WO2023092631A1 - 液晶显示面板及显示终端 - Google Patents

液晶显示面板及显示终端 Download PDF

Info

Publication number
WO2023092631A1
WO2023092631A1 PCT/CN2021/135245 CN2021135245W WO2023092631A1 WO 2023092631 A1 WO2023092631 A1 WO 2023092631A1 CN 2021135245 W CN2021135245 W CN 2021135245W WO 2023092631 A1 WO2023092631 A1 WO 2023092631A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
area
color
pixel electrode
main
Prior art date
Application number
PCT/CN2021/135245
Other languages
English (en)
French (fr)
Inventor
张琪
严允晟
彭邦银
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2023092631A1 publication Critical patent/WO2023092631A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping

Definitions

  • the invention relates to the field of display technology, in particular to a liquid crystal display panel and a display terminal.
  • the existing VA (Vertical Alignment) mode liquid crystal display (LCD) has different viewing angles, due to the large difference in birefringence of liquid crystal molecules, and the full-wavelength visible light transmittance characteristics of the front viewing angle and large viewing angle are not the same, making the VA type
  • the optical characteristics of the LCD when viewing from a large viewing angle cannot maintain the same color as when viewing from a frontal viewing angle, and there are problems such as large viewing angle defects and color distortion.
  • multi-domain display pixel design is usually used to improve the color shift of LCD at large viewing angles.
  • the color gamut is low at low gray scales. After reaching a certain gray scale, it will basically remain unchanged.
  • the traditional methods of improving the color gamut of low gray scales such as increasing the thickness of the color resistance or using a color resistance with a high color gamut, will affect the transmittance and reduce the transmittance.
  • Embodiments of the present application provide a liquid crystal display panel and a display terminal to solve the problem that the transmittance of the existing liquid crystal display panel decreases when the overall color gamut of the gray scale is increased.
  • An embodiment of the present application provides a liquid crystal display panel, including: a data drive unit; a first substrate, including a first base substrate and a pixel electrode layer disposed on the first base substrate, and the pixel electrode layer includes A plurality of sub-pixel electrodes arranged in an array, each sub-pixel electrode includes a main area pixel electrode and a sub area pixel electrode; a second substrate arranged opposite to the first substrate, the second substrate includes a second substrate
  • the base substrate and the color-resist layer disposed on the second base substrate face to the first substrate, the color-resist layer includes a plurality of color-resist blocks arranged in an array, and the color-resist blocks include The color resistance block in the main area corresponding to the pixel electrode in the main area and the color resistance block in the sub area corresponding to the pixel electrode in the sub area, the light transmittance of the color resistance block in the main area is smaller than that of the color resistance block in the sub area Light transmittance; the liquid crystal layer is arranged between the first
  • the thickness of the color-resisting block in the sub-region is smaller than the thickness of the color-resisting block in the main region.
  • the area of the color resist block in the sub-region is larger than the area of the pixel electrode in the sub-region.
  • the area of the color resist block in the sub-region is smaller than the area of the pixel electrode in the sub-region.
  • the area of the pixel electrode in the sub-region of each of the sub-pixel electrodes is larger than the area of the pixel electrode in the main region.
  • the preset value ranges from 75 gray levels to 100 gray levels.
  • the first substrate further includes a plurality of main data lines and a plurality of sub-data lines arranged on the first base substrate and connected to the data driving unit, wherein each of the sub-pixel electrodes Corresponding to one main data line and one sub data line, the main data line is electrically connected to the pixel electrode in the main area, and the sub data line is electrically connected to the pixel electrode in the sub area.
  • the data signal provided by the data driving unit is input to the main data line;
  • the data signal provided by the data driving unit is respectively input to the main data line and the secondary data line.
  • a thin film transistor region and a scanning line are arranged between the pixel electrode in the main region and the pixel electrode in the sub region.
  • An embodiment of the present application also provides a display terminal, the display terminal includes a terminal body, the aforementioned liquid crystal display panel, a timing control unit, and a casing, the liquid crystal display panel is arranged on the surface of the casing, and the terminal
  • the main body and the timing control unit are arranged in the housing, the terminal body is connected to the timing control unit to provide displayed content, and the timing control unit is connected to the liquid crystal display panel to display the displayed content.
  • the content of the image data is converted into the image data and provided to the liquid crystal display panel.
  • the light transmittance of the color-resist block in the main area of the provided liquid crystal display panel is smaller than the light transmittance of the color-resist block in the sub-area;
  • the grayscale value of the data is less than a preset value, drive the pixel electrodes in the main area for display, and when the grayscale value of the image data is greater than the preset value, drive the pixel electrodes in the main area and the sub-area Pixel electrodes are used for display.
  • the grayscale value in the low grayscale stage is less than the preset value, only the pixel electrodes in the main area act, and the pixel electrodes in the secondary area do not act.
  • color gamut and, although having a wider color gamut to represent the color-resisting block in the main area means that the light transmittance of the color-resisting block in the main area is smaller than that of the color-resisting block in the secondary area, but due to the low gray
  • the light transmittance of each level has little effect on the overall brightness of the display panel. Therefore, while the overall gray scale color gamut is improved, the transmittance is not lost, the color shift at large viewing angles is improved, and the picture quality is improved.
  • Figure 1a is a schematic structural diagram of a sub-pixel in a liquid crystal display panel in an exemplary embodiment of the present invention
  • FIG. 1b is a schematic structural diagram of three sub-pixels arranged adjacently along the row direction R2 in a liquid crystal display panel in an exemplary embodiment of the present invention
  • Fig. 1c is a graph of grayscale-NTSC color gamut area ratio relationship in an exemplary embodiment of the present invention
  • FIG. 2 is a schematic diagram of a cooperative structure of a sub-pixel and a color-resist layer in a liquid crystal display panel in an exemplary embodiment of the present invention
  • Fig. 2a is a schematic diagram of the A-A cross-sectional structure of a sub-pixel in a liquid crystal display panel in an exemplary embodiment of the present invention
  • Fig. 2b is a schematic diagram of a B-B cross-sectional structure of a sub-pixel in a liquid crystal display panel in an exemplary embodiment of the present invention
  • Fig. 2c is a schematic diagram of the cooperative structure of three sub-pixels arranged adjacently along the row direction R2 and the corresponding color resist layer in the liquid crystal display panel in an exemplary embodiment of the present invention
  • FIG. 3 is a schematic diagram of a cooperative structure of a sub-pixel and a color-resist layer in a liquid crystal display panel in another exemplary embodiment of the present invention
  • Fig. 3a is a schematic cross-sectional structure diagram of a sub-pixel in the liquid crystal display panel in the A'-A' direction in another exemplary embodiment of the present invention
  • Fig. 3b is a schematic diagram of a B'-B' cross-sectional structure of a sub-pixel in a liquid crystal display panel in another exemplary embodiment of the present invention.
  • Fig. 3c is a schematic diagram of the cooperative structure of three sub-pixels arranged adjacently along the row direction R2' in another exemplary embodiment of the present invention and the corresponding color-resisting layer;
  • FIG. 4 is a schematic structural view of a liquid crystal display panel in an exemplary embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the relative positions of the viewer and the liquid crystal display under the condition of front view
  • Fig. 5a is a comparison graph of grayscale-NTSC color gamut area ratio curves between a liquid crystal display using a liquid crystal display panel provided by an exemplary embodiment of the present invention and an existing liquid crystal display under the condition of front view;
  • FIG. 6 is a schematic diagram of the relative positions of the viewer and the liquid crystal display when the horizontal right viewing angle is 60°;
  • Fig. 6a is a graph comparing grayscale-NTSC color gamut area ratio curves between a liquid crystal display using a liquid crystal display panel provided by an exemplary embodiment of the present invention and an existing liquid crystal display when the horizontal right viewing angle is 60°;
  • Fig. 7 is a schematic diagram of the relative position of the viewer and the liquid crystal display when the deviation from the horizontal direction is 45° and the right viewing angle is 60°;
  • Figure 7a is a comparison curve of grayscale-NTSC color gamut area ratio curves between a liquid crystal display using a liquid crystal display panel provided by an exemplary embodiment of the present invention and an existing liquid crystal display when the deviation from the horizontal direction is 45° and the right viewing angle is 60° picture;
  • FIG. 8 is a schematic structural diagram of a display terminal provided by an embodiment of the present invention.
  • the realization curve represents the grayscale-NTSC color gamut area ratio relationship curve of the existing liquid crystal display
  • the dotted line represents the liquid crystal display adopting the liquid crystal display panel provided by the exemplary embodiment of the present invention.
  • Grayscale-NTSC color gamut area ratio relationship curve
  • Liquid crystal display 100, liquid crystal display panel, 10, first substrate, 110, 110', first base substrate, 111, 111', gate insulating layer, 120, 120', sub-pixel, 121, sub-pixel Electrode, 121a, main area pixel electrode, 121b, sub area pixel electrode, 122, thin film transistor area, 130, data line, 130a, main data line, 130b, sub data line, 20, 20' second substrate, 210, second Two base substrates, 220, 220', color resistance layer, 220a, color resistance block in the main area, 220b, 220b', color resistance block in the secondary area, 30, liquid crystal layer, 40, data drive unit;
  • Display terminal 200, viewer; 300, terminal body; 400, timing control unit; 500, shell.
  • the light transmittance of the liquid crystal display panel passing through the color-resist block in the main area is smaller than the light transmittance of the color-resist block in the sub-area;
  • the gray scale value of the image data is greater than the preset value, drive the pixel electrodes in the main area and the pixel electrodes in the sub area to display. While improving the overall gray-scale color gamut, the penetration rate is not lost, the color cast is improved under large viewing angles, and the picture quality is improved.
  • the liquid crystal display panel can be applied to display terminals, such as large-size liquid crystal display panels such as VA-type liquid crystal displays and liquid crystal televisions.
  • a liquid crystal display panel 100 includes a first substrate 10 , a second substrate 20 , a liquid crystal layer 30 and a data driving unit 40 .
  • the first substrate 10 and the second substrate 20 are arranged opposite to each other.
  • the liquid crystal layer 30 is disposed between the first substrate 10 and the second substrate 20 .
  • the first substrate 10 is an array substrate
  • the second substrate 20 is a color filter substrate.
  • the first substrate 10 includes a first base substrate 110 , a gate insulating layer 111 disposed on the first base substrate 110 , and a pixel electrode layer disposed on the gate insulating layer 111 .
  • the pixel electrode layer includes a plurality of sub-pixel electrodes 121 arranged in an array. Please refer to FIG. 2a and FIG. 2b together.
  • Each sub-pixel electrode 121 includes a main area pixel electrode 121a and a sub area pixel electrode 121b, as shown in FIG. 1a.
  • a thin film transistor region 122 and a scanning line are arranged between the pixel electrode 121 a of the main region and the pixel electrode 121 b of the sub region. Referring to FIG.
  • two data lines 130a, 130b are arranged between two adjacent columns of sub-pixel electrodes.
  • the data lines 130a, 130b are arranged along the column direction R1.
  • a plurality of data lines 130a, 130b are arranged at intervals along the row direction R2.
  • the data lines 130 a and 130 b are disposed on the first base substrate 110 .
  • the gate insulating layer 111 covers the data lines 130a, 130b.
  • the structure of the sub-pixel electrode 121 is an 8-domain pixel electrode structure
  • the pixel electrode 121a in the main area and the pixel electrode 121b in the sub-area are respectively divided into 4 domains, and the surface of the pixel electrode in each domain has parallel grooves or protrusions
  • the area of the sub-region pixel electrode 121b is larger than the area of the main-region pixel electrode 121a.
  • the embodiments of the present invention do not limit the quantity of thin film transistors and capacitors in the pixel structure.
  • the second substrate 20 includes a second base substrate 210 and a color-resist layer 220 disposed on a side of the second base substrate 210 facing the first base substrate 110 .
  • the color resistance layer 220 includes a plurality of color resistance blocks arranged in an array. One color resistance block corresponds to one sub-pixel electrode 121 .
  • Each color resistance block includes a main area color resistance block 220a corresponding to the main area pixel electrode 121a and a sub area color resistance block 220b corresponding to the sub area pixel electrode 121b.
  • the light transmittance of the color-resisting block 220a in the main area corresponding to each sub-pixel electrode 121 is smaller than that of the color-resisting block 220b in the sub-area light transmittance;
  • the data driving unit 40 is used to input data signals to the pixel electrodes 121a in the main area to drive the pixel electrodes 121a in the main area to display when the gray scale value of the image data is less than the preset value Gp , the pixel electrode 121a in the main area is in the state of transmitting light, and when the gray scale value of the image data is greater than the preset value Gp, the data driving unit 40 sends
  • the pixel electrode 121b inputs a data signal, and simultaneously drives the pixel electrode 121a of the main area and the pixel electrode 121b of the sub area to display, and the pixel electrode 121a of the main area and the pixel electrode
  • the dotted curve on the left of the preset value Gp in the grayscale-NTSC color gamut area ratio relationship curve of the liquid crystal display indicates that when the image data has a low grayscale value, the pixel electrodes 121a in the main area are driven to display.
  • the color resistance block 220a in the main area has a wider color gamut performance, and can increase the color gamut area ratio faster than the solid line curve in the prior art, although the color resistance block 220a in the main area has a wider color gamut performance.
  • Block 220a means that the light transmittance of the color-resist block 220a in the main area is smaller than that of the color-resist block 220b in the sub-area, but the light transmittance of the low gray scale has little effect on the overall brightness of the display panel. Therefore, in addition to obtaining the dotted line curve on the left side of the preset value Gp in FIG. In addition, the dotted curve on the right side of the preset value Gp indicates that when the image data has a high grayscale value, the pixel electrodes 121a in the main area and the pixel electrodes 121b in the sub area are simultaneously driven for display.
  • the color gamut performance of the color-resistor block 220b in the sub-region is not as wide as that of the color-resistor block 220a in the main region, as the grayscale value increases, the dotted line curve gradually decreases to a certain color gamut area ratio.
  • the color gamut performance of the color-resistor block 220b in the sub-area is not as wide as that of the color-resistor block 220a in the main area, which means that the light transmittance of the color-resistor block 220b in the sub-area is greater than that of the color-resistor block 220a in the main area.
  • the overall light transmittance of the pixel will not be greatly attenuated.
  • the dotted line curve in this embodiment has a better color gamut performance at low gray levels.
  • the color gamut performance at high grayscale is also better than the existing technology, without loss of transmittance, improving picture quality.
  • the color resistance blocks of two adjacent sub-pixels 120 arranged along the row direction R2 have different colors.
  • the block colors are red (R), green (G), and blue (B).
  • the area of the main area color resistance block 220 a is larger than the area of the main area pixel electrode 121 a, and the main area color resistance block 220 a covers all the main area pixel electrodes 121 a.
  • the area of the sub-region color resistance block 220b is smaller than the area of the sub-region pixel electrode 121b, and the sub-region color resistance block 220b covers part of the sub-region pixel electrode 121b.
  • the color resistance block 220a in the main area and the color resistance block 220b in the sub area use the same color resistance material, and the color resistance material is a color resistance material that can exhibit high color gamut performance, such as TOYO VISUAL SOLUTIONS CO., LTD.) Model: OPTLION GREEN 8880 and OPTLION GREEN 8890 products. Color resistance of other materials can also be used, as long as the final color gamut performance, its color gamut area accounts for more than 72% of the NTSC color gamut area .
  • the width of the main area color resistance block 220a in the row direction R2 is L1
  • the width of the sub area color resistance block 220b in the row direction R2 is L2
  • L1>L2 the thickness of the main area color resistance block 220a is the same as the sub area color resistance block 220b.
  • the blocking blocks 220b have the same thickness.
  • a design with the same thickness but different area ratios of the color-resist block and the pixel electrode makes the light transmittance of the color-resist block 220b in the sub-region greater than that of the color-resist block 220a in the main region.
  • the sub-region color resistance block 220b since the area of the sub-region color resistance block 220b is smaller than the area of the sub-region pixel electrode 121b, that is, the sub-region color resistance block 220b does not completely cover the sub-region pixel electrode 121b, specifically, for example, the sub-region color resistance block 220b is dug out A part is left blank to expose part of the sub-region pixel electrodes 121b, so that the color gamut performance of the sub-region pixel electrodes 121b combined with the sub-region color resistance block 220b is lower than the color gamut performance of the main region pixel electrodes 121a combined with the main region color resistance block 220a.
  • the light transmittance of the color-resist block 220b in the sub-region can be increased to avoid the problem of low light transmittance caused by the improvement of the color gamut performance in the prior art.
  • the first substrate 10 further includes a plurality of data lines 130 disposed on the first base substrate 110 and connected to the data driving unit 40 , the data lines 130 It includes a plurality of main data lines 130a and a plurality of sub-data lines 130b respectively connected to the data drive unit 40, wherein each of the sub-pixels 120 corresponds to one of the main data lines 130a and one of the sub-data lines 130b, and the main data The line 130 a is located on one side of the sub-pixel 120 , and the sub-data line 130 b is located on the other side of the sub-pixel 120 .
  • the main data line 130a supplies a data voltage to the pixel electrode 121a in the main area
  • the sub-data line 130b supplies a data voltage to the pixel electrode 121b in the sub-area.
  • the thin film transistor area 122 includes a main area thin film transistor (not shown in the figure) and a sub area thin film transistor (not shown in the figure), and the main area pixel electrode 121a is connected to the main data line 130a through the main area thin film transistor, The sub-region pixel electrode 121b is connected to the sub-data line 130b through the sub-region thin film transistor.
  • the data driving unit 40 is used for providing the data voltage to the main data line 130a when the grayscale value of the image data is less than the preset value, and the grayscale value of the image data is When greater than the preset value, the data voltage is provided to the main data line 130a and the secondary data line 130b.
  • the range of the preset value Gp is between grayscale 75 and grayscale 100, and the pixel electrode 121b in the sub-region lights up when the grayscale is greater than the preset value Gp, And because the color gamut performance of the sub-region pixel electrode 121b with the sub-region color resistance block 220b is smaller than the color gamut performance of the main region pixel electrode 121a with the main region color resistance block 220a, therefore, in the low gray scale region lower than the preset value Gp , only the pixel electrode 121a in the main area operates, thereby improving the color gamut performance in the low grayscale area, and when the grayscale reaches the preset value Gp, the color gamut performance is the best at this time, and its color gamut area accounts for NTSC color gamut area The ratio reaches the maximum.
  • the sub-region pixel electrode 121b starts to move, and the color gamut performance begins to decline, and then as the grayscale continues to increase to 255 grayscale, the ratio of its color gamut area to the NTSC color gamut area gradually decreases and stabilizes Maintain 72% of the color gamut of NTSC (National Television System Committee, the color television broadcasting standard formulated by the National Television System Committee of the United States). Therefore, in this embodiment, since the color gamut performance at low grayscales is improved, the average color gamut performance of the overall grayscale is improved, and finally the color gamut area accounts for 72% of the NTSC color gamut area, and there is no wear. The loss of transmittance improves the picture display quality under different viewing angles.
  • the ratio value of the color gamut area corresponding to the highest point of the curve in 7a to the NTSC color gamut area is the ratio value of the color gamut area corresponding to the preset value Gp to the NTSC color gamut area.
  • the color resist block 220 a in the main area covers the data lines 130 located on both sides of the pixel electrode 121 a in the main area (ie, the main data line 130 a and the sub data line 130 b ).
  • the area of the sub-region color resist block 220b is smaller than the area of the sub-region pixel electrode 121b.
  • the color resistance block 220a in the main area covers all the pixel electrodes 121a in the main area and covers the data lines 130a, 130b corresponding to the pixel electrodes 121a in the main area.
  • the sub-region color resist block 220b exposes part of the sub-region pixel electrode 121b and exposes the corresponding data lines 130a, 130b.
  • the color resistance block 220a in the main area and the color resistance block 220b' in the sub area use the same color resistance material, and the color resistance block and the pixel
  • the proportions of the electrode areas are the same, but the thickness S2 of the color-resistive block 220b' in the sub-area is smaller than the thickness S1 of the color-resistive block 220a in the main area.
  • the area of the sub-region color resistance block 220b' of each sub-pixel 120' is larger than the area of the sub-region pixel electrode 121b.
  • the disposition ratio of the color resistance block 220 b ′ in the sub-region to the pixel electrode 121 b in the sub-region is the same as that of the color resistance block 220 a in the main region and the pixel electrode 121 a in the main region. Due to the different thicknesses of the color-resistor blocks, the color gamut performance of the sub-region pixel electrode 121b with the sub-region color-resistor block 220b' is lower than the color gamut performance of the main-region pixel electrode 121a with the main-region color-resistor block 220a.
  • the width of the color-resistor block 220 b ′ in the sub-region in the row direction R2 is the same as the width of the color-resistor block 220 a in the main region in the row direction R2 .
  • the width of the color-resistive block 220a in the main area in the row direction R2 is L1.
  • the color resist block 220 a in the main area covers the data lines 130 a and 130 b.
  • the area of the sub-region color resist block 220b' is larger than the area of the sub-region pixel electrode 121b.
  • the sub-region color resist block 220b' covers the data lines 130a, 130b.
  • the colors of the three sub-pixels are red (R), green (G), and blue (B) in sequence.
  • the color-resistive block 220a in the main area is smaller than the thickness S1 of the color-resistive block 220a in the main area
  • the light transmittance of the sub-region color resist block 220b' is smaller than the light transmittance of the sub-region color resist block 220b';
  • the data driving unit 40 is used to drive the main region pixel electrode 121a when the gray scale value of the image data is less than the preset value Gp
  • the pixel electrodes 121 a of the main area and the pixel electrodes 121 b of the sub area are driven for displaying.
  • the dotted curve on the left of the preset value Gp in the grayscale-NTSC color gamut area ratio relationship curve of the liquid crystal display indicates that when the image data has a low grayscale value, the pixel electrodes 121a in the main area are driven to display.
  • the color resistance block 220a in the main area has a wider color gamut performance, which can increase the ratio of the color gamut area faster than the solid line curve in the prior art, although the color resistance block 220a in the main area has a wider color gamut performance
  • Block 220a means that the light transmittance of the color-resist block 220a in the main area is smaller than that of the color-resist block 220b in the sub-area, but the light transmittance of the low gray scale has little effect on the overall brightness of the display panel. Therefore, in addition to obtaining the dotted line curve on the left side of the preset value Gp in FIG.
  • the dotted curve on the right side of the preset value Gp indicates that when the image data has a high grayscale value, the pixel electrodes 121a in the main area and the pixel electrodes 121b in the sub area are simultaneously driven for display. Because the color gamut performance of the color-resistor block 220b in the sub-region is not as wide as that of the color-resistor block 220a in the main region, as the grayscale value increases, the dotted line curve gradually decreases to a certain color gamut area ratio.
  • the color gamut performance of the color-resistor block 220b in the sub-area is not as wide as that of the color-resistor block 220a in the main area, which means that the light transmittance of the color-resistor block 220b in the sub-area is greater than that of the color-resistor block 220a in the main area.
  • Transmittance due to the effect of the sub-region color resist block 220b at high grayscale values, the overall light transmittance of the pixel will not be greatly attenuated.
  • the dotted line curve in this embodiment has a better color gamut performance at low gray levels.
  • the color gamut performance at high grayscale is also better than the existing technology, without loss of transmittance, improving picture quality.
  • the present invention also provides a display terminal 2, the display terminal includes a terminal body 300, the aforementioned liquid crystal display panel 100, a timing control unit 400 and a housing 500, the liquid crystal display
  • the panel 100 is disposed on the surface of the housing 500, the terminal body 300 and the timing control unit 400 are disposed in the housing 500, the terminal body 300 is connected to the timing control unit 400 to provide displayed content,
  • the timing control unit 400 is connected to the LCD panel 100 for converting the displayed content into the image data and providing it to the LCD panel 100 .
  • the present invention also provides a data drive unit 40, which is arranged on the liquid crystal display panel 100 and used to drive a plurality of sub-pixels 120 of the liquid crystal display panel 100, the liquid crystal display panel 100 includes A plurality of main data lines 130a and a plurality of sub-data lines 130b connected to the data driving unit 40, the data driving unit 40 is used to provide data signals (such as data voltages) when the grayscale value of the image data is less than a preset value ) to the main data line 130a, providing a data signal (such as a data voltage) to the main data line 130a and the secondary data line 130b when the grayscale value of the image data is greater than the preset value,
  • each of the sub-pixels 120 includes a sub-pixel electrode 121
  • each of the sub-pixel electrodes 121 includes a main area pixel electrode 121a and a sub area pixel electrode 121b
  • the liquid crystal display panel 100 also includes multiple A color resistance block, the color resistance block includes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种液晶显示面板(100)及显示终端(2),液晶显示面板(100)的主区色阻块(220a)的光穿透率小于次区色阻块(220b、220b')的光穿透率;在影像数据的灰阶值小于预设值时驱动主区像素电极(121a)进行显示,在影像数据的灰阶值大于预设值时驱动主区像素电极(121a)及次区像素电极(121b)进行显示,在提升整体灰阶色域的同时,不损失穿透率,改善大视角下的色偏状况。

Description

液晶显示面板及显示终端 技术领域
本发明涉及显示技术领域,特别涉及一种液晶显示面板及显示终端。
背景技术
现有VA(垂直配向)模式的液晶显示器(LCD)在不同视野角下,因液晶分子双折射率差异较大,正视角及大视角的可见光全波长穿透率特性并不相同,使得VA型LCD在大视角观赏时的光学特性无法维持与正视角观赏时的颜色相同,存在大视角色偏缺陷、颜色失真等问题。对此,通常采用多畴 (multi domain) 显示的像素设计来改善LCD在大视角下的色偏,然而,因为VA模式的LCD对比度较低的关系,导致低灰阶时色域偏低,在达到某一灰阶后才基本维持不变,传统提升低灰阶色域的方法如将色阻厚度增加或者采用高色域的色阻,就会影响穿透率,使穿透率会降低。
技术问题
本申请实施例提供一种液晶显示面板及显示终端,以解决现有液晶显示面板在提高灰阶整体色域时会导致穿透率降低的问题。
技术解决方案
本申请实施例提供了一种液晶显示面板,包括:数据驱动单元;第一基板,包括第一衬底基板和设置于所述第一衬底基板上的像素电极层,所述像素电极层包括呈阵列排布的多个子像素电极,每个所述子像素电极包括主区像素电极和次区像素电极;与所述第一基板相对设置的第二基板,所述第二基板包括第二衬底基板和设置于所述第二衬底基板一面朝向所述第一基板的色阻层,所述色阻层包括呈阵列排布的多个色阻块,所述色阻块包括与所述主区像素电极相对应的主区色阻块和与所述次区像素电极相对应的次区色阻块,所述主区色阻块的光穿透率小于所述次区色阻块的光穿透率;液晶层,设置于所述第一基板与所述第二基板之间;在影像数据的灰阶值小于预设值时,所述主区像素电极处于透出光线状态;在所述影像数据的所述灰阶值大于所述预设值时,所述主区像素电极及所述次区像素电极处于透出光线状态。
可选的,所述次区色阻块的厚度小于所述主区色阻块的厚度。
可选的,所述次区色阻块的面积大于次区像素电极的面积。
可选的,所述次区色阻块的面积小于次区像素电极的面积。
可选的,每个所述子像素电极的所述次区像素电极的面积大于所述主区像素电极的面积。
可选的,所述预设值的范围为75灰阶至100灰阶。
可选的,所述第一基板还包括设置于所述第一衬底基板上且连接至所述数据驱动单元的多条主数据线及多条次数据线,其中每个所述子像素电极对应一条所述主数据线与一条所述次数据线,所述主数据线与所述主区像素电极电连接,所述次数据线与所述次区像素电极电连接。
可选的,在所述影像数据的所述灰阶值小于所述预设值时,所述数据驱动单元提供的数据信号输入到所述主数据线;在所述影像数据的所述灰阶值大于所述预设值时,所述数据驱动单元提供的数据信号分别输入到所述主数据线和所述次数据线。
可选的,所述主区像素电极和所述次区像素电极之间设置有薄膜晶体管区和扫描线。
本申请的实施例还提供一种显示终端,所述显示终端包括终端主体、如前所述的液晶显示面板、时序控制单元以及外壳,所述液晶显示面板设置于所述外壳表面,所述终端主体及所述时序控制单元设置于所述外壳内,所述终端主体连接至所述时序控制单元用以提供显示的内容,所述时序控制单元连接至所述液晶显示面板用以将所述显示的内容转换成所述影像数据并提供给所述液晶显示面板。
有益效果
本申请的有益效果为:所提供的液晶显示面板的所述主区色阻块的光穿透率小于所述次区色阻块的光穿透率;且所述数据驱动单元用以在影像数据的灰阶值小于预设值时驱动所述主区像素电极进行显示,在所述影像数据的所述灰阶值大于所述预设值时驱动所述主区像素电极及所述次区像素电极进行显示,由于低灰阶阶段的灰阶值小于预设值时只有主区像素电极动作,次区像素电极不动作,可提升低灰阶阶段的色域值,从而实现提升整体灰阶色域,而且,虽然具有较广的色域表现主区色阻块即表示所述主区色阻块的光穿透率小于所述次区色阻块的光穿透率,但是由于低灰阶的光穿透率对显示面板的整体亮度影响不大,因此,在实现提升整体灰阶色域的同时,不损失穿透率,改善大视角下的色偏状况,提升画面质量。
附图说明
图1a是本发明示例性实施例中的液晶显示面板中子像素的结构示意图;
图1b本发明示例性实施例中的液晶显示面板中沿行方向R2相邻排布的三个子像素的结构示意图;
图1c是本发明示例性实施例中灰阶- NTSC色域面积比例关系曲线图;
图2是本发明一示例性实施例中的液晶显示面板中子像素与色阻层的配合结构示意图;
图2a是本发明一示例性实施例中的液晶显示面板中子像素的A-A向剖面结构示意图;
图2b是本发明一示例性实施例中的液晶显示面板中子像素的B-B向剖面结构示意图;
图2c本发明一示例性实施例中的液晶显示面板中沿行方向R2相邻排布的三个子像素与对应色阻层的配合结构示意图;
图3是本发明另一示例性实施例中的液晶显示面板中子像素与色阻层的配合结构示意图;
图3a是本发明另一示例性实施例中的液晶显示面板中子像素的A'-A'向剖面结构示意图;
图3b是本发明另一示例性实施例中的液晶显示面板中子像素的B'-B'向剖面结构示意图;
图3c本发明另一示例性实施例中的液晶显示面板中沿行方向R2’相邻排布的三个子像素与对应色阻层的配合结构示意图;
图4是本发明示例性实施例中液晶显示面板的结构示意图;
图5是正视情况下观看者与液晶显示器的相对位置示意图;
图5a是正视情况下采用本发明示例性实施例所提供的液晶显示面板的液晶显示器与现有液晶显示器的灰阶-NTSC色域面积比例关系曲线对比图;
图6是水平右视视角为60°时的观看者与液晶显示器的相对位置示意图;
图6a是水平右视视角为60°情况下采用本发明示例性实施例所提供的液晶显示面板的液晶显示器与现有液晶显示器的灰阶-NTSC色域面积比例关系曲线对比图;
图7是偏离水平方向45°且右视视角为60°时的观看者与液晶显示器的相对位置示意图;
图7a是偏离水平方向45°且右视视角为60°情况下采用本发明示例性实施例所提供的液晶显示面板的液晶显示器与现有液晶显示器的灰阶-NTSC色域面积比例关系曲线对比图;
图8是本发明实施例所提供的一种显示终端的结构示意图;
其中,图5a、图6a和图7a中,实现曲线表示现有液晶显示器的灰阶-NTSC色域面积比例关系曲线,虚线表示采用本发明示例性实施例所提供的液晶显示面板的液晶显示器的灰阶-NTSC色域面积比例关系曲线。
图中部件编号如下:
1、液晶显示器,100、液晶显示面板,10、第一基板,110、110'、第一衬底基板,111、111'、栅极绝缘层,120、120’、子像素,121、子像素电极,121a、主区像素电极,121b、次区像素电极,122、薄膜晶体管区,130、数据线,130a、主数据线,130b、次数据线,20、20’第二基板,210、第二衬底基板,220、220'、色阻层,220a、主区色阻块,220b、220b'、次区色阻块,30、液晶层,40、数据驱动单元;
2、显示终端;200、观看者;300、终端主体;400、时序控制单元;500、外壳。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
所述液晶显示面板通过所述主区色阻块的光穿透率小于所述次区色阻块的光穿透率;且所述数据驱动单元用以在影像数据的灰阶值小于预设值时驱动所述主区像素电极进行显示,在所述影像数据的所述灰阶值大于所述预设值时驱动所述主区像素电极及所述次区像素电极进行显示,从而实现在提升整体灰阶色域的同时,不损失穿透率,改善大视角下的色偏状况,提升画面质量。作为典型应用,所述液晶显示面板可被应用于显示终端上,例如VA型液晶显示器、液晶电视等大尺寸液晶显示面板。
本发明的一个实施例中,参照图4,液晶显示面板100包括第一基板10、第二基板20、液晶层30和数据驱动单元40。参照图2a、图2b,第一基板10和第二基板20相对设置。液晶层30设置于第一基板10与第二基板20之间。其中,第一基板10为阵列基板,第二基板20为彩膜基板。
第一基板10包括第一衬底基板110、设置于第一衬底基板110上的栅极绝缘层111和设置于栅极绝缘层111上的像素电极层。参照图1a,像素电极层包括呈阵列排布的多个子像素电极121。请一并参照图2a、图2b,每个子像素电极121包括主区像素电极121a和次区像素电极121b,参照图1a。主区像素电极121a和次区像素电极121b之间设置有薄膜晶体管区122和扫描线(图中未示出)。参照图1b,相邻两列子像素电极之间设置两数据线130a、130b。数据线130a、130b沿列方向R1设置。多个数据线130a、130b沿行方向R2间隔排布。参照图2a、图2b,数据线130a、130b设置于第一衬底基板110上。栅极绝缘层111覆盖数据线130a、130b。
其中,子像素电极121的结构为8畴像素电极结构,主区像素电极121a和次区像素电极121b分别区分成4个畴,每个畴中的像素电极表面具有平行的凹槽或凸起,次区像素电极121b的面积大于主区像素电极121a的面积。本发明的实施例对于像素结构内的薄膜晶体管和电容的数量不做限定。
参照图2a和图2b,第二基板20包括第二衬底基板210和设置于第二衬底基板210朝向第一衬底基板110一面的色阻层220。所述色阻层220包括呈阵列排布的多个色阻块。一个色阻块对应一个子像素电极121。每个色阻块包括与主区像素电极121a相对应的主区色阻块220a以及与次区像素电极121b相对应的次区色阻块220b。
参照图1a、图1c、图2a和图2b,本实施例中,每个所述子像素电极121对应的所述主区色阻块220a的光穿透率小于所述次区色阻块220b的光穿透率;所述数据驱动单元40用以在影像数据的灰阶值小于预设值Gp时,向所述主区像素电极121a输入数据信号,驱动所述主区像素电极121a进行显示,主区像素电极121a处于透出光线状态,在所述影像数据的所述灰阶值大于所述预设值Gp时,所述数据驱动单元40分别向所述主区像素电极121a和次区像素电极121b输入数据信号,所述同时驱动所述主区像素电极121a及所述次区像素电极121b进行显示,所述主区像素电极121a及所述次区像素电极121b均处于透出光线状态。
具体的,参照图1c,液晶显示器的灰阶- NTSC色域面积比例关系曲线中预设值Gp左边的虚线曲线表示在影像数据低灰阶值时,驱动所述主区像素电极121a进行显示。其中,所述主区色阻块220a具有较广的色域表现,可较现有技术的实线曲线更快速的提高色域面积比例,虽然具有较广的色域表现所述主区色阻块220a即表示所述主区色阻块220a的光穿透率小于所述次区色阻块220b的光穿透率,但是由于低灰阶的光穿透率对显示面板的整体亮度影响不大,因此,除了可获得图1c的预设值Gp左侧爬升较快的虚线曲线之外,亦不会影响低灰阶时的面板亮度。另外,预设值Gp右边的虚线曲线表示在影像数据高灰阶值时,同时驱动所述主区像素电极121a及所述次区像素电极121b进行显示。因为次区色阻块220b的色域表现没有所述主区色阻块220a广,所以随着灰阶值的提高,虚线曲线逐渐下降至一定值的色域面积比例。但是,次区色阻块220b的色域表现没有所述主区色阻块220a广,即表示所述次区色阻块220b的光穿透率大于所述主区色阻块220a的光穿透率,由于在高灰阶值时次区色阻块220b的作用,因此像素的整体光穿透率不会有太大的衰减。相较于现有技术的实线曲线,本实施例的虚线曲线在低灰阶时有更好的色域表现。在高灰阶时的色域表现也优于现有技术,且不损失穿透率,提升画面质量。
其中,沿行方向R2排布的相邻两子像素120的色阻块颜色相异,参照图2c,在本实施例中,以相邻的三个子像素为例,三个子像素120的色阻块颜色依次为红(R)、绿(G)、蓝(B)。
参照图2a,本实施例中,每个子像素120内,主区色阻块220a的面积大于主区像素电极121a的面积,且主区色阻块220a覆盖全部所述主区像素电极121a。参照图2b,次区色阻块220b的面积小于次区像素电极121b的面积,所述次区色阻块220b覆盖部分所述次区像素电极121b。
具体的,主区色阻块220a与所述次区色阻块220b采用相同的色阻材料,且所述色阻材料为可呈现高色域表现的色阻材料,例如东洋公司(TOYO VISUAL SOLUTIONS CO., LTD.)型号:OPTLION GREEN 8880」与「OPTLION GREEN 8890的产品。也可采用其他材料的色阻,只要最后呈现的色域表现,其色域面积占NTSC色域面积比例大于72%。
为了使所述次区色阻块220b的光穿透率大于所述主区色阻块220a的光穿透率,可采用两种方案,其中一种方案请参照图2、图2a与图2b,主区色阻块220a在行方向R2的宽度为L1,次区色阻块220b在行方向R2的宽度为L2,且L1>L2,其中,主区色阻块220a的厚度与次区色阻块220b的厚度相同。即采用厚度相同但色阻块与像素电极面积比例不同的设计使得所述次区色阻块220b的光穿透率大于所述主区色阻块220a的光穿透率。
本实施例中由于次区色阻块220b的面积小于次区像素电极121b的面积,即次区色阻块220b未完全覆盖次区像素电极121b,具体的,例如将次区色阻块220b挖空一部分以暴露出部分次区像素电极121b,从而使得次区像素电极121b配合次区色阻块220b的色域表现低于主区像素电极121a配合主区色阻块220a的色域表现。但可提高次区色阻块220b的光穿透率,以避免现有技术因提高色域表现而造成光穿透率低下的问题。
在本实施例中,参照图4,所述第一基板10还包括设置于所述第一衬底基板110上且连接至所述数据驱动单元40的多条数据线130,所述数据线130包括分别与数据驱动单元40连接的多条主数据线130a及多条次数据线130b,其中每个所述子像素120对应一条所述主数据线130a与一条所述次数据线130b,主数据线130a位于子像素120的一侧,次数据线130b位于子像素120的另一侧。参照图1a,其中,所述主数据线130a提供数据电压至所述主区像素电极121a,所述次数据线130b提供数据电压至所述次区像素电极121b。
所述薄膜晶体管区122包括主区薄膜晶体管(图中未示出)和次区薄膜晶体管(图中未示出),所述主区像素电极121a通过主区薄膜晶体管与主数据线130a连接,所述次区像素电极121b通过次区薄膜晶体管与次数据线130b连接。所述数据驱动单元40用以在所述影像数据的所述灰阶值小于所述预设值时提供所述数据电压至所述主数据线130a,在所述影像数据的所述灰阶值大于所述预设值时提供所述数据电压至所述主数据线130a与所述次数据线130b。
参照图5a、图6a和图7a,本实施例中,预设值Gp的范围介于75灰阶至100灰阶之间,次区像素电极121b在灰阶大于预设值Gp时亮起,而由于次区像素电极121b配合次区色阻块220b的色域表现小于主区像素电极121a配合主区色阻块220a的色域表现,因此,在低于预设值Gp的低灰阶区域,只有主区像素电极121a动作,从而提高了低灰阶区域的色域表现,而当灰阶到达预设值Gp时,此时色域的表现最好,其色域面积占NTSC色域面积比例达到最大。当灰阶超过预设值Gp时,次区像素电极121b开始动作,色域表现开始下降,然后随着灰阶不断提升至255灰阶,其色域面积占NTSC色域面积比例逐步降低并稳定保持在NTSC(National Television System Committee,美国国家电视***委员会制定的彩色电视广播标准)色域72%。因此,本实施例中,由于提升了低灰阶时的色域表现,以此提高整体灰阶的色域平均表现,最终保持在色域面积占NTSC色域面积比例72%,而且也没有穿透率损失,提升了不同视角下的画面显示品质。
具体地,参见图5a、图6a和图7a,不论是观看者200正视采用本实施例所提供的液晶显示面板100的液晶显示器1(图5),还是观看者200在右视视角60°的情况下观看采用本实施例所提供的液晶显示面板100的液晶显示器1(图6),还是观看者200在右视视角为60°且偏离水平方向45°的情况下观看采用本实施例所提供的液晶显示面板100的液晶显示器1(图7),所获得的灰阶-色域面积占NTSC色域面积比例关系曲线图中,采用本实施例所提供的液晶显示面板100的液晶显示器1的色域表现(图5a、图6a、图7a的虚线)平均值明显高于现有显示器的色域表现(图5a、图6a、图7a的实线)平均值,图5a、图6a和图7a中曲线最高点对应的色域面积占NTSC色域面积比例值即预设值Gp所对应的色域面积占NTSC色域面积比例值。
其中,参照图2和图2a,主区色阻块220a覆盖了位于主区像素电极121a两侧的数据线130(即主数据线130a和次数据线130b)。参照图2b,次区色阻块220b的面积小于次区像素电极121b的面积。主区色阻块220a覆盖全部主区像素电极121a并覆盖与主区像素电极121a相对应的数据线130a、130b。次区色阻块220b露出部分次区像素电极121b并露出相对应的数据线130a、130b。
作为另一种改进,参照图3、图3a、图3b和图3c,所述主区色阻块220a与所述次区色阻块220b'采用相同的色阻材料,且色阻块与像素电极面积的比例相同,但所述次区色阻块220b'的厚度S2小于所述主区色阻块220a的厚度S1。具体的,在此实施例中,每个所述子像素120'的次区色阻块220b'的面积大于次区像素电极121b的面积。即,次区色阻块220b'与次区像素电极121b的设置比例,和主区色阻块220a与主区像素电极121a的设置比例相同。因为色阻块的厚度不同从而使得次区像素电极121b配合次区色阻块220b'的色域表现低于主区像素电极121a配合主区色阻块220a的色域表现。
其中,参照图3,在同一子像素120'内,所述次区色阻块220b'在行方向R2的宽度与所述主区色阻块220a在行方向R2的宽度相同。参照图3a,主区色阻块220a在行方向R2的宽度为L1,参照图3b,次区色阻块220b'在行方向R2的宽度为L2',其中L1=L2'。
作为优选,本实施例中,参照图3a,主区色阻块220a覆盖了数据线130a、130b。参照图3b,次区色阻块220b'的面积大于次区像素电极121b的面积。次区色阻块220b'覆盖了数据线130a、130b。
在本实施例中,参照图3c,以相邻的三个子像素为例,三个子像素的颜色依次为红(R)、绿(G)、蓝(B)。
本实施例中,由于所述次区色阻块220b'的厚度S2小于所述主区色阻块220a的厚度S1,使得每个所述色阻层220'的所述主区色阻块220a的光穿透率小于所述次区色阻块220b'的光穿透率;所述数据驱动单元40用以在影像数据的灰阶值小于预设值Gp时驱动所述主区像素电极121a进行显示,在所述影像数据的所述灰阶值大于所述预设值Gp时驱动所述主区像素电极121a及所述次区像素电极121b进行显示。
具体的,参照图1c,液晶显示器的灰阶- NTSC色域面积比例关系曲线中预设值Gp左边的虚线曲线表示在影像数据低灰阶值时,驱动所述主区像素电极121a进行显示。其中,所述主区色阻块220a具有较广的色域表现,可较现有技术的实线曲线更快速的提高色域面积比例,虽然具有较广色域表现的所述主区色阻块220a即表示所述主区色阻块220a的光穿透率小于所述次区色阻块220b的光穿透率,但是由于低灰阶的光穿透率对显示面板的整体亮度影响不大,因此,除了可获得图1c的预设值Gp左侧爬升较快的虚线曲线之外,亦不会影响低灰阶时的面板亮度。另外,预设值Gp右边的虚线曲线表示在影像数据高灰阶值时,同时驱动所述主区像素电极121a及所述次区像素电极121b进行显示。因为次区色阻块220b的色域表现没有所述主区色阻块220a广,所以随着灰阶值的提高,虚线曲线逐渐下降至一定值的色域面积比例。但是,次区色阻块220b的色域表现没有所述主区色阻块220a广,即表示所述次区色阻块220b的光穿透率大于所述主区色阻块220a的光穿透率,由于在高灰阶值时次区色阻块220b的作用,因此像素的整体光穿透率不会有太大的衰减。相较于现有技术的实线曲线,本实施例的虚线曲线在低灰阶时有更好的色域表现。在高灰阶时的色域表现也优于现有技术,且不损失穿透率,提升画面质量。
参照图8,为实现上述目的,本发明还提供一种显示终端2,所述显示终端包括终端主体300、如前所述的液晶显示面板100、时序控制单元400以及外壳500,所述液晶显示面板100设置于所述外壳500表面,所述终端主体300及所述时序控制单元400设置于所述外壳500内,所述终端主体300连接至所述时序控制单元400用以提供显示的内容,所述时序控制单元400连接至所述液晶显示面板100用以将所述显示的内容转换成所述影像数据并提供给所述液晶显示面板100。
参照图4,为实现上述目的,本发明还提供一种数据驱动单元40,设置于液晶显示面板100上且用以驱动所述液晶显示面板100的多个子像素120,所述液晶显示面板100包括连接至所述数据驱动单元40的多条主数据线130a及多条次数据线130b,所述数据驱动单元40用以在影像数据的灰阶值小于预设值时提供数据信号(例如数据电压)至所述主数据线130a,在所述影像数据的所述灰阶值大于所述预设值时提供数据信号(例如数据电压)至所述主数据线130a与所述次数据线130b,其中,每个所述子像素120包括子像素电极121,每个所述子像素电极121包括主区像素电极121a和次区像素电极121b,所述液晶显示面板100还包括呈阵列排布的多个色阻块,所述色阻块包括与所述主区像素电极121a相对应的主区色阻块220a和与所述次区像素电极121b相对应的次区色阻块220b,所述主区色阻块220a的光穿透率小于所述次区色阻块220b的光穿透率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种液晶显示面板,其中,包括:
    数据驱动单元;
    第一基板,包括第一衬底基板和设置于所述第一衬底基板上的像素电极层,所述像素电极层包括呈阵列排布的多个子像素电极,每个所述子像素电极包括主区像素电极和次区像素电极;
    与所述第一基板相对设置的第二基板,所述第二基板包括第二衬底基板和设置于所述第二衬底基板一面朝向所述第一基板的色阻层,所述色阻层包括呈阵列排布的多个色阻块,所述色阻块包括与所述主区像素电极相对应的主区色阻块和与所述次区像素电极相对应的次区色阻块,所述主区色阻块的光穿透率小于所述次区色阻块的光穿透率;
    液晶层,设置于所述第一基板与所述第二基板之间;
    在影像数据的灰阶值小于预设值时,所述主区像素电极处于透出光线状态;在所述影像数据的所述灰阶值大于所述预设值时,所述主区像素电极及所述次区像素电极处于透出光线状态。
  2. 如权利要求1所述的液晶显示面板,其中,所述次区色阻块的厚度小于所述主区色阻块的厚度。
  3. 如权利要求2所述的液晶显示面板,其中,所述次区色阻块的面积大于次区像素电极的面积。
  4. 如权利要求1所述的液晶显示面板,其中,所述次区色阻块的面积小于次区像素电极的面积。
  5. 如权利要求4所述的液晶显示面板,其中,每个所述子像素电极的所述次区像素电极的面积大于所述主区像素电极的面积。
  6. 如权利要求1所述的液晶显示面板,其中,所述预设值的范围为75灰阶至100灰阶。
  7. 如权利要求6所述的液晶显示面板,其中,所述第一基板还包括设置于所述第一衬底基板上且连接至所述数据驱动单元的多条主数据线及多条次数据线,其中每个所述子像素电极对应一条所述主数据线与一条所述次数据线,所述主数据线与所述主区像素电极电连接,所述次数据线与所述次区像素电极电连接。
  8. 如权利要求6所述的液晶显示面板,其中,在所述影像数据的所述灰阶值小于所述预设值时,所述数据驱动单元提供的数据信号输入到所述主数据线;在所述影像数据的所述灰阶值大于所述预设值时,所述数据驱动单元提供的数据信号分别输入到所述主数据线和所述次数据线。
  9. 如权利要求6所述的液晶显示面板,其中,所述主区像素电极和所述次区像素电极之间设置有薄膜晶体管区和扫描线。
  10. 如权利要求9所述的液晶显示面板,其中,沿行方向排布的相邻两子像素的色阻块颜色相异。
  11. 一种显示终端,其中,所述显示终端包括终端主体、液晶显示面板和时序控制单元,所述终端主体连接至所述时序控制单元用以提供显示的内容,所述时序控制单元连接至所述液晶显示面板用以将所述显示的内容转换成所述影像数据并提供给所述液晶显示面板;
    所述液晶显示面板包括:
    数据驱动单元;
    第一基板,包括第一衬底基板和设置于所述第一衬底基板上的像素电极层,所述像素电极层包括呈阵列排布的多个子像素电极,每个所述子像素电极包括主区像素电极和次区像素电极;
    与所述第一基板相对设置的第二基板,所述第二基板包括第二衬底基板和设置于所述第二衬底基板一面朝向所述第一基板的色阻层,所述色阻层包括呈阵列排布的多个色阻块,所述色阻块包括与所述主区像素电极相对应的主区色阻块和与所述次区像素电极相对应的次区色阻块,所述主区色阻块的光穿透率小于所述次区色阻块的光穿透率;
    液晶层,设置于所述第一基板与所述第二基板之间;
    在影像数据的灰阶值小于预设值时,所述主区像素电极处于透出光线状态;在所述影像数据的所述灰阶值大于所述预设值时,所述主区像素电极及所述次区像素电极处于透出光线状态。
  12. 如权利要求11所述的显示终端,其中,所述次区色阻块的厚度小于所述主区色阻块的厚度。
  13. 如权利要求12所述的显示终端,其中,所述次区色阻块的面积大于次区像素电极的面积。
  14. 如权利要求11所述的显示终端,其中,所述次区色阻块的面积小于次区像素电极的面积。
  15. 如权利要求14所述的显示终端,其中,每个所述子像素电极的所述次区像素电极的面积大于所述主区像素电极的面积。
  16. 如权利要求11所述的显示终端,其中,所述预设值的范围为75灰阶至100灰阶。
  17. 如权利要求16所述的显示终端,其中,所述第一基板还包括设置于所述第一衬底基板上且连接至所述数据驱动单元的多条主数据线及多条次数据线,其中每个所述子像素电极对应一条所述主数据线与一条所述次数据线,所述主数据线与所述主区像素电极电连接,所述次数据线与所述次区像素电极电连接。
  18. 如权利要求16所述的显示终端,其中,在所述影像数据的所述灰阶值小于所述预设值时,所述数据驱动单元提供的数据信号输入到所述主数据线;在所述影像数据的所述灰阶值大于所述预设值时,所述数据驱动单元提供的数据信号分别输入到所述主数据线和所述次数据线。
  19. 如权利要求16所述的显示终端,其中,所述主区像素电极和所述次区像素电极之间设置有薄膜晶体管区和扫描线。
  20. 如权利要求19所述的显示终端,其中,沿行方向排布的相邻两子像素的色阻块颜色相异。
PCT/CN2021/135245 2021-11-23 2021-12-03 液晶显示面板及显示终端 WO2023092631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111391449.1 2021-11-23
CN202111391449.1A CN114038436B (zh) 2021-11-23 2021-11-23 液晶显示面板及显示终端

Publications (1)

Publication Number Publication Date
WO2023092631A1 true WO2023092631A1 (zh) 2023-06-01

Family

ID=80145174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135245 WO2023092631A1 (zh) 2021-11-23 2021-12-03 液晶显示面板及显示终端

Country Status (2)

Country Link
CN (1) CN114038436B (zh)
WO (1) WO2023092631A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080180617A1 (en) * 2007-01-26 2008-07-31 Tpo Displays Corp. System For Displaying Images Including A Transflective Liquid Crystal Display Panel
CN104865734A (zh) * 2015-06-08 2015-08-26 深圳市华星光电技术有限公司 彩膜基板及液晶面板
CN108732806A (zh) * 2018-05-29 2018-11-02 上海天马微电子有限公司 显示面板、显示装置和显示面板的制造方法
CN109116645A (zh) * 2018-09-07 2019-01-01 惠科股份有限公司 像素结构及其应用的显示面板与制造方法
CN109212816A (zh) * 2018-09-07 2019-01-15 惠科股份有限公司 画素结构及其应用于显示面板的制造方法
CN110109296A (zh) * 2019-04-12 2019-08-09 深圳市华星光电半导体显示技术有限公司 一种阵列基板及液晶显示装置
CN111158182A (zh) * 2020-01-03 2020-05-15 Tcl华星光电技术有限公司 显示面板及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630033B2 (en) * 2005-09-15 2009-12-08 Hiap L. Ong Large pixel multi-domain vertical alignment liquid crystal display using fringe fields
US9299312B2 (en) * 2011-05-10 2016-03-29 Nvidia Corporation Method and apparatus for generating images using a color field sequential display
CN104503159B (zh) * 2014-12-17 2017-08-18 深圳市华星光电技术有限公司 液晶面板及其制备方法
CN107065350B (zh) * 2017-04-10 2019-10-25 深圳市华星光电半导体显示技术有限公司 八畴3t像素结构
CN111077689B (zh) * 2019-12-26 2021-07-23 深圳市华星光电半导体显示技术有限公司 液晶显示面板和显示装置
CN112198726A (zh) * 2020-10-30 2021-01-08 Tcl华星光电技术有限公司 多畴垂直配向模式显示面板及其显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080180617A1 (en) * 2007-01-26 2008-07-31 Tpo Displays Corp. System For Displaying Images Including A Transflective Liquid Crystal Display Panel
CN104865734A (zh) * 2015-06-08 2015-08-26 深圳市华星光电技术有限公司 彩膜基板及液晶面板
CN108732806A (zh) * 2018-05-29 2018-11-02 上海天马微电子有限公司 显示面板、显示装置和显示面板的制造方法
CN109116645A (zh) * 2018-09-07 2019-01-01 惠科股份有限公司 像素结构及其应用的显示面板与制造方法
CN109212816A (zh) * 2018-09-07 2019-01-15 惠科股份有限公司 画素结构及其应用于显示面板的制造方法
CN110109296A (zh) * 2019-04-12 2019-08-09 深圳市华星光电半导体显示技术有限公司 一种阵列基板及液晶显示装置
CN111158182A (zh) * 2020-01-03 2020-05-15 Tcl华星光电技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
CN114038436B (zh) 2023-06-27
CN114038436A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US7471358B2 (en) Liquid crystal display device
JP4585411B2 (ja) 透過型液晶表示装置
US7057698B2 (en) Liquid crystal display panel of horizontal electric field applying type including plurality of pixels divided into at least four sub-pixels
JP4652905B2 (ja) 液晶表示装置及びその製造方法
EP1953586B1 (en) Liquid crystal display device
TWI484272B (zh) 透明液晶顯示面板之畫素結構
US8289480B2 (en) Liquid crystal display device
US20240027848A1 (en) Liquid crystal display panel and liquid crystal display
WO2015192384A1 (zh) 黑矩阵不等宽的彩色滤光片基板及液晶显示器
US8866715B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
US8436805B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display unit, liquid crystal display device, and television receiver
WO2020259561A1 (zh) 彩膜基板及其制作方法和显示装置
JP2008015512A (ja) 液晶表示パネルとその駆動方法および液晶表示装置
WO2018045775A1 (zh) 阵列基板、显示面板和显示装置
JP2012242497A (ja) 液晶表示装置
CN107272282B (zh) 显示面板及具有该显示面板的显示器
JP6548015B2 (ja) 液晶表示装置
US20240029679A1 (en) Display panel and mobile terminal
US8035588B2 (en) Liquid crystal display panel with auxiliary line disposed between boundary data line and pixel electrode and driving method thereof
US20070236635A1 (en) Transflective Liquid Crystal Display Device
US11876103B2 (en) Display panel
US10229935B2 (en) Curved display device having plurality of subpixel electrodes formed in plurality of columns
WO2021128512A1 (zh) 液晶显示面板和显示装置
WO2021056763A1 (zh) 像素结构及透明显示器
WO2023092631A1 (zh) 液晶显示面板及显示终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17621917

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965360

Country of ref document: EP

Kind code of ref document: A1