여 Al-Sb-O계 산화물 반도체의 합성 조건을 확인하였다.
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 5 mL를 사용하였고, 전구체로서 알루미늄 아세틸아세토네이트 0.4 M 및 안티모니 클로라이드 0.4 M를 함유하는 농도 0.8 M의 졸-겔 용액을 제조한 뒤 스핀 코팅하여 산화물 반도체를 얻었다. 수득한 산화물 반도체에 대해 0℃부터 1200℃까지 온도를 변화시켜가며 열처리하면서 TG-DTA로 분석하였다.
도 10은 Al-Sb-O계 산화물 반도체를 TG-DTA로 분석한 결과이며, 약 500℃ 부근에서 가장 안정한 상태를 나타내어 충분한 합성이 이루어졌음을 확인할 수 있다.
시험예 3: XRD
X선 회절(XRD) 분석을 통해 Al-Sb-O계 산화물 반도체의 결정성 및 결정화 온도를 확인하였다.
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 5 mL를 사용하였고, 전구체로서 알루미늄 아세틸아세토네이트 0.4 M 및 안티모니 클로라이드 0.4 M를 함유하는 농도 0.8 M의 졸-겔 용액을 제조한 뒤 스핀 코팅하여 두께 100 nm의 산화물 반도체 박막을 얻었다. 수득한 산화물 반도체를 공기 중에서 200℃, 400℃, 600℃, 800℃, 1000℃로 온도를 변화시켜 열처리하고 XRD 분석을 수행하였다.
도 11은 Al-Sb-O계 산화물 반도체를 XRD 분석한 결과이며, 200℃, 400℃ 및 600℃에서는 특징적인 피크가 나타나지 않아서 비결정성임을 확인할 수 있고, 800℃ 및 1000℃에서 특징적인 피크가 나타나서 결정성임을 확인할 수 있다.
시험예 4: XPS
X선 광전자 분광법(XPS)을 통한 Al-Sb-O계 산화물 반도체의 조성비를 확인하였다.
상기 실시예 A와 동일한 절차를 반복하되, 용매로서 2-메톡시에탄올 5 mL를 사용하였고, 전구체로서 알루미늄 아세틸아세토네이트 0.4 M 및 안티모니 클로라이드 0.4 M를 함유하는 농도 0.8 M의 졸-겔 용액을 제조한 뒤 스핀 코팅하여 두께 27 nm의 산화물 반도체 박막을 얻고 400℃에서 열처리하였다.
도 12는 Al-Sb-O계 산화물 반도체를 XPS 분석한 결과이며, 이로부터 산화물 내에 함유된 각 원소의 함량을 산출하여 아래 표에 나타내었다. 도 12에서 분석된 산화물 반도체는 Al 및 Sb의 원소 몰비가 거의 1 : 1인 것을 확인할 수 있다.
산화물 조성 Al Sb O
원소% 17.12 17.89 64.99
실시예 B: 스퍼터링 증착을 통한 Al-Sb-O계 산화물 반도체 소자의 제조
단계 (1) 전구체의 준비
순도 99.99%의 Al2O3의 타겟과 순도 99.99%의 Sb2O3의 타겟을 두께 4 mm 및 길이 2 inch로 각각 제작하였다. 타겟으로의 원활한 전류 전달과 결합 면의 온도 유지를 위하여 두께 2 mm의 구리(Cu)를 후면 판(back plate)으로 결합하였다.
단계 (2) 스퍼터링 증착
Si/SiO2 기판 위에 Al-Sb-O계 박막을 증착하였으며, 이는 Al2O3와 Sb2O3 타겟에 각각 RF 전력을 가하여 코-스퍼터링(co-sputtering) 방식으로 진행되었다. RF 전력은 Al2O3의 경우 25~150 W 범위 내에서, Sb2O3의 경우 15~70 W 범위 내에서 다양한 조합으로 공급하였다.
단계 (3) 열처리
형성된 박막의 합성 및 박막 물성 향상을 위해 전기로를 통해 열처리하였다. 이때 열처리는 200~800℃ 범위 내의 다양한 온도 조건에서 1~5 시간 진행하였다.
수득한 산화물 반도체 박막 상에 두께 100 nm의 ITO 전극을 증착 형성하여 박막 트랜지스터(TFT)를 제조한 뒤 특성을 시험하였다.
실시예 B1: Al:Sb 몰비 변화
상기 실시예 B와 동일한 절차를 반복하여 Al-Sb-O계 산화물 반도체 박막을 얻고 400℃에서 열처리하였다. 이때 Al 전구체 및 Sb 전구체에 인가되는 RF 전력을 조절하여 Al-Sb-O계 산화물 반도체 박막 내의 Al : Sb의 원소 몰비를 5:1, 3:1, 1:1, 1:3, 또는 1:5로 조절하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 13a 내지 13e는 다양한 Al:Sb 몰비의 증착 공정으로 제조된 산화물 반도체 소자의 시험 결과이다. 시험 결과, Al:Sb 몰비에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, Al:Sb 몰비가 대략 1:1인 경우에 가장 높은 μFE를 나타내었다.
실시예 B2: 아르곤:산소 분압비 변화
상기 실시예 B와 동일한 절차를 반복하여 Al-Sb-O계 산화물 반도체 박막을 얻고 400℃에서 열처리하였다. 이때 Ar:O2 분압비를 20:0.1, 20:0.5, 20:1.0으로 조절하여 스퍼터링을 수행하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 14a 내지 14c는 다양한 Ar:O2 분압비의 증착 공정으로 제조된 산화물 반도체 소자의 시험 결과이다. 시험 결과, Ar:O2 분압비에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, Ar:O2 분압비가 대략 20:0.1인 경우에 가장 높은 μFE를 나타내었다.
실시예 B3: 열처리 온도 변화
상기 실시예 B와 동일한 절차를 반복하되, Ar:O2 분압비를 20:0.1로 하고 RF 전력을 Al 150W 및 Sb 30 W로 설정한 스퍼터링 증착을 1000초 동안 수행하여 두께 30 nm의 Al-Sb-O계 산화물 반도체 박막을 얻었다. 수득한 산화물 반도체 박막을 공기 분위기에서 200℃, 400℃, 600℃ 또는 800℃의 온도로 열처리하였다. 이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 15a 내지 15d는 증착 공정 이후 다양한 온도로 열처리된 산화물 반도체 소자의 시험 결과이다. 시험 결과, 열처리 온도에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, 열처리 온도가 대략 400℃인 경우에 가장 높은 μFE를 나타내었다.
실시예 B4: 박막 두께의 변화
상기 실시예 B와 동일한 절차를 반복하되, Ar:O2 분압비를 20:0.1로 하고 Al 전구체 및 Sb 전구체에 인가되는 RF 전력을 각각 150W 및 30 W로 설정한 스퍼터링 증착을 수행하여 Al-Sb-O계 산화물 반도체 박막을 얻었다
이때 스퍼터링 증착된 산화물 반도체 박막의 두께를 15 nm, 30 nm, 45 nm로 형성하였다.
이후 산화물 반도체 박막 상에 ITO 전극을 형성하여 박막 트랜지스터(TFT)를 제조한 뒤, 전기적 특성을 시험하였다.
도 16a 내지 16c는 용액 공정을 통해 다양한 박막 두께로 제조된 산화물 반도체 소자의 시험 결과이다. 시험 결과, 산화물 반도체 박막의 두께에 따라 전계효과이동도(μFE), 온/오프비, Vth, SS가 변화하였고, 박막의 두께가 대략 30 nm인 경우에 가장 높은 μFE를 나타내었다.

Claims (20)

  1. 알루미늄(Al) 및 안티모니(Sb)를 함유한 산화물을 포함하는, 산화물 반도체.
     
  2. 제 1 항에 있어서,
    상기 산화물 내의 알루미늄(Al) 및 안티모니(Sb)의 몰비가 10 : 1 내지 1 : 10인, 산화물 반도체.
     
  3. 제 1 항에 있어서,
    상기 산화물은 하기 화학식 1로 표시되는, 산화물 반도체:
    [화학식 1]
    AlxSbyOz
    여기서 1 ≤ x ≤ 8, 1 ≤ y ≤ 8, 및 1 ≤ z ≤ 15이다.
     
  4. 제 1 항에 있어서,
    상기 산화물은 AlSbO4, AlSbO3, Al4Sb2O9, Al2Sb4O13, Al4Sb2O11 및 Al2Sb4O9로 이루어진 군에서 선택되는 적어도 1종인, 산화물 반도체.
     
  5. 제 1 항에 있어서,
    상기 산화물 반도체는
    n-타입의 전기전도도가 80 1/fΩ/m/s 이상이고,
    밴드갭이 1.5 eV 이상인, 산화물 반도체.
     
  6. 알루미늄 전구체를 함유하는 제 1 전구체 용액, 및 안티모니 전구체를 함유하는 제 2 전구체 용액을 혼합하여 졸-겔 용액을 제조하는 단계; 및
    상기 졸-겔 용액을 기재 상에 코팅하여 산화물 반도체 박막을 형성하는 단계를 포함하는, 제 1 항의 산화물 반도체의 제조방법.
     
  7. 제 6 항에 있어서,
    상기 알루미늄 전구체가 알루미늄 클로라이드, 알루미늄 클로라이드 헥사하이드레이트, 알루미늄 아세테이트, 알루미늄 디아세테이트, 알루미늄 아세틸아세토네이트, 알루미늄 설페이트 하이드레이트, 알루미늄 하이드록사이드 하이드레이트, 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 적어도 1종이고;
    상기 안티모니 전구체가 안티모니 클로라이드(III), 안티모니 클로라이드(V), 안티모니 아세테이트(III), 안티모니 설파이드(III), 안티모니 설파이드(V), 안티모니 플루오라이드(III), 안티모니 플루오라이드(V) 및 안티모니 에톡사이드로 이루어진 군에서 선택되는 적어도 1종인, 산화물 반도체의 제조방법.
     
  8. 제 6 항에 있어서,
    상기 졸-겔 용액이
    아세토나이트릴, 에틸렌글리콜, 2-메톡시에탄올, 에탄올, 메탄올, 디메틸포름아마이드, 디메틸설폭사이드 및 탈이온수로 이루어진 군에서 선택되는 적어도 1종의 용매를 포함하는, 산화물 반도체의 제조방법.
     
  9. 제 6 항에 있어서,
    상기 졸-겔 용액의 농도가 0.05 M 내지 3 M 범위인, 산화물 반도체의 제조방법.
     
  10. 제 6 항에 있어서,
    상기 졸-겔 용액이 탈이온수, 과산화수소, 모노에탄올아민 및 아세틸아세톤으로 이루어진 군에서 선택되는 1종 이상의 첨가제를 추가로 포함하는, 산화물 반도체의 제조방법.
     
  11. 제 6 항에 있어서,
    상기 졸-겔 용액의 제조가 25℃ 내지 140℃에서 1시간 내지 72시간 수행되는, 산화물 반도체의 제조방법.
     
  12. 제 6 항에 있어서,
    상기 코팅 이후에 열처리하는 단계를 추가로 포함하며,
    상기 열처리는 공기 또는 질소 분위기에서 150℃ 내지 1000℃의 온도로 30분 내지 5시간 수행되는, 산화물 반도체의 제조방법.
     
  13. 기재 상에 알루미늄 전구체 및 안티모니 전구체를 스퍼터링 증착하여 알루미늄 및 안티모니를 함유하는 산화물 반도체 박막을 형성하는 단계를 포함하는, 제 1 항의 산화물 반도체의 제조방법.
     
  14. 제 13 항에 있어서,
    상기 알루미늄 전구체가 산화알루미늄을 포함하고,
    상기 안티모니 전구체가 산화안티모니를 포함하는, 산화물 반도체의 제조방법.
     
  15. 제 13 항에 있어서,
    상기 스퍼터링 증착이 아르곤 가스 및 산소 가스를 주입하며 수행되고,
    상기 아르곤 가스 및 산소 가스의 분압 비가 20 : 0.1 내지 20 : 2 범위인, 산화물 반도체의 제조방법.
     
  16. 제 13 항에 있어서,
    상기 스퍼터링 증착 이후에 열처리하는 단계를 추가로 포함하고,
    상기 열처리가 공기 또는 질소 분위기에서 150℃ 내지 1000℃의 온도로 30분 내지 5시간 수행되는, 산화물 반도체의 제조방법.
     
  17. 기재,
    상기 기재 상에 형성된 유전층,
    상기 유전층 상에 형성된 제 1 항의 산화물 반도체를 포함하는 반도체층, 및
    상기 반도체층 상에 형성된 전극을 포함하는,
    반도체 소자.
     
  18. 제 17 항에 있어서,
    상기 반도체층의 두께가 5 nm 내지 50 nm 범위인, 반도체 소자.
     
  19. 제 17 항의 반도체 소자를 포함하는, 박막 트랜지스터.
     
  20. 제 19 항의 박막 트랜지스터를 포함하는, 디스플레이 장치.
PCT/KR2022/018899 2021-11-26 2022-11-25 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자 WO2023096425A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210166178 2021-11-26
KR10-2021-0166178 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023096425A1 true WO2023096425A1 (ko) 2023-06-01

Family

ID=86540190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018899 WO2023096425A1 (ko) 2021-11-26 2022-11-25 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자

Country Status (2)

Country Link
KR (1) KR20230078575A (ko)
WO (1) WO2023096425A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774891B (zh) * 2022-04-21 2024-01-16 南京卡巴卡电子科技有限公司 Sb2O3薄膜材料及基于溶胶-凝胶法制备Sb2O3薄膜材料的方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939998B1 (ko) 2004-11-10 2010-02-03 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
KR20120050513A (ko) * 2009-09-04 2012-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP2013074046A (ja) * 2011-09-27 2013-04-22 Panasonic Corp p型透明酸化物導電性材料およびこれを用いた発光素子
KR20180126594A (ko) * 2016-05-13 2018-11-27 도판 인사츠 가부시키가이샤 표시 장치
KR20190051504A (ko) * 2017-11-07 2019-05-15 엘지디스플레이 주식회사 전계발광 표시장치
KR20200014275A (ko) * 2017-06-05 2020-02-10 도판 인사츠 가부시키가이샤 반도체 장치, 표시 장치 및 스퍼터링 타깃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939998B1 (ko) 2004-11-10 2010-02-03 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
KR20120050513A (ko) * 2009-09-04 2012-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP2013074046A (ja) * 2011-09-27 2013-04-22 Panasonic Corp p型透明酸化物導電性材料およびこれを用いた発光素子
KR20180126594A (ko) * 2016-05-13 2018-11-27 도판 인사츠 가부시키가이샤 표시 장치
KR20200014275A (ko) * 2017-06-05 2020-02-10 도판 인사츠 가부시키가이샤 반도체 장치, 표시 장치 및 스퍼터링 타깃
KR20190051504A (ko) * 2017-11-07 2019-05-15 엘지디스플레이 주식회사 전계발광 표시장치

Also Published As

Publication number Publication date
KR20230078575A (ko) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2009145581A2 (ko) 산화물 반도체 및 이를 포함하는 박막 트랜지스터
WO2014126448A1 (ko) 정렬된 산화물 반도체 와이어 패턴의 제조방법 및 이를 이용한 전자소자
Zhu et al. Fully solution-induced high performance indium oxide thin film transistors with ZrO x high-k gate dielectrics
WO2023096425A1 (ko) 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자
WO2018124390A1 (ko) 그래핀 전극을 이용한 페로브스카이트 태양전지 및 그 제조 방법
WO2015065162A1 (ko) 전도성 구조체 및 이의 제조방법
Jiang et al. Microstructure, optical and electrical properties of sputtered HfTiO high-k gate dielectric thin films
WO2013022306A2 (ko) 플라즈마 발생장치, 플라즈마 발생장치용 회전 전극의 제조방법, 기판의 플라즈마 처리방법, 및 플라즈마를 이용한 혼합 구조의 박막 형성방법
WO2016167583A1 (ko) 그래핀의 도핑 방법, 그래핀 복합 전극의 제조 방법 및 이를 포함하는 그래핀 구조체
WO2018143611A1 (ko) 대면적 금속 칼코겐 박막의 제조방법 및 이에 의해 제조된 금속 칼코겐 박막을 포함하는 전자소자의 제조방법
WO2021177551A1 (ko) 표면작용기 제어를 통한 맥신의 산화안정성 향상 방법
WO2020184777A1 (ko) 산화물 반도체 박막 트랜지스터의 제조 방법
WO2016153172A1 (ko) 높은 전계 효과 이동도를 가지는 basno3 박막 트랜지스터 및 그의 제조 방법
WO2011149118A1 (ko) 액상 공정을 이용한 산화물 반도체 박막의 형성 방법, 결정화 방법, 이를 이용한 반도체 소자 형성 방법
WO2018084421A1 (ko) 듀얼 게이트 구조를 구비하는 산화물 반도체 트랜지스터 및 그 제조방법
WO2021101242A1 (ko) 다층 채널 박막 트랜지스터 및 이의 제조방법
WO2021095974A1 (ko) 유전박막, 이를 포함하는 멤커패시터, 이를 포함하는 셀 어레이, 및 그 제조 방법
WO2023195761A1 (ko) 산화물 소결체 및 이를 포함하는 박막 트랜지스터
WO2015182888A1 (ko) 산화물 반도체 박막 트랜지스터의 제조방법
WO2021210907A1 (ko) 반도체층 및 그 제조방법, 그리고 이를 포함하는 트랜지스터
KR20100095328A (ko) InZnO 박막 및 그 제조 방법
WO2017175979A2 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2015142038A1 (ko) 갈륨을 포함하는 p형 비정질 산화물 반도체, 이의 제조방법, 이를 포함하는 태양전지 및 이의 제조 방법
WO2023171911A1 (ko) 신규한 유기주석 화합물, 이의 제조방법, 이를 포함하는 용액공정용 조성물 및 이를 이용한 박막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022899107

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022899107

Country of ref document: EP

Effective date: 20240626