WO2018082558A1 - 天线及通信终端 - Google Patents

天线及通信终端 Download PDF

Info

Publication number
WO2018082558A1
WO2018082558A1 PCT/CN2017/108882 CN2017108882W WO2018082558A1 WO 2018082558 A1 WO2018082558 A1 WO 2018082558A1 CN 2017108882 W CN2017108882 W CN 2017108882W WO 2018082558 A1 WO2018082558 A1 WO 2018082558A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiant section
antenna
portions
antenna according
axis
Prior art date
Application number
PCT/CN2017/108882
Other languages
English (en)
French (fr)
Inventor
徐捷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018082558A1 publication Critical patent/WO2018082558A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point

Definitions

  • the present disclosure relates to the field of wireless communications, for example, to an antenna and a communication terminal.
  • the antenna is a structure for transmitting a wireless signal in the field of wireless communication.
  • Common antennas include a microstrip antenna, a slot antenna, and a monopole antenna.
  • the slot antenna can achieve multi-frequency characteristics by different combinations with the microstrip feed line, but the size of such an antenna is relatively large, and the omnidirectionality of the high-frequency pattern is poor;
  • the microstrip patch antenna can realize the design of the multi-frequency antenna through the loading technology, but such an antenna requires a short-circuit pin to be connected with the floor, and the antenna structure is complicated and the processing is difficult. Short-circuit loading also causes problems such as deterioration of polarization purity and narrowing of the bandwidth of the antenna.
  • the high frequency bandwidth of a rectangular ring monopole antenna is too narrow.
  • the present disclosure provides an antenna and a communication terminal to solve the above problems of the microstrip antenna, the slot antenna, and the monopole antenna in the related art.
  • the present disclosure provides an antenna comprising: a dielectric plate and a radiating element on the dielectric plate;
  • the radiation unit includes a first radiation branch and a second radiation branch
  • a difference between an effective length of the first radiation branch and a quarter wavelength of a center frequency of the first frequency band is within a first preset range
  • a difference between an effective length of the second radiating branch and a half wavelength of a center frequency of the second frequency band is within a second predetermined range
  • the frequency of the second frequency band is higher than the frequency of the first frequency band.
  • the first radiant section and the second radiant section have a common common portion.
  • first radiant section and the second radiant section are both open rings provided with openings.
  • the first radiant section comprises a first part, two second parts and two third parts;
  • the first portion extends in a first direction
  • the second portion is vertically connected to the first portion
  • the third portion is coupled to the second portion and parallel to the first portion.
  • the first radiant section is symmetrically disposed with the first axis axis as a symmetry axis;
  • the first axis passes through a center point of the first portion and is perpendicular to the first direction.
  • two of the third portions are spaced apart.
  • the second radiant section comprises a fourth part, two fifth parts, two sixth parts, two seventh parts, and two eighth parts;
  • the fourth portion extends in a second direction
  • the fifth portion is vertically connected to the fourth portion
  • the sixth portion is parallel to the fourth portion and is perpendicularly connected to the fifth portion
  • the first portion A seven portion is coupled to the sixth portion and perpendicular to the sixth portion
  • the eighth portion being coupled to the seventh portion and perpendicular to the seventh portion.
  • the second radiant section is symmetrically disposed with the second axis axis as an axis of symmetry;
  • the second axis passes through a center point of the fourth portion and is perpendicular to the second direction.
  • two of the eighth portions are spaced apart.
  • At least one of the fourth portion and the fifth portion is the common portion shared by the second radiant section and the first radiant section.
  • the antenna further includes:
  • the feed structure is coupled to a common portion of the first radiant section and the second radiant section, the feed structure being configured to feed the first radiant section and the second radiant section.
  • the feeding structure comprises a microstrip line and a floor
  • the microstrip line is located on the dielectric board, and the microstrip line is connected to the common part;
  • the floor is placed in ground and the floor is on the media board.
  • the present disclosure also provides a communication terminal including any of the above antennas.
  • the antenna and the communication terminal provided by the present disclosure are provided with a radiating unit on the medium plate, in which two radiating branches are arranged, the effective length of the first radiating branch, and the center frequency of the first frequency band are four points. a difference between one wavelength is within a first predetermined range; a difference between an effective length of the second radiation branch and a half wavelength of a center frequency of the second frequency band is within a second predetermined range; The frequency of the second frequency band is higher than the frequency of the first frequency band.
  • the first radiant section can radiate at least the first frequency band
  • the second radiant section can radiate at least the second frequency band, thereby implementing multi-band radiation, increasing the working bandwidth
  • one radiating element includes two radiant branches on the same dielectric board
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment.
  • FIG. 2 is a schematic structural diagram of a first radiant section according to an embodiment.
  • FIG. 3 is a schematic structural diagram of a second radiant section according to an embodiment.
  • FIG. 4A is a schematic structural diagram of still another first radiant section according to an embodiment.
  • FIG. 4B is a schematic structural diagram of still another second radiant section according to an embodiment.
  • FIG. 4C is a schematic structural diagram of still another first radiant section provided by an embodiment.
  • FIG. 5 is a schematic diagram of correspondence between callback loss and frequency of an antenna according to an embodiment.
  • 6 to 8 are schematic diagrams showing a far field direction of an antenna according to an embodiment.
  • FIG. 9 is a schematic structural diagram of a communication terminal according to an embodiment.
  • the embodiment provides an antenna, including: a dielectric plate 110 and a radiation unit 120 on the dielectric plate 110;
  • the radiation unit 120 includes a first radiant section 121 and a second radiant section 122;
  • the effective length of the first radiant section 121 is different from the quarter wavelength of the center frequency of the first frequency band by a first predetermined range
  • the effective length of the second radiant section 122 is different from the half wavelength of the center frequency of the second frequency band by a second predetermined range
  • the frequency of the second frequency band is higher than the frequency of the first frequency band.
  • one radiating element 120 includes two radiating branches, and the effective lengths of the two radiating branches are different.
  • the effective length of the first radiant section 121 coincides with the quarter-wavelength of the center frequency of the first frequency band, indicating the effective length of the first radiant section 121 and the quarter-wavelength of the center frequency of the first frequency band.
  • the difference is within the first predetermined range. When the difference is 0, the effective length of the first radiant section 121 is equal to a quarter wavelength of the center frequency of the first frequency band.
  • the first radiant section 121 may cause the radiation efficiency of the radiating element 120 in the first frequency band to achieve a desired effect or cause the radiation unit 120 to achieve a desired reception effect on the wireless signal of the first frequency band.
  • the effective length of the second radiant section 122 is consistent with the one-half wavelength of the center frequency of the second frequency band, indicating the effective length of the second radiant section 122, and the center frequency of the second frequency band.
  • the difference of one wavelength is within a second predetermined range. When the difference is 0, the effective length of the second radiant section 122 is equal to one-half of the wavelength of the center frequency of the second frequency band.
  • the second radiant section 122 may cause the radiation efficiency of the radiating element 120 in the second frequency band to achieve a desired effect or cause the radiating unit 120 to achieve a desired reception effect on the wireless signal of the second frequency band.
  • one-half wavelength which can also be called half wavelength.
  • a radiating unit 120 on the same dielectric plate 110 includes two different lengths of radiating nodes, so that a plurality of different frequency bandwidths can be radiated, and the structure is simple, the volume is small, and the working bandwidth is large. .
  • the first radiating knuckle 121 and the second radiating ganglion 122 may be two completely independently arranged radiating bodies.
  • the first radiating section 121 and the first The second radiating branch 122 has a common common portion.
  • the common portion serves as the effective length of the first radiant section 121 and also serves as the effective length of the second radiant section 122.
  • the common portion serves as the effective length of the first radiant section 121 and also serves as the effective length of the second radiant section 122.
  • the first radiant section 121 and the second radiant section 122 are both open rings provided with openings.
  • the two radiant branches are arranged in a ring shape, on the one hand, the occupation of the area of the dielectric plate 110 can be reduced as much as possible, and at the same time, it is set as a split ring, and only the size of the opening needs to be adjusted during antenna design or production.
  • the effective length of the radiant section can be easily adjusted. If the radiation effect is not good after the completion of an antenna, the radiation performance of the antenna can be improved by increasing the opening and the like.
  • the first radiant section 121 includes a first portion 1211 extending in a first direction, two second portions 1212 vertically connected to the first portion, and a second portion connected to the first portion and parallel to the first portion The two third parts of the 1213.
  • the first radiant section 121 is divided into a first portion 1211, a second portion 1212, and a third portion 1213 by a broken line, and the first portion 1211, the second portion 1212, and the third portion 1213 may be integrated. forming.
  • the first radiant section 121 is divided into two directions of the first direction and the first direction of the vertical direction. Do not extend, so that the radiation branch section 121 makes reasonable use of the area of the dielectric plate 110.
  • the two second parts 1212 are respectively located at both ends of the first part 1211.
  • the first radiant section 121 is symmetrically disposed with the first axis axis as a symmetry axis; the first axis passes through a center point of the first portion and is perpendicular to the first direction.
  • the axial symmetry of the first radiant section 121 is more convenient to be disposed on the dielectric plate 110, and the space of the dielectric plate 110 can be reasonably utilized, and the arrangement of other structures on the dielectric plate 110 is also facilitated.
  • the first radiant section 121 is axially symmetrically disposed on the first axis axis, indicating that the two second portions 1212 are equal, the two third portions 1213 are equal, and the two second portions 1212 are symmetrically disposed symmetrically with the first axis;
  • the third portion 1213 is symmetrically disposed on the first axis.
  • the effective length of the first radiant section 121 is equal to the sum of the length of one half of the first portion 1211, one second portion 1212, and one third portion 1213.
  • the two third portions 1213 are spaced apart, that is, the two third portions 1213 are not closed. Since the two third portions 1213 are not closed, the length of the third portion 1213 can be flexibly adjusted during the manufacture and production of the antenna, thereby adjusting the length of the first radiating branch, and the antenna is obtained before being officially produced by debugging or correction. Optimal performance.
  • the second radiant section 122 includes a fourth portion 1221 extending in the second direction, perpendicularly connected to the two fifth portions 1222 of the fourth portion 1221, parallel to the fourth portion 1221 and perpendicular Two sixth portions 1223 connected to the fifth portion 1222, connected to the sixth portion 1223 and perpendicular to the two seventh portions 1224 of the sixth portion 1223, connected to the seventh portion 1224 and perpendicular to the second portion 1224
  • the eighth part is 1225.
  • the second radiant section 122 is divided into a fourth part 1221, a fifth part 1222, a sixth part 1223, a seventh part 1224, and an eighth part 1225 by a broken line, and the fourth part 1221
  • the fifth portion 1222, the sixth portion 1223, the seventh portion 1224, and the eighth portion 1225 may be integrally formed.
  • the second direction and the first direction may be the same direction.
  • the second radiant section 122 provided in this embodiment extends in at least two directions, such as the second direction and the second direction, so as to avoid the length of the required dielectric plate 110 caused by the second radiant section 122 extending in a single direction. Long question.
  • the second radiant section 122 is symmetrically disposed on the axis of the second axis; the second axis is The center point of the fourth portion 1221 is perpendicular to the second direction.
  • the second radiant section 122 can also be arranged as an axisymmetric structure to facilitate the structural layout between the components of the antenna and the fabrication of the radiant branches.
  • two fifth portions 1222 are located at both ends of the fourth portion 1221.
  • the second radiant section 122 is an axisymmetric structure having a second axis as an axis of symmetry, wherein the two fifth portions 1222 are of equal length (equal length) and axisymmetric; the two sixth portions 1223 are of equal length and axisymmetric; The seventh portion 1224 is of equal length and axisymmetric; the two eighth portions 1225 are equally long and axisymmetric.
  • two fifth portions 1222 are respectively located at ends of different ends of the fourth portion 1221, and the sixth portion 1223 and the fourth portion 1221 are located at two different ends of the fifth portion 1222, the eighth portion 1225 and the sixth portion 1224 is located at the end of the different ends of the seventh portion 1224.
  • the two eighth portions 1225 are spaced apart, that is, the two eighth portions 1225 are not closed.
  • the adjustment of the effective length of the second radiant section 122 can be achieved simply by adjusting the length of the eighth portion 1225.
  • the effective length of the second radiant section 122 may be equal to the sum of the length of the fourth portion 1221, the length of a fifth portion 1222, a sixth portion 1223, a seventh portion 1224, and an eighth portion 1225.
  • the openings of the two radiating branches may face in the same direction.
  • the opening of the first radiant section 121 is a gap between the two third portions 1213; the opening of the second radiant section 121 is a gap between the two eighth portions 1226.
  • a common portion is disposed between the first radiant section 121 and the second radiant section 122.
  • the fourth part 1221 and the second part of the second radiant section 122 can be combined with FIG. 1 to FIG.
  • the five parts 1222 are the common parts of the two radiating branches. If in the manufacturing process of the antenna, the working frequency of the two radiating branches needs to be adjusted at the same time, the effective length of the two radiating branches can be adjusted simultaneously by the length of the common portion, which simplifies the design of the parameters of the antenna.
  • at least one of the fourth portion 1221 and the fifth portion 1222 is a common portion shared by the second radiant section 121 and the first radiant section 122.
  • first radiant section 121 and the second radiant section 122 are only one structure of the first radiant section 121 and the second radiant section 122.
  • the first radiant section 121 may not be provided with the third part 1213, and the second part 1212 is perpendicular to
  • the first extending portion 1214 may extend outward in the direction of the first direction; optionally, referring to FIG. 4B, the second radiating branch 122 may not be provided with the eighth portion 1225, and the seventh portion 1224 only needs to continue to extend outward.
  • the second extension portion 1226 is sufficient.
  • the first radiant section 121 and the second radiant section 122 may also be provided with more portions.
  • the first radiant section 121 may also be provided with an adding portion 1215 connected to the third portion 1213, the adding portion 1215
  • the direction of extension may be toward or away from the first portion 1211, and toward the first portion 1211 in Figure 4C.
  • the antenna may further include: a feeding structure 130; wherein the feeding structure 130 is connected to a common portion of the first radiant section 121 and the second radiant section 122 for the first radiation The branch and the second radiating branch feed.
  • the feed structure 130 is connected to the common portion of the two radiating branches, which can save one feed point and one feed structure, which simplifies the antenna structure and reduces the antenna volume.
  • the feed structure 130 includes a microstrip line 131 and a floor 132; a microstrip line 131 disposed on the dielectric panel 110 for connection to a common portion; and a floor 132 for grounding on the dielectric panel 110.
  • the microstrip line 131 and the floor 132 are used together to form a feeding structure, which has the characteristics of good feeding effect.
  • the dielectric plate 110 may be formed of a dielectric substrate of FR4 epoxy fiberglass board having a dielectric constant of 4.4, and may have a length of 48 mm and a rectangular dielectric plate having a width of 44 mm and a thickness of 1.6 mm.
  • the microstrip line 131 may have a width of 3 mm and a spacing of 0.5 mm from the floor 132 to achieve 50 ohm impedance matching.
  • the floor can be divided into two, which can be rectangular patches of 12mm*22mm.
  • the embodiment further provides a communication terminal 90, including any one of the aforementioned antennas 900.
  • the communication terminal 90 can be a mobile phone, a tablet, or a wearable device that can be used to receive and radiate wireless signals through the antenna described above.
  • Wireless Local Area Network has good flexibility and mobility.
  • the communication terminal can access the wireless local area network anytime and anywhere, and the working frequency band is 2.45GHz. (2.4-2.484 GHz), 5.25 GHz (5.15-5.35 GHz), and 5.8 GHz (5.725-5.825 GHz), but WLAN has a small coverage defect.
  • Worldwide Interoperability for Microwave Access operates in the 2.5 GHz (2.5-2.69 GHz), 3.55 GHz (3.4-3.69 GHz) and 5.5 GHz (5.25-5.85 GHz) bands, with large coverage and users. Fast moving does not lead to quality degradation. If you combine WLAN and WiMAX, you can make up for your own deficiencies and take advantage of each other.
  • the antenna disclosed in this example can well meet the above WLAN/WiMAX application requirements, and its basic structure can be as shown in FIG.
  • the antenna includes a dielectric plate 110 and a radiating element 120 comprised of two radiating branches.
  • the dielectric plate 110 is a dielectric substrate composed of an FR4 epoxy fiberglass plate having a dielectric constant of 4.4, having a length of 48 mm, a width of 44 mm, and a thickness of 1.6 mm.
  • the first radiant section 121 of the radiating element 120 can be seen in FIG. 2, and the second radiant section 122 can be seen in FIG.
  • the microstrip line 131 and the floor 132 constitute a coplanar waveguide feed structure 130. The antenna is fed through the coplanar waveguide.
  • the width of the microstrip line 131 is 3 mm, the distance between the microstrip line 131 and the floor 132 is 0.5 mm, and the microstrip line 131 is connected to the feed line, and 50 ohm impedance matching is completed.
  • Both floors 132 are rectangular patches of 12 mm * 22 mm.
  • the resonant frequencies in accordance with the WLAN and WiMAX bands are excited by two radiating branches.
  • the length of one or more portions of the first radiant section By adjusting the length of one or more portions of the first radiant section, the 2.45 GHz band and the 5.5 GHz low band can be adjusted, and the effective electrical length is approximately one quarter of the wavelength of the WLAN/WiMAX low band center point.
  • Adjusting the length of one or more portions of the second radiating branch the high frequency bands of 3.5 GHz and 5.5 GHz can be adjusted, and the effective electrical length is approximately half the wavelength of the center point of the WLAN/WiMAX high frequency band;
  • the adjustment of the operating frequency of the two radiant branches can be achieved simultaneously by adjusting the common part of the two radiant branches.
  • Fig. 5 is a graph showing the measured results and simulation results of the return loss of the antenna. It can be seen from Fig. 5 that the measured curve of the antenna return loss is close to the simulation result, and the deviation may be caused by the machining error and the measurement environment.
  • the measured results show that the antenna return loss -10dB bandwidth is 2.4-3.0GHz, 3.3-3.8GHz, 5.1-6.0GHz, fully meet WLAN (2.4-2.485, 5.15-5.35, 5.725-5.825GHz) and WiMAX (2.5-2.69) , 3.4-3.69, 5.25-5.85 GHz) All frequency bands.
  • FIG. 6 is a far field pattern of the antenna of the present example at a frequency of 2.45 GHz
  • FIG. 7 is a far field pattern of the antenna of the present example at a frequency of 3.5 GHz
  • FIG. 8 is a far field of the antenna of the present example at a frequency of 5.5 GHz.
  • the solid line indicates the far field pattern of the E plane parallel to the electric field
  • the far field pattern of the H plane parallel to the magnetic field indicated by the broken line is indicated by the broken line.
  • the pattern of the present example antenna has an "8" shape on the E-plane, and the H-plane pattern is approximately circular, thereby exhibiting an omnidirectional characteristic.
  • the antenna and communication terminal provided by the present disclosure, wherein the first radiation branch can radiate at least the first frequency band, the second radiation branch can radiate at least the second frequency band, thereby implementing multi-band radiation, the working bandwidth is wide, and the radiation unit includes the first radiation branch And the second radiant section is located on the same dielectric board, and the antenna structure in the present disclosure is simpler and smaller in size than the antenna structure having a plurality of radiating elements.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

天线和通信终端,天线包括:介质板以及位于介质板上的辐射单元;辐射单元包括第一辐射枝节和第二辐射枝节;第一辐射枝节的有效长度,与第一频段的中心频点的四分之一波长的差值在第一预设范围内;第二辐射枝节的有效长度,与第二频段的中心频点的二分之一波长的差值在第二预设范围内;第二频段的频率高于第一频段的频率。

Description

天线及通信终端 技术领域
本公开涉及无线通信领域,例如涉及一种天线及通信终端。
背景技术
天线是无线通信领域中用于发射无线信号的结构,常见的天线有微带天线、缝隙天线、单极子天线等。
缝隙天线可以通过与微带馈线的不同组合来实现多频特性,但这类天线的尺寸比较大,且高频的方向图的全向性较差;
微带贴片天线可以通过加载技术实现多频天线的设计,但这类天线需要短路针与地板相连接,天线结构复杂,加工困难。短路加载还会引起极化纯度的恶化,天线的带宽变窄等问题。
矩形环的单极子天线的高频带宽太窄。
发明内容
有鉴于此,本公开提供一种天线及通信终端,以解决相关技术中微带天线、缝隙天线、单极子天线所存在的上述问题。
本公开提供一种天线,包括:介质板以及位于介质板上的辐射单元;
所述辐射单元包括第一辐射枝节和第二辐射枝节;
所述第一辐射枝节的有效长度与第一频段的中心频点的四分之一波长的差值在第一预设范围内;
所述第二辐射枝节的有效长度与第二频段的中心频点的二分之一波长的差值在第二预设范围内;
所述第二频段的频率高于所述第一频段的频率。
可选地,所述第一辐射枝节和所述第二辐射枝节具有共用的公共部分。
可选地,所述第一辐射枝节和所述第二辐射枝节均为设置有开口的开口环。
可选地,所述第一辐射枝节包括第一部分、两个第二部分和两个第三部分;
所述第一部分沿第一方向延伸,所述第二部分垂直连接于所述第一部分,所述第三部分与所述第二部分相连且平行于所述第一部分。
可选地,所述第一辐射枝节以第一轴线轴为对称轴对称设置;
所述第一轴线经过所述第一部分的中心点且垂直于所述第一方向。
可选地,两个所述第三部分间隔设置。
可选地,所述第二辐射枝节包括第四部分、两个第五部分、两个第六部分、两个第七部分以及两个第八部分;
所述第四部分沿第二方向延伸,所述第五部分垂直连接于所述第四部分,所述第六部分平行于所述第四部分且垂直连接于所述第五部分,所述第七部分与所述第六部分连接且垂直于所述第六部分,所述第八部分与所述第七连接且垂直于所述第七部分。
可选地,所述第二辐射枝节以第二轴线轴为对称轴对称设置;
所述第二轴线经过所述第四部分的中心点且垂直于所述第二方向。
可选地,两个所述第八部分间隔设置。
可选地,所述第四部分和所述第五部分中的至少一个为所述第二辐射枝节与所述第一辐射枝节共同拥有的所述公共部分。
可选地,所述天线还包括:
馈电结构;
所述馈电结构与所述第一辐射枝节和所述第二辐射枝节的公共部分连接,所述馈电结构设置为向所述第一辐射枝节和所述第二辐射枝节馈电。
可选地,所述馈电结构包括微带线及地板;
所述微带线位于所述介质板上,所述微带线与所述公共部分连接;
所述地板设置为接地,所述地板位于所述介质板上。
本公开还提供一种通信终端,包括上述任一天线。
本公开提供的天线和通信终端,在介质板上设置了一个辐射单元,在该辐射单元内设置有两个辐射枝节,第一辐射枝节的有效长度,与第一频段的中心频点的四分之一波长的差值在第一预设范围内;所述第二辐射枝节的有效长度,与第二频段的中心频点的二分之一波长的差值在第二预设范围内;第二频段的频率高于第一频段的频率。这样,第一辐射枝节可至少辐射第一频段,第二辐射枝节可至少辐射第二频段,从而实现多频段辐射,增加工作带宽,且一个辐射单元包括两个辐射枝节位于同一个介质板上,相对于多个辐射单元的结构,结构更加简单,体积更小。
附图说明
图1为一实施例提供的一种天线的结构示意图。
图2为一实施例提供的一种第一辐射枝节的结构示意图。
图3为一实施例提供的一种第二辐射枝节的结构示意图。
图4A为一实施例提供的又一种第一辐射枝节的结构示意图。
图4B为一实施例提供的又一种第二辐射枝节的结构示意图。
图4C为一实施例提供的又一种第一辐射枝节的结构示意图。
图5为一实施例提供的天线的回拨损耗与频率的对应示意图。
图6至图8为一实施例提供的天线的远场方向示意图。
图9为一实施例提供的通信终端的结构示意图。
具体实施方式
以下结合说明书附图及实施例对本公开的技术方案进行阐述。
如图1所示,本实施例提供一种天线,包括:介质板110以及位于介质板110上的辐射单元120;
辐射单元120包括第一辐射枝节121和第二辐射枝节122;
第一辐射枝节121的有效长度,与第一频段的中心频点的四分之一波长的差值在第一预设范围内;
第二辐射枝节122的有效长度,与第二频段的中心频点的二分之一波长的差值在第二预设范围内;
第二频段的频率高于第一频段的频率。
在本实施例中,一个辐射单元120包括两个辐射枝节,这两个辐射枝节的有效长度不一样。
第一辐射枝节121的有效长度,与第一频段的中心频点的四分之一波长的保持一致,表示第一辐射枝节121的有效长度与第一频段的中心频点的四分之一波长的差值在第一预设范围内,当差值为0时,第一辐射枝节121的有效长度等于第一频段的中心频点的四分之一波长。第一辐射枝节121可使得辐射单元120在第一频段的辐射效率达到预期效果或使得辐射单元120对第一频段的无线信号的接收效果达到预期。
第二辐射枝节122的有效长度,与第二频段的中心频点的二分之一波长的保持一致,表示第二辐射枝节122的有效长度,与第二频段的中心频点的二分 之一波长的差值在第二预设范围内,当该差值为0时,第二辐射枝节122的有效长度等于第二频段的中心频点的二分之一波长。第二辐射枝节122可使得辐射单元120在第二频段的辐射效率达到预期效果或使得辐射单元120对第二频段的无线信号的接收效果达到预期。在本实施例中二分之一波长,又可称之半波长。
在本实施例中,位于同一个介质板110上的一个辐射单元120,包括两个不同长度的辐射枝节,从而可以辐射多个不同频率的带宽,具有结构简单、体积小及工作带宽大的特点。
第一辐射指节121和第二辐射枝节122,可以为两个完全独立设置的辐射体,在本实施例中为了压缩天线所占用的面积或体积,可选的,第一辐射枝节121和第二辐射枝节122,具有共用的公共部分。
在本实施例中公共部分即作为第一辐射枝节121的有效长度,也作为第二辐射枝节122的有效长度。通过公共部分的设置,可以减少第一辐射枝节121和第二辐射枝节122的有效长度的总和。
在一实施例中,可选的,第一辐射枝节121和第二辐射枝节122,均为设置有开口的开口环。将两个辐射枝节都设置为环状,一方面可以尽可能的减少对介质板110的面积的占用,同时,设置为开口环,在进行天线设计或生产时,仅需调整开口的大小,就可以简便地调整辐射枝节的有效长度。若完成一个天线的制作后,辐射效果不好,可以通过增大开口等操作,实现天线的辐射性能的提升。
可选地,如图2所示,第一辐射枝节121包括沿第一方向延伸的第一部分1211,垂直连接于第一部分的两个第二部分1212、以及与第二部分相连且平行于第一部分的两个第三部分1213。其中,为了便于描述,图中用虚线将第一辐射枝节121分划为第一部分1211、第二部分1212、和第三部分1213,第一部分1211、第二部分1212、和第三部分1213可以一体成型。
在本实施例中,为了避免第一辐射枝节122在一个方向上延伸,导致在该方向上占用的长度过大,从而导致介质板110的面积不能合理有效利用的问题。在本实施例中,第一辐射枝节121在第一方向和垂直第一方向的两个方向上分 别延伸,从而使辐射枝节121合理的利用了介质板110的面积。可选的,在第一辐射枝节121中,两个第二部分1212分别位于第一部分1211的两个端部。
可选的,在本实施例中,第一辐射枝节121以第一轴线轴为对称轴对称设置;第一轴线经过第一部分的中心点且垂直于第一方向。第一辐射枝节121轴对称更加方便在介质板110上设置,能够合理利用介质板110的空间,同时也方便介质板110上其他结构的设置。
第一辐射枝节121以第一轴线轴为轴对称设置,说明两个第二部分1212相等,两个第三部分1213相等,且两个第二部分1212以第一轴线为对称轴对称设置;两个第三部分1213以第一轴线对称设置。在实现时,第一辐射枝节121的有效长度等于第一部分1211的一半、一个第二部分1212及一个第三部分1213的长度之和。
在本实施例中,如图2所示,两个第三部分1213间隔设置,也即两个第三部分1213没有闭合。由于两个第三部分1213没有闭合,在天线的制作和生产过程中,可以灵活的调整第三部分1213的长度,从而调整第一辐射枝节的长度,通过调试或修正使天线在正式出产之前获得最优的性能。
如图3所示,本实施例中第二辐射枝节122包括沿第二方向延伸的第四部分1221,垂直连接于第四部分1221的两个第五部分1222,平行于第四部分1221且垂直连接于第五部分1222的两个第六部分1223,与第六部分1223连接且垂直于第六部分1223的两个第七部分1224,与第七部分1224连接且垂直于第七部分1224的两个第八部分1225。其中,为了便于描述,图中用虚线将第二辐射枝节122分划为第四部分1221、第五部分1222、第六部分1223、第七部分1224、和第八部分1225,第四部分1221、第五部分1222、第六部分1223、第七部分1224、和第八部分1225可以一体成型。另外,第二方向与上述第一方向可以为同一方向。
本实施例提供的第二辐射枝节122,在第二方向和垂直于第二方向等至少两个方向上延伸,从而避免第二辐射枝节122在单方向上延伸导致的所需介质板110的长度过长的问题。
可选的,第二辐射枝节122以第二轴线轴为对称轴对称设置;第二轴线经 过第四部分1221的中心点且垂直于第二方向。
在本实施例中,第二辐射枝节122也可以设置为轴对称结构,以方便天线的组成部分之间的结构布局以及辐射枝节的制作。
可选的,在第二辐射枝节122中,两个第五部分1222位于第四部分1221的两个端部。
第二辐射枝节122为以第二轴线为对称轴的轴对称结构,其中,两个第五部分1222的等长(长度相等)且轴对称;两个第六部分1223等长且轴对称;两个第七部分1224等长且轴对称;两个第八部分1225等长且轴对称。
可选的,两个第五部分1222分别位于第四部分1221的不同端的端部,第六部分1223和第四部分1221位于第五部分1222的两个不同端,第八部分1225和第六部分1224位于第七部分1224的不同端的端部。
可选的,两个第八部分1225间隔设置,也即两个第八部分1225没有闭合。在天线的制作和生产过程中,可以简便的通过调整第八部分1225的长度,实现对第二辐射枝节122的有效长度的调整。
第二辐射枝节122的有效长度可等于第四部分1221长度的一半、一个第五部分1222、一个第六部分1223、一个第七部分1224以及一个第八部分1225的长度之和。
为了使辐射单元120合理占用介质板110的面积,两个辐射枝节的开口,可以朝向同一方向。第一辐射枝节121的开口,为两个第三部分1213之间的缺口;第二辐射枝节121的开口为两个第八部分1226之间的缺口。
在一实施例中,第一辐射枝节121和第二辐射枝节122之间设置有公共部分。例如,若第一辐射枝节121采用图2所示结构,同时第二辐射枝节122采用图3所示结构,则可结合图1至图3可知,第二辐射枝节122的第四部分1221和第五部分1222为两个辐射枝节的公共部分。若在天线的制作过程中,需要同时调整两个辐射枝节的工作频率,可以通过公共部分的长度,来同时调整两个辐射枝节的有效长度,简化了天线的参数的设计。可选的,第四部分1221和第五部分1222中的至少一个,为第二辐射枝节121与第一辐射枝节122共同拥有的公共部分。
图2和图3仅为第一辐射枝节121和第二辐射枝节122的一种结构,可选的,参考图4A,第一辐射枝节121可不设置第三部分1213,第二部分1212在垂直于第一方向的方向上向外延伸一些第一延伸部分1214即可;可选的,参考图4B,第二辐射枝节122可不设置第八部分1225,第七部分1224仅需继续向外延伸一些第二延伸部分1226即可。第一辐射枝节121和第二辐射枝节122都还可以设置更多的部分,例如,参考图4C,第一辐射枝节121还可以设置连接于第三部分1213的添加部分1215,该添加部分1215的延伸方向可朝向第一部分1211或背离第一部分1211,图4C中为朝向第一部分1211。
在一实施例中,参考图1,上述天线还可以包括:馈电结构130;其中,馈电结构130与第一辐射枝节121和第二辐射枝节122的公共部分连接,用于向第一辐射枝节和第二辐射枝节馈电。在本实施例中馈电结构130连接在两个辐射枝节的公共部分,可以节省一个馈电点和一个馈电结构,再次简化了天线结构,缩小了天线体积。
在一实施例中,馈电结构130包括微带线131及与地板132;微带线131,设置于介质板110上,与公共部分连接;地板132,用于接地,位于介质板110上。
在本实施例中利用微带线131和地板132共同形成馈电结构,具有馈电效果好的特点。
在本实施例中介质板110可采用介电常数为4.4的FR4环氧玻璃纤维板的介质基板构成,长度可以为48mm,宽度为44mm的矩形介质板,厚度可为1.6mm。
微带线131可为宽度为3mm,与地板132之间的间距可为0.5mm,以实现50欧姆阻抗匹配。地板可分为两个,可均为12mm*22mm的矩形贴片。
本实施例还提供一种通信终端90,包括前述任意一个天线900。通信终端90可为手机、平板电脑、或可穿戴式设备,可用于通过上述天线进行无线信号的接收和辐射。
以下结合上述实施例提供一个示例:
无线局域网(Wireless Local Area Network,WLAN)有着良好的灵活性和可移动性,通信终端能够随时随地接入无线局域网络,工作频段为2.45GHz (2.4-2.484GHz)、5.25GHz(5.15-5.35GHz)和5.8GHz(5.725-5.825GHz),但是WLAN有覆盖范围小的缺陷。全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)工作在2.5GHz(2.5-2.69GHZ)、3.55GHz(3.4-3.69GHz)和5.5GHz(5.25-5.85GHz)频段,有覆盖范围大,用户快速移动不会导致质量下降等优点。若将WLAN和WiMAX结合,即可弥补各自的不足,发挥出各自的优势。
本示例公开的天线可以很好地满足上述WLAN/WiMAX应用需求,其基本结构可如图1所示。该天线包括介质板110及由两个辐射枝节组成的辐射单元120。介质板110采用介电常数为4.4的FR4环氧玻璃纤维板构成的介质基板,长度为48mm,宽度为44mm,厚度为1.6mm。辐射单元120的第一辐射枝节121可参见图2,第二辐射枝节122可参见图3。微带线131及地板132组成的共面波导馈电结构130。天线通过共面波导馈电,微带线131宽度为3mm,微带线131与地板132之间的距离为0.5mm,通过微带线131与馈线相连,并完成50欧姆阻抗匹配。两地板132均为12mm*22mm的矩形贴片。
通过两个辐射枝节激励出符合WLAN和WiMAX频段的谐振频率。调节第一辐射枝节一个或多个部分的长度,可以调整2.45GHz频段和5.5GHZ低频段,有效电长度大约为WLAN/WiMAX低频段中心点的四分之一波长。调节第二辐射枝节一个或多个部分的长度,可以调整3.5GHz和5.5GHZ高频段,有效电长度大约为WLAN/WiMAX高频段中心点的半波长;
可通过调节两个辐射枝节的公共部分,实现同时对两个辐射枝节的工作频率的调整。
图5为该天线的回波损耗的实测结果及仿真结果图。从图5可以看出,天线回波损耗的实测曲线与仿真结果接近,存在偏差可能是由于加工误差和测量环境引起的。实测结果表明,天线回波损耗-10dB带宽为2.4-3.0GHz,3.3-3.8GHz,5.1-6.0GHz,完全满足WLAN(2.4-2.485,5.15-5.35,5.725-5.825GHz)和WiMAX(2.5-2.69,3.4-3.69,5.25-5.85GHz)所有频段。
图6为本示例的天线在2.45GHz频率处的远场方向图,图7为本示例的天线在3.5GHz频率处的远场方向图,图8为本示例天线在5.5GHz频率处的远场 方向图。在图6至图8中,实线表示为与电场平行方向的E面的远场方向图,虚线表示的与磁场平行方向的H面的远场方向图。
从图6至8可知,本示例天线在E面的方向图呈现“8”字形,H面的方向图近似为圆形,从而呈现全向特性。
工业实用性
本公开提供的天线和通信终端,其中第一辐射枝节可至少辐射第一频段,第二辐射枝节可至少辐射第二频段,从而实现多频段辐射,工作带宽宽,且辐射单元包括第一辐射枝节和第二辐射枝节位于同一个介质板上,相对于具有多个辐射单元的天线结构,本公开中的天线结构更加简单,体积更小。

Claims (13)

  1. 一种天线,包括:介质板以及位于介质板上的辐射单元;
    所述辐射单元包括第一辐射枝节和第二辐射枝节;
    所述第一辐射枝节的有效长度与第一频段的中心频点的四分之一波长的差值在第一预设范围内;
    所述第二辐射枝节的有效长度与第二频段的中心频点的二分之一波长的差值在第二预设范围内;
    所述第二频段的频率高于所述第一频段的频率。
  2. 根据权利要求1所述的天线,其中,
    所述第一辐射枝节和所述第二辐射枝节具有共用的公共部分。
  3. 根据权利要求1所述的天线,其中,
    所述第一辐射枝节和所述第二辐射枝节均为设置有开口的开口环。
  4. 根据权利要求1至3任一项所述的天线,其中,所述第一辐射枝节包括第一部分、两个第二部分和两个第三部分;
    所述第一部分沿第一方向延伸,所述第二部分垂直连接于所述第一部分,所述第三部分与所述第二部分相连且平行于所述第一部分。
  5. 根据权利要求4所述的天线,其中,
    所述第一辐射枝节以第一轴线轴为对称轴对称设置;
    所述第一轴线经过所述第一部分的中心点且垂直于所述第一方向。
  6. 根据权利要求4所述的天线,其中,
    两个所述第三部分间隔设置。
  7. 根据权利要求1至3任一项所述的天线,其中,
    所述第二辐射枝节包括第四部分、两个第五部分、两个第六部分、两个第七部分以及两个第八部分;
    所述第四部分沿第二方向延伸,所述第五部分垂直连接于所述第四部分,所述第六部分平行于所述第四部分且垂直连接于所述第五部分,所述第七部分与所述第六部分连接且垂直于所述第六部分,所述第八部分与所述第七连接且垂直于所述第七部分。
  8. 根据权利要求7所述的天线,其中,
    所述第二辐射枝节以第二轴线轴为对称轴对称设置;
    所述第二轴线经过所述第四部分的中心点且垂直于所述第二方向。
  9. 根据权利要求7所述的天线,其中,
    两个所述第八部分间隔设置。
  10. 根据权利要求7所述的天线,其中,
    所述第四部分和所述第五部分中的至少一个为所述第二辐射枝节与所述第一辐射枝节共同拥有的所述公共部分。
  11. 根据权利要求1至3任一项所述的天线,其中,
    所述天线还包括:
    馈电结构;
    所述馈电结构与所述第一辐射枝节和所述第二辐射枝节的公共部分连接,所述馈电结构设置为向所述第一辐射枝节和所述第二辐射枝节馈电。
  12. 根据权利要求11所述的天线,其中,
    所述馈电结构包括微带线及地板;
    所述微带线位于所述介质板上,所述微带线与所述公共部分连接;
    所述地板设置为接地,所述地板位于所述介质板上。
  13. 一种通信终端,包括权利要求1至12任一项所述的天线。
PCT/CN2017/108882 2016-11-01 2017-11-01 天线及通信终端 WO2018082558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610936211.5 2016-11-01
CN201610936211.5A CN108023173A (zh) 2016-11-01 2016-11-01 天线及通信终端

Publications (1)

Publication Number Publication Date
WO2018082558A1 true WO2018082558A1 (zh) 2018-05-11

Family

ID=62070492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108882 WO2018082558A1 (zh) 2016-11-01 2017-11-01 天线及通信终端

Country Status (2)

Country Link
CN (1) CN108023173A (zh)
WO (1) WO2018082558A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560378A (zh) * 2018-12-08 2019-04-02 上海电力学院 一种小型化y型贴片超宽带单极子天线
CN109994810A (zh) * 2019-05-06 2019-07-09 吉林大学 一种用于GPS/WiMAX/WLAN***的三频段缝隙天线
CN110112558A (zh) * 2019-06-03 2019-08-09 安徽大学 一种基于共面波导馈电的紧凑型四频段单极子天线
CN113013596A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备
CN113725611A (zh) * 2019-10-31 2021-11-30 华为终端有限公司 天线装置及电子设备
CN114069207A (zh) * 2020-07-29 2022-02-18 北京小米移动软件有限公司 天线结构和电子设备
CN114914665A (zh) * 2021-02-08 2022-08-16 华为技术有限公司 一种天线及终端设备
US20220271429A1 (en) * 2021-02-22 2022-08-25 Japan Aviation Electronics Industry, Limited Multi-resonant antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993550B (zh) * 2021-02-09 2023-07-25 维沃移动通信有限公司 天线模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077605A2 (en) * 2003-02-28 2004-09-10 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Multiband branch radiator antenna element
CN102394348A (zh) * 2011-07-08 2012-03-28 上海安费诺永亿通讯电子有限公司 一种适用于lte标准的多频段手机mimo天线结构
CN202259673U (zh) * 2011-10-12 2012-05-30 启碁科技股份有限公司 双频天线
CN103178343A (zh) * 2013-03-22 2013-06-26 深圳市中兴移动通信有限公司 天线装置及移动终端
CN104836031A (zh) * 2014-02-12 2015-08-12 华为终端有限公司 一种天线及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077605A2 (en) * 2003-02-28 2004-09-10 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Multiband branch radiator antenna element
CN102394348A (zh) * 2011-07-08 2012-03-28 上海安费诺永亿通讯电子有限公司 一种适用于lte标准的多频段手机mimo天线结构
CN202259673U (zh) * 2011-10-12 2012-05-30 启碁科技股份有限公司 双频天线
CN103178343A (zh) * 2013-03-22 2013-06-26 深圳市中兴移动通信有限公司 天线装置及移动终端
CN104836031A (zh) * 2014-02-12 2015-08-12 华为终端有限公司 一种天线及移动终端

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560378A (zh) * 2018-12-08 2019-04-02 上海电力学院 一种小型化y型贴片超宽带单极子天线
CN109994810A (zh) * 2019-05-06 2019-07-09 吉林大学 一种用于GPS/WiMAX/WLAN***的三频段缝隙天线
CN110112558A (zh) * 2019-06-03 2019-08-09 安徽大学 一种基于共面波导馈电的紧凑型四频段单极子天线
CN113725611A (zh) * 2019-10-31 2021-11-30 华为终端有限公司 天线装置及电子设备
CN114069207A (zh) * 2020-07-29 2022-02-18 北京小米移动软件有限公司 天线结构和电子设备
CN114069207B (zh) * 2020-07-29 2023-08-22 北京小米移动软件有限公司 天线结构和电子设备
CN114914665A (zh) * 2021-02-08 2022-08-16 华为技术有限公司 一种天线及终端设备
CN114914665B (zh) * 2021-02-08 2023-09-22 华为技术有限公司 一种天线及终端设备
US20220271429A1 (en) * 2021-02-22 2022-08-25 Japan Aviation Electronics Industry, Limited Multi-resonant antenna
CN113013596A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备
CN113013596B (zh) * 2021-02-26 2023-08-29 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Also Published As

Publication number Publication date
CN108023173A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018082558A1 (zh) 天线及通信终端
US9793611B2 (en) Antenna
US10680338B2 (en) Dielectric resonator antenna
Sarin et al. A wideband stacked offset microstrip antenna with improved gain and low cross polarization
KR101411444B1 (ko) 다중 대역 평판형 모노폴 안테나 및 이의 제조 방법
KR20190027909A (ko) 마이크로스트립 안테나, 안테나 어레이, 및 마이크로스트립 안테나의 제조 방법
KR20030080217A (ko) 소형 광대역 고리형 마이크로스트립 패치 안테나
WO2014106465A1 (zh) 印刷电路板天线和印刷电路板
CN109216912A (zh) 一种加载六边形寄生枝节的花形馈源终端多频微带天线
Tze-Meng et al. A dual-band omni-directional microstrip antenna
CN105048079A (zh) 一种全向性圆极化平面天线
Abdelaal et al. New compact circular ring microstrip patch antennas
CN113690599B (zh) 一种水平极化全向超表面天线
CN108448245B (zh) 一种差分馈电双频平面天线
KR101859179B1 (ko) 소형 광대역 대수 주기 안테나
Sharma et al. Slot loaded microstrip patch antenna for WLAN and WiMax applications
CN208723094U (zh) 一种加载六边形寄生枝节的花形馈源终端多频微带天线
US11664598B2 (en) Omnidirectional dielectric resonator antenna
Ramli et al. Design of Sierpinski gasket fractal antenna with slits for multiband application
Zou et al. Horizontally polarized omnidirectional dielectric resonator antenna
KR101816018B1 (ko) 소형 광대역 대수 주기 안테나
Shah et al. Miniaturization of microstrip patch antenna with multiband response for portable communication systems
Priyanka et al. Comparative analysis of circular patch antenna with CSRR for multiband applications
Xu et al. Design of a high gain axial-mode helical antenna with a loaded plate
Ibrahim et al. Single/dual-band CSRR-loaded differential-fed square patch antenna with monopolar radiation pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867350

Country of ref document: EP

Kind code of ref document: A1