WO2023088479A1 - 一种电子遮罩、led灯珠、光源***和发光设备 - Google Patents

一种电子遮罩、led灯珠、光源***和发光设备 Download PDF

Info

Publication number
WO2023088479A1
WO2023088479A1 PCT/CN2022/133435 CN2022133435W WO2023088479A1 WO 2023088479 A1 WO2023088479 A1 WO 2023088479A1 CN 2022133435 W CN2022133435 W CN 2022133435W WO 2023088479 A1 WO2023088479 A1 WO 2023088479A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
module
control
liquid crystal
emitting
Prior art date
Application number
PCT/CN2022/133435
Other languages
English (en)
French (fr)
Inventor
简伟明
皮爱平
黄飞鹰
梁华贵
陈吉宏
黄伟涛
郑则润
孟青
陈秋榕
皮燕
Original Assignee
简伟明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 简伟明 filed Critical 简伟明
Publication of WO2023088479A1 publication Critical patent/WO2023088479A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V1/00Shades for light sources, i.e. lampshades for table, floor, wall or ceiling lamps
    • F21V1/02Frames
    • F21V1/08Frames adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/003Controlling the distribution of the light emitted by adjustment of elements by interposition of elements with electrically controlled variable light transmissivity, e.g. liquid crystal elements or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the embodiments of the present application relate to the field of light source control, and in particular, to an electronic shade, an LED lamp bead, a light source system, and a light emitting device.
  • the lighting device either only has the search function or the uniform light function, and cannot be switched and controlled, let alone realize various uniformity control between the search function and the uniform light function.
  • searchlights, spotlights, flashlights, street lights, fishing lights, emergency lights, fire emergency lights, mobile phone fill lights, etc. only have searchlight functions, but cannot dynamically switch to uniform light functions; for example, desk lamps, reading lights, floor lamps, Shooting fill light, live broadcast fill light, camera fill light, face recognition device fill light, etc. only have the function of uniform light, but cannot switch to the search light function.
  • the multi-functional flashlight has both the searchlight function and the uniform light function, but the two functions belong to two independent lighting systems, a large number of lamp beads are required to realize the searchlight and uniform light functions, resulting in waste of raw materials and more A lot of waste of resources and environmental pollution.
  • the embodiment of the present invention provides an electronic mask, LED lamp bead, light source system and lighting equipment, solves the switching function of the searchlight and uniform light of the lighting system, and provides a variety of uniform light lighting effects with different effects, which can be achieved in different Technical issues of application scenarios and better lighting effects in different environments.
  • an embodiment of the present invention provides an electronic mask, including a cover body and at least one electroluminescent liquid crystal atomizing film unit;
  • the electroluminescent liquid crystal atomizing film unit covers part or all of the cover
  • the electroluminescent liquid crystal atomizing film unit is independently provided with power supply electrodes, and is independently controlled by different voltages.
  • the electroluminescent liquid crystal atomizing film unit includes a ring-shaped electroluminescent liquid crystal atomizing film unit, a multi-band electroluminescent liquid crystal atomizing film unit, a long strip electroluminescent liquid crystal atomizing film unit, and a grid electroluminescent liquid crystal atomizing film unit.
  • a ring-shaped electroluminescent liquid crystal atomizing film unit includes a multi-band electroluminescent liquid crystal atomizing film unit, a long strip electroluminescent liquid crystal atomizing film unit, and a grid electroluminescent liquid crystal atomizing film unit.
  • cover body is integrated with the electroluminescent liquid crystal atomizing film unit.
  • the surface of the cover body is a plane or a curved surface.
  • the embodiment of the present invention provides an LED lamp bead, which includes the electronic cover described in any one of the first aspect, and also includes an LED chip;
  • the electronic mask is integrated with the LED chip, and the electronic mask faces the light-emitting surface of the LED chip.
  • the power supply electrodes of the LED chip and the power supply electrodes of the electronic mask are independently set, and are used to respectively connect power supplies with different voltage parameters from external circuits.
  • the LED chips include one or more of red LED chips, green LED chips and blue LED chips;
  • Each of the LED chips is provided with an independent power supply electrode, which is used to respectively access power supplies with different voltage parameters from an external circuit.
  • an embodiment of the present invention provides a light source system, including the electronic shade described in any one of the first aspect, and further including a control module, a light-emitting drive module, a light-emitting module, and a shade drive module;
  • the first control terminal of the control module is connected to the control input terminal of the light-emitting drive module for controlling the power supply state of the light-emitting drive module;
  • the second control terminal of the control module is connected to the control input terminal of the mask drive module The control input terminal is connected to control the power supply state of the mask driving module;
  • the output end of the light-emitting drive module is connected to the input electrode of the light-emitting module, and is used to supply power to the light-emitting module and control the light-emitting state of the light-emitting module;
  • the output end of the mask drive module is connected to the power supply electrodes of each of the electroluminescent liquid crystal atomizing film units for supplying power to the electroluminescent liquid crystal atomizing film units and controlling the electroluminescent liquid crystal atomizing film units transparent state.
  • control components Also includes control components
  • the control component is connected to the control module, and the control module is used to generate a corresponding control signal according to the control operation of the control component.
  • an environment detection module Also, it also includes an environment detection module
  • the environment detection module is connected to the control module, and the control module is used to generate corresponding control signals according to the environment parameters detected by the environment detection module.
  • the environment detection module includes one or more of a distance sensing module, a light intensity sensing module, a temperature sensing module, a humidity sensing module, a speed sensor module, a visibility sensing module and a smoke detection module.
  • the light-emitting module includes at least one light-emitting unit group, and each light-emitting unit group is provided with an independent power supply.
  • the light emitting unit group includes at least one light emitting unit.
  • each of the light-emitting unit groups includes a red light-emitting unit, a green light-emitting unit and a blue light-emitting unit, and by providing different voltages to each of the light-emitting units, the light-emitting unit group produces different colors.
  • an embodiment of the present invention provides a light emitting device, including the light source system described in any one of the third aspects.
  • the light emitting device includes a motor vehicle, a mobile light source, a mobile terminal and a fixed light source.
  • the present invention provides an electronic mask, LED lamp bead, light source system and lighting equipment.
  • Identification equipment fill light, spotlight, flashlight, fishing light, chandelier, ceiling lamp, table lamp, reading light, floor lamp, searchlight, outdoor lighting, street light, emergency light, fire emergency light, car light, traffic light, light belt, Equipment and devices with lighting functions such as light strips, light panels, advertising characters, signboard light boxes, etc., by controlling the different uniformity of light, realize the switching function of searchlight and uniform light, and can provide a variety of lighting effects with different light scattering degrees , to achieve better lighting effects in different application scenarios and different environments, improve the convenience of the device, and greatly improve the user's sense of comfort and use experience.
  • Fig. 1 is a schematic structural diagram of a light source system provided by an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the working principle of the electroluminescent liquid crystal atomized film.
  • FIG. 3 is a schematic diagram of the working principle of the electronic mask provided by the embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an illumination structure of a light source system provided by an embodiment of the present invention.
  • Fig. 5 is a flow chart of the automatic mode provided by the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of comparison of lighting effects between the search light mode and the uniform light mode provided by the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the light movement comparison of the weakened central strong light of the electronic shade composed of multiple modules provided by the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of comparison of illumination effects of weakening central strong light of an electronic mask composed of multiple modules provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of comparison of lighting effects for controlling lighting distance and intensity in a shooting scene provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of comparison of lighting effects for controlling lighting range and lighting intensity in a street lamp scene provided by an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the illumination effect of the automobile headlight provided by the embodiment of the present invention.
  • Fig. 12 is a schematic diagram of comparison of lighting effects of crystal sparkling chandeliers provided by an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of comparison of lighting effects of the light strips provided by the embodiment of the present invention.
  • Fig. 14 is a schematic diagram of the illumination effect of the multi-grid light strip provided by the embodiment of the present invention.
  • Fig. 15 is a schematic structural diagram of an LED lamp bead provided by an embodiment of the present invention.
  • Fig. 16 is a schematic structural diagram of a light emitting device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the working principle of the electroluminescent liquid crystal atomized film.
  • Electro-induced liquid crystal atomized film is also called electro-induced liquid crystal atomized glass, electrically controlled atomized film, electrically controlled atomized glass, energized atomized film, energized atomized glass, etc.
  • FIG. 2 is a schematic diagram of the optical path comparison between the on state and the off state of the electroluminescent liquid crystal atomization film.
  • the left side is the schematic diagram of the optical path in the open state (power-on working state), and the right side is the optical path schematic diagram in the off state (power-off stop state).
  • the liquid crystals are randomly arranged. At this time, the light will scatter when it hits the electroluminescent liquid crystal atomized glass, just like meeting frosted glass. It is milky white, transparent but opaque.
  • the electrostatic field generated between the two glasses makes the liquid crystals align in parallel, allowing light to pass through the small space formed by the liquid crystals. droplets with little scattering.
  • the applied voltage is adjusted to a lower level, the liquid crystal is arranged in a state between scattered and parallel, and only a small part of light is allowed to pass through to achieve a translucent effect. Therefore, the electroluminescent liquid crystal can be controlled by adjusting the applied voltage.
  • the transparency of the atomized film can achieve multi-level control effects. Color particles can be added to the mixture of liquid crystal and liquid polymer to give it a corresponding color.
  • the electroluminescent liquid crystal atomized film has the characteristics of good light transmission, light and thin, energy saving, soft, low temperature resistance and high temperature resistance, and is very easy to integrate into the lighting system.
  • an electronic mask based on an electroluminescent liquid crystal atomizing film is specifically implemented.
  • the electronic mask in this embodiment includes a cover body and at least one electroluminescent liquid crystal atomizing film unit;
  • the membrane unit covers part or all of the cover body; each electroluminescent liquid crystal atomizing membrane unit is independently provided with an independent power supply electrode, and is independently controlled by different voltages.
  • the corresponding voltage is provided to the power supply electrode to adjust the light transmission state of the electroluminescent liquid crystal atomized film unit in the electronic cover to achieve the target light output effect.
  • the electroluminescent liquid crystal atomizing film unit in this solution can have many different implementations as shown in FIG. 3 .
  • the electro-liquid crystal atomizing film unit can be integrated with the cover body, that is, the body structure of the electro-liquid crystal atomizing film unit is the cover body.
  • the electro-liquid crystal atomizing film unit Covers the entirety of the cover.
  • the surface of the cover body is flat or curved.
  • the surface of the cover body is flat; when it is applied to a lamp ball, the surface of the cover body is a curved surface.
  • FIG. 3 shows a comparative schematic diagram of various electroluminescent liquid crystal atomizing film units.
  • the electroluminescent liquid crystal atomizing film unit 301 is an independent unit, that is, an electronic mask composed of an independent electroluminescent liquid crystal atomizing film unit 301, wherein the electronic mask can occupy the entire illumination window, or only Occupies part of the lighting window.
  • the electroluminescent liquid crystal atomizing film unit 301 has at least two levels of light scattering control functions, that is, there are at least two step adjustments of transparency and atomization to achieve two effects of searchlight and uniform light, and further can have 8 levels, 16 levels or More levels of settings to achieve a variety of different light scattering degrees.
  • a ring-shaped electroluminescent liquid crystal atomizing film unit 302 can be arranged, that is, an electronic mask composed of a plurality of ring-shaped electroluminescent liquid crystal atomizing film units 302, and the ring can be circular, elliptical, triangular, or quadrilateral , polygonal, heart-shaped, flower-shaped, bear-shaped and other patterns and shapes, wherein the ring-shaped electroluminescent liquid crystal atomized film unit 302 can occupy the entire illumination window or only a part of the illumination window.
  • Each annular electroluminescent liquid crystal atomizing film unit 302 can be independently controlled, and has at least two levels of light scattering control functions, that is, there are at least two steps of transparency and atomization, and further can have 8 steps, 16 steps or more Different lighting effects can be achieved through the different scattering degrees of each ring.
  • a multi-band electroluminescent liquid crystal atomizing film unit 303 can also be arranged, that is, an electronic shield composed of a plurality of band-shaped electroluminescent liquid crystal atomizing film units 303, wherein the multi-band electroluminescent liquid crystal mist
  • the film coating unit 303 can occupy the entire illumination window, or only a part of the illumination window.
  • Each strip-shaped electroluminescent liquid crystal atomizing film unit 303 can be independently controlled, and has at least two levels of light scattering control functions, that is, at least two levels of adjustment, transparency and atomization, and further can have 8 levels, 16 levels or more With multi-level settings, different lighting effects can be achieved through different scattering degrees of each ring.
  • the grid electroluminescent liquid crystal atomizing film unit 304 can also be arranged, that is, an electronic mask composed of grid electroluminescent liquid crystal atomizing film units 304 distributed in multiple arrays, wherein the grid electroluminescent liquid crystal atomizing film unit 304
  • the film coating unit 304 can occupy the entire illumination window, or only a part of the illumination window.
  • Each grid electroluminescent liquid crystal atomizing film unit 304 can be controlled independently, and can generate various patterns and shapes such as triangles, circles, quadrilaterals, polygons, hearts, flowers, bears, etc., and even a combination of multiple shapes, according to Practical application scenarios provide more flexible combination methods; and have at least 2 levels of light scattering control functions, that is, at least two levels of adjustment for transparency and fogging, and further can have 8 levels, 16 levels or more settings, through each Cooperating with the electronic liquid crystal atomizing film unit, a very rich lighting effect can be achieved.
  • a strip-shaped electroluminescent liquid crystal atomizing film unit 305 can also be arranged, that is, a strip-shaped electronic shield composed of an independent long strip-shaped electroluminescent liquid crystal atomizing film unit 305, which is mainly used in lamps.
  • the strip-shaped electroluminescent liquid crystal atomized film unit has at least two-order light scattering control functions, that is, there are at least two step adjustments of transparency and atomization to achieve searchlight and uniformity. There are two effects of light, and further, there can be 8, 16 or more settings to achieve a variety of different light scattering degrees.
  • a long strip-shaped grid electroluminescent liquid crystal atomizing film unit 306 can also be arranged, that is, a long strip-shaped electronic mask composed of a plurality of grid-shaped electroluminescent liquid crystal atomizing film units.
  • each sub-electron liquid crystal atomized film unit can be independently controlled, and each sub-electron liquid crystal atomized film unit has at least two-order light scattering control functions, that is, at least transparent There are two levels of regulation and atomization, and there can be further settings of 8 steps, 16 steps or more. Through the cooperation of each sub-electric liquid crystal atomization film unit, a very rich lighting effect can be achieved.
  • the above-mentioned electronic mask can be pasted with color filters, such as red, blue, green, etc., to meet the needs of different applications.
  • FIG. 1 is a schematic structural diagram of a light source system provided in this embodiment
  • FIG. 4 is a schematic structural diagram of the light source system.
  • the light source system in this embodiment includes the electronic mask 150 mentioned in the previous embodiment, and also includes a control module 110 , a light-emitting driving module 120 , a light-emitting module 130 and a mask driving module 140 ;
  • the first control terminal of the control module 110 is connected to the control input terminal of the light-emitting drive module 120 for controlling the light-emitting drive module 120; the second control terminal of the control module 110 is connected to the mask The control input terminals of the driving module 140 are connected to control the mask driving module 140;
  • the output end of the light-emitting driving module 120 is connected to the input electrode of the light-emitting module 130, and is used to supply power to the light-emitting module 130 and control the light-emitting state of the light-emitting module 130;
  • the output end of the mask driving module 140 is connected to the power supply electrodes of the electroluminescent liquid crystal atomizing film units of the electronic mask 150, and is used to supply power to each of the electroluminescent liquid crystal atomizing film units, and to control The light-transmitting state of the electroluminescent liquid crystal atomizing film unit.
  • a control component 170 is also included; the control component 170 is connected to the control module 110 , and the control module 110 is configured to generate a corresponding control signal according to the control operation of the control component 170 .
  • the function of the light-emitting driving module 120 is to control the light-emitting module 130 according to the instructions of the control module 110 , and to perform corresponding voltage conversion and lamp bead grouping control on the light-emitting module 130 .
  • the light-emitting driving module 120 is simplified as a wire.
  • the control component 170 can be an electronic button, a mechanical knob, a touch component, etc., and is used for the control module to receive user operations and generate corresponding control signals, and then control the light-emitting driving module 120 and the mask driving module 140 according to the control signals.
  • an environment detection module 160 may also be included; the environment detection module 160 is connected to the control module 110, and the control module 110 is used to generate corresponding control according to the environment parameters detected by the environment detection module 160 Signal.
  • the environment detection module 160 includes one or more of a distance sensing module, a light intensity sensing module, a temperature sensing module, a humidity sensing module, a speed sensor module, a visibility sensing module and a smoke detection module.
  • the environment detection module 160 is used to detect the state of the environment, so as to realize the auxiliary control of the control module, automatically generate corresponding control signals according to the environmental parameters corresponding to the environment state, and then control the light-emitting driving module 120 and the mask driving module 140 according to the control signals.
  • the light emitting module includes at least one light emitting unit group, and each light emitting unit group is provided with an independent power supply.
  • the light emitting unit group includes at least one light emitting unit.
  • Each of the light-emitting unit groups includes a red light-emitting unit, a green light-emitting unit and a blue light-emitting unit, and different voltages are provided to each of the light-emitting units to make the light-emitting unit groups produce different colors.
  • FIG. 4 is a schematic diagram of an illumination structure of a light source system provided by an embodiment of the present invention.
  • the light-emitting lamp board 401, the light-condensing plate 402, the electronic mask 403 and the protective layer 404 are sequentially arranged, wherein the light-emitting light board 401 is composed of one or more lamp beads, and plays the role of providing light source; Function, in products such as flashlights and mobile phone fill lights, it is usually a concave condenser, and in products such as light bars and light strips, it is usually a reflective film; the electronic mask 403 plays a role in controlling the scattering mode and the degree of light scattering , can be in the form of glass or film in hard products such as flashlights and mobile phone fill lights, and can be in the form of film in flexible products such as light bars; the protective layer 404 can be glass, acrylic, resin or protective coating.
  • the light-emitting module 130 can be composed of one or more sub-light-emitting unit groups, each sub-light-emitting unit group is composed of one or more lamp beads, and the light-emitting drive module 120 can independently control the power on and off of each sub-light-emitting unit group, for Different products can not only realize light intensity control, but also can be matched with lamp beads of different colors or different color temperatures to form different colors and color temperatures.
  • the control module 110 can execute the light control command, so that the light-emitting drive module 120 can control each sub-light-emitting unit group of the light-emitting module 130 according to the light control command to form a dynamic colorful light effect, and even realize an animated light effect.
  • the switching function of search light and uniform light can be realized, and a variety of lighting effects with different light scattering degrees can be provided to achieve better lighting effects in different application scenarios and environments, and improve the convenience of the equipment Sexuality, and greatly improve the user's sense of security and user experience.
  • a light source system provided by an embodiment of the present invention is suitable for simultaneous configuration of a control component and an environment detection module, and the control module can be regarded as including a manual mode and/or an automatic mode.
  • the control component 170 can be a power switch, which can be regarded as a manual mode at this time.
  • the control module 110 detects a corresponding control signal, and the mask driving module 140 enters a power-on or power-off state. , so that the electronic shade 150 enters the off state or the on state, so as to realize the light uniformity control, control the scattering state of the light emitted by the light emitting module 130, and realize the switch between the search light mode and the uniform light mode.
  • the control component 170 can also be an electronic circuit with a selection button or a touch screen. At this time, it is regarded as a manual mode.
  • the control module 110 receives the corresponding control voltage or control signal, and controls the electronic mask through the mask driving module 140.
  • the degree of atomization of the cover 150 controls the scattering state of the light emitted by the light emitting module 130, so as to realize different light scattering control.
  • Control module 110 also can be the intelligent control module that has processor (CPU, single-chip microcomputer, ARM, DSP, FPGA or special-purpose chip etc.), based on the information that environmental detection module 160 detects, carries out automatic control, as shown in Figure 5, Fig. 5 is a flow chart of the automatic mode provided by the embodiment of the present invention.
  • processor CPU, single-chip microcomputer, ARM, DSP, FPGA or special-purpose chip etc.
  • Step S510 read the information of the environment detection module; the control module obtains the corresponding environment information through the connected environment detection module.
  • Step S520 querying the control information according to the decision information; the control module obtains the corresponding atomization mode and atomization rate control information through the query.
  • Step S530 controlling the driving module according to the control information; the control module controls the mask driving module according to the atomization mode and atomization rate control information.
  • step S540 the mask driving module adjusts the degree of scattering of the controllable atomized film; the mask driving module controls the degree of atomization of the electronic mask, and controls the scattering state of the light emitted by the light emitting module, thereby realizing different light scattering control.
  • Control the different uniformity of light through manual mode and/or automatic mode realize the switching function of search light and uniform light, provide a variety of lighting effects with different light scattering degrees, and achieve better lighting in different application scenarios and environments
  • the effect improves the convenience of the device and greatly improves the user's sense of security and user experience.
  • This example illustrates the invention by incorporating an electronic mask formed of 2-order independent elements.
  • FIG. 6 is a schematic diagram of comparison of illumination effects between the search light mode and the uniform light mode provided by the embodiment of the present invention.
  • the multi-function flashlight has two independent lighting functions, one is a searchlight function, and the other is an outdoor camping light function.
  • 601 is the searchlight lighting effect of a common flashlight, wherein the central area is a highlighted area, and the surrounding circle is a sub-bright area;
  • 602 is the uniform light lighting effect of an outdoor camping light.
  • the two functions of the multifunctional flashlight operate independently. Therefore, only more LED lamp beads are added during production, which not only increases the production cost, but also increases the waste of resources and the risk of environmental pollution.
  • the searchlight of the flashlight is controlled by the electronic shade combined with the two-stage independent unit.
  • the electronic mask When the electronic mask is powered off, it is in an atomized state, and the searchlight of the flashlight is scattered to generate a uniform light effect; when it is powered on, it is in a transparent state, and the searchlight of the flashlight passes through directly, still maintaining The lighting effect of the searchlight. In this way, not only can the production cost be reduced, resources are saved, but also environmental pollution can be reduced.
  • the switching function of search light and uniform light can be realized, and various lighting effects with different light scattering degrees can be provided, better lighting effects can be realized in different application scenarios and different environments, the convenience of the equipment is improved, and the device is greatly improved. Improve the user's sense of experience and experience.
  • This example illustrates the invention by incorporating an electronic mask formed of 2-order ring elements.
  • FIG. 7 is a schematic diagram of the light movement comparison of the weakened central strong light of the electronic mask composed of multiple modules provided by the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of comparison of lighting effects of the weakened central strong light of an electronic mask composed of multiple modules provided by an embodiment of the present invention, which is a schematic diagram of lighting effects of FIG. 7 .
  • the electronic mask composed of multiple annular units in combination with two stages controls the searchlight of the flashlight.
  • 701 is the movement of the searchlight light in the transparent state of the electronic cover. Since the electronic cover is in a transparent state, the light can pass through normally, as can be seen from the figure Under the action of the light concentrating device, the light is concentrated in the central area to form a bright irradiation area, while other areas are sub-bright areas, and the lighting effect is shown in 801.
  • the highlighted area in the center is suitable for long-distance search, but when it is necessary to take close-up shots, it forms a high contrast with the surrounding dark environment, so you can only see a vast expanse of whiteness, which is not conducive to observing close-up real objects.
  • 702 is a light motion indicating that the searchlight is in the atomized state in the central area of the electronic mask and the peripheral area is transparent, because the central area of the electronic mask is in the atomized state state, the light passing through the central area is scattered and cannot be concentrated to the central area, so the range of the central area is expanded to form a uniform light area with less brightness, while the peripheral area has not changed due to the transparent state, as shown in 802.
  • the size of the central area can be enlarged while keeping the size of the sub-bright area unchanged, and the brightness of the central area can be reduced, which is more suitable for close-up observation.
  • this effect can also be realized by an electronic mask composed of independent units occupying only the central area or by controlling an electronic mask composed of multiple grid units to form atomization in the central area, which will not be repeated here.
  • the searchlight equipment can be used in the distant view or in the close view, and can also form uniform light, so that the lighting equipment has more abundant illumination effects and functions, and can be used in different application scenarios and different environments.
  • the better lighting effect improves the convenience of the equipment, and greatly improves the user's sense of safety and use experience.
  • This example illustrates the invention by incorporating an electronic mask formed of 8-order independent cells.
  • FIG. 9 is a schematic diagram of comparison of lighting effects for controlling lighting distance and intensity in a shooting scene provided by an embodiment of the present invention.
  • the electronic mask can be controlled by the control module to be in the first-order transparent state, the transparency is 100%, and the scattering The effect is the weakest.
  • 901 is the searchlight effect of the rear fill light. The lighting effect is shown when the electronic mask is transparent. Since the electronic mask is transparent, the light can pass through normally. The light is a searchlight effect, and the irradiation distance can be compared Far, suitable for long-distance shooting.
  • the electronic mask can be controlled by the control module to be in the 8th order fog state, and the transparency is 0%.
  • the scattering effect is the strongest, and the 902 is an 8th-order fog state with a uniform light illumination effect.
  • the light is diffused to maximize the irradiation angle and minimize the light intensity, making it suitable for close-up shooting.
  • the step adjustment degree of the electronic mask can be adjusted to make the lighting effect suitable for the shooting needs, so I won’t repeat it here.
  • the ranging module is added as an auxiliary decision-making module.
  • the control module When the control module is in the automatic mode, it obtains the distance of the shooting object through the ranging module, queries the corresponding step adjustment degree through the shooting object distance, and controls the electronic mask to realize the corresponding The step adjustment degree makes the lighting effect suitable for the shooting needs, and realizes the automatic light supplement effect.
  • the lighting equipment can generate corresponding light intensity, range and distance according to the actual needs, realize better lighting effects in different application scenarios and different environments, improve the convenience of the equipment, and greatly improve the user experience. and user experience.
  • This example illustrates the present invention by combining an electronic mask formed of 8-level grid cells.
  • FIG. 10 is a schematic diagram of comparison of lighting effects for controlling lighting range and lighting intensity in a street lamp scene provided by an embodiment of the present invention.
  • the light intensity sensing module and the visibility sensing module are added as auxiliary decision-making modules, and the control module is in automatic mode.
  • the control module makes the light emitting module emit light by controlling the light-emitting drive module; when the control module obtains the ambient light value higher than the preset value through the light intensity sensing module When setting the value, the control module turns off the light emitting module by controlling the light emitting drive module.
  • the control module learns that the ambient light intensity is weak through the light intensity sensor, and obtains the low visibility situation through the visibility sensor, so it controls the light-emitting drive module to make the light-emitting module Lighting, in addition, by controlling the mask drive module, the electronic mask is 1st order, the transparency is 100%, the scattering effect is the minimum value, 1001 is the searchlight mode of the street lamp, the light forms a bright central area, which can be used in the dark night with low visibility Allowing pedestrians and drivers to see from a long distance makes it easier for people to grasp the road situation.
  • the control module learns that the ambient light intensity is weak through the light intensity sensor, and obtains the situation of high visibility through the visibility sensor, so it controls the light-emitting drive module to make the light-emitting module emit light .
  • the electronic mask is 8 steps, the transparency is 0%, the maximum scattering effect, 1002 is the uniform light mode of the street lamp, the light radiation angle is maximized, and the light intensity is the weakest, forming a soft and natural
  • the lighting effect can make pedestrians and drivers feel evenly illuminated as if they are in the daytime, making people feel a more comfortable and natural environment.
  • control module learns that the ambient light intensity is weak through the light intensity sensor, and obtains the visibility level through the visibility sensor. In the lower case, control the light-emitting drive module to make the light-emitting module emit light.
  • control the mask drive module to make the electronic mask composed of multi-grid units form two areas with two inner and outer circles, and control the inner circle to be 3-level , the transparency is 72%, and the scattering effect is 28%; the control outer ring is 6 steps, the transparency is 28%, and the scattering effect is 72%.
  • the searchlight effect with high height and small angle is convenient for passers-by and drivers in the distance to see; the transparency of the peripheral area is low, forming a uniform light effect with low brightness and large angle, making it suitable for passers-by and drivers who are closer to street lights , making people feel more comfortable and natural environment.
  • control module can control the transparency and different geometric shapes of each grid unit of the electronic mask composed of multiple grid units, and can form ever-changing lighting effects, which will not be repeated here.
  • the lighting equipment can generate corresponding light intensity, range, distance and light level according to the actual needs, realize better lighting effects in different application scenarios and different environments, improve the convenience of the equipment, and greatly Improve the user's sense of experience and experience.
  • This example illustrates the invention by incorporating an electronic mask formed of 8-order multi-strip elements.
  • Figure 11 is a schematic diagram of the illumination effect of the automobile headlight provided by the embodiment of the present invention, wherein, the electronic mask formed by the multi-band grid unit of the automobile headlight is divided into a lower part 1101, a middle part 1102 and a lower part 1101.
  • the car irradiation light path is divided into a short distance 1104 , a slightly longer distance 1105 , a relatively long distance 1106 and a long distance 1107 .
  • the range of the searchlight of the low beam is short distance 1104, slightly far distance 1105 and relatively long distance 1106, and corresponds to the lower part 1101, the middle part 1102 and the upper part 1103 of the headlight respectively.
  • the searchlight of the headlights is too strong and concentrated, which is not conducive to the vision of the car stopping or driving at a slow speed, so the slow mode can be used. That is to say, the whole electronic mask is 8 steps, the transparency is 0%, and the scattering degree is 100%. In this way, the illumination angle is the largest, the field of view is the widest, and the brightness is the darkest. It will not illuminate the eyes of people coming from the opposite side.
  • the entire electronic mask is 1st order, the transparency is 100%, and the scattering degree is 0%, so The light angle is the smallest and the brightness is the darkest, which is the searchlight mode.
  • the vehicle speed is moderate (for example, 50 km/h)
  • the lower part 1101 can be adjusted to 7th step, the middle part 1102 to 4th step, and the upper part 1103 to 1st step.
  • each strip-shaped electroluminescent liquid crystal atomizing film unit can be configured according to different speeds, so that it is more suitable for the driver's vision, and will not be repeated here.
  • control module can read the information of the speed sensor in the automatic mode, and query the relevant adjustment parameters according to the actual vehicle speed obtained by the speed sensor, and control the fog of each strip of electroluminescent liquid crystal through the mask drive module The step adjustment degree of the chemical film unit to realize the effect of automatic configuration.
  • the range of the searchlight of the low beam is at a slightly far distance 1105, a relatively long distance 1106 and a long distance 1107, and correspond to the lower part 1101, the middle part 1102 and the upper part 1103 of the headlight respectively.
  • the car is running at high speed (for example, at a speed of 120 km/h)
  • the speed of the car is very fast, it needs to see a very far place. Therefore, the entire electroluminescent liquid crystal atomized film is the first order, the transparency is 100%, and the degree of scattering is 0%, so that the light angle is the smallest, the brightness is the darkest, and the irradiation distance is the farthest.
  • the lower part 1101 can be adjusted as Level 1, the middle part 1102 is level 4, and the upper part 1103 is level 8. In this way, at a long distance 1107, it has a uniform light effect, which reduces visual interference to oncoming vehicles.
  • each strip-shaped electroluminescent liquid crystal atomizing film unit can be configured according to different speeds. Make it more suitable for the driver's vision, no more details here.
  • control module can read the information of the speed sensor in the automatic mode, and query the relevant adjustment parameters according to the actual vehicle speed obtained by the speed sensor, and control the fog of each strip of electroluminescent liquid crystal through the mask drive module The step adjustment degree of the chemical film unit to realize the effect of automatic configuration.
  • the lighting equipment can generate corresponding distances, layers, and strengths according to actual needs, so as to achieve better lighting effects in different application scenarios and environments, improve the convenience of the equipment, and greatly improve the lighting efficiency. user experience and experience.
  • This example illustrates the present invention by combining an electronic mask formed of 8-level grid cells.
  • FIG. 12 is a schematic diagram of the lighting effect of the sparkling crystal chandelier provided by the embodiment of the present invention.
  • the control module controls the mask drive module to make the entire electronic mask be 1st-order, the transparency is 100%, and the scattering effect is the minimum value, the searchlight mode of the 1201 crystal sparkling chandelier can clearly see the light bulb or lamp bead, and the light is dazzling , giving a retro vibe.
  • the control module controls the mask driving module to make the entire electronic mask have 8 levels, the transparency is 0%, the scattering effect is at the maximum value, and the uniform light mode of the 1202 crystal sparkling chandelier, at this time, only the uniform and soft light outside can be seen, but the There are no light bulbs or lamp beads shining, and the lighting is soft and natural, giving people a modern atmosphere.
  • the step adjustment degree of the entire electronic mask can be adjusted through the control module to make it appear in a corresponding transparent state, so that the ratio of searchlight and uniform light is suitable for the actual application environment requirements, and will not be repeated here.
  • the control module controls the mask drive module to make the overall electronic mask to be 8th order
  • the transparency is 0%
  • the scattering effect is at the maximum value
  • some grid cells are randomly set to be 1st order, that is, the transparency is 100%
  • the scattering effect is The smallest, the 1203 crystal chandelier's sparkling light mode, at this time you can only see the overall uniform and soft light outside, but some points have the effect of strong light; after a while (for example, 1 second), the controller sets the above Several grid cells are of 8th order, transparency is 0%, and the scattering effect is the maximum value, and another few grid cells are randomly selected as 1st order, that is, the transparency is 100%, and the scattering effect is the smallest, so repeated operations will form flickering The lighting effect is more beautiful and flickering than the traditional (static) crystal light effect, giving people a shining, advanced or magical atmosphere.
  • each sub-grid electroluminescent liquid crystal atomizing film unit can be adjusted through the control module to make it appear in other transparent states, produce different luminosity of brilliance, and make the chandelier present more colorful brilliance and magical atmosphere effects , which will not be repeated here.
  • multiple sets of colored lamp bead groups can be set in the lampshade, and the control module controls the on and off of each colored lamp bead group through the light-emitting drive module.
  • the flashing light mode shown in 1203 it has the effect of colorful lights on the stage, making the lighting effect More shiny and colorful. More atmosphere effects and lighting effects can be produced by changing the control mode, which will not be repeated here.
  • the lighting equipment can produce corresponding lighting atmosphere, color matching, and shining effects according to actual needs, and achieve better lighting effects in different application scenarios and environments, improve the convenience of the equipment, and greatly improve the lighting effect. Improve the user's sense of experience and experience.
  • This example illustrates the present invention by combining an electronic mask composed of long strip-shaped elements and an electronic mask composed of long strip-shaped grid elements.
  • Fig. 13 is a schematic diagram of comparison of lighting effects between the light strip lighting mode and the divided mode provided by the embodiment of the present invention.
  • Fig. 14 is a schematic diagram of the illumination effect of the multi-grid light strip provided by the embodiment of the present invention.
  • each LED lamp bead emits bright light lights. Further design, each LED lamp bead can be controlled individually, the control module controls the on and off of each LED lamp bead through the light-emitting drive module, and produces a twinkling starlight effect, just like looking up at the bright starry sky.
  • each LED lamp bead can be controlled individually, the control module controls the on and off of each LED lamp bead through the light-emitting drive module, and produces a flickering ambient light effect, as if looking up at the galaxy in the universe.
  • the control module controls the mask driving module to make the electronic mask formed by strip-shaped multi-grid units
  • the control module controls the mask driving module to make the overall electronic mask have 8 steps, the transparency is 0%, and the scattering effect is at the maximum value, and , let some grid cells be at order 1 at random, that is, the transparency is 100%, and the scattering effect is the smallest, as shown in Figure 14. At this time, only the overall uniform and soft ambient light can be seen, and a few points leak strong light.
  • the effect of light after a while (for example, 2 seconds), the controller sets the above grid cells as 8th order, transparency as 0%, and maximum scattering effect, and randomly selects other grid cells as 1st order , that is, the transparency is 100%, and the scattering effect is the smallest. Repeating this operation will form the effect of flashing lights, which is more beautiful and flashing than traditional flashing light bars, giving people a shining, advanced or magical atmosphere. It is like the visual effect of a few twinkling stars flickering in the galaxy of the universe.
  • each sub-grid electroluminescent liquid crystal atomizing film unit can be adjusted through the control module to make it appear in other transparent states, produce different luminosity of brilliance, and make the chandelier present more colorful brilliance and magical atmosphere effects , which will not be repeated here.
  • multiple sets of colored LED groups can be set in the light strip, and the control module controls the on and off of each colored LED group through the light-emitting drive module, and cooperates with the flashing light mode shown in Figure 14 to make the lighting effect more shining and colorful. More atmosphere effects and lighting effects can be produced by changing the control mode, which will not be repeated here.
  • the lighting equipment can produce corresponding lighting atmosphere, color matching, and shining effects according to actual needs, and achieve better lighting effects in different application scenarios and environments, improve the convenience of the equipment, and greatly improve the lighting effect. Improve the user's sense of experience and experience.
  • FIG. 15 is a schematic structural diagram of an LED lamp bead provided by an embodiment of the present invention. Including LED chip 1501, electronic shield 1502, lens 1503, heat dissipation pad 1504, LED chip connection wire 1505, outer package 1506, LED electrode 1507 (another LED electrode paired with it is not indicated in the figure) and electronic shield electrode 1508 (another electronic mask electrode paired with it is not indicated in the figure).
  • the electronic mask 1502 is arranged on the light-emitting surface of the LED chip 1501, and its position can be between the LED chip 1501 and the lens 1503, or outside the lens 1503, depending on the specific production process; the LED chip 1501 and the electronic mask 1502 There are mutually independent power supply electrodes, and the LED chip 1501 can be controlled to turn on and off by supplying power to the LED electrode 1507 externally, and the degree of light scattering can be controlled by supplying different voltages to the electronic mask electrode 1508, in conjunction with the light emitted by the LED chip 1501. Lights achieve different lighting effects.
  • it can be composed of multiple LED chips 1501, and multiple LED chips 1501 can share the LED electrode 1507 (the other LED electrode paired with it is not indicated in the figure), or each LED chip 1501 can be powered separately.
  • multiple LED chips 1501 can be added with different color pigments, so that each lamp bead has a different color, each LED chip 1501 has an independent power supply, and the external circuit control precisely controls the power of each LED chip 1501 through the light-emitting drive module. On and off to form different colors. For example, suppose there are three LED chips 1501, and the colors are red, blue, and green respectively, so various colors can be formed by matching RGB.
  • this embodiment also provides a lighting device, 1601 , including the light source system described above.
  • the lighting device may exist in the form of a motor vehicle, a mobile light source, a mobile terminal and a fixed light source.
  • a light emitting device 1601, the light emitting device 1601 includes a processor 1602 and a memory 1603;
  • the memory 1603 is used to store a computer program 1604, and transmit the computer program 1604 to the processor 1602;
  • the processor 1602 is configured to execute the steps in the above-mentioned lighting control embodiment according to the instructions in the computer program 1604 .
  • the computer program 1604 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 1603 and executed by the processor 1602 to complete this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 1604 in the lighting device 1601 .
  • the so-called processor 1602 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the control module of the light source system in the light emitting device can be integrated into the processor of the light emitting device, for example, the control module of a motor vehicle is integrated into the vehicle.
  • the memory 1603 may be an internal storage unit of the light emitting device 1601 , such as a hard disk or memory of the light emitting device 1601 .
  • the memory 1603 can also be an external storage light emitting device of the light emitting device 1601, such as a plug-in hard disk equipped on the light emitting device 1601, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD ) card, flash card (Flash Card), etc.
  • the memory 1603 may also include both an internal storage unit of the light emitting device 1601 and an external storage device.
  • the memory 1603 is used to store the computer program and other programs and data required by the light emitting device 1601 .
  • the memory 1603 can also be used to temporarily store data that has been output or will be output.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc and other media that can store computer programs. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种电子遮罩(150、 403、 1502)、LED灯珠、光源***和发光设备(1601),适用于包括LED灯珠、灯罩、拍照补光灯、手机补光灯、摄像头补光灯、人脸识别设备补光灯、射灯、手电筒、钓鱼灯、吊灯、吸顶灯、台灯、阅读灯、落地灯、探照灯、户外照明灯、路灯、应急灯、消防应急灯、汽车灯、交通灯、灯带、灯条、灯板、广告字、招牌灯箱等的具有照明功能的设备和装置,通过控制灯光的不同均匀度,实现探照光和均匀光的切换功能,可以提供多种不同光线散射度的照明效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并提高了用户的使用体验感。

Description

一种电子遮罩、LED灯珠、光源***和发光设备 技术领域
本申请实施例涉及光源控制领域,尤其涉及一种电子遮罩、LED灯珠、光源***和发光设备。
背景技术
目前,照明装置要么只有探照功能,要么只有均匀光功能,并且无法切换和控制,更加不能实现介乎于探照的功能和均匀光功能之间的多种同均匀度控制。例如,探照灯、射灯、手电筒、路灯、钓鱼灯、应急灯、消防应急灯、手机补光灯等只具有探照功能,但无法动态切换到均匀光功能;例如,台灯、阅读灯、落地灯、拍摄补光灯、直播补光灯、摄像头补光灯、人脸识别设备补光灯等只具有均匀光的功能,但不能切换到探照光功能。
而多功能手电筒虽然同时具有探照功能和均匀光功能,但两种功能分别属于两组独立的照明***,则需要大量的灯珠分别实现探照光和均匀光功能,导致原材料的浪费,造成更多的资源浪费和环境污染。
由于目前光照***功能单一,无法实现根据不同应用场景、不同环境提供不同的照明效果,导致用户的使用体验较差。
发明内容
本发明实施例提供了一种电子遮罩、LED灯珠、光源***和发光设备,解决照明***的探照光和均匀光的切换功能,以及提供多种不同效果的均匀光照明效果,实现在不同应用场景、不同环境的更好的照明效果的技术问题。
第一方面,本发明实施例提供了一种电子遮罩,包括罩体和至少一个电致液晶雾化膜单元;
所述电致液晶雾化膜单元覆盖于所述罩体的局部或全部;
所述电致液晶雾化膜单元独立设置有供电电极,并通过不同电压进行独立控制。
进一步的,所述电致液晶雾化膜单元包括环形电致液晶雾化膜单元、多带状电致液晶雾化膜单元、长带状电致液晶雾化膜单元、栅格电致液晶雾化膜单元和长带状栅格电致液晶雾化膜单元中的一种或多种。
进一步的,所述罩体与所述电致液晶雾化膜单元一体设置。
进一步的,所述罩体的表面为平面或曲面。
第二方面,本发明实施例提供了一种LED灯珠,包括第一方面任一所述的电子遮罩,还包括LED芯片;
所述电子遮罩与所述LED芯片集成设置,所述电子遮罩朝向所述LED芯片的发光面。
进一步的,所述LED芯片的供电电极和所述电子遮罩的供电电极独立设置,用于分别从外部电路接入电压参数不同的供电电源。
进一步的,所述LED芯片包括红色LED芯片、绿色LED芯片和蓝色LED芯片中的一个或多个;
每个所述LED芯片设置独立的供电电极,用于分别从外部电路接入电压参数不同的供电电源。
第三方面,本发明实施例提供了一种光源***,包括第一方面任一所述的电子遮罩,还包括控制模块、发光驱动模块、发光模块和遮罩驱动模块;
所述控制模块的第一控制端与所述发光驱动模块的控制输入端相连,用于控制所述发光驱动模块的供电状态;所述控制模块的第二控制端与所述遮罩驱动模块的控制输入端相连,用于控制所述遮罩驱动模块的供电状态;
所述发光驱动模块的输出端与所述发光模块的输入电极相连,用于向所述发光模块供电,并控制所述发光模块的发光状态;
所述遮罩驱动模块的输出端与各所述电致液晶雾化膜单元的供电电极相连,用于向所述电致液晶雾化 膜单元供电,并控制所述电致液晶雾化膜单元的透光状态。
进一步的,还包括控制组件;
所述控制组件与所述控制模块相连,所述控制模块用于根据所述控制组件的控制操作生成对应的控制信号。
进一步的,还包括环境检测模块;
所述环境检测模块与所述控制模块相连,所述控制模块用于根据所述环境检测模块检测到的环境参数生成对应的控制信号。
进一步的,所述环境检测模块包括距离传感模块、光强度传感模块、温度传感模块、湿度传感模块、速度传感器模块、能见度传感模块和烟雾检测模块中的一种或多种。
进一步的,所述发光模块包括至少一个发光单元组,每个所述发光单元组设置独立供电。
进一步的,所述发光单元组包括至少一个发光单元。
进一步的,每个所述发光单元组包括红色发光单元、绿色发光单元和蓝色发光单元,通过对各所述发光单元提供不同的电压,使所述发光单元组产生不同的颜色。
第四方面,本发明实施例提供了一种发光设备,包括第三方面任一所述的光源***。
进一步的,所述发光设备包括机动车、移动光源、移动终端和固定光源。
上述,本发明提供了一种电子遮罩、LED灯珠、光源***和发光设备,本发明适用于包括LED灯珠、灯罩、拍照补光灯、手机补光灯、摄像头补光灯、人脸识别设备补光灯、射灯、手电筒、钓鱼灯、吊灯、吸顶灯、台灯、阅读灯、落地灯、探照灯、户外照明灯、路灯、应急灯、消防应急灯、汽车灯、交通灯、灯带、灯条、灯板、广告字、招牌灯箱等的具有照明功能的设备和装置,通过控制灯光的不同均匀度,实现探照光和均匀光的切换功能,可以提供多种不同光线散射度的照明效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
附图说明
图1为本发明实施例提供的一种光源***的结构示意图。
图2为电致液晶雾化膜的工作原理示意图。
图3为本发明实施例提供的电子遮罩的工作原理示意图。
图4为本发明实施例提供的光源***的光照结构示意图。
图5为本发明实施例提供的自动模式的流程图。
图6为本发明实施例提供的探照光模式和均匀光模式的光照效果对比示意图。
图7为本发明实施例提供的多个模块组成的电子遮罩的弱化中心强光的光线运动对比示意图。
图8为本发明实施例提供的多个模块组成的电子遮罩的弱化中心强光的光照效果对比示意图。
图9为本发明实施例提供的拍摄场景下控制光照距离和强度的光照效果对比示意图。
图10为本发明实施例提供的路灯场景下的控制光照范围和光照强度的光照效果对比示意图。
图11为本发明实施例提供的汽车大灯的光照效果示意图。
图12为本发明实施例提供的水晶闪耀吊灯的光照效果对比示意图。
图13为本发明实施例提供的灯带光照效果对比示意图。
图14为本发明实施例提供的多栅格灯带光照效果示意图。
图15为本发明实施例提供的一种LED灯珠结构示意图。
图16为本发明实施例提供的一种发光设备的结构示意图。
具体实施方式
以下描述和附图充分地示出本申请的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本申请的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者发光设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
实施例一
如图2所示,图2为电致液晶雾化膜的工作原理示意图。电致液晶雾化膜也称电致液晶雾化玻璃、电控雾化膜、电控雾化玻璃、通电雾化膜、通电雾化玻璃等,是在两层玻璃或塑料之间注入液晶与液体聚合物的混合物,再将其固化,形成了夹层结构,因此,其可以是玻璃形态,也可以是贴膜形态。根据液晶在电场中发生偏转的特性,可以通过电致液晶雾化膜实现对玻璃过光状态的控制。图2为电致液晶雾化膜开态和关态的光路对比示意图。其中左侧为开态(通电工作状态)的光路示意图,右侧为关态(断电停止状态)的光路示意图。如关态光路示意图所示,在没有施加电压的情况下,液晶是随机排列的,这时光线照到电致液晶雾化玻璃上会发生散射,就像遇到了磨砂玻璃一样,外观上看起来是乳白色的,透光但不透明。如开态光路示意图所示,当在布置于两个夹层上的两个电极上施加足够的电压时,两块玻璃之间产生的静电场让液晶平行排列,使得光线得以透过液晶形成的小液滴而只发生很少的散射。当调节施加电压至较低水平,此时液晶排列出于散落和平行排列中间的某个状态,只让少部分光通过,实现半透明效果,因此,通过调节所施加的电压可以控制电致液晶雾化膜的透明程度,实现多阶控制效果。可以在液晶与液体聚合物的混合物中添加颜色粒子使其具有对应的颜色。另外,电致液晶雾化膜具有透光性好、轻薄、节能、柔软、抗低温、耐高温的特点,非常容易集成到照明***中。
本实施例中,具体实现一种基于电致液晶雾化膜的电子遮罩,本实施例中的电子遮罩包括罩体和至少一个电致液晶雾化膜单元;所述电致液晶雾化膜单元覆盖于所述罩体的局部或全部;各所述电致液晶雾化膜单元独立设置有独立供电电极,并通过不同电压进行独立控制。当需要通过该电子遮罩对光源的出光状态进行控制时,向供电电极提供对应的电压,调整电子遮罩中的电致液晶雾化膜单元的透光状态,实现目标出光效果。本方案中的电致液晶雾化膜单元可以有图3所示的多种不同实现方式。具体实现为一个实际的电子遮罩时,电致液晶雾化膜单元可以与罩体一体设置,即电致液晶雾化膜单元的本体结构就是罩体,此时,电致液晶雾化膜单元覆盖于罩体的全部。适应于具体的应用场景,罩体的表面为平面或曲面,例如应用于筒灯时,罩体的表面为平面;应用于灯球时,罩体的表面为曲面。具体请参考图3,其中示出了多种电致液晶雾化膜单元的对比示意图。
在一个罩体上,电致液晶雾化膜单元301为独立单元,即由一个独立电致液晶雾化膜单元301构成的电子遮罩,其中,电子遮罩可以占整个光照窗口,也可以只占部分光照窗口。该电致液晶雾化膜单元301具有至少2阶光线散射控制功能,即至少有透明和雾化两个阶梯调节度,实现探照光和均匀光两种效果,进一步可以有8阶、16阶或更多阶的设置,实现多种不同的光线散射度。
在一个罩体上,可以布置环形电致液晶雾化膜单元302,即由多个环形电致液晶雾化膜单元302构成的电子遮罩,该环形可以为圆形、椭圆形、三角形、四边形、多边形、心形、花朵形、小熊形等多种图案 形状,其中,环形电致液晶雾化膜单元302可以占整个光照窗口,也可以只占部分光照窗口。每个环形电致液晶雾化膜单元302均可独立控制,并具有至少2阶光线散射控制功能,即至少有透明和雾化两个阶梯调节度,进一步可以有8阶、16阶或更多阶的设置,通过各个环不同的散射度,可以实现不同的光照效果。
在一个罩体上,也可以布置多带状电致液晶雾化膜单元303,即由多个带状电致液晶雾化膜单元303构成的电子遮罩,其中,多带状电致液晶雾化膜单元303可以占整个光照窗口,也可以只占部分光照窗口。每个带状电致液晶雾化膜单元303均可独立控制,并具有至少2阶光线散射控制功能,即至少有透明和雾化两个阶梯调节度,进一步可以有8阶、16阶或更多阶的设置,通过各个环不同的散射度,可以实现不同的光照效果。
在一个罩体上,也可以布置栅格电致液晶雾化膜单元304,即由多阵列分布的栅格电致液晶雾化膜单元304构成的电子遮罩,其中,栅格电致液晶雾化膜单元304可以占整个光照窗口,也可以只占部分光照窗口。每个栅格电致液晶雾化膜单元304可独立控制,可以生成三角形、圆形、四边形、多边形、心形、花朵形、小熊形等多种图案形状,甚至可以多个形状的组合,根据实际应用场景提供更灵活的组合方法;并且具有至少2阶光线散射控制功能,即至少有透明和雾化两个阶梯调节度,进一步可以有8阶、16阶或更多阶的设置,通过各个子电致液晶雾化膜单元协同配合,可以实现非常丰富的光照效果。
在一个罩体上,也可以布置长带状电致液晶雾化膜单元305,即由一个独立长条型带状电致液晶雾化膜单元305构成的带状电子遮罩,主要应用于灯条、灯带等长条形的照明器具上,该带状电致液晶雾化膜单元具有至少2阶光线散射控制功能,即至少有透明和雾化两个阶梯调节度,实现探照光和均匀光两种效果,进一步可以有8阶、16阶或更多阶的设置,实现多种不同的光线散射度。
在一个罩体上,还可以布置长带状栅格电致液晶雾化膜单元306,即由多个栅格子电致液晶雾化膜单元构成的长条形带状电子遮罩,主要应用于灯条、灯带等长条形的照明器具上,每个子电致液晶雾化膜单元可独立控制,每个子电致液晶雾化膜单元具有至少2阶光线散射控制功能,即至少有透明和雾化两个阶梯调节度,进一步可以有8阶、16阶或更多阶的设置,通过各个子电致液晶雾化膜单元协同配合,可以实现非常丰富的光照效果。
上述的电子遮罩可以在上面粘贴颜色过滤片,例如红色、蓝色、绿色等,以适合不同应用的需求。
通过不同数量不同几何形状构成的电子遮罩,可以控制灯光的不同均匀度,实现探照光和均匀光的切换功能,可以提供多种不同光线散射度的照明效果,实现更加丰富的光照效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例二
请参考图1和图4,图1为本实施例提供的一种光源***的结构示意图,图4为光源***的光照结构示意图。
如图1所示,本实施例中的光源***,包括前一实施例所说的电子遮罩150,还包括控制模块110、发光驱动模块120、发光模块130和遮罩驱动模块140;
所述控制模块110的第一控制端与所述发光驱动模块120的控制输入端相连,用于对所述发光驱动模块120进行控制;所述控制模块110的第二控制端与所述遮罩驱动模块140的控制输入端相连,用于对所述遮罩驱动模块140进行控制;
所述发光驱动模块120的输出端与所述发光模块130的输入电极相连,用于向所述发光模块130供电,并控制所述发光模块130的发光状态;
所述遮罩驱动模块140的输出端与所述电子遮罩150的各所述电致液晶雾化膜单元的供电电极相连,用于向各所述电致液晶雾化膜单元供电,并控制所述电致液晶雾化膜单元的透光状态。
在具体实现过程中,还包括控制组件170;所述控制组件170与所述控制模块110相连,所述控制模块110用于根据所述控制组件170的控制操作生成对应的控制信号。
发光驱动模块120的功能为根据控制模块110指令对发光模块130进行控制,对发光模块130进行相应的电压转换、灯珠分组控制的工作。特殊地,如果某个设备既不需要电压转换、也没有分组灯珠,则发光驱动模块120简化为一根导线。
控制组件170可以是电子按键、机械旋钮、触控组件等,用于控制模块接收用户操作,并生成对应的控制信号,进而可以根据控制信号控制发光驱动模块120和遮罩驱动模块140。
除了控制组件170,还可以包括环境检测模块160;所述环境检测模块160与所述控制模块110相连,所述控制模块110用于根据所述环境检测模块160检测到的环境参数生成对应的控制信号。
所述环境检测模块160包括距离传感模块、光强度传感模块、温度传感模块、湿度传感模块、速度传感器模块、能见度传感模块和烟雾检测模块中的一种或多种。环境检测模块160用于检测环境状态,从而实现对控制模块的辅助控制,根据环境状态对应的环境参数自动生成对应的控制信号,进而可以根据控制信号控制发光驱动模块120和遮罩驱动模块140。
在本实施例的光源***中,所述发光模块包括至少一个发光单元组,每个所述发光单元组设置独立供电。所述发光单元组包括至少一个发光单元。每个所述发光单元组包括红色发光单元、绿色发光单元和蓝色发光单元,通过对各所述发光单元提供不同的电压,使所述发光单元组产生不同的颜色。
如图4所示,图4为本发明实施例提供的一种光源***的光照结构示意图。依次为发光灯板401、聚光板402、电子遮罩403和保护层404,其中发光灯板401由一个或多个灯珠构成,起到提供光源的作用;聚光板402则起到聚集光源的作用,在手电筒、手机补光灯等产品中通常为凹形的聚光镜,在灯条、灯带等产品中则通常为反光薄膜;电子遮罩403起到控制散射模式、光散射程度的控制作用,在手电筒、手机补光灯等硬性产品中可以为玻璃或贴膜形态,在灯条等柔性产品中则为贴膜形态;保护层404则可以为玻璃、亚克力、树脂或者保护涂层等。
发光模块130可以由一个或多个子发光单元组构成,每个子发光单元组由一个或多个灯珠组成,且发光驱动模块120可以单独控制各所述子发光单元组的通电和断电,针对不同的产品不但可以实现光线强弱控制,还可以搭配不同颜色或不同色温的灯珠形成不同的颜色和色温。进一步设计,控制模块110可以执行灯光控制指令,使发光驱动模块120根据灯光控制指令对发光模块130各子发光单元组进行控制,形成动态彩灯效果,甚至实现动画的灯光效果。
通过控制灯光的不同均匀度,实现探照光和均匀光的切换功能,可以提供多种不同光线散射度的照明效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例三
本发明实施例提供的一种光源***,适应于控制组件和环境检测模块的同时配置,所述控制模块可以视为包含人工模式和/或自动模式。
如图1所示,控制组件170可以是电源开关,此时可以视为人工模式,通过用户手动开关电源开关,控制模块110检测到对应控制信号,使遮罩驱动模块140进入通电或断电状态,致使电子遮罩150进入关态或开态,从而实现光线均匀度控制,控制发光模块130发出的光线的散射状态,实现探照光模式和均匀光模式的切换。
控制组件170也可以是带选择按钮或触摸屏的电子电路,此时视为人工模式,通过用户的选择操作,控制模块110接收对应的控制电压或控制信号,并通过遮罩驱动模块140控制电子遮罩150的雾化程度,控制发光模块130发出的光线的散射状态,从而实现不同的光线散射度控制。
控制模块110也可以是带有处理器(CPU、单片机、ARM、DSP、FPGA或专用芯片等)的智能控制模块,基于环境检测模块160检测到的信息,进行自动控制,如图5所示,图5为本发明实施例提供的自动模式的流程图。
步骤S510,读取环境检测模块的信息;控制模块通过连接的环境检测模块获取相应的环境信息。
步骤S520,根据决策信息查询控制信息;控制模块通过查询获得对应的雾化模式和雾化率控制信息。
步骤S530,根据控制信息控制驱动模块;控制模块根据雾化模式和雾化率控制信息对遮罩驱动模块进行控制。
步骤S540,遮罩驱动模块调节可控雾化膜的散射度;遮罩驱动模块控制电子遮罩的雾化程度,控制发光模块发出的光线的散射状态,从而实现不同的光线散射度控制。
通过人工模式和/或自动模式控制灯光的不同均匀度,实现探照光和均匀光的切换功能,可以提供多种不同光线散射度的照明效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例四
本示例通过结合2阶独立单元构成的电子遮罩对本发明进行说明。
如图6所示,图6为本发明实施例提供的探照光模式和均匀光模式的光照效果对比示意图。以多功能手电筒为例,多功能手电筒有两种相互独立的光照功能,一种是探照灯的功能,另外一种是户外露营灯功能。601为常见的手电筒的探照灯光照效果,其中,中心区域为高亮区域,周围一圈为次光亮区域;602为户外露营灯的均匀光光照效果。多功能手电筒的两个功能独立运作,因此,在生产的时候只有多增加LED灯珠,不但造成生产成本的增加,还增加了资源的浪费,更增加了环境污染的风险。
通过本发明,结合2阶独立单元构成的电子遮罩对手电筒的探照光进行控制。当电子遮罩断电的时候,为雾化状态,对手电筒的探照光进行散射作用,生成均匀光的光照效果;当为通电的时候,为透明状态,对手电筒的探照光直接通过,依然保持探照光的光照效果。这样,不但可以减少生产成本,节约了资源,还减少环境污染。
通过上述方法,实现探照光和均匀光的切换功能,可以提供多种不同光线散射度的照明效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例五
本示例通过结合2阶环形单元构成的电子遮罩对本发明进行说明。
如图7所示,图7为本发明实施例提供的多个模块组成的电子遮罩的弱化中心强光的光线运动对比示意图。
如图8所示,图8为本发明实施例提供的多个模块组成的电子遮罩的弱化中心强光的光照效果对比示意图,即为图7的光照效果示意图。
通过本发明,结合2阶多个环形单元构成的电子遮罩对手电筒的探照光进行控制。
当电子遮罩通电为透明状态的时候,如701所示,701为探照光在电子遮罩为透明状态下光线运动示意,由于电子遮罩为透明状态,光线可以正常穿过,从图中可见通过聚光装置的作用下,光线被聚集在中心区域,形成高亮的照射区域,而其他地方则为次亮区域,其光照效果如801所示。中心高亮区域适合远景探照,但要照射近景的时候,与周围漆黑环境形成高对比度,于是只能看见白茫茫一片,不利于观察近景的实物。
当电子遮罩断电为雾化状态的时候,如702所示,702为探照光在电子遮罩中心区域为雾化状态***区域为透明的光线运动示意,由于电子遮罩中心区域为雾化状态,经过中心区域的光线被散射无法集中到中心区域,于是中心区域范围被扩大形成亮度较小的均匀光区域,而***区域由于透明状态,因此***区域并没有发生改变,如802所示。通过该模式,可以在保持次光亮区域大小不变的情况下,扩大中心区域大小,并减少中心区域的亮度,更适合近景的观察。同理,该效果也可以通过只占中心区域的独立单元构成的电子遮罩或控制多个栅格单元构成的电子遮罩形成中心区域的雾化实现,在此不再赘述。
当通过控制模块控制电子遮罩全部为雾化效果的时候,则呈现如图6中602所示的均匀光效果。
通过上述三种模式的切换,可以探照光设备既可以适用于远景,也可以使用于近景,也可以形成均匀光,使照明设备具有更丰富的照射效果和功能,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例六
本示例通过结合8阶独立单元构成的电子遮罩对本发明进行说明。
图9为本发明实施例提供的拍摄场景下控制光照距离和强度的光照效果对比示意图。在黑暗环境下使用手机后置补光灯进行补光的时候,当拍摄距离比较远(例如5米)的时候,可以通过控制模块控制电子遮罩为1阶透明状态,透明度为100%,散射效果最弱,901为后置补光灯的探照光在电子遮罩为透明状态下光照效果示意,由于电子遮罩为透明状态,光线可以正常穿过,光线为探照光效果,可以照射距离比较远,适合远距离拍摄。
当拍摄距离比较近(例如0.8米)的时候,探照灯效果比较耀眼,并且过度集中,不适合近距离拍摄,于是,可以通过控制模块控制电子遮罩为8阶雾化状态,透明度为0%,散射效果最强,902为8阶雾化状态的均匀光光照效果,光线经过散射使照射角度最大化,光强度最小化,使其适合近距离拍摄。
当拍摄距离稍远(例如2.5米)的时候,使用探照灯过强,而使用均匀光则过弱,于是可以通过控制模块调节适当的阶梯调节度,假设该距离5阶比较合适,则透明度为57%,散射效果为43%,属于中等状态,903为5阶半雾化状态的光照效果,其介乎于探照光效果和均匀光效果之间的中值,照射角度比图901所示的效果的大,比902所示的小;光照距离比901的小,比902的大;光照强度比901的要小,比902的要大,适合稍远距离的拍摄。同理,可以根据拍摄对象与补光灯的距离通过调整电子遮罩的阶梯调节度,使之光照效果适合拍摄的需求,在此不再赘述。
进一步设计,增加测距模块作为辅助决策模块,控制模块在自动模式的时候,其通过测距模块获得拍摄对象的距离,通过拍摄对象距离查询对应的阶梯调节度,并控制电子遮罩的实现相应的阶梯调节度,使之光照效果适合拍摄的需求,实现自动化补光效果。
通过上述的方式,可以使照明设备根据实际的需求产生对应的光照强度、范围和距离,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例七
本示例通过结合8阶栅格单元构成的电子遮罩对本发明进行说明。
图10为本发明实施例提供的路灯场景下的控制光照范围和光照强度的光照效果对比示意图。增加光强度传感模块和能见度传感模块作为辅助决策模块,控制模块为自动模式。
当其通过光强度传感模块获取环境光的数值低于预设值的时候,控制模块通过控制发光驱动模块使发光模块发光;当控制模块通过光强度传感模块获取环境光的数值高于预设值的时候,控制模块通过控制发光驱动模块使发光模块关闭。
当在能见度较低的夜晚的时候,例如大雾、大雨等天气,控制模块通过光强度传感器获知环境光强度较弱,并通过能见度传感器获取到能见度低的情况,于是控制发光驱动模块使发光模块发光,另外,通过控制遮罩驱动模块使电子遮罩为1阶,透明度为100%,散射效果最小值,1001为路灯的探照光模式,光线形成高亮中心区域,在能见度低的黑夜里可以让行人和司机在很远的地方也能看得见,使人们更容易掌握道路情况。
当能见度较高的夜晚的时候,例如晴天、阴天等天气,控制模块通过光强度传感器获知环境光强度较弱,并通过能见度传感器获取到能见度高的情况,于是控制发光驱动模块使发光模块发光,另外,通过控制遮罩驱动模块使电子遮罩为8阶,透明度为0%,散射效果最大值,1002为路灯的均匀光模式,光线放射角度最大化,光线强度最弱,形成柔和自然的灯光效果,可以让行人和司机如置身于白天一样的均匀光照环境,使人们感受更舒适自然的环境。
当能见度稍低的夜晚的时候,例如小雨、小雾、小雪等天气,或者白天大雨、大雾、大雪等天气,控制模块通过光强度传感器获知环境光强度较弱,并通过能见度传感器获取到能见度较低的情况,于是控制发光驱动模块使发光模块发光,另外,通过控制遮罩驱动模块使由多栅格单元构成的电子遮罩形成内外两圈的两个区域,并控制内圈为3阶,透明度为72%,散射效果为28%;控制外圈为6阶,透明度为28%,散射效果为72%,图1003为路灯的两层光模式,中间区域部分透明度较高,形成亮度较高、角度较小的探照光效果,方便远处的路人和司机看见;***区域部分透明度较低,形成亮度较小、角度较大的均匀光效果,使其适合离路灯较近的路人和司机,使人们感受更舒适自然的环境。
同理,控制模块可以控制多栅格单元构成的电子遮罩各个栅格单元的透明度、不同的几何形状,可以组成***的光照效果,在此不再赘述。
通过上述的方式,可以使照明设备根据实际的需求产生对应的光照强度、范围、距离和光照层次,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例八
本示例通过结合8阶多带状单元构成的电子遮罩对本发明进行说明。
如图11所示,图11为本发明实施例提供的汽车大灯的光照效果示意图,其中,汽车大灯的多带状栅格单元构成的电子遮罩分为下部分1101、中部分1102和上部分1103,汽车照射光程分为近距离1104、稍远距离1105、较远距离1106和远距离1107。
当汽车用近光灯的时候,近光灯的探照灯的范围在近距离1104、稍远距离1105和较远距离1106,并分别对应大灯的下部分1101、中部分1102和上部分1103。当汽车停止或速度很慢(例如,时速5公里/小时)的时候,由于大灯的探照光太强烈,而且比较集中,不利于汽车停止或慢速行驶的视野,于是可以使用慢速模式,即整个电子遮罩为8阶,透明度为0%,散射度为100%,这样光照角度最大,视野最宽阔,明亮度最暗,不会照射对面来的人的眼睛,适合驻车或慢速行驶。当速度较快的适合(例如,时速80公里/小时),由于车速较快,需要看见较远的地方,因此,整个电子遮罩为1阶,透明度为100%,散射度为0%,这样光照角度最小,明亮度最暗,为探照灯模式。当车速为中等的时候(例如,时速50公里/小时),这时候介乎于低速和较高速中间,可以调整下部分1101为7阶,中部分1102为4阶,上部分1103为1阶,这样,在较远距离1106为探照灯光效,适合看清远远景,在近距离1104为均匀光光效,适合观察近景,在稍远距离1105则为探照光和均匀光的混合模式,便于驾驶员观察路况。同理,可以根据不同的速度配置各带状电致液晶雾化膜单元的阶梯调节度,使其更适合驾驶员的视觉,在此不再赘述。进一步设计,结合速度传感器,控制模块在自动模式下,可以读取速度传感器的信息,并根据速度传感器获得的实际车速查询相关的调整参数,在通过遮罩驱动模块控制各带状电致液晶雾化膜单元的阶梯调节度,以实现自动配置效果。
当汽车用远光灯的时候,近光灯的探照灯的范围在稍远距离1105、较远距离1106和远距离1107,并分别对应大灯的下部分1101、中部分1102和上部分1103。当汽车在高速行驶的时候(例如,时速120公里/小时),由于车速非常快,需要看见很远的地方,因此,整个电致液晶雾化薄膜为1阶,透明度为100%,散射度为0%,这样光照角度最小,明亮度最暗,照射距离最远,为探照灯模式,便于司机观察远处景物。当汽车在幽暗路段低速行驶的时候(例如,时速15公里/小时),由于环境比较暗,需要看见较远的地方,但远光灯会影响来车的视野,于是可以使可以调整下部分1101为1阶,中部分1102为4阶,上部分1103为8阶,这样,在远距离1107为均匀光光效,减少对来车的视觉干扰,在稍远距离1105为均匀光光效,适合观察近景,在较远距离1106则为探照光和均匀光的混合模式,便于驾驶员观察路况。当车速为中等的时候(例如,时速60公里/小时),这时候介乎于低速和高速中间,同理,可以根据不同的速度配置各带状电致液晶雾化膜单元的阶梯调节度,使其更适合驾驶员的视觉,在此不再赘述。进一步设计,结合速度传 感器,控制模块在自动模式下,可以读取速度传感器的信息,并根据速度传感器获得的实际车速查询相关的调整参数,在通过遮罩驱动模块控制各带状电致液晶雾化膜单元的阶梯调节度,以实现自动配置效果。
通过上述的方式,可以使照明设备根据实际的需求产生对应的距离、分层、强弱,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例九
本示例通过结合8阶栅格单元构成的电子遮罩对本发明进行说明。
如图12所示,图12为本发明实施例提供的水晶闪耀吊灯的光照效果示意图。
当控制模块通过控制遮罩驱动模块使整个电子遮罩为1阶,透明度为100%,散射效果最小值,1201水晶闪耀吊灯的探照光模式,可以清楚看见灯泡或灯珠发光的情况,灯光耀眼,给人一种复古的氛围感觉。
当控制模块通过控制遮罩驱动模块使整个电子遮罩为8阶,透明度为0%,散射效果最大值,1202水晶闪耀吊灯的均匀光模式,这时候只能看见外部均匀柔和的灯光,却看不见灯泡或灯珠发光,灯光柔和自然,给人一种现代化的氛围感觉。同理,可以通过控制模块调整整个电子遮罩的阶梯调节度,使其呈现对应的透明状态,使探照光和均匀光的比例适合实际应用环境需求,在此不再赘述。
当控制模块通过控制遮罩驱动模块使整体电子遮罩为8阶,透明度为0%,散射效果最大值,并且,随机让某几个栅格单元为1阶,即透明度为100%,散射效果最小,1203水晶闪耀吊灯的闪耀光模式,这时候只能看见外部整体均匀柔和的灯光,但某几个点却漏出强光的效果;过一阵子后(例如,1秒),控制器设置上述几个栅格单元为8阶,透明度为0%,散射效果最大值,并随机选择另外几个栅格单元为1阶,即透明度为100%,散射效果最小,如此不断重复运行,则形成闪烁灯光的效果,该效果比传统(静态)水晶灯效果更加漂亮、闪动,给人一种闪耀、高级或魔幻的氛围感觉。同理,可以通过控制模块调整各个子栅格电致液晶雾化膜单元的阶梯调节度,使其呈现其他透明状态,产生不同的闪耀光度、使吊灯呈现更丰富多彩的闪耀、魔幻的氛围效果,在此不再赘述。
进一步设计,灯罩内可以设置多组彩色灯珠群,控制模块通过发光驱动模块控制各彩色灯珠群的亮和灭,配合1203所示的闪耀光模式,有如舞台七彩灯的效果,让灯光效果更加闪耀多彩。通过控制模式的变化可以产生更多的氛围效果和照明效果,在此不再赘述。
通过上述的方式,可以使照明设备根据实际的需求产生对应的光照氛围、色彩搭配、闪耀效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例十
本示例通过结合长带状单元构成的电子遮罩和长带状栅格单元构成的电子遮罩对本发明进行说明。
图13为本发明实施例提供的灯带照明模式和分为模式下的光照效果对比示意图。图14为本发明实施例提供的多栅格灯带光照效果示意图。
当控制模块通过控制遮罩驱动模块使带状单元构成的电子遮罩为1阶,透明度为100%,散射效果最小值,1301为灯带照明效果示意,可以看见每个LED灯珠发出明亮璀璨的灯光。进一步设计,每个LED灯珠可以单独控制,控制模块通过发光驱动模块控制每个LED灯珠的亮和灭,并产生闪烁的星光效果,犹如仰望璀璨星空的感觉。
当控制模块通过控制遮罩驱动模块使带状单元构成的电子遮罩为8阶,透明度为0%,散射效果最大值,1302为氛围灯照明效果示意,每个LED灯珠发出的灯光被散射出来,形成模糊朦胧的效果。进一步设计,每个LED灯珠可以单独控制,控制模块通过发光驱动模块控制每个LED灯珠的亮和灭,并产生闪烁的氛围灯效果,犹如仰望宇宙银河的感觉。
当控制模块通过控制遮罩驱动模块使带状多栅格单元构成的电子遮罩,控制模块通过控制遮罩驱动模块使整体电子遮罩为8阶,透明度为0%,散射效果最大值,并且,随机让某几个栅格单元为1阶,即透明度为100%,散射效果最小,如图14所示,这时候只能看见外部整体均匀柔和的氛围灯光,并有几个点却 漏出强光的效果;过一阵子后(例如,2秒),控制器设置上述几个栅格单元为8阶,透明度为0%,散射效果最大值,并随机选择另外几个栅格单元为1阶,即透明度为100%,散射效果最小,如此不断重复运行,则形成闪烁灯光的效果,该效果比传统闪烁灯条效果更加漂亮、闪动,给人一种闪耀、高级或魔幻的氛围感觉,犹如宇宙银河中伴随几个闪烁的星光在闪动的视觉效果。同理,可以通过控制模块调整各个子栅格电致液晶雾化膜单元的阶梯调节度,使其呈现其他透明状态,产生不同的闪耀光度、使吊灯呈现更丰富多彩的闪耀、魔幻的氛围效果,在此不再赘述。
进一步设计,灯带内可以设置多组彩色灯珠群,控制模块通过发光驱动模块控制各彩色灯珠群的亮和灭,配合图14所示的闪耀光模式,让灯光效果更加闪耀多彩。通过控制模式的变化可以产生更多的氛围效果和照明效果,在此不再赘述。
通过上述的方式,可以使照明设备根据实际的需求产生对应的光照氛围、色彩搭配、闪耀效果,实现在不同应用场景、不同环境的更好的照明效果,提高了设备的方便性,并大大提高了用户的和使用体验感。
实施例十一
如图15所示,图15为本发明实施例提供的一种LED灯珠结构示意图。包括LED芯片1501、电子遮罩1502、透镜1503、散热垫1504、LED芯片连接线1505、外封装1506、LED电极1507(图中没有注明与之配对的另外一个LED电极)和电子遮罩电极1508(图中没有注明与之配对的另外一个电子遮罩电极)。其中,电子遮罩1502设置在LED芯片1501的发光面,其位置可以在LED芯片1501和透镜1503之间,也可以在透镜1503外面,视具体生成工艺而定;LED芯片1501和电子遮罩1502有相互独立的供电电极,通过外部通过对LED电极1507进行供电可以控制LED芯片1501的亮和灭,通过对电子遮罩电极1508提供不同的电压控制其的光线散射程度,配合LED芯片1501发出的光线实现不同的光照效果。
进一步设计,可以有多个LED芯片1501构成,可以多个LED芯片1501共用LED电极1507(图中没有注明与之配对的另外一个LED电极),也可以对每个LED芯片1501单独供电。
再进一步设计,多个LED芯片1501可以添加不同的颜色颜料,使每个灯珠具有不同的颜色,每个LED芯片1501有独立供电,外部电路控制通过发光驱动模块精准控制每个LED芯片1501的亮和灭,从而形成不同的颜色。举个例子,假设有三个LED芯片1501,并颜色分别为红、蓝、绿三原色,于是通过RGB的搭配可以构成各种不同的颜色。
实施例十二
请参考图16,本实施例还提供了一种发光设,1601,包括前文任一所述的光源***。该发光设备具体可以以机动车、移动光源、移动终端和固定光源的形态存在。。一种发光设备1601,所述发光设备1601包括处理器1602以及存储器1603;
所述存储器1603用于存储计算机程序1604,并将所述计算机程序1604传输给所述处理器1602;
所述处理器1602用于根据所述计算机程序1604中的指令执行上述的一种发光控制实施例中的步骤。
示例性的,所述计算机程序1604可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器1603中,并由所述处理器1602执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序1604在所述发光设备1601中的执行过程。
所称处理器1602可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。而发光设备中光源***的控制模块可以集成于发光设备的处理器,例如机动车的控制模块集成于车机。
所述存储器1603可以是所述发光设备1601的内部存储单元,例如发光设备1601的硬盘或内存。所述 存储器1603也可以是所述发光设备1601的外部存储发光设备,例如所述发光设备1601上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器1603还可以既包括所述发光设备1601的内部存储单元也包括外部存储设备。所述存储器1603用于存储所述计算机程序以及所述发光设备1601所需的其他程序和数据。所述存储器1603还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储计算机程序的介质。
注意,上述仅为本发明实施例的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明实施例不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明实施例的保护范围。因此,虽然通过以上实施例对本发明实施例进行了较为详细的说明,但是本发明实施例不仅仅限于以上实施例,在不脱离本发明实施例构思的情况下,还可以包括更多其他等效实施例,而本发明实施例的范围由所附的权利要求范围决定。

Claims (16)

  1. 一种电子遮罩,其特征在于,包括罩体和至少一个电致液晶雾化膜单元;
    所述电致液晶雾化膜单元覆盖于所述罩体的局部或全部;
    所述电致液晶雾化膜单元独立设置有供电电极,并通过不同电压进行独立控制。
  2. 根据权利要求1所述的电子遮罩,其特征在于,所述电致液晶雾化膜单元包括环形电致液晶雾化膜单元、多带状电致液晶雾化膜单元、长带状电致液晶雾化膜单元、栅格电致液晶雾化膜单元和长带状栅格电致液晶雾化膜单元中的一种或多种。
  3. 根据权利要求1所述的电子遮罩,其特征在于,所述罩体与所述电致液晶雾化膜单元一体设置。
  4. 根据权利要求1所述的电子遮罩,其特征在于,所述罩体的表面为平面或曲面。
  5. 一种LED灯珠,其特征在于,包括权利要求1-4任一所述的电子遮罩,还包括LED芯片;
    所述电子遮罩与所述LED芯片集成设置,所述电子遮罩朝向所述LED芯片的发光面。
  6. 根据权利要求5所述的LED灯珠,其特征在于,所述LED芯片的供电电极和所述电子遮罩的供电电极独立设置,用于分别从外部电路接入电压参数不同的供电电源。
  7. 根据权利要求6所述的LED灯珠,其特征在于,所述LED芯片包括红色LED芯片、绿色LED芯片和蓝色LED芯片中的一个或多个;
    每个所述LED芯片设置独立的供电电极,用于分别从外部电路接入电压参数不同的供电电源。
  8. 一种光源***,其特征在于,包括权利要求1-4任一所述的电子遮罩,还包括控制模块、发光驱动模块、发光模块和遮罩驱动模块;
    所述控制模块的第一控制端与所述发光驱动模块的控制输入端相连,用于控制所述发光驱动模块的供电状态;所述控制模块的第二控制端与所述遮罩驱动模块的控制输入端相连,用于控制所述遮罩驱动模块的供电状态;
    所述发光驱动模块的输出端与所述发光模块的输入电极相连,用于向所述发光模块供电,并控制所述发光模块的发光状态;
    所述遮罩驱动模块的输出端与各所述电致液晶雾化膜单元的供电电极相连,用于向所述电致液晶雾化膜单元供电,并控制所述电致液晶雾化膜单元的透光状态。
  9. 根据权利要求8所述的光源***,其特征在于,还包括控制组件;
    所述控制组件与所述控制模块相连,所述控制模块用于根据所述控制组件的控制操作生成对应的控制信号。
  10. 根据权利要求8所述的光源***,其特征在于,还包括环境检测模块;
    所述环境检测模块与所述控制模块相连,所述控制模块用于根据所述环境检测模块检测到的环境参数生成对应的控制信号。
  11. 根据权利要求10所述的光源***,其特征在于,所述环境检测模块包括距离传感模块、光强度传感模块、温度传感模块、湿度传感模块、速度传感器模块、能见度传感模块和烟雾检测模块中的一种或多种。
  12. 根据权利要求7所述的光源***,其特征在于,所述发光模块包括至少一个发光单元组,每个所述发光单元组设置独立供电。
  13. 根据权利要求12所述的光源***,其特征在于,所述发光单元组包括至少一个发光单元。
  14. 根据权利要求12-13任一所述的光源***,其特征在于,每个所述发光单元组包括红色发光单元、绿色发光单元和蓝色发光单元,通过对各所述发光单元提供不同的电压,使所述发光单元组产生不同的颜色。
  15. 一种发光设备,其特征在于,包括权利要求8-14任一所述的光源***。
  16. 根据权利要求15所述的发光设备,其特征在于,所述发光设备包括机动车、移动光源、移动终端和固定光源。
PCT/CN2022/133435 2021-11-22 2022-11-22 一种电子遮罩、led灯珠、光源***和发光设备 WO2023088479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111388041.9A CN114017689A (zh) 2021-11-22 2021-11-22 一种电子遮罩、led灯珠、光源***和发光设备
CN202111388041.9 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023088479A1 true WO2023088479A1 (zh) 2023-05-25

Family

ID=80065704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133435 WO2023088479A1 (zh) 2021-11-22 2022-11-22 一种电子遮罩、led灯珠、光源***和发光设备

Country Status (2)

Country Link
CN (1) CN114017689A (zh)
WO (1) WO2023088479A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017689A (zh) * 2021-11-22 2022-02-08 巽腾(广东)科技有限公司 一种电子遮罩、led灯珠、光源***和发光设备
CN114793268B (zh) * 2022-03-03 2023-11-14 海信集团控股股份有限公司 摄像头控制方法、装置及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020093741A1 (en) * 1999-01-25 2002-07-18 Bechtel Jon H. Vehicle equipment control with semiconductor light sensors
CN202806315U (zh) * 2012-09-25 2013-03-20 信利半导体有限公司 一种液晶遮光板
CN106555970A (zh) * 2016-11-29 2017-04-05 武汉通畅汽车电子照明有限公司 车灯投射单元、车灯总成及汽车
CN106985640A (zh) * 2017-04-26 2017-07-28 上海小糸车灯有限公司 主动防炫目方法及汽车主动防炫目装置
CN108267877A (zh) * 2016-12-30 2018-07-10 徐煜 液晶式智能化遮光装置
CN109263446A (zh) * 2018-11-09 2019-01-25 广东工业大学 一种智能挡风玻璃控制***及其控制方法
CN110194103A (zh) * 2018-02-25 2019-09-03 李海锋 一种基于深度感知和矩阵控制的遮挡光线的***
CN114017689A (zh) * 2021-11-22 2022-02-08 巽腾(广东)科技有限公司 一种电子遮罩、led灯珠、光源***和发光设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205592715U (zh) * 2016-01-27 2016-09-21 南通祥联智能科技有限公司 一种自动调光灯具
CN207750843U (zh) * 2018-01-22 2018-08-21 广州市浩洋电子股份有限公司 一种液晶调光舞台染色灯
JP2019153414A (ja) * 2018-03-01 2019-09-12 凸版印刷株式会社 照明器具
CN110764303A (zh) * 2019-11-08 2020-02-07 上海市激光技术研究所 一种基于红外摄像的防眩光汽车前照灯结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020093741A1 (en) * 1999-01-25 2002-07-18 Bechtel Jon H. Vehicle equipment control with semiconductor light sensors
CN202806315U (zh) * 2012-09-25 2013-03-20 信利半导体有限公司 一种液晶遮光板
CN106555970A (zh) * 2016-11-29 2017-04-05 武汉通畅汽车电子照明有限公司 车灯投射单元、车灯总成及汽车
CN108267877A (zh) * 2016-12-30 2018-07-10 徐煜 液晶式智能化遮光装置
CN106985640A (zh) * 2017-04-26 2017-07-28 上海小糸车灯有限公司 主动防炫目方法及汽车主动防炫目装置
CN110194103A (zh) * 2018-02-25 2019-09-03 李海锋 一种基于深度感知和矩阵控制的遮挡光线的***
CN109263446A (zh) * 2018-11-09 2019-01-25 广东工业大学 一种智能挡风玻璃控制***及其控制方法
CN114017689A (zh) * 2021-11-22 2022-02-08 巽腾(广东)科技有限公司 一种电子遮罩、led灯珠、光源***和发光设备

Also Published As

Publication number Publication date
CN114017689A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023088479A1 (zh) 一种电子遮罩、led灯珠、光源***和发光设备
JP3185478U (ja) 自動的に光色を変化させるスマート型ledランプ
US5580156A (en) Marker apparatus
CN204005530U (zh) 一种具有半导体光源模块的照明***
CN102345825A (zh) 太阳能分色景观路灯
US20150330588A1 (en) Low luminance lighting
CN102333397A (zh) 车载道路照明***
CN106439616A (zh) 一种照明装置
TW201425095A (zh) 具智慧型頭燈控制系統之車體
CN203757552U (zh) 智能调光led车灯
US20200271281A1 (en) Downlight apparatus
CN209325662U (zh) 交通工具的led照明***
CN206504161U (zh) 微结构光学部件及led照明装置
CN207334472U (zh) 一种匝道照明led灯
CN103343907A (zh) 一种基色可调的led球形灯
CN203827557U (zh) 发光二极管汽车控制灯组
CN205746462U (zh) 一种色温可变、光焦距离可调的汽车大灯
CN206072896U (zh) 一种照明装置
CN210624423U (zh) 矩阵式智能交通工具照明***
CN203880439U (zh) 具有多层微结构光学薄膜的led照明装置
US20070165401A1 (en) Assembled flash display module
TWM552229U (zh) 車輛輔助照明燈具
CN201074752Y (zh) 一种大功率led路灯
CN2847015Y (zh) 一种车辆照明用的车头灯
CN220205492U (zh) 一种发光均匀、结构紧凑的昼间行驶灯发光结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895008

Country of ref document: EP

Kind code of ref document: A1