WO2023085271A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2023085271A1
WO2023085271A1 PCT/JP2022/041574 JP2022041574W WO2023085271A1 WO 2023085271 A1 WO2023085271 A1 WO 2023085271A1 JP 2022041574 W JP2022041574 W JP 2022041574W WO 2023085271 A1 WO2023085271 A1 WO 2023085271A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
fluorine
ether compound
containing ether
group
Prior art date
Application number
PCT/JP2022/041574
Other languages
English (en)
French (fr)
Inventor
夏実 吉村
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to CN202280073358.XA priority Critical patent/CN118234778A/zh
Priority to JP2023559642A priority patent/JPWO2023085271A1/ja
Publication of WO2023085271A1 publication Critical patent/WO2023085271A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/54Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a fluorine-containing ether compound, a lubricant for magnetic recording media, and a magnetic recording medium.
  • a magnetic recording medium in which a recording layer is formed on a substrate and a protective layer made of carbon or the like is formed on the recording layer.
  • the protective layer protects information recorded in the recording layer and enhances the slidability of the magnetic head. Also, the protective layer covers the recording layer and prevents the metal contained in the recording layer from being corroded by environmental substances.
  • a lubricant is applied to the surface of the protective layer to form a lubricating layer having a thickness of about 0.5 to 3 nm.
  • the lubricating layer improves the durability and protective power of the protective layer and prevents contaminants from entering the magnetic recording medium.
  • a varnishing process may be performed to remove projections and particles present on the surface of the magnetic recording medium and improve the smoothness of the surface.
  • Lubricants used for forming the lubricating layer of a magnetic recording medium include, for example, those containing a fluorine-based polymer having a repeating structure containing —CF 2 — and having a terminal polar group such as a hydroxyl group. be.
  • Patent Literature 1 discloses a magnetic recording medium provided with a lubricating layer containing a fluorine-containing ether compound having heterocyclic groups bonded to both ends of a perfluoropolyether chain.
  • Patent Literature 2 discloses a polymer containing a heteroatom-containing group belonging to group 15 of the periodic table and a perfluoropolyether chain.
  • Patent Document 3 discloses a compound in which a terminal of a perfluoropolyether chain is an amino group having a hydroxyl group.
  • Patent Document 4 discloses a fluorine-containing ether compound having a perfluoropolyether chain and an unsaturated bond-containing terminal group on both sides of a glycerin structure.
  • Patent Document 5 discloses a perfluoropolyether chain, a group containing a tertiary amine bonded to the first end of the perfluoropolyether chain via a methylene group and a linking group, and a methylene Fluorine-containing ether compounds are disclosed having end groups containing two or three polar groups attached via groups.
  • the magnetic recording/reproducing apparatus it is required to further reduce the flying height of the magnetic head. For this reason, it is desired to further reduce the thickness of the lubricating layer in the magnetic recording medium.
  • the thickness of the lubricating layer is reduced, the coverage of the lubricating layer deteriorates, and the wear resistance and corrosion resistance of the magnetic recording medium may deteriorate.
  • the corrosion resistance of the magnetic recording medium tends to be insufficient. For this reason, there is a demand for a lubricating layer that is highly effective in suppressing corrosion of magnetic recording media.
  • the present invention has been made in view of the above circumstances, and a fluorine-containing material that can be used as a material for a lubricant for a magnetic recording medium that can form a lubricating layer that is excellent in wear resistance and highly effective in suppressing corrosion of the magnetic recording medium.
  • An object of the present invention is to provide an ether compound.
  • Another object of the present invention is to provide a lubricant for magnetic recording media which contains the fluorine-containing ether compound of the present invention and which is excellent in wear resistance and capable of forming a lubricating layer highly effective in suppressing corrosion of magnetic recording media.
  • Another object of the present invention is to provide a magnetic recording medium having a lubricating layer containing the fluorine-containing ether compound of the present invention and having excellent wear resistance and corrosion resistance.
  • a glycerin structure (--OCH 2 CH(OH)CH 2 O--) is arranged in the center of the chain structure, and at both ends thereof, a perfluoropolyether chain and a divalent linkage containing one or more polar groups are arranged. groups are bonded in this order via a methylene group ( --CH.sub.2-- ), and specific terminal groups containing tertiary amines are ether-bonded (--O--) to both ends.
  • the present invention relates to the following matters.
  • a first aspect of the present invention provides the following fluorine-containing ether compound.
  • a fluorine-containing ether compound represented by the following formula (1).
  • R 3 and R 4 are the same or different perfluoropolyether chains
  • R 2 and R 5 are each independently a divalent linking group containing one or more polar groups
  • R 1 and R 6 are each independently a terminal group containing a tertiary amine, represented by the following formula (2).
  • -X-NR 7 R 8 (2) In formula (2), X is a divalent hydrocarbon group having 1 to 5 carbon atoms; R 7 and R 8 are the same or different saturated aliphatic groups; R 7 and R 8 are nitrogen atoms may form a ring structure together.
  • the fluorine-containing ether compound of the first aspect of the present invention preferably has the characteristics described in [2] to [13] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [13] below.
  • [2] The fluorine-containing ether compound according to [1], wherein -X- in the formula (2) is represented by the following formula (2-1). —(CH 2 ) a — (2-1) (In formula (2-1), a is an integer of 2 or 3.)
  • [3] The fluorine-containing ether compound according to [1] or [2], wherein in formula (2), R 7 and R 8 form a 5- to 7-membered ring together with the nitrogen atom.
  • b is an integer of 1 to 2; the etheric oxygen atom in formula (3) is CH 2 adjacent to R 2 in formula (1), or CH 2 adjacent to R 5 is bound to.
  • w2, w3, w4, and w5 represent an average degree of polymerization, each independently representing 0 to 20; however, w2, w3, w4, and w5 are not all 0 at the same time; w1 and w6 are average values indicating the number of —CF 2 —, each independently representing 1 to 3; the arrangement order of the repeating units in formula (Rf) is not particularly limited.
  • a second aspect of the present invention provides the following lubricant for magnetic recording media.
  • a lubricant for magnetic recording media comprising the fluorine-containing ether compound according to any one of [1] to [13].
  • a third aspect of the present invention provides the following magnetic recording medium.
  • the lubricant layer has an average thickness of 0.5 nm to 2.0 nm.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1). Therefore, the fluorine-containing ether compound of the present invention can be used as a material for lubricants for magnetic recording media, which is excellent in wear resistance and capable of forming a lubricating layer highly effective in suppressing corrosion of magnetic recording media. Since the lubricant for a magnetic recording medium of the present invention contains the fluorine-containing ether compound of the present invention, it can form a lubricating layer that is excellent in wear resistance and highly effective in inhibiting corrosion. Since the magnetic recording medium of the present invention has a lubricating layer containing the fluorine-containing ether compound of the present invention, it has excellent wear resistance and corrosion resistance.
  • the magnetic recording medium of the present invention has excellent reliability and durability.
  • the magnetic recording medium of the present invention has a lubricating layer with excellent wear resistance and a high corrosion inhibiting effect, the thickness of the protective layer and/or the lubricating layer can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing an example of one embodiment of a magnetic recording medium of the present invention
  • the fluorine-containing ether compound the lubricant for magnetic recording media (hereinafter sometimes abbreviated as "lubricant")
  • the magnetic recording medium of the present invention is described in detail below.
  • this invention is not limited only to embodiment shown below.
  • the present invention can add, omit, replace, and change the number, amount, position, ratio, material, configuration, etc. within the scope of the present invention.
  • the fluorine-containing ether compound of this embodiment is represented by the following formula (1).
  • R 3 and R 4 are the same or different perfluoropolyether chains
  • R 2 and R 5 are each independently a divalent linking group containing one or more polar groups
  • R 1 and R 6 are each independently a terminal group containing a tertiary amine, represented by the following formula (2).
  • -X-NR 7 R 8 (2) In formula (2), X is a divalent hydrocarbon group having 1 to 5 carbon atoms; R 7 and R 8 are the same or different saturated aliphatic groups; R 7 and R 8 are nitrogen atoms may form a ring structure together.
  • R 1 and R 6 are each independently a terminal group containing a tertiary amine, represented by formula (2).
  • X is a divalent hydrocarbon group having 1 to 5 carbon atoms.
  • R7 and R8 are the same or different saturated aliphatic groups. R7 and R8 may form a ring structure together with the nitrogen atom.
  • the fluorine-containing ether compound represented by formula (1) is excellent because the tertiary amine moiety (-NR 7 R 8 in formula (2)) contained in R 1 and R 6 does not have an unsaturated bond. It is considered to have a molecular structure with good fluidity. Therefore, in the lubricating layer containing the fluorine-containing ether compound of the present embodiment, the tertiary amine moiety (-NR 7 R 8 in formula (2)) contained in R 1 and R 6 in formula (1) is , the collision between the magnetic head and the protective layer is reduced, and excellent wear resistance is exhibited. In the fluorine-containing ether compound represented by formula (1), the structure of the tertiary amine contained in R 1 and R 6 can be appropriately selected depending on the performance required for the lubricant containing the fluorine-containing ether compound.
  • X in formula (2) is a divalent hydrocarbon group having 1 to 5 carbon atoms. This makes the distance between the polar groups in R 2 and R 5 and the tertiary amines in R 1 and R 6 appropriate.
  • the number of carbon atoms in X in formula (2) is preferably 1-4, more preferably 2-3.
  • the hydrocarbon group represented by X in formula (2) may be linear, branched or cyclic, preferably linear.
  • the hydrocarbon group represented by X may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the steric structure of the fluorine-containing ether compound represented by formula ( 1 ) is difficult to fix, and the It is preferable because it is possible to form a lubricant that facilitates interaction between the tertiary amine portion and the protective layer.
  • -X- is preferably represented by the following formula (2-1). —(CH 2 ) a — (2-1) (In formula (2-1), a is an integer of 2 or 3.)
  • a lubricant containing this tends to spread in the surface direction on the protective layer and be arranged in a state of being uniformly extended. Therefore, a lubricant containing a fluorine-containing ether compound in which -X- is represented by the formula (2-1) can cover the surface of the protective layer with a high coverage even if the thickness is small, and further improves wear resistance. It is excellent and can form a lubricating layer with a high corrosion-inhibiting effect.
  • a is preferably 2 because the distance between the nitrogen atom in the tertiary amine and the polar groups in R 2 and R 5 is more appropriate. Further, when a in formula (2-1) is 3 or less, the alkylene group represented by formula (2-1) is too long, and the mobility of the terminal of the molecule does not increase. Therefore, it becomes a fluorine-containing ether compound capable of forming a lubricant that facilitates interaction between the tertiary amine portion contained in R 1 and R 6 and the protective layer.
  • R7 and R8 are the same or different saturated aliphatic groups.
  • the saturated aliphatic groups represented by R 7 and R 8 in formula (2) may be linear or branched, and form a ring structure together with a nitrogen atom. good too.
  • the ring structure may be a ring structure containing one or more heteroatoms other than the nitrogen atom of the tertiary amine.
  • the tertiary amine contained in the terminal group containing a tertiary amine represented by formula (2) is a non-cyclic amine (R 7 and R 8 in formula (2) do not form a ring structure together with the nitrogen atom ), R 7 and R 8 are each independently preferably a saturated aliphatic group having 1 to 4 carbon atoms.
  • the tertiary amine (--NR 7 R 8 ) in formula (2) does not cause excessive steric hindrance. Therefore, the tertiary amine contained in R 1 and R 6 does not suppress the adsorptive power of the lubricant containing the fluorine-containing ether compound represented by the formula (1) to the protective layer, and a good coverage is obtained.
  • a lubricating layer is obtained.
  • the tertiary amine contained in R1 and R6 does not cause excessive steric hindrance, collision between the magnetic head and the lubricant is less likely to occur, and flying of the magnetic head is less likely to be unstable.
  • the tertiary amines contained in R1 and R6 provide moderate steric hindrance, the magnetic head does not come too close to the protective layer. As described above, the collision between the magnetic head and the protective layer can be suppressed, and the distance between the magnetic head and the protective layer can be appropriately maintained. As a result, a lubricating layer containing such a fluorine-containing ether compound has excellent wear resistance.
  • saturated aliphatic groups having 1 to 4 carbon atoms include methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, sec-butyl group and tert-butyl group.
  • saturated aliphatic groups having 1 to 2 carbon atoms are preferred.
  • R 7 and R 8 are preferably each independently a methyl group or an ethyl group, and more preferably R 7 and R 8 are the same.
  • the tertiary amine contained in the terminal group containing a tertiary amine represented by formula (2) is a non-cyclic amine
  • the tertiary amine (-NR 7 R 8 ) is a dimethylamino group, methylethylamino and a diethylamino group, and more preferably a dimethylamino group or a diethylamino group for ease of synthesis.
  • the tertiary amine contained in the terminal group containing a tertiary amine represented by formula (2) is a non-cyclic amine (R 7 and R 8 in formula (2) do not form a ring structure together with the nitrogen atom ), specific examples of non-cyclic amines include, for example, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-sec-butylamino group, di- tert-butylamino group, ethylmethylamino group, normal-propylmethylamino group, isopropylmethylamino group, normal-butylmethylamino group, isobutylmethylamino group, sec-butylmethylamino group, tert-butylmethylamino group, ethyl-normal-propyl amino group, ethylis
  • the tertiary amine contained in the terminal group containing a tertiary amine represented by formula (2) is a cyclic amine (R 7 and R 8 in formula (2) form a ring structure together with the nitrogen atom)
  • R 7 and R 8 preferably form a 5- to 7-membered ring together with the nitrogen atom.
  • the tertiary amine contained in R 1 and R 6 does not suppress the adsorptive power of the lubricant containing the fluorine-containing ether compound represented by the formula (1) to the protective layer, and a good coverage is obtained.
  • a lubricating layer is obtained.
  • the lubricating layer containing the fluorine-containing ether compound mitigates the collision between the magnetic head and the protective layer, resulting in excellent wear resistance.
  • the ring structure of the cyclic amine may contain one or more heteroatoms other than the nitrogen atom of the tertiary amine.
  • Heteroatoms other than the nitrogen atom of the tertiary amine include an oxygen atom and/or a nitrogen atom.
  • the tertiary amine contained in the terminal group containing a tertiary amine represented by formula (2) is a cyclic amine (R 7 and R 8 in formula (2) form a ring structure together with the nitrogen atom)
  • the cyclic amine may have a substituent.
  • a substituent a hydroxyl group, an amino group, a carboxy It is preferably free of polar groups such as groups.
  • Specific examples of the substituent that the cyclic amine may have include, for example, an alkyl group having 1 to 3 carbon atoms.
  • the bonding position of the substituent in the cyclic amine having a substituent is not particularly limited, and may be bonded to any carbon atom constituting the cyclic amine.
  • the tertiary amine contained in the terminal group containing a tertiary amine represented by formula (2) is a cyclic amine (R 7 and R 8 in formula (2) form a ring structure together with the nitrogen atom)
  • specific examples of the cyclic amine include an ethyleneimine group, an azacyclobutane group, a pyrrolidine group, a piperidine group, a morpholine group, a hexamethyleneimine group, a heptamethyleneimine group, and an octamethyleneimine group.
  • a nitrogen atom in these groups is bonded to -X-.
  • the tertiary amine (-NR 7 R 8 ) in formula (2) is preferably any one group selected from a pyrrolidine group, a piperidine group, a morpholine group and a hexamethyleneimine group.
  • the lubricant containing the fluorine-containing ether compound represented by formula (1) provides a lubricating layer having excellent wear resistance. It is preferable because it can be formed.
  • the fluorine-containing ether compound represented by formula (1) has a moderately flexible molecular structure.
  • the lubricating layer containing this has good interactions between R 1 and R 2 , R 5 and R 6 in the fluorine-containing ether compound and the protective layer disposed in contact with the lubricating layer. Therefore, the lubricating layer containing the fluorine-containing ether compound of the present embodiment is easily adsorbed to the protective layer, has excellent adhesion to the protective layer, and is excellent in corrosion resistance and wear resistance.
  • R2 and R5 In the fluorine-containing ether compound represented by formula (1), the terminal group (R 1 and R 6 ) containing a tertiary amine represented by formula (2) and the perfluoropolyether chain (R 3 and R 4 ) Between them are arranged divalent linking groups (R 2 and R 5 ) containing one or more polar groups. R 2 and R 5 contain one or more polar groups. Therefore, when a lubricant containing a fluorine-containing ether compound represented by formula (1) is used to form a lubricating layer on the protective layer, the interaction between the polar groups of R 2 and R 5 in the lubricating layer and the protective layer effect is obtained. Therefore, the lubricating layer containing the fluorine-containing ether compound represented by formula (1) is easily adsorbed to the protective layer, has excellent adhesion to the protective layer, and is excellent in wear resistance.
  • Polar groups possessed by the linking groups represented by R 2 and R 5 include a hydroxyl group, an amino group and a carboxy group. Among these polar groups, it is preferable to contain a hydroxyl group as a polar group because it becomes a fluorine-containing ether compound capable of forming a lubricating layer having an appropriate affinity with the protective layer, and all the polar groups possessed by R 2 and R 5 are A hydroxyl group is more preferred.
  • the number of polar groups contained in R 2 and R 5 is one or more, preferably one to three, more preferably one or two, and two polar groups. Most preferably it contains a group.
  • the number of polar groups contained in R 2 and R 5 is two each, in the lubricating layer containing the fluorine-containing ether compound of the present embodiment, the interaction between the hydroxyl groups possessed by R 2 and R 5 and the protective layer becomes even better, and the adhesion to the protective layer becomes more excellent.
  • the linking group represented by R 2 and R 5 is preferably a linking group having 1 to 10 carbon atoms, more preferably a linking group having 3 to 6 carbon atoms.
  • the linking group represented by R 2 and R 5 includes a hydroxyl-substituted methylene group (--CH(OH)--), a methylene group (--CH 2 --) and/or an ether bond (--O--).
  • a linking group containing at least one hydroxyl-substituted methylene group (--CH(OH)--), at least one methylene group (--CH 2 --) and at least one ether bond (--O--). is more preferable.
  • linking groups represented by R 2 and/or R 5 are more preferably represented by the following formula (3), and the linking groups represented by R 2 and R 5 are each independently It is more preferable to be represented by the following formula (3).
  • b is an integer of 1 to 2; the etheric oxygen atom in formula (3) is CH 2 adjacent to R 2 in formula (1), or CH 2 adjacent to R 5 is bound to.
  • each of R 2 and R 5 contains 1 to 2 hydroxyl groups (--OH), which are polar groups.
  • --OH hydroxyl groups
  • the linking group represented by formula (3) contains an ether bond (--O--), it imparts appropriate flexibility to the molecular structure of the fluorine-containing ether compound represented by formula (1).
  • the fluorine-containing ether compound of the present embodiment is, for example, a direct bond between R 1 and R 3 (and/or R 4 and R 6 )
  • the lubricating layer containing this is more likely to be adsorbed to the protective layer, and the adhesiveness between the lubricating layer and the protective layer is excellent, as compared with the fluorine-containing ether compound containing the fluorinated ether compound.
  • b in formula (3) is 1 or more, when a lubricant containing the fluorine-containing ether compound of the present embodiment is used to form a lubricating layer on the protective layer, R 2 and R 5 in the lubricating layer An interaction between the hydroxyl groups and the protective layer is obtained.
  • b in formula (3) is 2, the interaction between the hydroxyl groups of R 2 and R 5 and the protective layer becomes even better, and a lubricating layer with better adhesion to the protective layer can be obtained. It becomes a fluorine ether compound.
  • b in formula (3) is 2 or less, the polarity of the fluorine-containing ether compound does not become too high due to too many hydroxyl groups possessed by R 2 and R 5 .
  • the lubricating layer containing the fluorine-containing ether compound represented by formula (1) has appropriate hydrophobicity due to the hydrophobicity of the carbon atoms of the methylene group. As a result, the lubricating layer prevents water from entering the magnetic recording medium and suppresses corrosion of the magnetic recording medium.
  • R 3 and R 4 are the same or different perfluoropolyether chains (hereinafter sometimes referred to as "PFPE chains").
  • the PFPE chains represented by R 3 and R 4 cover the surface of the protective layer when the lubricant containing the fluorine-containing ether compound of the present embodiment is applied on the protective layer to form a lubricating layer,
  • the lubricating layer is provided with lubricating properties to reduce the frictional force between the magnetic head and the protective layer.
  • the PFPE chain imparts water resistance to the lubricating layer containing the fluorine-containing ether compound of the present embodiment due to its low surface energy, and improves the corrosion resistance of the magnetic recording medium provided with the lubricating layer. Since the fluorine-containing ether compound represented by formula (1) contains two PFPE chains represented by R 3 and R 4 in the molecule, it can form a lubricating layer with a high corrosion inhibitory effect.
  • R 3 and R 4 may be PFPE chains, and can be appropriately selected depending on the performance required for the lubricant containing the fluorine-containing ether compound.
  • PFPE chain include perfluoromethylene oxide polymer, perfluoroethylene oxide polymer, perfluoro-n-propylene oxide polymer, perfluoroisopropylene oxide polymer, copolymers thereof, and the like.
  • R 3 and R 4 may each independently have a structure represented by the following formula (Rf) derived from, for example, a perfluoroalkylene oxide polymer or copolymer.
  • Rf perfluoroalkylene oxide polymer or copolymer.
  • w2, w3, w4, and w5 represent an average degree of polymerization, each independently representing 0 to 20; however, w2, w3, w4, and w5 are not all 0 at the same time; w1 and w6 are average values indicating the number of —CF 2 —, each independently representing 1 to 3; the arrangement order of the repeating units in formula (Rf) is not particularly limited.
  • w2, w3, w4, and w5 represent average degrees of polymerization, each independently representing 0 to 20, preferably 0 to 15, more preferably 0 to 10.
  • w1 and w6 are average values indicating the number of —CF 2 — and each independently represents 1 to 3.
  • w1 and w6 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the polymer represented by the formula (Rf).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 CF 2 O) in formula (Rf) are repeating units. There are no particular restrictions on the arrangement order of the repeating units in formula (Rf). Also, the number of types of repeating units in the formula (Rf) is not particularly limited.
  • R 3 and R 4 in formula (1) are preferably each independently represented by any one of the following formulas (4) to (8).
  • c and d indicate an average degree of polymerization, each representing 0.1 to 20.
  • e indicates an average degree of polymerization and represents 0.1 to 20.
  • f indicates an average degree of polymerization, representing 0.1 to 20.
  • g indicates an average degree of polymerization
  • c and d indicating the average degree of polymerization in formula (4) are respectively 0.1 to 20, e indicating the average degree of polymerization in formula (5) is 0.1 to 20, and the average degree of polymerization in formula (6) f indicating the degree of polymerization is 0.1 to 20, and g indicating the average degree of polymerization in formula (7) is 0.1 to 10.
  • the fluorine-containing ether compound provides a lubricating layer that has good wear resistance and can further suppress corrosion of magnetic recording media.
  • c, d, e, and f when each of c, d, e, and f is 20 or less and g is 10 or less, the viscosity of the fluorine-containing ether compound does not become too high, and the lubricant containing the fluorine-containing ether compound can be easily applied, which is preferable.
  • the values of c, d, e, f, and g, which indicate the average degree of polymerization, are 2 to 10 because they are fluorine-containing ether compounds that easily spread on the protective layer and easily form a lubricating layer having a uniform film thickness. It is preferable that there is one, and it is more preferable that it is 3 to 8. For example, it may be 4 to 6, or 5 to 8, etc., as required.
  • Formula (4) may include any of random copolymers, block copolymers, and alternating copolymers consisting of monomer units (CF 2 CF 2 O) and (CF 2 O). .
  • w8 and w9 representing the average degree of polymerization in formula (8) each independently represents 0.1 to 20, preferably 0.1 to 15, more preferably 1 to 10.
  • w7 and w10 in formula (8) are average values indicating the number of —CF 2 — and each independently represents 1 to 2.
  • w7 and w10 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the polymer represented by formula (8).
  • Formula (8) includes any of random copolymers, block copolymers, and alternating copolymers consisting of monomer units (CF 2 CF 2 O) and (CF 2 CF 2 CF 2 O). There may be.
  • R 3 and R 4 in formula (1) are each independently represented by any one of formulas (4) to (8), synthesis of the fluorine-containing ether compound is easy, which is preferable. Further, when R 3 and R 4 are each independently represented by any one of the formulas (4) to (8), the number of oxygen atoms (the number of ether bonds (—O—) relative to the number of carbon atoms in the PFPE chain ) is appropriate. Therefore, it becomes a fluorine-containing ether compound having moderate hardness. Therefore, the fluorine-containing ether compound applied on the protective layer is less likely to aggregate on the protective layer, and a thinner lubricating layer can be formed with sufficient coverage.
  • the fluorine-containing ether compound represented by formula (1) when R 3 and R 4 are each independently represented by formula (4), formula (5) or formula (6), raw materials are easily available. , more preferred.
  • the fluorine-containing ether compound in which R 3 and R 4 are each independently represented by formula (5) or formula (6) has a more appropriate ratio of the number of oxygen atoms to the number of carbon atoms in the PFPE chain. is preferable because it can form a lubricating layer that has better wear resistance and can suppress corrosion of the magnetic recording medium.
  • the PFPE chains represented by R3 and R4 may be the same or different.
  • the fluorine-containing ether compound may be easily synthesized with fewer production steps.
  • the phrase “the PFPE chains are the same” includes the case where the repeating units of the PFPE chains are the same and the average degrees of polymerization are different.
  • R 1 and R 6 may be the same or different. If R 1 and R 6 are the same, the adsorption power of R 1 and R 6 to the protective layer will be the same. For this reason, it becomes a fluorine-containing ether compound that easily spreads evenly on the protective layer and that easily provides a lubricating layer having a uniform film thickness, which is preferable.
  • R 2 and R 5 may be the same or different. The fact that R 2 and R 5 are the same means that the atom contained in R 2 and the atom contained in R 5 are and are arranged symmetrically. If R2 and R5 are the same, the adsorption power of R2 and R5 to the protective layer will be the same. For this reason, it becomes a fluorine-containing ether compound that easily spreads evenly on the protective layer and that easily provides a lubricating layer having a uniform film thickness, which is preferable.
  • R 1 and R 6 are the same and R 2 and R 5 are the same, the adsorption power of R 1 -OR 2 and R 5 -OR 6 to the protective layer is the same. Therefore, it becomes a fluorine-containing ether compound that easily wets and spreads more uniformly on the protective layer. Further, when R 1 -OR 2 and R 5 -OR 6 are the same, the fluorine-containing ether compound can be easily synthesized with a small number of production steps.
  • a glycerin structure (--OCH 2 CH ( OH) CH 2 O—) is a compound having a symmetrical structure.
  • Such compounds are preferable because they can be synthesized more efficiently and easily with fewer production steps.
  • the fluorine-containing ether compound represented by the formula (1) has a symmetrical structure centered on the glycerin structure, it tends to wet and spread uniformly on the protective layer, and a lubricating layer having a uniform thickness can easily be obtained. become a thing.
  • the glycerin structure In the fluorine-containing ether compound represented by the above formula (1), the glycerin structure (--OCH 2 CH(OH)CH 2 O--) is arranged in the center of the chain structure.
  • the hydroxyl group (--OH) of the glycerin structure improves the adhesion of the lubricating layer containing the fluorine-containing ether compound to the protective layer.
  • the oxygen atoms arranged at both ends of the glycerin structure combine with the methylene groups ( --CH.sub.2-- ) arranged on both sides to form ether bonds (--O--). These two ether bonds impart appropriate flexibility to the fluorine-containing ether compound represented by formula (1) and increase the affinity between the hydroxyl groups of the glycerin structure and the protective layer.
  • the lubricating layer containing the fluorine-containing ether compound has a high coverage rate, making it difficult for environmental substances that generate contaminants to enter through the gaps, thereby suppressing corrosion of the magnetic recording medium.
  • the distance between the hydroxyl group of the glycerin structure and the polar groups of R 2 and R 5 is appropriate, so the hydroxyl group of the glycerin structure is the polar group of R 2 and R 5 . It is difficult to aggregate with the base. Moreover, both ends of each perfluoropolyether chain (R 3 and R 4 ) are adhered to the protective layer by the hydroxyl groups of the glycerin structure and the polar groups of R 2 and R 5 . Therefore, the fluorine-containing ether compound coated on the protective layer is unlikely to be bulky.
  • the fluorine-containing ether compound easily spreads over the protective layer, and a lubricating layer having a uniform coating state is easily obtained.
  • the above fluorine-containing ether compound can form a lubricating layer that has good wear resistance and can suppress corrosion of the magnetic recording medium.
  • the fluorine-containing ether compound represented by formula (1) is preferably any compound represented by the following formulas (A) to (H).
  • qa, pb, mc, nc, pd, qe, mf, nf, qg, mg, ng, and qh in the formulas (A) to (H) are values indicating the average degree of polymerization, and are not necessarily integers. not.
  • R 1 and R 6 are all represented by the formula (2), and -X- in the formula (2) is represented by the formula (2-1) be done.
  • the compounds represented by the following formulas (A) to (G) all have the same R 2 and R 5 and are represented by the formula (3), where b is 2.
  • the compounds represented by formulas (A) to (F) and (H) below all have the same R 1 and R 6 and the same R 3 and R 4 .
  • R 1 and R 6 are represented by formula (2), the tertiary amine is a morpholine group, and a is 2 in formula (2-1).
  • R 3 and R 4 are PFPE chains represented by formula (6).
  • R 1 and R 6 are represented by formula (2), the tertiary amine is a morpholine group, and a is 3 in formula (2-1).
  • R 3 and R 4 are PFPE chains represented by formula (5).
  • Fda 1 and Fda 2 in formula (A) are represented by formula (AF); in Fda 1 and Fda 2 , qa indicates an average degree of polymerization and ranges from 0.1 to 20; qa in Fda 1 and qa in Fda2 may be the same or different.
  • Fpb 1 and Fpb 2 in formula (B) are represented by formula (BF); in Fpb 1 and Fpb 2 , pb indicates an average degree of polymerization and represents 0.1 to 20; pb in Fpb 1 and pb in Fpb 2 may be the same or different.
  • R 1 and R 6 are represented by formula (2), the tertiary amine is a pyrrolidine group, and a is 2 in formula (2-1).
  • R 3 and R 4 are PFPE chains represented by formula (4).
  • R 1 and R 6 are represented by formula (2), the tertiary amine is a pyrrolidine group, and a is 3 in formula (2-1).
  • R 3 and R 4 are PFPE chains represented by formula (5).
  • Ffc 1 and Ffc 2 in formula (C) are represented by formula (CF); in Ffc 1 and Ffc 2 , mc and nc represent an average degree of polymerization, each representing 0.1 to 20; Ffc 1 mc, nc in and mc, nc in Ffc 2 may be the same or different.
  • Fpd 1 and Fpd 2 in formula (D) are represented by formula (DF); in Fpd 1 and Fpd 2 , pd indicates an average degree of polymerization and represents 0.1 to 20; pd in Fpd 1 and Fpd 2 may be the same or different.
  • R 1 and R 6 are represented by formula (2), the tertiary amine is a piperidine group, and a is 2 in formula (2-1).
  • R 3 and R 4 are PFPE chains represented by formula (6).
  • the compound represented by the following formula (F) has R 1 and R 6 represented by the formula (2), the tertiary amine is a hexamethyleneimine group, and a is 2 in the formula (2-1). be.
  • R 3 and R 4 are PFPE chains represented by formula (4).
  • Fde 1 and Fde 2 in formula (E) are represented by formula (EF); in Fde 1 and Fde 2 , qe indicates an average degree of polymerization and ranges from 0.1 to 20; qe in Fde 1 and qe in Fde 2 may be the same or different.
  • Fff 1 and Fff 2 in formula (F) are represented by formula (FF); in Fff 1 and Fff 2 , mf and nf indicate an average degree of polymerization, each representing 0.1 to 20; Fff 1 mf, nf in and mf, nf in Fff 2 may be the same or different.
  • R 1 and R 6 are represented by formula (2).
  • the tertiary amine in R 1 is a morpholine group, and a is 2 in formula (2-1) in R 1 .
  • the tertiary amine in R 6 is a pyrrolidine group, and a is 2 in formula (2-1) in R 6 .
  • R3 is a PFPE chain represented by formula (6).
  • R4 is the PFPE chain represented by formula (4).
  • R 1 and R 6 are represented by formula (2), the tertiary amine is a morpholine group, and a is 3 in formula (2-1).
  • R 3 and R 4 are PFPE chains represented by formula (6).
  • R 2 and R 5 are the same and represented by formula (3), and b in formula (3) is 1.
  • Fdg 1 and Ffg 1 in formula (G) are represented by formula (GF); qg in Fdg 1 and mg and ng in Ffg 1 indicate an average degree of polymerization, each representing 0.1 to 20 .
  • Fdh 1 and Fdh 2 in formula (H) are represented by formula (HF); in Fdh 1 and Fdh 2 , qh indicates an average degree of polymerization and represents 0.1 to 20; qh in Fdh 1 and qh in Fdh2 may be the same or different.
  • the compound represented by the formula (1) is any one of the compounds represented by the above formulas (A) to (H), the raw material is easily available, and the magnetic recording medium has excellent wear resistance even if the thickness is thin. It is possible to form a lubricating layer having a high effect of suppressing the corrosion of the steel, which is preferable.
  • the compound represented by the formula (1) is any one of the compounds represented by the formulas (A), (B), (D), and (E)
  • the magnetic recording medium remains intact even after tape burnishing. It is preferable because it can effectively suppress corrosion and form a lubricating layer having excellent wear resistance.
  • the fluorine-containing ether compound of the present embodiment preferably has a number average molecular weight (Mn) within the range of 500 to 10000, more preferably within the range of 600 to 7000, and more preferably within the range of 700 to 4500. is particularly preferred. It may be 1000 to 4000, 1300 to 3500, 1500 to 3000, 1800 to 2800, 2000 to 2500, etc., as required. When the number average molecular weight is 500 or more, the lubricant containing the fluorine-containing ether compound of the present embodiment is difficult to evaporate, and the lubricant can be prevented from evaporating and transferring to the magnetic head.
  • Mn number average molecular weight
  • the fluorine-containing ether compound has an appropriate viscosity, and a thin lubricating layer can be easily formed by applying a lubricant containing this.
  • a number average molecular weight of 4,500 or less is more preferable because the viscosity becomes easy to handle when applied to a lubricant.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCEIII400 manufactured by Bruker Biospin.
  • NMR nuclear magnetic resonance
  • the sample was diluted with a single solvent or a mixed solvent such as hexafluorobenzene, d-acetone, d-tetrahydrofuran and used for the measurement.
  • the 19 F-NMR chemical shift the hexafluorobenzene peak was -164.7 ppm.
  • the acetone peak was set at 2.2 ppm.
  • the method for producing the fluorine-containing ether compound of the present embodiment is not particularly limited, and it can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of the present embodiment can be produced, for example, using the production method shown below.
  • the hydroxyl group of the structure may be protected with an appropriate protective group and then reacted with the fluorine-based compound.
  • Compounds having an epoxy group include epichlorohydrin, epibromohydrin, 2-bromoethyloxirane, allyl glycidyl ether and the like.
  • a fluorine-based compound in which hydroxymethyl groups are arranged at both ends of the PFPE chain corresponding to R 3 and a A first reaction is performed to react with an epoxy compound having a structure that This produces a first intermediate compound 1a having a structure corresponding to R 1 —OR 2 — at one end of the perfluoropolyether chain corresponding to R 3 .
  • intermediate compound 3 which is an epoxy compound.
  • the epoxy group of the intermediate compound 3 is reacted with the hydroxyl group of the hydroxymethyl group of the second intermediate compound 1b.
  • the first intermediate compound 1a is reacted with epibromohydrin to produce the intermediate compound 3, which is an epoxy compound.
  • second intermediate compound 1b may be reacted with epibromohydrin to produce intermediate compound 3', which is an epoxy compound.
  • R A compound is obtained in which any one or more of the two PFPE chains denoted by 3 and R4 are different.
  • R 1 --OR 2 used as a material for the first intermediate compound 1a
  • the epoxy compound having a structure corresponding to - is the same as the epoxy compound having a structure corresponding to -R 5 -OR 6 used as the material for the second intermediate compound 1b. Therefore, compared to synthesizing an epoxy compound having a structure corresponding to R 1 -OR 2 - and an epoxy compound having a structure corresponding to -R 5 -OR 6 , fewer manufacturing steps are required. can be easily manufactured.
  • ionic contaminants present on the surface of the magnetic recording media. Most of the ionic contaminants adhere from the outside during the manufacturing process of the magnetic recording medium. Ionic contaminants may also be generated when environmental substances that enter a hard disk drive (magnetic recording/reproducing device) adhere to the magnetic recording medium. Specifically, for example, water containing environmental substances such as ions may adhere to the surface of the magnetic recording medium when the magnetic recording medium and/or hard disk drive are held under high temperature and high humidity conditions. When water containing environmental substances such as ions passes through the lubricating layer formed on the surface of the magnetic recording medium, it condenses minute ionic components existing under the lubricating layer to generate ionic contaminants.
  • the fluorine-containing ether compound of the present embodiment is a compound represented by the formula (1), a lubricating layer containing it has excellent wear resistance and corrosion suppression that prevents contaminants from entering the inside of the magnetic recording medium. It becomes highly effective. This effect is due to the fact that the lubricating layer containing the fluorine-containing ether compound of the present embodiment has excellent adhesion to the protective layer, has appropriate hydrophobicity, and is easily formed on the protective layer in a uniform coating state. Obtained by effect.
  • the fluorine-containing ether compound represented by formula (1) has terminal groups (R 1 and R 6 ) each independently containing a tertiary amine represented by formula (2) at both ends.
  • This tertiary amine has moderate fluidity. Therefore, excessive steric hindrance does not occur when the fluorine-containing ether compound contained in the lubricant is adsorbed on the protective layer. Therefore, in the lubricating layer containing the fluorine-containing ether compound represented by formula (1), R 1 and R 6 do not suppress the adsorptive power to the protective layer.
  • the lubricating layer containing the fluorine-containing ether compound represented by the formula (1) is easily formed on the protective layer in a uniform coating state, resulting in a good coverage.
  • the lubricating layer containing the lubricating layer prevents the magnetic head and the protective layer from colliding with the protective layer when the magnetic head approaches the protective layer. Collisions with layers can be mitigated. Therefore, it is presumed that the floating of the magnetic head is less likely to become unstable, the collision between the magnetic head and the protective layer is suppressed, and excellent wear resistance is exhibited.
  • the lubricating layer containing the fluorine-containing ether compound represented by formula (1) has a hydroxyl group (-OH) of a glycerin structure (-OCH 2 CH(OH)CH 2 O-) arranged in the center of the chain structure.
  • a hydroxyl group (-OH) of a glycerin structure (-OCH 2 CH(OH)CH 2 O-) arranged in the center of the chain structure.
  • at least one polar group contained in each of R 2 and R 5 and the nitrogen atom of the tertiary amine contained in each of R 1 and R 6 adhere to the protective layer.
  • the lubricating layer prevents contaminants from entering the magnetic recording medium and suppresses corrosion of the magnetic recording medium.
  • the fluorine-containing ether compound represented by formula (1) between the glycerin structure arranged in the center of the chain structure and the linking groups represented by R 2 and R 5 , PFPE chains represented by are arranged. Therefore, the distance between the hydroxyl group of the glycerin structure and the polar group of the linking group represented by R2 and R5 is appropriate. Therefore, the hydroxyl groups of the glycerin structure and the polar groups of the linking groups represented by R 2 and R 5 are unlikely to aggregate. As a result, all hydroxyl groups of the fluorine-containing ether compound represented by formula (1) are likely to participate in bonding with active sites on the protective layer, and adhere to the protective layer.
  • the fluorine-containing ether compound represented by formula (1) tends to wet and spread on the protective layer, and the lubricating layer containing it tends to be formed in a uniform coating state.
  • a lubricating layer formed in a uniform coating state has a high coating rate, which makes it difficult for environmental substances that generate contaminants to enter through gaps, thereby suppressing corrosion of the magnetic recording medium.
  • the fluorine-containing ether compound represented by formula (1) has two PFPE chains represented by R3 and R4 .
  • Each perfluoropolyether chain covers the surface of the protective layer in the lubricating layer containing the fluorine-containing ether compound represented by formula (1), and has a low surface energy that makes the lubricating layer suitable for hydrophobicity (water resistance). nature).
  • the lubricating layer containing the fluorine-containing ether compound represented by formula (1) is difficult for water to pass through, can prevent water from penetrating into the magnetic recording medium, and improves the corrosion resistance of the magnetic recording medium.
  • the lubricant for magnetic recording media of this embodiment contains a fluorine-containing ether compound represented by formula (1).
  • the lubricant of the present embodiment may optionally contain a known material used as a lubricant material within a range that does not impair the characteristics due to the inclusion of the fluorine-containing ether compound represented by formula (1). They can be mixed and used according to need.
  • the known material used by mixing with the lubricant of the present embodiment preferably has a number average molecular weight of 400 to 10,000.
  • the inclusion of the fluorine-containing ether compound represented by formula (1) in the lubricant of the present embodiment is preferably 50% by mass or more, more preferably 70% by mass or more.
  • the content of the fluorine-containing ether compound represented by formula (1) may be 80% by mass or more, or may be 90% by mass or more.
  • the lubricant of the present embodiment contains the fluorine-containing ether compound represented by formula (1), it has excellent wear resistance and can form a lubricating layer highly effective in suppressing corrosion of the magnetic recording medium.
  • the lubricating layer made of the lubricant of the present embodiment has excellent wear resistance and a high corrosion-suppressing effect on the magnetic recording medium, so that the thickness can be reduced.
  • the magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer sequentially provided on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer, if necessary.
  • An adhesion layer and/or a soft magnetic layer can also be provided between the underlayer and the substrate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of the present embodiment includes an adhesive layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, and an adhesive layer 12 on a substrate 11.
  • a lubricating layer 18 is sequentially provided.
  • a non-magnetic substrate or the like can be used in which a film made of NiP or a NiP alloy is formed on a substrate made of a metal such as Al or an Al alloy or an alloy material.
  • a non-magnetic substrate made of non-metallic materials such as glass, ceramics, silicon, silicon carbide, carbon, and resin may be used.
  • a non-magnetic substrate having a film formed thereon may be used.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are arranged in contact with each other.
  • the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, and the like.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are antiferro-coupling (AFC) coupled by sandwiching an intermediate layer made of Ru film between two layers of soft magnetic films. It is preferable to have
  • Materials for the first soft magnetic film and the second soft magnetic film include CoZrTa alloy and CoFe alloy. Any one of Zr, Ta, and Nb is preferably added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film, improves the orientation of the first underlayer (seed layer), and reduces the flying height of the magnetic head. becomes.
  • the soft magnetic layer 13 can be formed by sputtering, for example.
  • the first underlayer 14 is a layer that controls the orientation and crystal size of the second underlayer 15 and the magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, and a CrTi alloy layer.
  • the first underlayer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is a layer for controlling the orientation of the magnetic layer 16 to be good.
  • the second underlayer 15 is preferably a layer made of Ru or a Ru alloy.
  • the second underlayer 15 may be a single layer, or may be composed of a plurality of layers. When the second underlayer 15 is composed of multiple layers, all layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second underlayer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is composed of a magnetic film having an axis of easy magnetization oriented perpendicularly or horizontally with respect to the substrate surface.
  • the magnetic layer 16 is a layer containing Co and Pt, and may be a layer containing oxides, Cr, B, Cu, Ta, Zr, etc. in order to improve the SNR characteristics.
  • oxides contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 and TiO 2 .
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is oxidized. It is preferably a granular structure made of a material containing matter.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, oxides of Cr, Si, Ta, Al, Ti, Mg, Co, and the like. Among these, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide to which two or more kinds of oxides are added.
  • Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , SiO 2 —TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer contains Co, Cr, Pt, oxides, and at least one element selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re. can contain.
  • the same material as the first magnetic layer can be used for the second magnetic layer.
  • the second magnetic layer preferably has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, Pt and no oxide.
  • the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn. be able to.
  • the magnetic layer 16 When the magnetic layer 16 is composed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers. When the magnetic layer 16 is composed of three layers, the first magnetic layer, the second magnetic layer, and the third magnetic layer, the magnetic layer between the first magnetic layer and the second magnetic layer and between the second magnetic layer and the third magnetic layer It is preferable to provide a non-magnetic layer between them.
  • Nonmagnetic layers provided between adjacent magnetic layers of the magnetic layer 16 are, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B.), etc. can be preferably used.
  • Non-magnetic layers provided between adjacent magnetic layers of the magnetic layer 16 preferably use an alloy material containing oxides, metal nitrides, or metal carbides.
  • SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 and the like can be used as oxides.
  • AlN, Si 3 N 4 , TaN, CrN, etc. can be used as metal nitrides, for example.
  • TaC, BC, SiC, etc. can be used as the metal carbide.
  • the non-magnetic layer can be formed, for example, by sputtering.
  • the magnetic layer 16 is preferably a magnetic layer for perpendicular magnetic recording in which the axis of easy magnetization is oriented perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method such as a vapor deposition method, an ion beam sputtering method, a magnetron sputtering method, or the like.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • the protective layer 17 protects the magnetic layer 16 .
  • the protective layer 17 may be composed of a single layer, or may be composed of a plurality of layers. Examples of materials for the protective layer 17 include carbon, nitrogen-containing carbon, and silicon carbide.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferred. It is preferable that the protective layer 17 is a carbon-based protective layer because the interaction with the hydroxyl groups contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be adjusted by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer.
  • the hydrogen content in the carbon-based protective layer is preferably 3 to 20 atomic % as measured by hydrogen forward scattering spectroscopy (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer need not be contained uniformly throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a composition gradient layer in which, for example, the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
  • the film thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the film thickness of the protective layer 17 is 1 nm or more, the performance as the protective layer 17 is sufficiently obtained. It is preferable from the viewpoint of thinning the protective layer 17 that the film thickness of the protective layer 17 is 7 nm or less.
  • a sputtering method using a target material containing carbon a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, or the like may be used.
  • a carbon-based protective layer is formed as the protective layer 17, it can be formed by, for example, a DC magnetron sputtering method.
  • a plasma CVD method when forming a carbon-based protective layer as the protective layer 17, it is preferable to form an amorphous carbon protective layer by a plasma CVD method.
  • the amorphous carbon protective layer formed by the plasma CVD method has a uniform surface and a small roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10 .
  • the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10 , thereby improving the durability of the magnetic recording medium 10 .
  • the lubricating layer 18 is formed on and in contact with the protective layer 17 as shown in FIG.
  • Lubricating layer 18 contains the fluorine-containing ether compound described above.
  • the lubricating layer 18 is particularly bonded to the protective layer 17 with high bonding strength when the protective layer 17 arranged under the lubricating layer 18 is a carbon-based protective layer. As a result, even if the thickness of the lubricating layer 18 is small, it becomes easy to obtain the magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
  • the average film thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.0 nm (10 ⁇ ).
  • the average thickness of the lubricating layer 18 is 0.5 nm or more, the lubricating layer 18 is formed with a uniform thickness without being island-like or network-like. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average film thickness of the lubricating layer 18 to 2.0 nm or less, the lubricating layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • the environmental substances adsorbed to the surface of the magnetic recording medium 10 pass through the gaps in the lubricating layer 18 and reach under the lubricating layer 18. invade.
  • Environmental substances that have entered under the lubricating layer 18 are adsorbed and bonded to the protective layer 17 to generate contaminants.
  • the generated contaminants (cohesive components) adhere (transfer) to the magnetic head as smear during magnetic recording and reproduction, damaging the magnetic head and degrading the magnetic recording and reproduction characteristics of the magnetic recording and reproducing device. .
  • Examples of environmental substances that generate contaminants include siloxane compounds (cyclic siloxane, linear siloxane), ionic impurities, hydrocarbons with relatively high molecular weights such as octacosane, and plasticizers such as dioctyl phthalate.
  • Examples of metal ions contained in ionic impurities include sodium ions and potassium ions.
  • Examples of inorganic ions contained in ionic impurities include chloride ions, bromide ions, nitrate ions, sulfate ions, and ammonium ions.
  • Examples of organic ions contained in ionic impurities include oxalate ions and formate ions.
  • Method for Forming a Lubricating Layer As a method for forming the lubricating layer 18, for example, a magnetic recording medium in the middle of production in which each layer up to the protective layer 17 is formed on the substrate 11 is prepared, a lubricating layer forming solution is applied onto the protective layer 17, A drying method may be mentioned.
  • the lubricating layer-forming solution is obtained by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent, if necessary, and adjusting the viscosity and concentration suitable for the coating method.
  • the solvent used for the lubricating layer forming solution include fluorine-based solvents such as Vertrel (registered trademark) XF (trade name, manufactured by DuPont-Mitsui Fluorochemicals).
  • the method of applying the lubricating layer-forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dipping method for example, the following method can be used. First, the substrate 11 on which the layers up to the protective layer 17 are formed is immersed in a lubricating layer forming solution placed in an immersion tank of a dip coater. Next, the substrate 11 is pulled up from the immersion bath at a predetermined speed. As a result, the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11 .
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17 , and the lubricating layer 18 can be formed on the protective layer 17 with a uniform film thickness.
  • the burnishing process can be, for example, a process of scanning a burnishing tape over the surface of the substrate 11 on which the lubricating layer 18 is formed.
  • the varnish tape for example, one made of a resin film holding abrasive grains can be used.
  • the grain size of the abrasive grains can be, for example, #6000 to #20000.
  • the heat treatment temperature is preferably 100 to 180°C.
  • the heat treatment time is preferably 10 to 120 minutes.
  • the magnetic recording medium 10 of the present embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 successively provided on a substrate 11.
  • FIG. In the magnetic recording medium 10 of this embodiment, a lubricating layer 18 containing the fluorine-containing ether compound is formed on and in contact with the protective layer 17 .
  • This lubricating layer 18 has excellent wear resistance and is highly effective in suppressing corrosion of the magnetic recording medium 10 . Therefore, the magnetic recording medium 10 of the present embodiment has less contaminants on the surface, excellent wear resistance and corrosion resistance, and good reliability and durability.
  • the magnetic recording medium 10 of the present embodiment has the lubricating layer 18 that is excellent in wear resistance and highly effective in suppressing corrosion, the thickness of the protective layer 17 and/or the lubricating layer 18 can be reduced. In addition, the lubricating layer 18 in the magnetic recording medium 10 of the present embodiment is less likely to generate foreign matter (smear) and can suppress pickup.
  • Example 1 The compound represented by the above formula (A) was produced by the method shown below. (first reaction) HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 CH 2 OH (wherein q indicating the average degree of polymerization in the formula is 4.4) in a 200 mL eggplant flask under a nitrogen gas atmosphere. ) 20 g of the compound represented by (number average molecular weight 1000, molecular weight distribution 1.1), 4.3 g of the compound represented by the following formula (9) (molecular weight 354.4, 12 mmol), and 19 mL of t-butanol It was charged and stirred at room temperature until uniform. 0.67 g of potassium tert-butoxide (molecular weight: 112.21, 6 mmol) was further added to this homogeneous liquid, and the mixture was stirred at 70° C. for 16 hours to react.
  • first reaction HOCH 2 CF 2 CF 2 O (CF 2 CF 2
  • the compound represented by formula (9) was synthesized by the following method. A primary hydroxyl group of 4-(2-hydroxyethyl)morpholine was reacted with allyl glycidyl ether. The secondary hydroxyl group of the obtained compound was protected with a tetrahydropyranyl (THP) group, and the terminal double bond of the obtained compound was oxidized. Through the above steps, a compound represented by formula (9) was obtained.
  • THP represents a tetrahydropyranyl group.
  • reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with water and dried over anhydrous sodium sulfate. After filtering off the drying agent, the filtrate was concentrated, the residue was purified by silica gel column chromatography, and 10.0 g of a compound represented by the following formula (10) as intermediate compound 1 (molecular weight: 1254.4, 8.0 mmol ).
  • reaction solution obtained after the reaction was returned to room temperature, 31 g of a 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours.
  • the reaction solution was gradually transferred to a separatory funnel containing 100 mL of brine and extracted with 200 mL of ethyl acetate three times.
  • the organic layer was washed with 100 mL of brine, 100 mL of saturated aqueous sodium bicarbonate, and 100 mL of brine in that order, and dehydrated with anhydrous sodium sulfate.
  • Example 2 Represented by HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 CH 2 OH in the first reaction (q indicating the average degree of polymerization in the formula is 4.4)
  • a compound number average molecular weight 1000, molecular weight distribution 1.1
  • 4.31 g of the compound represented by the following formula (11) was used.
  • the compound represented by the above formula (B) Fpb 1 and Fpb 2 in formula (B) are represented by formula (BF).
  • pb in Fpb 1 and Fpb 2 represents the average degree of polymerization 4.69 g (molecular weight: 2607, 1.8 mmol) was obtained.
  • the compound represented by formula (11) was synthesized by the following method. A primary hydroxyl group of 4-(3-hydroxypropyl)morpholine was reacted with allyl glycidyl ether. The secondary hydroxyl group of the obtained compound was protected with a THP group, and the terminal double bond of the obtained compound was oxidized. Through the above steps, a compound represented by formula (11) was obtained.
  • THP represents a tetrahydropyranyl group.
  • Example 3 Represented by HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 CH 2 OH in the first reaction (q indicating the average degree of polymerization in the formula is 4.4) HOCH 2 CF 2 O(CF 2 CF 2 O) m (CF 2 O) n CF 2 CH 2 OH (in the formula, m indicating the average degree of polymerization is 4.5, and the average degree of polymerization is n is 4.5.
  • Example 2 was used in the same manner as in Example 1, except that 3.95 g of the compound represented by the above formula (C) (Ffc 1 and Ffc 2 in the formula (C) are represented by the formula (CF mc and nc in Ffc 1 and Ffc 2 indicate the average degree of polymerization, both of which are 4.5.) was obtained (molecular weight: 2547, 1.8 mmol).
  • the compound represented by formula (12) was synthesized by the following method. A primary hydroxyl group of 1-(2-hydroxyethyl)pyrrolidine was reacted with allyl glycidyl ether. The secondary hydroxyl group of the obtained compound was protected with a THP group, and the terminal double bond of the obtained compound was oxidized. Through the above steps, a compound represented by formula (12) was obtained.
  • THP represents a tetrahydropyranyl group.
  • Example 4 The same operation as in Example 2 was performed except that 4.12 g of the compound represented by the following formula (13) was used instead of the compound represented by the formula (11) in the first reaction, and the above formula ( D) (Fpd 1 and Fpd 2 in formula (D) are represented by formula (DF). pd in Fpd 1 and Fpd 2 indicates an average degree of polymerization, both of which are 7.1. ) was obtained (molecular weight: 2575, 1.8 mmol).
  • the compound represented by formula (13) was synthesized by the following method. A primary hydroxyl group of 1-(3-hydroxypropyl)pyrrolidine was reacted with allyl glycidyl ether. The secondary hydroxyl group of the obtained compound was protected with a THP group, and the terminal double bond of the obtained compound was oxidized. Through the above steps, a compound represented by formula (13) was obtained.
  • THP represents a tetrahydropyranyl group.
  • Example 5 The same operation as in Example 1 was performed except that 4.12 g of the compound represented by the following formula (14) was used instead of the compound represented by the formula (9) in the first reaction, and the above formula ( E) (Fde 1 and Fde 2 in formula (E) are represented by formula (EF). qe in Fde 1 and Fde 2 indicates an average degree of polymerization, both of which are 4.4. ) was obtained (molecular weight: 2575, 1.8 mmol).
  • the compound represented by formula (14) was synthesized by the following method. A primary hydroxyl group of 1-(2-hydroxyethyl)piperidine was reacted with allyl glycidyl ether. The secondary hydroxyl group of the obtained compound was protected with a THP group, and the terminal double bond of the obtained compound was oxidized. Through the above steps, a compound represented by formula (14) was obtained.
  • THP represents a tetrahydropyranyl group.
  • Example 6 In the first reaction, the same operation as in Example 3 was performed except that 4.29 g of the compound represented by the following formula (15) was used instead of the compound represented by the formula (12).
  • F) (Fff 1 and Fff 2 in formula (F) are represented by formula (FF).
  • mf and nf in Fff 1 and Fff 2 indicate an average degree of polymerization, both of which are 4.5. ) was obtained (molecular weight: 2603, 1.8 mmol).
  • the compound represented by formula (15) was synthesized by the following method. Allyl glycidyl ether was reacted with the primary hydroxyl group of hexahydro-1H-azepine-1-ethanol. The secondary hydroxyl group of the obtained compound was protected with a THP group, and the terminal double bond of the obtained compound was oxidized. Through the above steps, a compound represented by formula (15) was obtained.
  • THP represents a tetrahydropyranyl group.
  • Example 7 By performing the first reaction in the same manner as in Example 1, 5.0 g of the compound represented by the formula (10), which is the intermediate compound 1 of Example 1 (molecular weight: 1254.4, 4.0 mmol) was produced. Further, by performing the first reaction in the same manner as in Example 3, HOCH 2 CF 2 O(CF 2 CF 2 O) m (CF 2 O) n CF 2 CH 2 OH as the second intermediate compound 1b Intermediate Compound 1 of Example 3 obtained by reacting the compound represented by Formula (12) with the compound represented by Formula (12) was prepared.
  • reaction solution obtained after the reaction was returned to room temperature, 33 g of a 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours.
  • the reaction solution was gradually transferred to a separatory funnel containing 100 mL of brine and extracted with 200 mL of ethyl acetate three times.
  • the organic layer was washed with 100 mL of brine, 100 mL of saturated aqueous sodium bicarbonate, and 100 mL of brine in that order, and dehydrated with anhydrous sodium sulfate.
  • Example 8 The same operation as in Example 1 was performed except that 2.42 g of the compound represented by the following formula (16) was used instead of the compound represented by the formula (9) in the first reaction, and the above formula ( H) (Fdh 1 and Fdh 2 in formula (H) are represented by formula (HF). qh in Fdh 1 and Fdh 2 indicates an average degree of polymerization, both of which are 4.4. ) was obtained (molecular weight: 2259, 1.8 mmol).
  • a compound represented by formula (16) was synthesized by the following method. It was synthesized by reacting the primary hydroxyl group of 4-(3-hydroxypropyl)morpholine with epibromohydrin.
  • R 1 , R 2 and R 5 (b in formula (3)), R 3 and Table 1 shows the structures of R4 (c and d in formula (4), e in formula (5), and f in formula (6)) and R6 .
  • the number average molecular weights (Mn) of the compounds of Examples 1 to 8 and Comparative Examples 1 to 4 were determined by the 1 H-NMR and 19 F-NMR measurements described above. Table 2 shows the results. It should be noted that the average molecular weight of the synthesized compound varies by about 1 to 5 due to the molecular weight distribution of the fluoropolyether used as the raw material of the compound, the difference in the operation when synthesizing the compound, etc. Presumed.
  • lubricating layer forming solutions were prepared by the method shown below. Using the lubricating layer forming solution thus obtained, lubricating layers of magnetic recording media were formed by the method described below, and magnetic recording media of Examples 1 to 8 and Comparative Examples 1 to 4 were obtained.
  • Magnetic recording medium A magnetic recording medium was prepared by sequentially forming an adhesion layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon with a thickness of 1-5 nm.
  • the lubricating layer-forming solutions of Examples 1 to 8 and Comparative Examples 1 to 4 were applied by dipping onto the protective layer of the magnetic recording medium on which each layer up to the protective layer had been formed. The dipping method was performed under conditions of an immersion speed of 10 mm/sec, an immersion time of 30 sec, and a lifting speed of 1.2 mm/sec.
  • a varnishing step was performed in which a varnishing tape holding abrasive grains of grain size #6000 was scanned over the surface of the magnetic recording medium on which the lubricating layer was formed. After the burnishing process, the magnetic recording medium was placed in a constant temperature bath at 120° C. and heat-treated for 10 minutes. Magnetic recording media (with varnish) of Examples 1 to 8 and Comparative Examples 1 to 4 were obtained by the above steps. Further, magnetic recording media (without varnish) of Examples 1 to 8 and Comparative Examples 1 to 4 were obtained in the same manner as the magnetic recording media with varnish, except that the varnish process was not performed.
  • Evaluation criteria A: less than 300 B: 300 or more and less than 500 C: 500 or more and less than 800 D: 800 or more and less than 1000 E: 1000 or more
  • Evaluation criteria A: 500 sec or more B: 400 sec or more and less than 500 sec C: 300 sec or more and less than 400 sec D: 200 sec or more and less than 300 sec E: Less than 200 sec
  • the time until the coefficient of friction suddenly increases can be used as an index of the wear resistance of the lubricating layer for the reasons given below. This is because the lubricating layer of the magnetic recording medium wears out as the magnetic recording medium is used, and when the lubricating layer is lost due to wear, the contactor and the protective layer come into direct contact with each other, resulting in a sharp increase in the coefficient of friction. be. It is considered that the time until this coefficient of friction suddenly increases has a correlation with the friction test.
  • Examples 1 to 8 and Comparative Examples 1 to 4 were comprehensively evaluated based on the criteria shown below.
  • Table 2 shows the results.
  • A Both the results of the corrosion resistance test with and without varnish are A, and the results of the wear resistance test are A or B. Or one of the results of the corrosion resistance test with and without varnish is A, the other is B, and the result of the wear resistance test is A.
  • B Both the results of the corrosion resistance test with and without varnish were B, and the results of the wear resistance test were A.
  • C The results of the corrosion resistance test with and without varnish are A to C, and the result of the wear resistance test is D.
  • D Both the results of the corrosion resistance test with and without varnish were E, and the results of the abrasion resistance test were A.
  • E Both the results of the corrosion resistance test with and without varnish were E, and the results of the abrasion resistance test were D.
  • the magnetic recording medium of Comparative Example 1 has an overall evaluation of E
  • the magnetic recording media of Comparative Examples 2 and 3 have an overall evaluation of C
  • the magnetic recording medium of Comparative Example 4 has an overall evaluation of The evaluation was D, which was inferior to the magnetic recording media of Examples 1-8.
  • the magnetic recording medium of Comparative Example 1 was E in the corrosion resistance test both with and without tape varnish. It is presumed that this is due to the following reasons.
  • the compound contained in the lubricating layer has two PFPE chains in the molecule. Therefore, it is presumed that the lubricating layer becomes difficult for water to pass through, and the lubricating layer prevents water from entering the inside of the magnetic recording medium, thereby improving the corrosion resistance of the magnetic recording medium.
  • the compound (I) contained in the lubricating layer has one PFPE chain in its molecule. It is presumed that due to this difference, in the magnetic recording medium of Comparative Example 1, the lubricating layer had insufficient water resistance, resulting in inferior corrosion resistance compared to the magnetic recording media of Examples 1 to 8. .
  • the magnetic recording media of Comparative Examples 1 to 3 were D in the abrasion resistance test. This is presumably because the compounds (I) and (K) contained in the lubricating layer in Comparative Examples 1 and 3 have methylpyrazolylmethyl groups at both ends. Although the conjugated unsaturated ⁇ bond contained in the methylpyrazolylmethyl group in the lubricating layer interacts with the protective layer, the adhesion to the protective layer is too strong. As a result, the fluidity of the lubricating layer is insufficient, and the function of buffering the collision between the magnetic head and the protective layer before the magnetic head approaching the protective layer collides with the protective layer cannot be obtained sufficiently. As a result, the floating of the magnetic head became unstable, and collision between the magnetic head and the protective layer became more likely to occur, resulting in poor wear resistance.
  • the compounds contained in the lubricating layers of the magnetic recording media of Examples 1 to 8 have terminal groups containing tertiary amines represented by formula (2), and the terminal groups do not have unsaturated bonds.
  • the tertiary amine located at the end of the compound contained in the lubricating layer has moderate fluidity, the collision between the magnetic head and the protective layer is moderated, resulting in good durability. It is presumed that wearability was obtained.
  • the compound (J) contained in the lubricating layer has tertiary amines in which two hydroxyethyl groups are bonded to nitrogen atoms at both ends.
  • the hydroxyl groups of the two hydroxyethyl groups of the tertiary amine have too strong adsorptive power with the protective layer.
  • the tertiary amines located at both ends of compound (J) are bonded to the PFPE chain only through methylene groups, not through ether bonds (--O--). For this reason, the flexibility of the molecular structure is insufficient, and it is difficult to form a lubricating layer on the protective layer in a uniform covering state. For these reasons, it is presumed that the collision between the magnetic head and the protective layer could not be reduced, and the collision between the magnetic head and the protective layer became more likely to occur, resulting in poor wear resistance.
  • the magnetic recording medium of Comparative Example 4 was A in the abrasion resistance test.
  • the magnetic recording medium of Comparative Example 4 was evaluated as E in the corrosion resistance test both with and without tape varnish. This is because in Comparative Example 4, as in Comparative Example 1, the compound (L) contained in the lubricating layer has only one PFPE chain in the molecule, so the water resistance of the lubricating layer is lower than in Examples 1 to 8. This is due to the inferiority of the
  • a fluorine-containing ether compound that can be preferably used as a material for lubricants for magnetic recording media is provided.
  • the lubricant for a magnetic recording medium containing the fluorine-containing ether compound of the present invention it is possible to form a lubricating layer that is excellent in wear resistance and highly effective in suppressing corrosion of the magnetic recording medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

下記式で表される含フッ素エーテル化合物。R1-O-R2-CH2-R3-CH2-OCH2CH(OH)CH2O-CH2-R4-CH2-R5-O-R6(R3およびR4は、同じまたは異なるパーフルオロポリエーテル鎖;R2およびR5はそれぞれ独立に、極性基を1つ以上含む2価の連結基;R1およびR6はそれぞれ独立に、三級アミンを含む末端基であり、-X-NR7R8(Xは炭素原子数1~5の2価の炭化水素基;R7およびR8は同一もしくは異なる飽和脂肪族基;R7およびR8は窒素原子とともに環構造を形成していてもよい。)で表される。)

Description

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
 本願は、2021年11月10日に、日本に出願された特願2021-183675号に基づき優先権を主張し、その内容をここに援用する。
 磁気記録再生装置における記録密度を高くするために、高記録密度に適した磁気記録媒体の開発が進められている。
 従来、磁気記録媒体として、基板上に記録層を形成し、記録層上にカーボンなどからなる保護層を形成したものがある。保護層は、記録層に記録された情報を保護するとともに、磁気ヘッドの摺動性を高める。また、保護層は、記録層を被覆して、記録層に含まれる金属が環境物質により腐食されるのを防止する。
 しかし、磁気記録媒体の耐久性は、記録層上に保護層を設けただけでは十分には得られない。そのため、保護層の表面に潤滑剤を塗布して、厚さ0.5~3nm程度の潤滑層を形成している。潤滑層は、保護層の耐久性および保護力を向上させて、磁気記録媒体内部への汚染物質の侵入を防止する。
 また、保護層の表面に潤滑層を形成した後、磁気記録媒体の表面に存在する突起およびパーティクルを除去し、表面の平滑性を向上させるために、バーニッシュ工程を行う場合がある。
 磁気記録媒体の潤滑層を形成する際に用いられる潤滑剤としては、例えば、-CF-を含む繰り返し構造を有し、末端に水酸基などの極性基を有するフッ素系のポリマーを含有するものがある。
 例えば、特許文献1には、パーフルオロポリエーテル鎖の両末端に、複素環を有する基が結合している含フッ素エーテル化合物を含む潤滑層が設けられた磁気記録媒体が開示されている。
 特許文献2には、周期表の第15族に属するヘテロ原子を含む基と、パーフルオロポリエーテル鎖とを含むポリマーが開示されている。
 特許文献3には、パーフルオロポリエーテル鎖の末端が、水酸基を有するアミノ基である化合物が開示されている。
 特許文献4には、グリセリン構造の両側にパーフルオロポリエーテル鎖と、不飽和結合を含む末端基とを有する含フッ素エーテル化合物が開示されている。
 特許文献5には、パーフルオロポリエーテル鎖と、パーフルオロポリエーテル鎖の第1端部にメチレン基と連結基とを介して結合された三級アミンを含む基と、第2端部にメチレン基を介して結合された2つまたは3つの極性基を含む末端基とを有する含フッ素エーテル化合物が開示されている。
国際公開第2018/139174号 特表2018-521183号公報 国際公開第2004/031261号 国際公開第2021/131993号 国際公開第2021/065382号
 磁気記録再生装置においては、より一層、磁気ヘッドの浮上量を小さくすることが要求されている。このため、磁気記録媒体における潤滑層の厚みを、より薄くすることが求められている。
 しかしながら、潤滑層の厚みを薄くすると、潤滑層の被覆性が低下して、磁気記録媒体の耐摩耗性および耐腐食性が低下する場合があった。特に、潤滑層を形成した後の磁気記録媒体の表面に、テープバーニッシュを行った場合、磁気記録媒体の耐腐食性が不十分となりやすかった。このことから、磁気記録媒体の腐食を抑制する効果の高い潤滑層が要求されている。
 本発明は、上記事情を鑑みてなされたものであり、耐摩耗性に優れ、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる磁気記録媒体用潤滑剤の材料として使用できる含フッ素エーテル化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含み、耐摩耗性に優れ、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる磁気記録媒体用潤滑剤を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有し、優れた耐摩耗性および耐腐食性を有する磁気記録媒体を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、鎖状構造の中央にグリセリン構造(-OCHCH(OH)CHO-)を配置し、その両端に、パーフルオロポリエーテル鎖と、極性基を1つ以上含む2価の連結基とが、この順にそれぞれメチレン基(-CH-)を介して結合され、両末端に三級アミンを含む特定の末端基がエーテル結合(-O-)された含フッ素エーテル化合物とすればよいことを見出し、本発明を想到した。
 すなわち、本発明は以下の事項に関する。
 本発明の第一の態様は、以下の含フッ素エーテル化合物を提供する。
[1] 下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
-O-R-CH-R-CH-OCHCH(OH)CHO-CH-R-CH-R-O-R  ・・・(1)
(式(1)中、RおよびRは、同じまたは異なるパーフルオロポリエーテル鎖である;RおよびRはそれぞれ独立に、極性基を1つ以上含む2価の連結基である;RおよびRはそれぞれ独立に、三級アミンを含む末端基であり、下記式(2)で表される。)
-X-NR  ・・・(2)
(式(2)中、Xは炭素原子数1~5の、2価の炭化水素基である;RおよびRは同一もしくは異なる飽和脂肪族基である;RおよびRは窒素原子とともに環構造を形成していてもよい。)
 本発明の第一の態様の前記含フッ素エーテル化合物は、以下の[2]~[13]に記載される特徴を有することが好ましい。以下の[2]~[13]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記式(2)において、-X-が下記式(2-1)で表される[1]に記載の含フッ素エーテル化合物。
-(CH-  ・・・(2-1)
(式(2-1)中、aは2または3の整数である。)
[3] 前記式(2)において、RおよびRが窒素原子とともに5~7員環を形成している[1]または[2]に記載の含フッ素エーテル化合物。
[4] 前記式(2)において、-NRが、ピロリジン基、ピペリジン基、モルホリン基、ヘキサメチレンイミン基から選ばれるいずれか1種の基である[1]~[3]のいずれかに記載の含フッ素エーテル化合物。
[5] 前記式(1)において、RおよびRの有する極性基がすべて水酸基である[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
[6] 前記式(1)において、RおよびRはそれぞれ独立に、下記式(3)で表される[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000002

(式(3)中、bは1~2の整数である;式(3)中のエーテル性酸素原子が、式(1)におけるRに隣接するCH、またはRに隣接するCHに結合される。)
[7] 前記式(1)において、RおよびRがそれぞれ2つの極性基を含む[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
[8] 前記式(1)において、RおよびRはそれぞれ独立に、下記式(Rf)で表される[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
-(CFw1O(CFO)w2(CFCFO)w3(CFCFCFO)w4(CFCFCFCFO)w5(CFw6- (Rf)
(式(Rf)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5のすべてが同時に0になることはない;w1、w6は-CF-の数を示す平均値であり、それぞれ独立に1~3を表す;式(Rf)における繰り返し単位の配列順序には、特に制限はない。)
[9] 前記式(1)において、RおよびRはそれぞれ独立に、下記式(4)~(8)のいずれかである[1]~[8]のいずれかに記載の含フッ素エーテル化合物。
-CFO-(CFCFO)-(CFO)-CF-  (4)
(式(4)中、cおよびdは平均重合度を示し、それぞれ0.1~20を表す。)
-CFO-(CFCFO)e-CF-  (5)
(式(5)中、eは平均重合度を示し、0.1~20を表す。)
-CFCFO-(CFCFCFO)-CFCF-  (6)
(式(6)中、fは平均重合度を示し、0.1~20を表す。)
-CFCFCFO-(CFCFCFCFO)-CFCFCF- (7)
(式(7)中、gは平均重合度を示し、0.1~10を表す。)
-(CFw7O-(CFCFO)w8-(CFCFCFO)w9-(CFw10- (8)
(式(8)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す;w7、w10は-CF-の数を示す平均値であり、それぞれ独立に1~2を表す。)
[10] 前記式(1)において、RとRが同じである[1]~[9]のいずれかに記載の含フッ素エーテル化合物。
[11] 前記式(1)において、RとRが同じである[1]~[10]のいずれかに記載の含フッ素エーテル化合物。
[12] 前記式(1)において、RとRが同じである[1]~[11]のいずれかに記載の含フッ素エーテル化合物。
[13] 数平均分子量が500~10000の範囲内である[1]~[12]のいずれかに記載の含フッ素エーテル化合物。
 本発明の第二の態様は、以下の磁気記録媒体用潤滑剤を提供する。
[14] [1]~[13]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
 本発明の第三の態様は、以下の磁気記録媒体を提供する。
[15] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
 前記潤滑層が、[1]~[13]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
[16] 前記潤滑層の平均膜厚が、0.5nm~2.0nmである[15]に記載の磁気記録媒体。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物である。このため、本発明の含フッ素エーテル化合物は、耐摩耗性に優れ、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる磁気記録媒体用潤滑剤の材料として使用できる。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含むため、耐摩耗性に優れ、腐食抑制効果の高い潤滑層を形成できる。
 本発明の磁気記録媒体は、本発明の含フッ素エーテル化合物を含む潤滑層を有するため、優れた耐摩耗性および耐腐食性を有する。このため、本発明の磁気記録媒体は、優れた信頼性および耐久性を有する。また、本発明の磁気記録媒体は、耐摩耗性に優れ、腐食抑制効果の高い潤滑層を有するため、保護層および/または潤滑層の厚みを薄くできる。
本発明の磁気記録媒体の一実施形態の例を示した概略断面図である。
 以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)および磁気記録媒体の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、位置、比率、材料、構成等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
-O-R-CH-R-CH-OCHCH(OH)CHO-CH-R-CH-R-O-R  ・・・(1)
(式(1)中、RおよびRは、同じまたは異なるパーフルオロポリエーテル鎖である;RおよびRはそれぞれ独立に、極性基を1つ以上含む2価の連結基である;RおよびRはそれぞれ独立に、三級アミンを含む末端基であり、下記式(2)で表される。)
-X-NR  ・・・(2)
(式(2)中、Xは炭素原子数1~5の、2価の炭化水素基である;RおよびRは同一もしくは異なる飽和脂肪族基である;RおよびRは窒素原子とともに環構造を形成していてもよい。)
(RおよびR
 式(1)で表される含フッ素エーテル化合物において、RおよびRは、それぞれ独立に三級アミンを含む末端基であり、式(2)で表される。式(2)中、Xは炭素原子数1~5の、2価の炭化水素基である。RおよびRは同一もしくは異なる飽和脂肪族基である。RおよびRは窒素原子とともに環構造を形成していてもよい。
 式(1)で示される含フッ素エーテル化合物は、RおよびRに含まれる三級アミン部分(式(2)中の-NR)が不飽和結合を有さないことにより、優れた流動性を有する分子構造とされている。このため、本実施形態の含フッ素エーテル化合物を含む潤滑層においては、式(1)中のRおよびRに含まれる三級アミン部分(式(2)中の-NR)が、磁気ヘッドと保護層との衝突を緩和し、優れた耐摩耗性を発現する。
 式(1)で表される含フッ素エーテル化合物において、RおよびRに含まれる三級アミンの構造は、それぞれ含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択できる。
 式(1)で表される含フッ素エーテル化合物において、式(2)中のXは炭素原子数1~5の、2価の炭化水素基である。このことにより、RおよびR中の極性基と、RおよびRに含まれる三級アミンとの距離が適正とされている。式(2)中のXの有する炭素原子数は1~4であることが好ましく、2~3であることがより好ましい。
 式(2)中のXで表される炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよく、好ましくは直鎖状である。また、Xで表される炭化水素基は、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。Xで表される炭化水素基に含まれる不飽和結合の数が1以下であると、式(1)で表される含フッ素エーテル化合物の立体構造が固定されにくく、RおよびRに含まれる三級アミン部分と保護層との相互作用が得られやすい潤滑剤を形成でき、好ましい。
 式(2)において、-X-は下記式(2-1)で表されることが好ましい。
-(CH-  ・・・(2-1)
(式(2-1)中、aは2または3の整数である。)
 式(2)中の-X-が式(2-1)で表される場合、式(2)で表される三級アミンを含む末端基中の窒素原子は、式(2-1)で表されるアルキレン基(-(CHa-)と結合している。式(2-1)で表される-(CHa-は、二価の連結基であり、式(2-1)中のaは2または3の整数である。このため、RおよびR中の極性基と、RおよびRに含まれる三級アミンに含まれる窒素原子との距離が適正とされている。その結果、-X-が式(2-1)で表される含フッ素エーテル化合物は、分子内凝集しにくい。よって、これを含む潤滑剤は、保護層上で面方向に広がって均一に延在した状態で配置されやすい。したがって、-X-が式(2-1)で表される含フッ素エーテル化合物を含む潤滑剤は、厚みが薄くても、高い被覆率で保護層の表面を被覆でき、より一層耐摩耗性に優れ、腐食抑制効果の高い潤滑層を形成できる。
 式(2-1)中のaは、三級アミン中の窒素原子と、RおよびR中の極性基との距離がより適正となるため、2であることが好ましい。また、式(2-1)中のaが3以下であると、式(2-1)で表されるアルキレン基が長すぎることによって、分子末端の運動性が増すことがない。このため、RおよびRに含まれる三級アミン部分と保護層との相互作用がより得られやすい潤滑剤を形成できる含フッ素エーテル化合物となる。
 式(2)で表される三級アミンを含む末端基において、RおよびRは同一もしくは異なる飽和脂肪族基である。式(2)中のRおよびRで表される飽和脂肪族基は、直鎖状であってもよいし、分岐鎖状であってもよく、窒素原子とともに環構造を形成していてもよい。前記環構造は、三級アミンの窒素原子以外のヘテロ原子を1つ以上含む環構造であってもよい。
 式(2)で表される三級アミンを含む末端基に含まれる三級アミンが非環状アミンである(式(2)中のRおよびRが窒素原子とともに環構造を形成していない)場合、RおよびRは、それぞれ独立に炭素原子数1~4の飽和脂肪族基であることが好ましい。この場合、式(2)中の三級アミン(-NR)が過剰な立体障害となることがない。したがって、RおよびRに含まれる三級アミンによって、式(1)で表される含フッ素エーテル化合物を含む潤滑剤の保護層に対する吸着力が抑制されることがなく、被覆率の良好な潤滑層が得られる。また、RおよびRに含まれる三級アミンが過剰な立体障害とならないため、磁気ヘッドと潤滑剤との衝突が起こりにくく、磁気ヘッドの浮上が不安定になりにくい。しかも、RおよびRに含まれる三級アミンが適度な立体障害となるため、磁気ヘッドが保護層に近づきすぎることもない。以上より、磁気ヘッドと保護層との衝突を抑制でき、磁気ヘッドと保護層との距離が適正に保たれる。その結果、このような含フッ素エーテル化合物を含む潤滑層は、優れた耐摩耗性を有する。
 炭素原子数1~4の飽和脂肪族基としては、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられる。これらの中でも、炭素原子数1~2の飽和脂肪族基であることが好ましい。具体的には、RおよびRが、それぞれ独立にメチル基またはエチル基であることが好ましく、RおよびRが同一であることがより好ましい。すなわち、式(2)で表される三級アミンを含む末端基に含まれる三級アミンが非環状アミンである場合、三級アミン(-NR)は、ジメチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基から選ばれるいずれか一種の基であることが好ましく、合成が容易であるため、ジメチルアミノ基またはジエチルアミノ基であることがより好ましい。
 式(2)で表される三級アミンを含む末端基に含まれる三級アミンが非環状アミンである(式(2)中のRおよびRが窒素原子とともに環構造を形成していない)場合、非環状アミンの具体例としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジノルマルブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、エチルメチルアミノ基、ノルマルプロピルメチルアミノ基、イソプロピルメチルアミノ基、ノルマルブチルメチルアミノ基、イソブチルメチルアミノ基、sec-ブチルメチルアミノ基、tert-ブチルメチルアミノ基、エチルノルマルプロピルアミノ基、エチルイソプロピルアミノ基、エチルノルマルブチルアミノ基、エチルイソブチルアミノ基、sec-ブチルエチルアミノ基、tert-ブチルエチルアミノ基、イソプロピルプロピルアミノ基、ノルマルブチルプロピルアミノ基、(2-メチルプロピル)(プロピル)アミノ基、N-sec-ブチルプロピルアミノ基、N-tert-ブチルプロピルアミノ基、N-(1-メチルエチル)-1-ブチルアミノ基、N-イソプロピル-2-メチル-1-プロピルアミノ基、N-(1-メチルエチル)-2-ブチルアミノ基、N-イソプロピル-2-メチル-2-プロピルアミノ基、ブチルイソブチルアミノ基、ブチル-sec-ブチルアミノ基、ブチル-tert-ブチルアミノ基、N-(2-メチルプロピル)-2-ブチルアミノ基、N-(1,1-ジメチルエチル)-2-メチルプロピルアミノ基、N-(1,1-ジメチルエチル)-2-ブチルアミノ基などが挙げられる。
 式(2)で表される三級アミンを含む末端基に含まれる三級アミンが環状アミンである(式(2)中のRおよびRが窒素原子とともに環構造を形成している)場合、RおよびRが窒素原子とともに5~7員環を形成していることが好ましい。この場合、式(2)中の三級アミン(-NR)が適度な流動性を有していることにより、過剰な立体障害となることがない。したがって、RおよびRに含まれる三級アミンによって、式(1)で表される含フッ素エーテル化合物を含む潤滑剤の保護層に対する吸着力が抑制されることがなく、被覆率の良好な潤滑層が得られる。また、RおよびRに含まれる三級アミンが適度な流動性を有することによって、含フッ素エーテル化合物を含む潤滑層が磁気ヘッドと保護層との衝突を緩和し、優れた耐摩耗性を発現する。
 環状アミンの有する環構造には、三級アミンの窒素原子以外のヘテロ原子が1つ以上含まれていてもよい。三級アミンの窒素原子以外のヘテロ原子としては、酸素原子および/または窒素原子などが挙げられる。
 式(2)で表される三級アミンを含む末端基に含まれる三級アミンが環状アミンである(式(2)中のRおよびRが窒素原子とともに環構造を形成している)場合、環状アミンは、置換基を有していてもよい。環状アミンが置換基を有している場合、式(1)で表される含フッ素エーテル化合物を含む潤滑剤の保護層に対する吸着力が強くなりすぎることを抑制するため、水酸基、アミノ基、カルボキシ基などの極性基を含まないことが好ましい。環状アミンが有していてもよい置換基の具体例としては、例えば、炭素原子数1~3のアルキル基が挙げられる。置換基を有する環状アミンにおける置換基の結合位置は、特に限定されず、環状アミンを構成するいずれの炭素原子に結合していてもよい。
 式(2)で表される三級アミンを含む末端基に含まれる三級アミンが環状アミンである(式(2)中のRおよびRが窒素原子とともに環構造を形成している)場合、環状アミンの具体例としては、例えば、エチレンイミン基、アザシクロブタン基、ピロリジン基、ピペリジン基、モルホリン基、ヘキサメチレンイミン基、へプタメチレンイミン基、オクタメチレンイミン基等が挙げられる。なお、これらの基中の窒素原子が、-X-と結合する。式(2)中の三級アミン(-NR)は、ピロリジン基、ピペリジン基、モルホリン基、ヘキサメチレンイミン基から選ばれるいずれか1種の基であることが好ましい。特に、式(2)中の三級アミンが、ピロリジン基またはモルホリン基である場合、式(1)で表される含フッ素エーテル化合物を含む潤滑剤が、優れた耐摩耗性を有する潤滑層を形成できるものとなり、好ましい。
 また、式(1)で表される含フッ素エーテル化合物では、RとR、およびRとRがエーテル結合(-O-)によって結合されている。このため、式(1)で示される含フッ素エーテル化合物は、分子構造が適度に柔軟性を有している。その結果、これを含む潤滑層は、含フッ素エーテル化合物中のRおよびR、RおよびRと、潤滑層に接して配置されている保護層との相互作用が良好となる。よって、本実施形態の含フッ素エーテル化合物を含む潤滑層は、保護層に吸着しやすく、保護層との密着性に優れ、耐腐食性および耐摩耗性に優れる。
(RおよびR
 式(1)に示す含フッ素エーテル化合物では、式(2)で表される三級アミンを含む末端基(RおよびR)と、パーフルオロポリエーテル鎖(RおよびR)との間に、極性基を1つ以上含む2価の連結基(RおよびR)が配置されている。RおよびRは、極性基を1つ以上含む。このため、式(1)に示す含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に潤滑層を形成した場合、潤滑層中のRおよびRの有する極性基と保護層との相互作用が得られる。よって、式(1)に示す含フッ素エーテル化合物を含む潤滑層は、保護層に吸着しやすく、保護層との密着性に優れ、耐摩耗性に優れる。
 RおよびRで表される連結基の有する極性基としては、水酸基、アミノ基、カルボキシ基などが挙げられる。これらの極性基の中でも、保護層との親和性が適切な潤滑層を形成できる含フッ素エーテル化合物となるため、極性基として水酸基を含むことが好ましく、RおよびRの有する極性基がすべて水酸基であることがより好ましい。
 RおよびRに含まれる極性基の数は、それぞれ1つ以上であり、それぞれ1つ~3つであることが好ましく、それぞれ1つまたは2つであることがより好ましく、それぞれ2つの極性基を含むことが最も好ましい。RおよびRに含まれる極性基の数が、それぞれ2つである場合、本実施形態の含フッ素エーテル化合物を含む潤滑層において、RおよびRの有する水酸基と保護層との相互作用が一層良好となり、保護層との密着性がより優れたものとなる。
 RおよびRで表される連結基は、炭素原子数1~10の連結基であることが好ましく、炭素原子数3~6の連結基であることがより好ましい。
 RおよびRで表される連結基は、水酸基で置換されたメチレン基(-CH(OH)-)と、メチレン基(-CH-)および/またはエーテル結合(-O-)とを含む連結基であることが好ましく、水酸基で置換されたメチレン基(-CH(OH)-)とメチレン基(-CH-)とエーテル結合(-O-)とをそれぞれ1つ以上含む連結基であることがより好ましい。
 具体的には、Rおよび/またはRで表される連結基が、下記式(3)で表されることがより好ましく、RおよびRで表される連結基がそれぞれ独立に、下記式(3)で表されることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000003

(式(3)中、bは1~2の整数である;式(3)中のエーテル性酸素原子が、式(1)におけるRに隣接するCH、またはRに隣接するCHに結合される。)
 式(3)中のbは1~2の整数である。したがって、RおよびRが式(3)で表される場合、RおよびRは極性基である水酸基(-OH)をそれぞれ1個~2個含む。このことにより、本実施形態の含フッ素エーテル化合物を含む潤滑層では、潤滑層と保護層との間に良好な相互作用が発生し、保護層に対する優れた付着性(密着性)が得られる。また、式(3)で表される連結基は、エーテル結合(-O-)を含むため、式(1)で示される含フッ素エーテル化合物の分子構造に適度な柔軟性を付与する。その結果、RおよびRが式(3)で表される場合、本実施形態の含フッ素エーテル化合物は、例えば、RとR(および/またはRとR)とが直接結合している含フッ素エーテル化合物と比較して、これを含む潤滑層が保護層に吸着しやすく、潤滑層と保護層との密着性に優れる。
 式(3)におけるbが1以上であるので、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に潤滑層を形成した場合、潤滑層中のRおよびRの有する水酸基と保護層との相互作用が得られる。式(3)中のbが2であると、RおよびRの有する水酸基と保護層との相互作用がより一層良好となり、保護層との密着性のより良好な潤滑層が得られる含フッ素エーテル化合物となる。また、式(3)におけるbが2以下であるので、RおよびRの有する水酸基が多すぎることによって、含フッ素エーテル化合物の極性が高くなり過ぎることがない。したがって、含フッ素エーテル化合物の極性が高すぎることにより、含フッ素エーテル化合物を含む潤滑層が異物(スメア)として磁気ヘッドに付着することを防止でき、ピックアップを抑制できる。また、式(3)において、bが2である場合、RおよびRに含まれる水酸基同士が適正な距離で配置されたものとなる。また、bが2である場合、RおよびRに含まれる水酸基の結合している炭素原子同士が、メチレン基(-CH-)を含む連結基を介して結合している。したがって、前記メチレン基の有する炭素原子の疎水性によって、式(1)で表される含フッ素エーテル化合物を含む潤滑層は、適切な疎水性を有するものとなる。その結果、潤滑層によって、磁気記録媒体内部への水の侵入が防止され、磁気記録媒体の腐食が抑制される。
(RおよびR
 上記式(1)で表される含フッ素エーテル化合物において、RおよびRは、同じまたは異なるパーフルオロポリエーテル鎖(以下、「PFPE鎖」という場合がある。)である。RおよびRで示されるPFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑剤を、保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。また、PFPE鎖は、その低い表面エネルギーによって、本実施形態の含フッ素エーテル化合物を含む潤滑層に耐水性を付与し、潤滑層の設けられた磁気記録媒体の耐腐食性を向上させる。式(1)で表される含フッ素エーテル化合物は、分子中に、RおよびRで表される2つのPFPE鎖を含むため、腐食抑制効果の高い潤滑層を形成できる。
 RおよびRは、PFPE鎖であればよく、それぞれ含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。PFPE鎖としては、例えば、パーフルオロメチレンオキシド重合体、パーフルオロエチレンオキシド重合体、パーフルオロ-n-プロピレンオキシド重合体、パーフルオロイソプロピレンオキシド重合体、これらの共重合体からなるものなどが挙げられる。
 RおよびRはそれぞれ独立に、例えば、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(Rf)で表される構造であってもよい。
-(CFw1O(CFO)w2(CFCFO)w3(CFCFCFO)w4(CFCFCFCFO)w5(CFw6- (Rf)
(式(Rf)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5のすべてが同時に0になることはない;w1、w6は-CF-の数を示す平均値であり、それぞれ独立に1~3を表す;式(Rf)における繰り返し単位の配列順序には、特に制限はない。)
 式(Rf)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表し、0~15であることが好ましく、0~10であることがより好ましい。
 式(Rf)中、w1、w6は-CF-の数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(Rf)で表される重合体において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(Rf)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(Rf)における繰り返し単位の配列順序には、特に制限はない。また、式(Rf)における繰り返し単位の種類の数にも、特に制限はない。
 具体的には、式(1)におけるRおよびRはそれぞれ独立に、下記式(4)~(8)のいずれかであることが好ましい。
-CFO-(CFCFO)-(CFO)-CF-  (4)
(式(4)中、cおよびdは平均重合度を示し、それぞれ0.1~20を表す。)
-CFO-(CFCFO)e-CF-  (5)
(式(5)中、eは平均重合度を示し、0.1~20を表す。)
-CFCFO-(CFCFCFO)-CFCF-  (6)
(式(6)中、fは平均重合度を示し、0.1~20を表す。)
-CFCFCFO-(CFCFCFCFO)-CFCFCF- (7)
(式(7)中、gは平均重合度を示し、0.1~10を表す。)
-(CFw7O-(CFCFO)w8-(CFCFCFO)w9-(CFw10- (8)
(式(8)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す;w7、w10は-CF-の数を示す平均値であり、それぞれ独立に1~2を表す。)
 式(4)における平均重合度を示すc、dはそれぞれ0.1~20であり、式(5)における平均重合度を示すeは0.1~20であり、式(6)における平均重合度を示すfは0.1~20であり、式(7)における平均重合度を示すgは0.1~10である。c、d、e、f、gが0.1以上であると、良好な耐摩耗性を有し、かつ磁気記録媒体の腐食をより抑制できる潤滑層が得られる含フッ素エーテル化合物となる。また、c、d、e、fがそれぞれ20以下であり、gが10以下であると、含フッ素エーテル化合物の粘度が高くなりすぎず、これを含む潤滑剤が塗布しやすいものとなり、好ましい。平均重合度を示すc、d、e、f、gはいずれも、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、2~10であることが好ましく、3~8であることがより好ましい。必要に応じて、例えば、4~6や、5~8などであってもよい。
 式(4)における繰り返し単位である(CFCFO)と(CFO)との配列順序には、特に制限はない。式(4)は、モノマー単位(CFCFO)と(CFO)とからなるランダム共重合体、ブロック共重合体、及び、交互共重合体のいずれを含むものであってもよい。
 式(8)における平均重合度を示すw8およびw9は、それぞれ独立に0.1~20を表し、0.1~15であることが好ましく、1~10であることがより好ましい。式(8)におけるw7およびw10は-CF-の数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(8)で表される重合体において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(8)における繰り返し単位である(CFCFO)と(CFCFCFO)との配列順序には、特に制限はない。式(8)は、モノマー単位(CFCFO)と(CFCFCFO)とからなるランダム共重合体、ブロック共重合体、及び、交互共重合体のいずれを含むものであってもよい。
 式(1)におけるRおよびRが、それぞれ独立に、式(4)~式(8)のいずれかである場合、含フッ素エーテル化合物の合成が容易であり好ましい。また、RおよびRが、それぞれ独立に、式(4)~式(8)のいずれかである場合、PFPE鎖中の、炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が、適正である。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。
 式(1)で表される含フッ素エーテル化合物において、RおよびRが、それぞれ独立に、式(4)、式(5)または式(6)である場合、原料入手が容易であるため、より好ましい。特に、RおよびRが、それぞれ独立に、式(5)または式(6)である含フッ素エーテル化合物は、PFPE鎖中の炭素原子数に対する酸素原子数の割合が、より適正となるため、より良好な耐摩耗性を有し、かつ磁気記録媒体の腐食を抑制できる潤滑層を形成でき、好ましい。
 式(1)で表される含フッ素エーテル化合物において、RおよびRで示されるPFPE鎖は、同じであってもよいし、それぞれ異なっていても良い。RとRとが同じである場合、少ない製造工程で、容易に合成できる含フッ素エーテル化合物となる場合がある。
 本実施形態において、PFPE鎖が同じであるとは、PFPE鎖の繰り返し単位が同じであって、平均重合度が異なる場合も含む。
 式(1)で表される含フッ素エーテル化合物において、RとRは同じであってもよいし、異なっていてもよい。RとRが同じである場合、RとRの保護層に対する吸着力が同じとなる。このため、保護層上で均一に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となり、好ましい。
 また、RとRは同じであってもよいし、異なっていてもよい。RとRが同じであるとは、式(1)中のグリセリン構造(-OCHCH(OH)CHO-)に対して、Rに含まれる原子とRに含まれる原子とが、対称配置されていることを意味する。RとRが同じである場合、RとRの保護層に対する吸着力が同じとなる。このため、保護層上で均一に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となり、好ましい。
 さらに、RとRが同じで、RとRが同じである場合、R-O-RとR-O-Rの保護層に対する吸着力が同じとなる。したがって、保護層上でより均一に濡れ広がりやすい含フッ素エーテル化合物となる。また、R-O-RとR-O-Rとが同じである場合、少ない製造工程で、容易に合成できる含フッ素エーテル化合物となる。
 また、式(1)で表される含フッ素エーテル化合物において、RおよびRが同じで、RとR、RとRが同じである場合、グリセリン構造(-OCHCH(OH)CHO-)を中心とする対称構造を有する化合物となる。このような化合物は、より少ない製造工程で、より一層効率よく容易に合成できるため、好ましい。また、式(1)で表される含フッ素エーテル化合物が、グリセリン構造を中心とする対称構造を有する場合、保護層上で均一に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすいものとなる。
(グリセリン構造)
 上記式(1)で表される含フッ素エーテル化合物において、グリセリン構造(-OCHCH(OH)CHO-)は、鎖状構造の中央に配置されている。グリセリン構造の水酸基(-OH)は、含フッ素エーテル化合物を含む潤滑層における保護層との密着性を向上させる。
 また、グリセリン構造の両端部に配置された酸素原子は、その両側に配置されるメチレン基(-CH-)と結合してエーテル結合(-O-)を形成する。この2つのエーテル結合は、式(1)で表される含フッ素エーテル化合物に適度な柔軟性を付与し、グリセリン構造の有する水酸基と保護層との親和性を増大させる。
 また、式(1)で表される含フッ素エーテル化合物では、鎖状構造の中央に配置されたグリセリン構造と、RおよびRとの間に、それぞれパーフルオロポリエーテル鎖(RおよびR)が配置されている。このため、グリセリン構造の有する水酸基(-OH)と、RおよびRの有する極性基との距離が適正である。このことから、グリセリン構造の有する水酸基も、RおよびRの有する極性基も、保護層上の活性点との結合を、隣接する極性基によって阻害されにくい。したがって、グリセリン構造の有する水酸基、および、RおよびRの有する極性基は、いずれも保護層上の活性点との結合に関与しやすい。言い換えると、上記含フッ素エーテル化合物の有する極性基は、全て保護層上の活性点との結合に関与しない極性基になりにくい。よって、上記含フッ素エーテル化合物では、保護層上の活性点との結合に関与しない極性基の数を抑制できる。その結果、上記含フッ素エーテル化合物を含む潤滑層は、被覆率が高く、隙間から汚染物質を生成させる環境物質が侵入しにくいものとなり、磁気記録媒体の腐食を抑制できる。
 また、上記の含フッ素エーテル化合物では、グリセリン構造の有する水酸基と、RおよびRの有する極性基との距離が適正であるため、グリセリン構造の有する水酸基が、RおよびRの有する極性基と凝集しにくい。しかも、各パーフルオロポリエーテル鎖(RおよびR)の両端部がそれぞれ、グリセリン構造の有する水酸基と、RおよびRの有する極性基とによって保護層に密着される。このため、保護層上に塗布された含フッ素エーテル化合物の状態が嵩高いものとなりにくい。よって、含フッ素エーテル化合物が保護層上に濡れ広がりやすく、均一な被覆状態を有する潤滑層が得られやすい。その結果、上記の含フッ素エーテル化合物は、良好な耐摩耗性を有し、かつ磁気記録媒体の腐食を抑制できる潤滑層を形成できる。
 式(1)で表される含フッ素エーテル化合物は、具体的には下記式(A)~(H)で表されるいずれかの化合物であることが好ましい。なお、式(A)~(H)中のqa、pb、mc、nc、pd、qe、mf、nf、qg、mg、ng、qhは平均重合度を示す値であるため、必ずしも整数とはならない。
 下記式(A)~(H)で表される化合物は、いずれもRおよびRが式(2)で表され、式(2)中の-X-が式(2-1)で表される。
 下記式(A)~(G)で表される化合物は、いずれもRとRが同じで式(3)で表され、式(3)中のbが2である。
 下記式(A)~(F)、(H)で表される化合物は、いずれもRとRが同じで、RとRが同じである。
 下記式(A)で表される化合物は、RとRが式(2)で表され、三級アミンがモルホリン基であって、式(2-1)中のaが2である。RおよびRが式(6)で表されるPFPE鎖である。
 下記式(B)で表される化合物は、RとRが式(2)で表され、三級アミンがモルホリン基であって、式(2-1)中のaが3である。RおよびRが式(5)で表されるPFPE鎖である。
Figure JPOXMLDOC01-appb-C000004

(式(A)中のFda、Fdaは式(AF)で表される;FdaおよびFda中、qaは平均重合度を示し、0.1~20を表す;Fda中のqaとFda中のqaは同じであっても異なっていてもよい。)
(式(B)中のFpb、Fpbは式(BF)で表される;FpbおよびFpb中、pbは平均重合度を示し、0.1~20を表す;Fpb中のpbとFpb中のpbは同じであっても異なっていてもよい。)
 下記式(C)で表される化合物は、RとRが式(2)で表され、三級アミンがピロリジン基であって、式(2-1)中のaが2である。RおよびRが式(4)で表されるPFPE鎖である。
 下記式(D)で表される化合物は、RとRが式(2)で表され、三級アミンがピロリジン基であって、式(2-1)中のaが3である。RおよびRが式(5)で表されるPFPE鎖である。
Figure JPOXMLDOC01-appb-C000005

(式(C)中のFfc、Ffcは式(CF)で表される;FfcおよびFfc中、mc、ncは平均重合度を示し、それぞれ0.1~20を表す;Ffc中のmc、ncとFfc中のmc、ncは同じであっても異なっていてもよい。)
(式(D)中のFpd、Fpdは式(DF)で表される;FpdおよびFpd中、pdは平均重合度を示し、0.1~20を表す;Fpd中のpdとFpd中のpdは同じであっても異なっていてもよい。)
 下記式(E)で表される化合物は、RとRが式(2)で表され、三級アミンがピペリジン基であって、式(2-1)中のaが2である。RおよびRが式(6)で表されるPFPE鎖である。
 下記式(F)で表される化合物は、RとRが式(2)で表され、三級アミンがヘキサメチレンイミン基であって、式(2-1)中のaが2である。RおよびRが式(4)で表されるPFPE鎖である。
Figure JPOXMLDOC01-appb-C000006

(式(E)中のFde、Fdeは式(EF)で表される;FdeおよびFde中、qeは平均重合度を示し、0.1~20を表す;Fde中のqeとFde中のqeは同じであっても異なっていてもよい。)
(式(F)中のFff、Fffは式(FF)で表される;FffおよびFff中、mf、nfは平均重合度を示し、それぞれ0.1~20を表す;Fff中のmf、nfとFff中のmf、nfは同じであっても異なっていてもよい。)
 下記式(G)で表される化合物は、RとRが式(2)で表される。R中の三級アミンがモルホリン基であって、R中の式(2-1)中のaが2である。R中の三級アミンがピロリジン基であって、R中の式(2-1)中のaが2である。Rが式(6)で表されるPFPE鎖である。Rが式(4)で表されるPFPE鎖である。
 下記式(H)で表される化合物は、RとRが式(2)で表され、三級アミンがモルホリン基であって、式(2-1)中のaが3である。RおよびRが式(6)で表されるPFPE鎖である。RとRが同じで式(3)で表され、式(3)中のbが1である。
Figure JPOXMLDOC01-appb-C000007


(式(G)中のFdg、Ffgは式(GF)で表される;Fdg中のqgおよびFfg中のmg、ngは平均重合度を示し、それぞれ0.1~20を表す。)
(式(H)中のFdh、Fdhは式(HF)で表される;FdhおよびFdh中、qhは平均重合度を示し、0.1~20を表す;Fdh中のqhとFdh中のqhは同じであっても異なっていてもよい。)
 式(1)で表わされる化合物が上記式(A)~(H)で表されるいずれかの化合物であると、原料が入手しやすく、厚みが薄くても耐摩耗性に優れ、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できるものとなり、好ましい。
 式(1)で表される化合物が、式(A)、(B)、(D)、(E)で表される化合物のいずれかであると、テープバーニッシュを行っても磁気記録媒体の腐食を効果的に抑制でき、かつ優れた耐摩耗性を有する潤滑層を形成でき、好ましい。
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましく、600~7000の範囲内であることがより好ましく、700~4500の範囲内であることが特に好ましい。必要に応じて、1000~4000や、1300~3500や、1500~3000や、1800~2800や、2000~2500などであってもよい。数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤が蒸散しにくいものとなり、潤滑剤が蒸散して磁気ヘッドに移着することを防止できる。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなり、これを含む潤滑剤を塗布することによって、容易に厚みの薄い潤滑層を形成できる。数平均分子量が4500以下であると、潤滑剤に適用した場合に扱いやすい粘度となるため、より好ましい。
 含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII400によるH-NMRおよび19F-NMRによって測定された値である。NMR(核磁気共鳴)の測定において、試料をヘキサフルオロベンゼン、d-アセトン、d-テトラヒドロフランなどの単独または混合溶媒へ希釈し、測定に使用した。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとした。H-NMRケミカルシフトの基準は、アセトンのピークを2.2ppmとした。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
<第1製造方法>
 第1製造方法においては、式(1)で表される含フッ素エーテル化合物として、グリセリン構造(-OCHCH(OH)CHO-)を中心とする対称構造を有する化合物を製造する場合を例に挙げて説明する。具体的には、式(1)におけるRおよびRで示されるPFPE鎖が同じ構造を有し、RとRが同じで、RとRとが同じである化合物を製造する場合を例に挙げて説明する。
(第一反応)
 まず、式(1)におけるR(=R)に対応するPFPE鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。そして、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるR-O-R-(=-R-O-R)に対応する構造を有するエポキシ化合物とを反応させる(第一反応)。このことにより、R(=R)に対応するPFPE鎖の一方の末端に、R-O-R-(=-R-O-R)に対応する構造を有する中間体化合物1が得られる。
 R-O-R-(=-R-O-R)に対応する構造を有するエポキシ化合物は、R-O-R-(=-R-O-R)に対応する構造の有する水酸基を、適切な保護基を用いて保護してから、上記フッ素系化合物と反応させても良い。
 本実施形態の含フッ素エーテル化合物を製造する際に、前記第一反応において使用されるR-O-R-(=-R-O-R)に対応する構造を有するエポキシ化合物は、例えば、製造する含フッ素エーテル化合物のR(=R)に対応する構造を有するアルコールと、エポキシ基を有する化合物とを反応させる方法により合成できる。エポキシ基を有する化合物としては、エピクロロヒドリン、エピブロモヒドリン、2-ブロモエチルオキシラン、アリルグリシジルエーテルなどが挙げられる。R-O-R-(=-R-O-R)に対応する構造を有するエポキシ化合物を合成する際には、不飽和結合を酸化する方法を用いてもよい。また、R-O-R-(=-R-O-R)に対応する構造を有するエポキシ化合物は、市販品を購入して使用してもよい。
(第二反応)
 その後、前記中間体化合物1の一方の末端に配置されたヒドロキシメチル基の水酸基と、エピブロモヒドリンとを反応させて、エポキシ化合物である中間体化合物2を生成させるとともに、中間体化合物2の一方の末端に配置されたエポキシ基と、前記中間体化合物1の一方の末端に配置されたヒドロキシメチル基の水酸基とを反応させる(第二反応)。
 以上の工程を行うことにより、鎖状構造の中央にグリセリン構造を有し、式(1)においてRとRとが同じであって、RとRとが同じであって、RおよびRで示される2つのPFPE鎖が同じである化合物を製造できる。
<第2製造方法>
 第2製造方法においては、式(1)で表される含フッ素エーテル化合物として、RとR、RとR、RとRのうちいずれか1つ以上が異なる化合物を製造する場合を例に挙げて説明する。
 第2製造方法においては、第1製造方法と同様にして、Rに対応するPFPE鎖の両末端にそれぞれヒドロキシメチル基が配置されたフッ素系化合物と、R-O-R-に対応する構造を有するエポキシ化合物とを反応させる第一反応を行う。このことにより、Rに対応するパーフルオロポリエーテル鎖の一方の末端にR-O-R-に対応する構造を有する第1中間体化合物1aを製造する。
 次に、第1製造方法と同様にして、Rに対応するPFPE鎖の両末端にそれぞれヒドロキシメチル基が配置されたフッ素系化合物と、-R-O-Rに対応する構造を有するエポキシ化合物とを反応させる第一反応を行う。このことにより、Rに対応するパーフルオロポリエーテル鎖の一方の末端に-R-O-Rに対応する構造を有する第2中間体化合物1bを製造する。
 その後、第1中間体化合物1aのヒドロキシメチル基の水酸基と、エピブロモヒドリンとを反応させて、エポキシ化合物である中間体化合物3を生成させる。その後、中間体化合物3のエポキシ基と、第2中間体化合物1bのヒドロキシメチル基の水酸基とを反応させる。
 以上の工程を行うことにより、鎖状構造の中央にグリセリン構造を有し、式(1)におけるRとR、RとR、RおよびRで示される2つのPFPE鎖のうちいずれか1つ以上が異なる化合物を製造できる。
 第2製造方法においては、第1中間体化合物1aと、エピブロモヒドリンとを反応させて、エポキシ化合物である中間体化合物3を生成させる場合を例に挙げて説明したが、第1中間体化合物1aに代えて、第2中間体化合物1bと、エピブロモヒドリンとを反応させて、エポキシ化合物である中間体化合物3´を生成させてもよい。この場合、中間体化合物3´のエポキシ基と、第1中間体化合物1aのヒドロキシメチル基の水酸基とを反応させることにより、式(1)においてRとR、RとR、RおよびRで示される2つのPFPE鎖のうちいずれか1つ以上が異なる化合物が得られる。
 第2製造方法を用いて、RとRが同じでRとRが同じ含フッ素エーテル化合物を製造する場合、第1中間体化合物1aの材料として使用するR-O-R-に対応する構造を有するエポキシ化合物と、第2中間体化合物1bの材料として使用する-R-O-Rに対応する構造を有するエポキシ化合物とが、同じものとなる。したがって、R-O-R-に対応する構造を有するエポキシ化合物と、-R-O-Rに対応する構造を有するエポキシ化合物とをそれぞれ合成する場合と比較して、少ない製造工程で容易に製造できる。
 ここで、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に形成した潤滑層の機能について説明する。
 磁気記録媒体の腐食の原因としては、磁気記録媒体の表面に存在するイオン性の汚染物質が挙げられる。イオン性の汚染物質の多くは、磁気記録媒体の製造工程において外部から付着する。イオン性の汚染物質は、ハードディスクドライブ(磁気記録再生装置)内に侵入した環境物質が、磁気記録媒体に付着して生成されることもある。具体的には、例えば、磁気記録媒体および/またはハードディスクドライブが高温・高湿条件下で保持されることにより、イオンなどの環境物質を含む水が磁気記録媒体の表面に付着する場合がある。イオンなどの環境物質を含む水は、磁気記録媒体の表面に形成された潤滑層を通り抜けると、潤滑層の下に存在する微少のイオン成分を凝縮させて、イオン性の汚染物質を生成させる。
 本実施形態の含フッ素エーテル化合物は、式(1)で表される化合物であるので、これを含む潤滑層は、耐摩耗性に優れ、磁気記録媒体内部への汚染物質の侵入を妨げる腐食抑制効果の高いものとなる。この効果は、本実施形態の含フッ素エーテル化合物を含む潤滑層が、保護層との密着性に優れ、適切な疎水性を有し、均一な被覆状態で保護層上に形成されやすいことの相乗効果によって得られる。
 より詳細には、式(1)で表される含フッ素エーテル化合物は、両末端にそれぞれ独立に式(2)で表される三級アミンを含む末端基(RおよびR)を有する。この三級アミンは、適度な流動性を有する。このため、潤滑剤に含まれる含フッ素エーテル化合物が保護層に吸着する際に、過剰な立体障害となることがない。したがって、式(1)で表される含フッ素エーテル化合物を含む潤滑層では、RおよびRによって保護層に対する吸着力が抑制されることがない。その結果、式(1)で表される含フッ素エーテル化合物を含む潤滑層は、均一な被覆状態で保護層上に形成されやすく、被覆率が良好なものとなる。また、RおよびRに含まれる三級アミンが適度な流動性を有するため、これを含む潤滑層は、保護層に近づいてきた磁気ヘッドが保護層に衝突する前に、磁気ヘッドと保護層との衝突を緩和できる。このため、磁気ヘッドの浮上が不安定になりにくく、磁気ヘッドと保護層との衝突が抑制され、優れた耐摩耗性を発現するものと推定される。
 また、式(1)で表される含フッ素エーテル化合物を含む潤滑層は、鎖状構造の中央に配置されたグリセリン構造(-OCHCH(OH)CHO-)の水酸基(-OH)と、RおよびRにそれぞれ1つ以上含まれる極性基と、RおよびRにそれぞれ含まれる三級アミンの窒素原子とによって、保護層に密着される。その結果、潤滑層によって、磁気記録媒体内部への汚染物質の侵入が妨げられ、磁気記録媒体の腐食が抑制される。
 さらに、式(1)で表される含フッ素エーテル化合物では、鎖状構造の中央に配置されたグリセリン構造と、RおよびRで表される連結基との間に、RおよびRで表されるPFPE鎖が配置されている。このため、グリセリン構造の有する水酸基と、RおよびRで表される連結基の有する極性基との距離が適正である。よって、グリセリン構造の有する水酸基と、RおよびRで表される連結基の有する極性基とが凝集しにくい。その結果、式(1)で表される含フッ素エーテル化合物の有する水酸基は、いずれも保護層上の活性点との結合に関与しやすく、保護層に密着される。また、式(1)で表される含フッ素エーテル化合物は、保護層上に濡れ広がりやすく、これを含む潤滑層は均一な被覆状態で形成されやすい。均一な被覆状態で形成された潤滑層は、被覆率が高く、隙間から汚染物質を生成させる環境物質が侵入しにくく、磁気記録媒体の腐食を抑制する。
 さらに、式(1)で表される含フッ素エーテル化合物は、RおよびRで示される2つのPFPE鎖を有する。各パーフルオロポリエーテル鎖は、式(1)で表される含フッ素エーテル化合物を含む潤滑層において、保護層の表面を被覆するとともに、表面エネルギーが低いことによって潤滑層に適切な疎水性(耐水性)を付与する。その結果、式(1)で表される含フッ素エーテル化合物を含む潤滑層は、水が通り抜けにくく、磁気記録媒体内部への水の侵入を妨げることができ、磁気記録媒体の耐腐食性を向上させる。
[磁気記録媒体用潤滑剤]
 本実施形態の磁気記録媒体用潤滑剤は、式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上、Solvay Solexis社製)、Moresco A20H(Moresco社製)などが挙げられる。本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が400~10000であることが好ましい。
 本実施形態の潤滑剤が、式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の式(1)で表される含フッ素エーテル化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。式(1)で表される含フッ素エーテル化合物の含有量は、80質量%以上であってもよいし、90質量%以上であってもよい。
 本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むため、耐摩耗性に優れ、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる。本実施形態の潤滑剤からなる潤滑層は、耐摩耗性に優れ、磁気記録媒体の腐食抑制効果の高いものであるため、厚みを薄くできる。
[磁気記録媒体]
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と保護層と潤滑層が順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に付着層および/または軟磁性層を設けることもできる。
 図1は、本発明の磁気記録媒体の一実施形態を示した概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
 また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進され、第1下地層(シード層)の配向性が向上するとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御する層である。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtを含む層であり、さらにSNR特性を改善するために、酸化物や、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。
 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、一層から構成されていてもよいし、複数層から構成されていてもよい。保護層17の材料としては、炭素、窒素を含む炭素、炭化ケイ素などが挙げられる。
 保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる水酸基との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量はX線光電子分光分析法(XPS)で測定したときに、4~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
 保護層17の膜厚は、1nm~7nmとするのがよい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法や、エチレン、トルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えばDCマグネトロンスパッタリング法により成膜できる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.0nm(10Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。このため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を十分小さくできる。
 保護層17の表面が潤滑層18によって十分に高い被覆率で被覆されていない場合、磁気記録媒体10の表面に吸着した環境物質が、潤滑層18の隙間を通り抜けて、潤滑層18の下に侵入する。潤滑層18の下に侵入した環境物質は、保護層17に吸着、結合し、汚染物質を生成させる。生成した汚染物質(凝集成分)は、磁気記録再生の際に、スメアとして磁気ヘッドに付着(転写)して、磁気ヘッドを破損したり、磁気記録再生装置の磁気記録再生特性を低下させたりする。
 汚染物質を生成させる環境物質としては、例えば、シロキサン化合物(環状シロキサン、直鎖シロキサン)、イオン性不純物、オクタコサン等の比較的分子量の高い炭化水素、フタル酸ジオクチル等の可塑剤等が挙げられる。イオン性不純物に含まれる金属イオンとしては、例えば、ナトリウムイオン、カリウムイオン等を挙げることができる。イオン性不純物に含まれる無機イオンとしては、例えば、塩素イオン、臭素イオン、硝酸イオン、硫酸イオン、アンモニウムイオン等を挙げることができる。イオン性不純物に含まれる有機物イオンとしては、例えば、シュウ酸イオン、蟻酸イオン等を挙げることができる。
「潤滑層の形成方法」
 潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
 潤滑層形成用溶液は、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、基板11の表面に潤滑層18を形成した後、バーニッシュ(精密研磨)工程を行うことが好ましい。バーニッシュ工程を行うことにより、潤滑層18を形成した基板11の表面に存在する突起欠陥およびパーティクルを除去することができ、表面の平滑な磁気記録媒体10が得られる。磁気記録媒体10の表面が平滑であると、磁気記録媒体10と磁気ヘッドとのスペーシングロスを少なくでき、信号特性を向上できる。
 バーニッシュ工程は、例えば、潤滑層18を形成した基板11の表面上に、バーニッシュテープを走査する工程とすることができる。バーニッシュテープとしては、例えば、砥粒を保持させた樹脂フィルムからなるものを用いることができる。砥粒の粒度は、例えば、#6000~#20000とすることができる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は100~180℃とすることが好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が十分に得られる。また、熱処理温度を180℃以下にすることで、潤滑層18の熱分解を防止できる。熱処理時間は10~120分とすることが好ましい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、耐摩耗性に優れ、磁気記録媒体10の腐食を抑制する効果の高いものである。このため、本実施形態の磁気記録媒体10は、表面上に存在する汚染物質が少なく、優れた耐摩耗性及び耐腐食性を有し、信頼性および耐久性が良好である。また、本実施形態の磁気記録媒体10は、耐摩耗性に優れ、腐食抑制効果の高い潤滑層18を有するため、保護層17および/または潤滑層18の厚みを薄くできる。また、本実施形態の磁気記録媒体10における潤滑層18は、異物(スメア)を生じさせにくく、ピックアップを抑制できる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
[実施例1]
 以下に示す方法により、上記式(A)で示される化合物を製造した。
(第一反応)
 窒素ガス雰囲気下、200mLナスフラスコにHOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すqは4.4である。)で表される化合物(数平均分子量1000、分子量分布1.1)20gと、下記式(9)で表される化合物4.3g(分子量354.4、12mmol)と、t-ブタノール19mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にさらにカリウムtert-ブトキシド0.67g(分子量112.21、6mmol)加え、70℃で16時間撹拌して反応させた。
 式(9)で表される化合物は、以下の方法で合成した。4-(2-ヒドロキシエチル)モルホリンの1級水酸基に、アリルグリシジルエーテルを反応させた。得られた化合物の2級水酸基をテトラヒドロピラニル(THP)基で保護し、得られた化合物の末端二重結合を酸化した。以上の工程により、式(9)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000008

(式(9)中、THPはテトラヒドロピラニル基を表す。)
 反応後に得られた反応生成物を25℃に冷却し、水100mLの入れられた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物1として下記式(10)で示される化合物10.0g(分子量1254.4、8.0mmol)を得た。
Figure JPOXMLDOC01-appb-C000009

(式(10)中、平均重合度を示すqは4.4である;THPはテトラヒドロピラニル基を表す。)
(第二反応)
 窒素ガス雰囲気下で200mLナスフラスコに、上記で得られた中間体化合物1である式(10)で示される化合物10.0g(分子量1354.4、8.0mmol)と、t-ブタノール5.6mLと、カリウムtert-ブトキシド0.539g(分子量112.21、4.8mmol)とを仕込み、室温で均一になるまで撹拌した。この均一の液にエピブロモヒドリン0.27mL(分子量137、3.3mmоl)を加え、70℃で24時間撹拌して反応させた。このことにより、エポキシ化合物である中間体化合物2を生成させるとともに、中間体化合物2のエポキシ基と、中間体化合物1である式(10)で示される化合物とを反応させた。
 反応後に得られた反応液を室温に戻し、10%の塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)31gを加え、室温で2時間撹拌した。反応液を食塩水100mLの入れられた分液漏斗に少しずつ移し、酢酸エチル200mLで3回抽出した。有機層を、食塩水100mL、飽和重曹水100mL、食塩水100mLの順に洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、上記式(A)で示される化合物(式(A)におけるFdaおよびFdaは式(AF)で表される。FdaおよびFda中のqaは平均重合度を示し、いずれも4.4である。)を4.64g(分子量2579、1.8mmol)得た。
 得られた化合物(A)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD);δ[ppm]=2.51~2.66(12H)、3.44~4.51(50H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(35F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(17F)
[実施例2]
 第一反応においてHOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すqは4.4である。)で表される化合物の代わりに、HOCHCFO(CFCFO)CFCHOH(式中の平均重合度を示すpは7.1である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたことと、式(9)で表される化合物の代わりに、下記式(11)で表される化合物を4.31g用いたこと以外は、実施例1と同様な操作を行い、上記式(B)で示される化合物(式(B)におけるFpbおよびFpbは式(BF)で表される。FpbおよびFpb中のpbは平均重合度を示し、いずれも7.1である。)を4.69g(分子量2607、1.8mmol)得た。
 式(11)で表される化合物は、以下の方法で合成した。4-(3-ヒドロキシプロピル)モルホリンの1級水酸基に、アリルグリシジルエーテルを反応させた。得られた化合物の2級水酸基をTHP基で保護し、得られた化合物の末端二重結合を酸化した。以上の工程により、式(11)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000010

(式(11)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(B)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.77~1.81(4H)、2.51~2.66(12H)、3.44~4.51(50H)
19F-NMR(acetone-D):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(56F)
[実施例3]
 第一反応においてHOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すqは4.4である。)で表される化合物の代わりに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたことと、式(9)で表される化合物の代わりに、下記式(12)で表される化合物を3.95g用いたこと以外は、実施例1と同様な操作を行い、上記式(C)で示される化合物(式(C)におけるFfcおよびFfcは式(CF)で表される。FfcおよびFfc中のmc、ncは平均重合度を示し、いずれも4.5である。)を4.58g(分子量2547、1.8mmol)得た。
 式(12)で表される化合物は、以下の方法で合成した。1-(2-ヒドロキシエチル)ピロリジンの1級水酸基に、アリルグリシジルエーテルを反応させた。得られた化合物の2級水酸基をTHP基で保護し、得られた化合物の末端二重結合を酸化した。以上の工程により、式(12)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000011

(式(12)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(C)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.76~1.82(8H)、2.51~2.66(12H)、3.44~4.51(42H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(18F)、-77.7(4F)、-80.3(4F)、-91.0~-88.5(36F)
[実施例4]
 第一反応において式(11)で表される化合物の代わりに、下記式(13)で表される化合物を4.12g用いたこと以外は、実施例2と同様な操作を行い、上記式(D)で示される化合物(式(D)におけるFpdおよびFpdは式(DF)で表される。FpdおよびFpd中のpdは平均重合度を示し、いずれも7.1である。)を4.63g(分子量2575、1.8mmol)得た。
 式(13)で表される化合物は、以下の方法で合成した。1-(3-ヒドロキシプロピル)ピロリジンの1級水酸基に、アリルグリシジルエーテルを反応させた。得られた化合物の2級水酸基をTHP基で保護し、得られた化合物の末端二重結合を酸化した。以上の工程により、式(13)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000012

(式(13)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(D)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.76~1.81(12H)、2.51~2.66(12H)、3.44~4.51(42H)
19F-NMR(acetone-D):δ[ppm]=-78.6(4F)、-81.3(4F)、-90.0~-88.5(56F)
[実施例5]
 第一反応において式(9)で表される化合物の代わりに、下記式(14)で表される化合物を4.12g用いたこと以外は、実施例1と同様な操作を行い、上記式(E)で示される化合物(式(E)におけるFdeおよびFdeは式(EF)で表される。FdeおよびFde中のqeは平均重合度を示し、いずれも4.4である。)を4.63g(分子量2575、1.8mmol)得た。
 式(14)で表される化合物は、以下の方法で合成した。1-(2-ヒドロキシエチル)ピペリジンの1級水酸基に、アリルグリシジルエーテルを反応させた。得られた化合物の2級水酸基をTHP基で保護し、得られた化合物の末端二重結合を酸化した。以上の工程により、式(14)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000013

(式(14)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(E)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD);δ[ppm]=1.76~1.81(12H)、2.51~2.66(12H)、3.45~4.54(42H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(35F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(17F)
[実施例6]
 第一反応において式(12)で表される化合物の代わりに、下記式(15)で表される化合物を4.29g用いたこと以外は、実施例3と同様な操作を行い、上記式(F)で示される化合物(式(F)におけるFffおよびFffは式(FF)で表される。FffおよびFff中のmf、nfは平均重合度を示し、いずれも4.5である。)を4.69g(分子量2603、1.8mmol)得た。
 式(15)で表される化合物は、以下の方法で合成した。ヘキサヒドロ-1H-アゼピン-1-エタノールの1級水酸基に、アリルグリシジルエーテルを反応させた。得られた化合物の2級水酸基をTHP基で保護し、得られた化合物の末端二重結合を酸化した。以上の工程により、式(15)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000014

(式(15)中、THPはテトラヒドロピラニル基を表す。)
 得られた化合物(F)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.76~1.88(16H)、2.51~2.67(12H)、3.44~4.51(42H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(18F)、-77.7(4F)、-80.3(4F)、-91.0~-88.5(36F)
[実施例7]
 実施例1と同様にして第一反応を行うことにより、第1中間体化合物1aとして、実施例1の中間体化合物1である式(10)で示される化合物5.0g(分子量1254.4、4.0mmol)を製造した。
 また、実施例3と同様にして第一反応を行うことにより、第2中間体化合物1bとして、HOCHCFO(CFCFO)(CFO)CFCHOHで表される化合物と、式(12)で表される化合物とを反応させて得た実施例3の中間体化合物1を製造した。
 窒素ガス雰囲気下で200mLナスフラスコに、第1中間体化合物1aを5.0g(分子量1254.4、4.0mmol)と、t-ブタノール5.6mLと、カリウムtert-ブトキシド0.45g(分子量112.21、4.0mmol)とを仕込み、室温で均一になるまで撹拌した。この均一の液にエピブロモヒドリン0.33mL(分子量137、4.0mmоl)を加え、70℃で24時間撹拌して反応させて、中間体化合物3を生成させた。
 中間体化合物3を生成させた反応液に、第2中間体化合物1bを5.0g加え、均一になるまで撹拌した。この均一の液に、カリウムtert-ブトキシド0.45g(分子量112.21、4.0mmol)を加え、70℃で24時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%の塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)33gを加え、室温で2時間撹拌した。反応液を食塩水100mLの入れられた分液漏斗に少しずつ移し、酢酸エチル200mLで3回抽出した。有機層を、食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製した。
 以上の工程を行うことにより、上記式(G)で示される化合物(式(G)におけるFdg、Ffgは式(GF)で表される。Fdg中のqgおよびFfg中のmg、ngは平均重合度を示し、qgは4.4であり、mg、ngは4.5である。)を4.61g(分子量2563、1.8mmol)得た。
 得られた化合物(G)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD):δ[ppm]=1.77~1.81(4H)、2.51~2.66(12H)、3.44~4.51(46H)
19F-NMR(CDCOCD):δ[ppm]=-55.6~-50.6(9F)、-77.7(2F)、-80.3(2F)、-84.0~-83.0(18F)、-86.4(4F)、-91.0~-88.5(18F)、-124.3(4F)、-130.0~-129.0(9F)
[実施例8]
 第一反応において式(9)で表される化合物の代わりに、下記式(16)で表される化合物を2.42g用いたこと以外は、実施例1と同様な操作を行い、上記式(H)で示される化合物(式(H)におけるFdhおよびFdhは式(HF)で表される。FdhおよびFdh中のqhは平均重合度を示し、いずれも4.4である。)を4.1g(分子量2259、1.8mmol)得た。
 式(16)で表される化合物は、以下の方法で合成した。4-(3-ヒドロキシプロピル)モルホリンの1級水酸基に、エピブロモヒドリンを反応させることによって合成した。
Figure JPOXMLDOC01-appb-C000015
 得られた化合物(H)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(CDCOCD);δ[ppm]=1.76~1.81(4H)、2.51~2.66(12H)、3.45~4.54(38H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(35F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(17F)
[比較例1]
 下記式(I)で表される化合物を、特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000016

(式(I)中の平均重合度を示すmi、niは、それぞれ4.5である。)
[比較例2]
 下記式(J)で表される化合物を、特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000017

(式(J)中の平均重合度を示すmj、njは、それぞれ4.5である。)
[比較例3]
 下記式(K)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000018

(式(K)中の平均重合度を示すmk、nkは、それぞれ4.5である。)
[比較例4]
 下記式(L)で表される化合物を、特許文献5に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000019

(式(L)中の平均重合度を示すml、nlは、それぞれ4.5である。)
 このようにして得られた実施例1~8の化合物を、式(1)に当てはめたときのRの構造、RおよびRの構造(式(3)中のb)、RおよびRの構造(式(4)中のc、d、式(5)中のe、式(6)中のf)、Rの構造をそれぞれ表1に示す。
Figure JPOXMLDOC01-appb-T000020
 また、実施例1~8、比較例1~4の化合物の数平均分子量(Mn)を、上述したH-NMRおよび19F-NMRの測定により求めた。その結果を表2に示す。なお、化合物の原料として用いたフルオロポリエーテルの分子量分布、化合物を合成する際の操作の差異などによって、合成した化合物の平均分子量の値には1~5程度のばらつきが存在しているものと推定される。
Figure JPOXMLDOC01-appb-T000021
 次に、以下に示す方法により、実施例1~8、比較例1~4で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~8、比較例1~4の磁気記録媒体を得た。
「潤滑層形成用溶液」
 実施例1~8、比較例1~4で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の塗膜の膜厚が9Å~10ÅになるようにバートレルXFで希釈し、潤滑層形成用溶液とした。
「磁気記録媒体」
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、厚み1~5nmの炭素からなるものとした。
 保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~8、比較例1~4の潤滑層形成用溶液を、それぞれディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
 その後、潤滑層を形成した磁気記録媒体の表面に、粒度#6000の砥粒が保持されたバーニッシュテープを走査させるバーニッシュ工程を行った。
 バーニッシュ工程後の磁気記録媒体を、120℃の恒温槽に入れ、10分間加熱する熱処理を行った。
 以上の工程により、実施例1~8、比較例1~4の磁気記録媒体(バーニッシュ有り)を得た。
 また、バーニッシュ工程を行わなかったこと以外は、バーニッシュ有りの磁気記録媒体と同様にして、実施例1~8、比較例1~4の磁気記録媒体(バーニッシュ無し)を得た。
(膜厚測定)
 このようにして得られた実施例1~8、比較例1~4の磁気記録媒体(バーニッシュ有りおよび無し)の有する潤滑層の膜厚を、フーリエ変換赤外分光光度計(FT-IR)(商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて測定した。実施例1~8、比較例1~4の磁気記録媒体のいずれにおいても、バーニッシュ有りと無しにおいて、潤滑層の膜厚に差はなかった。その結果を表2に示す。
 次に、実施例1~8、比較例1~4のバーニッシュ有りおよびバーニッシュ無しの磁気記録媒体に対して、それぞれ以下に示す耐腐食性試験を行なった。
(耐腐食性試験)
 磁気記録媒体を85℃相対湿度90%の条件下に48時間曝露した。その後、磁気記録媒体の腐食した場所の数を、光学表面分析装置(ケーエルエー・テンコール株式会社製、Candela7140)を用いて数え、以下の評価基準に基づいて評価した。その結果を表2に示す。
「評価基準」
A:300未満
B:300以上、500未満
C:500以上、800未満
D:800以上、1000未満
E:1000以上
 次に、実施例1~8、比較例1~4のバーニッシュ有りの磁気記録媒体に対して、以下に示す耐摩耗性試験を行なった。
(耐摩耗性試験)
 ピンオンディスク型摩擦摩耗試験機を用い、接触子としての直径2mmのアルミナの球を、荷重40gf、摺動速度0.25m/secで、磁気記録媒体の潤滑層上で摺動させ、潤滑層の表面の摩擦係数を測定した。そして、潤滑層の表面の摩擦係数が急激に増大するまでの摺動時間を測定した。摩擦係数が急激に増大するまでの摺動時間は、各磁気記録媒体の潤滑層について4回ずつ測定し、その平均値(時間)を潤滑剤塗膜の耐摩耗性の指標とした。摩擦係数増大時間の評価は、以下のとおりとした。実施例1~8、比較例1~4の化合物を用いた磁気記録媒体の評価結果を表2に示す。
「評価基準」
A:500sec以上
B:400sec以上、500sec未満
C:300sec以上、400sec未満
D:200sec以上、300sec未満
E:200sec未満
 なお、摩擦係数が急激に増大するまでの時間は、以下に示す理由により、潤滑層の耐摩耗性の指標として用いることができる。磁気記録媒体の潤滑層は、磁気記録媒体を使用することにより摩耗が進行し、摩耗により潤滑層が無くなると、接触子と保護層とが直接接触して、摩擦係数が急激に増大するためである。本摩擦係数が急激に増大するまでの時間は、フリクション試験とも相関があると考えられる。
 また、実施例1~8、比較例1~4の磁気記録媒体について、以下に示す基準に基づいて総合評価を行った。その結果を表2に示す。
(総合評価)
A:耐腐食性試験のバーニッシュ有りと無しの結果がどちらもA、かつ耐摩耗性試験の結果がAまたはB。または耐腐食性試験のバーニッシュ有りと無しの結果の一方がA、もう一方がB、かつ耐摩耗性試験の結果がA。
B:耐腐食性試験のバーニッシュ有りと無しの結果がどちらもB、かつ耐摩耗性試験の結果がA。
C:耐腐食性試験のバーニッシュ有りと無しの結果がどちらもA~C、かつ耐摩耗性試験の結果がD。
D:耐腐食性試験のバーニッシュ有りと無しの結果がどちらもE、かつ耐摩耗性試験の結果がA。
E:耐腐食性試験のバーニッシュ有りと無しの結果がどちらもE、かつ耐摩耗性試験の結果がD。
 表2に示すように、式(1)で表される化合物を含む潤滑層を有する実施例1~8の磁気記録媒体は、テープバーニッシュ無しの場合の耐腐食性試験の結果がすべてAであり、テープバーニッシュ有りの場合の耐腐食性試験の結果がAまたはBであり、耐腐食性が良好であった。また、表2に示すように、実施例1~8の磁気記録媒体は、いずれも摩擦係数が急激に増大するまでの摺動時間が長く、耐摩耗性試験の結果がAまたはBであり、耐摩耗性も良好であった。
 その結果、実施例1~8の磁気記録媒体は、いずれも総合評価がAであった。
 これに対し、比較例1の磁気記録媒体は、総合評価がEであり、比較例2および比較例3の磁気記録媒体は、総合評価がCであり、比較例4の磁気記録媒体は、総合評価がDであり、いずれも実施例1~8の磁気記録媒体と比較して、劣る結果であった。
 より詳細には、表2に示すように、比較例1の磁気記録媒体は、テープバーニッシュ無しの場合も有りの場合も、耐腐食性試験の結果がEであった。
 これは、以下に示す理由によるものであると推定される。実施例1~8では、潤滑層に含まれる化合物が分子中に2つのPFPE鎖を有する。このため、水が通り抜けにくい潤滑層となり、潤滑層によって磁気記録媒体内部への水の侵入が妨げられて、磁気記録媒体の耐腐食性が良好になったものと推定される。これに対し、比較例1では、潤滑層に含まれる化合物(I)が分子中に1つのPFPE鎖を有する。この差異によって、比較例1の磁気記録媒体では、潤滑層の耐水性が不十分となり、実施例1~8の磁気記録媒体と比較して耐腐食性が劣る結果になったものと推定される。
 また、表2に示すように、比較例1~3の磁気記録媒体は、耐摩耗性試験の結果がDであった。
 これは、比較例1および比較例3では、潤滑層に含まれる化合物(I)、(K)が両末端にメチルピラゾリルメチル基を有するためであると推定される。潤滑層中のメチルピラゾリルメチル基に含まれる共役した不飽和結合のπ結合は、保護層と相互作用を示すものの、保護層との密着性が強すぎる。このため、潤滑層の流動性が不十分となり、保護層に近づいてきた磁気ヘッドが保護層に衝突する前に、磁気ヘッドと保護層との衝突を緩衝する機能が十分に得られない。その結果、磁気ヘッドの浮上が不安定になって、磁気ヘッドと保護層との衝突が起こりやすくなり、耐摩耗性が劣る結果になったものと推定される。
 一方、実施例1~8の磁気記録媒体の潤滑層に含まれる化合物は、式(2)で表される三級アミンを含む末端基を有し、末端基が不飽和結合を有さない。実施例1~8の磁気記録媒体では、潤滑層に含まれる化合物の末端に配置された三級アミンが適度な流動性を有するため、磁気ヘッドと保護層との衝突が緩和され、良好な耐摩耗性が得られたものと推測される。
 また、比較例2では、潤滑層に含まれる化合物(J)が、窒素原子に2つのヒドロキシエチル基が結合した三級アミンを両末端に有する。三級アミンの有する2つのヒドロキシエチル基の水酸基は、保護層との吸着力が強すぎる。しかも、化合物(J)の両末端に配置された三級アミンは、エーテル結合(-O-)を介さずに、メチレン基のみを介してPFPE鎖と結合されている。このため、分子構造の柔軟性が不足して、均一な被覆状態で保護層上に潤滑層が形成されにくい。これらのことから、磁気ヘッドと保護層との衝突を緩和できず、磁気ヘッドと保護層との衝突が起こりやすくなり、耐摩耗性が劣る結果になったものと推定される。
 また、表2に示すように、比較例4の磁気記録媒体は、耐摩耗性試験の結果がAであった。しかし、比較例4の磁気記録媒体は、テープバーニッシュ無しの場合も有りの場合も、耐腐食性試験の結果がEであった。
 これは、比較例4では、比較例1と同様に、潤滑層に含まれる化合物(L)が分子中にPFPE鎖を1つのみ有するため、実施例1~8と比較して潤滑層の耐水性が劣ることによるものである。
 磁気記録媒体用潤滑剤の材料として好ましく使用できる含フッ素エーテル化合物を提供する。本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることにより、耐摩耗性に優れ、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (16)

  1.  下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
    -O-R-CH-R-CH-OCHCH(OH)CHO-CH-R-CH-R-O-R  ・・・(1)
    (式(1)中、RおよびRは、同じまたは異なるパーフルオロポリエーテル鎖である;RおよびRはそれぞれ独立に、極性基を1つ以上含む2価の連結基である;RおよびRはそれぞれ独立に、三級アミンを含む末端基であり、下記式(2)で表される。)
    -X-NR  ・・・(2)
    (式(2)中、Xは炭素原子数1~5の、2価の炭化水素基である;RおよびRは同一もしくは異なる飽和脂肪族基である;RおよびRは窒素原子とともに環構造を形成していてもよい。)
  2.  前記式(2)において、-X-が下記式(2-1)で表される請求項1に記載の含フッ素エーテル化合物。
    -(CH-  ・・・(2-1)
    (式(2-1)中、aは2または3の整数である。)
  3.  前記式(2)において、RおよびRが窒素原子とともに5~7員環を形成している請求項1に記載の含フッ素エーテル化合物。
  4.  前記式(2)において、-NRが、ピロリジン基、ピペリジン基、モルホリン基、ヘキサメチレンイミン基から選ばれるいずれか1種の基である請求項1に記載の含フッ素エーテル化合物。
  5.  前記式(1)において、RおよびRの有する極性基がすべて水酸基である請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
  6.  前記式(1)において、RおよびRはそれぞれ独立に、下記式(3)で表される請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(3)中、bは1~2の整数である;式(3)中のエーテル性酸素原子が、式(1)におけるRに隣接するCH、またはRに隣接するCHに結合される。)
  7.  前記式(1)において、RおよびRがそれぞれ2つの極性基を含む請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
  8.  前記式(1)において、RおよびRはそれぞれ独立に、下記式(Rf)で表される請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
    -(CFw1O(CFO)w2(CFCFO)w3(CFCFCFO)w4(CFCFCFCFO)w5(CFw6- (Rf)
    (式(Rf)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5のすべてが同時に0になることはない;w1、w6は-CF-の数を示す平均値であり、それぞれ独立に1~3を表す;式(Rf)における繰り返し単位の配列順序には、特に制限はない。)
  9.  前記式(1)において、RおよびRはそれぞれ独立に、下記式(4)~(8)のいずれかである請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
    -CFO-(CFCFO)-(CFO)-CF-  (4)
    (式(4)中、cおよびdは平均重合度を示し、それぞれ0.1~20を表す。)
    -CFO-(CFCFO)e-CF-  (5)
    (式(5)中、eは平均重合度を示し、0.1~20を表す。)
    -CFCFO-(CFCFCFO)-CFCF-  (6)
    (式(6)中、fは平均重合度を示し、0.1~20を表す。)
    -CFCFCFO-(CFCFCFCFO)-CFCFCF- (7)
    (式(7)中、gは平均重合度を示し、0.1~10を表す。)
    -(CFw7O-(CFCFO)w8-(CFCFCFO)w9-(CFw10- (8)
    (式(8)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~20を表す;w7、w10は-CF-の数を示す平均値であり、それぞれ独立に1~2を表す。)
  10.  前記式(1)において、RとRが同じである請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
  11.  前記式(1)において、RとRが同じである請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
  12.  前記式(1)において、RとRが同じである請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
  13.  数平均分子量が500~10000の範囲内である請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
  14.  請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  15.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
     前記潤滑層が、請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  16.  前記潤滑層の平均膜厚が、0.5nm~2.0nmである請求項15に記載の磁気記録媒体。
PCT/JP2022/041574 2021-11-10 2022-11-08 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 WO2023085271A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280073358.XA CN118234778A (zh) 2021-11-10 2022-11-08 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
JP2023559642A JPWO2023085271A1 (ja) 2021-11-10 2022-11-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021183675 2021-11-10
JP2021-183675 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023085271A1 true WO2023085271A1 (ja) 2023-05-19

Family

ID=86335757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041574 WO2023085271A1 (ja) 2021-11-10 2022-11-08 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (3)

Country Link
JP (1) JPWO2023085271A1 (ja)
CN (1) CN118234778A (ja)
WO (1) WO2023085271A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030243A (ja) * 1998-07-15 2000-01-28 Fuji Electric Co Ltd 磁気記録装置とその製造方法
JP2001006155A (ja) * 1999-06-17 2001-01-12 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法
WO2018139174A1 (ja) * 2017-01-26 2018-08-02 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019054148A1 (ja) * 2017-09-13 2019-03-21 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP2020504219A (ja) * 2017-01-18 2020-02-06 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. (ペル)フルオロポリエーテル−アミノ誘導体の合成方法
WO2021020066A1 (ja) * 2019-07-31 2021-02-04 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021065382A1 (ja) * 2019-09-30 2021-04-08 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030243A (ja) * 1998-07-15 2000-01-28 Fuji Electric Co Ltd 磁気記録装置とその製造方法
JP2001006155A (ja) * 1999-06-17 2001-01-12 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法
JP2020504219A (ja) * 2017-01-18 2020-02-06 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. (ペル)フルオロポリエーテル−アミノ誘導体の合成方法
WO2018139174A1 (ja) * 2017-01-26 2018-08-02 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019054148A1 (ja) * 2017-09-13 2019-03-21 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021020066A1 (ja) * 2019-07-31 2021-02-04 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021065382A1 (ja) * 2019-09-30 2021-04-08 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Also Published As

Publication number Publication date
CN118234778A (zh) 2024-06-21
JPWO2023085271A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138646B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021020066A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7435589B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP6968833B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021251335A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021054202A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138644B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
US20230120626A1 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium
WO2021132252A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021090940A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023286626A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021065382A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7447903B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224093A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224095A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215726A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022039079A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023085271A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021065380A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023085256A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7338631B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022163708A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215703A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559642

Country of ref document: JP