WO2023092928A1 - 一种全固废基碳酸化免烧轻骨料及其制备方法 - Google Patents

一种全固废基碳酸化免烧轻骨料及其制备方法 Download PDF

Info

Publication number
WO2023092928A1
WO2023092928A1 PCT/CN2022/086640 CN2022086640W WO2023092928A1 WO 2023092928 A1 WO2023092928 A1 WO 2023092928A1 CN 2022086640 W CN2022086640 W CN 2022086640W WO 2023092928 A1 WO2023092928 A1 WO 2023092928A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid waste
powder
mixed
water
alkali
Prior art date
Application number
PCT/CN2022/086640
Other languages
English (en)
French (fr)
Inventor
王涛
方梦祥
连有江
王镭
高翔
骆仲泱
岑可法
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023092928A1 publication Critical patent/WO2023092928A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0409Waste from the purification of bauxite, e.g. red mud
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0436Dredged harbour or river sludge
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0481Other specific industrial waste materials not provided for elsewhere in C04B18/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of solid waste resource utilization and building materials, and in particular relates to an all-solid waste-based carbonated burn-free lightweight aggregate and a preparation method thereof.
  • CO 2 mineralization enhanced building material product technology is a new type of CO 2 utilization and Building material maintenance technology, using alkaline earth metal ion minerals containing calcium and magnesium in nature or industrial production to mineralize CO 2 to form inorganic carbonates with high thermal stability. This technology realizes high-performance buildings while reducing CO 2 emissions The production of materials and the resource utilization of solid waste are ways to reduce CO2 emissions with significant economic benefits.
  • the Chinese patent document whose publication number is CN102173747A discloses a method of utilizing urban sludge, loess and bentonite to burn ceramsite, using raw sludge, loess and bentonite, rice bran as fuel to directly burn ceramsite, and the treatment of sludge The quantity is large, and the production cost is low; the Chinese patent document whose publication number is CN109467443A discloses a kind of method utilizing sludge and shale powder as main raw materials to burn recycled ceramsite. In the above method, the ingredients still contain natural resources, and the sintering process is adopted at the same time, which aggravates pollution and the greenhouse effect.
  • the Chinese patent document with the publication number CN102351557B discloses a method for producing non-fired ceramsite by combining activated sludge with fly ash.
  • the Chinese patent document with publication number CN111362607A discloses a light solid waste non-fired pottery
  • the raw materials include steel slag powder, slag powder, Portland cement, activator, density regulator, and water.
  • the invention uses hollow glass microspheres as the density regulator, which reduces the bulk density of ceramsite products and improves the strength.
  • the method The production cost is high.
  • the invention provides a method for preparing all-solid waste-based carbonation non-burning lightweight aggregate.
  • the raw materials are all selected from solid waste, and the traditional alkali activator is replaced by alkali-activated solid waste, and CO2 mineralization strengthening technology is used.
  • the carbon sequestration potential of solid waste is fully utilized, natural resources are saved, the problem of low-value and low-volume utilization of solid waste is solved, and all-solid waste-based carbonation non-burning light aggregate with excellent compressive strength is prepared.
  • a method for preparing all-solid waste-based carbonated burn-free lightweight aggregate comprising the following steps:
  • the active component solid waste includes blast furnace slag, steel slag or furnace slag; the light filled solid waste includes fly ash, river sludge or red mud, and the bulk density is less than 1000kg/m 3 ; the alkali-activated Type solid waste includes carbide slag.
  • the active component type solid waste contains hydration active substances such as calcium silicate, magnesium silicate, calcium aluminate, etc., and the light filled solid waste contains alkaline oxides, and the alkali-activated solid waste replaces the traditional Quicklime, sodium hydroxide, water glass, etc. are used as alkali activators.
  • the hydration active substance reacts with water initially to form initial strength; during the CO 2 mineralization curing process, CO 2 reacts with alkaline components, and the reaction products can fill the pores and improve the strength and durability of the product.
  • the particulate matter is cured by CO 2 mineralization, it is then naturally cured under the condition of replenishing water to obtain the above-mentioned all-solid waste-based carbonated non-burning light aggregate.
  • Carbonated particulate matter is obtained after CO 2 mineralization and curing, and natural curing under the condition of replenishing water can fully hydrate the active components, further improving the compression resistance of the prepared all-solid waste-based carbonated non-burning light aggregate strength.
  • the natural conservation method is natural stacking. Natural stacking can make the hydration reaction more thorough.
  • the active component solid waste is blast furnace slag or steel slag
  • the light filled solid waste is fly ash
  • the alkali-activated solid waste is carbide slag.
  • the grinding process can physically activate the solid waste.
  • the particle size of the mixed solid waste powder is less than 100 ⁇ m.
  • the weight ratio of active component type solid waste, light filling type solid waste and alkali-activated solid waste is 1-9:1:0.02-1.
  • step (2) described granulation process is:
  • the granulation is carried out by using a pelletizing disk, the rotating speed of the pelletizing disk is 20-60 r/min, and the pelletizing time is 45-60 minutes.
  • the pre-curing conditions are: ambient pressure, humidity 70%-90%RH, temperature 15-25°C, time 24-72h.
  • the water-solid ratio of the particulate matter after pre-curing is controlled at 0.15-0.25.
  • the water-solid ratio of the pre-cured particles will affect the pore structure of the aggregate, thereby affecting the diffusion of CO2 in the aggregate, affecting the speed and depth of the carbonation reaction, and ultimately affecting the performance of the product.
  • the CO 2 mineralization curing conditions are: CO 2 pressure 0.1-1 MPa, temperature 40-140° C., time 2-4 hours.
  • the present invention also provides the all-solid waste-based carbonated non-burning light aggregate prepared by the method for preparing the all-solid waste-based carbonated non-burning light aggregate.
  • the method of the present invention adopts CO Mineralized maintenance, reduces energy consumption compared to firing methods, reduces CO and pollutant emissions, compared to natural maintenance, improves strength, durability, etc., and also Can absorb CO 2 .
  • the raw materials of the all-solid waste-based carbonation burn-free light aggregate that the present invention makes are all selected from solid waste, replace traditional quicklime with alkali-activated solid waste, sodium hydroxide, water glass, etc. as alkali activators,
  • the carbon sequestration potential of solid waste is fully utilized, natural resources are saved, costs are greatly reduced, and the problem of low-value and low-volume utilization of solid waste is solved.
  • Fig. 1 is a flow chart of the preparation of all solid waste-based carbonated non-burning light aggregate in the present invention.
  • Fig. 2 is a statistical diagram of cylinder compressive strength of all solid waste-based carbonated non-burning light aggregates prepared in Examples 1-3.
  • Fig. 3 is a statistical chart of the cylinder compressive strength of unfired lightweight aggregates prepared in Comparative Examples 1-6.
  • the blast furnace slag comes from Yanhang Mineral Products Trading Co., Ltd., Lingshou County, Shijiazhuang City.
  • Carbide slag comes from Yanhang Mineral Products Trading Co., Ltd., Lingshou County, Shijiazhuang City.
  • blast furnace slag is used for the active component type solid waste
  • fly ash is used for the light filling type solid waste
  • the blast furnace slag and fly ash separately, and mix them in proportion to obtain a mixed powder with a particle size of less than 100 ⁇ m.
  • the weight ratio of blast furnace slag to fly ash is 1.5:1;
  • the pre-curing conditions are: ambient pressure, humidity 70%RH, temperature 25°C, time 72h, control the internal moisture content to about 2/3 of the initial water volume; put in special CO 2
  • the mineralization maintenance device is fed with 99.9% CO 2 gas, the internal gas pressure is maintained at 0.1 MPa, the temperature is set at 40°C, and accelerated carbonation is carried out for 4 hours to prepare non-burning light aggregate.
  • the cylinder compressive strength of the non-fired lightweight aggregate prepared in this comparative example is 3.5 MPa.
  • the preparation method of non-fired lightweight aggregate in this comparative example is the same as that of comparative example 1, the only difference is that in the mixed powder, the weight ratio of blast furnace slag to fly ash is 4:1.
  • the cylinder compressive strength of the non-fired lightweight aggregate prepared in this comparative example is 3MPa.
  • blast furnace slag is selected for the active component type solid waste
  • fly ash is selected for the light filling type solid waste
  • calcium carbide slag is selected for the alkali-activated solid waste
  • Grind blast furnace slag, fly ash and carbide slag separately, and mix them in proportion to obtain mixed solid waste powder with a particle size of less than 100 ⁇ m.
  • the weight ratio of blast furnace slag, fly ash and carbide slag is 1.5 :1:0.075;
  • the pre-curing conditions are: ambient pressure, humidity 70%RH, temperature 25°C, time 72h, control the internal moisture content to about 2/3 of the initial water content, control the internal moisture content to the initial About 2/3 of the water volume (that is, the water-solid ratio of the particles after pre-curing is about 0.15-0.25); put in a special CO 2 mineralization curing device, feed 99.9% CO 2 gas, and maintain the internal gas pressure at 0.1 MPa, the temperature was set at 40° C., and accelerated carbonation was carried out for 4 hours to obtain the all-solid waste-based carbonated non-burning light aggregate.
  • the cylinder compressive strength of the all-solid waste-based carbonated non-burning light aggregate prepared in this embodiment is 5.4 MPa. It can be seen that the addition of alkali-activated solid waste raw materials can greatly improve the strength of non-burning lightweight aggregate.
  • the preparation method of all solid waste-based carbonated non-combustion light aggregate in this example is the same as that in Example 1.
  • the weight ratio of blast furnace slag, fly ash and carbide slag is 1.5:1:0.125.
  • the cylinder compressive strength of the all-solid waste-based carbonated non-burning light aggregate prepared in this embodiment is 7.6 MPa.
  • the preparation method of all-solid waste-based carbonation non-burning lightweight aggregate in this embodiment is the same as that of Example 1, the only difference is that after mineralization curing, under the condition of replenishing water, 4 days of natural curing are carried out to obtain the described All solid waste-based carbonated non-burning light aggregate.
  • the cylinder compressive strength of the all-solid waste-based carbonated non-burning light aggregate prepared in this embodiment is 9.1 MPa.
  • Comparative Examples 3-6 are the same as those of Comparative Examples 1-2 and Examples 1-2 respectively, the difference is that the steps of pre-curing of spherical particles and CO2 mineralization curing are changed to the condition of replenishing water natural conservation.
  • the cylinder compressive strengths of the non-fired lightweight aggregates prepared in Comparative Examples 3 to 6 were 3.1 MPa, 2.6 MPa, 5 MPa and 6.7 MPa, respectively. It can be seen that the strength of non-fired lightweight aggregate prepared by CO 2 mineralization strengthening technology is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种全固废基碳酸化免烧轻骨料的制备方法,包括以下步骤:(1)将活性组分型固废、轻质填充型固废和碱激发型固废研磨后混合,得到混合固废粉末;(2)利用混合固废粉末与水进行造粒,得到颗粒物,将颗粒物预养护之后进行CO 2矿化养护,得到所述的全固废基碳酸化免烧轻骨料;其中,活性组分型固废包括高炉渣,钢渣或炉渣;轻质填充型固废包括粉煤灰、河道淤泥或赤泥;碱激发型固废包括电石渣。本发明的原料全部选自固废,用碱激发型固废代替传统的生石灰,氢氧化钠,水玻璃等作为碱激发剂,并采用CO 2矿化强化技术,充分地发挥了固废的固碳潜力,节约自然资源,制得了抗压强度好的全固废基碳酸化免烧轻骨料。

Description

一种全固废基碳酸化免烧轻骨料及其制备方法 技术领域
本发明属于固废资源化利用和建筑材料技术领域,具体涉及一种全固废基碳酸化免烧轻骨料及其制备方法。
背景技术
我国是世界上最大的钢铁生产国和煤炭消耗国,由此带来了大量高炉渣和粉煤灰等工业固废的产生,而我国工业固废资源化比例低,大量工业固废的堆存,不仅占用破坏土地资源,而且污染地下水,造成扬尘等空气污染,消纳固废迫在眉睫。CCUS(二氧化碳捕集利用与封存)技术是大规模碳减排的有效路径之一,CO 2的矿化强化建材制品技术是利用CO 2矿化过程替代传统水化蒸养的新型CO 2利用和建材养护技术,利用自然界或工业生产中含钙、镁的碱土金属离子矿物将CO 2矿化处理形成热稳定较高的无机碳酸盐,该技术在减少CO 2排放的同时实现了高性能建筑材料的生产和固体废弃物的资源化利用,是附带显著经济效益的CO 2减排途径。
采用二氧化碳矿化养护固废制备建材,不仅消纳了固废和二氧化碳,而且取代了传统的高温烧结,高温蒸养等建材养护方式,进一步降低了能耗,减少了二氧化碳的排放。更进一步的,缩短了养护周期,提高了生产效率,获得了高附加值的建筑材料。
公开号为CN102173747A的中国专利文献公开了一种利用城镇污泥、黄土和膨润土烧制陶粒的方法,利用原始污泥、黄土和膨润土,谷糠为燃料直接烧制陶粒,污泥的处理量大,生产成本低;公开号为CN109467443A的中国专利文献公开了一种利用污泥、页岩粉为主要原料烧制再生陶粒的方法。以上方法,配料仍包含自然资源,同时采用烧结工艺,加剧污染和温室效应。
公开号为CN102351557B的中国专利文献公开了一种活性污泥结合粉煤灰生产免烧陶粒的方法,全部采用固废,但采用自然养护,性能较差;公开号为CN112500011A的中国专利文献公开了一种利用钢渣,玻化微珠,生石灰结合碳化工艺生产轻骨料的方法,成品性能好,但成本较高; 公开号为CN111362607A的中国专利文献公开了一种轻质固废免烧陶粒,原料包括钢渣粉、矿渣粉、硅酸盐水泥、激发剂、密度调节剂、水,该发明以空心玻璃微珠作为密度调节剂,降低了陶粒产品的堆积密度、提高强度,该方法的生产成本高。
发明内容
本发明提供了一种全固废基碳酸化免烧轻骨料的制备方法,原料全部选自固废,用碱激发型固废代替传统的碱激发剂,并利用CO 2矿化强化技术,充分地发挥了固废的固碳潜力,节约了自然资源,解决固废低值低量的利用问题,制备得到抗压强度优异的全固废基碳酸化免烧轻骨料。
具体采用的技术方案如下:
一种全固废基碳酸化免烧轻骨料的制备方法,包括以下步骤:
(1)将活性组分型固废、轻质填充型固废和碱激发型固废研磨后混合,得到混合固废粉末;
(2)利用混合固废粉末与水进行造粒,得到颗粒物,将颗粒物预养护之后进行CO 2矿化养护,得到所述的全固废基碳酸化免烧轻骨料;
所述的活性组分型固废包括高炉渣,钢渣或炉渣;所述的轻质填充型固废包括粉煤灰、河道淤泥或赤泥,堆积密度小于1000kg/m 3;所述的碱激发型固废包括电石渣。
本发明中,活性组分型固废含有硅酸钙、硅酸镁、铝酸钙等水化活性物质,轻质填充型固废中含有碱性氧化物,以碱激发型固废代替传统的生石灰、氢氧化钠、水玻璃等作为碱激发剂。预养护阶段,水化活性物质与水初步反应,形成初始强度;CO 2矿化养护过程中,CO 2与碱性组分发生反应,反应产物可以填充孔隙,提升产物的强度和耐久性。
优选的,颗粒物经CO 2矿化养护后,在补水的条件下,再进行自然养护,得到所述的全固废基碳酸化免烧轻骨料。颗粒物经CO 2矿化养护后得到碳酸化的颗粒物,在补水的条件下进行自然养护可使其中活性组分充分水化,进一步提高制得的全固废基碳酸化免烧轻骨料抗压强度。
进一步优选的,所述的自然养护的方式为自然堆放。自然堆放可使水化反应更加彻底。
优选的,所述的活性组分型固废为高炉渣或钢渣,所述的轻质填充型固废为粉煤灰,所述的碱激发型固废为电石渣。
研磨过程可以对固废进行物理活化,优选的,所述的混合固废粉末的粒径<100μm。
优选的,所述的混合固废粉末中,活性组分型固废、轻质填充型固废与碱激发型固废的重量比为1~9:1:0.02~1。
优选的,步骤(2)中,所述的造粒过程为:
①取质量比为1:0.2~0.3的混合固废粉末与水,将混合固废粉末分为第一部分和第二部分,第一部分与第二部分的质量比≥2,将第一部分混合固废粉末与水混合后造粒;
②另取备用水进行造粒喷雾补充,直至第一部分混合固废粉末与水形成浆状混合物,再加入第二部分混合固废粉末,得到球状颗粒物。
进一步优选的,采用成球盘进行造粒,成球盘转速20~60r/min,成球时间45~60min。
优选的,步骤(2)中,所述的预养护条件为:环境压力,湿度70%~90%RH,温度15~25℃,时间24~72h。
优选的,步骤(2)中,预养护后的颗粒物水固比控制在0.15~0.25。预养护后的颗粒物的水固比会影响骨料孔隙结构,进而影响CO 2在骨料内的扩散,影响碳酸化反应进行的速度和深度,最终影响产品性能。
优选的,步骤(2)中,所述的CO 2矿化养护条件为:CO 2压力0.1~1MPa,温度40~140℃,时间2~4h。
本发明还提供了所述的全固废基碳酸化免烧轻骨料的制备方法制备得到的全固废基碳酸化免烧轻骨料。
与现有技术相比,本发明的有益效果在于:
(1)本发明方法采用CO 2矿化养护,相比于烧制方法减少能源消耗,减少CO 2和污染物的排放,相比于自然养护,在强度、耐久性等方面有所提升,还可消纳CO 2
(2)本发明制得的全固废基碳酸化免烧轻骨料的原料全部选自固废,用碱激发型固废代替传统的生石灰,氢氧化钠,水玻璃等作为碱激发剂,充分地发挥了固废的固碳潜力,节约自然资源,极大地降低了成本,解决了固废低值低量的利用问题。
附图说明
图1为本发明中全固废基碳酸化免烧轻骨料的制备流程图。
图2为实施例1~3制得的全固废基碳酸化免烧轻骨料的筒压强度统计图。
图3为对比例1~6制得的免烧轻骨料的筒压强度统计图。
具体实施方式
下面结合附图与实施例,进一步阐明本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。
实施例1~3中的全固废基碳酸化免烧轻骨料的制备流程图如图1所示;实施例1~3及对比例1~6中:
高炉渣来源于石家庄市灵寿县岩行矿产品贸易有限公司。
粉煤灰来源于杭州市杭联热电有限公司。
电石渣来源于石家庄市灵寿县岩行矿产品贸易有限公司。
对比例1
本对比例中,活性组分型固废选用高炉渣,轻质填充型固废选用粉煤灰;
将高炉渣、粉煤灰分别进行研磨,按比例混合后得到粒径小于100μm混合粉末,该混合粉末中,高炉渣与粉煤灰的重量比为1.5:1;
取质量比为1:0.2的混合粉末与水;将混合粉末按质量比2:1分为第一部分和第二部分,将第一部分混合粉末与水充分混合后置于成球盘中造粒(成球盘转速30r/min,成球时间30min),另取备用水进行造粒喷雾补充,直至第一部分混合粉末与水形成浆状混合物,再加入第二部分混合粉末,得到球状颗粒物。
将球状颗粒物放入预养护箱中,预养护条件为:环境压力,湿度70%RH,温度25℃,时间72h,控制内部含湿量为初始水量的2/3左右;置入特制的CO 2矿化养护装置,通入99.9%的CO 2气体,将内部气体压力维持在0.1MPa,温度设定为40℃,进行4h加速碳酸化备得到免烧轻骨料。
如图3所示,本对比例制得的免烧轻骨料的筒压强度为3.5MPa。
对比例2
本对比例中免烧轻骨料的制备方法和对比例1相同,区别仅在于混合粉末中,高炉渣与粉煤灰的重量比为4:1。
如图3所示,本对比例制得的免烧轻骨料的筒压强度为3MPa。
实施例1
本实施例中,活性组分型固废选用高炉渣,轻质填充型固废选用粉煤灰,碱激发型固废选用电石渣;
将高炉渣、粉煤灰和电石渣分别进行研磨,按比例混合后得到粒径为小于100μm混合固废粉末,该混合固废粉末中,高炉渣、粉煤灰和电石渣的重量比为1.5:1:0.075;
取质量比为1:0.2的混合固废粉末与水,将混合固废粉末按质量比2:1分为第一部分和第二部分,将第一部分混合固废粉末与水充分混合后置于成球盘中造粒(成球盘转速30r/min,成球时间30min);另取备用水进行造粒喷雾补充,直至第一部分混合固废粉末与水形成浆状混合物,再加入第二部分混合固废粉末,得到球状颗粒物;
将球状颗粒物放入预养护箱中,预养护条件为:环境压力,湿度70%RH,温度25℃,时间72h,控制内部含湿量为初始水量的2/3左右控制内部含湿量为初始水量的2/3左右(即预养护后的颗粒物水固比约为0.15~0.25);置入特制的CO 2矿化养护装置,通入99.9%的CO 2气体,将内部气体压力维持在0.1MPa,温度设定在40℃,进行4h加速碳酸化制备得到所述的全固废基碳酸化免烧轻骨料。
如图2所示,本实施例制得的全固废基碳酸化免烧轻骨料的筒压强度为5.4MPa。由此可知,碱激发型固废原料的加入可以大幅提高免烧轻骨料的强度。
实施例2
本实施例中全固废基碳酸化免烧轻骨料的制备方法和实施例1相同,于混合固废粉末中,高炉渣、粉煤灰和电石渣的重量比为1.5:1:0.125。
如图2所示,本实施例制得的全固废基碳酸化免烧轻骨料的筒压强度为7.6MPa。
实施例3
本实施例中全固废基碳酸化免烧轻骨料的制备方法和实施例1相同,区别仅在于在矿化养护以后,在补水的条件下,再进行4d的自然养护,得到所述的全固废基碳酸化免烧轻骨料。
如图2所示,本实施例制得的全固废基碳酸化免烧轻骨料的筒压强度为9.1MPa。
对比例3~6
对比例3~6分别与对比例1~2、实施例1~2中免烧轻骨料的制备方法相同,区别仅在于将球状颗粒物的预养护和CO 2矿化养护步骤换为补水条件下的自然养护。
如图3所示,对比例3~6制得的免烧轻骨料的筒压强度分别为3.1MPa、2.6MPa、5MPa和6.7MPa。由此可知,CO 2矿化强化技术制得的免烧轻骨料的强度更好。
样品分析
经检测,实施例1~3制备得到的全固废基碳酸化免烧轻骨料符合《GB/T 17431.1-2010轻集料及其试验方法》。
通过对比例1~2与实施例1~2相比较可知,添加不同比例的固废碱激发剂可以使免烧轻骨料的筒压强度提高约20%~200%;
通过对比例3~6与对比例1~2、实施例1~2相比较可知,较自然养护,矿化养护制得的免烧轻骨料筒压强度可提升约5%~30%;
通过实施例1~2与实施例3相比较可知,矿化养护后辅以自然养护可以使免烧轻骨料的筒压强度提高约20%~70%。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述的仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种全固废基碳酸化免烧轻骨料的制备方法,其特征在于,包括以下步骤:
    (1)将活性组分型固废、轻质填充型固废和碱激发型固废研磨后混合,得到混合固废粉末;
    (2)利用混合固废粉末与水进行造粒,得到颗粒物,将颗粒物预养护之后进行CO 2矿化养护,得到所述的全固废基碳酸化免烧轻骨料;
    所述的活性组分型固废包括高炉渣,钢渣或炉渣;所述的轻质填充型固废包括粉煤灰、河道淤泥或赤泥;所述的碱激发型固废包括电石渣。
  2. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,颗粒物经CO 2矿化养护后,在补水的条件下,再进行自然养护,得到所述的全固废基碳酸化免烧轻骨料。
  3. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,所述的活性组分型固废为高炉渣或钢渣,所述的轻质填充型固废为粉煤灰,所述的碱激发型固废为电石渣。
  4. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,所述的混合固废粉末的粒径<100μm。
  5. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,所述的混合固废粉末中,活性组分型固废、轻质填充型固废与碱激发型固废的重量比为1~9:1:0.02~1。
  6. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,步骤(2)中,所述的造粒过程为:
    ①取质量比为1:0.2~0.3的混合固废粉末与水,将混合固废粉末分为第一部分和第二部分,第一部分与第二部分的质量比≥2,将第一部分混合固废粉末与水混合后造粒;
    ②另取备用水进行造粒喷雾补充,直至第一部分混合固废粉末与水形成浆状混合物,再加入第二部分混合固废粉末,得到球状颗粒物。
  7. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,步骤(2)中,所述的预养护条件为:环境压力,湿度70%~90%RH, 温度15~25℃,时间24~72h。
  8. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,步骤(2)中,预养护后的颗粒物水固比控制在0.15~0.25。
  9. 根据权利要求1所述的全固废基碳酸化免烧轻骨料的制备方法,其特征在于,步骤(2)中,所述的CO 2矿化养护条件为:CO 2压力0.1~1MPa,温度40~140℃,时间2~4h。
  10. 根据权利要求1~9任一所述的全固废基碳酸化免烧轻骨料的制备方法制得的全固废基碳酸化免烧轻骨料。
PCT/CN2022/086640 2021-11-29 2022-04-13 一种全固废基碳酸化免烧轻骨料及其制备方法 WO2023092928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111434838.8A CN113998982B (zh) 2021-11-29 2021-11-29 一种全固废基碳酸化免烧轻骨料及其制备方法
CN202111434838.8 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023092928A1 true WO2023092928A1 (zh) 2023-06-01

Family

ID=79930720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086640 WO2023092928A1 (zh) 2021-11-29 2022-04-13 一种全固废基碳酸化免烧轻骨料及其制备方法

Country Status (2)

Country Link
CN (1) CN113998982B (zh)
WO (1) WO2023092928A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655345A (zh) * 2023-06-12 2023-08-29 中国地质大学(武汉) 一种多元固废碱硫协同制备的耐高温混凝土及其制备方法
CN116854495A (zh) * 2023-07-06 2023-10-10 南京信息工程大学 一种铸造灰基免烧碳化陶粒的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998982B (zh) * 2021-11-29 2022-07-26 浙江大学 一种全固废基碳酸化免烧轻骨料及其制备方法
CN114409295B (zh) * 2022-02-25 2022-07-22 北京科技大学 一种循环流化床粉煤灰基复合微粉及其制备方法
CN114591052B (zh) * 2022-02-25 2023-05-12 碳达(深圳)新材料技术有限责任公司 一种利用高温烟气和碱性固废制备建筑材料的方法
CN114920523A (zh) * 2022-06-17 2022-08-19 太原理工大学 可吸附二氧化碳的复合颗粒及其制备方法
CN115010419A (zh) * 2022-06-30 2022-09-06 深圳市衡骏环保科技有限公司 一种多固废淤泥基碳矿化免烧陶粒及其制备方法
CN115073108A (zh) * 2022-07-21 2022-09-20 江苏集萃功能材料研究所有限公司 一种以Ca基固体废弃物再生高强负碳建材的方法及其应用
CN115259712A (zh) * 2022-08-31 2022-11-01 霖和气候科技(北京)有限公司 一种高固废基汇碳化免烧轻骨料的制备方法
CN115448628B (zh) * 2022-09-23 2023-08-25 天津水泥工业设计研究院有限公司 一种碳化多孔钢渣骨料及其制备方法
CN115536358A (zh) * 2022-10-14 2022-12-30 东南大学 一种工业固废碳化固化免烧砌块及制备方法
CN115677248B (zh) * 2022-10-26 2024-01-30 中国建筑材料科学研究总院有限公司 一种固碳轻骨料及其制备方法
CN116177938B (zh) * 2023-02-23 2023-10-24 东南大学 基于燃烧烟气二氧化碳矿化制备高性能绿色建材的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771780A (zh) * 2014-01-01 2014-05-07 大连理工大学 一种水化-碳酸化联用技术制备建筑材料制品的方法
US20180179107A1 (en) * 2016-12-22 2018-06-28 Nano And Advanced Materials Institute Limited Synthetic aggregate from waste materials
CN111268979A (zh) * 2019-12-12 2020-06-12 山东大学 基于全固废的高强度、免烧护坡砖及其制备方法
CN111574146A (zh) * 2020-04-20 2020-08-25 浙江大学 一种复合胶凝材料结合碳酸化养护技术制备工业固废基免烧砖的方法
CN113998982A (zh) * 2021-11-29 2022-02-01 浙江大学 一种全固废基碳酸化免烧轻骨料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2367027A2 (fr) * 1974-10-30 1978-05-05 Santt Rene Nouveau procede de fabrication de produits du genre des verres et ceramiques
CN108751886A (zh) * 2018-06-27 2018-11-06 贵州鑫源道建材科技有限公司 一种以工业废渣为活性材料的免烧陶粒及其制备方法
CN110790541A (zh) * 2019-03-28 2020-02-14 湖南大学 一种利用再生微粉制备人造骨料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771780A (zh) * 2014-01-01 2014-05-07 大连理工大学 一种水化-碳酸化联用技术制备建筑材料制品的方法
US20180179107A1 (en) * 2016-12-22 2018-06-28 Nano And Advanced Materials Institute Limited Synthetic aggregate from waste materials
CN111268979A (zh) * 2019-12-12 2020-06-12 山东大学 基于全固废的高强度、免烧护坡砖及其制备方法
CN111574146A (zh) * 2020-04-20 2020-08-25 浙江大学 一种复合胶凝材料结合碳酸化养护技术制备工业固废基免烧砖的方法
CN113998982A (zh) * 2021-11-29 2022-02-01 浙江大学 一种全固废基碳酸化免烧轻骨料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655345A (zh) * 2023-06-12 2023-08-29 中国地质大学(武汉) 一种多元固废碱硫协同制备的耐高温混凝土及其制备方法
CN116655345B (zh) * 2023-06-12 2024-04-16 中国地质大学(武汉) 一种多元固废碱硫协同制备的耐高温混凝土及其制备方法
CN116854495A (zh) * 2023-07-06 2023-10-10 南京信息工程大学 一种铸造灰基免烧碳化陶粒的制备方法

Also Published As

Publication number Publication date
CN113998982B (zh) 2022-07-26
CN113998982A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023092928A1 (zh) 一种全固废基碳酸化免烧轻骨料及其制备方法
JP7080457B2 (ja) C30グレードの全固形廃棄物コンクリート及びその調製方法
CN110342862B (zh) 一种可再生免烧滤料及其制备方法、应用和再生方法
CN112979192B (zh) 一种轻质骨料的制备方法
CN114538850B (zh) 一种基于生物炭内碳化的固废基轻骨料及其制备方法
CN107337414B (zh) 一种利用海洋废弃淤泥制备的碳化免烧砖及其制备方法
CN112266193A (zh) 人造钢渣骨料及其制备方法和应用
CN114560639A (zh) 一种固废基高活性固碳低钙胶凝材料及其制备方法
CN112608043B (zh) 一种高强度镍渣基固废胶凝材料及制备方法
CN111116210A (zh) 一种利用生物煤生态烧结弃土制备轻质陶粒的方法
CN115215571B (zh) 一种商混固体废弃物固碳处置及再生利用方法
CN113213787A (zh) 一种煤矸石制备碱胶凝材料的生产工艺
CN106630700A (zh) 一种以粉煤灰和废玻璃为原料的无机胶凝材料及其制备方法
CN108863221A (zh) 一种采用人造复合轻骨料的泡沫混凝土及其制备方法
CN111362607A (zh) 一种轻质固废免烧陶粒及其制备方法
CN115259712A (zh) 一种高固废基汇碳化免烧轻骨料的制备方法
CN114940593A (zh) 一种轻质骨料及其制备方法以及含轻质骨料的混凝土
CN115677248A (zh) 一种固碳轻骨料及其制备方法
CN101412595A (zh) 一种利用高岭土尾砂制备混凝土掺合料的方法
WO2024077901A1 (zh) 一种工业固废碳化固化免烧砌块及制备方法
CN111517820A (zh) 一种含有污泥灰渣的高强陶粒及其制备方法
CN116947352A (zh) 一种煤矸石中温热活化的方法
CN114716193B (zh) 一种再生渣土砖的制备方法
CN114853415B (zh) 一种球磨活化盾构泥浆制备免烧压制砖的方法及其产品
CN114031323B (zh) 一种赤泥基核壳结构人造骨料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18018855

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897029

Country of ref document: EP

Kind code of ref document: A1