WO2023085860A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2023085860A1
WO2023085860A1 PCT/KR2022/017781 KR2022017781W WO2023085860A1 WO 2023085860 A1 WO2023085860 A1 WO 2023085860A1 KR 2022017781 W KR2022017781 W KR 2022017781W WO 2023085860 A1 WO2023085860 A1 WO 2023085860A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
compound
aryl group
Prior art date
Application number
PCT/KR2022/017781
Other languages
English (en)
French (fr)
Inventor
김민준
윤준
이성재
홍성길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280029544.3A priority Critical patent/CN117177978A/zh
Publication of WO2023085860A1 publication Critical patent/WO2023085860A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present specification relates to a compound and an organic light emitting device including the same.
  • an organic light emitting device is a light emitting device using an organic semiconductor material, and requires exchange of holes and/or electrons between an electrode and an organic semiconductor material.
  • the organic light emitting device can be roughly divided into two types according to the operation principle as follows. First, excitons are formed in the organic material layer by photons introduced into the device from an external light source, and these excitons are separated into electrons and holes, and these electrons and holes are transferred to different electrodes and used as a current source (voltage source) It is a light emitting device of the form.
  • the second is a type of light emitting device that injects holes and/or electrons into the organic semiconductor material layer forming the interface with the electrodes by applying voltage or current to two or more electrodes and operates by the injected electrons and holes.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often composed of a multilayer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron suppression layer, an electron transport layer, and an electron injection layer.
  • Such an organic light emitting device when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and when the injected holes and electrons meet, excitons are formed. When it falls back to the ground state, it glows.
  • Such an organic light emitting device is known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, and high contrast.
  • Materials used as the organic layer in the organic light emitting device may be classified into light emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron suppression materials, electron transport materials, and electron injection materials, depending on their functions.
  • Light-emitting materials include blue, green, and red light-emitting materials according to light-emitting colors, and yellow and orange light-emitting materials required to realize better natural colors.
  • a host/dopant system may be used as a light emitting material.
  • the principle is that when a small amount of a dopant having a smaller energy band gap and higher luminous efficiency than the host constituting the light emitting layer is mixed in the light emitting layer in a small amount, excitons generated in the host are transported to the dopant to emit light with high efficiency.
  • the wavelength of the host moves to the wavelength range of the dopant, light of a desired wavelength can be obtained according to the type of dopant used.
  • materials constituting the organic material layer in the device such as hole injection materials, hole transport materials, light emitting materials, electron suppression materials, electron transport materials, electron injection materials, etc. are stable and efficient materials. Supported by this, the development of new materials is continuously required.
  • An exemplary embodiment of the present specification provides a compound represented by Formula 1 below.
  • X1 to X8 and X11 to X18 are the same as or different from each other, and are each independently N or CR,
  • one of X1 to X8 is N;
  • one of X11 to X18 is N;
  • R are the same as or different from each other and each independently represents hydrogen, deuterium, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryl group,
  • Y1 and Y2 are the same as or different from each other and are each independently O or S,
  • L1 to L3 are the same as or different from each other and each independently represent a direct bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group,
  • Ar1 is a substituted or unsubstituted aliphatic hydrocarbon ring group; A substituted or unsubstituted aryl group; A substituted or unsubstituted heteroaryl group; or two or more of these are condensed ring groups.
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layers includes the aforementioned compound.
  • the compound of the present invention can be used as a material for an organic material layer of an organic light emitting device.
  • an organic light emitting device including the compound of the present invention an organic light emitting device having high efficiency, low voltage and long lifespan characteristics can be obtained, and when the compound of the present invention is included in the light emitting layer of the organic light emitting device, a high color gamut can be obtained. It is possible to manufacture an organic light emitting device having
  • FIG 1 and 2 show an example of an organic light emitting device according to the present invention.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the hydrogen atom is substituted, that is, a position where the substituent is substituted, and when two or more are substituted , Two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted means deuterium; halogen group; Cyano group (-CN); silyl group; boron group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted aryl group; And it means that it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, or is substituted with a substituent in which two or more substituents from among the above exemplified substituents are connected, or does not have any substituents.
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • the silyl group may be represented by a chemical formula of -SiY1Y2Y3, wherein Y1, Y2 and Y3 are each hydrogen; A substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like, but is not limited thereto. don't
  • the boron group may be represented by a chemical formula of -BY4Y5, wherein Y4 and Y5 are each hydrogen; A substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, but is not limited thereto.
  • the alkyl group may be straight or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 60. According to one embodiment, the number of carbon atoms of the alkyl group is 1 to 30. According to another embodiment, the number of carbon atoms of the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms of the alkyl group is 1 to 10.
  • alkyl group examples include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • the amine group is -NH 2 ; Alkylamine group; N-alkyl arylamine group; Arylamine group; N-arylheteroarylamine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group; dimethylamine group; ethylamine group; diethylamine group; phenylamine group; naphthylamine group; Biphenylamine group; an anthracenylamine group; 9-methylanthracenylamine group; diphenylamine group; ditolylamine group; N-phenyltolylamine group; triphenylamine group; N-phenylbiphenylamine group; N-phenylnaphthylamine group; N-biphenyl naphthylamine group; N-naphthylfluorenylamine group; N-phenylphenanthrenylamine group; N-biphenylphenanthrenylamine group; N-phenylfluorenylamine group; N-phenylterphenylamine group; N-phenanthrenylfluorenylamine group; N-biphenylfluorenylamine group and the
  • the N-alkylarylamine group means an amine group in which N of the amine group is substituted with an alkyl group and an aryl group.
  • the N-arylheteroarylamine group refers to an amine group in which N of the amine group is substituted with an aryl group and a heteroaryl group.
  • the N-alkylheteroarylamine group means an amine group in which N of the amine group is substituted with an alkyl group and a heteroaryl group.
  • alkyl group of an alkylamine group, an N-arylalkylamine group, an alkylthioxy group, an alkylsulfoxy group, and an N-alkylheteroarylamine group is the same as the above-mentioned alkyl group.
  • the alkylthioxy group includes a methylthioxyl group; Ethylthioxy group; tert-butyl thioxy group; Hexylthioxy group; and octylthioxy group
  • the alkyl sulfoxy group includes mesyl; ethyl sulfoxy group; propyl sulfoxy group; Butyl sulfoxy group and the like, but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 6. Specifically, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, but are not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 30. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 20.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, triphenylene group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the heteroaryl group is a ring group containing one or more of N, O, P, S, Si, and Se as heteroatoms, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms. According to one embodiment, the carbon number of the heterocyclic group is 2 to 30.
  • the heterocyclic group include a pyridine group, a pyrrole group, a pyrimidine group, a pyridazinyl group, a furan group, a thiophene group, an imidazole group, a pyrazole group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, and the like. However, it is not limited to these.
  • the arylene group is the same as defined in the above aryl group except that it is a divalent group.
  • heteroarylene group is the same as defined in the above heteroaryl group, except that it is a divalent group.
  • Chemical Formula 1 is any one of Chemical Formulas 1-A to 1-G.
  • X1 to X18, L3, Y1, Y2 and Ar1 are as defined in Formula 1 above.
  • Chemical Formula 1 is any one of Chemical Formulas 1-1 to 1-16.
  • X1 to X18, L1 to L3, Y1, Y2 and Ar1 are as defined in Formula 1 above.
  • Chemical Formula 1 is any one of the following Chemical Formulas 2-1 to 2-3.
  • X1 to X18, L1 to L3, and Ar1 are as defined in Formula 1 above.
  • Chemical Formula 1 is any one of Chemical Formulas 2-A to 2-C.
  • Chemical Formula 1 is any one of the following Chemical Formulas 2-4 to 2-7.
  • Chemical Formula 1 is any one of Chemical Formulas 2-8 to 2-11.
  • Chemical Formula 1 is any one of Chemical Formulas 2-12 to 2-15.
  • X1 to X18, L1 to L3, and Ar1 are as defined in Formula 1 above.
  • Chemical Formula 1 is any one of the following Chemical Formulas 2-16 to 2-19.
  • X1 to X18, L1 to L3, and Ar1 are as defined in Formula 1 above.
  • X1 is N and the others are CH.
  • X2 is N and the others are CH.
  • X3 is N and the others are CH.
  • X4 is N and the others are CH.
  • X5 is N and the others are CH.
  • X6 is N and the others are CH.
  • X7 is N and the others are CH.
  • X8 is N and the others are CH.
  • X11 is N and the others are CH.
  • X12 is N and the others are CH.
  • X13 is N and the others are CH.
  • X14 is N and the others are CH.
  • X15 is N and the others are CH.
  • X16 is N and the others are CH.
  • X17 is N and the others are CH.
  • X18 is N and the others are CH.
  • Y1 and Y2 are O.
  • Y1 and Y2 are S.
  • Y1 is S and Y2 is O.
  • Y1 is O and Y2 is S.
  • R is hydrogen, deuterium, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryl group.
  • R is hydrogen, deuterium, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted carbon atom having 6 to 10 carbon atoms. It is an aryl group of 30.
  • R is hydrogen; heavy hydrogen; An alkyl group having 1 to 10 carbon atoms unsubstituted or substituted with heavy hydrogen; an alkoxy group having 1 to 10 carbon atoms unsubstituted or substituted with heavy hydrogen; Or an aryl group having 6 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen.
  • R is hydrogen, heavy hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • R is hydrogen or deuterium.
  • L1 to L3 are the same as or different from each other, and each independently represents a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted 3 to 30 carbon atoms. It is a heteroarylene group.
  • L1 to L3 are the same as or different from each other, and are each independently a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted 3 to 20 carbon atoms. It is a heteroarylene group.
  • L1 to L3 are the same as or different from each other, and are each independently a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted 3 to 15 carbon atoms. It is a heteroarylene group.
  • L1 to L3 are the same as or different from each other, and each independently represents a substituted or unsubstituted phenylene group, a substituted or unsubstituted divalent biphenyl group, or a substituted or unsubstituted divalent naphthyl group.
  • L1 to L3 are the same as or different from each other, and are each independently a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, a substituted or unsubstituted deuterium group, It is an unsubstituted divalent naphthyl group, a divalent fluorene group substituted or unsubstituted with deuterium, a divalent anthracene group substituted or unsubstituted with deuterium, or a divalent phenanthrene group substituted or unsubstituted with deuterium.
  • L1 to L3 are the same as or different from each other, and are each independently a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, or a deuterium substituted or an unsubstituted divalent naphthyl group.
  • L1 to L3 are the same as or different from each other, and each independently represents a phenylene group, a divalent biphenyl group, or a divalent naphthyl group.
  • L1 and L2 are the same as each other, and are a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms.
  • L1 and L2 are the same as each other, and a substituted or unsubstituted phenylene group, a substituted or unsubstituted divalent biphenyl group, a substituted or unsubstituted divalent naphthyl group, or a substituted or unsubstituted divalent naphthyl group A divalent fluorene group, a substituted or unsubstituted divalent anthracene group, or a substituted or unsubstituted divalent phenanthrene group.
  • L1 and L2 are the same, and a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, a divalent naphthyl group substituted or unsubstituted with deuterium , A divalent fluorene group substituted or unsubstituted with deuterium, a divalent anthracene group substituted or unsubstituted with deuterium, or a divalent phenanthrene group substituted or unsubstituted with deuterium.
  • L1 and L2 are the same as each other, and are a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, or a divalent naphth substituted or unsubstituted with deuterium. It is a til group.
  • L1 and L2 are different from each other and are a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms.
  • L1 and L2 are different from each other, and are a substituted or unsubstituted phenylene group, a substituted or unsubstituted divalent biphenyl group, a substituted or unsubstituted divalent naphthyl group, or a substituted or unsubstituted divalent naphthyl group.
  • L1 and L2 are different from each other, and are a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, and a divalent naphthyl group substituted or unsubstituted with deuterium.
  • L1 and L2 are different from each other, and are a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, or a divalent naphth substituted or unsubstituted with deuterium. It is a til group.
  • L3 is a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms.
  • L3 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted divalent biphenyl group, a substituted or unsubstituted divalent naphthyl group, or a substituted or unsubstituted divalent fluorene group.
  • L3 is a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, a divalent naphthyl group substituted or unsubstituted with deuterium, a substituted or unsubstituted deuterium It is an unsubstituted divalent fluorene group, a divalent anthracene group substituted or unsubstituted with deuterium, or a divalent phenanthrene group substituted or unsubstituted with deuterium.
  • L3 is a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, or a divalent naphthyl group substituted or unsubstituted with deuterium.
  • Ar1 is a substituted or unsubstituted aliphatic hydrocarbon ring group having 3 to 30 carbon atoms; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; A substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms; or a condensed ring thereof.
  • Ar1 is a substituted or unsubstituted aliphatic hydrocarbon ring group having 3 to 20 carbon atoms; A substituted or unsubstituted aryl group having 6 to 20 carbon atoms; A substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with deuterium; an aryl group having 6 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen; A heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with an aryl group; an aryl group having 6 to 30 carbon atoms unsubstituted or substituted with an aryl group; a heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with an aryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group; an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with an aryl group; a heteroaryl group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group substituted or unsubstituted with deuterium; an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with an aryl group substituted or unsubstituted with heavy hydrogen; a heteroaryl group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group unsubstituted or substituted with heavy hydrogen; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms; an aryl group having 6 to 20 carbon atoms; a heteroaryl group having 3 to 20 carbon atoms; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with an alkyl group or an aryl group; an aryl group having 6 to 30 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; a heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms unsubstituted or substituted with an alkyl group or an aryl group; an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; a heteroaryl group having 3 to 20 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with deuterium, an alkyl group or an aryl group; an aryl group having 6 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl group; a heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl group; or a condensed ring thereof.
  • Ar1 is an adamantyl group unsubstituted or substituted with deuterium, an alkyl group, or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with deuterium, an alkyl group or an aryl group; A fluorene group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; A cyclopentyl group unsubstituted or substituted with a deuterium, an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; A phenyl group unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl group; Biphenyl group unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl
  • Ar1 is an adamantyl group unsubstituted or substituted with an alkyl group or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with an alkyl group or an aryl group; A fluorene group unsubstituted or substituted with an alkyl group or an aryl group; a cyclopentyl group unsubstituted or substituted with an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with an alkyl group or an aryl group; a phenyl group unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; a biphenyl group unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; A terphenyl group unsubstituted or substituted with an alkyl
  • Ar1 is an adamantyl group unsubstituted or substituted with deuterium, an alkyl group, or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with deuterium, an alkyl group or an aryl group; A fluorene group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; A cyclopentyl group unsubstituted or substituted with a deuterium, an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; A phenyl group unsubstituted or substituted with deuterium or an aryl group; a biphenyl group unsubstituted or substituted with an aryl group; A terphenyl group unsubstituted or substituted with deuterium, an alkyl group
  • Ar1 is an adamantyl group unsubstituted or substituted with an alkyl group or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with an alkyl group or an aryl group; A fluorene group unsubstituted or substituted with an alkyl group or an aryl group; a cyclopentyl group unsubstituted or substituted with an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with an alkyl group or an aryl group; A phenyl group unsubstituted or substituted with an aryl group; a biphenyl group unsubstituted or substituted with an aryl group; A terphenyl group unsubstituted or substituted with an aryl group; A naphthyl group unsubstituted or substituted with an aryl group;
  • Ar1 is an adamantyl group unsubstituted or substituted with an aryl group; A spiroadamanthenefluorene group unsubstituted or substituted with an aryl group; A fluorene group unsubstituted or substituted with an alkyl group or an aryl group; A cyclopentyl group unsubstituted or substituted with an aryl group; A cyclohexyl group unsubstituted or substituted with an aryl group; A phenyl group unsubstituted or substituted with an aryl group; a biphenyl group unsubstituted or substituted with an aryl group; A terphenyl group unsubstituted or substituted with an aryl group; A naphthyl group unsubstituted or substituted with an aryl group; an anthracene group unsubstituted or substituted with an aryl group;
  • Ar1 is an adamantyl group; Spiroadamanthene fluorene group; a fluorene group unsubstituted or substituted with a methyl group or a phenyl group; A cyclopentyl group unsubstituted or substituted with a phenyl group; a cyclohexyl group unsubstituted or substituted with a phenyl group or a naphthyl group; A phenyl group unsubstituted or substituted with a phenyl group or a naphthyl group; a biphenyl group unsubstituted or substituted with a phenyl group or a naphthyl group; A terphenyl group unsubstituted or substituted with a phenyl group or a naphthyl group; a naphthyl group unsubstituted or substituted with a phenyl group
  • Ar1 is a substituted or unsubstituted aliphatic hydrocarbon ring group having 3 to 30 carbon atoms; A substituted or unsubstituted aryl group having 10 to 30 carbon atoms; A substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms; or a condensed ring thereof.
  • Ar1 is a substituted or unsubstituted aliphatic hydrocarbon ring group having 3 to 20 carbon atoms; A substituted or unsubstituted aryl group having 10 to 20 carbon atoms; A substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with deuterium; an aryl group having 10 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen; A heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with an aryl group; an aryl group having 10 to 30 carbon atoms unsubstituted or substituted with an aryl group; a heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with an aryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group; an aryl group having 10 to 20 carbon atoms unsubstituted or substituted with an aryl group; a heteroaryl group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group substituted or unsubstituted with deuterium; an aryl group having 10 to 20 carbon atoms unsubstituted or substituted with an aryl group substituted or unsubstituted with heavy hydrogen; a heteroaryl group having 3 to 20 carbon atoms unsubstituted or substituted with an aryl group unsubstituted or substituted with heavy hydrogen; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms; an aryl group having 10 to 20 carbon atoms; a heteroaryl group having 3 to 20 carbon atoms; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with an alkyl group or an aryl group; an aryl group having 10 to 30 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; a heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 20 carbon atoms unsubstituted or substituted with an alkyl group or an aryl group; an aryl group having 10 to 20 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; a heteroaryl group having 3 to 20 carbon atoms unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; or a condensed ring thereof.
  • Ar1 is an aliphatic hydrocarbon ring group having 3 to 30 carbon atoms unsubstituted or substituted with deuterium, an alkyl group or an aryl group; an aryl group having 10 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl group; a heteroaryl group having 3 to 30 carbon atoms unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl group; or a condensed ring thereof.
  • Ar1 is a fluorene group unsubstituted or substituted with deuterium, an alkyl group, or an aryl group; adamantyl group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with deuterium, an alkyl group or an aryl group; A cyclopentyl group unsubstituted or substituted with a deuterium, an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; Biphenyl group unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group, or a heteroaryl group; A terphenyl group unsubstituted or substituted with heavy hydrogen, an alkyl group, an aryl group;
  • Ar1 is a fluorene group unsubstituted or substituted with an alkyl group or an aryl group; adamantyl group unsubstituted or substituted with an alkyl group or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with an alkyl group or an aryl group; a cyclopentyl group unsubstituted or substituted with an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with an alkyl group or an aryl group; a biphenyl group unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; A terphenyl group unsubstituted or substituted with an alkyl group, an aryl group, or a heteroaryl group; a naphthyl group unsubsti
  • Ar1 is a fluorene group unsubstituted or substituted with deuterium, an alkyl group, or an aryl group; adamantyl group unsubstituted or substituted with deuterium or an alkyl group; Spiroadamanthene fluorene group unsubstituted or substituted with deuterium or an alkyl group; A cyclopentyl group unsubstituted or substituted with a deuterium, an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with heavy hydrogen, an alkyl group or an aryl group; a biphenyl group unsubstituted or substituted with an aryl group; A terphenyl group unsubstituted or substituted with heavy hydrogen or an aryl group; A naphthyl group unsubstituted or substituted with deuterium or an aryl group; An
  • Ar1 is a fluorene group unsubstituted or substituted with an alkyl group or an aryl group; adamantyl group unsubstituted or substituted with an alkyl group or an aryl group; A spiroadamanthene fluorene group unsubstituted or substituted with an alkyl group or an aryl group; a cyclopentyl group unsubstituted or substituted with an alkyl group or an aryl group; A cyclohexyl group unsubstituted or substituted with an alkyl group or an aryl group; substituted or unsubstituted with an aryl group; a biphenyl group unsubstituted or substituted with an aryl group; A terphenyl group unsubstituted or substituted with an aryl group; A naphthyl group unsubstituted or substituted with an aryl group;
  • Ar1 is a fluorene group unsubstituted or substituted with an alkyl group or an aryl group; adamantyl group; Spiroadamanthene fluorene group; A cyclopentyl group unsubstituted or substituted with an aryl group; A cyclohexyl group unsubstituted or substituted with an aryl group; a biphenyl group unsubstituted or substituted with an aryl group; A terphenyl group unsubstituted or substituted with an aryl group; A naphthyl group unsubstituted or substituted with an aryl group; an anthracene group unsubstituted or substituted with an aryl group; A phenanthrene group unsubstituted or substituted with an aryl group; A triphenylene group unsubstituted or substituted with an aryl group; A pyren
  • Ar1 is an adamantyl group; Spiroadamanthene fluorene group; a fluorene group unsubstituted or substituted with a methyl group or a phenyl group; A cyclopentyl group unsubstituted or substituted with a phenyl group; a cyclohexyl group unsubstituted or substituted with a phenyl group or a naphthyl group; a biphenyl group unsubstituted or substituted with a phenyl group or a naphthyl group; A terphenyl group unsubstituted or substituted with a phenyl group or a naphthyl group; a naphthyl group unsubstituted or substituted with a phenyl group or a naphthyl group; an anthracene group unsubstituted or substituted with a phen
  • Formula 1 is one of the following structural formulas.
  • Substituents of the compound of Formula 1 may be combined by a method known in the art, and the type, position or number of substituents may be changed according to techniques known in the art.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layers contains the aforementioned compound.
  • the organic light emitting device of the present invention may be manufactured by conventional organic light emitting device manufacturing methods and materials, except for forming one or more organic material layers using the above compounds.
  • the compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a hole injection and hole transport layer simultaneously, a light emitting layer, an electron transport layer, an electron injection layer, and the like as organic material layers.
  • the structure of the organic light emitting diode is not limited thereto and may include a smaller number of organic material layers or a larger number of organic material layers.
  • the organic material layer may include at least one of an electron transport layer, an electron injection layer, and a layer that simultaneously injects and transports electrons, and at least one of the layers is represented by Chemical Formula 1. compounds may be included.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or electron injection layer may include the compound represented by Chemical Formula 1.
  • the organic material layer may include at least one of a hole injection layer, a hole transport layer, and a layer that simultaneously injects and transports holes, and at least one of the layers is represented by Chemical Formula 1. compounds may be included.
  • the organic material layer may include a hole injection layer or a hole transport layer, and the hole transport layer or hole injection layer may include the compound represented by Chemical Formula 1.
  • the first electrode is an anode and the second electrode is a cathode.
  • the first electrode is a cathode
  • the second electrode is an anode
  • the structure of the organic light emitting device of the present invention may have a structure shown in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which an anode 2, an organic material layer 3, and a cathode 4 are sequentially stacked on a substrate 1.
  • the compound represented by Chemical Formula 1 may be included in the organic material layer 3.
  • the compound represented by Formula 1 may be included in the hole injection layer 5, the hole transport layer 6, or the electron blocking layer 7. Preferably, it may be included in the electron blocking layer (7).
  • the organic light emitting device uses a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation to form a metal or conductive metal oxide or an alloy thereof on a substrate. is deposited to form an anode, and from the group consisting of a hole injection layer, a hole transport layer, a hole transport and hole injection layer, a light emitting layer, an electron transport layer, an electron injection layer, and a layer that simultaneously transports and injects electrons thereon.
  • PVD physical vapor deposition
  • a hole injection layer a hole transport layer, a hole transport and hole injection layer
  • a light emitting layer an electron transport layer, an electron injection layer, and a layer that simultaneously transports and injects electrons thereon.
  • an organic material layer including one or more selected layers it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be fabricated by sequentially depositing a cathode material, an organic
  • the organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure.
  • the organic material layer can be formed by a solvent process other than a deposition method using various polymer materials, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or a thermal transfer method. Can be made in layers.
  • the anode is an electrode for injecting holes, and a material having a high work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the anode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode is an electrode for injecting electrons
  • the cathode material is a material having a small work function so as to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer that serves to facilitate the injection of holes from the anode to the light emitting layer
  • the hole injection material is a material that can well inject holes from the anode at a low voltage
  • HOMO highest occupied molecular orbital
  • Specific examples of the hole injection material include metal porphyrine, oligothiophene, arylamine-based organic materials, hexanitrilehexaazatriphenylene-based organic materials, quinacridone-based organic materials, and perylene-based organic materials.
  • the hole injection layer may have a thickness of 1 to 150 nm. If the thickness of the hole injection layer is 1 nm or more, there is an advantage in preventing the hole injection characteristic from deteriorating, and if it is 150 nm or less, the thickness of the hole injection layer is too thick to increase the driving voltage to improve the movement of holes. There are advantages to avoiding this.
  • the hole injection layer includes a compound represented by Chemical Formula HI-1, but is not limited thereto.
  • R400 to R402 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted aryl group; A substituted or unsubstituted amine group; A substituted or unsubstituted heteroaryl group; And any one selected from the group consisting of combinations thereof, or bonded to adjacent groups to form a substituted or unsubstituted ring,
  • L402 is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • L402 is a phenyl group.
  • R400 to R402 are the same as or different from each other, and each independently represents a substituted or unsubstituted aryl group; A substituted or unsubstituted amine group; A substituted or unsubstituted heteroaryl group; And any one selected from the group consisting of combinations thereof.
  • R402 is a phenyl group substituted with a carbazole group or an arylamine group; A biphenyl group substituted with a carbazole group or an arylamine group; And any one selected from the group consisting of combinations thereof.
  • R400 and R401 are the same as or different from each other, and are each independently a substituted or unsubstituted aryl group, or combine with adjacent groups to form an aromatic hydrocarbon ring substituted with an alkyl group.
  • R400 and R401 are the same as or different from each other, and each independently represents an aryl group unsubstituted or substituted with an alkyl group.
  • R400 and R401 are the same as or different from each other, and each independently represents a phenyl group or a dimethylfluorene group.
  • Formula HI-1 is selected from the following compounds.
  • the hole injection layer includes a compound represented by Chemical Formula HI-2, but is not limited thereto.
  • X'1 to X'3 are the same as or different from each other, and are each independently hydrogen, deuterium, or a halogen group,
  • R309 to R314 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; nitrile group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • x1' to x3' are each an integer of 1 to 4, and when they are 2 or more, the substituents in parentheses are the same as or different from each other.
  • X'1 to X'3 are halogen groups.
  • X'1 to X'3 are F or Cl.
  • X'1 to X'3 are F.
  • R309 to R314 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; nitrile group; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted amine group.
  • R309 to R314 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or nitrile.
  • R309 to R314 are nitrile groups.
  • Formula HI-2 is represented by the following compound.
  • the hole transport layer may play a role of facilitating hole transport.
  • a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high hole mobility is suitable. Specific examples include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated parts.
  • the hole transport layer includes a compound represented by Formula HT-2, but is not limited thereto.
  • R403 to R406 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted aryl group; A substituted or unsubstituted amine group; A substituted or unsubstituted heteroaryl group; And any one selected from the group consisting of combinations thereof, or bonded to adjacent groups to form a substituted or unsubstituted ring,
  • L403 is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group
  • l403 is an integer from 1 to 3, and when l403 is 2 or more, L403 is the same as or different from each other.
  • R403 to R406 are the same as or different from each other, and each independently represents a substituted or unsubstituted aryl group; A substituted or unsubstituted amine group; A substituted or unsubstituted heteroaryl group; And any one selected from the group consisting of combinations thereof.
  • R403 to R406 are the same as or different from each other, and each independently represents an aryl group having 6 to 30 carbon atoms.
  • R403 to R406 are the same as or different from each other, and each independently represents a phenyl group, a biphenyl group, or a naphthyl group.
  • R403 to R406 are the same as or different from each other, and each independently represents a phenyl group.
  • L403 is an arylene group having 6 to 30 carbon atoms or a heteroarylene group having 3 to 30 carbon atoms substituted with an arylene group.
  • L403 is a phenylene group, a divalent biphenyl group, or a divalent carbazole group unsubstituted or substituted with an aryl group.
  • L403 is a divalent carbazole group substituted with a naphthyl group.
  • Formula HT-2 is selected from the following compounds.
  • a hole buffer layer may be additionally provided between the hole injection layer and the hole transport layer, and may include a hole injection or transport material known in the art.
  • An electron blocking layer may be provided between the hole transport layer and the light emitting layer.
  • the electron blocking layer the aforementioned spiro compound or a material known in the art may be used.
  • the light emitting layer may emit red, green or blue light and may be made of a phosphorescent material or a fluorescent material.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; Polyfluorene, rubrene, etc., but are not limited thereto.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • carbazole-based compounds dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compounds
  • compounds of the benzoxazole, benzthiazole and benzimidazole series compounds of the benzoxazole, benzthiazole and benzimidazole series
  • PV poly(p-phenylenevinylene)-based polymers
  • spiro compounds Polyfluorene, rubrene, etc., but are not limited there
  • a host material for the light emitting layer includes a condensed aromatic ring derivative or a compound containing a hetero ring.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type furan compounds, pyrimidine derivatives, etc., but are not limited thereto.
  • the host includes a compound represented by Formula H-1 below, but is not limited thereto.
  • At least one of Xx to Xz is N, the others are the same or different from each other and are CH,
  • Ya and Yb are the same as or different from each other, and are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group,
  • Ht is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • ht is an integer of 1 to 4, and when ht is 2 or more, Ht is the same as or different from each other.
  • the Xx to Xz are N.
  • Ya and Yb are the same as or different from each other, and each independently represents a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms.
  • Ya and Yb are the same as or different from each other, and each independently represents an aryl group having 6 to 30 carbon atoms or a heteroaryl group having 3 to 30 carbon atoms.
  • the Ya and Yb are phenyl groups.
  • Ht is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • Ht is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms.
  • Ht is a carbazole group.
  • Formula H-1 is the compound below, but is not limited thereto.
  • PIQIr (acac) bis (1-phenylisoquinoline) acetylacetonateiridium
  • PQIr (acac) bis (1-phenylquinoline) acetylacetonate iridium
  • PQIr (tris (1-phenylquinoline) iridium) are used as light emitting dopants.
  • a phosphorescent material such as octaethylporphyrin platinum (PtOEP), or a fluorescent material such as Alq 3 (tris(8-hydroxyquinolino)aluminum), but is not limited thereto.
  • a phosphorescent material such as Ir(ppy) 3 (fac tris(2-phenylpyridine)iridium) or a fluorescent material such as Alq3 (tris(8-hydroxyquinolino)aluminum) may be used as the light emitting dopant.
  • a fluorescent material such as Alq3 (tris(8-hydroxyquinolino)aluminum)
  • Alq3 tris(8-hydroxyquinolino)aluminum
  • a phosphorescent material such as (4,6-F2ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), distryarylene (DSA), Fluorescent materials such as PFO-based polymers and PPV-based polymers may be used, but are not limited thereto.
  • a metal complex may be used as the dopant.
  • an iridium complex may be used as the dopant.
  • the iridium complex used for the dopant may have any one of the following structures, but is not limited thereto.
  • the electron transport layer may serve to facilitate electron transport.
  • the electron transport material a material capable of receiving electrons well from the cathode and transferring them to the light emitting layer, and a material having high electron mobility is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the thickness of the electron transport layer may be 1 to 50 nm. If the thickness of the electron transport layer is 1 nm or more, there is an advantage in preventing deterioration of electron transport properties, and if it is 50 nm or less, the thickness of the electron transport layer is too thick to prevent an increase in driving voltage to improve electron movement. There are benefits to being able to
  • the electron injection layer may serve to smoothly inject electrons.
  • the electron injecting material has the ability to transport electrons, has an excellent electron injecting effect from the cathode, a light emitting layer or a light emitting material, prevents movement of excitons generated in the light emitting layer to the hole injection layer, and also , compounds having excellent thin film forming ability are preferred.
  • the electron injection and transport layer is a layer that facilitates electron injection and transport. Materials used in the electron injection layer and transport layer described above, or materials capable of receiving electrons from the cathode and transferring them to the light emitting layer may be used.
  • the electron injection and transport layer includes a compound represented by Formula EI-1.
  • At least one of Z11 to Z13 is N and the others are CH,
  • At least one of Z14 to Z16 is N and the others are CH,
  • L701 is a direct bond; A substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • Ar701 to Ar704 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • 1701 is an integer of 1 to 4, and when 1701 is plural, L701 is the same as or different from each other.
  • L701 is a substituted or unsubstituted monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • L701 is a phenylene group; a biphenylylene group; or a naphthylene group.
  • L701 is a phenylene group; or a naphthylene group.
  • Ar701 to Ar704 are the same as or different from each other, and each independently represents a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms or a heteroaryl group having 3 to 30 carbon atoms. .
  • Ar701 to Ar704 are phenyl groups.
  • Formula HB-1 is represented by the following compound.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato) aluminum, tris(2-methyl-8-hydroxyquinolinato) aluminum, tris(8-hydroxyquinolinato) gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( There are o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, and bis(2-methyl-8-quinolinato)(2-naphtolato)gallium. Not limited to this.
  • the hole blocking layer is a layer that blocks holes from reaching the cathode, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complexes, and the like, but are not limited thereto.
  • the hole blocking layer includes a compound represented by Formula HB-1.
  • At least one of Z1 to Z3 is N and the others are CH,
  • L601 and L602 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • Ar601 to Ar603 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • L601 is a substituted or unsubstituted monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • L601 and L602 are the same as or different from each other, and each independently a phenylene group; a biphenylylene group; or a naphthylene group.
  • Ar601 to Ar603 are the same as or different from each other, and each independently represents a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms or a heteroaryl group having 3 to 30 carbon atoms. .
  • Ar601 to Ar603 are a phenyl group or a triphenylene group.
  • Formula HB-1 is represented by the following compound.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • the organic light emitting device of the present invention may be manufactured by conventional organic light emitting device manufacturing methods and materials, except for forming one or more organic material layers using the above compounds.
  • amine4 (15 g, 68.4 mmol), sub1-2 (38.3 g, 136.8 mmol), and sodium tert-butoxide (19.7 g, 205.2 mmol) were added to 300 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol) was added. After 5 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • amine5 (15 g, 68.4 mmol), sub1-2 (38.3 g, 136.8 mmol), and sodium tert-butoxide (19.7 g, 205.2 mmol) were added to 300 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol) was added. After 4 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • amine15 (15 g, 68.4 mmol), sub2-7 (27.9 g, 136.8 mmol), and sodium tert-butoxide (19.7 g, 205.2 mmol) were added to 300 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • amine24 (15 g, 68.4 mmol), sub3-3 (27.9 g, 136.8 mmol), and sodium tert-butoxide (19.7 g, 205.2 mmol) were added to 300 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • amine5 (15 g, 68.4 mmol), sub1-2 (19.1 g, 68.4 mmol), and sodium tert-butoxide (9.9 g, 102.6 mmol) were added to 300 ml of xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.7 mmol) was added. After 5 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound 37_P-1 15 g, 29.3 mmol
  • sub1-1 8.2 g, 29.3 mmol
  • sodium tert-butoxide 4.2 g, 43.9 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.3 mmol
  • compound 52_P-1 15 g, 38.8 mmol
  • sub3-3 7.9 g, 38.8 mmol
  • sodium tert-butoxide 5.6 g, 58.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.4 mmol
  • compound 56_P-1 15 g, 38.8 mmol
  • sub4-4 7.9 g, 38.8 mmol
  • sodium tert-butoxide 5.6 g, 58.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.4 mmol
  • compound 57_P-1 15 g, 38.8 mmol
  • sub3-7 7.9 g, 38.8 mmol
  • sodium tert-butoxide 5.6 g, 58.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.4 mmol
  • compound 61_P-1 15 g, 38.8 mmol
  • sub4-4 7.9 g, 38.8 mmol
  • sodium tert-butoxide 5.6 g, 58.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.4 mmol
  • compound 65_P-1 15 g, 38.8 mmol
  • sub5-1 (10.9 g, 38.8 mmol)
  • sodium tert-butoxide 5.6 g, 58.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.4 mmol
  • a glass substrate coated with ITO (indium tin oxide) to a thickness of 1,000 ⁇ was put in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • a Fischer Co. product was used as the detergent
  • distilled water filtered through a second filter of a Millipore Co. product was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes.
  • ultrasonic cleaning was performed with solvents such as isopropyl alcohol, acetone, and methanol, dried, and transported to a plasma cleaner.
  • solvents such as isopropyl alcohol, acetone, and methanol
  • the following compound HI-1 was formed to a thickness of 1150 ⁇ as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum deposited to form a hole transport layer having a thickness of 800 ⁇ .
  • an electron blocking layer was formed on the hole transport layer by vacuum depositing Compound 1 to a film thickness of 150 ⁇ .
  • the following RH-1 compound as a host and the following Dp-7 compound as a dopant were vacuum deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed on the light emitting layer by vacuum depositing the following HB-1 compound to a film thickness of 30 ⁇ . Subsequently, the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 ⁇ .
  • a negative electrode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • the deposition rate of the organic material was maintained at 0.4 to 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride on the negative electrode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum level during deposition was 2x10 -7 to Maintaining 5x10 -6 torr, an organic light emitting device was fabricated.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.
  • An organic light emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.
  • the lifetime T95 means the time required for the luminance to decrease from the initial luminance (6000 nit) to 95%.
  • the red organic light emitting device of Example 1 uses materials widely used in the prior art, and has a structure in which Dp-7 is used as a dopant for the red light emitting layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1의 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 발명은 2021년 11월 12일 한국 특허청에 제출된 한국 특허 제 10-2021-0155726호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 명세서에서, 유기 발광 소자란 유기 반도체 물질을 이용한 발광 소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및/또는 전자의 교류를 필요로 한다. 유기 발광 소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 발광 소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 발광 소자이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자억제층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트 등의 특성을 갖는 것으로 알려져 있다.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 억제 물질, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다.
또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도펀트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도펀트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도펀트의 파장대로 이동하므로, 이용하는 도펀트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 억제 물질, 전자 수송 물질, 전자 주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되므로 새로운 재료의 개발이 계속 요구되고 있다.
본 명세서에는 화합물 및 이를 포함하는 유기 발광 소자가 기재된다.
본 명세서의 일 실시상태는 하기 화학식 1의 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022017781-appb-img-000001
상기 화학식 1에서,
X1 내지 X8, 및 X11 내지 X18은 서로 같거나 상이하고, 각각 독립적으로 N 또는 CR이고,
X1 내지 X8 중 하나는 N이고,
X11 내지 X18 중 하나는 N이고,
R은 서로 같거나 상이하고 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알콕시기, 또는 치환 또는 비치환된 아릴기이고,
Y1및 Y2는 서로 같거나 상이하고 각각 독립적으로 O 또는 S이고,
L1 내지 L3은 서로 같거나 상이하고 각각 독립적으로 직접결합, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이고,
Ar1은 치환 또는 비치환된 지방족 탄화수소고리기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로아릴기; 또는 이들 중 2 이상이 축합된 고리기이다.
또한, 본 발명의 일 실시상태에 따르면, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 발명의 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다. 본 발명의 화합물을 포함하여 유기 발광 소자를 제조하는 경우, 고효율, 저전압 및 장수명 특성을 갖는 유기 발광 소자를 얻을 수 있으며, 본 발명의 화합물을 유기 발광 소자의 발광층에 포함하는 경우, 높은 색재현율을 가지는 유기 발광 소자를 제조할 수 있다.
도 1 및 2는 본 발명에 따른 유기 발광 소자의 예를 도시한 것이다.
[부호의 설명]
1: 기판
2: 양극
3: 유기물층
4: 음극
5: 정공주입층
6: 정공수송층
7: 전자차단층
8: 발광층
9: 정공저지층
10: 전자주입 및 수송층
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기(-CN); 실릴기; 붕소기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 사이클로알킬기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 도 있다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)가 있다.
본 명세서에 있어서, 실릴기는 -SiY1Y2Y3의 화학식으로 표시될 수 있고, 상기 Y1, Y2 및 Y3는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 -BY4Y5의 화학식으로 표시될 수 있고, 상기 Y4 및 Y5는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기; 디메틸아민기; 에틸아민기; 디에틸아민기; 페닐아민기; 나프틸아민기; 바이페닐아민기; 안트라세닐아민기; 9-메틸안트라세닐아민기; 디페닐아민기; 디톨릴아민기; N-페닐톨릴아민기; 트리페닐아민기; N-페닐바이페닐아민기; N-페닐나프틸아민기; N-바이페닐나프틸아민기; N-나프틸플루오레닐아민기; N-페닐페난트레닐아민기; N-바이페닐페난트레닐아민기; N-페닐플루오레닐아민기; N-페닐터페닐아민기; N-페난트레닐플루오레닐아민기; N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 알킬아민기, N-아릴알킬아민기, 알킬티옥시기, 알킬술폭시기, N-알킬헤테로아릴아민기 중의 알킬기는 전술한 알킬기의 예시와 같다. 구체적으로 알킬티옥시기로는 메틸티옥시기; 에틸티옥시기; tert-부틸티옥시기; 헥실티옥시기; 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실; 에틸술폭시기; 프로필술폭시기; 부틸술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필기, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기, 사이클로헵틸기, 사이클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐렌기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 헤테로고리기의 예로는 피리딘기, 피롤기, 피리미딘기, 피리다지닐기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 디벤조퓨란기, 디벤조티오펜기, 카바졸기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 2가기인 것을 제외하고, 상기 아릴기에서 정의한 바와 같다.
본 명세서에 있어서, 헤테로아릴렌기는 2가기인 것을 제외하고, 상기 헤테로아릴기에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 1-A 내지 1-G 중 어느 하나이다.
[화학식 1-A]
Figure PCTKR2022017781-appb-img-000002
[화학식 1-B]
Figure PCTKR2022017781-appb-img-000003
[화학식 1-C]
Figure PCTKR2022017781-appb-img-000004
[화학식 1-D]
Figure PCTKR2022017781-appb-img-000005
[화학식 1-E]
Figure PCTKR2022017781-appb-img-000006
[화학식 1-F]
Figure PCTKR2022017781-appb-img-000007
[화학식 1-G]
Figure PCTKR2022017781-appb-img-000008
상기 화학식 1-A 내지 1-G에 있어서, 상기 X1 내지 X18, L3, Y1, Y2 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-16 중 어느 하나이다.
[화학식 1-1]
Figure PCTKR2022017781-appb-img-000009
[화학식 1-2]
Figure PCTKR2022017781-appb-img-000010
[화학식 1-3]
Figure PCTKR2022017781-appb-img-000011
[화학식 1-4]
Figure PCTKR2022017781-appb-img-000012
[화학식 1-5]
Figure PCTKR2022017781-appb-img-000013
[화학식 1-6]
Figure PCTKR2022017781-appb-img-000014
[화학식 1-7]
Figure PCTKR2022017781-appb-img-000015
[화학식 1-8]
Figure PCTKR2022017781-appb-img-000016
[화학식 1-9]
Figure PCTKR2022017781-appb-img-000017
[화학식 1-10]
Figure PCTKR2022017781-appb-img-000018
[화학식 1-11]
Figure PCTKR2022017781-appb-img-000019
[화학식 1-12]
Figure PCTKR2022017781-appb-img-000020
[화학식 1-13]
Figure PCTKR2022017781-appb-img-000021
[화학식 1-14]
Figure PCTKR2022017781-appb-img-000022
[화학식 1-15]
Figure PCTKR2022017781-appb-img-000023
[화학식 1-16]
Figure PCTKR2022017781-appb-img-000024
상기 화학식 1-1 내지 1-16에 있어서, 상기 X1 내지 X18, L1 내지 L3, Y1, Y2 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2-1 내지 2-3 중 어느 하나이다.
[화학식 2-1]
Figure PCTKR2022017781-appb-img-000025
[화학식 2-2]
Figure PCTKR2022017781-appb-img-000026
[화학식 2-3]
Figure PCTKR2022017781-appb-img-000027
상기 화학식 2-1 내지 2-3에 있어서, 상기 X1 내지 X18, L1 내지 L3, 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2-A 내지 2-C 중 어느 하나이다.
[화학식 2-A]
Figure PCTKR2022017781-appb-img-000028
[화학식 2-B]
Figure PCTKR2022017781-appb-img-000029
[화학식 2-C]
Figure PCTKR2022017781-appb-img-000030
상기 화학식 2-A 내지 2-C에 있어서, 상기 X1 내지 X18, L1 내지 L3, 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2-4 내지 2-7 중 어느 하나이다.
[화학식 2-4]
Figure PCTKR2022017781-appb-img-000031
[화학식 2-5]
Figure PCTKR2022017781-appb-img-000032
[화학식 2-6]
Figure PCTKR2022017781-appb-img-000033
[화학식 2-7]
Figure PCTKR2022017781-appb-img-000034
상기 화학식 2-4 내지 2-7에 있어서, 상기 X1 내지 X18, L1 내지 L3, 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2-8 내지 2-11 중 어느 하나이다.
[화학식 2-8]
Figure PCTKR2022017781-appb-img-000035
[화학식 2-9]
Figure PCTKR2022017781-appb-img-000036
[화학식 2-10]
Figure PCTKR2022017781-appb-img-000037
[화학식 2-11]
Figure PCTKR2022017781-appb-img-000038
상기 화학식 2-8 내지 2-11에 있어서, 상기 X1 내지 X18, L1 내지 L3, 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2-12 내지 2-15 중 어느 하나이다.
[화학식 2-12]
Figure PCTKR2022017781-appb-img-000039
[화학식 2-13]
Figure PCTKR2022017781-appb-img-000040
[화학식 2-14]
Figure PCTKR2022017781-appb-img-000041
[화학식 2-15]
Figure PCTKR2022017781-appb-img-000042
상기 화학식 2-12 내지 2-15에 있어서, 상기 X1 내지 X18, L1 내지 L3, 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2-16 내지 2-19 중 어느 하나이다.
[화학식 2-16]
Figure PCTKR2022017781-appb-img-000043
[화학식 2-17]
Figure PCTKR2022017781-appb-img-000044
[화학식 2-18]
Figure PCTKR2022017781-appb-img-000045
[화학식 2-19]
Figure PCTKR2022017781-appb-img-000046
상기 화학식 2-16 내지 2-19에 있어서, 상기 X1 내지 X18, L1 내지 L3, 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X1은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X2는 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X3은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X4는 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X5는 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X6은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X7은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X8 중 X8은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X11은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X12는 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X13은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X14는 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X15는 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X16은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X17은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X18 중 X18은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, 상기 Y1 및 Y2는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 Y1 및 Y2는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 Y1은 S이고, Y2는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 Y1은 O이고, Y2는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 R은 수소, 중수소, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알콕시기, 또는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R은 수소, 중수소, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기, 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R은 수소; 중수소; 중수소로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 중수소로 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기; 또는 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R은 수소, 중수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 또는 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R은 수소 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 20의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 15의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 2가의 비페닐기, 치환 또는 비치환된 2가의 나프틸기, 치환 또는 비치환된 2가의 플루오렌기, 치환 또는 비치환된 2가의 안트라센기, 또는 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 중수소로 치환 또는 비치환된 2가의 나프틸기, 중수소로 치환 또는 비치환된 2가의 플루오렌기, 중수소로 치환 또는 비치환된 2가의 안트라센기, 또는 중수소로 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 또는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 내지 L3은 서로 같거나 상이하고, 각각 독립적으로, 페닐렌기, 2가의 비페닐기, 또는 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 같고, 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 같고, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 2가의 비페닐기, 치환 또는 비치환된 2가의 나프틸기, 치환 또는 비치환된 2가의 플루오렌기, 치환 또는 비치환된 2가의 안트라센기, 또는 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 같고, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 중수소로 치환 또는 비치환된 2가의 나프틸기, 중수소로 치환 또는 비치환된 2가의 플루오렌기, 중수소로 치환 또는 비치환된 2가의 안트라센기, 또는 중수소로 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 같고, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 또는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 다르고, 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 다르고, 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 2가의 비페닐기, 치환 또는 비치환된 2가의 나프틸기, 치환 또는 비치환된 2가의 플루오렌기, 치환 또는 비치환된 2가의 안트라센기, 또는 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 다르고, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 중수소로 치환 또는 비치환된 2가의 나프틸기, 중수소로 치환 또는 비치환된 2가의 플루오렌기, 중수소로 치환 또는 비치환된 2가의 안트라센기, 또는 중수소로 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L2는 서로 다르고, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 또는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3은 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3은 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 2가의 비페닐기, 치환 또는 비치환된 2가의 나프틸기, 치환 또는 비치환된 2가의 플루오렌기, 치환 또는 비치환된 2가의 안트라센기, 또는 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3은 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 중수소로 치환 또는 비치환된 2가의 나프틸기, 중수소로 치환 또는 비치환된 2가의 플루오렌기, 중수소로 치환 또는 비치환된 2가의 안트라센기, 또는 중수소로 치환 또는 비치환된 2가의 페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3은 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 또는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 중수소로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 중수소로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 중수소로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 탄소수 3 내지 20의 지방족 탄화수소고리기; 탄소수 6 내지 20의 아릴기; 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 페닐기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 비페닐기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 터페닐기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 나프틸기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 안트라센기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 페난트렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 트리페닐렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 파이렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 또는 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 페닐기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 비페닐기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 터페닐기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 나프틸기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 안트라센기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 페난트렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 트리페닐렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 파이렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 또는 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 중수소 또는 아릴기로 치환 또는 비치환된 페닐기; 아릴기로 치환 또는 비치환된 비페닐기; 중수소, 또는 아릴기로 치환 또는 비치환된 터페닐기; 중수소 또는 아릴기로 치환 또는 비치환된 나프틸기; 중수소 또는 아릴기로 치환 또는 비치환된 안트라센기; 중수소 또는 아릴기로 치환 또는 비치환된 페난트렌기; 중수소 또는 아릴기로 치환 또는 비치환된 트리페닐렌기; 중수소 또는 아릴기로 치환 또는 비치환된 파이렌기; 중수소 또는 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 또는 중수소 또는 아릴기로 치환 또는 비치환된 벤조페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 아릴기로 치환 또는 비치환된 페닐기; 아릴기로 치환 또는 비치환된 비페닐기; 아릴기로 치환 또는 비치환된 터페닐기; 아릴기로 치환 또는 비치환된 나프틸기; 아릴기로 치환 또는 비치환된 안트라센기; 아릴기로 치환 또는 비치환된 페난트렌기; 아릴기로 치환 또는 비치환된 트리페닐렌기; 아릴기로 치환 또는 비치환된 파이렌기; 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 또는 아릴기로 치환 또는 비치환된 벤조페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아릴기로 치환 또는 비치환된 아다만틸기; 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 아릴기로 치환 또는 비치환된 시클로펜틸기; 아릴기로 치환 또는 비치환된 시클로헥실기; 아릴기로 치환 또는 비치환된 페닐기; 아릴기로 치환 또는 비치환된 비페닐기; 아릴기로 치환 또는 비치환된 터페닐기; 아릴기로 치환 또는 비치환된 나프틸기; 아릴기로 치환 또는 비치환된 안트라센기; 아릴기로 치환 또는 비치환된 페난트렌기; 아릴기로 치환 또는 비치환된 트리페닐렌기; 아릴기로 치환 또는 비치환된 파이렌기; 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 또는 아릴기로 치환 또는 비치환된 벤조페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아다만틸기; 스피로아다만텐플루오렌기; 메틸기 또는 페닐기로 치환 또는 비치환된 플루오렌기; 페닐기로 치환 또는 비치환된 시클로펜틸기; 페닐기 또는 나프틸기로 치환 또는 비치환된 시클로헥실기; 페닐기 또는 나프틸기로 치환 또는 비치환된 페닐기; 페닐기 또는 나프틸기로 치환 또는 비치환된 비페닐기; 페닐기 또는 나프틸기로 치환 또는 비치환된 터페닐기; 페닐기 또는 나프틸기로 치환 또는 비치환된 나프틸기; 페닐기 또는 나프틸기로 치환 또는 비치환된 안트라센기; 페닐기 또는 나프틸기로 치환 또는 비치환된 페난트렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 트리페닐렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 파이렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 크라이센(chrysene)기; 또는 페닐기 또는 나프틸기로 치환 또는 비치환된 벤조페난트렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 치환 또는 비치환된 탄소수 10 내지 30의 아릴기; 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 치환 또는 비치환된 탄소수 10 내지 20의 아릴기; 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 중수소로 치환 또는 비치환된 탄소수 10 내지 30의 아릴기; 중수소로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 아릴기로 치환 또는 비치환된 탄소수 10 내지 30의 아릴기; 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 아릴기로 치환 또는 비치환된 탄소수 10 내지 20의 아릴기; 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 중수소로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 탄소수 10 내지 20의 아릴기; 중수소로 치환 또는 비치환된 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 탄소수 3 내지 20의 지방족 탄화수소고리기; 탄소수 10 내지 20의 아릴기; 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 10 내지 30의 아릴기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 지방족 탄화수소고리기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 10 내지 20의 아릴기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 10 내지 30의 아릴기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 비페닐기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 터페닐기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 나프틸기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 안트라센기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 페난트렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 트리페닐렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 파이렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조페난트렌기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 플루오란텐기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 카바졸기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조카바졸기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조나프토퓨란기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조나프토티오펜기; 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 디벤조퓨란기; 또는 중수소, 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 디벤조티오펜기 이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 비페닐기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 터페닐기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 나프틸기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 안트라센기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 페난트렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 트리페닐렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 파이렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조페난트렌기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 플루오란텐기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 카바졸기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조카바졸기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조나프토퓨란기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 벤조나프토티오펜기; 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 디벤조퓨란기; 또는 알킬기, 아릴기, 또는 헤테로아릴기로 치환 또는 비치환된 디벤조티오펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 중수소 또는 알킬기로 치환 또는 비치환된 아다만틸기; 중수소 또는 알킬기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 중수소, 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 아릴기로 치환 또는 비치환된 비페닐기; 중수소, 또는 아릴기로 치환 또는 비치환된 터페닐기; 중수소 또는 아릴기로 치환 또는 비치환된 나프틸기; 중수소 또는 아릴기로 치환 또는 비치환된 안트라센기; 중수소 또는 아릴기로 치환 또는 비치환된 페난트렌기; 중수소 또는 아릴기로 치환 또는 비치환된 트리페닐렌기; 중수소 또는 아릴기로 치환 또는 비치환된 파이렌기; 중수소 또는 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 중수소 또는 아릴기로 치환 또는 비치환된 벤조페난트렌기; 중수소 또는 아릴기로 치환 또는 비치환된 플루오란텐기; 중수소 또는 아릴기로 치환 또는 비치환된 카바졸기; 중수소 또는 아릴기로 치환 또는 비치환된 벤조카바졸기; 중수소 또는 아릴기로 벤조나프토퓨란기; 중수소 또는 아릴기로 치환 또는 비치환된 벤조나프토티오펜기; 중수소 또는 아릴기로 치환 또는 비치환된 디벤조퓨란기; 또는 중수소 또는 아릴기로 치환 또는 비치환된 디벤조티오펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 아릴기로 치환 또는 비치환된; 아릴기로 치환 또는 비치환된 비페닐기; 아릴기로 치환 또는 비치환된 터페닐기; 아릴기로 치환 또는 비치환된 나프틸기; 아릴기로 치환 또는 비치환된 안트라센기; 아릴기로 치환 또는 비치환된 페난트렌기; 아릴기로 치환 또는 비치환된 트리페닐렌기; 아릴기로 치환 또는 비치환된 파이렌기; 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 아릴기로 치환 또는 비치환된 벤조페난트렌기; 아릴기로 치환 또는 비치환된 플루오란텐기; 아릴기로 치환 또는 비치환된 카바졸기; 아릴기로 치환 또는 비치환된 벤조카바졸기; 아릴기로 벤조나프토퓨란기; 아릴기로 치환 또는 비치환된 벤조나프토티오펜기; 아릴기로 치환 또는 비치환된 디벤조퓨란기; 또는 아릴기로 치환 또는 비치환된 디벤조티오펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 아다만틸기; 스피로아다만텐플루오렌기; 아릴기로 치환 또는 비치환된 시클로펜틸기; 아릴기로 치환 또는 비치환된 시클로헥실기; 아릴기로 치환 또는 비치환된 비페닐기; 아릴기로 치환 또는 비치환된 터페닐기; 아릴기로 치환 또는 비치환된 나프틸기; 아릴기로 치환 또는 비치환된 안트라센기; 아릴기로 치환 또는 비치환된 페난트렌기; 아릴기로 치환 또는 비치환된 트리페닐렌기; 아릴기로 치환 또는 비치환된 파이렌기; 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 아릴기로 치환 또는 비치환된 벤조페난트렌기; 아릴기로 치환 또는 비치환된 플루오란텐기; 아릴기로 치환 또는 비치환된 카바졸기; 아릴기로 치환 또는 비치환된 벤조카바졸기; 아릴기로 벤조나프토퓨란기; 아릴기로 치환 또는 비치환된 벤조나프토티오펜기; 아릴기로 치환 또는 비치환된 디벤조퓨란기; 또는 아릴기로 치환 또는 비치환된 디벤조티오펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 아다만틸기; 스피로아다만텐플루오렌기; 메틸기 또는 페닐기로 치환 또는 비치환된 플루오렌기; 페닐기로 치환 또는 비치환된 시클로펜틸기; 페닐기 또는 나프틸기로 치환 또는 비치환된 시클로헥실기; 페닐기 또는 나프틸기로 치환 또는 비치환된 비페닐기; 페닐기 또는 나프틸기로 치환 또는 비치환된 터페닐기; 페닐기 또는 나프틸기로 치환 또는 비치환된 나프틸기; 페닐기 또는 나프틸기로 치환 또는 비치환된 안트라센기; 페닐기 또는 나프틸기로 치환 또는 비치환된 페난트렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 트리페닐렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 파이렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 크라이센(chrysene)기; 페닐기 또는 나프틸기로 치환 또는 비치환된 벤조페난트렌기; 페닐기 또는 나프틸기로 치환 또는 비치환된 플루오란텐기; 페닐기 또는 나프틸기로 치환 또는 비치환된 카바졸기; 페닐기 또는 나프틸기로 치환 또는 비치환된 벤조카바졸기; 페닐기 또는 나프틸기로 벤조나프토퓨란기; 페닐기 또는 나프틸기로 치환 또는 비치환된 벤조나프토티오펜기; 페닐기 또는 나프틸기로 치환 또는 비치환된 디벤조퓨란기; 또는 페닐기 또는 나프틸기로 치환 또는 비치환된 디벤조티오펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 아래 구조식 중 하나이다.
Figure PCTKR2022017781-appb-img-000047
Figure PCTKR2022017781-appb-img-000048
Figure PCTKR2022017781-appb-img-000049
Figure PCTKR2022017781-appb-img-000050
Figure PCTKR2022017781-appb-img-000051
Figure PCTKR2022017781-appb-img-000052
Figure PCTKR2022017781-appb-img-000053
Figure PCTKR2022017781-appb-img-000054
Figure PCTKR2022017781-appb-img-000055
Figure PCTKR2022017781-appb-img-000056
Figure PCTKR2022017781-appb-img-000057
Figure PCTKR2022017781-appb-img-000058
Figure PCTKR2022017781-appb-img-000059
Figure PCTKR2022017781-appb-img-000060
Figure PCTKR2022017781-appb-img-000061
Figure PCTKR2022017781-appb-img-000062
Figure PCTKR2022017781-appb-img-000063
Figure PCTKR2022017781-appb-img-000064
Figure PCTKR2022017781-appb-img-000065
Figure PCTKR2022017781-appb-img-000066
Figure PCTKR2022017781-appb-img-000067
Figure PCTKR2022017781-appb-img-000068
Figure PCTKR2022017781-appb-img-000069
Figure PCTKR2022017781-appb-img-000070
Figure PCTKR2022017781-appb-img-000071
Figure PCTKR2022017781-appb-img-000072
Figure PCTKR2022017781-appb-img-000073
Figure PCTKR2022017781-appb-img-000074
Figure PCTKR2022017781-appb-img-000075
Figure PCTKR2022017781-appb-img-000076
Figure PCTKR2022017781-appb-img-000077
Figure PCTKR2022017781-appb-img-000078
Figure PCTKR2022017781-appb-img-000079
Figure PCTKR2022017781-appb-img-000080
Figure PCTKR2022017781-appb-img-000081
Figure PCTKR2022017781-appb-img-000082
Figure PCTKR2022017781-appb-img-000083
Figure PCTKR2022017781-appb-img-000084
Figure PCTKR2022017781-appb-img-000085
Figure PCTKR2022017781-appb-img-000086
Figure PCTKR2022017781-appb-img-000087
Figure PCTKR2022017781-appb-img-000088
Figure PCTKR2022017781-appb-img-000089
Figure PCTKR2022017781-appb-img-000090
Figure PCTKR2022017781-appb-img-000091
Figure PCTKR2022017781-appb-img-000092
Figure PCTKR2022017781-appb-img-000093
Figure PCTKR2022017781-appb-img-000094
Figure PCTKR2022017781-appb-img-000095
Figure PCTKR2022017781-appb-img-000096
Figure PCTKR2022017781-appb-img-000097
Figure PCTKR2022017781-appb-img-000098
상기 화학식 1의 화합물의 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 또는 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질 및 전자 수송층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 전술한 화합물을 포함하는 것을 특징으로 한다.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 정공주입 및 정공수송을 동시에 하는 층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층 또는 더 많은 수의 유기물층을 포함할 수 있다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 전자수송층, 전자주입층 및 전자주입과 전자수송을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 유기 발광 소자에서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함할 수 있고, 상기 전자수송층 또는 전자주입층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 정공주입층, 정공수송층 및 정공주입과 정공수송을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 유기 발광 소자에서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함할 수 있고, 상기 정공수송층 또는 정공주입층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공주입층/정공버퍼층/정공수송층/발광층/음극
(4) 양극/정공수송층/발광층/전자수송층/음극
(5) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(7) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(8) 양극/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/음극
(9) 양극/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/전자주입층 /음극
(10) 양극/ 정공수송층/전자차단층/발광층/전자수송층/음극
(11) 양극/ 정공수송층/전자차단층/발광층/전자수송층/전자주입층/음극
(12) 양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/음극
(13)양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/전자주입 층/음극
(14) 양극/정공수송층/발광층/정공억제층/전자수송층/음극
(15) 양극/정공수송층/발광층/ 정공억제층/전자수송층/전자주입층/음극
(16) 양극/정공주입층/정공수송층/발광층/정공억제층/전자수송층/음극
(17)양극/정공주입층/정공수송층/발광층/정공억제층/전자수송층/전자주입 층/음극
(18)양극/정공주입층/정공수송층/전자차단층/발광층/정공저지층/전자주입및 수송층/음극
본 발명의 유기 발광 소자의 구조는 도 1 및 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1에는 기판(1) 위에 양극(2), 유기물층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 유기물층(3)에 포함될 수 있다.
도 2에는 기판(1) 위에 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(8), 정공저지층(9), 전자주입 및 수송층(10) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층(5), 정공수송층(6), 또는 전자차단층(7)에 포함될 수 있다. 바람직하게는 전자차단층(7)에 포함될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 정공수송 및 정공주입을 동시에 하는 층, 발광층, 전자수송층, 전자주입층, 및 전자수송 및 전자주입을 동시에하는 층으로 이루어진 군으로부터 선택된 1층 이상을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극은 정공을 주입하는 전극으로, 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO, Indium Tin Oxide), 인듐아연 산화물(IZO, Indium Zinc Oxide)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극은 전자를 주입하는 전극으로, 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 양극으로부터 발광층으로 정공의 주입을 원활하게 하는 역할을 하는 층이며, 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 정공주입층의 두께는 1 내지 150nm일 수 있다. 상기 정공주입층의 두께가 1nm 이상이면, 정공 주입 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 150nm 이하이면, 정공주입층의 두께가 너무 두꺼워 정공의 이동을 향상시키기 위해 구동전압이 상승되는것을 방지할 수 있는 이점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 정공주입층은 하기 화학식 HI-1 로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 HI-1]
Figure PCTKR2022017781-appb-img-000099
상기 화학식 HI-1에 있어서,
R400 내지 R402는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 헤테로아릴기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이거나, 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
L402는 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L402는 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R400 내지 R402는 서로 같거나 상이하고, 각가 독립적으로 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 헤테로아릴기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이다.
본 명세서의 일 실시상태에 따르면, 상기 R402는 카바졸기 또는 아릴아민기로 치환된 페닐기; 카바졸기 또는 아릴아민기로 치환된 바이페닐기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이다.
본 명세서의 일 실시상태에 따르면, 상기 R400 및 R401는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이거나, 인접한 기와 서로 결합하여 알킬기로 치환된 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R400 및 R401는 서로 같거나 상이하고, 각각 독립적으로 알킬기로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R400 및 R401는 서로 같거나 상이하고, 각각 독립적으로 페닐기 또는 디메틸플루오렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HI-1은 하기 화합물들 선택된다.
Figure PCTKR2022017781-appb-img-000100
본 명세서의 일 실시상태에 따르면, 상기 정공주입층은 하기 화학식 HI-2 로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 HI-2]
Figure PCTKR2022017781-appb-img-000101
상기 화학식 HI-2에 있어서,
X'1 내지 X'3은 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 또는 할로겐기이며,
R309 내지 R314는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
x1' 내지 x3'은 각각 1 내지 4의 정수이고, 이들이 2 이상일 때 괄호안의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 X'1 내지 X'3는 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 X'1 내지 X'3는 F 또는 Cl이다.
본 명세서의 일 실시상태에 따르면, 상기 X'1 내지 X'3는 F이다.
본 명세서의 일 실시상태에 따르면, 상기 R309 내지 R314는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아민기이다.
본 명세서의 일 실시상태에 따르면, 상기 R309 내지 R314는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 니트릴이다.
본 명세서의 일 실시상태에 따르면, 상기 R309 내지 R314는 니트릴기다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HI-2은 하기 화합물로 표시된다.
Figure PCTKR2022017781-appb-img-000102
상기 정공수송층은 정공의 수송을 원활하게 하는 역할을 할 수 있다. 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 정공수송층은 하기 화학식 HT-2로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 HT-2]
Figure PCTKR2022017781-appb-img-000103
상기 화학식 HT-2에 있어서,
R403 내지 R406는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 헤테로아릴기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이거나, 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
L403는 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이고,
l403은 1 내지 3의 정수이고, l403이 2 이상이면, L403은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 R403 내지 R406는 서로 같거나 상이하고, 각가 독립적으로 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 헤테로아릴기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이다.
본 명세서의 일 실시상태에 따르면, 상기 R403 내지 R406는 서로 같거나 상이하고, 각가 독립적으로 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R403 내지 R406는 서로 같거나 상이하고, 각가 독립적으로 페닐기, 비페닐기, 또는 나프틸기이다
본 명세서의 일 실시상태에 따르면, 상기 R403 내지 R406는 서로 같거나 상이하고, 각가 독립적으로 페닐기 이다.
본 명세서의 일 실시상태에 따르면, 상기 L403은 탄소수 6 내지 30의 아릴렌기, 또는 아릴렌기로 치환된 탄소수 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L403은 페닐렌기, 2가의 비페닐기, 또는 아릴기로 치환 또는 비치환된 2가의 카바졸기이다.
본 명세서의 일 실시상태에 따르면, 상기 L403은 나프틸기로 치환된 2가의 카바졸기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HT-2는 하기 화합물들 선택된다.
Figure PCTKR2022017781-appb-img-000104
정공주입층과 정공수송층 사이에 추가로 정공버퍼층이 구비될 있으며, 당 기술분야에 알려져 있는 정공주입 또는 수송재료를 포함할 수 있다.
정공수송층과 발광층 사이에 전자차단층이 구비될 수 있다. 상기 전자차단층은 전술한 스피로 화합물 또는 당 기술분야에 알려져 있는 재료가 사용될 수 있다.
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 호스트는 하기 화학식 H-1로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 H-1]
Figure PCTKR2022017781-appb-img-000105
상기 화학식 H-1에 있어서,
Xx 내지 Xz 중 하나 이상은 N이고, 나머지는 서로 같거나 상이하고 CH이고,
Ya 및 Yb는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이고,
Ht는 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이고,
ht는 1 내지 4의 정수이고, ht가 2 이상일 때, Ht는 서로 같거나 상이하다.
본 명세서에 있어서, 상기 Xx 내지 Xz는 N이다.
본 명세서에 있어서, 상기 Ya 및 Yb는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수3 내지 30의 헤테로아릴기이다.
본 명세서에 있어서, 상기 Ya 및 Yb는 서로 같거나 상이하고, 각각 독립적으로 탄소수 6 내지 30의 아릴기, 또는 탄소수3 내지 30의 헤테로아릴기이다.
본 명세서에 있어서, 상기 Ya 및 Yb는 페닐기이다.
본 명세서에 있어서, 상기 Ht는 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서에 있어서, 상기 Ht는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이다.
본 명세서에 있어서, 상기 Ht는 카바졸기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 H-1은 아래 화합물이나, 이에 한정하는 것은 아니다.
Figure PCTKR2022017781-appb-img-000106
발광층이 적색 발광을 하는 경우, 발광 도펀트로는 PIQIr(acac)(bis(1-phenylisoquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), PQIr(tris(1-phenylquinoline)iridium), PtOEP(octaethylporphyrin platinum)와 같은 인광 물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다. 발광층이 녹색 발광을 하는 경우, 발광 도펀트로는 Ir(ppy)3(fac tris(2-phenylpyridine)iridium)와 같은 인광물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다. 발광층이 청색 발광을 하는 경우, 발광 도펀트로는 (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), PFO계 고분자, PPV계 고분자와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 도펀트는 금속착체가 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 도펀트는 이리듐 착체가 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 도펀트에 사용되는 이리듐 착체는 아래의 구조 중 어느 하나일 수 있으나, 이에 한정하는 것은 아니다.
Figure PCTKR2022017781-appb-img-000107
Figure PCTKR2022017781-appb-img-000108
Figure PCTKR2022017781-appb-img-000109
상기 전자수송층은 전자의 수송을 원활하게 하는 역할을 할 수 있다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층의 두께는 1 내지 50nm일 수 있다. 전자수송층의 두께가 1nm 이상이면, 전자 수송 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 50nm 이하이면, 전자수송층의 두께가 너무 두꺼워 전자의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
상기 전자주입층은 전자의 주입을 원활하게 하는 역할을 할 수 있다. 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 전자주입 및 수송층은 전자의 주입 및 수송을 원활하게 하는 층이다. 앞서 서술한 전자 주입층 및 수송층에 사용된 물질이나, 음극으로부터 전자를 잘 주입받아 발광층으로 옮겨줄 수 있는 물질들이 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전자주입 및 수송층은 하기 화학식 EI-1의 화합물을 포함한다.
[화학식 EI-1]
Figure PCTKR2022017781-appb-img-000110
상기 화학식 EI-1에 있어서,
Z11 내지 Z13 중 적어도 하나는 N이고, 나머지는 CH이고,
Z14 내지 Z16 중 적어도 하나는 N이고, 나머지는 CH이고,
L701은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
Ar701 내지 Ar704는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
l701은 1 내지 4의 정수이고, l701이 복수일 때, L701은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 L701은 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L701은 페닐렌기; 바이페닐릴렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L701은 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar701 내지 Ar704는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기, 또는 탄소수 3 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar701 내지 Ar704는 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HB-1은 하기 화합물로 표시된다.
Figure PCTKR2022017781-appb-img-000111
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공저지층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 정공저지층은 하기 화학식 HB-1의 화합물을 포함한다.
[화학식 HB-1]
Figure PCTKR2022017781-appb-img-000112
상기 화학식 HB-1에 있어서,
Z1 내지 Z3 중 적어도 하나는 N이고, 나머지는 CH이고,
L601 및 L602는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
Ar601 내지 Ar603은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 L601은 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L601 및 L602는 서로 같거나 상이하고, 각각 독립적으로 페닐렌기; 바이페닐릴렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar601 내지 Ar603은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기, 또는 탄소수 3 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar601 내지 Ar603은 페닐기, 또는 트리페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HB-1은 하기 화합물로 표시된다.
Figure PCTKR2022017781-appb-img-000113
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
하기 반응식에 있어서, 치환기의 종류 및 개수는 당업자가 공지된 출발물질을 적절히 선택함에 따라 다양한 종류의 중간체를 합성할 수 있다. 반응 종류 및 반응 조건은 당기술분야에 알려져 있는 것들이 이용될 수 있다.
합성예 1
Figure PCTKR2022017781-appb-img-000114
질소 분위기에서 amine1 (15 g, 77.6mmol), sub1-1 (43.4g, 155.2 mmol), sodium tert-butoxide (22.4 g, 232.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.8 g, 1.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1 36.4g을 얻었다. (수율 69%, MS: [M+H]+= 680)
합성예 2
Figure PCTKR2022017781-appb-img-000115
질소 분위기에서 amine2 (15 g, 75.3mmol), sub1-2 (42.1g, 150.5 mmol), sodium tert-butoxide (21.7 g, 225.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.8 g, 1.5 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2 32g을 얻었다. (수율 62%, MS: [M+H]+= 686)
합성예 3
Figure PCTKR2022017781-appb-img-000116
질소 분위기에서 amine3 (15 g, 61.1mmol), sub1-2 (34.2g, 122.3 mmol), sodium tert-butoxide (17.6 g, 183.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 3 27.3g을 얻었다. (수율 61%, MS: [M+H]+= 732)
합성예 4
Figure PCTKR2022017781-appb-img-000117
질소 분위기에서 amine4 (15 g, 68.4mmol), sub1-2 (38.3g, 136.8 mmol), sodium tert-butoxide (19.7 g, 205.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 4 32.3g을 얻었다. (수율 67%, MS: [M+H]+= 706)
합성예 5
Figure PCTKR2022017781-appb-img-000118
질소 분위기에서 amine5 (15 g, 68.4mmol), sub1-2 (38.3g, 136.8 mmol), sodium tert-butoxide (19.7 g, 205.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 5 33.8g을 얻었다. (수율 70%, MS: [M+H]+= 706)
합성예 6
Figure PCTKR2022017781-appb-img-000119
질소 분위기에서 amine6 (15 g, 77.6mmol), sub1-2 (43.4g, 155.2 mmol), sodium tert-butoxide (22.4 g, 232.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.8 g, 1.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 6 35.3g을 얻었다. (수율 67%, MS: [M+H]+= 680)
합성예 7
Figure PCTKR2022017781-appb-img-000120
질소 분위기에서 amine7 (15 g, 88.6mmol), sub1-3 (49.6g, 177.3 mmol), sodium tert-butoxide (25.6 g, 265.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.9 g, 1.8 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 7 41.8g을 얻었다. (수율 72%, MS: [M+H]+= 656)
합성예 8
Figure PCTKR2022017781-appb-img-000121
질소 분위기에서 amine8 (15 g, 71.7mmol), sub1-3 (40.1g, 143.3 mmol), sodium tert-butoxide (20.7 g, 215 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 8 30.9g을 얻었다. (수율 62%, MS: [M+H]+= 696)
합성예 9
Figure PCTKR2022017781-appb-img-000122
질소 분위기에서 amine9 (15 g, 104.8mmol), sub1-3 (58.6g, 209.5 mmol), sodium tert-butoxide (30.2 g, 314.3 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (1.1 g, 2.1 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 9 40.9g을 얻었다. (수율 62%, MS: [M+H]+= 630)
합성예 10
Figure PCTKR2022017781-appb-img-000123
질소 분위기에서 amine10 (15 g, 81.9mmol), sub1-4 (45.8g, 163.7 mmol), sodium tert-butoxide (23.6 g, 245.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.8 g, 1.6 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 10 41.1g을 얻었다. (수율 75%, MS: [M+H]+= 670)
합성예 11
Figure PCTKR2022017781-appb-img-000124
질소 분위기에서 amine11 (15 g, 77.6mmol), sub1-5 (43.4g, 155.2 mmol), sodium tert-butoxide (22.4 g, 232.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.8 g, 1.6 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 11 34.8g을 얻었다. (수율 66%, MS: [M+H]+= 680)
합성예 12
Figure PCTKR2022017781-appb-img-000125
질소 분위기에서 amine12 (15 g, 50.8mmol), sub1-5 (28.4g, 101.6 mmol), sodium tert-butoxide (14.6 g, 152.3 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 12 27g을 얻었다. (수율 68%, MS: [M+H]+= 782)
합성예 13
Figure PCTKR2022017781-appb-img-000126
질소 분위기에서 amine13 (15 g, 61.1mmol), sub1-6 (34.2g, 122.3 mmol), sodium tert-butoxide (17.6 g, 183.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 13 33.1g을 얻었다. (수율 74%, MS: [M+H]+= 732)
합성예 14
Figure PCTKR2022017781-appb-img-000127
질소 분위기에서 amine14 (15 g, 50.8mmol), sub1-6 (28.4g, 101.6 mmol), sodium tert-butoxide (14.6 g, 152.3 mmol)을 Xylene 300ml에 넣고 교반 및 류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 14 26.2g을 얻었다. (수율 66%, MS: [M+H]+= 782)
합성예 15
Figure PCTKR2022017781-appb-img-000128
질소 분위기에서 amine13 (15 g, 61.1mmol), sub2-2 (24.9g, 122.3 mmol), sodium tert-butoxide (17.6 g, 183.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 15 26.2g을 얻었다. (수율 74%, MS: [M+H]+= 580)
합성예 16
Figure PCTKR2022017781-appb-img-000129
질소 분위기에서 amine15 (15 g, 68.4mmol), sub2-7 (27.9g, 136.8 mmol), sodium tert-butoxide (19.7 g, 205.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 16 23.5g을 얻었다. (수율 62%, MS: [M+H]+= 554)
합성예 17
Figure PCTKR2022017781-appb-img-000130
질소 분위기에서 amine16 (15 g, 49.4mmol), sub2-1 (20.1g, 98.9 mmol), sodium tert-butoxide (14.3 g, 148.3 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 17 22.7g을 얻었다. (수율 72%, MS: [M+H]+= 638)
합성예 18
Figure PCTKR2022017781-appb-img-000131
질소 분위기에서 amine17 (15 g, 52.6mmol), sub2-2 (21.4g, 105.1 mmol), sodium tert-butoxide (15.2 g, 157.7 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.1 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 18 22.8g을 얻었다. (수율 70%, MS: [M+H]+= 620)
합성예 19
Figure PCTKR2022017781-appb-img-000132
질소 분위기에서 amine18 (15 g, 58.1mmol), sub2-5 (23.6g, 116.1 mmol), sodium tert-butoxide (16.7 g, 174.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 19 21.7g을 얻었다. (수율 63%, MS: [M+H]+= 593)
합성예 20
Figure PCTKR2022017781-appb-img-000133
질소 분위기에서 amine19 (15 g, 58.1mmol), sub2-4 (23.6g, 116.1 mmol), sodium tert-butoxide (16.7 g, 174.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 20 24.1g을 얻었다. (수율 70%, MS: [M+H]+= 593)
합성예 21
Figure PCTKR2022017781-appb-img-000134
질소 분위기에서 amine20 (15 g, 49.8mmol), sub2-7 (20.3g, 99.5 mmol), sodium tert-butoxide (14.4 g, 149.3 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 21 21.5g을 얻었다. (수율 68%, MS: [M+H]+= 636)
합성예 22
Figure PCTKR2022017781-appb-img-000135
질소 분위기에서 amine21 (15 g, 55.7mmol), sub3-7 (22.7g, 111.4 mmol), sodium tert-butoxide (16.1 g, 167.1 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.1 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 22 25.2g을 얻었다. (수율 75%, MS: [M+H]+= 604)
합성예 23
Figure PCTKR2022017781-appb-img-000136
질소 분위기에서 amine22 (15 g, 66mmol), sub3-1 (26.9g, 132 mmol), sodium tert-butoxide (19 g, 197.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 23 26.3g을 얻었다. (수율 71%, MS: [M+H]+= 562)
합성예 24
Figure PCTKR2022017781-appb-img-000137
질소 분위기에서 amine23 (15 g, 64.3mmol), sub3-7 (26.2g, 128.6 mmol), sodium tert-butoxide (18.5 g, 192.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.3 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 24 22.6g을 얻었다. (수율 62%, MS: [M+H]+= 568)
합성예 25
Figure PCTKR2022017781-appb-img-000138
질소 분위기에서 amine24 (15 g, 68.4mmol), sub3-3 (27.9g, 136.8 mmol), sodium tert-butoxide (19.7 g, 205.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 25 25g을 얻었다. (수율 66%, MS: [M+H]+= 554)
합성예 26
Figure PCTKR2022017781-appb-img-000139
질소 분위기에서 amine25 (15 g, 48.6mmol), sub3-2 (19.8g, 97.3 mmol), sodium tert-butoxide (14 g, 145.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 26 18.7g을 얻었다. (수율 60%, MS: [M+H]+= 643)
합성예 27
Figure PCTKR2022017781-appb-img-000140
질소 분위기에서 amine26 (15 g, 64.3mmol), sub3-1 (26.2g, 128.6 mmol), sodium tert-butoxide (18.5 g, 192.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 27 27g을 얻었다. (수율 74%, MS: [M+H]+= 568)
합성예 28
Figure PCTKR2022017781-appb-img-000141
질소 분위기에서 amine27 (15 g, 48.6mmol), sub3-4 (19.8g, 97.3 mmol), sodium tert-butoxide (14 g, 145.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 28 22.8g을 얻었다. (수율 73%, MS: [M+H]+= 643)
합성예 29
Figure PCTKR2022017781-appb-img-000142
질소 분위기에서 amine28 (15 g, 47mmol), sub4-7 (19.1g, 93.9 mmol), sodium tert-butoxide (13.5 g, 140.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 29 19.9g을 얻었다. (수율 65%, MS: [M+H]+= 654)
합성예 30
Figure PCTKR2022017781-appb-img-000143
질소 분위기에서 amine5 (15 g, 68.4mmol), sub1-2 (19.1g, 68.4 mmol), sodium tert-butoxide (9.9 g, 102.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.7 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 30_P-1 23.4g을 얻었다. (수율 74%, MS: [M+H]+= 463)
질소 분위기에서 화합물 30_P-1 (15 g, 32.4mmol), sub1-1 (9.1g, 32.4 mmol), sodium tert-butoxide (4.7 g, 48.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 30 15.8g을 얻었다. (수율 69%, MS: [M+H]+= 706)
합성예 31
Figure PCTKR2022017781-appb-img-000144
질소 분위기에서 화합물 31_P-1 (15 g, 33.9mmol), sub1-1 (9.5g, 33.9 mmol), sodium tert-butoxide (4.9 g, 50.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 31 17g을 얻었다. (수율 73%, MS: [M+H]+= 686)
합성예 32
Figure PCTKR2022017781-appb-img-000145
질소 분위기에서 화합물 32_P-1 (15 g, 30.7mmol), sub1-2 (8.6g, 30.7 mmol), sodium tert-butoxide (4.4 g, 46.1 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 32 16.2g을 얻었다. (수율 72%, MS: [M+H]+= 732)
합성예 33
Figure PCTKR2022017781-appb-img-000146
질소 분위기에서 화합물 33_P-1 (15 g, 27.8mmol), sub1-1 (7.8g, 27.8 mmol), sodium tert-butoxide (4 g, 41.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 33 15.7g을 얻었다. (수율 72%, MS: [M+H]+= 782)
합성예 34
Figure PCTKR2022017781-appb-img-000147
질소 분위기에서 화합물 34_P-1 (15 g, 32.4mmol), sub1-3 (9.1g, 32.4 mmol), sodium tert-butoxide (4.7 g, 48.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 34 14.9g을 얻었다. (수율 65%, MS: [M+H]+= 706)
합성예 35
Figure PCTKR2022017781-appb-img-000148
질소 분위기에서 화합물 35_P-1 (15 g, 32.4mmol), sub1-2 (9.1g, 32.4 mmol), sodium tert-butoxide (4.7 g, 48.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 35 16.5g을 얻었다. (수율 72%, MS: [M+H]+= 706)
합성예 36
Figure PCTKR2022017781-appb-img-000149
질소 분위기에서 화합물 36_P-1 (15 g, 30.7mmol), sub1-3 (8.6g, 30.7 mmol), sodium tert-butoxide (4.4 g, 46.1 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 36 16.4g을 얻었다. (수율 73%, MS: [M+H]+= 732)
합성예 37
Figure PCTKR2022017781-appb-img-000150
질소 분위기에서 화합물 37_P-1 (15 g, 29.3mmol), sub1-1 (8.2g, 29.3 mmol), sodium tert-butoxide (4.2 g, 43.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 37 14.8g을 얻었다. (수율 67%, MS: [M+H]+= 756)
합성예 38
Figure PCTKR2022017781-appb-img-000151
질소 분위기에서 화합물 38_P-1 (15 g, 32.4mmol), sub1-3 (9.1g, 32.4 mmol), sodium tert-butoxide (4.7 g, 48.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 38 16.7g을 얻었다. (수율 73%, MS: [M+H]+= 706)
합성예 39
Figure PCTKR2022017781-appb-img-000152
질소 분위기에서 화합물 39_P-1 (15 g, 35.2mmol), sub1-3 (9.8g, 35.2 mmol), sodium tert-butoxide (5.1 g, 52.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 39 17.4g을 얻었다. (수율 74%, MS: [M+H]+= 670)
합성예 40
Figure PCTKR2022017781-appb-img-000153
질소 분위기에서 화합물 40_P-1 (15 g, 34.4mmol), sub1-1 (9.6g, 34.4 mmol), sodium tert-butoxide (5 g, 51.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 40 15.6g을 얻었다. (수율 67%, MS: [M+H]+= 680)
합성예 41
Figure PCTKR2022017781-appb-img-000154
질소 분위기에서 화합물 41_P-1 (15 g, 30.7mmol), sub1-3 (8.6g, 30.7 mmol), sodium tert-butoxide (4.4 g, 46.1 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 41 14.8g을 얻었다. (수율 66%, MS: [M+H]+= 732)
합성예 42
Figure PCTKR2022017781-appb-img-000155
질소 분위기에서 화합물 42_P-1 (15 g, 33.1mmol), sub1-1 (9.3g, 33.1 mmol), sodium tert-butoxide (4.8 g, 49.7 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 42 14.7g을 얻었다. (수율 64%, MS: [M+H]+= 696)
합성예 43
Figure PCTKR2022017781-appb-img-000156
질소 분위기에서 화합물 43_P-1 (15 g, 30.7mmol), sub1-2 (8.6g, 30.7 mmol), sodium tert-butoxide (4.4 g, 46.1 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 43 14.4g을 얻었다. (수율 64%, MS: [M+H]+= 732)
합성예 44
Figure PCTKR2022017781-appb-img-000157
질소 분위기에서 화합물 44_P-1 (15 g, 36.4mmol), sub1-1 (10.2g, 36.4 mmol), sodium tert-butoxide (5.2 g, 54.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 44 16g을 얻었다. (수율 67%, MS: [M+H]+= 656)
합성예 45
Figure PCTKR2022017781-appb-img-000158
질소 분위기에서 화합물 45_P-1 (15 g, 32.6mmol), sub4-1 (6.6g, 32.6 mmol), sodium tert-butoxide (4.7 g, 48.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 45 15.1g을 얻었다. (수율 74%, MS: [M+H]+= 628)
합성예 46
Figure PCTKR2022017781-appb-img-000159
질소 분위기에서 화합물 46_P-1 (15 g, 34.4mmol), sub4-4 (7g, 34.4 mmol), sodium tert-butoxide (5 g, 51.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 46 12.9g을 얻었다. (수율 62%, MS: [M+H]+= 604)
합성예 47
Figure PCTKR2022017781-appb-img-000160
질소 분위기에서 화합물 47_P-1 (15 g, 36.5mmol), sub4-2 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 47 14.1g을 얻었다. (수율 67%, MS: [M+H]+= 578)
합성예 48
Figure PCTKR2022017781-appb-img-000161
질소 분위기에서 화합물 48_P-1 (15 g, 48.3mmol), sub2-7 (9.8g, 48.3 mmol), sodium tert-butoxide (7 g, 72.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 48 15.7g을 얻었다. (수율 68%, MS: [M+H]+= 478)
합성예 49
Figure PCTKR2022017781-appb-img-000162
질소 분위기에서 화합물 49_P-1 (15 g, 39mmol), sub2-3 (7.9g, 39 mmol), sodium tert-butoxide (5.6 g, 58.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 49 13.5g을 얻었다. (수율 63%, MS: [M+H]+= 552)
합성예 50
Figure PCTKR2022017781-appb-img-000163
질소 분위기에서 화합물 50_P-1 (15 g, 36.5mmol), sub2-5 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 50 14.3g을 얻었다. (수율 68%, MS: [M+H]+= 578)
합성예 51
Figure PCTKR2022017781-appb-img-000164
질소 분위기에서 화합물 51_P-1 (15 g, 36.5mmol), sub2-7 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 51 15g을 얻었다. (수율 71%, MS: [M+H]+= 578)
합성예 52
Figure PCTKR2022017781-appb-img-000165
질소 분위기에서 화합물 52_P-1 (15 g, 38.8mmol), sub3-3 (7.9g, 38.8 mmol), sodium tert-butoxide (5.6 g, 58.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 52 15.2g을 얻었다. (수율 71%, MS: [M+H]+= 554)
합성예 53
Figure PCTKR2022017781-appb-img-000166
질소 분위기에서 화합물 53_P-1 (15 g, 41.6mmol), sub3-7 (8.5g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 53 14.9g을 얻었다. (수율 68%, MS: [M+H]+= 528)
합성예 54
Figure PCTKR2022017781-appb-img-000167
질소 분위기에서 화합물 54_P-1 (15 g, 36.5mmol), sub3-7 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 54 12.9g을 얻었다. (수율 61%, MS: [M+H]+= 578)
합성예 55
Figure PCTKR2022017781-appb-img-000168
질소 분위기에서 화합물 55_P-1 (15 g, 34.4mmol), sub4-2 (7g, 34.4 mmol), sodium tert-butoxide (5 g, 51.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 55 12.9g을 얻었다. (수율 62%, MS: [M+H]+= 604)
합성예 56
Figure PCTKR2022017781-appb-img-000169
질소 분위기에서 화합물 56_P-1 (15 g, 38.8mmol), sub4-4 (7.9g, 38.8 mmol), sodium tert-butoxide (5.6 g, 58.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 56 15.2g을 얻었다. (수율 71%, MS: [M+H]+= 554)
합성예 57
Figure PCTKR2022017781-appb-img-000170
질소 분위기에서 화합물 57_P-1 (15 g, 38.8mmol), sub3-7 (7.9g, 38.8 mmol), sodium tert-butoxide (5.6 g, 58.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 57 15.5g을 얻었다. (수율 72%, MS: [M+H]+= 554)
합성예 58
Figure PCTKR2022017781-appb-img-000171
질소 분위기에서 화합물 58_P-1 (15 g, 31.5mmol), sub3-4 (6.4g, 31.5 mmol), sodium tert-butoxide (4.5 g, 47.3 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 58 14.2g을 얻었다. (수율 70%, MS: [M+H]+= 643)
합성예 59
Figure PCTKR2022017781-appb-img-000172
질소 분위기에서 화합물 59_P-1 (15 g, 36mmol), sub3-2 (7.3g, 36 mmol), sodium tert-butoxide (5.2 g, 54 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 59 12.8g을 얻었다. (수율 61%, MS: [M+H]+= 584)
합성예 60
Figure PCTKR2022017781-appb-img-000173
질소 분위기에서 화합물 60_P-1 (15 g, 36.5mmol), sub4-7 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 60 12.7g을 얻었다. (수율 60%, MS: [M+H]+= 578)
합성예 61
Figure PCTKR2022017781-appb-img-000174
질소 분위기에서 화합물 61_P-1 (15 g, 38.8mmol), sub4-4 (7.9g, 38.8 mmol), sodium tert-butoxide (5.6 g, 58.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 61 13.1g을 얻었다. (수율 61%, MS: [M+H]+= 554)
합성예 62
Figure PCTKR2022017781-appb-img-000175
질소 분위기에서 화합물 62_P-1 (15 g, 30.8mmol), sub4-7 (6.3g, 30.8 mmol), sodium tert-butoxide (4.4 g, 46.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 62 13.3g을 얻었다. (수율 66%, MS: [M+H]+= 654)
합성예 63
Figure PCTKR2022017781-appb-img-000176
질소 분위기에서 화합물 63_P-1 (15 g, 36.5mmol), sub4-5 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 63 14.8g을 얻었다. (수율 70%, MS: [M+H]+= 578)
합성예 64
Figure PCTKR2022017781-appb-img-000177
질소 분위기에서 화합물 64_P-1 (15 g, 41.6mmol), sub5-1 (11.6g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 64 15.3g을 얻었다. (수율 61%, MS: [M+H]+= 604)
합성예 65
Figure PCTKR2022017781-appb-img-000178
질소 분위기에서 화합물 65_P-1 (15 g, 38.8mmol), sub5-1 (10.9g, 38.8 mmol), sodium tert-butoxide (5.6 g, 58.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 65 16.6g을 얻었다. (수율 68%, MS: [M+H]+= 630)
합성예 66
Figure PCTKR2022017781-appb-img-000179
질소 분위기에서 화합물 66_P-1 (15 g, 41.6mmol), sub6-4 (11.6g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 66 15.8g을 얻었다. (수율 63%, MS: [M+H]+= 604)
합성예 67
Figure PCTKR2022017781-appb-img-000180
질소 분위기에서 화합물 67_P-1 (15 g, 36.5mmol), sub7-5 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 67 15g을 얻었다. (수율 71%, MS: [M+H]+= 578)
합성예 68
Figure PCTKR2022017781-appb-img-000181
질소 분위기에서 화합물 68_P-1 (15 g, 34.4mmol), sub7-5 (7g, 34.4 mmol), sodium tert-butoxide (5 g, 51.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 68 12.4g을 얻었다. (수율 60%, MS: [M+H]+= 604)
합성예 69
Figure PCTKR2022017781-appb-img-000182
질소 분위기에서 화합물 69_P-1 (15 g, 32.4mmol), sub7-5 (6.6g, 32.4 mmol), sodium tert-butoxide (4.7 g, 48.6 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 69 12.4g을 얻었다. (수율 61%, MS: [M+H]+= 630)
합성예 70
Figure PCTKR2022017781-appb-img-000183
질소 분위기에서 화합물 70_P-1 (15 g, 34.4mmol), sub4-5 (7g, 34.4 mmol), sodium tert-butoxide (5 g, 51.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 70 13.3g을 얻었다. (수율 64%, MS: [M+H]+= 604)
합성예 71
Figure PCTKR2022017781-appb-img-000184
질소 분위기에서 화합물 71_P-1 (15 g, 32.6mmol), sub4-5 (6.6g, 32.6 mmol), sodium tert-butoxide (4.7 g, 48.9 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 71 12.5g을 얻었다. (수율 61%, MS: [M+H]+= 628)
합성예 72
Figure PCTKR2022017781-appb-img-000185
질소 분위기에서 화합물 72_P-1 (15 g, 30.8mmol), sub4-4 (6.3g, 30.8 mmol), sodium tert-butoxide (4.4 g, 46.2 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 72 15.1g을 얻었다. (수율 75%, MS: [M+H]+= 654)
합성예 73
Figure PCTKR2022017781-appb-img-000186
질소 분위기에서 화합물 73_P-1 (15 g, 41.6mmol), sub4-2 (8.5g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 73 13.8g을 얻었다. (수율 63%, MS: [M+H]+= 528)
합성예 74
Figure PCTKR2022017781-appb-img-000187
질소 분위기에서 화합물 74_P-1 (15 g, 34.4mmol), sub7-5 (7g, 34.4 mmol), sodium tert-butoxide (5 g, 51.5 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 74 12.6g을 얻었다. (수율 61%, MS: [M+H]+= 604)
합성예 75
Figure PCTKR2022017781-appb-img-000188
질소 분위기에서 화합물 75_P-1 (15 g, 41.6mmol), sub7-1 (8.5g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 75 15.8g을 얻었다. (수율 72%, MS: [M+H]+= 528)
합성예 76
Figure PCTKR2022017781-appb-img-000189
질소 분위기에서 화합물 76_P-1 (15 g, 41.6mmol), sub7-2 (8.5g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 76 13.2g을 얻었다. (수율 60%, MS: [M+H]+= 528)
합성예 77
Figure PCTKR2022017781-appb-img-000190
질소 분위기에서 화합물 77_P-1 (15 g, 41.6mmol), sub7-4 (8.5g, 41.6 mmol), sodium tert-butoxide (6 g, 62.4 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 77 16g을 얻었다. (수율 73%, MS: [M+H]+= 528)
합성예 78
Figure PCTKR2022017781-appb-img-000191
질소 분위기에서 화합물 78_P-1 (15 g, 36.5mmol), sub7-3 (7.4g, 36.5 mmol), sodium tert-butoxide (5.3 g, 54.8 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 78 15.2g을 얻었다. (수율 72%, MS: [M+H]+= 578)
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 화합물 1을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 화합물 1 위에 호스트로 하기 RH-1 화합물, 도판트로 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure PCTKR2022017781-appb-img-000192
Figure PCTKR2022017781-appb-img-000193
상기의 과정에서 유기물의 증착속도는 0.4 내지 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 내지 5x10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 2 내지 실시예 78
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
비교예 1 내지 비교예 6
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
상기 실시예 1 내지 실시예 78 및 비교예 1 내지 비교예 6에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15mA/cm2)하고 그 결과를 하기 표 1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 물질 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실시예 1 화합물 1 3.53 21.36 178 적색
실시예 2 화합물 2 3.46 21.90 170 적색
실시예 3 화합물 3 3.42 22.27 183 적색
실시예 4 화합물 4 3.28 23.29 174 적색
실시예 5 화합물 5 3.37 23.28 183 적색
실시예 6 화합물 6 3.33 22.65 180 적색
실시예 7 화합물 7 3.35 20.76 191 적색
실시예 8 화합물 8 3.30 21.13 188 적색
실시예 9 화합물 9 3.43 20.93 196 적색
실시예 10 화합물 10 3.53 22.48 175 적색
실시예 11 화합물 11 3.43 20.84 191 적색
실시예 12 화합물 12 3.37 20.73 186 적색
실시예 13 화합물 13 3.56 22.22 175 적색
실시예 14 화합물 14 3.53 21.79 167 적색
실시예 15 화합물 15 3.39 23.38 191 적색
실시예 16 화합물 16 3.36 22.42 177 적색
실시예 17 화합물 17 3.34 23.18 187 적색
실시예 18 화합물 18 3.37 22.36 189 적색
실시예 19 화합물 19 3.42 22.38 181 적색
실시예 20 화합물 20 3.43 23.09 194 적색
실시예 21 화합물 21 3.34 20.94 177 적색
실시예 22 화합물 22 3.41 21.20 194 적색
실시예 23 화합물 23 3.43 21.17 191 적색
실시예 24 화합물 24 3.43 21.27 176 적색
실시예 25 화합물 25 3.47 22.38 170 적색
실시예 26 화합물 26 3.41 22.00 179 적색
실시예 27 화합물 27 3.54 22.28 171 적색
실시예 28 화합물 28 3.40 22.23 169 적색
실시예 29 화합물 29 3.52 21.33 177 적색
실시예 30 화합물 30 3.57 20.48 167 적색
실시예 31 화합물 31 3.55 21.09 164 적색
실시예 32 화합물 32 3.52 21.12 171 적색
실시예 33 화합물 33 3.57 21.06 158 적색
실시예 34 화합물 34 3.52 20.81 167 적색
실시예 35 화합물 35 3.56 21.41 156 적색
실시예 36 화합물 36 3.59 20.32 143 적색
실시예 37 화합물 37 3.47 21.45 178 적색
실시예 38 화합물 38 3.49 22.14 172 적색
실시예 39 화합물 39 3.49 22.08 169 적색
실시예 40 화합물 40 3.66 20.10 141 적색
실시예 41 화합물 41 3.67 20.45 153 적색
실시예 42 화합물 42 3.64 19.95 142 적색
실시예 43 화합물 43 3.52 21.40 152 적색
실시예 44 화합물 44 3.53 20.26 147 적색
실시예 45 화합물 45 3.46 22.42 177 적색
실시예 46 화합물 46 3.56 21.41 169 적색
실시예 47 화합물 47 3.56 21.57 173 적색
실시예 48 화합물 48 3.62 19.59 152 적색
실시예 49 화합물 49 3.69 19.67 147 적색
실시예 50 화합물 50 3.67 19.58 142 적색
실시예 51 화합물 51 3.66 19.84 142 적색
실시예 52 화합물 52 3.60 20.40 151 적색
실시예 53 화합물 53 3.60 20.90 155 적색
실시예 54 화합물 54 3.52 20.32 149 적색
실시예 55 화합물 55 3.55 20.35 160 적색
실시예 56 화합물 56 3.59 20.29 165 적색
실시예 57 화합물 57 3.43 21.93 174 적색
실시예 58 화합물 58 3.46 22.23 176 적색
실시예 59 화합물 59 3.46 22.23 168 적색
실시예 60 화합물 60 3.55 20.93 153 적색
실시예 61 화합물 61 3.60 21.03 155 적색
실시예 62 화합물 62 3.60 20.80 141 적색
실시예 63 화합물 63 3.61 21.11 145 적색
실시예 64 화합물 64 3.61 20.40 144 적색
실시예 65 화합물 65 3.58 20.81 151 적색
실시예 66 화합물 66 3.60 21.38 146 적색
실시예 67 화합물 67 3.61 19.69 144 적색
실시예 68 화합물 68 3.62 19.79 145 적색
실시예 69 화합물 69 3.62 19.57 149 적색
실시예 70 화합물 70 3.57 21.19 163 적색
실시예 71 화합물 71 3.53 21.33 166 적색
실시예 72 화합물 72 3.57 20.50 159 적색
실시예 73 화합물 73 3.58 21.01 164 적색
실시예 74 화합물 74 3.67 19.94 153 적색
실시예 75 화합물 75 3.65 19.57 149 적색
실시예 76 화합물 76 3.65 19.89 150 적색
실시예 77 화합물 77 3.54 21.48 156 적색
실시예 78 화합물 78 3.59 20.29 141 적색
비교예 1 C-7 4.16 14.58 74 적색
비교예 2 C-8 4.05 15.16 88 적색
비교예 3 C-9 4.28 14.14 81 적색
비교예 4 C-10 3.99 17.64 113 적색
비교예 5 C-11 3.85 18.35 121 적색
비교예 6 C-12 3.92 17.92 118 적색
실시예 1 내지 78 및 비교예 1 내지 6에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 실시예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 적색 발광층의 도판트로 Dp-7을 사용하는 구조이다.
비교예 1 내지 6은 화합물 1 대신 C-7 내지 C-12를 사용하여 유기 발광 소자를 제조했다. 상기 표 1의 결과를 보면 본 발명의 화합물이 전자차단층으로 사용했을 때 비교예 물질에 비해서 구동 전압이 낮아졌으며, 효율도 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 개선시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단 할 수 있다. 결론적으로 본 발명의 화합물을 적색 발광층의 전자 차단층으로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.

Claims (19)

  1. 하기 화학식 1의 화합물:
    [화학식 1]
    Figure PCTKR2022017781-appb-img-000194
    상기 화학식 1에서,
    X1 내지 X8, 및 X11 내지 X18은 서로 같거나 상이하고, 각각 독립적으로 N 또는 CR이고,
    X1 내지 X8 중 하나는 N이고,
    X11 내지 X18 중 하나는 N이고,
    R은 서로 같거나 상이하고 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알콕시기, 또는 치환 또는 비치환된 아릴기이고,
    Y1및 Y2는 서로 같거나 상이하고 각각 독립적으로 O 또는 S이고,
    L1 내지 L3은 서로 같거나 상이하고 각각 독립적으로 직접결합, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이고,
    Ar1은 치환 또는 비치환된 지방족 탄화수소고리기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로아릴기; 또는 이들 중 2 이상이 축합된 고리기이다.
  2. 청구항 1에 있어서, 상기 L1 내지 L3은 서로 같거나 상이하고 각각 독립적으로 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 3 내지 30의 헤테로아릴렌기인 것인 화합물.
  3. 청구항 1에 있어서, 상기 Ar1은 치환 또는 비치환된 탄소수 3 내지 30의 지방족 탄화수소고리기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기; 또는 이들이 축합된 고리인 것인 화합물.
  4. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-16 중 하나인 것인 화합물:
    [화학식 1-1]
    Figure PCTKR2022017781-appb-img-000195
    [화학식 1-2]
    Figure PCTKR2022017781-appb-img-000196
    [화학식 1-3]
    Figure PCTKR2022017781-appb-img-000197
    [화학식 1-4]
    Figure PCTKR2022017781-appb-img-000198
    [화학식 1-5]
    Figure PCTKR2022017781-appb-img-000199
    [화학식 1-6]
    Figure PCTKR2022017781-appb-img-000200
    [화학식 1-7]
    Figure PCTKR2022017781-appb-img-000201
    [화학식 1-8]
    Figure PCTKR2022017781-appb-img-000202
    [화학식 1-9]
    Figure PCTKR2022017781-appb-img-000203
    [화학식 1-10]
    Figure PCTKR2022017781-appb-img-000204
    [화학식 1-11]
    Figure PCTKR2022017781-appb-img-000205
    [화학식 1-12]
    Figure PCTKR2022017781-appb-img-000206
    [화학식 1-13]
    Figure PCTKR2022017781-appb-img-000207
    [화학식 1-14]
    Figure PCTKR2022017781-appb-img-000208
    [화학식 1-15]
    Figure PCTKR2022017781-appb-img-000209
    [화학식 1-16]
    Figure PCTKR2022017781-appb-img-000210
    상기 화학식 1-1 내지 1-16에 있어서, 상기 X1 내지 X18, L1 내지 L3, Y1, Y2 및 Ar1은 상기 화학식 1에서 정의한 바와 같다.
  5. 청구항 1에 있어서, 상기 X1 내지 X8 중 X1은 N이고, 나머지는 CH인 것인 화합물.
  6. 청구항 1에 있어서, 상기 X1 내지 X8 중 X2는 N이고, 나머지는 CH인 것인 화합물.
  7. 청구항 1에 있어서, 상기 X1 내지 X8 중 X3은 N이고, 나머지는 CH인 것인 화합물.
  8. 청구항 1에 있어서, 상기 X1 내지 X8 중 X4는 N이고, 나머지는 CH인 것인 화합물.
  9. 청구항 1에 있어서, 상기 X11 내지 X18 중 X11은 N이고, 나머지는 CH인 것인 화합물.
  10. 청구항 1에 있어서, 상기 X11 내지 X18 중 X12는 N이고, 나머지는 CH인 것인 화합물.
  11. 청구항 1에 있어서, 상기 X11 내지 X18 중 X13은 N이고, 나머지는 CH인 것인 화합물.
  12. 청구항 1에 있어서, 상기 X11 내지 X18 중 X14는 N이고, 나머지는 CH인 것인 화합물.
  13. 청구항 1에 있어서, 상기 Ar1은 알킬기 또는 아릴기로 치환 또는 비치환된 플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 아다만틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 스피로아다만텐플루오렌기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로펜틸기; 알킬기 또는 아릴기로 치환 또는 비치환된 시클로헥실기; 아릴기로 치환 또는 비치환된; 아릴기로 치환 또는 비치환된 비페닐기; 아릴기로 치환 또는 비치환된 터페닐기; 아릴기로 치환 또는 비치환된 나프틸기; 아릴기로 치환 또는 비치환된 안트라센기; 아릴기로 치환 또는 비치환된 페난트렌기; 아릴기로 치환 또는 비치환된 트리페닐렌기; 아릴기로 치환 또는 비치환된 파이렌기; 아릴기로 치환 또는 비치환된 크라이센(chrysene)기; 아릴기로 치환 또는 비치환된 벤조페난트렌기; 아릴기로 치환 또는 비치환된 플루오란텐기; 아릴기로 치환 또는 비치환된 카바졸기; 아릴기로 치환 또는 비치환된 벤조카바졸기; 아릴기로 벤조나프토퓨란기; 아릴기로 치환 또는 비치환된 벤조나프토티오펜기; 아릴기로 치환 또는 비치환된 디벤조퓨란기; 또는 아릴기로 치환 또는 비치환된 디벤조티오펜기인 것인 화합물.
  14. 청구항 1에 있어서, 상기 화학식 1은 아래 구조식 중 하나인 것인 화합물:
    Figure PCTKR2022017781-appb-img-000211
    Figure PCTKR2022017781-appb-img-000212
    Figure PCTKR2022017781-appb-img-000213
    Figure PCTKR2022017781-appb-img-000214
    Figure PCTKR2022017781-appb-img-000215
    Figure PCTKR2022017781-appb-img-000216
    Figure PCTKR2022017781-appb-img-000217
    Figure PCTKR2022017781-appb-img-000218
    Figure PCTKR2022017781-appb-img-000219
    Figure PCTKR2022017781-appb-img-000220
    Figure PCTKR2022017781-appb-img-000221
    Figure PCTKR2022017781-appb-img-000222
    Figure PCTKR2022017781-appb-img-000223
    Figure PCTKR2022017781-appb-img-000224
    Figure PCTKR2022017781-appb-img-000225
    Figure PCTKR2022017781-appb-img-000226
    Figure PCTKR2022017781-appb-img-000227
    Figure PCTKR2022017781-appb-img-000228
    Figure PCTKR2022017781-appb-img-000229
    Figure PCTKR2022017781-appb-img-000230
    Figure PCTKR2022017781-appb-img-000231
    Figure PCTKR2022017781-appb-img-000232
    Figure PCTKR2022017781-appb-img-000233
    Figure PCTKR2022017781-appb-img-000234
    Figure PCTKR2022017781-appb-img-000235
    Figure PCTKR2022017781-appb-img-000236
    Figure PCTKR2022017781-appb-img-000237
    Figure PCTKR2022017781-appb-img-000238
    Figure PCTKR2022017781-appb-img-000239
    Figure PCTKR2022017781-appb-img-000240
    Figure PCTKR2022017781-appb-img-000241
    Figure PCTKR2022017781-appb-img-000242
    Figure PCTKR2022017781-appb-img-000243
    Figure PCTKR2022017781-appb-img-000244
    Figure PCTKR2022017781-appb-img-000245
    Figure PCTKR2022017781-appb-img-000246
    Figure PCTKR2022017781-appb-img-000247
    Figure PCTKR2022017781-appb-img-000248
    Figure PCTKR2022017781-appb-img-000249
    Figure PCTKR2022017781-appb-img-000250
    Figure PCTKR2022017781-appb-img-000251
    Figure PCTKR2022017781-appb-img-000252
    Figure PCTKR2022017781-appb-img-000253
    Figure PCTKR2022017781-appb-img-000254
    Figure PCTKR2022017781-appb-img-000255
    Figure PCTKR2022017781-appb-img-000256
    Figure PCTKR2022017781-appb-img-000257
    Figure PCTKR2022017781-appb-img-000258
    Figure PCTKR2022017781-appb-img-000259
    Figure PCTKR2022017781-appb-img-000260
    Figure PCTKR2022017781-appb-img-000261
    Figure PCTKR2022017781-appb-img-000262
  15. 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 청구항 1 내지 14 중 어느 한 항에 따른 화합물을 포함하는 유기 발광 소자.
  16. 청구항 15에 있어서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함하고, 상기 정공주입층 또는 정공수송층은 상기 화합물을 포함하는 유기 발광 소자.
  17. 청구항 15에 있어서, 상기 유기물층은 전자차단층을 포함하고, 상기 전자차단층은 상기 화합물을 포함하는 유기 발광 소자.
  18. 청구항 17에 있어서, 상기 전자차단층은 상기 화합물을 포함하고, 상기 전자차단층과 상기 제1 전극 사이에 정공주입층 및 정공수송층 중 적어도 한 층이 추가로 구비된 것인 유기 발광 소자.
  19. 청구항 17에 있어서, 상기 전자차단층은 상기 화합물을 포함하고, 상기 전자차단층과 상기 제1 전극 사이에 정공주입층 및 정공수송층이 추가로 구비된 것인 유기 발광 소자.
PCT/KR2022/017781 2021-11-12 2022-11-11 화합물 및 이를 포함하는 유기 발광 소자 WO2023085860A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029544.3A CN117177978A (zh) 2021-11-12 2022-11-11 化合物及包含其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210155726 2021-11-12
KR10-2021-0155726 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085860A1 true WO2023085860A1 (ko) 2023-05-19

Family

ID=86336302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017781 WO2023085860A1 (ko) 2021-11-12 2022-11-11 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR20230073104A (ko)
CN (1) CN117177978A (ko)
WO (1) WO2023085860A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170005853A (ko) * 2014-05-14 2017-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 유기 발광 다이오드 물질
KR20170030145A (ko) * 2015-09-08 2017-03-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180073222A (ko) * 2016-12-22 2018-07-02 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
CN110885338A (zh) * 2018-09-11 2020-03-17 江苏三月光电科技有限公司 一种以三芳胺为核心的有机化合物及其制备方法和其应用
KR102284600B1 (ko) * 2021-01-28 2021-08-02 (주)랩토 유기 금속 착물 및 이를 포함한 유기 전계발광 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503450B2 (ja) 2015-03-25 2019-04-17 国立研究開発法人国立がん研究センター 胆管癌治療剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170005853A (ko) * 2014-05-14 2017-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 유기 발광 다이오드 물질
KR20170030145A (ko) * 2015-09-08 2017-03-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180073222A (ko) * 2016-12-22 2018-07-02 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
CN110885338A (zh) * 2018-09-11 2020-03-17 江苏三月光电科技有限公司 一种以三芳胺为核心的有机化合物及其制备方法和其应用
KR102284600B1 (ko) * 2021-01-28 2021-08-02 (주)랩토 유기 금속 착물 및 이를 포함한 유기 전계발광 소자

Also Published As

Publication number Publication date
KR20230073104A (ko) 2023-05-25
CN117177978A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2021107737A1 (ko) 유기 발광 소자
WO2020080872A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020017931A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021020942A1 (ko) 유기 발광 소자
WO2020009467A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2019221545A1 (ko) 유기발광소자
WO2021107728A1 (ko) 유기 발광 소자
WO2019240464A1 (ko) 유기 발광 소자
WO2020153713A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021020929A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021020946A1 (ko) 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2021020928A2 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020159333A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020159334A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021210894A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2021096273A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021096331A1 (ko) 유기 발광 소자
WO2016060463A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2021020947A1 (ko) 유기 발광 소자
WO2020159337A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2022086296A1 (ko) 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2022025511A1 (ko) 신규한 헤테로 고리 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893279

Country of ref document: EP

Kind code of ref document: A1