WO2023082517A1 - 辐射单元、天线及基站 - Google Patents

辐射单元、天线及基站 Download PDF

Info

Publication number
WO2023082517A1
WO2023082517A1 PCT/CN2022/081834 CN2022081834W WO2023082517A1 WO 2023082517 A1 WO2023082517 A1 WO 2023082517A1 CN 2022081834 W CN2022081834 W CN 2022081834W WO 2023082517 A1 WO2023082517 A1 WO 2023082517A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
inductance
unit
frequency
radiating
Prior art date
Application number
PCT/CN2022/081834
Other languages
English (en)
French (fr)
Inventor
赖展军
李致祥
李明超
郑之伦
梁嘉驹
黎伟韶
刘培涛
卜斌龙
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2023082517A1 publication Critical patent/WO2023082517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present invention relates to the technical field of mobile communication, and in particular to a radiation unit, an antenna configured with the radiation unit, and a base station configured with the antenna.
  • the antenna In order to reduce the rental cost of the base station site and facilitate the installation of multi-mode and multi-band antennas, operators usually require the antenna to be as small as possible and light as possible. Therefore, the demand for integrating multiple frequency band antennas on platforms with limited space is becoming stronger and stronger. However, the antennas of each frequency band cannot be simply patched together. When the antennas of each frequency band are integrated on the same platform, the antennas of each frequency band will couple and scatter each other, thereby affecting the radiation performance of the antenna.
  • the mutual coupling between the antennas will cause the antennas to interfere with each other, and the scattering will interfere with the distribution of the radiation source, thereby distorting the pattern, which will eventually interfere with the radiation performance of the entire communication system and seriously affect the communication quality.
  • the radiating arm of a common radiating unit has a symmetrical ring structure. When a plane wave penetrates the radiating arm, the induced electromotive force of the plane wave at different positions of the radiating arm is different, causing the scattering current at different positions on the radiating arm different.
  • the induced electromotive force at the symmetrical position is equal in magnitude and opposite in direction, which will form a zero point of scattered current on the axis of symmetry, which will greatly affect the radiation performance of the radiation unit.
  • the industry proposes to load an inductor or filter structure on a part of the radiating arm of the radiating unit to suppress high-frequency scattering current, so as to solve the problems of mutual coupling and scattering.
  • This method suppresses scattering to a certain extent, but the radiation arm coupled in series with the inductor or filter structure has a certain length, so that the induced current can still be generated on the radiation arm, forming a strong scattering field, which cannot meet the needs of multiple frequency bands.
  • the primary purpose of the present invention is to solve at least one of the above problems and provide a radiation unit, an antenna and a base station.
  • the present invention adopts following technical scheme:
  • a radiation unit which includes two pairs of radiation arms arranged orthogonally with polarization, and the two pairs of radiation arms have a centrally symmetrical structure with respect to the same center point, and each radiation arm includes a feeder and a A radiating ring, the radiating ring is connected with the feeding part to form a closed-loop structure, and the radiating ring forms at least two inductance units in a back and forth bending structure, wherein at least two inductance units have different inductances per unit length.
  • inductance units are sequentially connected in series to form continuous loading.
  • each inductance unit is correspondingly set according to the intensity of the distribution of the excited high-frequency induced current.
  • the radiation ring has a polygonal shape, and the radiation ring has a symmetrical structure along the direction of the polarization axis.
  • the multiple inductance units of the radiation ring include at least one pair of inductance units with the same inductance per unit length, and the pair of inductance units are symmetrically arranged on the radiation ring with respect to the polarization axis.
  • the radiation ring includes multiple pairs of inductance units, and different pairs of inductance units have different inductances per unit length.
  • the linear radiation ring is provided with an inductance unit at an end away from the central point, and intersects with the polarization axis, and the inductance unit has a symmetrical structure with respect to the polarization axis.
  • the radiation ring has a circular structure or an elliptical structure, and the radiation ring is arranged symmetrically along the polarization axis of the radiation arm, and the inductance units with the same inductance per unit length are arranged in pairs, and the inductances arranged in pairs The cells are arranged symmetrically along said polarization axis.
  • the inductance unit includes a plurality of radiating segments in the shape of straight or arc segments, and a transition segment is formed between two adjacent radiating segments because they are connected end to end, and the transition segments are in the shape of straight segments or arc segments , the length of the radiation section of the inductance unit with different inductance per unit length is different.
  • the inductance unit is composed of the reciprocating bending structure and has a wave-like structure, a zig-zag structure or a spring-like structure.
  • an antenna including a reflector, a low-frequency radiation unit, and a high-frequency radiation unit column, each radiation unit column includes a plurality of radiation units fed in parallel with each other, and the low-frequency radiation unit column
  • the radiating unit in adopts the radiating unit as described in any one of the above purpose, there is at least one low-frequency radiating unit arranged between multiple high-frequency radiating unit columns, and in the projection relationship facing the reflector, the said arranged in multiple The projections of the low-frequency radiation units between the rows of high-frequency radiation units overlap with the projections of the adjacent high-frequency radiation units.
  • a base station is provided, the base station is configured with the antenna as described in the above objective, and is used for transmitting signals passing through the base station.
  • the radiation arm of the radiation unit of the present invention is provided with a radiation ring surrounded by at least two inductance units with different inductance per unit length, and the inductance units are used to suppress the high-frequency induced current generated by the excitation of high-frequency signals, And because the density of high-frequency current in different regions of the radiation arm is different, an inductance unit corresponding to the inductance per unit length is set at the region corresponding to the high-frequency current density, so that the inductance per unit length will not be too large or too small without affecting
  • the impedance matching of the radiation unit of the present invention improves the radiation performance of the radiation unit of the present invention.
  • the radiation ring of the radiation arm of the radiation unit of the present invention is folded back and forth to form a plurality of inductance units with different inductance per unit length, and the manufacturing method of the inductance unit is simple, which is convenient for integral bending and forming, which greatly reduces the production cost and It is convenient for large-scale popularization and application.
  • FIG. 1 is a schematic diagram of the distribution of scattering current density of a ring-shaped radiating arm in the prior art.
  • Fig. 2 is a schematic diagram of cutting off the annular radiating arm at a local current peak in the prior art.
  • Fig. 3 is a structural schematic diagram of a ring-shaped radiating arm partially loaded with an inductance unit in the prior art.
  • Fig. 4 is a structural principle diagram of the radiation arm of the radiation unit of the present invention.
  • Fig. 5 is a schematic structural diagram of a radiation unit according to one embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a radiation arm of a radiation unit according to one embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a radiation unit according to another embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a radiation arm of a radiation unit according to another embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a radiation arm of a radiation unit according to an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • Fig. 11 is a schematic structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 12 is a comparison diagram of the current density distribution when the radiation arm of the radiation unit in the prior art and the radiation arm of the radiation unit of the present invention are transmitted by a high-frequency signal with a frequency of 1.427 GHz.
  • FIG. 13 is a comparison diagram of the current density distribution when the radiation arm of the radiation unit in the prior art and the radiation arm of the radiation unit of the present invention are transmitted by a high-frequency signal with a frequency of 1.71 GHz.
  • Fig. 14 is a comparison diagram of the current density distribution when the radiation arm of the radiation unit in the prior art and the radiation arm of the radiation unit of the present invention are transmitted by a high-frequency signal with a frequency of 2.69 GHz.
  • Figure 15 is when the high-frequency radiation unit emits a high-frequency signal with a frequency of 1.427GHz, the high-frequency radiation unit of the high-frequency radiation array that is not co-arrayed with the low-frequency radiation unit, and the high-frequency radiation array that is co-arrayed with an ordinary low-frequency radiation unit
  • the high-frequency radiation unit and the high-frequency radiation unit of the high-frequency radiation array co-arrayed with the radiation unit of the present invention are high-frequency direction diagrams.
  • Fig. 16 is when the high-frequency radiation unit emits a high-frequency signal with a frequency of 1.71 GHz, the high-frequency radiation unit of the high-frequency radiation array that is not co-arrayed with the low-frequency radiation unit, and the high-frequency radiation array co-arrayed with the common low-frequency radiation unit.
  • the high-frequency radiation unit and the high-frequency radiation unit of the high-frequency radiation array co-arrayed with the radiation unit of the present invention are high-frequency direction diagrams.
  • Figure 17 is when the high-frequency radiation unit emits a high-frequency signal with a frequency of 2.69 GHz, the high-frequency radiation unit of the high-frequency radiation array that is not co-arrayed with the low-frequency radiation unit, and the high-frequency radiation array that is co-arrayed with a common low-frequency radiation unit.
  • the high-frequency radiation unit and the high-frequency radiation unit of the high-frequency radiation array co-arrayed with the radiation unit of the present invention are high-frequency direction diagrams.
  • an inductance structure 110 with a large unit inductance is loaded at the cut-off position to suppress high-frequency scattering current.
  • the greater the inductance of the inductance structure 110 loaded at the cut-off point the better, but as the inductance continues to increase, the low-frequency impedance will become emissive, making it difficult to match.
  • the radiation arm 100 due to the different loads of high-frequency induced currents in various parts of the radiation arm 100, some areas have relatively large high-frequency induced currents, and some areas have relatively small high-frequency induced currents.
  • the radiation arm 100 The inductance structure 110 loaded in each area is the same, so that the inductance structure 110 with larger inductance is loaded at the place with low current, and the inductance structure 110 with small inductance is loaded at the place with high current, which further affects the radiation performance of the radiation unit.
  • an induced current can still be generated to form a strong scattering field, so that the radiating unit cannot meet the application requirements of the multi-frequency antenna.
  • the inductance or filtering structure applied to the antenna is discretely loaded on the radiation arm, and the unloaded area of the radiation arm still generates discrete current, which affects the radiation performance of the antenna. It can be seen that the existing radiating unit loaded with an inductance structure still cannot effectively adjust the inductance, suppress the scattered current, and reduce the distortion of the high-frequency pattern as the radiating unit provided by the present invention.
  • the present invention provides a radiating unit, the radiating arm of the radiating unit includes a radiating ring, the radiating ring is bent back and forth to form at least two inductance units, and the radiating ring formed by the at least two inductance units is in contact with the feeding part
  • a closed-loop structure is formed to realize continuous inductive loading, adjust inductance, suppress high-frequency scattering current, and reduce distortion of high-frequency pattern.
  • the radiating unit 10 includes two pairs of radiating arms 101, the two pairs of radiating arms 101 are arranged orthogonally with polarization, and the two pairs of radiating arms 101 are related to the same
  • the central point is a centrosymmetric structure.
  • the radiating arm 101 includes a feeding part 12 and a radiating ring 11, and the radiating ring 11 is connected with the feeding part 12 to form a closed-loop structure, that is to say, the radiating arm 101 has a closed-loop structure.
  • the radiation arm 101 is closed-loop and hollow inside.
  • the hollow radiation arm 101 of the radiation unit 10 of the present invention can facilitate the radiation of the high-frequency radiation unit.
  • the transmission of the high-frequency signal, and because the radiation arm 101 is surrounded by metal wires, the radiation arm 101 has less mutual coupling and scattering with the high-frequency radiation unit, which improves the overall radiation performance of the antenna when co-arraying.
  • FIG. 4 is a schematic diagram of the principle structure of the radiation ring of the present invention.
  • the radiation ring 11 is formed by a reciprocating bending and winding structure. Specifically, the radiation ring 11 is formed by reciprocating and winding metal wires.
  • the radiating ring 11 forms at least two inductance units 111 through the back and forth winding structure, wherein at least one inductance unit 111 has a higher inductance per unit length than the other inductance units 111 .
  • the radiation ring 11 is folded back and forth to form a plurality of inductance units 111, and the plurality of inductance units 111 are connected in series to form a circular radiation ring 11, that is to say, the radiation ring 11 is formed by connecting multiple inductance units 111 in series.
  • the inductance unit 111 is formed by repeatedly winding a metal wire to realize an inductance function. Specifically, referring to FIG. 6 and FIG. 8 , the inductance unit 111 is bent to form a plurality of radiating sections 1111 , and a transition section 1112 is formed between two adjacent radiating sections 1111 due to the end-to-end connection.
  • the inductance performance of the inductance unit 111 is controlled by controlling the length of the radiating section 1111 .
  • the length of the radiating section 1111 is proportional to the inductance per unit length of the inductance unit 111, that is to say, the longer the radiating section 1111 is, the greater the inductance per unit length that the inductance unit 111 where it is located is.
  • the length of the radiation section of one of the inductance units 1114 of the radiation ring 11 is greater than the length of the radiation section of the other inductance unit 1113, that is to say, the inductance per unit length of the one of the inductance units 1114 is greater than the Inductance per unit length of another inductance unit 1113 .
  • Fig. 12 is the actual measurement of the unloaded inductance unit in the prior art when the radiation arm of the radiation unit in the form of a straight microstrip line and the radiation arm of the radiation unit of the present invention are transmitted by a high-frequency signal with a frequency of 1.427 GHz Comparison chart of current density distribution.
  • the dotted line represents the current density on the radiation arm of the radiation unit of the prior art
  • the solid line represents the current density on the radiation arm of the radiation unit of the present invention. It can be seen from FIG. 12 that the density of the high-frequency induced current in each region on the radiation arm of the radiation unit of the present invention is much smaller than the density of the high-frequency induced current in each region on the radiation arm of the radiation unit in the prior art.
  • Fig. 13 is the actual measurement of the unloaded inductance unit in the prior art when the radiation arm of the radiation unit in the form of a straight microstrip line and the radiation arm of the radiation unit of the present invention are transmitted by a high-frequency signal with a frequency of 1.71 GHz Comparison chart of current density distribution.
  • the dotted line represents the current density on the radiation arm of the radiation unit of the prior art
  • the solid line represents the current density on the radiation arm of the radiation unit of the present invention. It can be seen from FIG. 13 that the density of the high-frequency induced current in each region on the radiation arm of the radiation unit of the present invention is much smaller than the density of the high-frequency induced current in each region on the radiation arm of the radiation unit in the prior art.
  • Fig. 14 is the actual measurement of the unloaded inductance unit in the prior art when the radiation arm of the radiation unit in the form of a straight microstrip line and the radiation arm of the radiation unit of the present invention are transmitted by a high-frequency signal with a frequency of 2.69 GHz Comparison chart of current density distribution.
  • the dotted line represents the current density on the radiation arm of the radiation unit of the prior art
  • the solid line represents the current density on the radiation arm of the radiation unit of the present invention. It can be seen from FIG. 14 that the density of the high-frequency induced current in each region on the radiation arm of the radiation unit of the present invention is much smaller than the density of the high-frequency induced current in each region on the radiation arm of the radiation unit in the prior art.
  • the radiating section 1111 is in the shape of a straight line or an arc
  • the transition section 1112 is in the shape of a straight line or an arc.
  • the radiation section 1111 and the transition section 1112 of the inductor unit 111 are combined to form a wave-like structure, a zig-zag structure or a spring-like structure.
  • the multiple radiating sections 1111 of the same inductor unit 111 have the same shape and the same length
  • the multiple transition sections 1112 of the same inductor unit 111 have the same shape and the same length. In one embodiment, the lengths of some of the radiating sections 1111 of the inductor unit 111 are not equal.
  • Part of the transition section 1112 of the inductor unit 111 is U-shaped or W-shaped.
  • the radiation section 1111 and the transition section 1112 of the inductor unit 111 are combined to form a square wave structure, a sine wave structure or a cosine wave structure.
  • the radiation ring 11 has a polygonal shape, and the polygon is symmetrical with respect to the polarization axes of the pair of radiation arms where the radiation ring 11 is located.
  • the radiation ring 11 has a polygonal shape, and each side of the polygonal radiation ring 11 is formed by an inductor unit 111 , so that the radiation ring 11 is surrounded by a plurality of inductor units 111 connected to each other.
  • the radiation ring 11 has a polygonal shape with an even number of sides, and the polygon with an even number of sides has a symmetrical structure with respect to the polarization axis.
  • the radiation ring 11 includes a plurality of inductance units 111, and each inductance unit 111 constitutes each side of a polygonal radiation ring with an even number of sides (the polygonal radiation ring with an even number of sides is referred to as the first radiation ring 112) .
  • the inductance unit 111 of the first radiation ring 112 is classified into several types according to its inductance per unit length, that is to say, according to the length of the radiation section 1111 of the inductance unit 111 .
  • the inductance units 111 in the first radiating ring 112 are arranged in pairs, the inductance per unit length of the same pair of inductance units 111 is the same, and the same pair of inductance units 111 are symmetrical with respect to the polarization axis, that is to say, the inductance of the same pair
  • the units 111 are symmetrically distributed on both sides of the polarization axis, so that the radiation ring 11 can be symmetrical with respect to the polarization axis.
  • the first radiation ring 112 includes at least two pairs of inductance units 111 with different inductances per unit length, and the inductance units 111 are arranged at different positions of the first radiation ring 112 according to the inductance per unit length, so as to completely suppress the The high-frequency induced current generated by the excitation when the radiating elements are in the same array does not affect the impedance matching.
  • the inductance per unit length of each pair of inductance units 111 of the first radiating loop 112 is different.
  • the radiating unit 10 of the present invention couples a high-frequency signal
  • a high-frequency induced current will be loaded on the radiating arm 101
  • the magnitude of the high-frequency current at different positions on the radiating arm 101 is different
  • the high-frequency induction current of the same magnitude The current is symmetrically distributed on different positions of the radiation arm 101 with respect to the polarization axis.
  • an inductance unit 111 with a larger inductance per unit length can be installed in the area where the high-frequency induced current is larger, and an inductance unit 111 with a larger inductance per unit length can be installed in an area where the high-frequency induced current is smaller.
  • An inductance unit 111 with a small inductance per unit length so that the radiating arm 101 of the radiation unit 10 of the present invention can suppress the corresponding high-frequency induced current through the inductance unit 111 corresponding to the inductance per unit length, without using the unit
  • the inductance unit 111 is not convenient for impedance matching; if the inductance per unit length is smaller than the inductance unit 111 corresponding to the high-frequency induced current, the inductance The unit 111 cannot completely suppress the high-frequency current, thereby affecting the radiation performance of the radiation unit.
  • the inductance unit 111 corresponding to the inductance per unit length is provided according to the current distribution condition on the radiating arm 101 .
  • the first radiation ring 112 has four sides or six strips, that is to say, the first radiation ring 112 is in the shape of a parallelogram or a hexagon.
  • the first radiation ring 112 When the first radiation ring 112 is in the shape of a parallelogram, the first radiation ring 112 has two pairs of inductance units 111 with different inductances per unit length.
  • the first radiation ring 112 has a hexagonal shape
  • the first radiation ring 112 has three pairs of inductance units 111
  • the three pairs of inductance units 111 include at least two pairs of inductance units 111 with different inductance per unit length.
  • the three pairs of inductance units 111 have different inductances per unit length.
  • the first radiation ring 112 when the first radiation ring 112 is hexagonal, its three pairs of inductance units are respectively a pair of fifth inductance units 1121, a pair of sixth inductance units 1122 and a pair of seventh inductance units. Unit 1123.
  • the inductance per unit length of the sixth inductance unit 1122 and the seventh inductance unit 1123 are the same, the inductance per unit length of the fifth inductance unit 1121 is greater than the inductance per unit length of the sixth inductance unit 1122 and the seventh inductance unit 1123, That is to say, the length of the radiation section of the fifth inductor unit 1121 is greater than the length of the radiation section of the sixth inductor unit 1122 and the length of the radiation section of the seventh inductor unit 1123 .
  • the radiation ring 11 has a polygonal shape with an odd number of sides, and the radiation ring 11 with an odd number of sides (the radiation ring 11 with an odd number of sides is the first
  • the two radiation rings 113) have a symmetrical structure with respect to the polarization axis of the radiation arm 101 where they are located.
  • the second radiation ring 113 includes a plurality of inductance units 111 .
  • the inductance units 111 include at least two types of inductance units 111 with different inductances per unit length. Each inductance unit 111 constitutes each side of the second radiation ring 113 .
  • the second radiation ring 113 is provided with an inductance unit 111 at the end far away from the central point of the radiation unit 10, and the side where the inductance unit 111 is located intersects with the polarization axis.
  • the inductance unit 111 is a first inductance unit 1131, and each second radiation ring 113 has only one first inductance unit 1131, and the first inductance unit 1131 has a symmetrical structure with respect to the polarization axis.
  • All the remaining inductance units except the first inductance unit 1131 of the second radiating ring 113 are arranged in pairs, and the same pair of second inductance units 1132
  • the inductance per unit length is the same, and the same pair of second inductance units 1132 are symmetrical about the polarization axis.
  • the inductance per unit length of different pairs of second inductance units 1132 is the same or different, or the inductance per unit length of the first inductance unit 1131 is the same or different from the inductance per unit length of the plurality of second inductance units 1132 .
  • each pair of second inductance units 1132 is also symmetrical with respect to the polarization axis, so that the second radiation ring 113 has a symmetrical structure with respect to the polarization axis.
  • the polarization axis has a symmetrical structure.
  • the installation positions of the inductance units 111 on the second radiation ring 113 are set based on the distribution of the high-frequency induced currents generated by excitation when the radiation units 10 and the high-frequency radiation units are in the same array. Specifically, each induced current For the setting method of , refer to the setting method of the inductance unit 111 of the first radiating ring 112 , which will not be repeated here to save space.
  • the second radiation ring 113 is in the shape of a pentagon.
  • the second radiation ring 113 has two pairs of second inductance units 1132 and one first inductance unit 1131, and the inductance per unit length of the two pairs of second inductance units 1132 is the same or not the same.
  • the inductance per unit length of the two pairs of second inductance units 1132 is the same, the inductance per unit length of the first inductance unit 1131 is different from the inductance per unit length of the two pairs of second inductance units 1132; 6.
  • the inductance per unit length of the two pairs of second inductance units 1132 is different, the inductance per unit length of the first inductance unit 1131 is the same or different from the inductance per unit length of one pair of second inductance units 1132 .
  • the inductance per unit length of the two pairs of second inductance units is different, and one of the two pairs of second inductance units is called respectively is the eighth inductance unit 1133, and the other pair is the ninth inductance unit 1134, wherein the inductance per unit length of the eighth inductance unit 1133 is greater than the inductance per unit length of the ninth inductance unit 1134, and the eighth inductance unit 1133 and the ninth inductance
  • the inductance per unit length of the unit 1134 is smaller than the inductance per unit length of the first inductance unit 1131, that is to say, the length of the radiation section of the eighth inductance unit 1133 is less than the length of the radiation section of the ninth inductance unit 1134, but the eighth inductance
  • the length of the radiation section of the unit 1133 is smaller than the length of the radiation section of the first inductor unit 1131 .
  • the inductance per unit length of the two pairs of second inductance units 1132 is the same, and the inductance per unit length of the two pairs of second inductance units 1132
  • the inductance is smaller than the inductance per unit length of the first inductance unit 1131 , that is to say, the length of the radiation section of the second inductance unit 1132 is smaller than the length of the radiation section of the first inductance unit 1131 .
  • the first inductance unit 1131 includes two kinds of radiating sections, and the lengths of the two kinds of radiating sections are different. Let the longer radiation section be the first radiation section 1136 , and the shorter radiation section be 1137 . Two kinds of radiation sections with different lengths or multiple radiation sections with different lengths are arranged in the inductance unit, so as to better suppress high-frequency induced current.
  • the radiation ring 11 has a circular structure or an elliptical structure or a substantially circular or substantially elliptical shape, and the radiation ring 11 with a circular structure or an elliptical structure is called the third radiation
  • the ring 114, the third radiation ring 114 has a symmetrical structure with respect to the polarization axis of the radiation arm 101 where it is located.
  • the third radiation ring 114 includes a plurality of inductor units 111 , and the plurality of inductor units 111 are sequentially arranged along the extension path of the third radiation ring 114 .
  • Each inductor unit 111 of the third radiation ring 114 forms each arc segment of the third radiation ring 114 .
  • the third radiating loop 114 includes multiple pairs of inductance units 111, at least two pairs of inductance units 111 in the multiple pairs of inductance units 111 have different inductance per unit length, and each pair of inductance units 111 is related to the The axes of polarization are symmetrical.
  • each inductance unit 111 refer to the arrangement of the inductance unit 111 of the first radiating ring 112 , which will not be repeated here to save space. For example, referring to FIG.
  • the third radiating ring 114 includes four pairs of inductance units, the four pairs of inductance units include two pairs of tenth inductance units 1143 and two pairs of eleventh inductance units 1144, wherein the unit length inductance of the tenth inductance unit 1143
  • the inductance is greater than the inductance per unit length of the eleventh inductance unit 1144 , that is, the length of the radiation section of the tenth inductance unit 1143 is greater than the length of the radiation section of the eleventh inductance unit 1144 .
  • the third radiating ring includes a plurality of inductance units, and the third radiating ring is provided with an inductance unit at an end away from the central point of the radiating unit, and the side where the inductance unit is located is the same as the polarization
  • the remaining inductance units of the third radiation ring except the third inductance unit are arranged in pairs, and the inductance per unit length of the same pair of fourth inductance units is the same, and The same pair of fourth inductance units is symmetrical with respect to the polarization axis.
  • the inductance per unit length of different pairs of fourth inductance units is the same or different, or the inductance per unit length of the third inductance unit is the same or the same as the inductance per unit length of the plurality of fourth inductance units.
  • the radiating unit 10 further includes a pair of baluns, and the pair of baluns are plugged into the balun holes 121 on the feeding part 12 , The pair of baluns feeds the corresponding polarized radiation arm 101 through the feeding part 12 .
  • the radiation unit further includes a dielectric board, and the two pairs of radiation arms are arranged on the front or back of the dielectric board.
  • the metal wires surrounding the radiation ring of the radiation unit are microstrip lines.
  • the radiation ring is integrally formed by bending the microstrip line.
  • the antenna includes a reflector 40 and a row of low-frequency radiation units and a row of high-frequency radiation units disposed on the reflector 40 .
  • the low-frequency radiation unit row includes a plurality of low-frequency radiation units 10 fed in parallel with each other, and the low-frequency radiation unit 10 is the radiation unit described above, and the high-frequency radiation unit row includes a plurality of high-frequency radiation units fed in parallel with each other.
  • Frequency radiation unit 30 The low frequency radiation unit 10 and the high frequency radiation unit 30 are arranged close to each other.
  • the row of low-frequency radiation units is disposed between two rows of high-frequency radiation units, so that the low-frequency radiation unit 10 of the row of low-frequency radiation units is disposed between multiple high-frequency radiation units 30 .
  • the low-frequency radiation unit 10 is arranged on four high-frequency radiation units 30, each radiation arm 101 of the low-frequency radiation unit 10 corresponds to a high-frequency radiation unit 30, and the radiation arms of the low-frequency radiation unit 10 101 is arranged on the high-frequency radiation unit 30 corresponding to the radiation arm 101, and in the projection relationship facing the reflector 40, the projection of the radiation arm 101 of the low-frequency radiation unit 10 is the same as the high-frequency radiation unit 101 corresponding to the radiation arm 101.
  • the projections of the high-frequency radiation units 30 overlap, that is to say, the projections of the low-frequency radiation unit 10 overlap with the projections of the corresponding four high-frequency radiation units 30 .
  • the annular radiation arm 101 of the low-frequency radiation unit 10 can less block the transmission of high-frequency signals.
  • the multiple inductance units 111 can suppress the high-frequency induction current generated by the excitation, and the low-frequency radiation unit 10 is provided with inductance units 111 of corresponding inductance per unit length in different regions of the high-frequency induction current, so as to precisely suppress the high-frequency induction current, and The impedance matching of the low-frequency radiation unit 10 will not be affected.
  • Fig. 15 is the measured high-frequency radiation unit of the high-frequency radiation array that is not co-arrayed with the low-frequency radiating unit when the high-frequency radiating unit emits a high-frequency signal with a frequency of 1.427 GHz, and the common low-frequency radiating unit co-arrays
  • the high-frequency radiation unit of the high-frequency radiation array and the high-frequency radiation unit of the high-frequency radiation array co-arrayed with the radiation unit of the present invention are high-frequency radiation patterns.
  • the dotted line represents the direction diagram of the high-frequency radiation unit when it is not co-arrayed with the low-frequency radiation unit
  • the solid line plus a rectangle represents the direction diagram of the high-frequency radiation unit when the high-frequency radiation array is co-arrayed with the common low-frequency radiation unit.
  • the shape of a solid line plus a triangle represents the direction pattern of the high-frequency radiation unit when the high-frequency radiation array is co-arrayed with the radiation unit of the present invention. It can be seen from Fig.
  • the pattern distortion of the high-frequency radiation unit when co-arrayed with the common low-frequency radiating unit is more serious, and the directional pattern of the high-frequency radiation unit co-arrayed with the radiating unit of the present invention is the same as that without co-array with the low-frequency radiation unit
  • the pattern of the high-frequency radiation unit is roughly the same.
  • Fig. 16 is the actual measurement when the high-frequency radiation unit emits a high-frequency signal with a frequency of 1.71 GHz, the high-frequency radiation unit of the high-frequency radiation array that is not co-arrayed with the low-frequency radiation unit, and the co-array with the ordinary low-frequency radiation unit
  • the high-frequency radiation unit of the high-frequency radiation array and the high-frequency radiation unit of the high-frequency radiation array co-arrayed with the radiation unit of the present invention are high-frequency radiation patterns.
  • the dotted line represents the direction diagram of the high-frequency radiation unit when it is not co-arrayed with the low-frequency radiation unit
  • the solid line plus a rectangle represents the direction diagram of the high-frequency radiation unit when the high-frequency radiation array is co-arrayed with the common low-frequency radiation unit.
  • the shape of a solid line plus a triangle represents the direction pattern of the high-frequency radiation unit when the high-frequency radiation array is co-arrayed with the radiation unit of the present invention. It can be seen from Fig.
  • the pattern distortion of the high-frequency radiation unit is more serious when it is co-arrayed with the common low-frequency radiating unit, and the directional pattern of the high-frequency radiation unit co-arrayed with the radiating unit of the present invention is the same as that not co-arrayed with the low-frequency radiation unit
  • the pattern of the high-frequency radiation unit is roughly the same.
  • Fig. 17 is the measured high-frequency radiation unit of the high-frequency radiation array that is not co-arrayed with the low-frequency radiating unit when the high-frequency radiating unit emits a high-frequency signal with a frequency of 2.69 GHz, and the common low-frequency radiating unit co-arrays
  • the dotted line represents the direction diagram of the high-frequency radiation unit when it is not co-arrayed with the low-frequency radiation unit
  • the solid line plus a rectangle represents the direction diagram of the high-frequency radiation unit when the high-frequency radiation array is co-arrayed with the common low-frequency radiation unit.
  • the shape of a solid line plus a triangle represents the direction pattern of the high-frequency radiation unit when the high-frequency radiation array is co-arrayed with the radiation unit of the present invention. It can be seen from Fig.
  • the pattern distortion of the high-frequency radiation unit is more serious when it is co-arrayed with the common low-frequency radiating unit, and the directional pattern of the high-frequency radiation unit co-arrayed with the radiating unit of the present invention is the same as that not co-arrayed with the low-frequency radiation unit
  • the pattern of the high-frequency radiation unit is roughly the same.
  • the radiation unit of the present invention when the radiation unit and the high-frequency radiation unit are co-arrayed has roughly the same radiation pattern as the high-frequency radiation unit when it is not co-arrayed with the common low-frequency radiation unit Therefore, the radiating unit of the present invention is convenient to be co-arrayed with the high-frequency radiating unit without affecting the performance of the high-frequency radiating unit, and the radiating unit of the present invention is loaded with an inductance unit so that its own radiation performance will not be affected.
  • the present invention also provides a base station, the base station is configured with the above-mentioned antenna, and receives or transmits antenna signals of corresponding frequency bands through the antenna.
  • the radiating unit of the present invention is provided with a plurality of inductance units on its radiating arm, and the high-frequency induced current generated when the inductance unit is used to suppress the co-array with the high-frequency radiating unit, and can be used in different sizes of the radiating unit.
  • the area where the frequency induced current is located is provided with an inductance unit corresponding to the size of the inductance per unit length, so that the inductance unit can just suppress the high frequency induced current in the corresponding area without affecting the impedance matching, so that the radiation unit of the present invention is convenient for use with high Common array setting of frequency radiation units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种辐射单元,包括以极化正交设置的两对辐射臂,该两对辐射臂关于同一中心点呈中心对称结构,每个辐射臂包括馈电部和辐射环,所述辐射环与所述馈电部相连接构成闭环结构,所述辐射环以往复弯折结构形成至少两个电感单元,其中至少两个所述电感单元的单位长度电感量不同。本发明的辐射单元通过在辐射臂上设置多个电感单元,电感单元抑制与高频辐射单元共阵时产生的高频感应电流,且辐射单元在不同大小的高频感应电流所在的区域设置对应电感量大小的电感单元,以使得电感单元可恰好抑制所对应区域的高频感应电流,而不会影响阻抗匹配,以便于本发明的辐射单元便于与高频辐射单元共阵设置。

Description

辐射单元、天线及基站 技术领域
本发明涉及移动通信技术领域,具体涉及一种辐射单元与配置了所述辐射单元的天线以及配置所述天线的基站。
背景技术
随着现代移动通信技术的迅猛发展,用户对于高容量、低时延通信的需求与日俱增,由此第五代移动通信网络应运而生。随着通信技术的不断更新,2G、3G及4G等网络还未退出市场,因此出现了多制式多频段天线并存的局面。
为了降低基站场地租赁成本和便于安装多制式多频段天线,运营商通常要求天线尺寸尽可能小,重量尽可能轻,因此在有限空间的平台上集成多个频段的天线的需求越来越强烈。但各频段天线之间并不能简单的拼凑在一起,当各频段天线集成在同一平台上时,各频段天线将会相互耦合和散射,从而影响天线的辐射性能。
具体言之,各天线之间互耦将会使天线相互干扰,而散射将会干扰辐射源的分布,从而使方向图畸变,最终将使得整个通信***的辐射性能受到干扰,对通信质量造成严重影响。例如,参见图1,普通的辐射单元的辐射臂呈对称的环状结构,当平面波透射该辐射臂时,由于平面波在辐射臂的不同位置的感应电动势不同,使得辐射臂上不同位置的散射电流不同。且由于辐射臂呈对称结构,相对称位置的感应电动势大小相等,方向相反,会在对称轴上形成散射电流零点,极大地影响辐射单元的辐射性能。
为解决该问题,业内提出了在辐射单元的辐射臂的其中一部分上加载一个电感或滤波结构,抑制高频散射电流,以解决互耦和散射的问题。该方法在一定程度上抑制了散射,但电感或滤波结构所串接耦合的辐射臂因存在一定的长度,使得辐射臂上仍能产生感应电流,形成较强的散射场,不能满足在多频段天线的应用要求。
发明内容
本发明的首要目的在于解决上述问题至少之一而提供一种辐射单元、天线 及基站。
为满足本发明的各个目的,本发明采用如下技术方案:
适应本发明的目的之一而提供一种辐射单元,包括以极化正交设置的两对辐射臂,该两对辐射臂关于同一中心点呈中心对称结构,每个辐射臂包括馈电部和辐射环,所述辐射环与所述馈电部相连接构成闭环结构,所述辐射环以往复弯折结构形成至少两个电感单元,其中至少两个所述电感单元的单位长度电感量不同。
进一步的,多个所述电感单元顺序相串接形成连续加载。
进一步的,各所述电感单元的单位长度电感量大小根据被激励产生的高频感应电流的分布强弱对应设置。
进一步的,所述辐射环呈多边形状,所述辐射环沿极化轴线方向呈对称结构。
具体的,所述辐射环的多个电感单元中包括至少一对单位长度电感量相同的电感单元,所述成对设置的电感单元关于极化轴线对称设置于辐射环上。
具体的,所述辐射环包括多对电感单元,不同对电感单元的单位长度电感量不同。
具体的,该线状辐射环在远离所述中心点的一端设有一个电感单元,且与所述极化轴线相交,该电感单元关于所述极化轴线呈对称结构。
进一步的,所述辐射环呈圆形结构或椭圆形结构,所述辐射环沿所在辐射臂的极化轴线对称设置,具有相同单位长度电感量的电感单元成对设置,该成对设置的电感单元沿所述极化轴线对称设置。
进一步的,所述电感单元包括多个呈直线段状或弧段状的辐射段,相邻两个辐射段之间因首尾相接形成过渡段,所述过渡段呈直线段状或弧段状,不同单位长度电感量的电感单元的辐射段的长度不同。
具体的,所述电感单元由所述往复弯折结构构成而呈波浪状结构或锯齿状结构或弹簧状结构。
适应本发明的目的之一而提供一种天线,包括反射板、低频辐射单元以及高频辐射单元列,每个辐射单元列均包括彼此并联馈电的多个辐射单元,所述低频辐射单元列中的辐射单元采用如上一目的任意一项所述的辐射单元,至少存在一个低频辐射单元布设于多个高频辐射单元列之间,在面向反射板的投影 关系上,所述布设于多个高频辐射单元列之间的低频辐射单元的投影和与之相邻的高频辐射单元的投影相重叠。
适应本发明的目的之一而提供一种基站,所述基站配置有如上一目的所述的天线,用于发射该基站通行的信号。
相对于现有技术,本发明的优势如下:
首先,本发明的辐射单元的辐射臂设有通过至少两个不同单位长度电感量的电感单元所围成的辐射环,所述电感单元用于抑制被高频信号激励产生的高频感应电流,且由于辐射臂的不同区域的高频电流的密度不同,在对应高频电流密度区域处设置相应单位长度电感量的电感单元,以使得单位长度电感量不会过大或过小,而不影响本发明的辐射单元的阻抗匹配,提高本发明的辐射单元的辐射性能。
其次,本发明的辐射单元的辐射臂的辐射环通过往复绕折形成多个不同单位长度电感量的电感单元,且电感单元的制造方式简单,便于一体弯折成型,极大的降低生产成本与便于大规模的推广应用。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为现有技术的环状辐射臂的散射电流密度分布示意图。
图2为现有技术的环状辐射臂在局部电流峰值处切断示意图。
图3为现有技术的环状辐射臂局部加载了电感单元的结构示意图。
图4为本发明的辐射单元的辐射臂的结构原理图。
图5为本发明的其中一个实施例的辐射单元的结构示意图。
图6为本发明的其中一个实施例的辐射单元的辐射臂的结构示意图。
图7为本发明的另一个实施例的辐射单元的结构示意图。
图8为本发明的另一个实施例的辐射单元的辐射臂的结构示意图。
图9为本发明的一个实施例的辐射单元的辐射臂的结构示意图。
图10为本发明的一个实施例的天线的结构示意图。
图11为本发明的另一个实施例的天线的结构示意图。
图12为现有技术中的辐射单元的辐射臂与本发明的辐射单元的辐射臂被频率为1.427GHz的高频信号透射时的电流密度分布对比图。
图13为现有技术中的辐射单元的辐射臂与本发明的辐射单元的辐射臂被频率为1.71GHz的高频信号透射时的电流密度分布对比图。
图14为现有技术中的辐射单元的辐射臂与本发明的辐射单元的辐射臂被频率为2.69GHz的高频信号透射时的电流密度分布对比图。
图15为当高频辐射单元发射频率为1.427GHz的高频信号时,未与低频辐射单元共阵的高频辐射阵列的高频辐射单元、与普通低频辐射单元共阵的高频辐射阵列的高频辐射单元及与本发明的辐射单元共阵的高频辐射阵列的高频辐射单元的高频方向图。
图16为当高频辐射单元发射频率为1.71GHz的高频信号时,未与低频辐射单元共阵的高频辐射阵列的高频辐射单元、与普通低频辐射单元共阵的高频辐射阵列的高频辐射单元及与本发明的辐射单元共阵的高频辐射阵列的高频辐射单元的高频方向图。
图17为当高频辐射单元发射频率为2.69GHz的高频信号时,未与低频辐射单元共阵的高频辐射阵列的高频辐射单元、与普通低频辐射单元共阵的高频辐射阵列的高频辐射单元及与本发明的辐射单元共阵的高频辐射阵列的高频辐射单元的高频方向图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的实例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是实例性的,仅用于解释本发明而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、 元件和/或组件,但是并不排排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
参见图2,为了抑制高频散射电流,业内提出了在辐射臂100的局部散射电流峰值位置将环状对称的辐射臂100切断。参见图3,在切断处加载单位电感量较大的电感结构110,以抑制高频散射电流。为了抑制高频散射电流,在切断处所加载的电感结构110的电感量越大越好,但是随着电感量的不断增大,低频的阻抗会变得发射,以至于难以匹配。而且,由于辐射臂100的各处的高频感应电流的加载量的不同,有的区域高频感应电流量较大,有的区域高频感应电流量较小,现有技术中,辐射臂100各个区域所加载的电感结构110相同,使得小电流处加载具有较大电感量的电感结构110,而大电流处加载电感量较小的电感结构110,进而影响辐射单元的辐射性能。
而且,在辐射臂未加载电感结构的区域,仍能产生感应电流,形成较强的散射场,以使得辐射单元不能满足多频天线的应用要求。具体言之,天线所应用的电感或滤波结构在辐射臂上为离散型加载,辐射臂未被加载的区域还是会产生离散电流,影响天线的辐射性能。由此可知,现有的辐射单元加载了电感结构仍不能如同本发明所提供的辐射单元有效地调节电感量,抑制散射电流,降低高频方向图的畸变。
本发明提供一种辐射单元,该辐射单元的辐射臂包括辐射环,该辐射环通过往复弯折形成至少两个电感单元,该至少两个电感单元所构成的所辐射环与馈电部相接构成闭环结构,以实现连续电感加载,调节电感量,抑制高频散射电流,降低高频方向图的畸变。
在本发明的典型实施例中,结合图5与图7,所述辐射单元10包括两对辐 射臂101,该两对辐射臂101以极化正交设置,且该两对辐射臂101关于同一中心点呈中心对称结构。
所述辐射臂101包括馈电部12和辐射环11,所述辐射环11与所述馈电部12相连接以构成闭环结构,也即是说,所述辐射臂101呈闭环结构。
所述辐射臂101呈闭环状,且内部中空,当所述辐射单元10与高频辐射单元共阵设置时,本发明的辐射单元10的呈中空状的辐射臂101可便于高频辐射单元发射的高频信号的透射,且因辐射臂101由金属线围成,辐射臂101较少与所述高频辐射单元互耦和散射,提高共阵时天线总体辐射性能。
结合图4,图4为本发明的辐射环的原理结构示意图,所述辐射环11由往复弯绕折结构形成,具体言之,所述辐射环11由金属线往复绕折形成。辐射环11通过所述往复绕折结构形成至少两个电感单元111,其中至少一个电感单元111的单位长度电感量高于其它电感单元111。
具体言之,所述辐射环11经往复绕折形成多个电感单元111,且该多个电感单元111顺次串接以形成环状而的辐射环11,也即是说,所述辐射环11由多个电感单元111相互串接而成。
所述电感单元111由金属线反复绕折而成,以实现电感功能。具体言之,结合图6与图8,所述电感单元111弯折形成多个辐射段1111、且相邻两个辐射段1111之间因首尾相接形成的过渡段1112。
在本发明中,通过控制所述辐射段1111的长度来控制电感单元111的电感性能。通过控制不同电感单元111的辐射段1111的长度,来控制不同电感单元111的所能加载的单位长度电感量。所述辐射段1111的长短与电感单元111的单位长度电感量呈正比,也即是说,辐射段1111的长度越长其所在的电感单元111所能加载的单位长度电感量越大,辐射段1111的长度越短其所在的电感单元111的单位长度电感量越小。
例如,参见图4,辐射环11的其中一个电感单元1114的辐射段的长度大于另一个电感单元1113的辐射段的长度,也即是说,该其中一个电感单元1114的单位长度电感量大于该另一个电感单元1113的单位长度电感量。
结合图12,图12为实测现有技术中的未加载电感单元呈直线微带线状的辐射单元的辐射臂与本发明的辐射单元的辐射臂被频率为1.427GHz的高频信号透射时的电流密度分布对比图。其中,虚线表示现有技术的辐射单元的辐射臂上的电流密度,实线表示本发明的辐射单元的辐射臂上的电流密度。由图12可知, 本发明的辐射单元的辐射臂上各区域的高频感应电流的密度远小于现有技术的辐射单元的辐射臂上各区域的高频感应电流的密度。
结合图13,图13为实测现有技术中的未加载电感单元呈直线微带线状的辐射单元的辐射臂与本发明的辐射单元的辐射臂被频率为1.71GHz的高频信号透射时的电流密度分布对比图。其中,虚线表示现有技术的辐射单元的辐射臂上的电流密度,实线表示本发明的辐射单元的辐射臂上的电流密度。由图13可知,本发明的辐射单元的辐射臂上各区域的高频感应电流的密度远小于现有技术的辐射单元的辐射臂上各区域的高频感应电流的密度。
结合图14,图14为实测现有技术中的未加载电感单元呈直线微带线状的辐射单元的辐射臂与本发明的辐射单元的辐射臂被频率为2.69GHz的高频信号透射时的电流密度分布对比图。其中,虚线表示现有技术的辐射单元的辐射臂上的电流密度,实线表示本发明的辐射单元的辐射臂上的电流密度。由图14可知,本发明的辐射单元的辐射臂上各区域的高频感应电流的密度远小于现有技术的辐射单元的辐射臂上各区域的高频感应电流的密度。
由图13至图14可知,本发明的加载了至少两种电感单元的辐射臂的辐射单元被高频信号透射时,通过电感单元可有效抑制高频感应电流,而不会如同普通的辐射单元的辐射臂上具有较大的高频感应电流,以便于本发明的辐射单元与高频辐射单元共阵设置。
结合图6与图8,所述辐射段1111呈直线段状或弧段状,所述过渡段1112呈直线段状或弧段状。电感单元111的所述辐射段1111与所述过渡段1112相互组合以形成波浪状结构或锯齿状结构或弹簧状结构。同一电感单元111的多个辐射段1111的形状相同及长度均相等,同一电感单元111的多个过渡段1112的形状相同及长度相等。在一个实施例中,电感单元111的部分辐射段1111的长度不相等。电感单元111的部分过渡段1112呈U形或W形。
在本发明的典型实施例中,电感单元111的辐射段1111与过渡段1112相互组合形成方波状结构或正弦波结构或余弦波结构。
在本发明的典型实施例中,结合图6与图8,所述辐射环11呈多边形状,且该多边形关于辐射环11所在的一对辐射臂的极化轴线相对称。所述辐射环11呈多边形状,多边形状的辐射环11的每一条边均由一个电感单元111形成,以使得所述辐射环11由多个电感单元111相互连接围成。
在一个实施例中,结合图9,所述辐射环11呈具有偶数条边的多边形状, 且该具有偶数条的多边形关于所述极化轴线呈对称结构。所述辐射环11包括多个电感单元111,各个电感单元111构成呈具有偶数条边的多边形的辐射环(称该具有偶数条边的多边形的辐射环为第一辐射环112)的各条边。
所述第一辐射环112的电感单元111根据其单位长度电感量分为多种,也即是说,根据电感单元111的辐射段1111的长度分为多种。第一辐射环112中的电感单元111成对设置,同一对电感单元111的单位长度电感量相同,且同一对电感单元111关于所述极化轴线相对称,也即是说,同一对的电感单元111对称分布于所述极化轴线的两侧,以使得所述辐射环11可关于所述极化轴线相对称。
所述第一辐射环112至少包括两对具有不同单位长度电感量的电感单元111,根据单位长度电感量的高低将电感单元111设置于第一辐射环112的不同位置,以完全抑制与高频辐射单元共阵时所激励产生的高频感应电流,且不影响阻抗匹配。在一个实施例中,所述第一辐射环112的每一对电感单元111的单位长度电感量均不相同。
具体言之,当本发明的辐射单元10耦合高频信号时,辐射臂101上将会加载高频感应电流,辐射臂101上不同位置的高频电流的大小不同,且相同大小的高频感应电流关于所述极化轴线对称分布于辐射臂101的不同位置上。
由此,可基于高频感应电流在辐射臂101上的分布情况,在高频感应电流较大的区域设置单位长度电感量较大的电感单元111,而在高频感应电流较小的区域设置单位长度电感量较小的电感单元111,以使得本发明的辐射单元10的辐射臂101可通过相对应单位长度电感量的电感单元111抑制相对应大小的高频感应电流,而不会使用单位长度电感量不对应的电感单元111抑制大小不对应的高频感应电流,从而影响辐射单元10的辐射性能。
具体言之,若单位长度电感量大于对应高频感应电流的电感单元111,则使得该电感单元111不便于阻抗匹配;若单位长度电感量小于对应高频感应电流的电感单元111,则该电感单元111不能完全抑制该高频电流,进而影响辐射单元的辐射性能。
在本发明中根据辐射臂101上的电流分布状况而设置相应单位长度电感量的电感单元111。
在本实施例中,所述第一辐射环112具有四条边或六条条,也即是说,所述第一辐射环112呈平行四边形状或六边形状。
当所述第一辐射环112呈平行四边形状时,该第一辐射环112具有两对单位长度电感量不同的电感单元111。
当所述第一辐射环112呈六边形状时,该第一辐射环112具有三对电感单元111,且三对电感单元111中包括至少两对单位长度电感量不同的电感单元111。优选的,该三对电感单元111的单位长度电感量均不相同。
在一个实施例中,结合图9,当第一辐射环112呈六边形时,其三对电感单元分别为一对第五电感单元1121、一对第六电感单元1122及一对第七电感单元1123。所述第六电感单元1122与第七电感单元1123的单位长度电感量相同,所述第五电感单元1121的单位长度电感量大于第六电感单元1122与第七电感单元1123的单位长度电感量,也即是说,第五电感单元1121的辐射段的长度大于第六电感单元1122的辐射段的长度及第七电感单元1123的辐射段的长度。
在另一个实施例中,结合图5至图8,所述辐射环11呈具有奇数条边的多边形状,且该具有奇数条边的辐射环11(该具有奇数条边的辐射环11为第二辐射环113)关于所在的辐射臂101的极化轴线呈对称结构。所述第二辐射环113包括多个电感单元111,该电感单元111中至少包括两种单位长度电感量不同的电感单元111,各电感单元111构成所述第二辐射环113的各条边。
所述第二辐射环113在远离所述辐射单元10的中心点的一端设有一个电感单元111,该电感单元111所在的边与所述极化轴线相交设置,称该与极化轴线相交的电感单元111为第一电感单元1131,每个第二辐射环113只有一个第一电感单元1131,且所述第一电感单元1131关于所述极化轴线呈对称结构。
所述第二辐射环113的除第一电感单元1131外的其余电感单元(称除第一电感单元1131外的电感单元为第二电感单元1132)成对设置,同一对第二电感单元1132的单位长度电感量相同,且同一对第二电感单元1132关于所述极化轴线相对称。不同对第二电感单元1132的单位长度电感量相同或不相同,或者,第一电感单元1131的单位长度电感量与所述多个第二电感单元1132的单位长度电感量相同或不相同。
在本实施例中,因第一电感单元1131关于所述极化轴线呈对称结构,且各对第二电感单元1132也关于所述极化轴线相对称,以使得所述第二辐射环113关于所述极化轴线呈对称结构。
所述第二辐射环113上的各电感单元111的设置位置基于所在的辐射单元10与高频辐射单元共阵时,被激励产生的高频感应电流的分布情况而设置,具 体的各感应电流的设置方式可参见第一辐射环112的电感单元111的设置方式,在此为节省篇幅,不在赘述。
在本实施例中,所述第二辐射环113呈五边形状。当所述第二辐射环113呈五边形状时,该第二辐射环113具有两对第二电感单元1132与一个第一电感单元1131,该两对第二电感单元1132的单位长度电感量相同或不相同。结合8,若该两对第二电感单元1132的单位长度电感量相同时,则第一电感单元1131的单位长度电感量与该两对第二电感单元1132的单位长度电感量不相同;结合图6,若该两对第二电感单元1132的单位长度电感量不相同时,则第一电感单元1131的单位长度电感量与其中一对第二电感单元1132的单位长度电感量相同或不相同。
在一个实施例中,结合图6,当第二辐射环113呈五边形状时,其两对第二电感单元的单位长度电感量不同,分别称该两对第二电感单元中的其中一对为第八电感单元1133,另一对为第九电感单元1134,其中第八电感单元1133的单位长度电感量大于第九电感单元1134的单位长度电感量,且第八电感单元1133与第九电感单元1134的单位长度电感量小于第一电感单元1131的单位长度电感量,也即是说,第八电感单元1133的辐射段的长度小于第九电感单元1134的辐射段的长度,但第八电感单元1133的辐射段的长度小于第一电感单元1131的辐射段的长度。
在另一实施例中,结合图8,当第二辐射环113呈五边形状时,其两对第二电感单元的单位长度电感量相同,当该两对第二电感单元1132的单位长度电感量小于第一电感单元1131的单位长度电感量,也即是说,第二电感单元1132的辐射段的长度小于所述第一电感单元1131的辐射段的长度。
在进一步的实施例中,所述第一电感单元1131的包括两种辐射段,该两种辐射段的长度不相同。设长度较长的辐射段为第一辐射段1136,长度较短的辐射段为1137。在电感单元中设置两种不同长度的辐射段或多种长度不同的辐射段,以便更好的实现高频感应电流的抑制。
在一个实施例中,结合图4,所述辐射环11呈圆形结构或椭圆形结构或者大致圆形或大致椭圆形状,称该具有圆形结构或椭圆形结构的辐射环11为第三辐射环114,该第三辐射环114关于其所在辐射臂101的极化轴线呈对称结构。所述第三辐射环114包括多个电感单元111,该多个电感单元111沿所述第三辐射环114的延伸路径顺次设置。
所述第三辐射环114的各个电感单元111组成该第三辐射环114的各个弧段。
在一个实施中,所述第三辐射环114包括多对电感单元111,该多对电感单元111中的至少两对电感单元111的单位长度电感量不相同,且每对电感单元111关于所述极化轴线相对称。具体的各个电感单元111的设置方式可参见第一辐射环112的电感单元111的设置方式,在此为节省篇幅,不在赘述。例如,结合图4,第三辐射环114包括四对电感单元,该四对电感单元包括两对第十电感单元1143与两对第十一电感单元1144,其中第十电感单元1143的单位长度电感量大于第十一电感单元1144的单位长度电感量,也即是说,第十电感单元1143的辐射段的长度大于第十一电感单元1144的辐射段的长度。
在一个实施例中,所述第三辐射环包括多个电感单元,第三辐射环在远离所述辐射单元的中心点的一端设有一个电感单元,该电感单元所在的边与所述极化轴线相交设置,称该与极化轴线相交的电感单元为第三电感单元,每个第二辐射环只有一个第三电感单元,且所述第三电感单元关于所述极化轴线相对称。第三辐射环的除第三电感单元外的其余电感单元(称除第三电感单元外的电感单元为第四电感单元)成对设置,同一对第四电感单元的单位长度电感量相同,且同一对第四电感单元关于所述极化轴线相对称。不同对第四电感单元的单位长度电感量相同或不同相同,或者,第三电感单元的单位长度电感量与所述多个第四电感单元的单位长度电感量相同或相同。具体的第三辐射环的各个电感单元的设置方式可参见第三辐射环的电感单元的设置方式,在此为节省篇幅,不在赘述。
在本发明的典型实施例中,结合图5与图7,所述辐射单元10还包括一对巴伦,该一对巴伦插接与设置于馈电部12上的巴伦孔121上,该一对巴伦通过馈电部12给相对应极化的辐射臂101馈电。
在一个实施例中,所述辐射单元还包括介质板,所述两对辐射臂设置于介质板的正面或反面上。
在一个实施例中,围成所述辐射单元的辐射环的金属线为微带线。所述辐射环由微带线一体弯折成型。
本发明还提供了一种天线,结合图10与图11,该天线包括反射板40与设置于反射板40上的低频辐射单元列与高频辐射单元列。所述低频辐射单元列包 括多个彼此并联馈电的低频辐射单元10,所述低频辐射单元10为上文所述的辐射单元,所述高频辐射单元列包括多个彼此并联馈电的高频辐射单元30。所述低频辐射单元10与所述高频辐射单元30相近设置。
所述低频辐射单元列设置于两个高频辐射单元列之间,以使得低频辐射单元列的低频辐射单元10设置于多个高频辐射单元30之间。具体言之,所述低频辐射单元10设置于四个高频辐射单元30之上,所述低频辐射单元10的每个辐射臂101各对应一个高频辐射单元30,低频辐射单元10的辐射臂101设置于该辐射臂101所对应的高频辐射单元30之上,且在面向反射板40的投影关系上,所述低频辐射单元10的辐射臂101的投影与该辐射臂101所对应的高频辐射单元30的投影相重叠,也即是说,所述低频辐射单元10的投影与相对应的四个高频辐射单元30的投影相重叠。
当低频辐射单元10与四个高频辐射单元30共阵设置时,低频辐射单元10的呈环状的辐射臂101可较少的阻挡高频信号的透射,低频辐射单元10的辐射臂101上的多个电感单元111可抑制激励产生的高频感应电流,且低频辐射单元10在高频感应电流不同区域设置对应大小的单位长度电感量的电感单元111,以恰好抑制高频感应电流,而不会影响低频辐射单元10的阻抗匹配。
结合图15,图15为实测当高频辐射单元发射频率为1.427GHz的高频信号时,未与低频辐射单元共阵的高频辐射阵列的高频辐射单元、与普通低频辐射单元共阵的高频辐射阵列的高频辐射单元及与本发明的辐射单元共阵的高频辐射阵列的高频辐射单元的高频方向图。其中,虚线表示未与低频辐射单元共阵时的高频辐射单元的方向图,实线加矩形的线形表示与普通低频辐射单元共阵的高频辐射阵列时的高频辐射单元的方向图,实线加三角形的线形表示与本发明的辐射单元共阵的高频辐射阵列时的高频辐射单元的方向图。由图15可知,与普通低频辐射单元共阵时的高频辐射单元的方向图畸变较为严重,而与本发明的辐射单元共阵的高频辐射单元的方向图与未与低频辐射单元共阵的高频辐射单元的方向图大致相同。
结合图16,图16为实测当高频辐射单元发射频率为1.71GHz的高频信号时,未与低频辐射单元共阵的高频辐射阵列的高频辐射单元、与普通低频辐射单元共阵的高频辐射阵列的高频辐射单元及与本发明的辐射单元共阵的高频辐射阵列的高频辐射单元的高频方向图。其中,虚线表示未与低频辐射单元共阵时的高频辐射单元的方向图,实线加矩形的线形表示与普通低频辐射单元共阵的高 频辐射阵列时的高频辐射单元的方向图,实线加三角形的线形表示与本发明的辐射单元共阵的高频辐射阵列时的高频辐射单元的方向图。由图16可知,与普通低频辐射单元共阵时的高频辐射单元的方向图畸变较为严重,而与本发明的辐射单元共阵的高频辐射单元的方向图与未与低频辐射单元共阵的高频辐射单元的方向图大致相同。
结合图17,图17为实测当高频辐射单元发射频率为2.69GHz的高频信号时,未与低频辐射单元共阵的高频辐射阵列的高频辐射单元、与普通低频辐射单元共阵的高频辐射阵列的高频辐射单元及与本发明的辐射单元共阵的高频辐射单元的高频辐射阵列的高频方向图。其中,虚线表示未与低频辐射单元共阵时的高频辐射单元的方向图,实线加矩形的线形表示与普通低频辐射单元共阵的高频辐射阵列时的高频辐射单元的方向图,实线加三角形的线形表示与本发明的辐射单元共阵的高频辐射阵列时的高频辐射单元的方向图。由图17可知,与普通低频辐射单元共阵时的高频辐射单元的方向图畸变较为严重,而与本发明的辐射单元共阵的高频辐射单元的方向图与未与低频辐射单元共阵的高频辐射单元的方向图大致相同。
由图15至图17可知,本发明的辐射单元与高频辐射单元共阵时的高频辐射单元的方向图大致与未与普通低频辐射单元共阵时的高频辐射单元的方向图大致相同,因此本发明的辐射单元便于与高频辐射单元共阵设置,而不影响高频辐射单元的性能,且本发明的辐射单元通过加载电感单元使得其自身的辐射性能也不会受到影响。
本发明还提供了一种基站,所述基站配置了上文所述的天线,通过所述天线接收或发射相应频段的天线信号。
综上所述,本发明的辐射单元通过在其辐射臂上设置多个电感单元,通过电感单元抑制与高频辐射单元共阵时产生的高频感应电流,且可在辐射单元不同大小的高频感应电流所在的区域设置对应单位长度电感量大小的电感单元,以使得电感单元可恰好抑制所对应区域的高频感应电流,而不会影响阻抗匹配,以便于本发明的辐射单元便于与高频辐射单元共阵设置。
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域 技术人员应当理解,本发明中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中发明的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (12)

  1. 一种辐射单元,包括以极化正交设置的两对辐射臂,该两对辐射臂关于同一中心点呈中心对称结构,其特征在于,每个辐射臂包括馈电部和辐射环,所述辐射环与所述馈电部相连接构成闭环结构,所述辐射环以往复弯折结构形成至少两个电感单元,其中至少两个所述电感单元的单位长度电感量不同。
  2. 如权利要求1所述的辐射单元,其特征在于,多个所述电感单元顺序相串接形成连续加载。
  3. 如权利要求1所述的辐射单元,其特征在于,各所述电感单元的单位长度电感量大小根据被激励产生的高频感应电流的分布强弱对应设置。
  4. 如权利要求1所述的辐射单元,其特征在于,所述辐射环呈多边形状,所述辐射环沿极化轴线方向呈对称结构。
  5. 如权利要求1所述的辐射单元,其特征在于,所述辐射环的多个电感单元中包括至少一对单位长度电感量相同的电感单元,所述成对设置的电感单元关于极化轴线对称设置于辐射环上。
  6. 如权利要求5所述的辐射单元,其特征在于,所述辐射环包括多对电感单元,不同对电感单元的单位长度电感量不同。
  7. 如权利要求4所述的辐射单元,其特征在于,该线状辐射环在远离所述中心点的一端设有一个电感单元,且与所述极化轴线相交,该电感单元关于所述极化轴线呈对称结构。
  8. 如权利要求1所述的辐射单元,其特征在于,所述辐射环呈圆形结构或椭圆形结构,所述辐射环沿所在辐射臂的极化轴线对称设置,具有相同单位长度电感量的电感单元成对设置,该成对设置的电感单元沿所述极化轴线对称设置。
  9. 如权利要求1所述的辐射单元,其特征在于,所述电感单元包括多个呈直线段状或弧段状的辐射段,相邻两个辐射段之间因首尾相接形成过渡段,所述过渡段呈直线段状或弧段状,不同单位长度电感量的电感单元的辐射段的长度不同
  10. 如权利要求1至9任意一项所述的辐射单元,其特征在于,所述电感单元由所述往复弯折结构构成而呈波浪状结构或锯齿状结构或弹簧状结构。
  11. 一种天线,包括反射板、低频辐射单元以及高频辐射单元列,每个辐射单元列均包括彼此并联馈电的多个辐射单元,其特征在于,所述低频辐射单元列中的辐射单元采用如权利要求1至10中任意一项所述的辐射单元,至少存在一个低频辐射单元布设于多个高频辐射单元列之间,在面向反射板的投影关系上,所述布设于多个高频辐射单元列之间的低频辐射单元的投影和与之相邻的高频辐射单元的投影相重叠。
  12. 一种基站,其特征在于,所述基站配置有如权利要求11所述的天线,用于发射该基站通行的信号。
PCT/CN2022/081834 2021-11-11 2022-03-18 辐射单元、天线及基站 WO2023082517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111335147.2 2021-11-11
CN202111335147.2A CN114122690B (zh) 2021-11-11 2021-11-11 辐射单元、天线及基站

Publications (1)

Publication Number Publication Date
WO2023082517A1 true WO2023082517A1 (zh) 2023-05-19

Family

ID=80378666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081834 WO2023082517A1 (zh) 2021-11-11 2022-03-18 辐射单元、天线及基站

Country Status (2)

Country Link
CN (1) CN114122690B (zh)
WO (1) WO2023082517A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122690B (zh) * 2021-11-11 2023-09-19 京信通信技术(广州)有限公司 辐射单元、天线及基站

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067671A (ja) * 2005-08-30 2007-03-15 Kojima Press Co Ltd アンテナコイルの巻き付け構造
US20070171132A1 (en) * 2006-01-23 2007-07-26 Yokowo Co., Ltd. Planar antenna
CN203607536U (zh) * 2013-08-02 2014-05-21 摩比天线技术(深圳)有限公司 一种小型化双极化辐射单元及天线
CN104143686A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 双极化辐射单元和天线
CN204497377U (zh) * 2015-04-02 2015-07-22 江苏捷士通射频***有限公司 一种gsm/lte双频天线辐射单元及天线
CN206194949U (zh) * 2016-10-20 2017-05-24 深圳国人通信股份有限公司 一种双极化天线
CN114122690A (zh) * 2021-11-11 2022-03-01 京信通信技术(广州)有限公司 辐射单元、天线及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368517A (ja) * 2001-06-08 2002-12-20 Hitachi Metals Ltd 表面実装型アンテナおよびそれを搭載した通信機器
CN101170216B (zh) * 2006-10-26 2011-06-22 连展科技电子(昆山)有限公司 高增益偶极天线
JP2009182786A (ja) * 2008-01-31 2009-08-13 Nippon Tungsten Co Ltd 積層アンテナ
CN101635388A (zh) * 2008-07-24 2010-01-27 启碁科技股份有限公司 多频天线及其具有多频天线的电子装置
CN106684564A (zh) * 2016-12-09 2017-05-17 上海斐讯数据通信技术有限公司 一种高增益天线
CN112821044B (zh) * 2020-12-31 2023-02-28 京信通信技术(广州)有限公司 辐射单元、天线及基站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067671A (ja) * 2005-08-30 2007-03-15 Kojima Press Co Ltd アンテナコイルの巻き付け構造
US20070171132A1 (en) * 2006-01-23 2007-07-26 Yokowo Co., Ltd. Planar antenna
CN104143686A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 双极化辐射单元和天线
CN203607536U (zh) * 2013-08-02 2014-05-21 摩比天线技术(深圳)有限公司 一种小型化双极化辐射单元及天线
CN204497377U (zh) * 2015-04-02 2015-07-22 江苏捷士通射频***有限公司 一种gsm/lte双频天线辐射单元及天线
CN206194949U (zh) * 2016-10-20 2017-05-24 深圳国人通信股份有限公司 一种双极化天线
CN114122690A (zh) * 2021-11-11 2022-03-01 京信通信技术(广州)有限公司 辐射单元、天线及基站

Also Published As

Publication number Publication date
CN114122690B (zh) 2023-09-19
CN114122690A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN213366800U (zh) 多频段共口径天线和通信设备
US8957824B2 (en) Broadband dipole antenna
CN111082225B (zh) 一种小型化可重构三陷波超宽带天线
CN109672023B (zh) 一种基于开口谐振环的差分双极化贴片天线
WO2018082558A1 (zh) 天线及通信终端
CN107046167B (zh) 超宽频带双极化天线
US11349216B2 (en) Sector dual-resonant dipole antenna
TWI404265B (zh) Printed dipole antenna and its manufacturing method
KR101411444B1 (ko) 다중 대역 평판형 모노폴 안테나 및 이의 제조 방법
WO2019128284A1 (zh) 可调试辐射单元及天线
CN116191026B (zh) 一种多频段双极化天线
WO2023082517A1 (zh) 辐射单元、天线及基站
CN112787099A (zh) 一种应用于5g毫米波通信的贴片驱动超表面天线
CN109193136A (zh) 一种具有宽带及滤波器特性的高增益贴片天线
CN109659678A (zh) 一种周期性微带漏波天线
CN210404038U (zh) 紧凑型多端口电调天线
CN115693172A (zh) 一种具有宽频带低损耗的智能反射面单元及智能反射面
CN117594969B (zh) 一种新型谐振器结构及方向图可重构天线
CN111224232B (zh) 双频段全向天线及列车
CN114639963B (zh) 多频段双圆极化全向天线
CN116190993A (zh) 一种天线辐射单元、天线阵列及天线性能调节方法
CN115693150A (zh) 辐射单元与天线
CN115966900A (zh) 一种宽带高隔离双频mimo单极锥天线阵列
CN114284709A (zh) 辐射单元、天线及基站
TWI559614B (zh) Dual - frequency directional antenna device and its array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE