WO2023080258A1 - カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物 - Google Patents

カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物 Download PDF

Info

Publication number
WO2023080258A1
WO2023080258A1 PCT/JP2022/041614 JP2022041614W WO2023080258A1 WO 2023080258 A1 WO2023080258 A1 WO 2023080258A1 JP 2022041614 W JP2022041614 W JP 2022041614W WO 2023080258 A1 WO2023080258 A1 WO 2023080258A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
isomer
less
compound
reaction
Prior art date
Application number
PCT/JP2022/041614
Other languages
English (en)
French (fr)
Inventor
弘一 中岡
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023080258A1 publication Critical patent/WO2023080258A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/08Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/52Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups

Definitions

  • the present invention relates to a carbonyl compound, a method for producing a carbonyl compound, a method for producing an isocyanate compound, and an isocyanate composition.
  • Isocyanates are widely used as raw materials for manufacturing polyurethane foams, paints, adhesives, etc.
  • the main industrial production method of isocyanate is the reaction of an amine compound with phosgene (phosgene method), and almost all of the production in the world is produced by the phosgene method.
  • phosgene method has many problems.
  • R is an a-valent organic group
  • R' is a monovalent organic group
  • a is an integer of 1 or more.
  • R a to R h are each independently a monovalent organic group.
  • Polyurethanes having urethane bonds are mainly produced by the reaction of di- or more functional isocyanates and di- or more functional alcohols, and are polymers with excellent tensile strength, abrasion resistance, and oil resistance. , adhesives, paints, binders, etc. Among them, polyurethanes made from linear or cyclic aliphatic isocyanates are excellent in weather resistance and light resistance, and are used in fields requiring high appearance quality such as baking paints, automobile clear coating materials, and coil coating materials.
  • Diisocyanate which is a bifunctional isocyanate, may be used as the isocyanate.
  • diisocyanate is polymerized by the represented reaction and used as an isocyanate polymer.
  • R represents a divalent organic group and R' represents a trivalent organic group.
  • polyurethane when used in fields where appearance quality is required, polyurethane is required to have little coloration. For this purpose, it is important not only that there is no coloration in the polyurethane formation reaction, but also that the raw material isocyanate (bifunctional or higher functional isocyanate) is less colored.
  • isocyanate tends to be oxidized by oxygen in the air or the like, and tends to be deteriorated or colored.
  • the isocyanate tends to be colored due to the catalyst or solvent used in the polymerization reaction.
  • a method of suppressing the coloring of isocyanate there is a method of manufacturing and storing by sealing with nitrogen gas and shutting it off from the air, and a method of adding ultraviolet absorbers, antioxidants, etc. and storing it.
  • US Pat. No. 6,200,000 discloses a method of modifying isocyanates followed by treatment with peroxides in order to produce polyisocyanates for light-colored polyurethane lacquers.
  • Patent Document 14 a method of producing an isocyanate with reduced coloring by contacting a colored isocyanate with an ozone-containing gas is studied.
  • Patent Document 15 a method for producing an isocyanate with reduced coloring by irradiating a colored isocyanate with light having a wavelength of 200 to 600 nm is also studied.
  • the present invention has been made in view of the above circumstances, and provides a novel carbonyl compound, a method for producing the same, and a method for producing an isocyanate compound using the carbonyl compound.
  • Patent Documents 4 to 6 do not necessarily sufficiently reduce coloring, and isocyanates with further reduced coloring are desired.
  • distillation purification is a common method for purifying compounds, but isocyanate is heated during distillation purification, which may lead to coloration of the isocyanate or denaturation of the isocyanate.
  • the present invention has been made in view of the above circumstances, and provides an isocyanate composition that is sufficiently suppressed in coloration and has excellent storage stability.
  • R 11 is a (n11+n12)-valent organic group
  • R 12 is a monovalent organic group.
  • n11 is an integer of 1 or more and 8 or less
  • n12 is 0 or more and 7 or less.
  • the sum of n11 and n12 is an integer of 2 or more and 8 or less.
  • R 11 may have 1 or more and 4 or less ester groups or nitrogen atoms, or a divalent or more and tetravalent or less aliphatic hydrocarbon group having 1 or more and 20 or less carbon atoms, or 6 carbon atoms; is a divalent or more and trivalent or less aromatic hydrocarbon group of 20 or less, and
  • R 11 may have 1 or more and 2 or less ester groups, or a bivalent or more and tetravalent or less aliphatic hydrocarbon group having 5 or more and 15 or less carbon atoms, or 6 or more and 15 or less carbon atoms; is an aromatic hydrocarbon group having a valence of 2 or more and 3 or less, R 12 is a monovalent aromatic hydrocarbon group having 6 or more and 15 or less carbon atoms, which may contain an oxygen atom;
  • the n 11 is an integer of 1 or more and 4 or less,
  • the n 12 is an integer of 0 or more and 3 or less, and
  • n31 is an integer of 1 or more and 8 or less
  • n32 is an integer of 0 or more and 7 or less
  • the sum of n31 and n32 is an integer of 2 or more and 8 or less
  • n31+n32 n11+n12.
  • reaction liquid containing the isocyanate compound represented by the following general formula (II) is purified by distillation, and the gas phase is continuously purified.
  • a method for producing an isocyanate compound comprising recovering said isocyanate compound as a component.
  • R 11 is a (n11+n12)-valent organic group
  • R 12 is a monovalent organic group.
  • n11 is an integer of 1 or more and 8 or less
  • n12 is 0 or more and 7 or less.
  • the sum of n11 and n12 is an integer of 2 or more and 8 or less.
  • R 11 may have 1 or more and 4 or less ester groups or nitrogen atoms, or a divalent or more and tetravalent or less aliphatic hydrocarbon group having 1 or more and 20 or less carbon atoms, or 6 carbon atoms; is a divalent or more and trivalent or less aromatic hydrocarbon group of 20 or less, and
  • the isocyanate composition according to (1) or (2), wherein the isocyanate compound is a compound represented by the following general formula (II).
  • n31 is an integer of 1 or more and 8 or less
  • n32 is an integer of 0 or more and 7 or less
  • the sum of n31 and n32 is an integer of 2 or more and 8 or less
  • n31+n32 n11+n12.
  • a novel carbonyl compound can be provided according to the carbonyl compound and the method for producing the same according to the above aspect.
  • the method for producing an isocyanate compound according to the aspect described above is a method using the carbonyl compound, and can prevent by-products from sticking to equipment during the production of the isocyanate compound, thereby improving the yield of the isocyanate compound.
  • the isocyanate composition of the above aspect it is possible to provide an isocyanate composition in which coloration is sufficiently suppressed and which has excellent storage stability.
  • FIG. 1 is a schematic configuration diagram showing an apparatus for producing a carbamate compound used in Examples.
  • FIG. 1 is a schematic configuration diagram showing a pyrolysis reactor used in Examples.
  • FIG. 1 is a schematic configuration diagram showing a low boiling point separation apparatus used in Examples.
  • FIG. 1 is a schematic configuration diagram showing a high-boiling separator used in Examples.
  • FIG. 1 is a graph showing NMR spectra of carbamate compounds (I-1a) to (I-1c) produced in Example 1-1.
  • 1 is a graph showing NMR spectra of carbamate compounds (I-3a) to (I-3c) produced in Example 1-7.
  • 1 is a graph showing the results of gas chromatography-mass spectrometry of carbamate compounds (I-3a) to (I-3c) produced in Example 1-7.
  • organometallic compounds also include organometallic compounds and metal complexes.
  • terms such as "organic group” and “substituent” mean groups composed of atoms that do not contain metal atoms and/or semimetals. Further, in the present embodiment, preferably H (hydrogen atom), C (carbon atom), N (nitrogen atom), O (oxygen atom), S (sulfur atom), Cl (chlorine atom), Br (bromine atom) , I (iodine atom).
  • aliphatic and “aromatic” are used frequently. According to the IUPAC rules mentioned above, it is stated that organic compounds are classified into aliphatic compounds and aromatic compounds. Aliphatic is the definition of the group according to the 1995 IUPAC Recommendations for aliphatic compounds. The recommendation defines aliphatic compounds as "Acyclic or cyclic, saturated or unsaturated carbon compounds, excluding aromatic compounds".
  • the "aliphatic compound” used in the description of the present embodiment contains both saturated and unsaturated, chain and cyclic, and the above H (hydrogen atom); C (carbon atom); N ( nitrogen atom); O (oxygen atom); S (sulfur atom); Si (silicon atom); Cl (chlorine atom), Br (bromine atom) or I (iodine atom).
  • H hydrogen atom
  • C carbon atom
  • N nitrogen atom
  • O oxygen atom
  • S sulfur atom
  • Si silicon atom
  • Cl chlorine atom
  • Br bromine atom
  • I iodine atom
  • an aromatic group such as an aralkyl group
  • the term "aliphatic group substituted with an aromatic group” or "group consisting of an aliphatic group to which an aromatic group is bonded” is used. may be indicated. This is based on the reactivity in the present embodiment, and is because the reactive properties of groups such as aralkyl groups are very similar to the reactivity of aliphatic rather than aromatic groups.
  • non-aromatic reactive groups including aralkyl groups, alkyl groups, etc. are defined as "aliphatic groups optionally substituted with aromatic groups” and "aliphatic groups optionally bonded with aromatic groups”. etc.
  • active hydrogen refers to hydrogen atoms (excluding aromatic hydroxy groups) bonded to oxygen atoms, sulfur atoms, nitrogen atoms, silicon atoms, etc., and hydrogen atoms of terminal methine groups.
  • the compound having a hydroxy group includes alcohols and aromatic hydroxy compounds.
  • alcohol refers to "Compounds in which a hydroxy group, -OH, is attached to a saturated carbon atom: R3COH)” and does not include aromatic hydroxy compounds in which a hydroxy group is bonded to an aromatic ring.
  • aromatic hydroxy compound refers to phenols described in the IUPAC definition (Rule C-202) "one or more hydroxy groups attached to a benzene ring or other arene ring. "Compounds having one or more hydroxy groups attached to a benzene or other arene ring.”
  • the carbonyl compound of the present embodiment is a compound represented by the following general formula (I) (hereinafter sometimes referred to as "carbonyl compound (I)").
  • R 11 is a (n11+n12)-valent organic group
  • R 12 is a monovalent organic group.
  • n11 is an integer of 1 or more and 8 or less
  • n12 is 0 or more and 7 or less.
  • the sum of n11 and n12 is an integer of 2 or more and 8 or less.
  • the inventors have found that the carbonyl compound (I) is produced in the production of isocyanate compounds by the thermal decomposition reaction of carbamate compounds.
  • the isocyanate compound is produced by thermal decomposition from the carbamate compound, the coexistence of the carbonyl compound (I) allows side-reactants having a boiling point higher than that of the isocyanate compound (The present inventors have found that it is possible to prevent adhesion of the high-boiling-point side-reactant), efficiently recover the isocyanate compound, and improve the yield of the isocyanate compound, thereby completing the present invention.
  • R 11 is a (n11+n12)-valent organic group, that is, an organic group having a valence of 2 or more and 8 or less.
  • R 11 is a divalent to tetravalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have an ester group of 1 to 4 carbon atoms or a nitrogen atom, or 6 or more carbon atoms. It is preferably an aromatic hydrocarbon group having a valence of 20 or less and having a valence of 20 or more and 3 or less.
  • the aliphatic hydrocarbon group for R 11 includes an alkylene group or an alkanetriyl group, a cycloalkyl group, a cycloalkylene group or a cycloalkanetriyl group, or the alkyl group, the alkylene group or the alkanetriyl group, A group composed of the cycloalkyl group, the cycloalkylene group or the cycloalkanetriyl group is preferable, and a linear or branched alkylene group or alkanetriyl group, cycloalkylene group or cycloalkanetriyl group , or a group composed of the alkylene group or the alkanetriyl group and the cycloalkyl group, the cycloalkylene group or the cycloalkanetriyl group is more preferable.
  • linear or branched alkylene groups examples include methylene, ethylene, propylene, trimethylene, pentylene, n-hexylene and decamethylene groups.
  • the cycloalkylene group includes, for example, a cyclobutylene group, a cyclohexylene group, and the like.
  • linear or branched alkanetriyl groups examples include hexanetriyl, nonanetriyl, and decantriyl groups.
  • the cycloalkanetriyl group includes, for example, a cyclopropanetriyl group, a cyclobutanetriyl group, a cyclopentanetriyl group, a cyclohexanetriyl group, and the like.
  • the aromatic hydrocarbon group for R 11 is preferably a substituted or unsubstituted group having an aromatic ring having 6 or more and 13 or less carbon atoms.
  • substituents include alkyl groups, aryl groups, and aralkyl groups.
  • the aromatic ring may be an aromatic hydrocarbon ring or a heteroaromatic ring, and specific examples thereof include benzene ring, naphthalene ring, pyridine ring and the like.
  • R 11 is an amine compound having an ester group obtained by reacting the carboxy group of an amino acid with a hydroxy compound. is preferably a group other than the terminal primary amino group.
  • amine compound having an ester group examples include, for example, acrylic acid-2-aminoethyl ester, 2-methyl-acrylic acid-2-aminoethyl ester, acrylic acid-2-aminopropyl ester, 2- Methyl-Acrylic Acid-2-Aminopropyl Ester, Acrylic Acid-3-Aminopropyl Ester, 2-Methyl-Acrylic Acid-3-Aminopropyl Ester, Acrylic Acid-4-Aminobutyl Ester, 2-Methyl-Acrylic Acid-4 -aminobutyl ester, 5-aminopentyl acrylate, 2-methyl-5-aminopentyl acrylate, 6-aminohexyl acrylate, 2-methyl-6-aminohexyl acrylate, acrylic Acid-8-aminoctyl ester, 2-methyl-acrylic acid-8-aminoctyl ester, acrylic acid-10-aminodecyl ester, 2-methyl-acrylic
  • amino acids used for producing amine compounds having an ester group include lysine, alanine, arginine, asparagine, glutamine, glycine, aspartic acid, glutamic acid, ornithine, histidine, isoleucine, leucine, methionine, phenylalanine, tryptophan, and valine. mentioned.
  • the amino acid is preferably lysine, arginine, glycine, aspartic acid, glutamic acid or ornithine, more preferably lysine, arginine, glycine, aspartic acid or glutamic acid.
  • Hydroxy compounds used in the production of amine compounds having an ester group include alcohols and aromatic hydroxy compounds.
  • alcohols include methyl alcohol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, dodecyl alcohol, stearyl alcohol, eicosyl alcohol, allyl alcohol, crotyl alcohol, propargyl alcohol, cyclopentanol, cyclohexanol, benzyl alcohol, cinnamyl alcohol, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-butanediol, 1,4-butanediol, hydrogenated bisphenol A, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol
  • aromatic hydroxy compounds examples include phenol (carbolic acid), 2-methoxyphenol, cresol, xylenol, carvacrol, motyl, monophenols such as naphthol, catechol, resorcinol, hydroquinone, bisphenol A, bisphenol F, pyrogallol, phloroglucin. and polyhydric phenols such as
  • R 11 When the aliphatic hydrocarbon group or aromatic group for R 11 has 1 or more and 4 or less nitrogen atoms, R 11 includes a secondary or tertiary amine in addition to the terminal of the aliphatic hydrocarbon group or aromatic group. It is preferably an organic group obtained by removing the terminal amino group from an amine compound having 1 or more and 4 or less.
  • amine compound having 1 to 4 secondary or tertiary amines other than the end of the aliphatic hydrocarbon group or aromatic group herein include, for example, 2-(dimethylamino)ethyleneamine, 2-( Diethylamino)ethyleneamine, 2-(diisopropylamino)ethyleneamine, 2-(cyclohexylamino)ethyleneamine, 3-(cyclohexylamino)propylamine, 3-(diethylamino)propylamine, 3-(dimethylamino)propylamine, diethylenetriamine , diisopropyltriamine, bis-(3-aminopropyl)methyleneamine, 3-(2-aminoethylamino)propylamine, N,N'-bis(3-aminopropyl)ethylenediamine, 1-(3-aminopropyl)imidazole , trisaminoethylamine, trisaminopropylamine, and the like.
  • the amine compound is preferably an amine compound having one or more and two or less tertiary amines in addition to the terminal and an aliphatic hydrocarbon group or an aromatic group, and a tertiary amine other than one terminal. and an aliphatic hydrocarbon group or an aromatic group.
  • R 11 is preferably a group represented by any one of the following formulas (Ia-1) to (Ia-24), such as formulas (Ia-1), (Ia-2), (Ia-3 ), (Ia-14), (Ia-18), or (Ia-19).
  • formulas (Ia-1) to (Ia-24) such as formulas (Ia-1), (Ia-2), (Ia-3 ), (Ia-14), (Ia-18), or (Ia-19).
  • a wavy line indicates a bond.
  • R 12 is a monovalent organic group, preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms, which may contain an oxygen atom.
  • Aliphatic hydrocarbon groups for R 12 include, for example, methyl group, ethyl group, propyl group (each isomer), butyl group (each isomer), pentyl group (each isomer), hexyl group (each isomer) , heptyl group (each isomer), octyl group (each isomer), nonyl group (each isomer), decyl group (each isomer), undecyl group (each isomer), dodecyl group (each isomer), tridecyl group (each isomer), tetradecyl group (each isomer), pentadecyl group (each isomer), hexadecyl group (each isomer), heptadecyl group (each isomer), octadecyl group (each isomer), nonadecyl (each isomer),
  • the aliphatic hydrocarbon group which may contain an oxygen atom for R 12 includes, for example, a methoxymethyl group, a methoxyethyl group (each isomer), a methoxypropyl group (each isomer), a methoxybutyl group (each isomer), Methoxypentyl group (each isomer), methoxyhexyl group (each isomer), methoxyheptyl group (each isomer), methoxyoctyl group (each isomer), methoxynonyl group (each isomer), methoxydecyl group (each isomer), methoxyundecyl group (each isomer), methododecyl group (each isomer), methoxytridecyl group (each isomer), methoxytetradecyl group (each isomer), methoxypentadecyl group (each isomer isomer
  • aromatic hydrocarbon group for R 12 examples include aryl groups such as phenyl group, naphthyl group, anthryl group, pyrenyl group and phenanthryl group; methylphenyl group (each isomer), ethylphenyl group (each isomer), Propylphenyl group (each isomer), butylphenyl group (each isomer), pentylphenyl group (each isomer), hexylphenyl group (each isomer), heptylphenyl group (each isomer), octylphenyl group (each isomer), nonylphenyl group (each isomer), decylphenyl group (each isomer), undecylphenyl group (each isomer), dodecylphenyl group (each isomer), tridecylphenyl group (each isomer) , tetradecylphen
  • Examples of the aromatic hydrocarbon group which may contain an oxygen atom for R 12 include alkoxyaryl groups such as a methoxyphenyl group (each isomer) and an ethoxyphenyl group (each isomer).
  • R 12 includes phenyl group, naphthyl group, anthryl group, pyrenyl group, phenanthryl group, methylphenyl group (each isomer), ethylphenyl group (each isomer), propylphenyl group (each isomer), butyl Phenyl group (each isomer), pentylphenyl group (each isomer), hexylphenyl group (each isomer), heptylphenyl group (each isomer), octylphenyl group (each isomer), nonylphenyl group (each isomer) isomer), decylphenyl group (each isomer), undecylphenyl group (each isomer), dodecylphenyl group (each isomer), tridecylphenyl group (each isomer), tetradecylphenyl group (each isomer
  • n11 is an integer of 1 or more and 8 or less.
  • n12 represents the number of isocyanate groups and is an integer of 0 or more and 7 or less.
  • the sum of n11 and n12 (n11+n12) is an integer of 2 or more and 8 or less, preferably an integer of 2 or more and 6 or less, more preferably an integer of 2 or more and 5 or less, and still more preferably an integer of 3 or more and 4 or less.
  • the value of (n11+n12) increases, the molecular weight of the carbonyl compound (I) increases, the boiling point also increases, and separation from the isocyanate becomes easier.
  • (n11+n12) is preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less (n11+n12).
  • Preferred carbonyl compounds (I) include, for example, compounds represented by the following formulas (I-1a) to (I-24) (hereinafter sometimes referred to as "carbonyl compounds (I-1a)" and the like), and the like. mentioned. Incidentally, carbonyl compounds (I-1a) ⁇ (I-1c), carbonyl compounds (I-2a) ⁇ (I-2c), carbonyl compounds (I-3a) ⁇ (I-3c), carbonyl compounds (I-4a ) to (I-4c), carbonyl compounds (I-5a) to (I-5c), carbonyl compounds (I-6a) to (I-6c), carbonyl compounds (I-7a) to (I-7b), Carbonyl compounds (I-8a) ⁇ (I-8b), carbonyl compounds (I-9a) ⁇ (I-9b), carbonyl compounds (I-10a) ⁇ (I-10b), carbonyl compounds (I-11a) ⁇ (I-11b), carbonyl compounds (I-12a) to (I-12b), carbon
  • the method for producing a carbonyl compound of the present embodiment includes one or more compounds selected from the group consisting of isocyanate compounds and carbamate compounds, one or more compounds selected from the group consisting of carbonate esters and hydroxy compounds; and heating to synthesize said carbonyl compound.
  • the production method of the carbonyl compound of the present embodiment includes: 1) a production method by a thermal decomposition reaction of a carbamate compound; 2) one or more compounds selected from the group consisting of an isocyanate compound and a carbamate compound; One or more compounds selected from the group consisting of compounds are mixed and heated.
  • the production reaction of the carbonyl compound (I) involves the reaction of one or more compounds selected from the group consisting of isocyanate compounds and carbamate compounds and one or more compounds selected from the group consisting of carbonate esters and hydroxy compounds. Produced in a reaction. Therefore, in the thermal decomposition reaction of the carbamate compound, the amount of carbonate ester used is increased, or the thermal decomposition reaction is performed under reflux conditions to prevent excess evaporation of carbonate ester, thereby relatively producing carbonyl compound (I). You can increase the ratio.
  • the carbonyl compound (I) is presumed to be produced by the reaction mechanism represented by the following formula (F), (G) or (H).
  • R j is a divalent or higher valent organic group.
  • R k is a monovalent organic group.
  • the amount (molar amount) of the carbonate ester used as a solvent is preferably as large as possible from the viewpoint of suppressing side reactions. 0.001 times or more and 100 times or less is preferable, 0.01 times or more and 80 times or less is more preferable, and 0.1 times or more and 50 times or less is even more preferable.
  • the carbonate ester may be used as it is, or the carbonate ester may be newly added to the carbamate compound. Also, the carbonate ester may be fed to the reactor before the reaction starts, may be fed during the reaction, or both. Among them, it is preferable to supply to the reactor before the reaction.
  • the reaction temperature is usually 100° C. or higher and 400° C. or lower, and a high temperature is preferable in order to increase the reaction rate. Since the above-mentioned compounds may cause side reactions as described above, the temperature is preferably 130° C. or higher and 300° C. or lower, more preferably 150° C. or higher and 280° C. or lower. In order to keep the reaction temperature constant, a known cooling device or heating device may be installed in the reactor.
  • the reaction pressure varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually carried out in the range of 20 Pa or more and 1 ⁇ 10 6 Pa or less.
  • reaction time is not particularly limited, and is usually 0.001 hours or more and 100 hours or less, preferably 0.01 hours or more and 50 hours or less, and 0.1 hours or more and 10 hours or less. more preferred.
  • a catalyst can be used, and the amount of the catalyst used is preferably 0.01% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 20% by mass or less, relative to the mass of the carbamate compound.
  • catalysts include organometallic catalysts such as dibutyltin dilaurate, lead octylate and stannous octoate; and amines such as 1,4-diazabicyclo[2,2,2]octane, triethylenediamine and triethylamine.
  • organometallic catalysts such as dibutyltin dilaurate, lead octylate and stanaoctoate are preferred. These compounds may be used alone or as a mixture of two or more.
  • the thermal decomposition reaction is a reaction that produces the corresponding isocyanate compound, hydroxy compound, and carbonyl compound from the carbamate compound.
  • the hydroxy compound which is the product of the thermal decomposition reaction, is taken out as a gas phase component from the thermal decomposition reaction system by, for example, distillation, and refluxed. It is preferable to separate the hydroxy compound from the carbonate ester and the isocyanate compound under such conditions as to allow the carbonate ester and the isocyanate to exist as liquid phase components.
  • the low-boiling components may be distilled off, and the distillation method is not particularly limited as long as the low-boiling components can be separated as gas phase components.
  • the pressure for distilling off the low-boiling components varies depending on the type of compound and the reaction temperature. , 20 Pa or more and 1 ⁇ 10 6 Pa or less is preferable, 20 Pa or more and 1 ⁇ 10 4 Pa or less is more preferable, 20 Pa or more and 1 ⁇ 10 3 Pa or less is more preferable, and 20 Pa or more and 1 ⁇ 10 2 Pa or less is particularly preferable.
  • the operation time (residence time in the case of a continuous method) when distilling off the light boiling components is not particularly limited as long as the separation of the carbonyl compounds and the light boiling components is possible, and side reactions with the carbonyl compounds are suppressed. From the viewpoint, it is preferably 5 seconds or more and 100 hours or less, more preferably 10 seconds or more and 50 hours or less, and even more preferably 20 seconds or more and 10 hours or less.
  • the temperature at which the low-boiling components are distilled off is not particularly limited as long as the carbonyl compounds are stable and the carbonyl compounds can be separated from the low-boiling components. 300° C. or higher is preferable, 30° C. or higher and 280° C. or lower is more preferable, and 40° C. or higher and 250° C. or lower is even more preferable.
  • the carbonyl compound (I) is a mixture of the isocyanate compound (II) and the carbonate ester (IV) , a mixture of carbamate compound (III) or carbamate compound (VI) and carbonate ester (IV), a mixture of isocyanate compound (II), hydroxy compound (V) and carbonate ester (IV), isocyanate compound (II) and carbamate compound ( III) or a mixture of carbamate compound (VI) and carbonate ester (IV), or a mixture of isocyanate compound (II) and carbamate compound (III) or carbamate compound (VI), carbonate ester (IV) and hydroxy compound (V) (Hereinafter, these mixtures may be collectively simply referred to as “raw material mixture”).
  • the compounding amount (molar amount) of the carbonate ester is preferably as large as possible from the viewpoint of suppressing side reactions. It is preferably 100 times or less, more preferably 0.01 times or more and 80 times or less, and even more preferably 0.1 times or more and 50 times or less.
  • the heating temperature is usually 100° C. or higher and 400° C. or lower, and a high temperature is preferable in order to increase the reaction rate. Since the above-mentioned compounds may cause side reactions as described above, the temperature is preferably 130° C. or higher and 300° C. or lower, more preferably 150° C. or higher and 280° C. or lower. In order to keep the reaction temperature constant, a known cooling device or heating device may be installed in the reactor.
  • the pressure during heating varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually carried out in the range of 20 Pa or more and 1 ⁇ 10 6 Pa or less.
  • the heating time is not particularly limited, and is usually 0.001 hours or more and 100 hours or less, preferably 0.01 hours or more and 50 hours or less, and 0.1 hours or more and 10 hours or less. more preferred.
  • the rate and amount of carbonyl compounds produced can be increased by heating the raw material mixture in contact with stainless steel.
  • stainless steel SUS316 or SUS304 can be used regardless of the shape, and for example, fillers and metal pieces are preferably used.
  • the packing is not particularly limited, but DIXON Packing, McMAHON Packing, Coil PACK, MESH RING, CANNON Packing, HELI PACK, RASCHIG RING, PRICKLE RING, etc. are used.
  • the volume of the raw material liquid of the carbonyl compound is V and the surface area of the stainless steel is A
  • the larger the contact area with the stainless steel per unit volume of the raw material liquid the faster the rate of generation of the carbonyl compound.
  • the value of A/V is preferably 0.001 m 2 /m 3 or more and 100000 m 2 /m 3 or less, more preferably 0.01 m 2 /m 3 or more and 50000 m 2 /m 3 or less, and 0.1 m 2 /m 3 or more and 10000 m 2 /m 3 or less is more preferable.
  • reaction format is not particularly limited, a reactor that can efficiently mix and heat the raw material mixture or the mixture and stainless steel is preferable.
  • a method of heating the raw material mixture in a stainless steel stirring tank or distillation tower is preferable.
  • the low-boiling components may be distilled off, and the distillation method is not particularly limited as long as the low-boiling components can be separated as gas phase components.
  • the term "low-boiling component (low-boiling point component)" as used herein refers to a component having a boiling point lower than that of the carbonyl compound, and varies depending on the type of compound used as the raw material for the production of the carbonyl compound, but is mainly the carbonate ester contained in the raw material mixture. , an isocyanate compound generated by a thermal decomposition reaction, and one or more compounds selected from the group consisting of a hydroxy compound.
  • the pressure for distilling off the low-boiling components varies depending on the type of compound and the reaction temperature. , 20 Pa or more and 1 ⁇ 10 6 Pa or less is preferable, 20 Pa or more and 1 ⁇ 10 4 Pa or less is more preferable, 20 Pa or more and 1 ⁇ 10 3 Pa or less is more preferable, and 20 Pa or more and 1 ⁇ 10 2 Pa or less is particularly preferable.
  • the operation time (residence time in the case of a continuous method) when distilling off the light boiling components is not particularly limited as long as the separation of the carbonyl compounds and the light boiling components is possible, and side reactions with the carbonyl compounds are suppressed. From the viewpoint, it is preferably 5 seconds or more and 100 hours or less, more preferably 10 seconds or more and 50 hours or less, and even more preferably 20 seconds or more and 10 hours or less.
  • the temperature at which the low-boiling components are distilled off is not particularly limited as long as the carbonyl compounds are stable and the carbonyl compounds can be separated from the low-boiling components. 300° C. or higher is preferable, 30° C. or higher and 280° C. or lower is more preferable, and 40° C. or higher and 250° C. or lower is even more preferable.
  • isocyanate compound (II) a compound represented by the following general formula (II) (hereinafter sometimes referred to as "isocyanate compound (II)”) is preferably used.
  • R 21 is an aliphatic hydrocarbon group
  • specific examples of the isocyanate compound (II) include aliphatic diisocyanates, aliphatic triisocyanates, and substituted cycloaliphatic polyisocyanates. .
  • aliphatic diisocyanates examples include diisocyanatoethane, diisocyanatopropane (each isomer), diisocyanatobutane (each isomer), diisocyanatopentane (each isomer), diisocyanatohexane (each isomer), diisocyanatodecane (each isomer), and the like.
  • aliphatic triisocyanates examples include triisocyanatohexane (each isomer), 4-isocyanatomethyl-1,8-octamethylene diisocyanate, triisocyanatononane (each isomer), triisocyanatodecane (each isomer) and the like.
  • Substituted cycloaliphatic polyisocyanates include, for example, diisocyanatocyclobutane (each isomer), diisocyanatocyclohexane (each isomer), 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate (also called isophorone diisocyanate) (each isomer), 1,3-bis(isocyanatomethyl)cyclohexane (at least one of cis and trans isomers), methylenebis(cyclohexyl isocyanate) (also called dicyclohexylmethane diisocyanate) ) (each isomer) and the like.
  • diisocyanatocyclobutane each isomer
  • diisocyanatocyclohexane each isomer
  • 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate also called isophorone diisocyanate
  • R 21 is an aromatic group
  • specific examples of the isocyanate compound (II) include aromatic diisocyanates and aromatic triisocyanates.
  • aromatic diisocyanates include diisocyanatobenzene (each isomer), diisocyanatotoluene (each isomer), bis(isocyanatophenyl)methane (each isomer), diisocyanatomesitylene (each isomer ), diisocyanatobiphenyl (each isomer), diisocyanatodibenzyl (each isomer), bis(isocyanatophenyl)propane (each isomer), bis(isocyanatophenyl)ether (each isomer), bis (isocyanatophenoxyethane) (each isomer), diisocyanatoxylene (each isomer), diisocyanatoanisole (each isomer), diisocyanatophenetol (each isomer), diisocyanatonaphthalene (each isomer) isomer), diisocyanatomethylbenzene (each is
  • aromatic triisocyanates examples include triisocyanatobenzene (each isomer), triisocyanato-methylbenzene (each isomer), tris(isocyanatopropan-yl)benzene (each isomer), tris(isocyanate Natopropan-yl)-methylbenzene (each isomer), Tris(isocyanatomethyl)-methylbenzene (each isomer), ((isocyanato-phenylene)bis(methylene))bis(isocyanatobenzene) (each isomer) etc.
  • the electron-withdrawing effect of the aromatic group increases the reactivity of the directly attached isocyanate group. Furthermore, as the number of isocyanate groups directly bonded to the same aromatic compound increases, the reactivity increases due to mutual electron attraction. From the viewpoint of reactivity, the number of isocyanate groups for R 21 is preferably 2 or more, more preferably 3 or more. On the other hand, when the reactivity of the isocyanate increases, the reaction between moisture, the isocyanate itself, and other impurities occurs, and the stability of the compound at room temperature and during heating decreases. From the viewpoint of the stability of the isocyanate compound, the number of isocyanate groups directly bonded to R 21 is preferably 4 or less, more preferably 3 or less.
  • the isocyanate compound (II) include acrylic acid-2-isocyanato-ethyl ester , 2-methyl-acrylic acid-2-isocyanato-ethyl ester, acrylic acid-2-isocyanato-propyl ester, 2-methyl-acrylic acid-2-isocyanato-propyl ester, acrylic acid-3-isocyanato-propyl ester, 2 -methyl-acrylic acid-3-isocyanato-propyl ester, acrylic acid-4-isocyanato-butyl ester, 2-methyl-acrylic acid-4-isocyanato-butyl ester, acrylic acid-5-isocyanato-pentyl ester, 2-methyl - acrylic acid 5-isocyanato-pentyl ester, acrylic acid 6-isocyanato-hexyl ester, 2-methyl-acrylic acid 6-isocyana
  • the reactivity of the isocyanate group is improved.
  • the carbon-carbon or carbon-nitrogen bond between the isocyanate group, which is an electron-withdrawing group, and the ester group or nitrogen atom is likely to dissociate, which may impair the thermal stability of the compound.
  • the number of carbon atoms is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more.
  • the isocyanate compound (II) is often used as a raw material for paints and is required to have a property (weather resistance) that it does not color when exposed to light such as sunlight.
  • R 21 has an aromatic group, coloration may occur due to absorption of light energy when exposed to sunlight.
  • R 21 preferably does not have an aromatic group, and may have an ester group of 1 or more and 4 or less or a nitrogen atom, and has 1 or more and 20 or less carbon atoms. More preferably, it is an aliphatic hydrocarbon group having a valence of 4 or more and 4 or less.
  • R 21 is preferably a group represented by any one of the above formulas (Ia-1) to (Ia-24), and the groups represented by the formulas (Ia-1), (Ia-2), ( A group represented by Ia-3), (Ia-14), (Ia-18), or (Ia-19) is more preferable.
  • n21 is an integer of 2 or more and 8 or less, preferably an integer of 2 or more and 6 or less, more preferably an integer of 2 or more and 5 or less, and still more preferably an integer of 3 or more and 4 or less.
  • a polymer can be obtained by reacting an isocyanate having a valence of n21 or higher with a dihydroxy compound or diamine compound having an active hydrogen group.
  • n21 As the value of n21 increases, the number of cross-linking points (isocyanate groups) per isocyanate molecule increases, so the cross-linking density when polymerized increases, shortening the curing time and improving the hardness of the polymer.
  • the crosslink density is increased means that the average molecular chain length between the crosslink points is decreased. If the number of isocyanate groups in the isocyanate molecule is 3 or more (n21 is 3 or more), the linear polymer can be further bonded to the polymer, and the molecular weight of the polymer tends to increase. can be expected to dramatically improve the physical properties of the polymer.
  • isocyanate production when a highly reactive isocyanate compound is heated, a modification reaction occurs, which causes sticking or clogging in equipment. is preferred, 5 or less is more preferred, and 4 or less is even more preferred.
  • Preferred isocyanate compounds (II) include, for example, 4-isocyanatomethyl-1,8-octamethylene diisocyanate (TTI), 2-isocyanatoethyl-2,6-diisocyanatohexanoate (LTI), lysine methyl ester diisocyanate (LDI), methylenebis(cyclohexylisocyanate) (HMDI), 1,3-bis(isocyanatomethyl)cyclohexane (HXDI), diisocyanatodiphenylmethane (MDI) and the like.
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • LKI 2-isocyanatoethyl-2,6-diisocyanatohexanoate
  • LKI lysine methyl ester diisocyanate
  • HMDI methylenebis(cyclohexylisocyanate)
  • HXDI 1,
  • carbamate compound (III) a compound represented by the following general formula (III) (hereinafter sometimes referred to as “carbamate compound (III)”) or a compound represented by the following general formula (VI) (hereinafter referred to as “carbamate compound (VI)”) is preferably used.
  • n31 is an integer of 1 or more and 8 or less
  • n32 is an integer of 0 or more and 7 or less
  • the sum of n31 and n32 is an integer of 2 or more and 8 or less
  • n31+n32 n11+n12.
  • R 31 is a divalent to tetravalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have an ester group of 1 or more and 4 or less or a nitrogen atom, or 6 or more carbon atoms. It is preferably an aromatic hydrocarbon group having a valence of 20 or less and having a valence of 20 or more and 3 or less.
  • R 31 is preferably a group represented by any one of the above formulas (Ia-1) to (Ia-24), and the groups represented by the formulas (Ia-1), (Ia-2), ( A group represented by Ia-3), (Ia-14), (Ia-18), or (Ia-19) is more preferable.
  • R 32 is preferably an aliphatic hydrocarbon group having 1 or more and 20 or less carbon atoms or an aromatic hydrocarbon group having 6 or more and 20 or less carbon atoms, which may contain an oxygen atom.
  • R 32 examples include phenyl group, naphthyl group, anthryl group, pyrenyl group, phenanthryl group, methylphenyl group (each isomer), ethylphenyl group (each isomer), propylphenyl group (each isomer ), butylphenyl group (each isomer), pentylphenyl group (each isomer), hexylphenyl group (each isomer), heptylphenyl group (each isomer), octylphenyl group (each isomer), nonylphenyl group (each isomer), decylphenyl group (each isomer), undecylphenyl group (each isomer), dodecylphenyl group (each isomer), tridecylphenyl group (each isomer), tetradecylphenyl group (each isomer), methyl
  • n31 is an integer of 1 or more and 8 or less.
  • n32 is an integer of 0 or more and 7 or less.
  • Preferred carbamate compounds (III) include, for example, compounds represented by the following formulas (III-1a) to (III-24b).
  • Each can be
  • R 61 is an ester group having 1 to 4 carbon atoms or an aliphatic hydrocarbon group having 1 to 20 carbon atoms and having 1 to 20 carbon atoms and having 2 to 4 valences, or an aliphatic hydrocarbon group having 6 or more carbon atoms. It is preferably an aromatic hydrocarbon group having a valence of 20 or less and having a valence of 20 or more and 3 or less.
  • R 61 is preferably a group represented by any one of the above formulas (Ia-1) to (Ia-24), and the groups represented by the formulas (Ia-1), (Ia-2), ( A group represented by Ia-3), (Ia-14), (Ia-18), or (Ia-19) is more preferred.
  • R 62 is preferably an aliphatic hydrocarbon group having 1 or more and 20 or less carbon atoms or an aromatic hydrocarbon group having 6 or more and 20 or less carbon atoms, which may contain an oxygen atom.
  • R 62 examples include phenyl group, naphthyl group, anthryl group, pyrenyl group, phenanthryl group, methylphenyl group (each isomer), ethylphenyl group (each isomer), propylphenyl group (each isomer ), butylphenyl group (each isomer), pentylphenyl group (each isomer), hexylphenyl group (each isomer), heptylphenyl group (each isomer), octylphenyl group (each isomer), nonylphenyl group (each isomer), decylphenyl group (each isomer), undecylphenyl group (each isomer), dodecylphenyl group (each isomer), tridecylphenyl group (each isomer), tetradecylphenyl group (each isomer),
  • n61 is an integer of 2 or more and 8 or less, preferably an integer of 2 or more and 6 or less, more preferably an integer of 2 or more and 5 or less, and still more preferably an integer of 3 or more and 4 or less.
  • Preferred carbamate compounds (VI) include, for example, compounds represented by the following formulas (VI-1) to (VI-24).
  • Carbonate ester a compound represented by the following general formula (IV) (hereinafter sometimes referred to as “carbonate ester (IV)”) is preferably used.
  • R 41 and R 42 are preferably substituted or unsubstituted aryl groups.
  • Preferred carbonate esters (IV) include, for example, diphenyl carbonate, bis(4-cumylphenyl) carbonate, bis(2-methoxyphenyl) carbonate, bis(2-ethoxyphenyl) carbonate and the like.
  • hydroxy compound (V) a compound represented by the following general formula (V) (hereinafter sometimes referred to as "hydroxy compound (V)”) is preferably used.
  • R 51 is preferably an aliphatic hydrocarbon group having 1 or more and 20 or less carbon atoms or an aromatic hydrocarbon group having 6 or more and 20 or less carbon atoms, which may contain an oxygen atom.
  • R 51 examples include phenyl group, naphthyl group, anthryl group, pyrenyl group, phenanthryl group, methylphenyl group (each isomer), ethylphenyl group (each isomer), propylphenyl group (each isomer ), butylphenyl group (each isomer), pentylphenyl group (each isomer), hexylphenyl group (each isomer), heptylphenyl group (each isomer), octylphenyl group (each isomer), nonylphenyl group (each isomer), decylphenyl group (each isomer), undecylphenyl group (each isomer), dodecylphenyl group (each isomer), tridecylphenyl group (each isomer), tetradecylphenyl group (each isomer), methyl
  • Preferred hydroxy compounds (V) include aromatic hydroxy compounds represented by the following general formula (V-1) (hereinafter sometimes referred to as "aromatic hydroxy compounds (V-1)").
  • ring A 511 is an aromatic hydrocarbon ring having 6 to 20 carbon atoms;
  • R 511 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 20 or less, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, or hydroxy
  • R 511 may combine with Ring A 511 to form a ring structure, and n511 is an integer of 1 or more and 10 or less.
  • R511 Examples of the alkyl group having 1 to 20 carbon atoms in R 511 include methyl group, ethyl group, propyl group (each isomer), butyl group (each isomer), pentyl group (each isomer), hexyl group ( isomer), heptyl group (each isomer), octyl group (each isomer), nonyl group (each isomer), decyl group (each isomer), dodecyl group (each isomer), octadecyl group (each isomer) body) and the like.
  • the alkoxy group having 1 to 20 carbon atoms in R 511 includes, for example, methoxy group, ethoxy group, propoxy group (each isomer), butyloxy group (each isomer), pentyloxy group (each isomer), hexyloxy group (each isomer), heptyloxy group (each isomer), octyloxy group (each isomer), nonyloxy group (each isomer), decyloxy group (each isomer), dodecyloxy group (each isomer), octadecyloxy group (each isomer) and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms in R 511 include a phenyl group and a naphthyl group.
  • Examples of the aryl group having an alkyl group as a substituent in R 511 include a methylphenyl group (each isomer), an ethylphenyl group (each isomer), a propylphenyl group (each isomer), a butylphenyl group (each isomer isomer), pentylphenyl group (each isomer), hexylphenyl group (each isomer), heptylphenyl group (each isomer), octylphenyl group (each isomer), nonylphenyl group (each isomer), decylphenyl group (each isomer), biphenyl group (each isomer), dimethylphenyl group (each isomer), diethylphenyl group (each isomer), dipropylphenyl group (each isomer), dibutylphenyl group (each isomer ),
  • Examples of the aryloxy group having 6 to 20 carbon atoms in R 511 include a phenoxy group, a methylphenoxy group (each isomer), an ethylphenoxy group (each isomer), a propylphenoxy group (each isomer), and a butylphenoxy group.
  • each isomer pentylphenoxy group (each isomer), hexylphenoxy group (each isomer), heptylphenoxy group (each isomer), octylphenoxy group (each isomer), nonylphenoxy group (each isomer ), decylphenoxy group (each isomer), phenylphenoxy group (each isomer), dimethylphenoxy group (each isomer), diethylphenoxy group (each isomer), dipropylphenoxy group (each isomer), dibutylphenoxy group (each isomer), dipentylphenoxy group (each isomer), dihexylphenoxy group (each isomer), diheptylphenoxy group (each isomer), diphenylphenoxy group (each isomer), trimethylphenoxy group (each isomer isomer), triethylphenoxy group (each isomer), tripropy
  • the aralkyl group having 7 to 20 carbon atoms in R 511 includes, for example, a phenylmethyl group, a phenylethyl group (each isomer), a phenylpropyl group (each isomer), a phenylbutyl group (each isomer), and phenylpentyl. group (each isomer), phenylhexyl group (each isomer), phenylheptyl group (each isomer), phenyloctyl group (each isomer), phenylnonyl group (each isomer), and the like.
  • the aralkyloxy group having 7 to 20 carbon atoms in R 511 includes, for example, a phenylmethoxy group, a phenylethoxy group (each isomer), a phenylpropyloxy group (each isomer), and a phenylbutyloxy group (each isomer). , phenylpentyloxy group (each isomer), phenylhexyloxy group (each isomer), phenylheptyloxy group (each isomer), phenyloctyloxy group (each isomer), phenylnonyloxy group (each isomer) etc.
  • Ring A 511 is an aromatic hydrocarbon ring having 6 to 20 carbon atoms. Ring A 511 may be monocyclic, polycyclic, or condensed. Specific examples of Ring A 511 include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, naphthacene ring, chrysene ring, pyrene ring, triphenylene ring, pentalene ring, azulene ring, heptalene ring, indacene ring, biphenylene ring, and acenaphthylene. ring, aceanthrylene ring, acephenanthrylene ring, and the like.
  • ring A 511 is preferably a benzene ring, a naphthalene ring, or an anthracene ring, more preferably a benzene ring. These rings may also have substituents other than R 511 above. Substituents other than R 511 include the same as those exemplified for R 511 . R 511 and substituents other than R 511 consist of different functional groups.
  • n511 represents the number of substituents R511 and is an integer of 1 or more and 10 or less.
  • V-1 compounds in which ring A 511 is a benzene ring include, for example, compounds represented by the following general formula (V-1-1) (hereinafter referred to as "hydroxy compound (V-1-1 )”) and the like.
  • R 512 to R 516 are each independently the same as R 511 above.
  • At least one of R 512 to R 516 is preferably a hydrogen atom, and more preferably all of R 512 to R 516 are hydrogen atoms.
  • Preferred hydroxy compounds (V-1-1) include, for example, phenol, 2-ethylphenol, 2-propylphenol (each isomer), 2-butylphenol (each isomer), 2-pentylphenol (each isomer) , 2-hexylphenol (each isomer), 2-heptylphenol (each isomer), 2-phenylphenol, 2,6-dimethylphenol, 2,4-diethylphenol, 2,6-diethylphenol, 2,4 -dipropylphenol (each isomer), 2,6-dipropylphenol (each isomer), 2,4-dibutylphenol (each isomer), 2,4-dipentylphenol (each isomer), 2,4 -dihexylphenol (each isomer), 2,4-diheptylphenol (each isomer), 2-methyl-6-ethylphenol, 2-methyl-6-propylphenol (each isomer), 2-methyl-6 -butyl
  • the reaction liquid containing the isocyanate compound (II) is purified by distillation in the presence of the carbonyl compound (I), and the isocyanate compound (II) is continuously produced as a gas phase component. ).
  • the isocyanate compound (II) is obtained by thermally decomposing the carbamate compound (VI) in the presence of the carbonate ester (IV).
  • the isocyanate (II) is obtained by subjecting the carbamate compound (VI) to a thermal decomposition reaction in the presence of the carbonate ester (IV) as a solvent.
  • the thermal decomposition reaction side reactions represented by the above formulas (B) to (E) occur, and the resulting isocyanurate group, carbodiimide group, and allophanate group act as cross-linking points to produce high molecular weight components and solids. Refinement of the product and an increase in liquid viscosity may occur.
  • the carbonyl compound (I) acts as a good solvent for the above-described high molecular weight component, and the carbonyl compound (I) acts as a terminal blocker and acts as a side effect.
  • the carbonate (IV) may be supplied to the reactor before starting the reaction, may be supplied during the reaction, or both. Among them, it is preferable to supply to the reactor before the reaction.
  • the amount (molar amount) of the carbonate ester (IV) used as a solvent is preferably large from the viewpoint of suppressing side reactions.
  • the ratio is preferably 0.001 to 100 times, more preferably 0.01 to 80 times, and even more preferably 0.1 to 50 times.
  • the carbonate ester (IV) may be used as it is, or the carbonate ester (IV) may be newly added to the carbamate. It may be added to compound (VI).
  • the reaction temperature is usually 100° C. or higher and 400° C. or lower, and a high temperature is preferable in order to increase the reaction rate. Since the above-mentioned compounds may cause side reactions as described above, the temperature is preferably 130° C. or higher and 300° C. or lower, more preferably 150° C. or higher and 280° C. or lower. In order to keep the reaction temperature constant, a known cooling device or heating device may be installed in the reactor.
  • the reaction pressure varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually carried out in the range of 20 Pa or more and 1 ⁇ 10 6 Pa or less.
  • reaction time is not particularly limited, and is usually 0.001 hours or more and 100 hours or less, preferably 0.01 hours or more and 50 hours or less, and 0.1 hours or more and 10 hours or less. more preferred.
  • a catalyst can be used, and the amount of the catalyst used is preferably 0.01% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 20% by mass or less, relative to the mass of the carbamate compound.
  • catalysts include organometallic catalysts such as dibutyltin dilaurate, lead octylate and stannous octoate; and amines such as 1,4-diazabicyclo[2,2,2]octane, triethylenediamine and triethylamine. Even under the name k, organometallic catalysts such as dibutyltin dilaurate, lead octoate, stanaoctoate and the like are suitable. These compounds may be used alone or as a mixture of two or more.
  • the thermal decomposition reaction is a reaction that produces the corresponding isocyanate compound (II) and a hydroxy compound from the carbamate compound (VI), but the thermal decomposition reaction is an equilibrium reaction. Therefore, in order to efficiently obtain the isocyanate compound (II) in the thermal decomposition reaction, the hydroxy compound, which is the product of the thermal decomposition reaction, is removed from the thermal decomposition reaction system as a gas phase component by a method such as distillation. preferably taken out.
  • reaction liquid obtained in the thermal decomposition step contains the carbonyl compound (I)
  • the reaction liquid is referred to as a reaction liquid (isocyanate composition) containing the isocyanate compound (II) and the carbonyl compound (I), which will be described later. You may use it for the refinement
  • the carbonyl compound (I) obtained by the “method for producing a carbonyl compound” may be mixed with a reaction solution containing an isocyanate compound (isocyanate composition), and used in the purification step described later.
  • the composition of the isocyanate composition is ⁇ 3 x (molar amount of isocyanurate group) + 2 x (molar amount of carbodiimide group) + 3 x (uretonimine group) from the viewpoint of ensuring good distillation operability in the purification step described later.
  • (molar amount) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of carbonyl compound) is preferably 0.00001 or more and 80.0 or less, more preferably 0.0001 or more and 40.0 or less, and 0 It is more preferably 0.001 or more and 8.0 or less.
  • the isocyanate compound is purified from the isocyanate composition described above. Specifically, in the purification step, first, components having a boiling point lower than that of the isocyanate compound contained in the isocyanate composition (low-boiling component) are distilled off (hereinafter referred to as “light-boiling separation”), and then the isocyanate compound is is recovered as a gas phase component and separated from components (high-boiling components) having a higher boiling point than the isocyanate compound (hereinafter referred to as "high-boiling separation”) to purify the isocyanate compound from the isocyanate composition.
  • low-boiling component components having a boiling point lower than that of the isocyanate compound contained in the isocyanate composition
  • low-boiling separation components having a boiling point lower than that of the isocyanate compound contained in the isocyanate composition
  • high-boiling separation components having a higher boiling point than the isocyanate compound having a
  • the distillation method is not particularly limited as long as the light-boiling components can be separated as gas phase components.
  • the term "low-boiling component (low-boiling point component)" as used herein refers to a component with a boiling point lower than that of a carbonyl compound. , and a hydroxy compound that is a by-product of a thermal decomposition reaction.
  • the pressure for distilling off the low-boiling components varies depending on the type of compound and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure as long as the isocyanate compound and the low-boiling components can be separated. , 20 Pa or more and 1 ⁇ 10 6 Pa or less is preferable, 20 Pa or more and 1 ⁇ 10 4 Pa or less is more preferable, 20 Pa or more and 1 ⁇ 10 3 Pa or less is more preferable, and 20 Pa or more and 1 ⁇ 10 2 Pa or less is particularly preferable.
  • the operation time (residence time in the case of a continuous method) when distilling off the low-boiling component is not particularly limited as long as the isocyanate compound and the low-boiling component can be separated, and side reactions with the isocyanate compound are suppressed. From the viewpoint, it is preferably 5 seconds or more and 100 hours or less, more preferably 10 seconds or more and 50 hours or less, and even more preferably 20 seconds or more and 10 hours or less.
  • the temperature at which the low-boiling component is distilled off is not particularly limited as long as the isocyanate compound is stable and the isocyanate compound and the low-boiling component can be separated. 300° C. or higher is preferable, 30° C. or higher and 280° C. or lower is more preferable, and 40° C. or higher and 250° C. or lower is even more preferable.
  • the distillation method is not particularly limited as long as the isocyanate can be separated as a gas phase component.
  • high-boiling component high-boiling point component
  • the term "high-boiling point component" as used herein refers to a component with a boiling point higher than that of isocyanate.
  • carbamate compound (III) (carbate group-containing isocyanate) and carbamate compound (VI) (carbamate compound used as raw material for thermal decomposition step)
  • some isocyanate groups of the isocyanate compound are isocyanurate group, carbodiimide group, uretonimine group, and It is a compound converted into at least one functional group selected from the group consisting of allophanate groups (hereinafter referred to as "isocyanate polymer").
  • uretonimine groups by-produced in the thermal decomposition step or the low-boiling separation step undergo a reaction to regenerate isocyanate groups and carbodiimide groups as shown in the following formula (J), so they are recovered in the gas phase.
  • the recovery rate of the isocyanate compound may exceed 100% by mass.
  • R m and R n are each independently a divalent or higher organic group.
  • the isocyanate compound is distilled off, and the high-boiling component is concentrated and solidified, which may make it difficult to continue operation. becomes difficult.
  • the isocyanate (isocyanate polymer) in which a part of the isocyanate group is converted to at least one functional group selected from the group consisting of an isocyanurate group, a carbodiimide group, a uretonimine group, and an allophanate group has a high molecular weight.
  • the carbodiimide group generated by the above formula (J) during high-boiling separation and the isocyanate group of the isocyanate polymer are combined to form a uretonimine group (reverse reaction of the above formula (J)), and the isocyanate polymers are combined It is caused by increasing the molecular weight by
  • the carbonyl compound (I) has a higher boiling point than the isocyanate compound and has fewer cross-linking points than the isocyanate polymer, so it works as a solvent in the high-boiling separation step.
  • it binds to carbodiimide groups to prevent isocyanate polymers from binding to each other and increasing the molecular weight.
  • the pressure for separating the high-boiling component varies depending on the type of compound and the reaction temperature, but may be reduced pressure, normal pressure, or increased pressure as long as the isocyanate compound and the low-boiling component can be separated. 0.1 Pa or more and 1 ⁇ 10 6 Pa or less is preferable, 1 Pa or more and 1 ⁇ 10 4 Pa or less is more preferable, and 5 Pa or more and 1 ⁇ 10 3 Pa or less is even more preferable.
  • the operation time (residence time in the case of a continuous method) when separating the high-boiling component is not particularly limited as long as the isocyanate compound and the low-boiling component can be separated, from the viewpoint of suppressing side reactions with the isocyanate compound. Therefore, it is preferably 5 seconds to 100 hours, more preferably 10 seconds to 50 hours, even more preferably 15 seconds to 10 hours, particularly preferably 20 seconds to 1 hour, and most preferably 25 seconds to 10 minutes. .
  • the temperature at which the high-boiling component is separated is not particularly limited as long as the isocyanate compound is stable and the isocyanate compound and the low-boiling component can be separated. 250° C. or lower is preferable, 30° C. or higher and 230° C. or lower is more preferable, and 40° C. or higher and 200° C. or lower is even more preferable.
  • the material of the reactor and lines in which the thermal decomposition process and the purification process are performed may be any known material as long as it does not adversely affect the carbamate compound, the hydroxy compound and isocyanate compound that are the products, and the carbonate ester that is the solvent.
  • SUS304, SUS316, SUS316L, etc. are inexpensive, they can be preferably used.
  • reactors there are no particular restrictions on the type of reactor, and known tank-like and tower-like reactors can be used.
  • the low-boiling mixture containing the hydroxy compounds produced is withdrawn from the reactor as gaseous components, and unreacted carbamate compounds and compounds not withdrawn as gaseous components are removed.
  • Preferably used is one equipped with a line for extracting part or all of the mixed liquid from the reactor in a liquid state.
  • Such reactors include, for example, stirred tanks, multi-stage stirred tanks, distillation columns, multi-stage distillation columns, multi-tubular reactors, continuous multi-stage distillation columns, packed columns, thin film evaporators, and reactors having a support inside. , a forced circulation reactor, a falling film evaporator, a falling drop evaporator, a trickle phase reactor, a bubble column, and a combination thereof. .
  • a method using a stirring tank equipped with a distillation column or a multi-stage stirring tank is preferable, and the gas-liquid contact area that allows the low boiling point component to be quickly transferred to the gas phase. Large structures of are preferred.
  • the low-boiling components are extracted from the reactor as gaseous components, and part or all of the mixed liquid containing the compounds not extracted is extracted from the reactor in liquid form.
  • the reactor in liquid form Preferably used is one having a line for Such reactors include, for example, stirred tanks, multi-stage stirred tanks, distillation columns, multi-stage distillation columns, multi-tubular reactors, continuous multi-stage distillation columns, packed columns, thin film evaporators, and reactors having a support inside. , a forced circulation reactor, a falling film evaporator, a falling drop evaporator, a trickle phase reactor, a bubble column, and a combination thereof. .
  • the isocyanate compound is extracted from the reactor as a gaseous component, and part or all of the mixture containing the unextracted compound is extracted from the reactor in liquid form.
  • a line for Such reactors include, for example, stirred tanks, multi-stage stirred tanks, distillation columns, multi-stage distillation columns, multi-tubular reactors, continuous multi-stage distillation columns, packed columns, thin film evaporators, and reactors having a support inside. , a forced circulation reactor, a falling film evaporator, a falling drop evaporator, a trickle phase reactor, a bubble column, and a combination thereof. .
  • the carbamate compound (VI) is as exemplified in the above "Method for producing carbonyl compound".
  • a method for producing the carbamate compound (VI) for example, a method of producing from a carbonic acid derivative and an amine compound, or a method of producing from a carbonic acid derivative, a hydroxy compound and an amine compound are preferred.
  • the same hydroxy compound as the above hydroxy compound (V) is preferably used as the starting material for producing the carbamate compound (VI).
  • Examples of carbonic acid derivatives include urea and carbonate esters.
  • the carbonate used as a raw material for producing the carbamate compound (VI) the same carbonate as the carbonate (IV) is preferably used.
  • the carbonic acid derivative is preferably urea, diphenyl carbonate, or dibutyl carbonate, and more preferably urea or diphenyl carbonate.
  • amine compound (VII) As the amine compound, for example, a compound represented by the following general formula (VII) (hereinafter sometimes referred to as "amine compound (VII)”) is preferably used.
  • R 71 is a divalent to tetravalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, which may have an ester group of 1 to 4 carbon atoms or a nitrogen atom, or 6 or more carbon atoms. It is preferably an aromatic hydrocarbon group having a valence of 20 or less and having a valence of 20 or more and 3 or less.
  • R 71 is preferably a group represented by any one of the above formulas (Ia-1) to (Ia-24), and is represented by the formulas (Ia-1), (Ia-2), ( A group represented by Ia-3), (Ia-14), (Ia-18), or (Ia-19) is more preferable.
  • n71 is an integer of 2 or more and 8 or less, preferably an integer of 2 or more and 6 or less, more preferably an integer of 2 or more and 5 or less, and still more preferably an integer of 3 or more and 4 or less.
  • Preferred amine compounds (VII) include, for example, 4-aminomethyl-1,8-octanediamine, 4,4′-diaminodiphenylmethane, lysine ⁇ -aminoethyl ester, lysine methyl ester, 4,4′-methylenebis(cyclohexyl amine), 1,3-di(aminomethyl)cyclohexane, and the like.
  • the isocyanate composition of the present embodiment has, with respect to the total mass of the isocyanate composition, 97% by mass or more of an isocyanate compound; a carbonyl compound represented by the following general formula (I) of 2.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass or less (hereinafter sometimes referred to as “carbonyl compound (I)”); contains The isocyanate compound and the carbonyl compound are different compounds.
  • R 11 is a (n11+n12)-valent organic group
  • R 12 is a monovalent organic group.
  • n11 is an integer of 1 or more and 8 or less
  • n12 is 0 or more and 7 or less.
  • the sum of n11 and n12 is an integer of 2 or more and 8 or less.
  • the carbonyl compound (I) acts effectively during storage of the isocyanate composition, and has the effect of improving the stability of the isocyanate compound without coloring the isocyanate composition. It is presumed that the effect is exhibited by the carbonyl group of the carbonyl compound (I) having reactivity with water and oxygen and suppressing the modification reaction of the isocyanate compound caused by water and oxygen. In addition, since the carbonyl compound (I) has a large number of carbon-oxygen unsaturated bonds, it tends to exhibit the above effect more.
  • the lower limit of the content of the carbonyl compound (I) is 2.0 mass ppm, preferably 3.0 mass ppm, and 5.0 mass ppm with respect to the total mass of the isocyanate composition. and more preferably 10 ppm by mass.
  • the upper limit of the content of the carbonyl compound (I) is 1.0 ⁇ 10 4 mass ppm, preferably 3.0 ⁇ 10 3 mass ppm, relative to the total mass of the isocyanate composition, It is more preferably 1.0 ⁇ 10 3 ppm by mass.
  • the content of the carbonyl compound (I) is 2.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass or less, and 3.0 ppm by mass or more and 3.0 ⁇ It is preferably 10 3 mass ppm or less, more preferably 5.0 mass ppm or more and 1.0 ⁇ 10 3 mass ppm or less, and 10 mass ppm or more and 1.0 ⁇ 10 3 mass ppm or less. More preferred.
  • the content of the carbonyl compound (I) is at least the above lower limit, it is possible to suppress the modification reaction of the isocyanate compound. and maintain good appearance.
  • the content of the isocyanate compound is 97% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, relative to the total mass of the isocyanate composition.
  • the content of the isocyanate compound is at least the above lower limit value, a composition containing a sufficient amount of the isocyanate compound, which is the target substance, can be obtained.
  • the upper limit is not particularly limited, it can be less than 100% by mass.
  • Carbonyl compound (I) is a compound represented by the following general formula (I).
  • R 11 is a (n11+n12)-valent organic group
  • R 12 is a monovalent organic group.
  • n11 is an integer of 1 or more and 8 or less
  • n12 is 0 or more and 7 or less.
  • the sum of n11 and n12 is an integer of 2 or more and 8 or less.
  • R 11 , R 12 are as described in ⁇ Carbonyl compound>> above.
  • n11 is an integer of 1 or more and 8 or less.
  • n12 represents the number of isocyanate groups and is an integer of 0 or more and 7 or less.
  • the sum of n11 and n12 (n11+n12) is an integer of 2 or more and 8 or less, preferably an integer of 2 or more and 6 or less, more preferably an integer of 2 or more and 5 or less, and still more preferably an integer of 3 or more and 4 or less.
  • the value of (n11+n12) increases, the number of cross-linking points (isocyanate groups) per carbonyl compound molecule increases, and the number of structures that contribute to coloration and prevention of isocyanate modification increases.
  • the crosslink density is increased, the curing time can be shortened, the hardness of the polymer can be improved, and coloration and modification of isocyanate can be suppressed.
  • the crosslink density is increased means that the average molecular chain length between the crosslink points is decreased.
  • the highly reactive isocyanate group is heated, a modification reaction occurs, which causes sticking or clogging of the device.
  • (n11+n12) is preferably 5 or less, and (n11+n12) is further preferably 4 or less.
  • Preferred carbonyl compounds (I) include, for example, compounds represented by the following formulas (I-1a) to (I-24b) (hereinafter sometimes referred to as "carbonyl compounds (I-1a)" and the like), and the like. mentioned. Incidentally, carbonyl compounds (I-1a) ⁇ (I-1c), carbonyl compounds (I-2a) ⁇ (I-2c), carbonyl compounds (I-3a) ⁇ (I-3c), carbonyl compounds (I-4a ) to (I-4c), carbonyl compounds (I-5a) to (I-5c), carbonyl compounds (I-6a) to (I-6c), carbonyl compounds (I-7a) to (I-7b), Carbonyl compounds (I-8a) ⁇ (I-8b), carbonyl compounds (I-9a) ⁇ (I-9b), carbonyl compounds (I-10a) ⁇ (I-10b), carbonyl compounds (I-11a) ⁇ (I-11b), carbonyl compounds (I-12a) to (I-12b),
  • the carbonyl compound (I) may be used alone or in combination of two or more.
  • each carbonyl compound (I) has the same effect of improving the stability of the isocyanate compound, so they can be mixed at any ratio and used.
  • isocyanate compound (II) a compound represented by the following general formula (II) (hereinafter sometimes referred to as "isocyanate compound (II)”) is preferably used.
  • R21 , n21" R 21 and n21 are as described in ⁇ Isocyanate compound> in ⁇ Method for producing carbonyl compound>> above.
  • Preferred isocyanate compounds (II) include, for example, 4-isocyanatomethyl-1,8-octamethylene diisocyanate (TTI), 2-isocyanatoethyl-2,6-diisocyanatohexanoate (LTI), lysine methyl Ester Diisocyanate (LDI), Diisocyanatopentane (PDI), Diisocyanatohexane (HDI), Methylenebis(cyclohexylisocyanate) (HMDI), 1,3-bis(isocyanatomethyl)cyclohexane (HXDI), 3-isocyanato methyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI), diisocyanatoxylene (XDI), diisocyanatodiphenylmethane (MDI), diisocyanatotoluene (TDI) and the like.
  • TTI 4-isocyanatomethyl-1,8-oc
  • the isocyanate composition of the present embodiment preferably further contains one or more compounds selected from the group consisting of carbamate compounds and carbonate esters, each at 2.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass or less. .
  • Carbamate compounds and carbonate esters also exhibit the same effects as the carbonyl compound (I) described above.
  • the lower limit of the content of each of the carbamate compound and the carbonate ester is preferably 2.0 ppm by mass, more preferably 3.0 ppm by mass, relative to the total mass of the isocyanate composition. 5.0 ppm by mass is more preferable, and 10 ppm by mass is particularly preferable.
  • the upper limit of the content of each of the carbamate compound and the carbonate ester is preferably 1.0 ⁇ 10 4 ppm by mass and preferably 3.0 ⁇ 10 3 ppm by mass with respect to the total mass of the isocyanate composition. is more preferable, and 1.0 ⁇ 10 3 ppm by mass is even more preferable. That is, the content of each of the carbamate compound and the carbonate ester is preferably 2.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass or less, and 3.0 ppm by mass or more, relative to the total mass of the isocyanate composition.
  • the lower limit of the total content of these compounds is, relative to the total mass of the isocyanate composition, It is preferably 2.0 mass ppm, more preferably 3.0 mass ppm, even more preferably 5.0 mass ppm, and particularly preferably 10 mass ppm.
  • the upper limit of the total content of these compounds is preferably 1.0 ⁇ 10 5 mass ppm, more preferably 1.0 ⁇ 10 4 mass ppm, relative to the total mass of the isocyanate composition.
  • the total content of the carbonyl compound (I), the carbamate compound and the carbonate ester is preferably 2.0 mass ppm or more and 1.0 ⁇ 105 mass ppm or less with respect to the total mass of the isocyanate composition, It is more preferably 3.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less, further preferably 5.0 mass ppm or more and 3.0 ⁇ 10 3 mass ppm or less, and 10 mass ppm or more and 1.0 mass ppm or less. It is particularly preferable to be 0 ⁇ 10 3 ppm by mass or less. When the total content of these compounds is at least the above lower limit, the modification reaction of the isocyanate compound can be further suppressed, while when it is at most the above upper limit, coloring caused by unsaturated bonds is further suppressed. and maintain a better appearance.
  • carbamate compound (III) a compound represented by the following general formula (III) (hereinafter sometimes referred to as “carbamate compound (III)”) is preferably used.
  • n31 is an integer of 1 or more and 8 or less
  • n32 is an integer of 0 or more and 7 or less
  • the sum of n31 and n32 is an integer of 2 or more and 8 or less
  • n31+n32 n11+n12.
  • R 31 , R 31 , n31, n32 are as described in [Carbamate compound (III)] of ⁇ Production method of carbonyl compound>> above.
  • Preferred carbamate compounds (III) include, for example, compounds represented by the following formulas (III-1a) to (III-24b).
  • Each can be
  • carbamate compound (III) may be used alone or in combination of two or more.
  • the effect of improving the stability of the isocyanate compound by each carbamate compound (III) is the same, so they can be used by mixing at any ratio.
  • Carbonate ester a compound represented by the following general formula (IV) (hereinafter sometimes referred to as “carbonate ester (IV)”) is preferably used.
  • R41 and R42 are as described in ⁇ Carbonate ester> in ⁇ Production method of carbonyl compound>> above.
  • Preferred carbonate esters (IV) include, for example, diphenyl carbonate, bis(2-methoxyphenyl) carbonate, bis(2-ethoxyphenyl) carbonate and the like.
  • the isocyanate composition of the present embodiment contains an isocyanate compound, a carbonyl compound (I), and, if necessary, one or more compounds selected from the group consisting of a carbamate compound and a carbonate ester so as to have the above content. can be produced by mixing
  • composition containing the isocyanate compound (II) obtained by thermally decomposing a carbamate compound represented by the following general formula (VI) (hereinafter sometimes referred to as “carbamate compound (VI)”) is prepared in the present practice. It can also be used as an isocyanate composition in the form of
  • the composition containing the isocyanate compound (II) is obtained by thermally decomposing the carbamate compound (VI) in the presence of the carbonate ester (IV) as a solvent.
  • a hydroxy compound is produced as a by-product, it is preferable to proceed with the thermal decomposition reaction while extracting and separating the hydroxy compound.
  • a reaction solution containing carbamate compound (VI) is continuously supplied to a reactor to carry out a thermal decomposition reaction of carbamate compound (VI), and a by-produced hydroxy compound is continuously discharged from the reactor. It is a method of extracting effectively.
  • the thermal decomposition temperature varies depending on the type of carbamate compound (VI) used, but can be, for example, 140° C. or higher and 380° C. or lower.
  • the reaction pressure varies depending on the type of compound used and the reaction temperature, and may be any of reduced pressure, normal pressure, and increased pressure.
  • the pressure can be set to the saturated vapor pressure of the aprotic solvent used, and is preferably in the range of 20 Pa or more and 10 ⁇ 10 6 Pa or less.
  • the reaction time (residence time in the case of a continuous method) is not particularly limited, and can be 0.001 hour or more and 100 hours or less.
  • the above carbonyl compound (I) is presumed to be a reaction product of isocyanate compound (II) and carbonate ester (IV), and is considered to be produced under thermal decomposition reaction conditions. Therefore, the isocyanate composition obtained in the thermal decomposition reaction of carbamate compound (VI) contains a specific amount of carbonyl compound (I).
  • the carbamate compound (III) can also be said to be a reaction intermediate generated from the carbamate compound (VI) before becoming the final product, the isocyanate compound (II).
  • the isocyanate compound (II) By stopping the reaction when the content of the isocyanate compound (II) reaches a specific amount or more, an isocyanate composition containing the carbamate compound (III), which is the reaction intermediate, can be obtained.
  • the isocyanate composition obtained in the thermal decomposition reaction of the carbamate compound (VI) contains the carbonate ester (IV) as a solvent.
  • the carbonate (IV) can be separated from the isocyanate composition such that the content of the carbonate (IV) in the isocyanate composition is within a specified range.
  • the isocyanate compound, the carbonyl compound (I), and, if necessary, one or more compounds selected from the group consisting of carbamate compounds and carbonate esters are mixed so as to have the above-mentioned content, and the present embodiment
  • the carbonyl compound, carbamate compound, and carbonate ester can be produced by the methods shown below.
  • the isocyanate compound the one obtained by thermally decomposing the carbamate compound (VI) can be used after being purified as necessary.
  • Carbonyl compound (I) is a mixture of isocyanate compound (II) and carbonate ester (IV), or a mixture of carbamate compound (III) or carbamate compound (VI) and carbonate ester (IV), or isocyanate compound (II). , carbamate compound (III) or carbamate compound (VI), carbonate ester (IV), and a mixture of hydroxy compounds (these mixtures may hereinafter be referred to as "raw material mixture of carbonyl compound (I)"). By doing so, it is obtained.
  • Examples of the hydroxy compound used herein include the same hydroxy compounds that are by-produced in the thermal decomposition reaction of the carbamate compound (VI), and the details will be described later.
  • the amount (molar amount) of the carbonate ester (IV) used it is preferable to use a large amount of the carbonate solvent from the viewpoint of suppressing side reactions.
  • the stoichiometric ratio of the total molar amount of the carbamate compound (VI) and the isocyanate compound (II) is preferably 0.001 to 100 times, more preferably 0.01 to 80 times, and 0 .1 times or more and 50 times or less are more preferable.
  • the reaction temperature is usually 100° C. or higher and 400° C. or lower, and a high temperature is preferable in order to increase the reaction rate. 130° C. or higher and 300° C. or lower is preferable, and 150° C. or higher and 280° C. or lower is more preferable.
  • a known cooling device or heating device may be installed in the reactor.
  • the reaction pressure varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually carried out in the range of 20 Pa or more and 1 ⁇ 10 6 Pa or less.
  • reaction time is not particularly limited, and is usually 0.001 hours or more and 100 hours or less, preferably 0.01 hours or more and 50 hours or less, and 0.1 hours or more and 10 hours or less. more preferred.
  • the rate and amount of carbonyl compounds produced can be increased by heating the raw material liquid in contact with stainless steel.
  • stainless steel SUS316 or SUS304 can be used regardless of the shape, and for example, fillers and metal pieces are preferably used.
  • the packing is not particularly limited, but DIXON Packing, McMAHON Packing, Coil PACK, MESH RING, CANNON Packing, HELI PACK, RASCHIG RING, PRICKLE RING, etc. are used.
  • the volume of the raw material liquid of the carbonyl compound is V and the surface area of the stainless steel is A
  • the larger the contact area with the stainless steel per unit volume of the raw material liquid the more the value of the carbonyl compound generation rate A/V is 0.001 m 2 . /m 3 or more and 100,000 m 2 /m 3 or less is preferable, 0.01 m 2 /m 3 or more and 50,000 m 2 /m 3 or less is more preferable, and 0.1 m 2 /m 3 or more and 10,000 m 2 /m 3 or less is even more preferable.
  • reaction format is not particularly limited, a reactor capable of efficiently mixing the raw material mixture of the carbonyl compound (I), or the raw material mixture of the carbonyl compound (I) and stainless steel, and heating the reactor is preferable, such as a stainless steel stirring tank or distillation column. A method of heating the raw material liquid at is preferred.
  • the low-boiling component of the liquid after heating the raw material mixture of carbonyl compound (I) may be distilled off, and the distillation method is not particularly limited as long as the low-boiling component can be separated as a gas phase component.
  • a low-boiling component refers to a component having a boiling point lower than that of the carbonyl compound (I), and varies depending on the substance used, but is mainly a group consisting of the carbonate ester (IV), the isocyanate compound (II), and the hydroxy compound. It is one or more compounds selected from
  • the carbamate compound (III) is obtained by mixing and heating the isocyanate compound (II) and the hydroxy compound represented by the formula (V) (hereinafter sometimes referred to as "hydroxy compound (V)"). and a method of thermally decomposing the carbamate compound represented by the formula (VI).
  • the mixing ratio of the isocyanate group of the isocyanate compound (II) to the hydroxyl group of the hydroxy compound (V) is NCO:OH is (n31+n32): Mixing and heating to n31 is preferred.
  • the reaction temperature is usually 40° C. or higher and 400° C. or lower, and a high temperature is preferable in order to increase the reaction rate. 80° C. or higher and 300° C. or lower is preferable, and 100° C. or higher and 250° C. or lower is more preferable.
  • a known cooling device or heating device may be installed in the reactor.
  • the reaction pressure varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually carried out in the range of 20 Pa or more and 1 ⁇ 10 6 Pa or less.
  • reaction time is not particularly limited, and is usually 0.001 hours or more and 100 hours or less, preferably 0.01 hours or more and 50 hours or less, and 0.1 hours or more and 10 hours or less. more preferred.
  • the carbonate ester (IV) can be synthesized, for example, using the methods described in Japanese Patent No. 3071008 (Reference 1) and Japanese Patent No. 4137941 (Reference 2). Specifically, the carbonate ester (IV) is obtained by reacting an aromatic monohydroxy compound with phosgene or a chlorocarbonate of an aromatic monohydroxy compound in the presence of activated carbon while eliminating hydrogen chloride, or Step (1) of reacting an organometallic compound with carbon dioxide to obtain a reaction mixture containing the dialkyl carbonate formed in the reaction; Step (2) of separating the dialkyl carbonate from the reaction mixture to obtain a residual liquid.
  • steps (3) and (4) above can be performed directly or in reverse order, or partially or wholly simultaneously.
  • the isocyanate composition of the present embodiment is sufficiently suppressed in coloration and has excellent storage stability, for example, curing in fields where appearance quality is required, such as baking paints, automobile clear coating materials, and coil coating materials. It is suitably used as a raw material for a drug.
  • Step (1-1) Production Step of Carbamate Compound A reaction was carried out using the apparatus shown in FIG.
  • the apparatus shown in FIG. 1 was also used in the production of carbamate compounds in Example 1-1 and later.
  • With the line 14 closed 3.33 kg (19.2 mol) of 4-aminomethyl-1,8-octanediamine was supplied from the storage tank 101 through the line 11 to the baffled SUS reaction vessel 104.
  • 50 kg (58.5 mol) was supplied from the storage tank 102 through the line 12 to the reaction vessel 104 and stirred to homogenize.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 15.53 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (1-1) As a result of analyzing the solution after the reaction (hereinafter referred to as “reaction solution (1-1)”) by liquid chromatography, the yield of the carbamate compound corresponding to 4-aminomethyl-1,8-octanediamine was 99% by mass. was generated in The line 16 was opened, and the above reaction solution (1-1) was transferred to the storage tank 106 via the line 16 . The mass of the reaction liquid (1-1) was 19.40 kg.
  • the apparatus shown in FIG. 2 was also used for the thermal decomposition of carbamate compounds in Example 1-1 and later.
  • the temperature of the multistage distillation column 203 was raised to 170° C.
  • the jacket temperature of the reaction vessel 201 was heated to 228° C.
  • the pressure was reduced to 14 kPa.
  • 19.40 kg of the reaction liquid (1-1) collected in the storage tank 106 in the step (1-1) is heated to 120° C.
  • reaction solution (1-2) was purified with a column fractionator to isolate the carbonyl compound.
  • the isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-1a) to (I-1c). Also, FIG. 5 shows the 1 H-NMR spectrum of the carbonyl compound.
  • TTI was produced at a yield of 70% by mass.
  • the value of (molar amount of group)+3.times.(molar amount of uretonimine group)+2.times.(molar amount of allophanate group) ⁇ /(molar amount of carbonyl compound) was 3.7.
  • the apparatus shown in FIG. 3 was also used in the low boiling point separation in Example 1-1 and later.
  • the reaction liquid (1-2) was continuously fed at 3.73 kg/hour from the storage tank 205 to the middle stage of the continuous multi-stage distillation column 301 through the line 31, and the liquid phase component was separated by distillation.
  • the amount of heat required for the distillation separation was supplied by circulating the liquid at the bottom of the column through reboiler A32 and line 33.
  • the liquid temperature at the bottom of the continuous multi-stage distillation column was 220°C, and the pressure at the top was 1.5 kPa.
  • reaction liquid (1-3) The liquid collected in the storage tank 303 (hereinafter referred to as "reaction liquid (1-3)") weighed 7.45 kg, and was analyzed by NMR, LC, and gas chromatography, and was found to be the supplied reaction liquid (1-2).
  • TTI was recovered with a yield of 82% by mass, and the reaction solution at this time was ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group )+2 ⁇ (molar amount of allophanate group) ⁇ (molar amount of carbonyl compound) was 4.6.
  • the apparatus shown in FIG. 4 was also used in the high boiling point separation in Example 1-1 and later.
  • a thin film distillation apparatus 401 manufactured by Kobelco Eco-Solutions Co., Ltd., Japan
  • the reaction liquid (1-3) recovered in the storage tank 303 in the step (1-3) is supplied to the upper part of the thin film distillation apparatus 401 at about 1.0 kg/hour through the line 41 to separate the isocyanate and the high-boiling components. gone.
  • the produced gaseous phase component was transferred to storage tank 402 via line 42 and condenser (condenser) A41.
  • the liquid recovered from the storage tank 402 was 3.35 kg, and the recovery rate of TTI was 121% by mass. The reason why the TTI recovery rate exceeds 100% by mass is that part of the isocyanate-modified product produced in the thermal decomposition step or the low boiling point separation step is regenerated into TTI.
  • reaction solution (2-2) Analysis of this reaction solution (hereinafter referred to as “reaction solution (2-2)”) by NMR, LC, and gas chromatography showed that TTI was produced in a yield of 78% by mass.
  • reaction solution (2-2) ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of allophanate group) of the reaction solution at this time molar amount) value was 4.3.
  • Step (2-3) Low boiling point separation step
  • the reaction liquid (2-2) is continuously fed at 4.19 kg/hour, except that the withdrawal rate in the steady state of the line 34 is 1.26 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 is 6.29 kg, and as a result of analysis by NMR, LC, and gas chromatography, TTI was collected with a yield of 77% by mass with respect to the supplied reaction liquid (2-2).
  • the liquid recovered in the storage tank 402 was 3.36 kg, and the recovery rate of TTI was 116% by mass.
  • reaction solution (3-2) Analysis of this reaction solution (hereinafter referred to as “reaction solution (3-2)”) by NMR, LC, and gas chromatography showed that TTI was produced in a yield of 73% by mass.
  • reaction solution (3-2) ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of allophanate group) of the reaction solution at this time molar amount) value was 3.9.
  • Step (3-3) Low boiling point separation step
  • the reaction liquid (3-2) is continuously fed at 4.42 kg/hour, and the withdrawal rate in the steady state of the line 34 is 1.42 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the amount of the liquid recovered in the storage tank 303 was 7.08 kg, and as a result of analysis by NMR, LC, and gas chromatography, TTI was recovered with a yield of 80% by mass with respect to the supplied reaction liquid (3-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 5.5.
  • Step (3-4) High boiling point separation step High boiling point separation was performed in the same manner as in Example 1-1, except that the liquid collected in the storage tank 303 in step (3-3) was used.
  • the liquid recovered in the storage tank 402 was 3.35 kg, and the recovery rate of TTI was 119% by mass.
  • reaction solution (4-2) Analysis of this reaction solution (hereinafter referred to as “reaction solution (4-2)”) by NMR, LC, and gas chromatography showed that TTI was produced in a yield of 79% by mass.
  • reaction solution (4-2) ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of allophanate group) of the reaction solution at this time molar amount) value was 1.6.
  • Step (4-3) Low boiling point separation step
  • the reaction liquid (4-2) is continuously fed at 4.42 kg/hour, and the withdrawal rate in the steady state of the line 34 is 1.68 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 8.41 kg, and as a result of analysis by NMR, LC, and gas chromatography, TTI was collected with a yield of 85% by mass with respect to the supplied reaction liquid (4-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 2.6.
  • Step (4-4) High boiling point separation step High boiling point separation was performed in the same manner as in Example 1-1, except that the liquid recovered in the storage tank 303 in step (4-3) was used.
  • the liquid recovered in the storage tank 402 was 4.05 kg, and the recovery rate of TTI was 125% by mass.
  • Step (5-1) Carbamate Compound Production Step 0.23 kg (69.2 mol) of urea was used instead of diphenyl carbonate, 25.87 kg (275.2 mol) of phenol was supplied to storage tank 102, A carbamate was synthesized in the same manner as in Example 1-1, except that the reaction temperature was changed to 240° C. and the mixture was stirred for 30 minutes. The amount of phenol and ammonia withdrawn into the storage tank 107 was 24.14 kg.
  • reaction solution (5-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction solution (5-1)") by liquid chromatography, the corresponding carbamate compound was produced with a yield of 99% by mass.
  • Line 16 was opened, and the reaction solution (5-1) was transferred to storage tank 106 via line 16 .
  • the mass of the reaction liquid (5-1) was 10.79 kg.
  • reaction solution (5-2) Analysis of this reaction solution (hereinafter referred to as “reaction solution (5-2)”) by NMR, LC, and gas chromatography showed that TTI was produced in a yield of 78% by mass.
  • reaction solution (5-2) ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of allophanate group) of the reaction solution at this time molar amount) value was 1.5.
  • Step (5-3) Low boiling point separation step
  • the reaction liquid (5-2) is continuously fed at 4.27 kg/hour, except that the withdrawal rate in the steady state of the line 34 is 1.75 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 8.75 kg, and as a result of analysis by NMR, LC, and gas chromatography, TTI was collected with a yield of 84% by mass with respect to the supplied reaction liquid (5-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 2.5.
  • Step (5-4) High boiling point separation step High boiling point separation was performed in the same manner as in Example 1-1, except that the liquid recovered in the storage tank 303 in step (5-3) was used.
  • the liquid recovered in the storage tank 402 was 4.05 kg, and the recovery rate of TTI was 128% by mass.
  • Step (6-1) Carbamate Compound Production Step Instead of phenol, 12.40 kg (58.5 mol) of 4-cumylphenol was supplied to the baffled SUS reactor 104, and 4-cumylphenol was added instead of phenol. Carbamate synthesis was carried out in the same manner as in Example 1-5, except that 18.97 kg (89.47 mol) was supplied to the baffled SUS reactor 105. The amount of 4-cumylphenol and ammonia discharged into the storage tank 107 was 16.97 kg.
  • reaction liquid (6-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (6-1)") by liquid chromatography, the corresponding carbamate compound was produced with a yield of 99% by mass.
  • the line 16 was opened, and the reaction solution (6-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (6-1) was 17.96 kg.
  • reaction solution (6-2) Analysis of this reaction solution (hereinafter referred to as “reaction solution (6-2)”) by NMR, LC, and gas chromatography showed that TTI was produced in a yield of 75% by mass.
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of allophanate group) of the reaction solution at this time molar amount) value was 1.4.
  • a carbonyl compound was isolated by purifying a portion of the reaction solution (6-2) with a column preparative device. The isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-3a) to (I-3c).
  • the reaction liquid (6-2) is continuously fed at 16.10 kg/hour, and the withdrawal rate in line 34 in a steady state is 15.77 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 31.55 kg, and as a result of analysis by NMR, LC, and gas chromatography, TTI was collected with a yield of 95% by mass with respect to the supplied reaction liquid (6-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 1.6.
  • the liquid recovered in the storage tank 402 was 4.19 kg, and the recovery rate of TTI was 122% by mass.
  • Step (1′-2) Thermal decomposition step of carbamate compound 19.4 kg of the reaction solution (1-1) of Example 1-1 and barrel process oil B-03 (benzyl toluene, Matsumura Oil Co., Ltd.) were added to 5. Using 45 kg, the reaction liquid (1-1) was supplied to the reactor over about 14 minutes to start the reaction, the jacket temperature was 238 ° C., the internal temperature was 230 ° C., the reflux ratio was 1.5, and the pressure was 25 to 35 kPa. A thermal decomposition reaction was carried out in the same manner as in Example 1-1, except that the reaction was carried out within the range and the extraction of phenol was continued for 1.5 hours after the reaction liquid (1-1) was completely transferred.
  • barrel process oil B-03 benzyl toluene, Matsumura Oil Co., Ltd.
  • reaction solution (1′-2) The mass of the reaction liquid transferred to the storage tank 205 was 5.71 kg. Analysis of this reaction solution (hereinafter referred to as “reaction solution (1′-2)”) by NMR, LC, and gas chromatography revealed that TTI was produced with a yield of 69% by mass. No carbonyl compound was produced in the reaction solution at this time, and by-products having isocyanurate groups, carbodiimide groups, uretonimine groups and allophanate groups were found.
  • Step (1′-3) Low boiling point separation step
  • the reaction liquid (1′-2) is continuously fed at 4.35 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.74 kg/hour. Except for this, when low boiling point separation was carried out in the same manner as in Example 1-1, the liquid became highly viscous during operation, making it difficult to continue operation.
  • Step (7-1) Production Step of Carbamate Compound A reaction was carried out using the apparatus shown in FIG. With the line 14 closed, 3.33 kg (16.8 mol) of 4,4'-diaminodiphenylmethane was supplied from the storage tank 101 through the line 11 to the baffled SUS reaction vessel 104, and 2.53 kg (27.8 mol) of phenol was added. 0 mol) was supplied from the storage tank 102 to the reaction vessel 104 through the line 12, and was homogenized by stirring.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 7.58 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (7-1) a carbamate compound corresponding to 4,4′-diaminodiphenylmethane was produced with a yield of 95% by mass. rice field.
  • Line 16 was opened, and the reaction solution (7-1) was transferred to storage tank 106 via line 16 .
  • the mass of the reaction liquid (7-1) was 12.77 kg.
  • Step (7-2) Thermal Decomposition Step of Carbamate Compound Using 12.77 kg of reaction liquid (7-1) and 12.77 kg of diphenyl carbonate, reaction liquid (7-1) was added to the reactor over about 10 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 0.8, and a pressure of 11 to 16 kPa. A pyrolysis reaction was carried out in the same manner as in Example 1-1, except that the extraction of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 11.75 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (7-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-2).
  • Step (7-3) Low boiling point separation step
  • the reaction liquid (7-2) is continuously fed at 2.35 kg/hour, except that the withdrawal rate in the steady state of the line 34 is 1.97 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 9.87 kg, and as a result of analysis by NMR, LC, and gas chromatography, MDI was collected with a yield of 79% by mass with respect to the supplied reaction liquid (7-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 2.3.
  • Step (7-4) High boiling point separation step Example 1-1 except that the liquid recovered in the storage tank 303 in the step (7-3) was used, the operating temperature was 170 ° C., and the internal pressure was 0.3 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid collected in the storage tank 402 was 4.54 kg, and the recovery rate of MDI was 130% by mass.
  • Step (8-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (16.8 mol) of lysine ⁇ -aminoethyl ester trihydrochloride is transferred from the storage tank 101 through the line 11 to a baffled SUS Then, 2.52 kg (26.7 mol) of phenol was supplied from the storage tank 102 to the reaction vessel 104 through the line 12, and stirred to homogenize. Next, with the line 16 closed, 2.52 kg (26.7 mol) of phenol was supplied from the storage tank 102 through the line 15 to the baffled SUS reaction vessel 105, and 11.91 kg (55.6 mol) of diphenyl carbonate was added.
  • reaction solution (8-1) Liquid chromatography analysis of the solution after the reaction (hereinafter referred to as “reaction solution (8-1)”) revealed that a carbamate compound corresponding to lysine ⁇ -aminoethyl ester was produced at a yield of 96% by mass. .
  • the line 16 was opened and the above reaction liquid (8-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (8-1) was 11.45 kg.
  • Step (8-2) Thermal Decomposition Step of Carbamate Compound Using 11.45 kg of reaction liquid (8-1) and 10.00 kg of diphenyl carbonate, reaction liquid (8-1) was added to the reactor over about 15 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 3.2, and a pressure of 11 to 16 kPa. A pyrolysis reaction was carried out in the same manner as in Example 1-1, except that the extraction of was continued. The mass of the reaction liquid transferred to the storage tank 205 (hereinafter referred to as "reaction liquid (8-2)”) was 9.01 kg.
  • FIGS. 6A and 6B The results of 1 H-NMR and gas chromatography-mass spectrometry of the reaction solution (8-2) are shown in FIGS. 6A and 6B, respectively. Further, a carbonyl compound was isolated by purifying a portion of the reaction solution (8-2) with a column preparative device. The isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-4a) to (I-4c).
  • Step (8-3) Low boiling point separation step
  • the reaction liquid (8-2) is continuously fed at 1.80 kg/hour, except that the withdrawal rate in the steady state of the line 34 is 1.10 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1. 5.50 kg of the liquid collected in the storage tank 303 was analyzed by NMR, LC, and gas chromatography, and LTI was collected with a yield of 83% by mass with respect to the supplied reaction liquid (8-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 2.4.
  • Step (8-4) High boiling point separation step Example 1-1 except that the liquid recovered in the storage tank 303 in the step (8-3) was used, the operating temperature was 190 ° C., and the internal pressure was 0.1 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid collected in the storage tank 402 was 2.38 kg, and the recovery rate of LTI was 125% by mass.
  • Step (9-1) Carbamate Compound Production Step Instead of phenol, 0.84 kg (6.75 mol) of 2-methoxyphenol was supplied to the baffled SUS reactor 104, and 0.84 kg (6.75 mol) of 2-methoxyphenol was added instead of phenol. Same as Example 1-8, except that 84 kg (6.75 mol) was supplied to the baffled SUS reactor 105 with 15.26 kg (55.6 mol) of bis(2-methoxyphenyl) carbonate instead of diphenyl carbonate. Carbamate synthesis was carried out by the procedure of . The amount of 2-methoxyphenol withdrawn into the storage tank 107 was 6.35 kg.
  • reaction liquid (9-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (9-1)") by liquid chromatography, the corresponding carbamate compound was produced with a yield of 98% by mass.
  • Line 16 was opened, and the reaction solution (9-1) was transferred to storage tank 106 via line 16 .
  • the mass of the reaction liquid (9-1) was 13.95 kg.
  • Step (9-2) Thermal Decomposition Step of Carbamate Compound Using 14.0 kg of reaction solution (9-1) and 8.0 kg of bis(2-methoxyphenyl)carbonate, about 14 kg of reaction solution (9-1) was used. The reaction was started by supplying the reaction mixture to the reactor over a period of minutes, and the reaction was performed at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 3.0, and a pressure of 8 to 13 kPa. A pyrolysis reaction was carried out in the same manner as in Example 1-8, except that extraction of 2-methoxyphenol was continued for 3 hours after transfer. The mass of the reaction liquid transferred to the storage tank 205 was 12.05 kg.
  • reaction solution (9-2) Analysis of this reaction solution (hereinafter referred to as "reaction solution (9-2)") by NMR, LC, and gas chromatography showed that LTI was produced in a yield of 78% by mass.
  • a carbonyl compound was isolated by purifying a portion of the reaction solution (9-2) with a column preparative device. The isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-5a) to (I-5c).
  • Step (9-3) Low boiling point separation step
  • the reaction liquid (9-2) was continuously fed at a pressure of 1.0 kPa at a rate of 2.41 kg/hour, and the withdrawal rate in line 34 in a steady state was 1.0 kPa.
  • Light boiling separation was performed in the same manner as in Example 1-1 except that the rate was 16 kg/hour.
  • the liquid collected in the storage tank 303 was 5.79 kg, and as a result of analysis by NMR, LC, and gas chromatography, LTI was collected with a yield of 85% by mass with respect to the supplied reaction liquid (9-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 2.2.
  • Step (9-4) High boiling point separation step High boiling point separation was performed in the same manner as in Example 1-1 except that the liquid collected in the storage tank 303 in step (9-3) was used.
  • the liquid collected in the storage tank 402 was 2.43 kg, and the recovery rate of LTI was 123% by mass.
  • Step (10-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (14.3 mol) of lysine methyl ester dihydrochloride is transferred from the storage tank 101 through the line 11 into the baffled SUS reaction vessel 104. , 1.91 kg (20.3 mol) of phenol was supplied from the storage tank 102 to the reaction vessel 104 through the line 12 and stirred to homogenize. Next, with the line 16 closed, 1.91 kg (20.3 mol) of phenol was supplied from the storage tank 102 through the line 15 to the baffled SUS reaction vessel 105, and 10.17 kg (47.5 mol) of diphenyl carbonate was added. was supplied from the storage tank 103 to the reaction vessel 105 through the line 13 .
  • reaction solution (10-1) a carbamate compound corresponding to lysine methyl ester was produced with a yield of 97% by mass.
  • the line 16 was opened and the above reaction liquid (10-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (10-1) was 11.38 kg.
  • Step (10-2) Thermal Decomposition Step of Carbamate Compound Using 11.38 kg of reaction liquid (10-1) and 11.38 kg of diphenyl carbonate, reaction liquid (10-1) was added to the reactor over about 12 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 0.9, and a pressure of 20 to 29 kPa. A pyrolysis reaction was carried out in the same manner as in Example 1-1, except that the extraction of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 19.35 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (10-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-7a) to (I-7b).
  • LC calibration curve was created from the obtained carbonyl compounds, and the carbonyl compounds were quantified by the absolute calibration curve method. Further, as a result of analysis by NMR and gas chromatography, lysine diisocyanate (LDI) was produced with a yield of 81% by mass. ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (molar amount of allophanate group) of the reaction solution at this time molar amount) value was 1.4.
  • Step (10-3) Low boiling point separation step
  • the reaction liquid (10-2) is continuously fed at 3.87 kg/hour, except that the withdrawal rate in the steady state of line 34 is 1.47 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 7.35 kg, and as a result of analysis by NMR, LC, and gas chromatography, LDI was collected with a yield of 86% by mass with respect to the supplied reaction liquid (10-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 2.5.
  • Step (10-4) High boiling point separation step Example 1-1 except that the liquid recovered in the storage tank 303 in the step (10-3) was used, the operating temperature was 180 ° C., and the internal pressure was 0.1 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid collected in the storage tank 402 was 4.57 kg, and the recovery rate of LDI was 122% by mass.
  • Step (11-1) Carbamate Compound Production Step Instead of lysine methyl ester dihydrochloride, 3.33 kg (13.5 mol) of lysine ethyl ester dihydrochloride and 1.70 kg (18.04 mol) of phenol were added to a baffled SUS. The same as in Example 1-10 except that 1.70 kg (18.04 mol) of phenol and 9.59 kg (44.81 mol) of diphenyl carbonate were supplied to the baffled SUS reactor 105. Carbamate synthesis was carried out by the procedure of . The amount of phenol drawn out to the storage tank 107 was 5.59 kg.
  • reaction liquid (11-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (11-1)") by liquid chromatography, the corresponding carbamate compound was produced with a yield of 97% by mass.
  • the line 16 was opened, and the reaction liquid (11-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (11-1) was 10.74 kg.
  • reaction solution (11-2) Analysis of this reaction solution (hereinafter referred to as “reaction solution (11-2)”) by NMR, LC, and gas chromatography showed that LDI-Et was produced with a yield of 82% by mass.
  • a carbonyl compound was isolated by purifying a portion of the reaction solution (11-2) with a column preparative device. The isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-10a) to (I-10b).
  • the reaction liquid (11-2) is continuously fed at 3.65 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.31 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 6.57 kg, and as a result of analysis by NMR, LC, and gas chromatography, LDI-Et was collected with a yield of 85% by mass with respect to the supplied reaction liquid (11-2).
  • reaction solution ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ / ( The molar amount of carbonyl compound) value was 2.2.
  • the liquid recovered in the storage tank 402 was 4.10 kg, and the recovery rate of LDI-Et was 120% by mass.
  • Step (12-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (15.8 mol) of 4,4′-methylenebis(cyclohexylamine) is transferred from the storage tank 101 through the line 11 to a baffled SUS. 2.29 kg (24.4 mol) of phenol was supplied from the storage tank 102 through the line 12 to the reaction vessel 104 and stirred to homogenize. Next, with the line 16 closed, 2.29 kg (24.4 mol) of phenol was supplied from the storage tank 102 through the line 15 to the baffled SUS reaction vessel 105, and 11.27 kg (52.7 mol) of diphenyl carbonate was added. was supplied from the storage tank 103 to the reaction vessel 105 through the line 13 .
  • reaction solution (12-1) a carbamate compound corresponding to 4,4′-methylenebis(cyclohexylamine) was obtained in a yield of 99% by mass. had generated.
  • the line 16 was opened and the above reaction liquid (12-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (12-1) was 12.24 kg.
  • Step (12-2) Thermal Decomposition Step of Carbamate Compound Using 12.24 kg of reaction liquid (12-1) and 12.24 kg of diphenyl carbonate, reaction liquid (12-1) was added to the reactor over about 10 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.5, and a pressure of 11 to 16 kPa. A pyrolysis reaction was carried out in the same manner as in Example 1-1, except that the extraction of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 9.79 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (12-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-16).
  • Step (12-3) Low boiling point separation step
  • the reaction liquid (12-2) is continuously fed at 1.96 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.65 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1. 8.22 kg of the liquid recovered in the storage tank 303 was analyzed by NMR, LC, and gas chromatography. As a result, HMDI was recovered with a yield of 82% by mass with respect to the supplied reaction liquid (12-2).
  • Step (12-4) High boiling point separation step Example 1-1 except that the liquid recovered in the storage tank 303 in the step (12-3) was used, the operating temperature was 190 ° C., and the internal pressure was 0.3 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid collected in the storage tank 402 was 4.85 kg, and the recovery rate of HMDI was 125% by mass.
  • Step (13-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (23.1 mol) of 1,3-di(aminomethyl)cyclohexane is transferred from the storage tank 101 through the line 11 into a baffled SUS. Then, 4.11 kg (43.7 mol) of phenol was supplied from the storage tank 102 to the reaction vessel 104 through the line 12 and stirred to homogenize. Next, with the line 16 closed, 4.11 kg (43.7 mol) of phenol was supplied from the storage tank 102 through the line 15 to the baffled SUS reaction vessel 105, and 16.44 kg (76.8 mol) of diphenyl carbonate was added.
  • reaction solution (13-1) As a result of liquid chromatography analysis of the solution after the reaction (hereinafter also referred to as “reaction solution (13-1)”), a carbamate compound corresponding to 1,3-di(aminomethyl)cyclohexane was obtained at a yield of 99% by mass. had generated.
  • the line 16 was opened and the above reaction liquid (13-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (13-1) was 16.24 kg.
  • Step (13-3) Low boiling point separation step
  • the reaction liquid (13-2) is continuously fed at 2.79 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.90 kg/hour.
  • Low boiling point separation was performed in the same manner as in Example 1-1.
  • the liquid collected in the storage tank 303 was 9.50 kg, and as a result of analysis by NMR, LC, and gas chromatography, HXDI was collected with a yield of 77% by mass with respect to the supplied reaction liquid (13-2).
  • ⁇ 3 ⁇ (molar amount of isocyanurate group) + 2 ⁇ (molar amount of carbodiimide group) + 3 ⁇ (molar amount of uretonimine group) + 2 ⁇ (molar amount of allophanate group) ⁇ ⁇ (carbonyl compound (molar amount of) was 3.6.
  • Step (13-4) High boiling point separation step Example 1-1 except that the liquid recovered in the storage tank 303 in the step (13-3) was used, the operating temperature was 190 ° C., and the internal pressure was 0.3 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid recovered in the storage tank 402 was 4.93 kg, and the recovery rate of HXDI was 122% by mass.
  • Step (1-1) Production Step of Carbamate Compound A reaction was carried out using the apparatus shown in FIG. The apparatus shown in FIG. 1 was also used in the production of carbamate compounds in Synthesis Example 1-1 and later. With the line 14 closed, 3.33 kg (19.2 mol) of 4-aminomethyl-1,8-octanediamine was supplied from the storage tank 101 through the line 11 to the baffled SUS reaction vessel 104.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 15.53 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (1-1) As a result of analyzing the solution after the reaction (hereinafter referred to as “reaction solution (1-1)”) by liquid chromatography, the yield of the carbamate compound corresponding to 4-aminomethyl-1,8-octanediamine was 99% by mass. was generated in The line 16 was opened, and the above reaction solution (1-1) was transferred to the storage tank 106 via the line 16 . The mass of the reaction liquid (1-1) was 19.40 kg.
  • Step (1-2): Thermal Decomposition Step of Carbamate Compound A reaction was carried out using the apparatus shown in FIG. The apparatus shown in FIG. 2 was also used for the thermal decomposition of the carbamate compounds in Synthesis Example 1-1 and later.
  • the line 24 closed 19.40 kg of diphenyl carbonate was supplied from the storage tank 202 through the line 22 to the baffled SUS reaction vessel 201 .
  • the temperature of the multistage distillation column 203 was raised to 170° C., the jacket temperature of the reaction vessel 201 was heated to 228° C., and the pressure was reduced to 14 kPa. 19.40 kg of the reaction liquid (1-1) collected in the storage tank 106 in the step (1-1) is heated to 120° C.
  • reaction solution (1-2) A part of this reaction solution (hereinafter referred to as “reaction solution (1-2)”) was purified with a column fractionator to isolate the carbonyl compound.
  • the isolated carbonyl compound is a mixture of compounds represented by the following formulas (I-1a) to (I-1c) (hereinafter, this mixture may be referred to as "mixture (I-1)"). Met.
  • TTI was produced with a yield of 70% by mass.
  • the apparatus shown in FIG. 3 was also used in the low boiling point separation in Synthesis Example 1-1 and later.
  • the reaction liquid (1-2) was continuously fed at 3.73 kg/hour from the storage tank 205 to the middle stage of the continuous multi-stage distillation column 301 through the line 31, and the liquid phase component was separated by distillation.
  • the amount of heat required for the distillation separation was supplied by circulating the liquid at the bottom of the column through reboiler A32 and line 33.
  • the liquid temperature at the bottom of the continuous multi-stage distillation column was 220°C, and the pressure at the top was 1.5 kPa.
  • reaction liquid (1-3) The liquid collected in the storage tank 303 (hereinafter referred to as "reaction liquid (1-3)") weighed 7.45 kg, and was analyzed by NMR, LC, and gas chromatography, and was found to be the supplied reaction liquid (1-2). TTI was recovered with a yield of 82% by weight.
  • the apparatus shown in FIG. 4 was also used in the high boiling point separation in Synthesis Example 1-1 and later.
  • a thin film distillation apparatus 401 manufactured by Kobelco Eco-Solutions Co., Ltd., Japan
  • the reaction liquid (1-3) recovered in the storage tank 303 in the step (1-3) is supplied to the upper part of the thin film distillation apparatus 401 at about 1.0 kg/hour through the line 41 to separate the isocyanate and the high-boiling components. gone.
  • the produced gaseous phase component was transferred to storage tank 402 via line 42 and condenser (condenser) A41.
  • the liquid recovered from the storage tank 402 was 3.35 kg, and the recovery rate of TTI was 121% by mass. The reason why the TTI recovery rate exceeds 100% by mass is that part of the isocyanate-modified product produced in the thermal decomposition step or the low boiling point separation step is regenerated into TTI.
  • Step (4-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (16.8 mol) of lysine ⁇ -aminoethyl ester trihydrochloride is transferred from the storage tank 101 through the line 11 to a baffled SUS Then, 2.52 kg (26.7 mol) of phenol was supplied from the storage tank 102 to the reaction vessel 104 through the line 12, and stirred to homogenize.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 8.22 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (4-1) Liquid chromatography analysis of the solution after the reaction (hereinafter referred to as “reaction solution (4-1)”) revealed that a carbamate compound corresponding to lysine ⁇ -aminoethyl ester was produced at a yield of 96% by mass. .
  • Line 16 was opened, and the reaction solution (4-1) was transferred to storage tank 106 via line 16 .
  • the mass of the reaction liquid (4-1) was 11.45 kg.
  • Step (4-2) Thermal Decomposition Step of Carbamate Compound Using 11.45 kg of reaction solution (4-1) and 10.00 kg of diphenyl carbonate, reaction solution (4-1) was added to the reactor over about 15 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 3.2, and a pressure of 11 to 16 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 9.01 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (4-2)”) was purified with a column fractionator to isolate the carbonyl compound.
  • reaction solution (4-2) was purified with a column fractionator to isolate the carbonyl compound.
  • the isolated carbonyl compound was a mixture of compounds represented by the following formulas (I-4a) to (I-4c). (Hereinafter, this mixture may be referred to as "mixture (I-4)".) Further, as a result of analysis by NMR and gas chromatography, lysine triisocyanate (LTI) was produced with a yield of 77% by mass. rice field.
  • Step (4-3) Low boiling point separation step
  • the reaction liquid (4-2) is continuously fed at 1.80 kg/hour, and the withdrawal rate in the steady state of the line 34 is 1.10 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 5.50 kg, and as a result of analysis by NMR, LC, and gas chromatography, LTI was collected with a yield of 83% by mass with respect to the supplied reaction liquid (4-2).
  • the liquid collected in the storage tank 402 was 2.38 kg, and the recovery rate of LTI was 125% by mass.
  • Step (6-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (14.3 mol) of lysine methyl ester dihydrochloride is transferred from the storage tank 101 through the line 11 into the baffled SUS reaction vessel 104. , 1.91 kg (20.3 mol) of phenol was supplied from the storage tank 102 to the reaction vessel 104 through the line 12 and stirred to homogenize.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, so that 5.93 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (6-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction solution (6-1)") by liquid chromatography, a carbamate compound corresponding to lysine methyl ester was produced with a yield of 97% by mass.
  • Line 16 was opened, and the reaction solution (6-1) was transferred to storage tank 106 via line 16 .
  • the mass of the reaction liquid (6-1) was 11.38 kg.
  • reaction solution (6-2) Thermal Decomposition Step of Carbamate Compound Using 11.38 kg of reaction liquid (6-1) and 11.38 kg of diphenyl carbonate, reaction liquid (6-1) was added to the reactor over about 12 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 0.9, and a pressure of 20 to 29 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 19.35 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (6-2)”) was purified with a column fractionator to isolate the carbonyl compound.
  • the isolated carbonyl compound is a mixture of compounds represented by the following formulas (I-7a) to (I-7b) (hereinafter, this mixture may be referred to as "mixture (I-7)”) Met. Further, as a result of analysis by NMR and gas chromatography, lysine diisocyanate (LDI) was produced with a yield of 81% by mass.
  • the reaction liquid (6-2) is continuously fed at 3.87 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.47 kg/hour. Except for this, light boiling point separation was carried out in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 7.35 kg, and as a result of analysis by NMR, LC, and gas chromatography, LDI was collected with a yield of 86% by mass with respect to the supplied reaction liquid (6-2).
  • the liquid collected in the storage tank 402 was 4.57 kg, and the recovery rate of LDI was 122% by mass.
  • Step (9-1) Carbamate Compound Production Step Instead of 4-aminomethyl-1,8-octanediamine, 3.33 kg of hexamethylenediamine and 20.40 kg of diphenyl carbonate were used, and 5.50 kg of phenol was added.
  • the corresponding carbamate was synthesized from hexamethylenediamine in the same manner as in step (1-1), except that 5.50 kg of phenol was mixed with hexamethylenediamine and supplied to the reactor, and the reaction solution was heated to 120°C. Then, 15.42 kg of phenol in the liquid was extracted by setting the internal pressure to 1.0 kPa.
  • reaction liquid (9-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (9-1)") by liquid chromatography, a carbamate compound corresponding to hexamethylenediamine was produced with a yield of 99% by mass.
  • the mass of the reaction liquid (9-1) was 19.31 kg.
  • Step (9-2) Thermal Decomposition Step of Carbamate Compound Using 19.31 kg of reaction liquid (9-1) and 19.31 kg of diphenyl carbonate, reaction liquid (9-1) was added to the reactor over about 15 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 2.2, and a pressure of 20 to 29 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction solution after the reaction (hereinafter referred to as “reaction solution (9-2)”) was 33.22 kg. The carbonyl compound of the reaction solution (9-2) was isolated. The isolated carbonyl compound was a compound represented by the following formula (I-20).
  • HDI hexamethylene diisocyanate
  • Step (9-3) Low boiling point separation step
  • the reaction liquid (9-2) is continuously fed at 6.64 kg/hour, and the withdrawal rate in line 34 in a steady state is 0.930 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 4.65 kg, and as a result of analysis by NMR, LC, and gas chromatography, HDI was collected with a yield of 83% by mass with respect to the supplied reaction liquid (9-2).
  • Step (9-4) High boiling point separation step Synthesis Example 1-1 except that the liquid recovered in the storage tank 303 in the step (9-3) was used, the operating temperature was 170 ° C., and the internal pressure was 0.1 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid collected in the storage tank 402 was 3.55 kg, and the recovery rate of HDI was 122% by mass.
  • Step (10-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (15.8 mol) of 4,4′-methylenebis(cyclohexylamine) is transferred from the storage tank 101 through the line 11 into a baffled SUS. 2.29 kg (24.4 mol) of phenol was supplied from the storage tank 102 through the line 12 to the reaction vessel 104 and stirred to homogenize.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 6.94 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (10-1) a carbamate compound corresponding to 4,4′-methylenebis(cyclohexylamine) was obtained at a yield of 99% by mass. had generated.
  • the line 16 was opened and the above reaction liquid (10-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (8-1) was 12.24 kg.
  • Step (10-2) Thermal Decomposition Step of Carbamate Compound Using 12.24 kg of reaction liquid (10-1) and 12.24 kg of diphenyl carbonate, reaction liquid (10-1) was added to the reactor over about 10 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.5, and a pressure of 11 to 16 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 9.79 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (10-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-16).
  • HMDI methylenebis(cyclohexylisocyanate)
  • Step (10-3) Low boiling point separation step
  • the reaction liquid (10-2) is continuously fed at 1.96 kg/hour, and the withdrawal rate in the steady state of the line 34 is 1.65 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 8.22 kg, and as a result of analysis by NMR, LC, and gas chromatography, HMDI was collected with a yield of 82% by mass with respect to the supplied reaction liquid (10-2).
  • Step (10-4) High-boiling separation step Synthesis Example 1-1 except that the liquid recovered in the storage tank 303 in the step (10-3) was used, the operating temperature was 190 ° C., and the internal pressure was 0.3 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid collected in the storage tank 402 was 4.85 kg, and the recovery rate of HMDI was 125% by mass.
  • Step (11-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (23.1 mol) of 1,3-di(aminomethyl)cyclohexane is transferred from the storage tank 101 through the line 11 into a baffled SUS. Then, 4.11 kg (43.7 mol) of phenol was supplied from the storage tank 102 to the reaction vessel 104 through the line 12 and stirred to homogenize.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 11.74 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (11-1) As a result of analyzing the solution after the reaction (hereinafter also referred to as “reaction solution (11-1)”) by liquid chromatography, the yield of the carbamate compound corresponding to 1,3-di(aminomethyl)cyclohexane was 99% by mass. was generated in The line 16 was opened and the above reaction liquid (11-1) was transferred to the storage tank 106 via the line 16. The mass of the reaction liquid (11-1) was 16.24 kg.
  • reaction solution (11-2) Thermal Decomposition Step of Carbamate Compound Using 16.24 kg of reaction liquid (11-1) and 16.24 kg of diphenyl carbonate, reaction liquid (11-1) was added to the reactor over about 15 minutes. The reaction was started by supplying the reaction solution (11-1) at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.0, and a pressure of 11 to 16 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the extraction of phenol was continued. The mass of the reaction liquid transferred to the storage tank 205 was 13.97 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (11-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-19).
  • the reaction liquid (11-2) is continuously fed at 2.79 kg/hour, except that the withdrawal rate in the steady state of line 34 is 1.90 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 9.50 kg, and as a result of analysis by NMR, LC, and gas chromatography, HXDI was collected with a yield of 77% by mass with respect to the supplied reaction liquid (11-2).
  • the liquid collected in the storage tank 402 was 4.93 kg, and the recovery rate of HMDI was 122% by mass.
  • Step (12-1) Carbamate Compound Production Step Instead of 4-aminomethyl-1,8-octanediamine, 3.33 kg of 1,5-diaminopentane and 23.20 kg of diphenyl carbonate were used, and phenol 6 .48 kg of 1,5-diaminopentane was mixed with 1,5-diaminopentane, and 6.48 kg of phenol was fed to the reactor in the same manner as in step (1-1) of Synthesis Example 1-1 to obtain 1,5-diaminopentane. 18.01 kg of phenol in the liquid was extracted by heating the reaction liquid to 120° C. and adjusting the internal pressure to 1.0 kPa.
  • reaction solution (12-1) Liquid chromatography analysis of the solution after the reaction (hereinafter referred to as “reaction solution (12-1)”) revealed that a carbamate compound corresponding to 1,5-diaminopentane was produced at a yield of 99% by mass. .
  • the amount of 1,5-diaminopentane in the reaction liquid (12-1) was 21.48 kg.
  • Step (12-2) Thermal Decomposition Step of Carbamate Compound Using 21.48 kg of reaction liquid (12-1) and 21.48 kg of diphenyl carbonate, reaction liquid (12-1) was added to the reactor over about 11 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.5, and a pressure of 20 to 29 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid after the reaction was 37.38 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (12-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-21).
  • Step (12-3) Low boiling point separation step
  • the reaction liquid (12-2) is continuously fed at 7.48 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.20 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 5.98 kg, and as a result of analysis by NMR, LC, and gas chromatography, PDI was collected with a yield of 87% by mass with respect to the supplied reaction liquid (12-2).
  • Step (12-4) High-boiling separation step Synthesis Example 1-1 except that the liquid recovered in the storage tank 303 in the step (12-3) was used, the operating temperature was 160 ° C., and the internal pressure was 0.3 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid recovered in the storage tank 402 was 3.53 kg, and the recovery rate of PDI was 115%.
  • Step (13-1) Carbamate Compound Production Step 3.33 kg of isophoronediamine and 13.92 kg of diphenyl carbonate were used in place of 4-aminomethyl-1,8-octanediamine, and 3.22 kg of phenol was replaced with isophorone.
  • the corresponding carbamate was synthesized from isophoronediamine in the same manner as in step (1-1) of Synthesis Example 1-1, except that 3.22 kg of phenol was mixed with diamine and supplied to the reactor. 9.4 kg of phenol in the liquid was extracted by raising the temperature to °C and setting the internal pressure to 1.0 kPa.
  • reaction liquid (13-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (13-1)") by liquid chromatography, a carbamate compound corresponding to isophoronediamine was produced with a yield of 99% by mass.
  • the mass of the reaction liquid (13-1) was 14.29 kg.
  • reaction solution (13-2) Thermal Decomposition Step of Carbamate Compound Using 14.29 kg of reaction liquid (13-2) and 14.29 kg of diphenyl carbonate, reaction liquid (13-2) was added to the reactor over about 11 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.9, and a pressure of 20 to 29 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid after the reaction was 23.44 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (13-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound is a mixture of compounds represented by the following formulas (I-22a) to (I-22b) (hereinafter, this mixture may be referred to as "mixture (I-22)”) Met.
  • IPDI isophorone diisocyanate
  • Step (13-3) Low boiling point separation step
  • the reaction liquid (13-2) is continuously fed at 4.69 kg/hour, and the withdrawal rate in line 34 in a steady state is 0.80 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 3.98 kg, and as a result of analysis by NMR, LC, and gas chromatography, IPDI was collected with a yield of 82% by mass with respect to the supplied reaction liquid (13-2).
  • the liquid collected in the storage tank 402 was 3.18 kg, and the recovery rate of IPDI was 120% by mass.
  • Step (14-1) Carbamate Compound Production Step Instead of 4-aminomethyl-1,8-octanediamine, 3.33 kg of xylylenediamine and 17.42 kg of diphenyl carbonate were used, and 4.45 kg of phenol was converted to xylylene. Synthesize the corresponding carbamate from xylylenediamine using the same method as in step (1-1) of Synthesis Example 1-1, except that 4.45 kg of phenol was mixed with diamine and supplied to the reactor, and the reaction solution was was heated to 120° C. and the internal pressure was set to 1.0 kPa to extract 12.64 kg of phenol in the liquid.
  • reaction liquid (14-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (14-1)") by liquid chromatography, a carbamate compound corresponding to xylylenediamine was produced with a yield of 98% by mass.
  • the mass of the reaction liquid (14-1) was 16.99 kg.
  • reaction solution (14-2) Thermal Decomposition Step of Carbamate Compound Using 16.99 kg of reaction liquid (14-1) and 16.99 kg of diphenyl carbonate, reaction liquid (14-1) was added to the reactor over about 11 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.5, and a pressure of 20 to 29 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid after the reaction was 28.89 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (14-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-23).
  • xylylene diisocyanate (XDI) was produced with a yield of 78% by mass.
  • Step (14-3) Low boiling point separation step
  • the reaction liquid (14-2) is continuously fed at 5.78 kg/hour, and the withdrawal rate in line 34 in a steady state is 0.87 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 3.98 kg, and as a result of analysis by NMR, LC, and gas chromatography, XDI was collected with a yield of 88% by mass with respect to the supplied reaction liquid (14-2).
  • the liquid recovered in the storage tank 402 was 3.87 kg, and the recovery rate of XDI was 125% by mass.
  • Step (15-1) Carbamate Compound Production Step With the line 14 closed, 3.33 kg (16.8 mol) of 4,4′-diaminodiphenylmethane is transferred from the storage tank 101 through the line 11 into a baffled SUS reaction vessel. 104, 2.53 kg (27.0 mol) of phenol was supplied from the storage tank 102 through the line 12 to the reaction vessel 104 and stirred to homogenize.
  • the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to about 1 kPa, whereby 7.58 kg of phenol in the liquid was transferred to the storage tank 107 through the line 17 and the condenser (condenser) A11. pulled out.
  • reaction solution (15-1) Liquid chromatography analysis of the solution after the reaction (hereinafter referred to as “reaction solution (15-1)”) revealed that a carbamate compound corresponding to 4,4′-diaminodiphenylmethane was produced at a yield of 95% by mass. rice field.
  • the line 16 was opened and the above reaction liquid (15-1) was transferred to the storage tank 106 via the line 16.
  • the mass of the reaction liquid (15-1) was 12.77 kg.
  • reaction solution (15-2) Thermal Decomposition Step of Carbamate Compound Using 12.77 kg of reaction liquid (15-1) and 12.77 kg of diphenyl carbonate, reaction liquid (15-1) was added to the reactor over about 10 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 0.8, and a pressure of 11 to 16 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid transferred to the storage tank 205 was 11.75 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (15-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound was a compound represented by the following formula (I-13).
  • MDI was produced with a yield of 70% by mass.
  • Step (15-3) Low boiling point separation step
  • the reaction liquid (15-2) is continuously fed at 2.35 kg/hour, and the withdrawal rate in line 34 in a steady state is 1.97 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 9.87 kg, and as a result of analysis by NMR, LC, and gas chromatography, MDI was collected with a yield of 79% by mass with respect to the supplied reaction liquid (15-2).
  • the liquid collected in the storage tank 402 was 4.54 kg, and the recovery rate of MDI was 130% by mass.
  • Step (16-1) Carbamate Compound Production Step 3.33 kg of tolylene-2,4-diamine and 19.41 kg of diphenyl carbonate were used in place of 4-aminomethyl-1,8-octanediamine, and 5.15 kg of phenol. was mixed with xylylenediamine, and the corresponding carbamate was obtained from tolylene-2,4-diamine using the same method as in step (1-1) of Synthesis Example 1-1, except that 5.15 kg of phenol was fed to the reactor. was synthesized, the temperature of the reaction liquid was raised to 120° C., and the internal pressure was adjusted to 1.0 kPa to extract 14.49 kg of phenol in the liquid.
  • reaction liquid (16-1) As a result of analyzing the solution after the reaction (hereinafter referred to as "reaction liquid (16-1)") by liquid chromatography, the corresponding carbamate compound was produced with a yield of 96% by mass.
  • the mass of the reaction liquid (16-1) was 18.54 kg.
  • Step (16-2) Thermal Decomposition Step of Carbamate Compound Using 18.54 kg of reaction liquid (16-1) and 18.54 kg of diphenyl carbonate, reaction liquid (16-1) was added to the reactor over about 11 minutes. The reaction was started at a jacket temperature of 238° C., an internal temperature of 230° C., a reflux ratio of 4.7, and a pressure of 20 to 29 kPa. A thermal decomposition reaction was carried out in the same manner as in Synthesis Example 1-1, except that the withdrawal of was continued. The mass of the reaction liquid after the reaction was 11.75 kg. A part of this reaction solution (hereinafter referred to as “reaction solution (16-2)”) was purified with a column fractionator to isolate the carbonyl compound. The isolated carbonyl compound is a mixture of compounds represented by the following formulas (I-24a) to (I-24b) (hereinafter, this mixture may be referred to as "mixture (I-24)”) Met.
  • reaction solution (16-2) was purified with a column fractionator to isolate the carbon
  • Step (16-3) Low boiling point separation step
  • the reaction liquid (16-2) is continuously fed at 2.35 kg/hour, and the withdrawal rate in line 34 in a steady state is 0.94 kg/hour.
  • Low boiling point separation was performed in the same manner as in Synthesis Example 1-1.
  • the liquid collected in the storage tank 303 was 4.70 kg, and as a result of analysis by NMR, LC, and gas chromatography, TDI was collected with a yield of 85% by mass with respect to the supplied reaction liquid (16-2).
  • Step (16-4) High-boiling separation step Synthesis Example 1-1 except that the liquid recovered in the storage tank 303 in the step (16-3) was used, the operating temperature was 160 ° C., and the internal pressure was 0.3 kPa. High boiling point separation was carried out in the same manner as above.
  • the liquid recovered in the storage tank 402 was 3.27 kg, and the recovery rate of TDI was 119% by mass.
  • the carbamate compounds (III-1a) to (III-1c) are the mixture (III-1) thereof, the carbamate compounds (III-2a) to (III-2c) are the mixture (III-2) thereof, the carbamate compound (III -3a) to (III-3c) are mixtures thereof (III-3), carbamate compounds (III-4a) to (III-4c) are mixtures thereof (III-4), carbamate compounds (III-5a) to (III -5b) is a mixture thereof (III-5), carbamate compounds (III-7a) to (III-7b) are mixtures thereof (III-7), carbamate compounds (III-8a) to (III-8b) are mixtures thereof (III-8), carbamate compounds (III-10a) to (III-10b) are mixtures thereof (III-10), carbamate compounds (III-22a) to (III-22b) are mixtures thereof (III-11), Carbamate compounds (III-24a) to (III-24b) were obtained as their mixture (III-24).
  • the structures of these carbamate compounds are as described below.
  • Examples 1 to 62 and Comparative Examples 1 to 6 (Production of isocyanate compositions A-a1 to A-a46 and A-b1 to A-b6) Isocyanate compound (II), carbonyl compound (I), carbamate compound (III), and carbonate ester (IV) were mixed so that the types and contents were as shown in the following tables, and each isocyanate composition was prepared. Obtained.
  • the details of the types of isocyanate compound (II), carbonyl compound (I), carbamate compound (III), and carbonate ester (IV) used are as follows.
  • Carbonyl compound (I) As the carbonyl compound (I), compounds represented by the following formulas (I-1a) to (I-24b) obtained by the synthesis method described above were used. Incidentally, the carbonyl compounds (I-1a) to (I-1c) are the mixture (I-1) thereof, the carbonyl compounds (I-2a) to (I-2c) are the mixture (I-2) thereof, the carbonyl compounds (I-3a) to (I-3c) are mixtures thereof (I-3), carbonyl compounds (I-4a) to (I-4c) are mixtures thereof (I-4), carbonyl compounds (I-5a) to (I-5b) is a mixture thereof (I-5), carbonyl compounds (I-7a) to (I-7b) are mixtures thereof (I-7), carbonyl compounds (I-8a) to (I-8b) are The mixture (I-8), the carbonyl compounds (I-10a) to (I-10b) are the mixture (I-10), the carbonyl compounds (I-22a) to (I-22a)
  • carbamate compound (III) As the carbamate compound (III), compounds represented by the following formulas (III-1a) to (III-24b) obtained by the synthesis method described above were used.
  • the carbamate compounds (III-1a) to (III-1c) are the mixture (III-1) thereof, the carbamate compounds (III-2a) to (III-2c) are the mixture (III-2) thereof, the carbamate compound (III -3a) to (III-3c) are mixtures thereof (III-3), carbamate compounds (III-4a) to (III-4c) are mixtures thereof (III-4), carbamate compounds (III-5a) to (III -5b) is a mixture thereof (III-5), carbamate compounds (III-7a) to (III-7b) are mixtures thereof (III-7), carbamate compounds (III-8a) to (III-8b) are mixtures thereof (III-8), carbamate compounds (III-10a) to (III-10b) are mixtures thereof (III-10), carbamate compounds (III-22a) to (III-22b)
  • Carbonate ester (IV) As the carbonate ester (IV), the compounds shown below were used.
  • DPC diphenyl carbonate
  • GAC bis(2-methoxyphenyl) carbonate
  • DPCP bis(4-cumylphenyl) carbonate
  • the isocyanate compositions A-a1 to A-a62 (Examples 1 to 62) containing specific amounts of the isocyanate compound (II) and the carbonyl compound (I) are sufficiently suppressed in coloration, and Excellent storage stability. Further, in addition to isocyanate compound (II) and carbonyl compound (I), isocyanate compositions A-a1 to A-a8 and A-a11 to A-a18 further containing carbamate compound (III) and carbonate ester (IV) , and A-a21 to A-a62 (Examples 1 to 8, 11 to 18, and 21 to 62), the change in color difference before and after storage is smaller, the amount of denaturation is smaller, and the storage stability is particularly excellent.
  • the isocyanate composition A-b2 which does not contain the carbonyl compound (I) or has a content of the carbonyl compound (I) of more than 1.0 ⁇ 10 4 mass ppm relative to the total mass of the isocyanate composition
  • Ab5, and Ab6 Comparative Examples 2, 3, 5, and 6
  • a novel carbonyl compound can be provided.
  • the method for producing an isocyanate compound of the present embodiment is a method using the carbonyl compound, and can prevent by-products from sticking to equipment during the production of the isocyanate compound and improve the yield of the isocyanate compound.
  • the isocyanate composition of the present embodiment it is possible to provide an isocyanate composition in which coloration is sufficiently suppressed and which has excellent storage stability.

Abstract

本発明は、下記一般式(I)(一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)で表されるカルボニル化合物などを提供する。

Description

カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物
 本発明は、カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物に関する。
 イソシアネートは、ポリウレタンフォーム、塗料、接着剤等の製造原料として広く用いられている。イソシアネートの主な工業的製造法は、アミン化合物とホスゲンとの反応(ホスゲン法)であり、全世界の生産量のほぼ全量がホスゲン法により生産されている。しかしながら、ホスゲン法は多くの問題がある。
 第1に、原料としてホスゲンを大量に使用することである。ホスゲンは極めて毒性が高く、従業者への暴露を防ぐためにその取扱いには特別の注意を要し、廃棄物を除害するための特別の装置も必要である。第2に、ホスゲン法においては、腐食性の高い塩化水素が大量に副生するため、該塩化水素を除害するためのプロセスが必要となる上、製造されたイソシアネートには多くの場合加水分解性塩素が含有されることになる。そのため、ホスゲン法で製造されたイソシアネートを使用する場合に、ポリウレタン製品の耐候性、耐熱性に悪影響を及ぼす場合がある。
 このような背景から、ホスゲンを使用しないイソシアネート化合物の製造方法が望まれている。ホスゲンを使用しないイソシアネート化合物の製造方法の一つとして、カルバメート化合物の熱分解による方法が提案されている。カルバメート化合物の熱分解によってイソシアネートとヒドロキシ化合物が得られることは古くから知られている(例えば、非特許文献1参照)。その基本反応は下記式(A)式によって例示される。
Figure JPOXMLDOC01-appb-C000011
(式(A)中、Rは、a価の有機基であり、R’は、1価の有機基であり、aは、1以上の整数である。)
 一方、カルバメート化合物の熱分解反応において、カルバメート化合物の好ましくない熱変性反応や、該熱分解によって生成するイソシアネートの縮合反応等、種々の不可逆な副反応を併発しやすい。副反応としては、例えば、下記式(B)で表されるイソシアヌレート基を形成する反応や、下記式(C)で表されるカルボジイミド類を生成する反応、下記式(D)で表されるウレトンイミン基を形成する反応、下記式(E)で表されるアロファネート基が形成する反応等が挙げられる(例えば、非特許文献1~4等参照)。
Figure JPOXMLDOC01-appb-C000012
(式(B)~(E)中、R~Rは、それぞれ独立に、1価の有機基である。)
 ウレタン結合を有するポリウレタンは、主に、2官能以上のイソシアネートと、2官能以上のアルコールとの反応によって製造され、抗張力、耐摩耗性及び耐油性に優れるポリマーであり、軟質フォーム、硬質フォーム、エラストマー、接着剤、塗料、バインダー等の幅広い分野で利用されている。中でも、鎖状又は環状の脂肪族イソシアネートを原料とするポリウレタンは耐候性・耐光性に優れ、焼付用塗料、自動車クリアコート材、コイル塗材等の外観品質が求められる分野に使用される。
 イソシアネートとしては2官能のイソシアネートであるジイソシアネートが用いられる場合もあるが、ポリウレタンの物性向上や蒸気圧を抑えて取扱作業者の安全を確保する目的で、例えば下記式(a)~(c)で表される反応によってジイソシアネートを重合させてイソシアネート重合体として使用する場合もある。なお、式中、Rは2価の有機基を示し、R’は3価の有機基を示す。
Figure JPOXMLDOC01-appb-C000013
 上記式(a)で表される反応では、イソシアヌレート型イソシアネート重合体が得られ、上記式(b)で表される反応では、ビウレット型イソシアネート重合体が得られ、上記式(c)で表される反応では、ウレタン型イソシアネート重合体が得られる。イソシアヌレート型イソシアネート重合体に関しては、特許文献1~4に開示されている。ビウレット型イソシアネート重合体に関しては、特許文献5~10に開示されている。アロファネート型イソシアネート重合体に関しては、特許文献11及び12に開示されている。
 上記したように、外観品質が求められる分野に使用される場合、ポリウレタンは着色の少ないことが要求される。そのためには、ポリウレタン化反応において着色しないだけでなく、原料のイソシアネート(2官能以上のイソシアネート)の着色が少ないことが重要である。しかし、一般的に、イソシアネートは空気中の酸素等により酸化されて、変質又は着色しやすい傾向にある。また、ジイソシアネートの重合によりイソシアネート重合体を製造する際にも、重合反応に用いる触媒又は溶媒に起因して、イソシアネートの着色を生じやすい傾向がある。
 イソシアネートの着色を抑制する方法としては、窒素ガスでシールして空気と遮断して製造し保管する方法や、紫外線吸収剤、酸化防止剤等を添加して保管する方法がある。例えば、特許文献13には、淡色のポリウレタンラッカー用のポリイソシアネートを製造するために、イソシアネートを変性した後に過酸化物で処理する方法が開示されている。また、特許文献14では、着色しているイソシアネートにオゾン含有ガスを接触させて、着色の低減したイソシアネートを製造する方法が検討されている。さらに、特許文献15では、着色しているイソシアネートに200~600nmの波長の光を照射することで着色の低減したイソシアネートを製造する方法も検討されている。
米国特許第4324879号明細書 米国特許第4412073号明細書 特開昭57-047319号公報 特開昭63-057577号公報 米国特許第3976622号明細書 米国特許第4176132号明細書 米国特許第4290969号明細書 米国特許第4837359号明細書 米国特許第4983762号明細書 米国特許第5641851号明細書 英国特許第994890号明細書 特開平7-304724号公報 特開平2-228317号公報 特開平8-291129号公報 特表2012-506465号公報
Dritter Jahrgang, "186. A. W. Hofmann: Ueber die aromatischen Cyanate.", Berchte der Deutechen Chemischen Gesellschaft, Vol. 3, pp. 653-658, 1870. Dyer E et al., "Thermal Degradation of Alkyl N-Phenylcarbomates.", Journal of American Chemical Society, Vol. 81, pp. 2138-2143, 1959. Ulrich H et al., "[2+2] Cycloaddition Reactions of Unsymmetrically substituted Carbodiimides.", Journal of Heterocyclic Chemistry, Vol. 24, pp. 1121-1123, 1987. Schwetlick K et al., "Kinetics and Catalysis of Consecutive Isocyanate Reactions. Formation of Carbamates, Allophanates and lsocyanurates.", Journal of the Chemical Society, Perkin transactions II, Vol. 2, pp. 395-402, 1995.
 上述した副反応は、目的とするイソシアネート化合物の収率や選択率の低下を招くばかりでなく、特にポリイソシアネートの製造においては、ポリマー状固形物が析出し、反応器を閉塞させる等、長期操業が困難となる場合がある。また、上述した副反応によって生成される化合物以外に、イソシアネート化合物よりも沸点の高い化合物が副生されることについて知られていない。
 本発明は、上記事情に鑑みてなされたものであって、新規カルボニル化合物及びその製造方法、並びに、前記カルボニル化合物を用いたイソシアネート化合物の製造方法を提供する。
 また、上記のように、イソシアネートの着色を抑制するために、種々の方法が検討されているが、重合反応に必要のない化合物をイソシアネートに添加して保管する方法では、添加した化合物がポリウレタン等の製造時の着色の原因になる場合がある。
 また、特許文献4~6に開示された方法では、必ずしも十分に着色が低減されているとはいえず、着色が一層低減されたイソシアネートが望まれている。さらに、蒸留精製は化合物の精製方法として一般的であるが、蒸留精製時にイソシアネートを加熱するため、イソシアネートの着色が進行したり、イソシアネートの変性が生じたりする場合がある。
 本発明は、上記事情に鑑みてなされたものであって、着色が十分に抑制され、且つ、保存安定性に優れたイソシアネート組成物を提供する。
 すなわち、本発明は、以下の態様を含む。
(1) 下記一般式(I)で表されるカルボニル化合物。
Figure JPOXMLDOC01-appb-C000014
(一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
(2) 前記R11が、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であり、且つ、
 前記R12が、酸素原子を含んでもよい、炭素数6以上20以下の1価の芳香族炭化水素基である、(1)に記載のカルボニル化合物。
(3) 前記R11が、1以上2以下のエステル基を有してもよい、炭素数5以上15以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上15以下の2価以上3価以下の芳香族炭化水素基であり、
 前記R12が、酸素原子を含んでもよい、炭素数6以上15以下の1価の芳香族炭化水素基であり、
 前記n11が、1以上4以下の整数であり、
 前記n12が、0以上3以下の整数であり、且つ、
 前記n11とn12の和が、2以上4以下の整数である、請求項1又は2に記載のカルボニル化合物。
(4) (1)~(3)のいずれか一つに記載のカルボニル化合物の製造方法であって、
 イソシアネート化合物及びカルバメート化合物からなる群より選ばれる1種以上の化合物と、
 炭酸エステル及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物と、
を、混合し、加熱して、前記カルボニル化合物を合成することを含む、製造方法。
(5) 前記イソシアネート化合物が下記一般式(II)で表される化合物である、(4)に記載の製造方法。
Figure JPOXMLDOC01-appb-C000015
(一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
(6) 前記カルバメート化合物が、下記一般式(III)で表される化合物である、(4)又は(5)に記載の製造方法。
Figure JPOXMLDOC01-appb-C000016
(一般式(III)中、R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。R32は1価の有機基であり、関係式:R32=R12を満たす。n31は1以上8以下の整数であり、n32は0以上7以下の整数であり、n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。)
(7) 前記炭酸エステルが下記一般式(IV)で表される化合物である、(4)~(6)のいずれか一つに記載の製造方法。
Figure JPOXMLDOC01-appb-C000017
(一般式(IV)中、R41及びR42は、それぞれ独立に、1価の有機基であり、関係式:R41=R42=R12を満たす。)
(8) 前記ヒドロキシ化合物が下記一般式(V)で表される化合物である、(4)~(7)のいずれか一つに記載の製造方法。
Figure JPOXMLDOC01-appb-C000018
(一般式(V)中、R51は、1価の有機基であり、関係式:R51=R12を満たす。)
(9) (1)~(3)のいずれか一つに記載のカルボニル化合物存在下で、下記一般式(II)で表されるイソシアネート化合物を含む反応液を蒸留精製し、連続的に気相成分として、前記イソシアネート化合物を回収することを含む、イソシアネート化合物の製造方法。
Figure JPOXMLDOC01-appb-C000019
(一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
(1) イソシアネート組成物の総質量に対して、
 97質量%以上のイソシアネート化合物と、
 2.0質量ppm以上1.0×10質量ppm以下の下記一般式(I)で表されるカルボニル化合物と、
を含有し、
 前記イソシアネート化合物と前記カルボニル化合物は異なる化合物である、イソシアネート組成物。
Figure JPOXMLDOC01-appb-C000020
(一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
(2) 前記R11が、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であり、且つ、
 前記R12が、酸素原子を含んでもよい、炭素数6以上20以下の1価の芳香族炭化水素基である、(1)に記載のイソシアネート組成物。
(3) 前記イソシアネート化合物が、下記一般式(II)で表される化合物である、(1)又は(2)に記載のイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000021
(一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
(4) 前記イソシアネート組成物の総質量に対して、それぞれ2.0質量ppm以上1.0×10質量ppm以下の、カルバメート化合物及び炭酸エステルからなる群より選ばれる1種以上の化合物を更に含有する、(1)~(3)のいずれか一つに記載のイソシアネート組成物。
(5) 前記カルバメート化合物が、下記一般式(III)で表される化合物である、(4)に記載のイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000022
(一般式(III)中、R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。R32は1価の有機基であり、関係式:R32=R12を満たす。n31は1以上8以下の整数であり、n32は0以上7以下の整数であり、n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。)
(6) 前記炭酸エステルが、下記一般式(IV)で表される化合物である、(4)又は(5)に記載のイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000023
(一般式(IV)中、R41及びR42は、それぞれ独立に、1価の有機基であり、関係式:R41=R42=R12を満たす。)
 上記態様のカルボニル化合物及びその製造方法によれば、新規のカルボニル化合物を提供することができる。
 上記態様のイソシアネート化合物の製造方法は、前記カルボニル化合物を用いる方法であり、イソシアネート化合物の製造時における副生成物の装置への固着を防ぎ、イソシアネート化合物の収率を向上することができる。
 また、上記態様のイソシアネート組成物によれば、着色が十分に抑制され、且つ、保存安定性に優れたイソシアネート組成物を提供することができる。
実施例で使用したカルバメート化合物の製造装置を示す概略構成図である。 実施例で使用した熱分解反応装置を示す概略構成図である。 実施例で使用した軽沸分離装置を示す概略構成図である。 実施例で使用した高沸分離装置を示す概略構成図である。 実施例1-1で製造されたカルバメート化合物(I-1a)~(I-1c)のNMRスペクトルを示すグラフである。 実施例1-7で製造されたカルバメート化合物(I-3a)~(I-3c)のNMRスペクトルを示すグラフである。 実施例1-7で製造されたカルバメート化合物(I-3a)~(I-3c)のガスクロマトグラフィー-質量分析の結果を示すグラフである。
 本発明の好適な実施形態について以下に説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本明細書中において、IUPAC規則及びこれ以降にも示すIUPACで定められたNomenclature規則(特別に他年度のIUPAC勧告等を引用する場合を除く。)を指す場合は、Recommendations 1979に基づいて、1980年に“化学の領域”の別冊として刊行された有機化学と生化学の規則すべてと日本語への字訳規則を包含した版を元にしてその後のすべての改訂及び勧告を加えた「有機化学・生化学命名法」(日本国 南江堂出版 1992年発行の改訂第2版)を引用したものを意味する。“有機”とは、該命名法に開示されている命名法の対象とされる化合物群一般を指す。該対象は、1993年に出された勧告に記載された対象であってもよい。ただし、上記Nomenclatureの対象とした“有機”化合物には、有機金属化合物や金属錯体も含有される。本実施形態においては、特に説明のない場合、“有機基”及び“置換基”等の用語は、金属原子及び/又は半金属を含まない原子で構成される基を意味する。さらに本実施形態では、好ましくは、H(水素原子)、C(炭素原子)、N(窒素原子)、O(酸素原子)、S(硫黄原子)、Cl(塩素原子)、Br(臭素原子)、I(ヨウ素原子)から選ばれる原子から構成される“有機化合物”、“有機基”又は“置換基”を使用する。
 以下の説明に、「脂肪族」及び「芳香族」という用語を多用する。上記したIUPACの規則によれば、有機化合物は、脂肪族化合物と芳香族化合物とに分類されることが記載されている。脂肪族化合物とは、1995年のIUPAC勧告に基づいた脂肪族化合物に沿った基の定義である。該勧告では、脂肪族化合物を“Acyclic or cyclic, saturated or unsaturated carbon compounds, excluding aromatic compounds”と定義している。 また、本実施形態の説明で用いる「脂肪族化合物」は、飽和及び不飽和、鎖状及び環状のいずれも含有するものであり、上記したH(水素原子);C(炭素原子);N(窒素原子);O(酸素原子);S(硫黄原子);Si(ケイ素原子);Cl(塩素原子)、Br(臭素原子)又はI(ヨウ素原子)のハロゲン原子からなる群より選ばれる原子で構成される「有機化合物」、「有機基」又は「置換基」を指す。
 アラルキル基等の芳香族基が脂肪族基に結合している場合は、そのように「芳香族基で置換された脂肪族基」又は「芳香族基が結合した脂肪族基からなる基」と表記することがある。これは、本実施形態における反応性に基づくもので、アラルキル基のような基の反応に関する性質は、芳香族性ではなく脂肪族の反応性に極めて類似しているからである。 また、アラルキル基、アルキル基等を包含した非芳香族反応性基を、「芳香族基で置換されていてもよい脂肪族基」、「芳香族基が結合していてもよい脂肪族基」等と表記することがある。
 なお、本明細書中で使用する化合物の一般式を説明する際は、上記したIUPACで定められたNomenclature規則に沿った定義を使用するが、具体的な基の名称、例示する化合物の名称には、慣用名を使用する場合がある。また、本明細書中に、原子の数、置換基の数、個数を記載する場合は、それらは全て整数を表している。
 本明細書中において、「活性水素」とは、酸素原子、硫黄原子、窒素原子、ケイ素原子等と結合している水素原子(芳香族性ヒドロキシ基は除く)、及び、末端メチン基の水素原子を指す。「活性水素」は、例えば、-OH基、-C(=O)OH基、-C(=O)H基、-SH基、-SO3H基、-SO2H基、-SOH基、-NH2基、-NH-基、-SiH基、-C≡CH基等の原子団に含まれている水素である。
 なお、ヒドロキシ基(-OH基)を有する化合物としては、アルコール及び芳香族ヒドロキシ化合物が挙げられる。
 本明細書中における「アルコール」とは、IUPACの定義(Rule C-201)に記載された、「ヒドロキシ基が飽和炭素原子に結合した化合物(Compounds in which a hydroxy group, -OH, is attached to a saturated carbon atom:R3COH)」であり、ヒドロキシ基が芳香環に結合した芳香族ヒドロキシ化合物は含まれない。
 本明細書中における「芳香族ヒドロキシ化合物」とは、IUPACの定義(Rule C-202)に記載されたフェノール類(phenols)「1つ又はそれ以上のヒドロキシ基がベンゼン環又は他のアレーン環に結合した化合物(Compounds having one or more hydroxy groups attached to a benzene or other arene ring.)」である。
≪カルボニル化合物≫
 本実施形態のカルボニル化合物は、下記一般式(I)で表される化合物(以下、「カルボニル化合物(I)」と称する場合がある)である。
Figure JPOXMLDOC01-appb-C000024
(一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
 発明者らは、カルバメート化合物の熱分解反応によるイソシアネート化合物の製造において、上記カルボニル化合物(I)が生成されることを見出した。また、カルバメート化合物から熱分解によりイソシアネート化合物を製造する際に、該カルボニル化合物(I)を共存させることで、熱分解工程や精製工程における装置への、イソシアネート化合物よりも沸点の高い副反応物(以下、「高沸点副反応物」と称する場合がある)の固着を防ぎ、且つ、イソシアネート化合物を効率良く回収でき、イソシアネート化合物の収率を向上できることを見出し、本発明を完成するに至った。
[R11
 R11は(n11+n12)価の有機基、すなわち、2価以上8価以下の有機基である。中でも、R11としては、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であることが好ましい。
 R11における脂肪族炭化水素基としては、アルキレン基若しくはアルカントリイル基、シクロアルキル基、シクロアルキレン基若しくはシクロアルカントリイル基、又は、前記アルキル基、前記アルキレン基若しくは前記アルカントリイル基と、前記シクロアルキル基、前記シクロアルキレン基若しくは前記シクロアルカントリイル基とから構成される基が好ましく、直鎖状若しくは分岐鎖状のアルキレン基若しくはアルカントリイル基、シクロアルキレン基若しくはシクロアルカントリイル基、又は、前記アルキレン基若しくは前記アルカントリイル基と、前記シクロアルキル基、前記シクロアルキレン基若しくは前記シクロアルカントリイル基とから構成される基がより好ましい。
 直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、ペンチレン基、n-ヘキシレン基、デカメチレン基等が挙げられる。
 シクロアルキレン基としては、例えば、シクロブチレン基、シクロヘキレン基等が挙げられる。
 直鎖状又は分岐鎖状アルカントリイル基としては、例えば、ヘキサントリイル基、ノナントリイル基、デカントリイル基等が挙げられる。
 シクロアルカントリイル基としては、例えば、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基等が挙げられる。
 R11における芳香族炭化水素基としては、置換又は無置換の炭素数6以上13以下の芳香環を有する基が好ましい。置換基としては、例えば、アルキル基、アリール基、アラルキル基等が挙げられる。芳香環としては、芳香族炭化水素環であってもよく、複素芳香族環であってもよく、具体的には、例えば、ベンゼン環、ナフタレン環、ピリジン環等が挙げられる。
 R11における脂肪族炭化水素基又は芳香族基が1以上4以下のエステル基を有する場合に、R11としては、アミノ酸のカルボキシ基とヒドロキシ化合物とを反応させて得られるエステル基を有するアミン化合物の末端の第1級アミノ基を除いた基であることが好ましい。
 ここでいうエステル基を有するアミン化合物として具体的には、例えば、アクリル酸-2-アミノエチルエステル、2-メチル-アクリル酸-2-アミノエチルエステル、アクリル酸-2-アミノプロピルエステル、2-メチル-アクリル酸-2-アミノプロピルエステル、アクリル酸-3-アミノプロピルエステル、2-メチル-アクリル酸-3-アミノプロピルエステル、アクリル酸-4-アミノブチルエステル、2-メチル-アクリル酸-4-アミノブチルエステル、アクリル酸-5-アミノペンチルエステル、2-メチル-アクリル酸-5-アミノペンチルエステル、アクリル酸-6-アミノヘキシルエステル、2-メチル-アクリル酸-6-アミノヘキシルエステル、アクリル酸-8-アミノクチルエステル、2-メチル-アクリル酸-8-アミノクチルエステル、アクリル酸-10-アミノデシルエステル、2-メチル-アクリル酸-10-アミノデシルエステル、アクリル酸-11-アミノンデシルエステル、2-メチル-アクリル酸-11-アミノンデシルエステル、アクリル酸-12-アミノドデシルエステル、2-メチル-アクリル酸-12-アミノドデシルエステル、リジンメチルエステルジアミン、リジンエチルエステルジアミン、2-アミノエチル-2,5-ジアミノペンタノエート、2-アミノエチル-2,6-ジアミノヘキサノエート、ビス(2-アミノエチル)-2-アミノブタンジオエート、ビス(2-アミノエチル)-2-アミノペンタンジオエート、トリス(2-アミノエチル)ヘキサン-1,3,6-トリカルボキシレート等が挙げられる。
 エステル基を有するアミン化合物の製造に用いられるアミノ酸としては、例えば、リジン、アラニン、アルギニン、アスパラギン、グルタミン、グリシン、アスパラギン酸、グルタミン酸、オルニチン、ヒスチジン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、トリプトファン、バリンが挙げられる。中でも、アミノ酸としては、リジン、アルギニン、グリシン、アスパラギン酸、グルタミン酸、又はオルニチンが好ましく、リジン、アルギニン、グリシン、アスパラギン酸、又はグルタミン酸がより好ましい。
 エステル基を有するアミン化合物の製造に用いられるヒドロキシ化合物としては、アルコール類及び芳香族ヒドロキシ化合物類が挙げられる。
 アルコール類としては、例えば、メチルアルコール、エタノール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、ドテシルアルコール、ステアリルアルコール、エイコシルアルコール、アリルアルコール、クロチルアルコール、プロパルギルアルコール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール、シンナミルアルコール、エチレングリコール、ジエチレングリコー、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、水添ビスフェノールA、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、エタノールアミン、プロパノールアミン(1-アミノ-2-プロパノール)、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、1-アミノ-2-ブタノール等が挙げられる。
 芳香族ヒドロキシ化合物としては、例えば、フェノール(石炭酸)、2-メトキシフェノール、クレゾール、キシレノール、カルバクロール、モチール、ナフトール等のモノフェノール類、カテコール、レゾルシン、ヒドロキノン、ビスフェノールA、ビスフェノールF、ピロガロール、フロログルシン等の多価フェノール類が挙げられる。
 R11における脂肪族炭化水素基又は芳香族基が1以上4以下の窒素原子を有する場合に、R11としては、脂肪族炭化水素基又は芳香族基の末端以外に2級若しくは3級アミンを1以上4以下有するアミン化合物から末端のアミノ基を除いた有機基であることが好ましい。ここでいう脂肪族炭化水素基又は芳香族基の末端以外に2級若しくは3級アミンを1以上4以下有するアミン化合物として具体的には、例えば、2-(ジメチルアミノ)エチレンアミン、2-(ジエチルアミノ)エチレンアミン、2-(ジイソプロピルアミノ)エチレンアミン、2-(シクロヘキシルアミノ)エチレンアミン、3-(シクロヘキシルアミノ)プロピルアミン、3-(ジエチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、ジエチレントリアミン、ジイソプロピルトリアミン、ビス-(3-アミノプロピル)メチレンアミン、3-(2-アミノエチルアミノ)プロピルアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、1-(3-アミノプロピル)イミダゾール、トリスアミノエチルアミン、トリスアミノプロピルアミン等が挙げられる。中でも、アミン化合物としては、3級アミンを1以上2以下末端以外に有し、且つ、脂肪族炭化水素基又は芳香族基を有するアミン化合物であることが好ましく、3級アミンを1つ末端以外に有し、且つ、脂肪族炭化水素基又は芳香族基を有するアミン化合物であることがより好ましい。
 中でも、R11としては、下記式(Ia-1)~(Ia-24)のいずれかで表される基であること好ましく、式(Ia-1)、(Ia-2)、(Ia-3)、(Ia-14)、(Ia-18)、又は(Ia-19)で表される基であることがより好ましい。なお、各式において、波線は結合手を示す。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
[R12
 R12は1価の有機基であり、酸素原子を含んでもよい、炭素数1以上20以下の脂肪族炭化水素基又は炭素数6以上20以下の芳香族炭化水素基が好ましい。
 R12における脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)、ヘキシル基(各異性体)、ヘプチル基(各異性体)、オクチル基(各異性体)、ノニル基(各異性体)、デシル基(各異性体)、ウンデシル基(各異性体)、ドデシル基(各異性体)、トリデシル基(各異性体)、テトラデシル基(各異性体)、ペンタデシル基(各異性体)、ヘキサデシル基(各異性体)、ヘプタデシル基(各異性体)、オクタデシル基(各異性体)、ノナデシル(各異性体)、エイコシル基(各異性体)のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等のシクロアルキル基等が挙げられる。
 R12における酸素原子を含んでもよい脂肪族炭化水素基としては、例えば、メトキシメチル基、メトキシエチル基(各異性体)、メトキシプロピル基(各異性体)、メトキシブチル基(各異性体)、メトキシペンチル基(各異性体)、メトキシヘキシル基(各異性体)、メトキシヘプチル基(各異性体)、メトキシオクチル基(各異性体)、メトキシノニル基(各異性体)、メトキシデシル基(各異性体)、メトキシウンデシル基(各異性体)、メトキシドデシル基(各異性体)、メトキシトリデシル基(各異性体)、メトキシテトラデシル基(各異性体)、メトキシペンタデシル基(各異性体)、メトキシヘキサデシル基(各異性体)、メトキシヘプタデシル基(各異性体)、メトキシオクタデシル基(各異性体)、メトキシノナデシル(各異性体)、エトキシメチル基、エトキシエチル基(各異性体)、エトキシプロピル基(各異性体)、エトキシブチル基(各異性体)、エトキシペンチル基(各異性体)、エトキシヘキシル基(各異性体)、エトキシヘプチル基(各異性体)、エトキシオクチル基(各異性体)、エトキシノニル基(各異性体)、エトキシデシル基(各異性体)、エトキシウンデシル基(各異性体)、エトキシドデシル基(各異性体)、エトキシトリデシル基(各異性体)、エトキシテトラデシル基(各異性体)、エトキシペンタデシル基(各異性体)、エトキシヘキサデシル基(各異性体)、エトキシヘプタデシル基(各異性体)、エトキシオクタデシル基(各異性体)、プロピルオキシメチル基(各異性体)、プロピルオキシエチル基(各異性体)、プロピルオキシプロピル基(各異性体)、プロピルオキシブチル基(各異性体)、プロピルオキシペンチル基(各異性体)、プロピルオキシヘキシル基(各異性体)、プロピルオキシヘプチル基(各異性体)、プロピルオキシオクチル基(各異性体)、プロピルオキシノニル基(各異性体)、プロピルオキシデシル基(各異性体)、プロピルオキシウンデシル基(各異性体)、プロピルオキシドデシル基(各異性体)、プロピルオキシトリデシル基(各異性体)、プロピルオキシテトラデシル基(各異性体)、プロピルオキシペンタデシル基(各異性体)、プロピルオキシヘキサデシル基(各異性体)、プロピルオキシヘプタデシル基(各異性体)、ブチルオキシメチル基(各異性体)、ブチルオキシエチル基(各異性体)、ブチルオキシプロピル基(各異性体)、ブチルオキシブチル基(各異性体)、ブチルオキシペンチル基(各異性体)、ブチルオキシヘキシル基(各異性体)、ブチルオキシヘプチル基(各異性体)、ブチルオキシオクチル基(各異性体)、ブチルオキシノニル基(各異性体)、ブチルオキシデシル基(各異性体)、ブチルオキシウンデシル基(各異性体)、ブチルオキシドデシル基(各異性体)、ブチルオキシトリデシル基(各異性体)、ブチルオキシテトラデシル基(各異性体)、ブチルオキシペンタデシル基(各異性体)、ブチルオキシヘキサデシル基(各異性体)、ペンチルオキシメチル基(各異性体)、ペンチルオキシエチル基(各異性体)、ペンチルオキシプロピル基(各異性体)、ペンチルオキシブチル基(各異性体)、ペンチルオキシペンチル基(各異性体)、ペンチルオキシヘキシル基(各異性体)、ペンチルオキシヘプチル基(各異性体)、ペンチルオキシオクチル基(各異性体)、ペンチルオキシノニル基(各異性体)、ペンチルオキシデシル基(各異性体)、ペンチルオキシウンデシル基(各異性体)、ペンチルオキシドデシル基(各異性体)、ペンチルオキシトリデシル基(各異性体)、ペンチルオキシテトラデシル基(各異性体)、ペンチルオキシペンタデシル基(各異性体)、ヘキシルオキシメチル基(各異性体)、ヘキシルオキシエチル基(各異性体)、ヘキシルオキシプロピル基(各異性体)、ヘキシルオキシブチル基(各異性体)、ヘキシルオキシペンチル基(各異性体)、ヘキシルオキシヘキシル基(各異性体)、ヘキシルオキシヘプチル基(各異性体)、ヘキシルオキシオクチル基(各異性体)、ヘキシルオキシノニル基(各異性体)、ヘキシルオキシデシル基(各異性体)、ヘキシルオキシウンデシル基(各異性体)、ヘキシルオキシドデシル基(各異性体)、ヘキシルオキシトリデシル基(各異性体)、ヘキシルオキシテトラデシル基(各異性体)、ヘプチルオキシメチル基(各異性体)、ヘプチルオキシエチル基(各異性体)、ヘプチルオキシプロピル基(各異性体)、ヘプチルオキシブチル基(各異性体)、ヘプチルオキシペンチル基(各異性体)、ヘプチルオキシヘキシル基(各異性体)、ヘプチルオキシヘプチル基(各異性体)、ヘプチルオキシオクチル基(各異性体)、ヘプチルオキシノニル基(各異性体)、ヘプチルオキシデシル基(各異性体)、ヘプチルオキシウンデシル基(各異性体)、ヘプチルオキシドデシル基(各異性体)、ヘプチルオキシトリデシル基(各異性体)オクチルオキシメチル基(各異性体)、オクチルオキシエチル基(各異性体)、オクチルオキシプロピル基(各異性体)、オクチルオキシブチル基(各異性体)、オクチルオキシペンチル基(各異性体)、オクチルオキシヘキシル基(各異性体)、オクチルオキシヘプチル基(各異性体)、オクチルオキシオクチル基(各異性体)、オクチルオキシノニル基(各異性体)、オクチルオキシデシル基(各異性体)、オクチルオキシウンデシル基(各異性体)、オクチルオキシドデシル基(各異性体)、ノニルオキシメチル基(各異性体)、ノニルオキシエチル基(各異性体)、ノニルオキシプロピル基(各異性体)、ノニルオキシブチル基(各異性体)、ノニルオキシペンチル基(各異性体)、ノニルオキシヘキシル基(各異性体)、ノニルオキシヘプチル基(各異性体)、ノニルオキシオクチル基(各異性体)、ノニルオキシノニル基(各異性体)、ノニルオキシデシル基(各異性体)、ノニルオキシウンデシル基(各異性体)、デシルオキシメチル基(各異性体)、デシルオキシエチル基(各異性体)、デシルオキシプロピル基(各異性体)、デシルオキシブチル基(各異性体)、デシルオキシペンチル基(各異性体)、デシルオキシヘキシル基(各異性体)、デシルオキシヘプチル基(各異性体)、デシルオキシオクチル基(各異性体)、デシルオキシノニル基(各異性体)、デシルオキシデシル基(各異性体)、ウンデシルオキシメチル基(各異性体)、ウンデシルオキシエチル基(各異性体)、ウンデシルオキシプロピル基(各異性体)、ウンデシルオキシブチル基(各異性体)、ウンデシルオキシペンチル基(各異性体)、ウンデシルオキシヘキシル基(各異性体)、ウンデシルオキシヘプチル基(各異性体)、ウンデシルオキシオクチル基(各異性体)、ウンデシルオキシノニル基(各異性体)、ドデシルオキシメチル基(各異性体)、ドデシルオキシエチル基(各異性体)、ドデシルオキシプロピル基(各異性体)、ドデシルオキシブチル基(各異性体)、ドデシルオキシペンチル基(各異性体)、ドデシルオキシヘキシル基(各異性体)、ドデシルオキシヘプチル基(各異性体)、ドデシルデシルオキシオクチル基(各異性体)、トリデシルオキシメチル基(各異性体)、トリデシルオキシエチル基(各異性体)、トリデシルオキシプロピル基(各異性体)、トリデシルオキシブチル基(各異性体)、トリデシルオキシペンチル基(各異性体)、トリデシルオキシヘキシル基(各異性体)、トリデシルオキシヘプチル基(各異性体)、テトラデシルオキシメチル基(各異性体)、テトラデシルオキシエチル基(各異性体)、テトラデシルオキシプロピル基(各異性体)、テトラデシルオキシブチル基(各異性体)、テトラデシルオキシペンチル基(各異性体)、テトラデシルオキシヘキシル基(各異性体)、ペンタデシルオキシメチル基、ペンタデシルオキシエチル基(各異性体)、ペンタデシルオキシプロピル基(各異性体)、ペンタデシルオキシブチル基(各異性体)、ペンタデシルオキシペンチル基(各異性体)、ヘキサデシルオキシメチル基(各異性体)、ヘキサデシルオキシエチル基(各異性体)、ヘキサデシルオキシプロピル基(各異性体)、ヘキサデシルオキシブチル基(各異性体)、ヘプタデシルオキシメチル基(各異性体)、ヘプタデシルオキシエチル基(各異性体)、ヘプタデシルオキシプロピル基(各異性体)、オクタデシルオキシメチル基(各異性体)、オクタデシルオキシエチル基(各異性体)等のアルコキシアルキル基等が挙げられる。
 R12における芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントリル基等のアリール基;メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ウンデシルフェニル基(各異性体)、ドデシルフェニル基(各異性体)、トリデシルフェニル基(各異性体)、テトラデシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、メチルヘキシルフェニル基(各異性体)、メチルヘプチルフェニル基(各異性体)、メチルオクチルフェニル基(各異性体)、メチルノニルフェニル基(各異性体)、メチルデシルフェニル基(各異性体)、メチルウンデシルフェニル基(各異性体)、メチルドデシルフェニル基(各異性体)、メチルトリデシルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、エチルペンチルフェニル基(各異性体)、エチルヘキシルフェニル基(各異性体)、エチルヘプチルフェニル基(各異性体)、エチルオクチルフェニル基(各異性体)、エチルノニルフェニル基(各異性体)、エチルデシルフェニル基(各異性体)、エチルウンデシルフェニル基(各異性体)、エチルドデシルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、プロピルブチルフェニル基(各異性体)、プロピルペンチルフェニル基(各異性体)、プロピルヘキシルフェニル基(各異性体)、プロピルヘプチルフェニル基(各異性体)、プロピルオクチルフェニル基(各異性体)、プロピルノニルフェニル基(各異性体)、プロピルデシルフェニル基(各異性体)、プロピルウンデシルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ブチルペンチルフェニル基(各異性体)、ブチルヘキシルフェニル基(各異性体)、ブチルヘプチルフェニル基(各異性体)、ブチルオクチルフェニル基(各異性体)、ブチルノニルフェニル基(各異性体)、ブチルデシルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ペンチルヘキシルフェニル基(各異性体)、ペンチルヘプチルフェニル基(各異性体)、ペンチルオクチルフェニル基(各異性体)、ペンチルノニルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ヘキシルヘプチルフェニル基(各異性体)、ヘキシルオクチルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、ジメチルエチルフェニル基(各異性体)、ジメチルプロピルフェニル基(各異性体)、ジメチルブチルフェニル基(各異性体)、ジメチルペンチルフェニル基(各異性体)、ジメチルヘキシルフェニル基(各異性体)、ジメチルヘプチルフェニル基(各異性体)、ジメチルオクチルフェニル基(各異性体)、ジメチルノニルフェニル基(各異性体)、ジメチルデシルフェニル基(各異性体)、ジメチルウンデシルフェニル基(各異性体)、ジメチルドデシルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ジエチルメチルフェニル基(各異性体)、ジエチルプロピルフェニル基(各異性体)、ジエチルブチルフェニル基(各異性体)、ジエチルペンチルフェニル基(各異性体)、ジエチルヘキシルフェニル基(各異性体)、ジエチルヘプチルフェニル基(各異性体)、ジエチルオクチルフェニル基(各異性体)、ジエチルノニルフェニル基(各異性体)、ジエチルデシルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、ジプロピルメチルフェニル基(各異性体)、ジプロピルエチルフェニル基(各異性体)、ジプロピルブチルフェニル基(各異性体)、ジプロピルペンチルフェニル基(各異性体)、ジプロピルヘキシルフェニル基(各異性体)、ジプロピルヘプチルフェニル基(各異性体)、ジプロピルオクチルフェニル基(各異性体)、トリブチルフェニル基(各異性体)、ジブチルメチルフェニル基(各異性体)、ジブチルエチルフェニル基(各異性体)、ジブチルプロピルフェニル基(各異性体)、ジブチルペンチルフェニル基(各異性体)、ジブチルヘキシルフェニル基(各異性体)、クミルフェニル基(各異性体)等が挙げられる。
 R12における酸素原子を含んでもよい芳香族炭化水素基としては、例えば、メトキシフェニル基(各異性体)、エトキシフェニル基(各異性体)等のアルコキシアリール基等が挙げられる。
 中でも、R12としては、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントリル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ウンデシルフェニル基(各異性体)、ドデシルフェニル基(各異性体)、トリデシルフェニル基(各異性体)、テトラデシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、メチルヘキシルフェニル基(各異性体)、メチルヘプチルフェニル基(各異性体)、メチルオクチルフェニル基(各異性体)、メチルノニルフェニル基(各異性体)、メチルデシルフェニル基(各異性体)、メチルウンデシルフェニル基(各異性体)、メチルドデシルフェニル基(各異性体)、メチルトリデシルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、エチルペンチルフェニル基(各異性体)、エチルヘキシルフェニル基(各異性体)、エチルヘプチルフェニル基(各異性体)、エチルオクチルフェニル基(各異性体)、エチルノニルフェニル基(各異性体)、エチルデシルフェニル基(各異性体)、エチルウンデシルフェニル基(各異性体)、エチルドデシルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、プロピルブチルフェニル基(各異性体)、プロピルペンチルフェニル基(各異性体)、プロピルヘキシルフェニル基(各異性体)、プロピルヘプチルフェニル基(各異性体)、プロピルオクチルフェニル基(各異性体)、プロピルノニルフェニル基(各異性体)、プロピルデシルフェニル基(各異性体)、プロピルウンデシルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ブチルペンチルフェニル基(各異性体)、ブチルヘキシルフェニル基(各異性体)、ブチルヘプチルフェニル基(各異性体)、ブチルオクチルフェニル基(各異性体)、ブチルノニルフェニル基(各異性体)、ブチルデシルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ペンチルヘキシルフェニル基(各異性体)、ペンチルヘプチルフェニル基(各異性体)、ペンチルオクチルフェニル基(各異性体)、ペンチルノニルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ヘキシルヘプチルフェニル基(各異性体)、ヘキシルオクチルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、ジメチルエチルフェニル基(各異性体)、ジメチルプロピルフェニル基(各異性体)、ジメチルブチルフェニル基(各異性体)、ジメチルペンチルフェニル基(各異性体)、ジメチルヘキシルフェニル基(各異性体)、ジメチルヘプチルフェニル基(各異性体)、ジメチルオクチルフェニル基(各異性体)、ジメチルノニルフェニル基(各異性体)、ジメチルデシルフェニル基(各異性体)、ジメチルウンデシルフェニル基(各異性体)、ジメチルドデシルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ジエチルメチルフェニル基(各異性体)、ジエチルプロピルフェニル基(各異性体)、ジエチルブチルフェニル基(各異性体)、ジエチルペンチルフェニル基(各異性体)、ジエチルヘキシルフェニル基(各異性体)、ジエチルヘプチルフェニル基(各異性体)、ジエチルオクチルフェニル基(各異性体)、ジエチルノニルフェニル基(各異性体)、ジエチルデシルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、ジプロピルメチルフェニル基(各異性体)、ジプロピルエチルフェニル基(各異性体)、ジプロピルブチルフェニル基(各異性体)、ジプロピルペンチルフェニル基(各異性体)、ジプロピルヘキシルフェニル基(各異性体)、ジプロピルヘプチルフェニル基(各異性体)、ジプロピルオクチルフェニル基(各異性体)、トリブチルフェニル基(各異性体)、ジブチルメチルフェニル基(各異性体)、ジブチルエチルフェニル基(各異性体)、ジブチルプロピルフェニル基(各異性体)、ジブチルペンチルフェニル基(各異性体)、ジブチルヘキシルフェニル基(各異性体)、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)が好ましい。また、フェニル基、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)がより好ましい。
[n11及びn12]
 n11は1以上8以下の整数である。
 n12はイソシアネート基の数を表し、0以上7以下の整数である。
 n11とn12の和(n11+n12)は2以上8以下の整数であり、2以上6以下の整数が好ましく、2以上5以下の整数がより好ましく、3以上4以下の整数がさらに好ましい。一般的に、この(n11+n12)の値が大きくなるほど、カルボニル化合物(I)の分子量が増加することに伴い沸点も上昇し、イソシアネートとの分離が容易となる。一方、カルボニル化合物(I)の製造においては、反応性の高いイソシアネート基を加熱すると変性反応が想起され、装置への固着やつまりの原因となるため、カルボニル化合物(I)の製造効率の観点から(n11+n12)が6以下であることが好ましく、(n11+n12)が5以下であることがより好ましく、(n11+n12)が4以下であることがさらに好ましい。
 好ましいカルボニル化合物(I)としては、例えば、下記式(I-1a)~(I-24)で表される化合物(以下、「カルボニル化合物(I-1a)」等と称する場合がある)等が挙げられる。なお、カルボニル化合物(I-1a)~(I-1c)、カルボニル化合物(I-2a)~(I-2c)、カルボニル化合物(I-3a)~(I-3c)、カルボニル化合物(I-4a)~(I-4c)、カルボニル化合物(I-5a)~(I-5c)、カルボニル化合物(I-6a)~(I-6c)、カルボニル化合物(I-7a)~(I-7b)、カルボニル化合物(I-8a)~(I-8b)、カルボニル化合物(I-9a)~(I-9b)、カルボニル化合物(I-10a)~(I-10b)、カルボニル化合物(I-11a)~(I-11b)、カルボニル化合物(I-12a)~(I-12b)、カルボニル化合物(I-22a)~(I-22b)、又はカルボニル化合物(I-24a)~(I-24b)はそれぞれ混合物とすることができ、或いは、各化合物単体とすることができる。
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 
≪カルボニル化合物の製造方法≫
 本実施形態のカルボニル化合物の製造方法は、イソシアネート化合物及びカルバメート化合物からなる群より選ばれる1種以上の化合物と、
 炭酸エステル及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物と、
を、混合し、加熱して、前記カルボニル化合物を合成することを含む。
 発明者らは、カルバメート化合物の熱分解反応によるイソシアネート化合物の製造において、上記カルボニル化合物(I)が生成されることを見出した。
 よって、本実施形態のカルボニル化合物の製造方法としては、1)カルバメート化合物の熱分解反応による製造方法;2)イソシアネート化合物及びカルバメート化合物からなる群より選ばれる1種以上の化合物と、炭酸エステル及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物と、を、混合し、加熱する方法が挙げられる。
<熱分解反応による製造方法>
 熱分解反応でカルボニル化合物を製造する場合、副反応として上記式(B)で表されるイソシアヌレート基を形成する反応や、上記式(C)で表されるカルボジイミド類を生成する反応、上記式(D)で表されるウレトンイミン基を形成する反応、上記式(E)で表されるアロファネート基が形成する反応が起こる。これらの副反応はイソシアネート同士、カルバメート化合物同士、又はイソシアネート化合物とカルバメート化合物の反応により起こる。これに対して、カルボニル化合物(I)の生成反応は、イソシアネート化合物及びカルバメート化合物からなる群より選ばれる1種以上の化合物と、炭酸エステル及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物の反応で生成する。従って、カルバメート化合物の熱分解反応において、炭酸エステルの使用量を増やす、或いは、熱分解反応を還流条件で行い、余分な炭酸エステルの蒸発を防ぐことで、相対的にカルボニル化合物(I)の生成比率を増やすことができる。
 カルボニル化合物(I)は、下記式(F)、(G)又は(H)で表される反応機構によって生成されると推定される。
Figure JPOXMLDOC01-appb-C000035
(式(F)~(H)中、Rは2価以上の有機基である。Rは1価の有機基である。)
 熱分解反応において、溶媒としての炭酸エステルの使用量(モル量)は、副反応を抑制する点から多いほうが好ましいが、反応器の大きさ等を考慮すると、カルバメート化合物に対する化学量論比で、0.001倍以上100倍以下が好ましく、0.01倍以上80倍以下がより好ましく、0.1倍以上50倍以下がさらに好ましい。
 後述する方法によってカルバメート化合物を製造した際に、該カルバメート化合物に炭酸エステルが含有される場合は、該炭酸エステルをそのまま使用してもよく、新たに炭酸エステルをカルバメート化合物に加えてもよい。また、炭酸エステルは、反応開始前に反応器に供給されてもよく、反応中に供給されてもよく、或いは、その両方でもよい。中でも、反応前に反応器に供給されることが好ましい。
 反応温度は、通常、100℃以上400℃以下であり、反応速度を高めるためには高温が好ましいが、一方で、高温では、カルバメート化合物及び生成物であるイソシアネート化合物からなる群より選ばれる1種以上の化合物によって、上述したような副反応が引き起こされる場合があるので、130℃以上300℃以下が好ましく、150℃以上280℃以下がより好ましい。反応温度を一定にするために、反応器に公知の冷却装置、加熱装置を設置してもよい。
 また、反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常、20Pa以上1×106Pa以下の範囲で行われる。
 反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001時間以上100時間以下であり、0.01時間以上50時間以下が好ましく、0.1時間以上10時間以下がより好ましい。
 触媒を使用することができ、触媒の使用量はカルバメート化合物の質量に対して0.01質量%以上30質量%以下が好ましく、0.5質量%以上20質量%以下がより好ましい。
 触媒としては、例えば、ジラウリン酸ジブチルスズ、オクチル酸鉛、スタナスオクトエート等の有機金属触媒;1,4-ジアザビシクロ[2,2,2]オクタン、トリエチレンジアミン、トリエチルアミン等のアミン類が挙げられる。中でも、ジラウリン酸ジブチルスズ、オクチル酸鉛、スタナオクトエート等の有機金属触媒が好適である。これらの化合物は単独で用いてもよく、二種類以上の混合物として使用してもよい。
 上述したように熱分解反応は、カルバメート化合物から、対応するイソシアネート化合物とヒドロキシ化合物、並びにカルボニル化合物を生成する反応である。カルボニル化合物を効率よく得るためには、熱分解反応においてイソシアネート化合物、炭酸エステル、カルバメート化合物が共存する状態で加熱される必要がある。従って、熱分解反応において、効率よくカルボニル化合物を得るためには、熱分解反応における生成物であるヒドロキシ化合物を、例えば、蒸留等の方法により、熱分解反応の系より気相成分として取り出し、還流等の条件でヒドロキシ化合物と、炭酸エステル及びイソシアネート化合物と、を分離し、炭酸エステル及び該イソシアネートを液相成分として存在させることが好ましい。
 熱分解反応後に、軽沸成分を留去してもよく、軽沸成分を気相成分として分離することができれば、留去方法は特に限定されない。ここでいう「軽沸成分(軽沸点成分)」とは、カルボニル化合物よりも沸点の低い成分を指し、カルボニル化合物の製造原料となる化合物の種類によって異なるが、主として熱分解工程で用いた炭酸エステル、熱分解反応で生成するイソシアネート化合物、及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物である。
 軽沸成分を留去する際の圧力は、化合物の種類や反応温度によって異なるが、カルボニル化合物と軽沸成分の分離が可能である範囲では減圧、常圧、加圧のいずれであってもよく、20Pa以上1×10Pa以下が好ましく、20Pa以上1×10Pa以下がより好ましく、20Pa以上1×10Pa以下がさらに好ましく、20Pa以上1×10Pa以下が特に好ましい。
 軽沸成分を留去する際の操作時間(連続法の場合は滞留時間)はカルボニル化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、カルボニル化合物との副反応を抑制する観点から、5秒間以上100時間以下が好ましく、10秒間以上50時間以下がより好ましく、20秒間以上10時間以下がさらに好ましい。
 軽沸成分を留去する際の温度はカルボニル化合物が安定であり、カルボニル化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、カルボニル化合物の変性を抑制する観点から、20℃以上300℃以下が好ましく、30℃以上280℃以下がより好ましく、40℃以上250℃以下がさらに好ましい。
<混合物の加熱による製造方法>
 カルボニル化合物の反応機構が、上記式(F)、(G)又は(H)で表されることから分かるように、カルボニル化合物(I)は、イソシアネート化合物(II)と炭酸エステル(IV)の混合物、カルバメート化合物(III)若しくはカルバメート化合物(VI)と炭酸エステル(IV)の混合物、イソシアネート化合物(II)とヒドロキシ化合物(V)と炭酸エステル(IV)の混合物、イソシアネート化合物(II)とカルバメート化合物(III)若しくはカルバメート化合物(VI)と炭酸エステル(IV)の混合物、又は、イソシアネート化合物(II)とカルバメート化合物(III)若しくはカルバメート化合物(VI)と炭酸エステル(IV)とヒドロキシ化合物(V)の混合物(以降、これらの混合物を総じて、単に「原料混合物」と称する場合がある)を加熱することでも得られる。
 原料混合物において、炭酸エステルの配合量(モル量)は、副反応を抑制する点から多いほうが好ましいが、反応器の大きさ等を考慮すると、カルバメート化合物に対する化学量論比で、0.001倍以上100倍以下が好ましく、0.01倍以上80倍以下がより好ましく、0.1倍以上50倍以下がさらに好ましい。
 加熱温度は、通常、100℃以上400℃以下であり、反応速度を高めるためには高温が好ましいが、一方で、高温では、カルバメート化合物及び生成物であるイソシアネート化合物からなる群より選ばれる1種以上の化合物によって、上述したような副反応が引き起こされる場合があるので、130℃以上300℃以下が好ましく、150℃以上280℃以下がより好ましい。反応温度を一定にするために、反応器に公知の冷却装置、加熱装置を設置してもよい。
 加熱時の圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常、20Pa以上1×106Pa以下の範囲で行われる。
 加熱時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001時間以上100時間以下であり、0.01時間以上50時間以下が好ましく、0.1時間以上10時間以下がより好ましい。
 混合加熱によるカルボニル化合物の製造では、原料混合物をステンレスに接液させて加熱することでカルボニル化合物の生成速度、生成量を高めることができる。ステンレスとしては、SUS316製、又はSUS304製であれば形状を問わず使用することが可能であり、例えば充填物や金属片が好ましく使用される。充填物としては特に限定はされないが、DIXON Packing、Mc MAHON Packing、Coil PACK、MESH RING、CANNON Packing、HELI PACK、RASCHIG RING、PRICKLE RING等が使用される。
 カルボニル化合物の原料液の体積V、ステンレスの表面積Aとした時に、原料液の単位体積当たりの、ステンレスとの接液面積が大きい程、カルボニル化合物の生成速度は速くなる。A/Vの値は0.001m/m以上100000m/m以下が好ましく、0.01m/m以上50000m/m以下がより好ましく、0.1m/m以上10000m/m以下がさらに好ましい。
 反応形式は特に限定されないが、原料混合物、又は、混合物とステンレスを効率よく混合し、加熱できる反応器が好ましく、例えば、ステンレス製の攪拌槽や蒸留塔で原料混合物を加熱する方法が好ましい。
 原料混合物を加熱後に、軽沸成分を留去してもよく、軽沸成分を気相成分として分離することができれば、留去方法は特に限定されない。ここでいう「軽沸成分(軽沸点成分)」とは、カルボニル化合物よりも沸点の低い成分を指し、カルボニル化合物の製造原料となる化合物の種類によって異なるが、主として、原料混合物に含まれる炭酸エステル、熱分解反応で生成するイソシアネート化合物、及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物である。
 軽沸成分を留去する際の圧力は、化合物の種類や反応温度によって異なるが、カルボニル化合物と軽沸成分の分離が可能である範囲では減圧、常圧、加圧のいずれであってもよく、20Pa以上1×10Pa以下が好ましく、20Pa以上1×10Pa以下がより好ましく、20Pa以上1×10Pa以下がさらに好ましく、20Pa以上1×10Pa以下が特に好ましい。
 軽沸成分を留去する際の操作時間(連続法の場合は滞留時間)はカルボニル化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、カルボニル化合物との副反応を抑制する観点から、5秒間以上100時間以下が好ましく、10秒間以上50時間以下がより好ましく、20秒間以上10時間以下がさらに好ましい。
 軽沸成分を留去する際の温度はカルボニル化合物が安定であり、カルボニル化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、カルボニル化合物の変性を抑制する観点から、20℃以上300℃以下が好ましく、30℃以上280℃以下がより好ましく、40℃以上250℃以下がさらに好ましい。
 次いで、本実施形態のカルボニル化合物の製造方法で用いられる各種原料について以下に詳細を説明する。
<イソシアネート化合物>
 イソシアネート化合物としては、下記一般式(II)で表される化合物(以下、「イソシアネート化合物(II)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000036
(一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
[R21
 R21は、n21価の有機基であり、関係式:R21=R11を満たす。すなわち、R21は、上記R11と同じである。
 R21が脂肪族炭化水素基である場合、イソシアネート化合物(II)として具体的には、例えば、脂肪族ジイソシアネート類、脂肪族トリイソシアネート類、置換された環式脂肪族ポリイソシアネート類等が挙げられる。
 脂肪族ジイソシアネート類としては、例えば、ジイソシアナトエタン、ジイソシアナトプロパン(各異性体)、ジイソシアナトブタン(各異性体)、ジイソシアナトペンタン(各異性体)、ジイソシアナトヘキサン(各異性体)、ジイソシアナトデカン(各異性体)等が挙げられる。
 脂肪族トリイソシアネート類としては、例えば、トリイソシアナトヘキサン(各異性体)、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート、トリイソシアナトノナン(各異性体)、トリイソシアナトデカン(各異性体)等が挙げられる。
 置換された環式脂肪族ポリイソシアネート類としては、例えば、ジイソシアナトシクロブタン(各異性体)、ジイソシアナトシクロヘキサン(各異性体)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネートともいう)(各異性体)、1,3-ビス(イソシアナトメチル)シクロヘキサン(シス体及びトランス体のうち少なくともいずれかの異性体)、メチレンビス(シクロヘキシルイソシアネート)(ジシクロヘキシルメタンジイソシアネートともいう)(各異性体)等が挙げられる。
 R21が芳香族基の場合、イソシアネート化合物(II)として具体的には、例えば、芳香族ジイソシアネート類、芳香族トリイソシアネート類等が挙げられる。
 芳香族ジイソシアネート類としては、例えば、ジイソシアナトベンゼン(各異性体)、ジイソシアナトトルエン(各異性体)、ビス(イソシアナトフェニル)メタン(各異性体)、ジイソシアナトメシチレン(各異性体)、ジイソシアナトビフェニル(各異性体)、ジイソシアナトジベンジル(各異性体)、ビス(イソシアナトフェニル)プロパン(各異性体)、ビス(イソシアナトフェニル)エーテル(各異性体)、ビス(イソシアナトフェノキシエタン)(各異性体)、ジイソシアナトキシレン(各異性体)、ジイソシアナトアニソール(各異性体)、ジイソシアナトフェネトール(各異性体)、ジイソシアナトナフタレン(各異性体)、ジイソシアナトメチルベンゼン(各異性体)、ジイソシアナトメチルピリジン(各異性体)、ジイソシアナトメチルナフタレン(各異性体)、ジイソシアナトジフェニルメタン(各異性体)、テトラメチルキシリレンジイソシアネート(各異性体)等が挙げられる。
 芳香族トリイソシアネート類としては、例えば、トリイソシアナトベンゼン(各異性体)、トリイソシアナト-メチルベンゼン(各異性体)、トリス(イソシアナトプロパン-イル)ベンゼン(各異性体)、トリス(イソシアナトプロパン-イル)-メチルベンゼン(各異性体)、トリス(イソシアナトメチル)-メチルベンゼン(各異性体)、((イソシアナト-フェニレン)ビス(メチレン))ビス(イソシアネートベンゼン)(各異性体)等が挙げられる。
 R21が芳香族である場合、芳香族基の電子吸引効果により直接結合するイソシアネート基の反応性が高くなる。さらに、同一芳香族化合物に直接結合するイソシアネート基の数が増えるほど相互の電子吸引作用で反応性がより高まる。反応性の観点からは、R21に対してイソシアネート基が2以上であることが好ましく、3以上であることがより好ましい。一方、イソシアネートの反応性が高くなると水分やイソシアネート同士及びその他の不純物との反応が生起され、化合物の常温及び加熱時の安定性が低くなる。イソシアネート化合物の安定性の観点から、R21に直接結合するイソシアネート基の数は4以下が好ましく、3以下がより好ましい。
 R21における脂肪族炭化水素基又は芳香族基が1以上4以下のエステル基又は窒素原子を有する場合に、イソシアネート化合物(II)として具体的には、例えば、アクリル酸-2-イソシアナト-エチルエステル、2-メチル-アクリル酸-2-イソシアナト-エチルエステル、アクリル酸-2-イソシアナト-プロピルエステル、2-メチル-アクリル酸-2-イソシアナト-プロピルエステル、アクリル酸-3-イソシアナト-プロピルエステル、2-メチル-アクリル酸-3-イソシアナト-プロピルエステル、アクリル酸-4-イソシアナト-ブチルエステル、2-メチル-アクリル酸-4-イソシアナト-ブチルエステル、アクリル酸-5-イソシアナト-ペンチルエステル、2-メチル-アクリル酸-5-イソシアナト-ペンチルエステル、アクリル酸-6-イソシアナト-ヘキシルエステル、2-メチル-アクリル酸-6-イソシアナト-ヘキシルエステル、アクリル酸-8-イソシアナト-オクチルエステル、2-メチル-アクリル酸-8-イソシアナト-オクチルエステル、アクリル酸-10-イソシアナト-デシルエステル、2-メチル-アクリル酸-10-イソシアナト-デシルエステル、アクリル酸-11-イソシアナト-ウンデシルエステル、2-メチル-アクリル酸-11-イソシアナト-ウンデシルエステル、アクリル酸-12-イソシアナト-ドデシルエステル、2-メチル-アクリル酸-12-イソシアナト-ドデシルエステル、リジンメチルエステルジイソシアネート、リジンエチルエステルジイソシアネート、2-イソシアナトエチル-2,5-ジイソシアナトペンタノエート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート(リジントリイソシアネート)、ビス(2-イソシアナトエチル)-2-イソシアナトブタンジオエート、ビス(2-イソシアナトエチル)-2-イソシアナトペンタンジオエート、トリス(2-イソシアナトエチル)ヘキサン-1,3,6-トリカルボキシレート、トリスイソシアナトエチルアミン、トリスイソシアナトプロピルアミン等が挙げられる。
 イソシアネート化合物中にエステル基やN原子等の電子吸引基を有することで、イソシアネート基の反応性が向上する。イソシアネート基とエステル基又は窒素原子の間の炭素数が少ないほどイソシアネート基の反応性がより向上するため、その炭素数は1以上20以下であることが好ましく、1以上8以下であることがより好ましく、1以上3以下であることがさらに好ましい。一方、電子吸引基であるイソシアネート基とエステル基又は窒素原子の間の炭素-炭素又は炭素-窒素の結合が解離しやすく、化合物の熱安定性が損なわれることがある。そのため、イソシアネート基とエステル基又は窒素原子が共存する化合物の安定性の観点からは、イソシアネート基とエステル基又は窒素原子の間の炭素数が多いほど、化合物の安定性がより向上するため、その炭素数は1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。
 イソシアネート化合物(II)は、塗料の原料として使用されることが多く太陽光等の光にさらされた際に着色しない性質(耐候性)が求められる。R21に芳香族基を有すると太陽光にさらされた際に光エネルギーを吸収することで着色が起こることがある。このことから、耐候性の観点では、R21は、芳香族基を有さないことが好ましく、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基であることがより好ましい。
 また、R21として具体的には、上記式(Ia-1)~(Ia-24)のいずれかで表される基であること好ましく、式(Ia-1)、(Ia-2)、(Ia-3)、(Ia-14)、(Ia-18)、又は(Ia-19)で表される基であることがより好ましい。
(n21)
 n21は、イソシアネート基の数を表し、関係式:n21=n11+n12を満たす。n21は、2以上8以下の整数であり、2以上6以下の整数が好ましく、2以上5以下の整数がより好ましく、3以上4以下の整数がさらに好ましい。一般的に、n21価以上のイソシアネートと活性水素基を有するジヒドロキシ化合物やジアミン化合物と反応させることでポリマーを得ることができる。このn21の値が大きくなるほどイソシアネート分子あたりの架橋点(イソシアネート基)が多くなるため、ポリマー化した時の架橋密度が高くなり、硬化時間の短縮やポリマーの硬度向上させることができる。なお、ここでいう「架橋密度が高くなる」とは、架橋点と架橋点の間の平均分子鎖長が小さくなることを意味する。イソシアネート分子中のイソシアネート基が3以上(n21が3以上)であると直鎖のポリマーとポリマーをさらに結合することができポリマーの分子量が高くなりやすいため、とりわけ硬化時間の大幅な短縮や硬度などのポリマー物性の劇的な向上が期待できる。一方、イソシアネート製造においては、反応性の高いイソシアネート化合物を加熱すると変性反応が想起され、装置への固着やつまりの原因となるため、イソシアネート化合物中のイソシアネート基の価数n21が6以下であることが好ましく、5以下であることがより好ましく、4以下であることがさら好ましい。
 好ましいイソシアネート化合物(II)としては、例えば、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート(TTI)、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート(LTI)、リジンメチルエステルジイソシアネート(LDI)、メチレンビス(シクロヘキシルイソシアネート)(HMDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(HXDI)、ジイソシアナトジフェニルメタン(MDI)等が挙げられる。
<カルバメート化合物>
 カルバメート化合物としては、下記一般式(III)で表される化合物(以下、「カルバメート化合物(III)」と称する場合がある)又は下記一般式(VI)で表される化合物(以下、「カルバメート化合物(VI)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000037
(一般式(III)中、R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。R32は1価の有機基であり、関係式:R32=R12を満たす。n31は1以上8以下の整数であり、n32は0以上7以下の整数であり、n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。)
Figure JPOXMLDOC01-appb-C000038
(一般式(VI)中、R61は、n61価の有機基であり、関係式:R61=R21を満たす。R62は1価の有機基であり、関係式:R62=R12を満たす。n61は2以上8以下の整数であり、関係式:n61=n21を満たす。)
[カルバメート化合物(III)]
(R31
 R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。すなわち、R31は、上記R11と同じである。
 中でも、R31としては、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であることが好ましい。
 また、R31として具体的には、上記式(Ia-1)~(Ia-24)のいずれかで表される基であること好ましく、式(Ia-1)、(Ia-2)、(Ia-3)、(Ia-14)、(Ia-18)、又は(Ia-19)で表される基であることがより好ましい。
(R32
 R32は1価の有機基であり、関係式:R32=R12を満たす。すなわち、R32は、上記R12と同じである。
 中でも、R32としては、酸素原子を含んでもよい、炭素数1以上20以下の脂肪族炭化水素基又は炭素数6以上20以下の芳香族炭化水素基が好ましい。
 また、R32として具体的には、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントリル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ウンデシルフェニル基(各異性体)、ドデシルフェニル基(各異性体)、トリデシルフェニル基(各異性体)、テトラデシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、メチルヘキシルフェニル基(各異性体)、メチルヘプチルフェニル基(各異性体)、メチルオクチルフェニル基(各異性体)、メチルノニルフェニル基(各異性体)、メチルデシルフェニル基(各異性体)、メチルウンデシルフェニル基(各異性体)、メチルドデシルフェニル基(各異性体)、メチルトリデシルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、エチルペンチルフェニル基(各異性体)、エチルヘキシルフェニル基(各異性体)、エチルヘプチルフェニル基(各異性体)、エチルオクチルフェニル基(各異性体)、エチルノニルフェニル基(各異性体)、エチルデシルフェニル基(各異性体)、エチルウンデシルフェニル基(各異性体)、エチルドデシルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、プロピルブチルフェニル基(各異性体)、プロピルペンチルフェニル基(各異性体)、プロピルヘキシルフェニル基(各異性体)、プロピルヘプチルフェニル基(各異性体)、プロピルオクチルフェニル基(各異性体)、プロピルノニルフェニル基(各異性体)、プロピルデシルフェニル基(各異性体)、プロピルウンデシルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ブチルペンチルフェニル基(各異性体)、ブチルヘキシルフェニル基(各異性体)、ブチルヘプチルフェニル基(各異性体)、ブチルオクチルフェニル基(各異性体)、ブチルノニルフェニル基(各異性体)、ブチルデシルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ペンチルヘキシルフェニル基(各異性体)、ペンチルヘプチルフェニル基(各異性体)、ペンチルオクチルフェニル基(各異性体)、ペンチルノニルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ヘキシルヘプチルフェニル基(各異性体)、ヘキシルオクチルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、ジメチルエチルフェニル基(各異性体)、ジメチルプロピルフェニル基(各異性体)、ジメチルブチルフェニル基(各異性体)、ジメチルペンチルフェニル基(各異性体)、ジメチルヘキシルフェニル基(各異性体)、ジメチルヘプチルフェニル基(各異性体)、ジメチルオクチルフェニル基(各異性体)、ジメチルノニルフェニル基(各異性体)、ジメチルデシルフェニル基(各異性体)、ジメチルウンデシルフェニル基(各異性体)、ジメチルドデシルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ジエチルメチルフェニル基(各異性体)、ジエチルプロピルフェニル基(各異性体)、ジエチルブチルフェニル基(各異性体)、ジエチルペンチルフェニル基(各異性体)、ジエチルヘキシルフェニル基(各異性体)、ジエチルヘプチルフェニル基(各異性体)、ジエチルオクチルフェニル基(各異性体)、ジエチルノニルフェニル基(各異性体)、ジエチルデシルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、ジプロピルメチルフェニル基(各異性体)、ジプロピルエチルフェニル基(各異性体)、ジプロピルブチルフェニル基(各異性体)、ジプロピルペンチルフェニル基(各異性体)、ジプロピルヘキシルフェニル基(各異性体)、ジプロピルヘプチルフェニル基(各異性体)、ジプロピルオクチルフェニル基(各異性体)、トリブチルフェニル基(各異性体)、ジブチルメチルフェニル基(各異性体)、ジブチルエチルフェニル基(各異性体)、ジブチルプロピルフェニル基(各異性体)、ジブチルペンチルフェニル基(各異性体)、ジブチルヘキシルフェニル基(各異性体)、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)が好ましい。また、フェニル基、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)がより好ましい。
(n31及びn32)
 n31は1以上8以下の整数である。
 n32は0以上7以下の整数である。
 n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。
 好ましいカルバメート化合物(III)としては、例えば、下記式(III-1a)~(III-24b)で表される化合物等が挙げられる。なお、カルバメート化合物(III-1a)~(III-1c)、カルバメート化合物(III-2a)~(III-2c)、カルバメート化合物(III-3a)~(III-3c)、カルバメート化合物(III-4a)~(III-4c)、カルバメート化合物(III-5a)~(III-5c)、カルバメート化合物(III-6a)~(III-6c)、カルバメート化合物(III-7a)~(III-7b)、カルバメート化合物(III-8a)~(III-8b)、カルバメート化合物(III-9a)~(III-9b)、カルバメート化合物(III-10a)~(III-10b)、カルバメート化合物(III-11a)~(III-11b)、カルバメート化合物(III-12a)~(III-12b)、カルバメート化合物(III-22a)~(III-22b)、又はカルバメート合物(III-24a)~(III-24b)はそれぞれ混合物とすることができ、或いは、各化合物単体とすることができる。
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045

Figure JPOXMLDOC01-appb-C000046
[カルバメート化合物(VI)]
(R61
 R61は、n61価の有機基であり、関係式:R61=R21を満たす。すなわち、R61は、上記R21と同じである。
 中でも、R61としては、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であることが好ましい。
 また、R61として具体的には、上記式(Ia-1)~(Ia-24)のいずれかで表される基であること好ましく、式(Ia-1)、(Ia-2)、(Ia-3)、(Ia-14)、(Ia-18)、又は(Ia-19)で表される基であることがより好ましい。
(R62
 R62は1価の有機基であり、関係式:R62=R12を満たす。すなわち、R62は、上記R12と同じである。
 中でも、R62としては、酸素原子を含んでもよい、炭素数1以上20以下の脂肪族炭化水素基又は炭素数6以上20以下の芳香族炭化水素基が好ましい。
 また、R62として具体的には、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントリル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ウンデシルフェニル基(各異性体)、ドデシルフェニル基(各異性体)、トリデシルフェニル基(各異性体)、テトラデシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、メチルヘキシルフェニル基(各異性体)、メチルヘプチルフェニル基(各異性体)、メチルオクチルフェニル基(各異性体)、メチルノニルフェニル基(各異性体)、メチルデシルフェニル基(各異性体)、メチルウンデシルフェニル基(各異性体)、メチルドデシルフェニル基(各異性体)、メチルトリデシルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、エチルペンチルフェニル基(各異性体)、エチルヘキシルフェニル基(各異性体)、エチルヘプチルフェニル基(各異性体)、エチルオクチルフェニル基(各異性体)、エチルノニルフェニル基(各異性体)、エチルデシルフェニル基(各異性体)、エチルウンデシルフェニル基(各異性体)、エチルドデシルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、プロピルブチルフェニル基(各異性体)、プロピルペンチルフェニル基(各異性体)、プロピルヘキシルフェニル基(各異性体)、プロピルヘプチルフェニル基(各異性体)、プロピルオクチルフェニル基(各異性体)、プロピルノニルフェニル基(各異性体)、プロピルデシルフェニル基(各異性体)、プロピルウンデシルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ブチルペンチルフェニル基(各異性体)、ブチルヘキシルフェニル基(各異性体)、ブチルヘプチルフェニル基(各異性体)、ブチルオクチルフェニル基(各異性体)、ブチルノニルフェニル基(各異性体)、ブチルデシルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ペンチルヘキシルフェニル基(各異性体)、ペンチルヘプチルフェニル基(各異性体)、ペンチルオクチルフェニル基(各異性体)、ペンチルノニルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ヘキシルヘプチルフェニル基(各異性体)、ヘキシルオクチルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、ジメチルエチルフェニル基(各異性体)、ジメチルプロピルフェニル基(各異性体)、ジメチルブチルフェニル基(各異性体)、ジメチルペンチルフェニル基(各異性体)、ジメチルヘキシルフェニル基(各異性体)、ジメチルヘプチルフェニル基(各異性体)、ジメチルオクチルフェニル基(各異性体)、ジメチルノニルフェニル基(各異性体)、ジメチルデシルフェニル基(各異性体)、ジメチルウンデシルフェニル基(各異性体)、ジメチルドデシルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ジエチルメチルフェニル基(各異性体)、ジエチルプロピルフェニル基(各異性体)、ジエチルブチルフェニル基(各異性体)、ジエチルペンチルフェニル基(各異性体)、ジエチルヘキシルフェニル基(各異性体)、ジエチルヘプチルフェニル基(各異性体)、ジエチルオクチルフェニル基(各異性体)、ジエチルノニルフェニル基(各異性体)、ジエチルデシルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、ジプロピルメチルフェニル基(各異性体)、ジプロピルエチルフェニル基(各異性体)、ジプロピルブチルフェニル基(各異性体)、ジプロピルペンチルフェニル基(各異性体)、ジプロピルヘキシルフェニル基(各異性体)、ジプロピルヘプチルフェニル基(各異性体)、ジプロピルオクチルフェニル基(各異性体)、トリブチルフェニル基(各異性体)、ジブチルメチルフェニル基(各異性体)、ジブチルエチルフェニル基(各異性体)、ジブチルプロピルフェニル基(各異性体)、ジブチルペンチルフェニル基(各異性体)、ジブチルヘキシルフェニル基(各異性体)、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)が好ましい。また、フェニル基、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)がより好ましい。
(n61)
 n61は、カルバメート基の数を表し、関係式:n61=n21を満たす。n61は、2以上8以下の整数であり、2以上6以下の整数が好ましく、2以上5以下の整数がより好ましく、3以上4以下の整数がさらに好ましい。
 好ましいカルバメート化合物(VI)としては、例えば、下記式(VI-1)~(VI-24)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-C000049
<炭酸エステル>
 炭酸エステルとしては、下記一般式(IV)で表される化合物(以下、「炭酸エステル(IV)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000050
(一般式(IV)中、R41及びR42は、それぞれ独立に、1価の有機基であり、関係式:R41=R42=R12を満たす。)
[R41及びR42
 R41及びR42は互いに同一であり、関係式:R41=R42=R12を満たす。 すなわち、R41及びR42としては、上記R12において例示されたものと同様のものが挙げられる。
 中でも、R41及びR42としては、置換又は無置換の、アリール基が好ましい。
 また、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントリル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ウンデシルフェニル基(各異性体)、ドデシルフェニル基(各異性体)、トリデシルフェニル基(各異性体)、テトラデシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、メチルヘキシルフェニル基(各異性体)、メチルヘプチルフェニル基(各異性体)、メチルオクチルフェニル基(各異性体)、メチルノニルフェニル基(各異性体)、メチルデシルフェニル基(各異性体)、メチルウンデシルフェニル基(各異性体)、メチルドデシルフェニル基(各異性体)、メチルトリデシルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、エチルペンチルフェニル基(各異性体)、エチルヘキシルフェニル基(各異性体)、エチルヘプチルフェニル基(各異性体)、エチルオクチルフェニル基(各異性体)、エチルノニルフェニル基(各異性体)、エチルデシルフェニル基(各異性体)、エチルウンデシルフェニル基(各異性体)、エチルドデシルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、プロピルブチルフェニル基(各異性体)、プロピルペンチルフェニル基(各異性体)、プロピルヘキシルフェニル基(各異性体)、プロピルヘプチルフェニル基(各異性体)、プロピルオクチルフェニル基(各異性体)、プロピルノニルフェニル基(各異性体)、プロピルデシルフェニル基(各異性体)、プロピルウンデシルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ブチルペンチルフェニル基(各異性体)、ブチルヘキシルフェニル基(各異性体)、ブチルヘプチルフェニル基(各異性体)、ブチルオクチルフェニル基(各異性体)、ブチルノニルフェニル基(各異性体)、ブチルデシルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ペンチルヘキシルフェニル基(各異性体)、ペンチルヘプチルフェニル基(各異性体)、ペンチルオクチルフェニル基(各異性体)、ペンチルノニルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ヘキシルヘプチルフェニル基(各異性体)、ヘキシルオクチルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、ジメチルエチルフェニル基(各異性体)、ジメチルプロピルフェニル基(各異性体)、ジメチルブチルフェニル基(各異性体)、ジメチルペンチルフェニル基(各異性体)、ジメチルヘキシルフェニル基(各異性体)、ジメチルヘプチルフェニル基(各異性体)、ジメチルオクチルフェニル基(各異性体)、ジメチルノニルフェニル基(各異性体)、ジメチルデシルフェニル基(各異性体)、ジメチルウンデシルフェニル基(各異性体)、ジメチルドデシルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ジエチルメチルフェニル基(各異性体)、ジエチルプロピルフェニル基(各異性体)、ジエチルブチルフェニル基(各異性体)、ジエチルペンチルフェニル基(各異性体)、ジエチルヘキシルフェニル基(各異性体)、ジエチルヘプチルフェニル基(各異性体)、ジエチルオクチルフェニル基(各異性体)、ジエチルノニルフェニル基(各異性体)、ジエチルデシルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、ジプロピルメチルフェニル基(各異性体)、ジプロピルエチルフェニル基(各異性体)、ジプロピルブチルフェニル基(各異性体)、ジプロピルペンチルフェニル基(各異性体)、ジプロピルヘキシルフェニル基(各異性体)、ジプロピルヘプチルフェニル基(各異性体)、ジプロピルオクチルフェニル基(各異性体)、トリブチルフェニル基(各異性体)、ジブチルメチルフェニル基(各異性体)、ジブチルエチルフェニル基(各異性体)、ジブチルプロピルフェニル基(各異性体)、ジブチルペンチルフェニル基(各異性体)、ジブチルヘキシルフェニル基(各異性体)、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)がより好ましい。
 また、フェニル基、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)がさらに好ましい。
 好ましい炭酸エステル(IV)としては、例えば、炭酸ジフェニル、炭酸ビス(4-クミルフェニル)、炭酸ビス(2-メトキシフェニル)、炭酸ビス(2-エトキシフェニル)等が挙げられる。
<ヒドロキシ化合物>
 ヒドロキシ化合物としては、下記一般式(V)で表される化合物(以下、「ヒドロキシ化合物(V)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000051
(一般式(V)中、R51は、1価の有機基であり、関係式:R51=R12を満たす。)
[R51
 R51は、1価の有機基であり、関係式:R51=R12を満たす。すなわち、R51は、上記R12と同じである。
 中でも、R51としては、酸素原子を含んでもよい、炭素数1以上20以下の脂肪族炭化水素基又は炭素数6以上20以下の芳香族炭化水素基が好ましい。
 また、R51として具体的には、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントリル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ウンデシルフェニル基(各異性体)、ドデシルフェニル基(各異性体)、トリデシルフェニル基(各異性体)、テトラデシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、メチルヘキシルフェニル基(各異性体)、メチルヘプチルフェニル基(各異性体)、メチルオクチルフェニル基(各異性体)、メチルノニルフェニル基(各異性体)、メチルデシルフェニル基(各異性体)、メチルウンデシルフェニル基(各異性体)、メチルドデシルフェニル基(各異性体)、メチルトリデシルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、エチルペンチルフェニル基(各異性体)、エチルヘキシルフェニル基(各異性体)、エチルヘプチルフェニル基(各異性体)、エチルオクチルフェニル基(各異性体)、エチルノニルフェニル基(各異性体)、エチルデシルフェニル基(各異性体)、エチルウンデシルフェニル基(各異性体)、エチルドデシルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、プロピルブチルフェニル基(各異性体)、プロピルペンチルフェニル基(各異性体)、プロピルヘキシルフェニル基(各異性体)、プロピルヘプチルフェニル基(各異性体)、プロピルオクチルフェニル基(各異性体)、プロピルノニルフェニル基(各異性体)、プロピルデシルフェニル基(各異性体)、プロピルウンデシルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ブチルペンチルフェニル基(各異性体)、ブチルヘキシルフェニル基(各異性体)、ブチルヘプチルフェニル基(各異性体)、ブチルオクチルフェニル基(各異性体)、ブチルノニルフェニル基(各異性体)、ブチルデシルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ペンチルヘキシルフェニル基(各異性体)、ペンチルヘプチルフェニル基(各異性体)、ペンチルオクチルフェニル基(各異性体)、ペンチルノニルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ヘキシルヘプチルフェニル基(各異性体)、ヘキシルオクチルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、ジメチルエチルフェニル基(各異性体)、ジメチルプロピルフェニル基(各異性体)、ジメチルブチルフェニル基(各異性体)、ジメチルペンチルフェニル基(各異性体)、ジメチルヘキシルフェニル基(各異性体)、ジメチルヘプチルフェニル基(各異性体)、ジメチルオクチルフェニル基(各異性体)、ジメチルノニルフェニル基(各異性体)、ジメチルデシルフェニル基(各異性体)、ジメチルウンデシルフェニル基(各異性体)、ジメチルドデシルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ジエチルメチルフェニル基(各異性体)、ジエチルプロピルフェニル基(各異性体)、ジエチルブチルフェニル基(各異性体)、ジエチルペンチルフェニル基(各異性体)、ジエチルヘキシルフェニル基(各異性体)、ジエチルヘプチルフェニル基(各異性体)、ジエチルオクチルフェニル基(各異性体)、ジエチルノニルフェニル基(各異性体)、ジエチルデシルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、ジプロピルメチルフェニル基(各異性体)、ジプロピルエチルフェニル基(各異性体)、ジプロピルブチルフェニル基(各異性体)、ジプロピルペンチルフェニル基(各異性体)、ジプロピルヘキシルフェニル基(各異性体)、ジプロピルヘプチルフェニル基(各異性体)、ジプロピルオクチルフェニル基(各異性体)、トリブチルフェニル基(各異性体)、ジブチルメチルフェニル基(各異性体)、ジブチルエチルフェニル基(各異性体)、ジブチルプロピルフェニル基(各異性体)、ジブチルペンチルフェニル基(各異性体)、ジブチルヘキシルフェニル基(各異性体)、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)が好ましい。また、フェニル基、クミルフェニル基(各異性体)、メトキシフェニル基(各異性体)、又はエトキシフェニル基(各異性体)がより好ましい。
 好ましいヒドロキシ化合物(V)としては、下記一般式(V-1)で表される芳香族ヒドロキシ化合物(以下、「芳香族ヒドロキシ化合物(V-1)」と称する場合がある)等が挙げられる。
Figure JPOXMLDOC01-appb-C000052
(一般式(V-1)中、環A511は、炭素数6以上20以下の芳香族炭化水素環である。R511は水素原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、炭素数6以上20以下のアリール基、炭素数6以上20以下のアリールオキシ基、炭素数7以上20以下のアラルキル基、炭素数7以上20以下のアラルキルオキシ基、又はヒドロキシ基である。R511は、環A511と結合して環構造を形成してもよい。また、n511は1以上10以下の整数である。)
[R511
 R511における炭素数1以上20以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)、ヘキシル基(各異性体)、ヘプチル基(各異性体)、オクチル基(各異性体)、ノニル基(各異性体)、デシル基(各異性体)、ドデシル基(各異性体)、オクタデシル基(各異性体)等が挙げられる。
 R511における炭素数1以上20以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基(各異性体)、ブチルオキシ基(各異性体)、ペンチルオキシ基(各異性体)、ヘキシルオキシ基(各異性体)、ヘプチルオキシ基(各異性体)、オクチルオキシ基(各異性体)、ノニルオキシ基(各異性体)、デシルオキシ基(各異性体)、ドデシルオキシ基(各異性体)、オクタデシルオキシ基(各異性体)等が挙げられる。
 R511における炭素数6以上20以下のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。
 R511における置換基としてアルキル基を有するアリール基としては、例えば、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ヘプチルフェニル基(各異性体)、オクチルフェニル基(各異性体)、ノニルフェニル基(各異性体)、デシルフェニル基(各異性体)、ビフェニル基(各異性体)、ジメチルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、ジブチルフェニル基(各異性体)、ジペンチルフェニル基(各異性体)、ジヘキシルフェニル基(各異性体)、ジヘプチルフェニル基(各異性体)、ターフェニル基(各異性体)、トリメチルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、トリプロピルフェニル基(各異性体)、トリブチルフェニル基(各異性体)等が挙げられる。
 R511における炭素数6以上20以下のアリールオキシ基としては、例えば、フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ヘプチルフェノキシ基(各異性体)、オクチルフェノキシ基(各異性体)、ノニルフェノキシ基(各異性体)、デシルフェノキシ基(各異性体)、フェニルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、ジブチルフェノキシ基(各異性体)、ジペンチルフェノキシ基(各異性体)、ジヘキシルフェノキシ基(各異性体)、ジヘプチルフェノキシ基(各異性体)、ジフェニルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、トリエチルフェノキシ基(各異性体)、トリプロピルフェノキシ基(各異性体)、トリブチルフェノキシ基(各異性体)等が挙げられる。
 R511における炭素数7以上20以下のアラルキル基としては、例えば、フェニルメチル基、フェニルエチル基(各異性体)、フェニルプロピル基(各異性体)、フェニルブチル基(各異性体)、フェニルペンチル基(各異性体)、フェニルヘキシル基(各異性体)、フェニルヘプチル基(各異性体)、フェニルオクチル基(各異性体)、フェニルノニル基(各異性体)等が挙げられる。
 R511における炭素数7以上20以下のアラルキルオキシ基としては、例えば、フェニルメトキシ基、フェニルエトキシ基(各異性体)、フェニルプロピルオキシ基(各異性体)、フェニルブチルオキシ基(各異性体)、フェニルペンチルオキシ基(各異性体)、フェニルヘキシルオキシ基(各異性体)、フェニルヘプチルオキシ基(各異性体)、フェニルオクチルオキシ基(各異性体)、フェニルノニルオキシ基(各異性体)等が挙げられる。
[A511
 環A511は、炭素数6以上20以下の芳香族炭化水素環である。環A511は、単環であってもよく、多環であってもよく、縮合環であってもよい。
 環A511として具体的は、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ナフタセン環、クリセン環、ピレン環、トリフェニレン環、ペンタレン環、アズレン環、ヘプタレン環、インダセン環、ビフェニレン環、アセナフチレン環、アセアントリレン環、アセフェナントリレン環等が挙げられる。中でも、環A511としては、ベンゼン環、ナフタレン環、又はアントラセン環が好ましく、ベンゼン環がより好ましい。
 また、これらの環は、上記R511以外の置換基を有していてもよい。R511以外の置換基としては、R511において例示されたものと同じものが挙げられる。R511とR511以外の置換基は、異なる官能基からなる。
[n511]
 n511は、置換基R511の数を示し、1以上10以下の整数である。
 一般式(V-1)において、環A511がベンゼン環である化合物としては、例えば、下記一般式(V-1-1)で表される化合物(以下、「ヒドロキシ化合物(V-1-1)」と称する場合がある)等が挙げられる。
Figure JPOXMLDOC01-appb-C000053
(一般式(V-1-1)中、R512~R516はそれぞれ独立に、上記R511と同じである。)
 中でも、R512~R516の少なくとも1つが水素原子であることが好ましく、また、R512~R516の全てが水素原子であることがより好ましい。
 好ましいヒドロキシ化合物(V-1-1)としては、例えば、フェノール、2-エチルフェノール、2-プロピルフェノール(各異性体)、2-ブチルフェノール(各異性体)、2-ペンチルフェノール(各異性体)、2-ヘキシルフェノール(各異性体)、2-ヘプチルフェノール(各異性体)、2-フェニルフェノール、2,6-ジメチルフェノール、2,4-ジエチルフェノール、2、6-ジエチルフェノール、2,4-ジプロピルフェノール(各異性体)、2,6-ジプロピルフェノール(各異性体)、2,4-ジブチルフェノール(各異性体)、2,4-ジペンチルフェノール(各異性体)、2,4-ジヘキシルフェノール(各異性体)、2,4-ジヘプチルフェノール(各異性体)、2-メチル-6-エチルフェノール、2-メチル-6-プロピルフェノール(各異性体)、2-メチル-6-ブチルフェノール(各異性体)、2-メチル-6-ペンチルフェノール(各異性体)、2-エチル-6-プロピルフェノール(各異性体)、2-エチル-6-ブチルフェノール(各異性体)、2-エチル-6-ペンチルフェノール(各異性体)、2-プロピル-6-ブチルフェノール(各異性体)、2-エチル-4-メチルフェノール(各異性体)、2-エチル-4-プロピルフェノール(各異性体)、2-エチル-4-ブチルフェノール(各異性体)、2-エチル-4-ペンチルフェノール(各異性体)、2-エチル-4-ヘキシルフェノール(各異性体)、2-エチル-4-ヘプチルフェノール(各異性体)、2-エチル-4-オクチルフェノール(各異性体)、2-エチル-4-フェニルフェノール(各異性体)、2-エチル-4-クミルフェノール(各異性体)、2-プロピル-4-メチルフェノール(各異性体)、2-プロピル-4-エチルフェノール(各異性体)、2-プロピル-4-ブチルフェノール(各異性体)、2-プロピル-4-ペンチルフェノール(各異性体)、2-プロピル-4-ヘキシルフェノール(各異性体)、2-プロピル-4-ヘプチルフェノール(各異性体)、2-プロピル-4-オクチルフェノール(各異性体)、2-プロピル-4-フェニルフェノール(各異性体)、2-プロピル-4-クミルフェノール(各異性体)、2-ブチル-4-メチルフェノール(各異性体)、2-ブチル-4-エチルフェノール(各異性体)、2-ブチル-4-プロピルフェノール(各異性体)、2-ブチル-4-ペンチルフェノール(各異性体)、2-ブチル-4-ヘキシルフェノール(各異性体)、2-ブチル-4-ヘプチルフェノール(各異性体)、2-ブチル-4-オクチルフェノール(各異性体)、2-ブチル-4-フェニルフェノール(各異性体)、2-ブチル-4-クミルフェノール(各異性体)、2-ペンチル-4-メチルフェノール(各異性体)、2-ペンチル-4-エチルフェノール(各異性体)、2-ペンチル-4-プロピルフェノール(各異性体)、2-ペンチル-4-ブチルフェノール(各異性体)、2-ペンチル-4-ヘキシルフェノール(各異性体)、2-ペンチル-4-ヘプチルフェノール(各異性体)、2-ペンチル-4-オクチルフェノール(各異性体)、2-ペンチル-4-フェニルフェノール(各異性体)、2-ペンチル-4-クミルフェノール(各異性体)、2-ヘキシル-4-メチルフェノール(各異性体)、2-ヘキシル-4-エチルフェノール(各異性体)、2-ヘキシル-4-プロピルフェノール(各異性体)、2-ヘキシル-4-ブチルフェノール(各異性体)、2-ヘキシル-4-ペンチルフェノール(各異性体)、2-ヘキシル-4-ヘプチルフェノール(各異性体)、2-ヘキシル-4-オクチルフェノール(各異性体)、2-ヘキシル-4-フェニルフェノール(各異性体)、2-ヘキシル-4-クミルフェノール(各異性体)、2-ヘプチル-4-メチルフェノール(各異性体)、2-ヘプチル-4-エチルフェノール(各異性体)、2-ヘプチル-4-プロピルフェノール(各異性体)、2-ヘプチル-4-ブチルフェノール(各異性体)、2-ヘプチル-4-ペンチルフェノール(各異性体)、2-ヘプチル-4-ヘキシルフェノール(各異性体)、2-ヘプチル-4-オクチルフェノール(各異性体)、2-ヘプチル-4-フェニルフェノール(各異性体)、2-ヘプチル-4-クミルフェノール(各異性体)、2,4,6-トリメチルフェノール、2,6-ジメチル-4-エチルフェノール、2,6-ジメチル-4-プロピルフェノール(各異性体)、2,6-ジメチル-4-ブチルフェノール(各異性体)、2,6-ジメチル-4-ペンチルフェノール(各異性体)、2,6-ジメチル-4-ヘキシルフェノール(各異性体)、2,6-ジメチル-4-フェニルフェノール、2,6-ジメチル-4-クミルフェノール、2,4,6-トリエチルフェノール、2,6-ジエチル-4-メチルフェノール、2,6-ジエチル-4-プロピルフェノール(各異性体)、2,6-ジエチル-4-ブチルフェノール(各異性体)、2,6-ジエチル-4-ペンチルフェノール(各異性体)、2,6-ジエチル-4-ヘキシルフェノール(各異性体)、2,6-ジエチル-4-フェニルフェノール、2,6-ジエチル-4-クミルフェノール、2,4,6-トリプロピルフェノール(各異性体)、2,6-ジプロピル-4-エチルフェノール(各異性体)、2,6-ジプロピル-4-メチルフェノール(各異性体)、2,6-ジプロピル-4-ブチルフェノール(各異性体)、2,6-ジプロピル-4-ペンチルフェノール(各異性体)、2,6-ジプロピル-4-ヘキシルフェノール(各異性体)、2,6-ジプロピル-4-フェニルフェノール(各異性体)、2,6-ジプロピル-4-クミルフェノール(各異性体)、2,4-ジメチル-6-エチルフェノール、2-メチル-4,6-ジエチルフェノール、2-メチル-4-プロピル-6-エチルフェノール(各異性体)、2-メチル-4-ブチル-6-エチルフェノール(各異性体)、2-メチル-4-ペンチル-6-エチルフェノール(各異性体)、2-メチル-4-ヘキシル-6-エチルフェノール(各異性体)、2-メチル-4-フェニル-6-エチルフェノール(各異性体)、2-メチル-4-クミル-6-エチルフェノール(各異性体)、2,4-ジメチル-6-プロピルフェノール(各異性体)、2-メチル-4,6-ジプロピルフェノール(各異性体)、2-メチル-4-エチル-6-プロピルフェノール(各異性体)、2-メチル-4-ブチル-6-プロピルフェノール(各異性体)、2-メチル-4-ペンチル-6-プロピルフェノール(各異性体)、2-メチル-4-ヘキシル-6-プロピルフェノール(各異性体)、2-メチル-4-フェニル-6-プロピルフェノール(各異性体)、2-メチル-4-クミル-6-プロピルフェノール(各異性体)、2,4-ジメチル-6-ブチルフェノール、2-メチル-4,6-ジブチルフェノール、2-メチル-4-プロピル-6-ブチルフェノール(各異性体)、2-メチル-4-エチル-6-ブチルフェノール(各異性体)、2-メチル-4-ペンチル-6-ブチルフェノール(各異性体)、2-メチル-4-ヘキシル-6-ブチルフェノール(各異性体)、2-メチル-4-フェニル-6-ブチルフェノール(各異性体)、2-メチル-4-クミル-6-ブチルフェノール(各異性体)、2,4-ジメチル-6-ペンチルフェノール、2-メチル-4,6-ジペンチルフェノール、2-メチル-4-プロピル-6-ペンチルフェノール(各異性体)、2-メチル-4-ブチル-6-ペンチルフェノール(各異性体)、2-メチル-4-エチル-6-ペンチルフェノール(各異性体)、2-メチル-4-ヘキシル-6-ペンチルフェノール(各異性体)、2-メチル-4-フェニル-6-ペンチルフェノール(各異性体)、2-メチル-4-クミル-6-ペンチルフェノール(各異性体)、2,4-ジメチル-6-ヘキシルフェノール、2-メチル-4,6-ジヘキシルフェノール、2-メチル-4-プロピル-6-ヘキシルフェノール(各異性体)、2-メチル-4-ブチル-6-ヘキシルフェノール(各異性体)、2-メチル-4-ペンチル-6-ヘキシルフェノール(各異性体)、2-メチル-4-エチル-6-ヘキシルフェノール(各異性体)、2-メチル-4-フェニル-6-ヘキシルフェノール(各異性体)、2-メチル-4-クミル-6-ヘキシルフェノール(各異性体)、2-エチル-4-メチル-6-プロピルフェノール(各異性体)、2,4-ジエチル-6-プロピルフェノール(各異性体)、2-エチル-4,6-プロピルフェノール(各異性体)、2-エチル-4-ブチル-6-プロピルフェノール(各異性体)、2-エチル-4-ペンチル-6-プロピルフェノール(各異性体)、2-エチル-4-ヘキシル-6-プロピルフェノール(各異性体)、2-エチル-4-ヘプチル-6-プロピルフェノール(各異性体)、2-エチル-4-オクチル-6-プロピルフェノール(各異性体)、2-エチル-4-フェニル-6-プロピルフェノール(各異性体)、2-エチル-4-クミル-6-プロピルフェノール(各異性体)、2-エチル-4-メチル-6-ブチルフェノール(各異性体)、2,4-ジエチル-6-ブチルフェノール(各異性体)、2-エチル-4,6-ブチルフェノール(各異性体)、2-エチル-4-プロピル-6-ブチルフェノール(各異性体)、2-エチル-4-ペンチル-6-ブチルフェノール(各異性体)、2-エチル-4-ヘキシル-6-ブチルフェノール(各異性体)、2-エチル-4-ヘプチル-6-ブチルフェノール(各異性体)、2-エチル-4-オクチル-6-ブチルフェノール(各異性体)、2-エチル-4-フェニル-6-ブチルフェノール(各異性体)、2-エチル-4-クミル-6-ブチルフェノール(各異性体)、2-エチル-4-メチル-6-ペンチルフェノール(各異性体)、2,4-ジエチル-6-ペンチルフェノール(各異性体)、2-エチル-4,6-ペンチルフェノール(各異性体)、2-エチル-4-ブチル-6-ペンチルフェノール(各異性体)、2-エチル-4-プロピル-6-ペンチルフェノール(各異性体)、2-エチル-4-ヘキシル-6-ペンチルフェノール(各異性体)、2-エチル-4-ヘプチル-6-ペンチルフェノール(各異性体)、2-エチル-4-オクチル-6-ペンチルフェノール(各異性体)、2-エチル-4-フェニル-6-ペンチルフェノール(各異性体)、2-エチル-4-クミル-6-ペンチルフェノール(各異性体)、2-エチル-4-メチル-6-ヘキシルフェノール(各異性体)、2,4-ジエチル-6-ヘキシルフェノール(各異性体)、2-エチル-4,6-ヘキシルフェノール(各異性体)、2-エチル-4-プロピル-6-ヘキシルフェノール(各異性体)、2-エチル-4-ペンチル-6-ヘキシルフェノール(各異性体)、2-エチル-4-ブチル-6-ヘキシルフェノール(各異性体)、2-エチル-4-ヘプチル-6-ヘキシルフェノール(各異性体)、2-エチル-4-オクチル-6-ヘキシルフェノール(各異性体)、2-エチル-4-フェニル-6-ヘキシルフェノール(各異性体)、2-エチル-4-クミル-6-ヘキシルフェノール(各異性体)、2-プロピル-4-メチル-6-ブチルフェノール(各異性体)、2,4-ジプロピル-6-ブチルフェノール(各異性体)、2-プロピル-4,6-ブチルフェノール(各異性体)、2-プロピル-4-エチル-6-ブチルフェノール(各異性体)、2-プロピル-4-ペンチル-6-ブチルフェノール(各異性体)、2-プロピル-4-ヘキシル-6-ブチルフェノール(各異性体)、2-プロピル-4-ヘプチル-6-ブチルフェノール(各異性体)、2-プロピル-4-オクチル-6-ブチルフェノール(各異性体)、2-プロピル-4-フェニル-6-ブチルフェノール(各異性体)、クミルフェノール(各異性体)、2-プロピル-4-クミル-6-ブチルフェノール(各異性体)、2,4-ジクミルフェノール、メトキシフェノール(各異性体)、エトキシフェノール(各異性体)等が挙げられる。これらの中でも、フェノール、クミルフェノール(各異性体)、メトキシフェノール(各異性体)、又はエトキシフェノール
(各異性体)が好ましい。
≪イソシアネート化合物の製造方法≫
 本実施形態のイソシアネート化合物の製造方法は、上述したカルボニル化合物(I)存在下で、上記イソシアネート化合物(II)を含む反応液を蒸留精製し、連続的に気相成分として、前記イソシアネート化合物(II)を回収することを含む。
 本実施形態のイソシアネート化合物の製造方法は、上述したカルボニル化合物(I)を用いることで、イソシアネート化合物(II)の製造時における副生成物の装置への固着を防ぎ、イソシアネート化合物(II)の収率を向上することができる。
 本実施形態のイソシアネート化合物の製造方法については、以下に詳細を説明する。
 イソシアネート化合物(II)は、上記炭酸エステル(IV)存在下で、上記カルバメート化合物(VI)の熱分解反応を行うことで得られる。
[熱分解工程]
 熱分解工程では、溶媒として炭酸エステル(IV)存在下、カルバメート化合物(VI)の熱分解反応を行うことにより、イソシアネート(II)を得る。熱分解反応では、上記式(B)~(E)で表される副反応が起こり、生じるイソシアヌレート基、カルボジイミド基、及びアロファネート基が架橋点として働くことで、高分子量成分が生成し、固形物の精製や液粘度の増加が起こりうる。熱分解反応系内に上記カルボニル化合物(I)が存在することにより、カルボニル化合物(I)が上述した高分子量成分の良溶媒として働き、且つ、カルボニル化合物(I)が末端封止剤として働き副生物の高分子量化を抑制することで、熱分解反応における固形物生成や液粘度上昇を抑える効果がある。
 炭酸エステル(IV)は、反応開始前に反応器に供給されてもよく、反応中に供給されてもよく、或いは、その両方でもよい。中でも、反応前に反応器に供給されることが好ましい。
 熱分解工程において、溶媒としての炭酸エステル(IV)の使用量(モル量)は、副反応を抑制する点から多いほうが好ましいが、反応器の大きさ等を考慮すると、カルバメート化合物に対する化学量論比で、0.001倍以上100倍以下が好ましく、0.01倍以上80倍以下がより好ましく、0.1倍以上50倍以下がさらに好ましい。
 後述する方法によってカルバメート化合物を製造した際に、該カルバメート化合物に炭酸エステル(IV)が含有される場合は、炭酸エステル(IV)をそのまま使用してもよく、新たに炭酸エステル(IV)をカルバメート化合物(VI)に加えてもよい。
 反応温度は、通常、100℃以上400℃以下であり、反応速度を高めるためには高温が好ましいが、一方で、高温では、カルバメート化合物及び生成物であるイソシアネート化合物からなる群より選ばれる1種以上の化合物によって、上述したような副反応が引き起こされる場合があるので、130℃以上300℃以下が好ましく、150℃以上280℃以下がより好ましい。反応温度を一定にするために、反応器に公知の冷却装置、加熱装置を設置してもよい。
 また、反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常、20Pa以上1×106Pa以下の範囲で行われる。
 反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001時間以上100時間以下であり、0.01時間以上50時間以下が好ましく、0.1時間以上10時間以下がより好ましい。
 触媒を使用することができ、触媒の使用量はカルバメート化合物の質量に対して0.01質量%以上30質量%以下が好ましく、0.5質量%以上20質量%以下がより好ましい。
 触媒としては、例えば、ジラウリン酸ジブチルスズ、オクチル酸鉛、スタナスオクトエート等の有機金属触媒;1,4-ジアザビシクロ[2,2,2]オクタン、トリエチレンジアミン、トリエチルアミン等のアミン類が挙げられる。名kでも、ジラウリン酸ジブチルスズ、オクチル酸鉛、スタナオクトエート等の有機金属触媒が好適である。これらの化合物は単独で用いてもよく、二種類以上の混合物として使用してもよい。
 上述したように熱分解反応は、カルバメート化合物(VI)から、対応するイソシアネート化合物(II)とヒドロキシ化合物を生成する反応であるが、該熱分解反応は平衡反応である。したがって、熱分解反応において、効率よくイソシアネート化合物(II)を得るためには、熱分解反応における生成物であるヒドロキシ化合物を、例えば、蒸留等の方法により、熱分解反応の系より気相成分として取り出すことが好ましい。
[イソシアネート組成物調製工程]
 上記熱分解工程で得られた反応液は、カルボニル化合物(I)を含むことから、当該反応液を、イソシアネート化合物(II)及びカルボニル化合物(I)を含む反応液(イソシアネート組成物)として、後述する精製工程に用いてもよい。或いは、「カルボニル化合物の製造方法」で得られたカルボニル化合物(I)を、イソシアネート化合物を含む反応液に混合したもの(イソシアネート組成物)を調製して、後述する精製工程に用いてもよい。
 イソシアネート組成物の組成としては、後述する精製工程において、良好な蒸留運転性を確保する観点から、{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値が、0.00001以上80.0以下が好ましく、0.0001以上40.0以下がより好ましく、0.001以上8.0以下がさらに好ましい。
[精製工程]
 精製工程では、上述したイソシアネート組成物からイソシアネート化合物を精製する。精製工程では、具体的には、まず、イソシアネート組成物中に含まれるイソシアネート化合物よりも沸点の低い成分(軽沸成分)を留去(以降、「軽沸分離」と称する)した後に、イソシアネート化合物を気相成分として回収し、イソシアネート化合物よりも沸点の高い成分(高沸成分)と分離する(以降、「高沸分離」と称する)ことで、イソシアネート組成物からイソシアネート化合物を精製する。
(軽沸分離工程)
 軽沸成分を気相成分として分離することができれば、留去方法は特に限定されない。ここでいう「軽沸成分(軽沸点成分)」とは、カルボニル化合物よりも沸点の低い成分を指し、イソシアネート化合物の製造原料となる化合物の種類によって異なるが、主として熱分解工程で用いた炭酸エステル、及び熱分解反応で副生するヒドロキシ化合物からなる群より選ばれる1種以上の化合物である。
 軽沸成分を留去する際の圧力は、化合物の種類や反応温度によって異なるが、イソシアネート化合物と軽沸成分の分離が可能である範囲では減圧、常圧、加圧のいずれであってもよく、20Pa以上1×10Pa以下が好ましく、20Pa以上1×10Pa以下がより好ましく、20Pa以上1×10Pa以下がさらに好ましく、20Pa以上1×10Pa以下が特に好ましい。
 軽沸成分を留去する際の操作時間(連続法の場合は滞留時間)はイソシアネート化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、イソシアネート化合物との副反応を抑制する観点から、5秒間以上100時間以下が好ましく、10秒間以上50時間以下がより好ましく、20秒間以上10時間以下がさらに好ましい。
 軽沸成分を留去する際の温度はイソシアネート化合物が安定であり、イソシアネート化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、イソシアネート化合物の変性を抑制する観点から、20℃以上300℃以下が好ましく、30℃以上280℃以下がより好ましく、40℃以上250℃以下がさらに好ましい。
(高沸分離工程)
 イソシアネートを気相成分として分離することができれば、留去方法は特に限定されない。ここでいう「高沸成分(高沸点成分)」とは、イソシアネートよりも沸点の高い成分を指し、イソシアネート化合物の製造原料となる化合物の種類によって異なるが、主として熱分解工程で生成するカルボニル化合物や、カルバメート化合物(III)(カルバート基含有イソシアネート)及びカルバメート化合物(VI)(熱分解工程の原料となるカルバメート化合物)、イソシアネート化合物の一部のイソシアネート基がイソシアヌレート基、カルボジイミド基、ウレトンイミン基、及びアロファネート基からなる群より選ばれる少なくとも1種類の官能基に変換された化合物(以降、「イソシアネート重合体」と称する)である。
 高沸分離工程では、熱分解工程又は軽沸分離工程で副生したウレトンイミン基が、下記式(J)に示すようにイソシアネート基とカルボジイミド基に再生する反応が起こるために、気相に回収されたイソシアネート化合物の回収率が100質量%を超えることがありうる。
Figure JPOXMLDOC01-appb-C000054
(式(J)中、R及びRはそれぞれ独立に2価以上の有機基である。)
 一方で、高沸分離工程ではイソシアネート化合物が留去されることで、高沸成分が濃縮されて固化することで、運転継続が困難となる虞があり、イソシアネート化合物を高収率で回収することが困難となる。これはイソシアネート基の一部がイソシアヌレート基、カルボジイミド基、ウレトンイミン基、及びアロファネート基からなる群より選ばれる少なくとも1種類の官能基に変換されたイソシアネート(イソシアネート重合体)が高分子量であることや、高沸分離の際に前記式(J)によって生じたカルボジイミド基とイソシアネート重合体のイソシアネート基が結合してウレトンイミン基を形成し(前記式(J)の逆反応)、イソシアネート重合体同士が結合することで高分子量化することに起因する。
 カルボニル化合物(I)は、イソシアネート化合物よりも沸点が高く、且つ、イソシアネート重合体よりも架橋点が少ないことから、高沸分離工程において溶媒として働く。或いは、カルボジイミド基に結合し、イソシアネート重合体同士が結合して高分子量化することを防ぐ。これらの作用により、高沸分離工程における運転性を良化させ、イソシアネート化合物を高収率で回収することを可能とする。
 高沸成分を分離する際の圧力は、化合物の種類や反応温度によって異なるが、イソシアネート化合物と軽沸成分の分離が可能である範囲では減圧、常圧、加圧のいずれであってもよく、0.1Pa以上1×10Pa以下が好ましく、1Pa以上1×10Pa以下がより好ましく、5Pa以上1×10Pa以下がさらに好ましい。
 高沸成分を分離する際の操作時間(連続法の場合は滞留時間)はイソシアネート化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、イソシアネート化合物との副反応を抑制する観点から、5秒間以上100時間以下が好ましく、10秒間以上50時間以下がより好ましく、15秒間以上10時間以下がさらに好ましく、20秒間以上1時間以下が特に好ましく、25秒間以上10分間以下が最も好ましい。
 高沸成分を分離する際の温度はイソシアネート化合物が安定であり、イソシアネート化合物と軽沸成分の分離が可能である範囲では、特に制限はなく、イソシアネート化合物の変性を抑制する観点から、20℃以上250℃以下が好ましく、30℃以上230℃以下がより好ましく、40℃以上200℃以下がさらに好ましい。
[装置及び材質]
 熱分解工程及び精製工程が行われる反応器及びラインの材質は、カルバメート化合物や、生成物であるヒドロキシ化合物及びイソシアネート化合物、溶媒である炭酸エステルに悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316、SUS316L等が安価であり、好ましく使用できる。
 反応器の形式に特にも制限はなく、公知の槽状、塔状の反応器が使用できる。熱分解反応とそれに続く軽沸成分の留去においては、生成するヒドロキシ化合物を含む低沸点混合物は、気体成分として反応器から抜き出し、未反応のカルバメート化合物や気体成分として抜き出されなかった化合物を含む混合液の一部又は全部を反応器から液状で抜き出すためのラインを具備しているものが好ましく使用される。このような反応器として、例えば、攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器、細流相反応器、気泡塔のいずれかを含む反応器を用いる方式、及びこれらを組み合わせた方式等、公知の種々の方法が用いられる。
 生成するヒドロキシ化合物とイソシアネート化合物を分離する観点から、蒸留塔を具備した攪拌槽、多段攪拌槽を用いる方法が好ましく、また生成する低沸点成分を気相にすみやかに移動させられる気-液接触面積の大きな構造が好ましい。
 イソシアネート組成物の精製工程の内、軽沸分離工程においては、軽沸成分を気体成分として反応器から抜き出し、抜き出されなかった化合物を含む混合液の一部又は全部を反応器から液状で抜き出すためのラインを具備しているものが好ましく使用される。このような反応器として、例えば、攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器、細流相反応器、気泡塔のいずれかを含む反応器を用いる方式、及びこれらを組み合わせた方式等、公知の種々の方法が用いられる。
 また、イソシアネート組成物の精製工程の内、高沸分離工程においては、イソシアネート化合物を気体成分として反応器から抜き出し、抜き出されなかった化合物を含む混合物の一部又は全部を反応器から液状で抜き出すためのラインを具備しているものが好ましく使用される。このような反応器として、例えば、攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器、細流相反応器、気泡塔のいずれかを含む反応器を用いる方式、及びこれらを組み合わせた方式等、公知の種々の方法が用いられる。
 次いで、本実施形態のイソシアネート化合物の製造方法で用いられる各種原料について以下に詳細を説明する。
<カルバメート化合物(VI)の製造方法>
 カルバメート化合物(VI)としては、上記「カルボニル化合物の製造方法」において例示されたとおりである。
 カルバメート化合物(VI)の製造方法としては、例えば、炭酸誘導体及びアミン化合物から製造する方法、又は、炭酸誘導体とヒドロキシ化合物とアミン化合物とから製造する方法が好ましい。なお、カルバメート化合物(VI)の製造原料となるヒドロキシ化合物としては、上記ヒドロキシ化合物(V)と同じものが好ましく使用される。
[炭酸誘導体]
 炭酸誘導体としては、例えば、尿素、炭酸エステル等が挙げられる。
 カルバメート化合物(VI)の製造原料となる炭酸エステルとしては、上記炭酸エステル(IV)と同じものが好ましく使用される。中でも、炭酸誘導体としては、尿素、炭酸ジフェニル、又は炭酸ジブチルが好ましく、尿素、又は炭酸ジフェニルがより好ましい。
[アミン化合物]
 アミン化合物としては、例えば、下記一般式(VII)で表される化合物(以下、「アミン化合物(VII)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000055
(一般式(VII)中、R71は、n71価の有機基であり、関係式:R71=R61を満たす。n71は2以上8以下の整数であり、関係式:n71=n61を満たす。)
(R71
 R71は、n71価の有機基であり、関係式:R71=R61を満たす。すなわち、R71は、上記R61と同じである。
 中でも、R71としては、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であることが好ましい。
 また、R71として具体的には、上記式(Ia-1)~(Ia-24)のいずれかで表される基であること好ましく、式(Ia-1)、(Ia-2)、(Ia-3)、(Ia-14)、(Ia-18)、又は(Ia-19)で表される基であることがより好ましい。
(n71)
 n71は、アミノ基の数を表し、関係式:n71=n61を満たす。n71は、2以上8以下の整数であり、2以上6以下の整数が好ましく、2以上5以下の整数がより好ましく、3以上4以下の整数がさらに好ましい。
 好ましいアミン化合物(VII)としては、例えば、4-アミノメチル-1,8-オクタンジアミン、4,4’-ジアミノジフェニルメタン、リジンβ-アミノエチルエステル、リジンメチルエステル、4,4’-メチレンビス(シクロヘキシルアミン)、1,3-ジ(アミノメチル)シクロヘキサン等が挙げられる。
≪イソシアネート組成物≫
 本実施形態のイソシアネート組成物は、該イソシアネート組成物の総質量に対して、
 97質量%以上のイソシアネート化合物と、
 2.0質量ppm以上1.0×10質量ppm以下の下記一般式(I)で表されるカルボニル化合物(以下、「カルボニル化合物(I)」と称する場合がある)と、
を含有する。
 前記イソシアネート化合物と前記カルボニル化合物は異なる化合物である。
Figure JPOXMLDOC01-appb-C000056
(一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
 一般的に、不飽和結合を含有する化合物は、不飽和結合が酸化されやすい傾向があり、混入物としての不飽和結合化合物は着色の原因となりやすい。しかし、カルボニル化合物(I)は、イソシアネート組成物の貯蔵時に有効に作用し、イソシアネート組成物を着色させることなく、イソシアネート化合物の安定性を向上させる効果を奏する。当該効果は、カルボニル化合物(I)のカルボニル基が水や酸素との反応性を有し、水や酸素に起因するイソシアネート化合物の変性反応を抑制することで奏されると推定される。また、カルボニル化合物(I)は、炭素-酸素間の不飽和結合を多く有するため、前記効果をより奏する傾向がある。
 イソシアネート化合物の変性反応を抑制するためにはカルボニル化合物(I)の含有量を多くすることが好ましいが、多すぎると、前述したような不飽和結合に起因する着色を生じて使用時の外観を損ねる場合がある。このため、カルボニル化合物(I)の含有量の下限値は、イソシアネート組成物の総質量に対して、2.0質量ppmであり、3.0質量ppmであることが好ましく、5.0質量ppmであることがより好ましく、10質量ppmであることがさらに好ましい。一方、カルボニル化合物(I)の含有量の上限値は、イソシアネート組成物の総質量に対して、1.0×10質量ppmであり、3.0×10質量ppmであることが好ましく、1.0×10質量ppmであることがより好ましい。
 すなわち、カルボニル化合物(I)の含有量は、イソシアネート組成物の総質量に対して、2.0質量ppm以上1.0×10質量ppm以下であり、3.0質量ppm以上3.0×10質量ppm以下であることが好ましく、5.0質量ppm以上1.0×10質量ppm以下であることがより好ましく、10質量ppm以上1.0×10質量ppm以下であることがさらに好ましい。
 カルボニル化合物(I)の含有量が上記下限値以上であることで、イソシアネート化合物の変性反応を抑制することができ、一方、上記上限値以下であることで、不飽和結合に起因する着色を抑制し、外観を良好に保つことができる。
 イソシアネート化合物の含有量は、イソシアネート組成物の総質量に対して、97質量%以上であり、98質量%以上が好ましく、99質量%以上がより好ましい。イソシアネート化合物の含有量が上記下限値以上であることで、目的物質であるイソシアネート化合物を十分に含む組成物が得られる。一方で、上限は特に限定されないが、100質量%未満とすることができる。
 以下、本実施形態のイソシアネート組成物の各構成成分について詳細を説明する。
<カルボニル化合物(I)>
 カルボニル化合物(I)は、下記一般式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000057
(一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
[R11、R12
 R11及びR12は、上記≪カルボニル化合物≫に記載したとおりである。
[n11及びn12]
 n11は1以上8以下の整数である。
 n12はイソシアネート基の数を表し、0以上7以下の整数である。
 n11とn12の和(n11+n12)は2以上8以下の整数であり、2以上6以下の整数が好ましく、2以上5以下の整数がより好ましく、3以上4以下の整数がさらに好ましい。一般的に、この(n11+n12)の値が大きくなるほどカルボニル化合物分子あたりの架橋点(イソシアネート基)が多くなり、且つ、着色及びイソシアネートの変性防止に寄与する構造が増加するため、ポリマー化した時の架橋密度が高くなり、硬化時間の短縮やポリマーの硬度向上させることができ、且つ、着色及びイソシアネートの変性を抑制することができる。なお、ここでいう「架橋密度が高くなる」とは、架橋点と架橋点の間の平均分子鎖長が小さくなることを意味する。一方、カルボニル化合物の製造においては、反応性の高いイソシアネート基を加熱すると変性反応が想起され、装置への固着やつまりの原因となるため、カルボニル化合物合成の観点から、(n11+n12)が6以下であることが好ましく、(n11+n12)が5以下であることがより好ましく、(n11+n12)が4以下であることがさらに好ましい。
 好ましいカルボニル化合物(I)としては、例えば、下記式(I-1a)~(I-24b)で表される化合物(以下、「カルボニル化合物(I-1a)」等と称する場合がある)等が挙げられる。なお、カルボニル化合物(I-1a)~(I-1c)、カルボニル化合物(I-2a)~(I-2c)、カルボニル化合物(I-3a)~(I-3c)、カルボニル化合物(I-4a)~(I-4c)、カルボニル化合物(I-5a)~(I-5c)、カルボニル化合物(I-6a)~(I-6c)、カルボニル化合物(I-7a)~(I-7b)、カルボニル化合物(I-8a)~(I-8b)、カルボニル化合物(I-9a)~(I-9b)、カルボニル化合物(I-10a)~(I-10b)、カルボニル化合物(I-11a)~(I-11b)、カルボニル化合物(I-12a)~(I-12b)、カルボニル化合物(I-22a)~(I-22b)、又はカルボニル化合物(I-24a)~(I-24b)はそれぞれ混合物とすることができ、或いは、各化合物単体とすることができる。
 また、カルボニル化合物(I)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。カルボニル化合物(I)を2種以上組み合わせて用いる場合において、各カルボニル化合物(I)によるイソシアネート化合物の安定性の向上効果は同等であることから、任意の比率で混合して用いることができる。
Figure JPOXMLDOC01-appb-C000058

Figure JPOXMLDOC01-appb-C000059

Figure JPOXMLDOC01-appb-C000060

Figure JPOXMLDOC01-appb-C000061


Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
<イソシアネート化合物>
 イソシアネート化合物としては、下記一般式(II)で表される化合物(以下、「イソシアネート化合物(II)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000066
(一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
[R21、n21」
 R21、n21は、上記≪カルボニル化合物の製造方法≫の<イソシアネート化合物>に記載したとおりである。
 好ましいイソシアネート化合物(II)としては、例えば、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート(TTI)、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート(LTI)、リジンメチルエステルジイソシアネート(LDI)、ジイソシアナトペンタン(PDI)、ジイソシアナトヘキサン(HDI)、メチレンビス(シクロヘキシルイソシアネート)(HMDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(HXDI)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI)、ジイソシアナトキシレン(XDI)、ジイソシアナトジフェニルメタン(MDI)、ジイソシアナトトルエン(TDI)等が挙げられる。
 本実施形態のイソシアネート組成物は、それぞれ2.0質量ppm以上1.0×10質量ppm以下の、カルバメート化合物及び炭酸エステルからなる群より選ばれる1種以上の化合物を更に含有することが好ましい。
 カルバメート化合物及び炭酸エステルも、上述したカルボニル化合物(I)と同様の効果を奏する。これらの化合物も、イソシアネート化合物の変性反応を抑制するためには、イソシアネート組成物中の含有量を多くすることが好ましいが、着色抑制や使用時の外観を考慮すると多すぎないことが好ましい。このため、カルバメート化合物及び炭酸エステルそれぞれの含有量の下限値は、イソシアネート組成物の総質量に対して、2.0質量ppmであることが好ましく、3.0質量ppmであることがより好ましく、5.0質量ppmであることがさらに好ましく、10質量ppmであることが特に好ましい。一方、カルバメート化合物及び炭酸エステルそれぞれの含有量の上限値は、イソシアネート組成物の総質量に対して、1.0×10質量ppmであることが好ましく3.0×10質量ppmであることがより好ましく、1.0×10質量ppmであることがさらに好ましい。
 すなわち、カルバメート化合物及び炭酸エステルそれぞれの含有量は、イソシアネート組成物の総質量に対して、2.0質量ppm以上1.0×10質量ppm以下であることが好ましく、3.0質量ppm以上3.0×10質量ppm以下であることがより好ましく、5.0質量ppm以上1.0×10質量ppm以下であることがさらに好ましく、10質量ppm以上1.0×10質量ppm以下であることが特に好ましい。
 カルバメート化合物及び炭酸エステルそれぞれの含有量が上記下限値以上であることで、イソシアネート化合物の変性反応を抑制することができ、一方、上記上限値以下であることで、不飽和結合に起因する着色を抑制し、外観を良好に保つことができる。
 本実施形態のイソシアネート組成物が、カルボニル化合物(I)、カルバメート化合物及び炭酸エステルの全てを含有する場合には、これら化合物の合計含有量の下限値は、イソシアネート組成物の総質量に対して、2.0質量ppmであることが好ましく、3.0質量ppmであることがより好ましく、5.0質量ppmであることがさらに好ましく、10質量ppmであることが特に好ましい。一方、これら化合物の合計含有量の上限値は、イソシアネート組成物の総質量に対して、1.0×10質量ppmであることが好ましく、1.0×10質量ppmであることがより好ましく、3.0×10質量ppmであることがさらに好ましく、1.0×10質量ppmであることが特に好ましい。
 すなわち、カルボニル化合物(I)、カルバメート化合物及び炭酸エステルの合計含有量は、イソシアネート組成物の総質量に対して、2.0質量ppm以上1.0×10質量ppm以下であることが好ましく、3.0質量ppm以上1.0×10質量ppm以下であることがより好ましく、5.0質量ppm以上3.0×10質量ppm以下であることがさらに好ましく、10質量ppm以上1.0×10質量ppm以下であることが特に好ましい。
 これら化合物の合計含有量が上記下限値以上であることで、イソシアネート化合物の変性反応をより抑制することができ、一方、上記上限値以下であることで、不飽和結合に起因する着色をより抑制し、外観をより良好に保つことができる。
<カルバメート化合物>
 カルバメート化合物としては、下記一般式(III)で表される化合物(以下、「カルバメート化合物(III)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000067
(一般式(III)中、R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。R32は1価の有機基であり、関係式:R32=R12を満たす。n31は1以上8以下の整数であり、n32は0以上7以下の整数であり、n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。)
[R31、R31、n31、n32]
 R31、R31、n31、n32は、上記≪カルボニル化合物の製造方法≫の[カルバメート化合物(III)]に記載したとおりである。
 好ましいカルバメート化合物(III)としては、例えば、下記式(III-1a)~(III-24b)で表される化合物等が挙げられる。なお、カルバメート化合物(III-1a)~(III-1c)、カルバメート化合物(III-2a)~(III-2c)、カルバメート化合物(III-3a)~(III-3c)、カルバメート化合物(III-4a)~(III-4c)、カルバメート化合物(III-5a)~(III-5c)、カルバメート化合物(III-6a)~(III-6c)、カルバメート化合物(III-7a)~(III-7b)、カルバメート化合物(III-8a)~(III-8b)、カルバメート化合物(III-9a)~(III-9b)、カルバメート化合物(III-10a)~(III-10b)、カルバメート化合物(III-11a)~(III-11b)、カルバメート化合物(III-12a)~(III-12b)、カルバメート化合物(III-22a)~(III-22b)、又はカルバメート合物(III-24a)~(III-24b)はそれぞれ混合物とすることができ、或いは、各化合物単体とすることができる。
Figure JPOXMLDOC01-appb-C000068

Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-C000070

Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-C000075
 また、カルバメート化合物(III)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。カルバメート化合物(III)を2種以上組み合わせて用いる場合において、各カルバメート化合物(III)によるイソシアネート化合物の安定性の向上効果は同等であることから、任意の比率で混合して用いることができる。
<炭酸エステル>
 炭酸エステルとしては、下記一般式(IV)で表される化合物(以下、「炭酸エステル(IV)」と称する場合がある)が好ましく使用される。
Figure JPOXMLDOC01-appb-C000076
(一般式(IV)中、R41及びR42は、それぞれ独立に、1価の有機基であり、関係式:R41=R42=R12を満たす。)
(R41及びR42
 R41及びR42は、上記≪カルボニル化合物の製造方法≫の<炭酸エステル>に記載したとおりである。
 好ましい炭酸エステル(IV)としては、例えば、炭酸ジフェニル、炭酸ビス(2-メトキシフェニル)、炭酸ビス(2-エトキシフェニル)等が挙げられる。
<イソシアネート組成物の製造方法>
 本実施形態のイソシアネート組成物は、イソシアネート化合物と、カルボニル化合物(I)と、必要に応じて、カルバメート化合物及び炭酸エステルからなる群より選ばれる1種以上の化合物と、を上記含有量となるように混合することで製造することができる。
 或いは、下記一般式(VI)で表されるカルバメート化合物(以下、「カルバメート化合物(VI)」と称する場合がある)を熱分解して、得られるイソシアネート化合物(II)を含む組成物を本実施形態のイソシアネート組成物として用いることもできる。
Figure JPOXMLDOC01-appb-C000077
 一般式(VI)中、R61は、n61価(2価以上8価以下)の有機基であり、関係式:R61=R21を満たす。すなわち、R61は、上記R21と同じである。
 一般式(VI)中、R62は1価の有機基であり、関係式:R62=R12を満たす。すなわち、R62は、上記R12と同じである。
 n61は、カルバメート基の数を表し、2以上8以下の整数であり、関係式:n61=n21を満たす。すなわち、n61は、上記n21と同じである。
 具体的には、溶媒として上記炭酸エステル(IV)存在下で、カルバメート化合物(VI)を熱分解することで、上記イソシアネート化合物(II)を含む組成物が得られる。
 このとき、副生成物として、ヒドロキシ化合物が生成されるため、当該ヒドロキシ化合物を抜き出して分離しながら、熱分解反応を進めることが好ましい。
 また、熱分解反応は、連続法で行うことが好ましい。連続法とは、カルバメート化合物(VI)を含む反応液を、反応器に連続的に供給して、カルバメート化合物(VI)の熱分解反応を行い、副生するヒドロキシ化合物を、上記反応器から連続的に抜き出す方法である。
 熱分解温度は、用いるカルバメート化合物(VI)の種類によって異なるが、例えば、140℃以上380℃以下とすることができる。
 また、反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、及び加圧のいずれであってもよい。圧力としては、使用する非プロトン性溶媒の飽和蒸気圧となる圧力とすることができ、20Pa以上10×10Pa以下の範囲で行われることが好ましい。
 反応時間は、(連続法の場合は滞留時間)に、特に制限はなく、0.001時間以上100時間以下とすることができる。
 上記カルボニル化合物(I)は、イソシアネート化合物(II)と炭酸エステル(IV)との反応物と推定され、熱分解反応条件下において生成されるものと考えられる。よって、カルバメート化合物(VI)の熱分解反応において得られたイソシアネート組成物には、特定の量の上記カルボニル化合物(I)が含まれる。
 熱分解反応において、上記カルバメート化合物(III)は、カルバメート化合物(VI)から生成された、最終生成物であるイソシアネート化合物(II)となる前の反応中間体ということもできる。イソシアネート化合物(II)の含有量が特定の量以上となった時点で、反応を停止することで、上記反応中間体であるカルバメート化合物(III)を含むイソシアネート組成物が得られる。
 カルバメート化合物(VI)の熱分解反応において得られたイソシアネート組成物には、溶媒として炭酸エステル(IV)が含まれるが、その量が多い場合には、蒸留分離等の公知の分離方法を用いて、イソシアネート組成物中の炭酸エステル(IV)の含有量が特定の範囲内となるように、イソシアネート組成物から炭酸エステル(IV)を分離することができる。
 また、イソシアネート化合物と、カルボニル化合物(I)と、必要に応じて、カルバメート化合物及び炭酸エステルからなる群より選ばれる1種以上の化合物と、を上記含有量となるように混合して本実施形態のイソシアネート組成物を製造する場合に、カルボニル化合物、カルバメート化合物、及び炭酸エステルはそれぞれ以下に示す方法で製造することができる。また、イソシアネート化合物については、上記カルバメート化合物(VI)を熱分解して得られたものを必要に応じて精製して用いることができる。
[カルボニル化合物(I)の製造方法]
 カルボニル化合物(I)は、イソシアネート化合物(II)と炭酸エステル(IV)の混合物、或いは、カルバメート化合物(III)又はカルバメート化合物(VI)と炭酸エステル(IV)の混合物、或いは、イソシアネート化合物(II)、カルバメート化合物(III)又はカルバメート化合物(VI)、炭酸エステル(IV)、及びヒドロキシ化合物の混合物(以降、これらの混合物を「カルボニル化合物(I)の原料混合物」と称する場合がある)を加熱することで、得られる。ここでいうヒドロキシ化合物としては、上記カルバメート化合物(VI)の熱分解反応において副生するヒドロキシ化合物と同じものが挙げられ、詳細は後述するとおりである。
 炭酸エステル(IV)の使用量(モル量)は、副反応を抑制する点から該炭酸エステル溶媒の使用量は多い方が好ましいが、反応器の大きさ等を考慮すると、カルバメート化合物(III)、カルバメート化合物(VI)及びイソシアネート化合物(II)の合計モル量に対して、化学量論比で、0.001倍以上100倍以下が好ましく、0.01倍以上80倍以下がより好ましく、0.1倍以上50倍以下がさらに好ましい。
 反応温度は、通常、100℃以上400℃以下であり、反応速度を高めるためには高温が好ましいが、一方で、高温ではカルバメート化合物及びイソシアネート化合物のうち少なくともいずれかの化合物によって、副反応が引き起こされる場合があることから、130℃以上300℃以下が好ましく、150℃以上280℃以下がより好ましい。反応温度を一定にするために、反応器に公知の冷却装置、加熱装置を設置してもよい。
 また、反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常、20Pa以上1×10Pa以下の範囲で行われる。
 反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001時間以上100時間以下であり、0.01時間以上50時間以下が好ましく、0.1時間以上10時間以下がより好ましい。
 混合加熱によるカルボニル化合物の製造では、原料液をステンレスに接液させて加熱することでカルボニル化合物の生成速度、及び生成量を高めることができる。ステンレスとしては、SUS316製又はSUS304製であれば形状を問わず使用することが可能であり、例えば、充填物や金属片が好ましく使用される。充填物としては特に限定はされないが、DIXON Packing、Mc MAHON Packing、Coil PACK、MESH RING、CANNON Packing、HELI PACK、RASCHIG RING、PRICKLE RING等が使用される。
 カルボニル化合物の原料液の体積V、ステンレスの表面積Aとした時に、原料液の単位体積当たりの、ステンレスとの接液面積が大きい程、カルボニル化合物の生成速度A/Vの値は0.001m/m以上100000m/m以下が好ましく、0.01m/m以上50000m/m以下がより好ましく、0.1m/m以上10000m/m以下がさらに好ましい。
 反応形式は特に限定されないが、カルボニル化合物(I)の原料混合物、又はカルボニル化合物(I)の原料混合物とステンレスを効率よく混合し、加熱できる反応器が好ましく、例えばステンレス製の攪拌槽や蒸留塔で原料液を加熱する方法が好ましい。
 カルボニル化合物(I)の原料混合物を加熱した後の液の軽沸成分を留去してもよく、軽沸成分を気相成分として分離することができれば、留去方法は特に限定されない。軽沸点成分(軽沸成分)とは、カルボニル化合物(I)よりも沸点の低い成分を指し、使用物質によって異なるが主として、炭酸エステル(IV)、イソシアネート化合物(II)、及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物である。
[カルバメート化合物(III)の製造方法]
 カルバメート化合物(III)は、イソシアネート化合物(II)及び前記式(V)で表されるヒドロキシ化合物(以下、「ヒドロキシ化合物(V)」と称する場合がある)を混合し、加熱することで得る方法と、前記式(VI)で表されるカルバメート化合物を熱分解することで得る方法がある。
Figure JPOXMLDOC01-appb-C000078
 一般式(V)中、R51は、1価の有機基であり、関係式:R51=R12を満たす。すなわち、R51は、上記R12と同じである。
 イソシアネート化合物(II)とヒドロキシ化合物(V)の混合、加熱で製造する場合の混合比は、イソシアネート化合物(II)のイソシアネート基とヒドロキシ化合物(V)の水酸基の比NCO:OHが(n31+n32):n31になるように混合し、加熱することが好ましい。
 反応温度は、通常、40℃以上400℃以下であり、反応速度を高めるためには高温が好ましいが、一方で、高温ではカルバメート化合物及びイソシアネート化合物のうち少なくともいずれかの化合物によって、副反応が引き起こされる場合があることから、80℃以上300℃以下が好ましく、100℃以上250℃以下がより好ましい。反応温度を一定にするために、反応器に公知の冷却装置、加熱装置を設置してもよい。
 また、反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常、20Pa以上1×10Pa以下の範囲で行われる。
 反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001時間以上100時間以下であり、0.01時間以上50時間以下が好ましく、0.1時間以上10時間以下がより好ましい。
 熱分解反応で製造する場合は、前述のイソシアネート化合物(II)の製造方法に記載した通りである。
[炭酸エステル(IV)の製造方法]
 炭酸エステル(IV)は、例えば、特許第3071008号公報(参考文献1)、特許第4137941号公報(参考文献2)に記載の方法を用いて合成することができる。具体的には、炭酸エステル(IV)は、芳香族モノヒドロキシ化合物を、活性炭の存在下にホスゲン又は芳香族モノヒドロキシ化合物のクロル炭酸エステルと、塩化水素を脱離させつつ反応させる方法、或いは、有機金属化合物と二酸化炭素とを反応させて、該反応で形成された炭酸ジアルキルを含有する反応混合物を得る工程(1);該反応混合物から該炭酸ジアルキルを分離して残留液を得る工程(2);該残留液をアルコールと反応させて、少なくとも1種の有機金属化合物と水とを形成し、該水を有機金属化合物から除去する工程(3);及び、工程(2)で分離された炭酸ジアルキルと芳香族ヒドロキシ化合物とを反応させて芳香族炭酸エステルを得る工程(4)、を含む方法で製造することができる。なお、上記工程(3)及び(4)をその通り又は逆の順序に、又は部分的又は全体的に同時に行うことができる。
<用途>
 本実施形態のイソシアネート組成物は、着色が十分に抑制され、且つ、保存安定性に優れることから、例えば、焼付用塗料、自動車クリアコート材、コイル塗材等の外観品質が求められる分野における硬化剤原料として好適に用いられる。
 以下、本発明を実施例に基づき具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。以下、「%」は「質量%」を意味し、「ppm」は「質量ppm」を意味する。
<分析方法>
(1)H-NMR分析方法
 装置として、日本電子(株)社製JNM-A400 FT-NMRシステムを用いて、H-NMR分析を実施した。
(1-1)H-NMR分析サンプルの調製
 サンプル溶液を0.3g秤量し、重クロロホルムを0.7gと内部標準物質としてジメチルジフェニルシラン0.05gを加えて均一に混合した溶液をNMR分析サンプルとした。
(1-2)定量分析法
 各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
(2)ガスクロマトグラフィー分析方法
 以下の条件で分析を行った。
(測定条件)
 装置:島津製作所社製、GC-2010
 カラム:DB-1
     直径0.25mm、長さ30m、膜厚1.0μm
 カラム温度:60℃~300℃
 注入口温度:300℃
 キャリアガス:ヘリウム
 キャリアガス流量:40mL/min
 検出器:FID(水素炎イオン化型検出器)
(2-1)ガスクロマトグラフィー分析サンプルの調製
 サンプル溶液を1.0g秤量し、アセトニトリルを10gと内部標準物質としてアニソールを0.1g加えて均一に混合した溶液をガスクロマトグラフィー分析サンプルとした。
(3)液体クロマトグラフィー分析方法
 以下の条件で分析を行った。
(測定条件)
 装置:島津製作所社製、LC-10AT
 カラム:Inertsil ODS
     粒子径5μm、内径2.1mm、長さ250mm
 カラム温度:40℃
 展開溶媒:水/アセトニトリル=90/10
 展開溶媒流量:1mL/min
 検出器:フォトダイオードアレイ検出器
(3-1)液体クロマトグラフィー分析サンプルの調製
 サンプル溶液を1.0g秤量し、酢酸10gを加えて均一に混合した溶液を液体クロマトグラフィー分析サンプルとした。
(3-2)定量分析法
 各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
(4)カラム分取装置による精製方法
 以下の条件で、生成したカルボニル化合物を単離した。
(条件)
 装置:株式会社山善製、EPCLC-AI-580S
    溶出位置制御精製クロマトグラフ
 インジェクトカラム:M又はL
 メインカラム:High-Flash S、M、又はL
 展開溶媒:酢酸エチル/ヘキサン
 展開溶媒流量:0mL/min~80mL/min
 検出器:UV検出器
 なお、H-NMR、GC及びLCの測定値から、生成したイソシアネート化合物の収率、及び、{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値を算出した。また、LCの測定値からカルボニル化合物の定量を行った。
<評価方法>
[保存試験]
 各イソシアネート組成物を、容量200mLのねじ口瓶に100g入れ、窒素雰囲気中、300日間25度で保温して保存した。
[評価1]
(ハーゼン色数)
 保存前後のハーゼン色数は、ハーゼンメーターにて測定した。
[評価2]
 保存後の各イソシアネート組成物100gを孔径1μmのメンブレンフィルターを用いて加圧濾過し、濾過残質量を濾過前後のフィルター質量から求めて、以下に示す式により、変性量を算出した。
 (変性量(質量%))
={(濾過後のフィルター質量)-(濾過前のフィルター質量)}×100/100g
[実施例1-1]
工程(1-1):カルバメート化合物の製造工程
 図1に示す装置を使用して反応を行った。なお、実施例1-1以降のカルバメート化合物の製造においても図1に示す装置を使用した。
 ライン14を閉止した状態で、4-アミノメチル-1,8-オクタンジアミン3.33kg(19.2mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール5.50kg(58.5mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール5.50kg(58.5mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応器105に供給し、炭酸ジフェニル20.52kg(95.9mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、4-アミノメチル-1,8-オクタンジアミンとフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール15.53kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(1-1)」と称する)を液体クロマトグラフィーで分析した結果、4-アミノメチル-1,8-オクタンジアミンに対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(1-1)を、ライン16を経て、貯槽106に移送した。反応液(1-1)の質量は19.40kgであった。
工程(1-2):カルバメート化合物の熱分解工程
 図2に示す装置を使用して反応を行った。なお、実施例1-1以降のカルバメート化合物の熱分解においても図2に示す装置を使用した。
 ライン24を閉止した状態で、貯槽202より炭酸ジフェニル19.40kgをライン22を経て、バッフル付きSUS製反応容器201に供給した。多段蒸留塔203の温度を170℃まで昇温し、反応容器201のジャケット温度を228℃に加熱して、圧力を14kPaまで減圧した。工程(1-1)で貯槽106に回収した反応液(1-1)19.40kgを120℃に加熱し、ライン21を経て、約15分で反応容器201に供給して、カルバメート化合物の熱分解を行った。圧力を8から14kPaの範囲に調整し、熱分解によって生成するフェノールを蒸留塔203で炭酸ジフェニルや生成物の1,8-ジイソシアナト-4-イソシアナトメチルオクタン(TTI)と分離し、ライン25、コンデンサーA21、及びライン27を経て貯槽204に回収した。この時の還流比は1.2であった。反応液(1-1)を全て移送後、更に内温220℃でフェノールの抜き出しを継続した。反応液(1-1)を全て移送してから4時間後に反応を終了し、反応液をライン28より抜き出し、貯槽205に移送した。貯槽205に移送した反応液の質量は18.63kgであった。この反応液(以下、「反応液(1-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-1a)~(I-1c)で表される化合物の混合物であった。また、カルボニル化合物のH-NMRスペクトルを図5に示す。
Figure JPOXMLDOC01-appb-C000079
 得られたカルボニル化合物からLCの検量線を作成し、絶対検量線法によりカルボニル化合物の定量を行った。以降の実施例では該カルボニル化合物の単離操作は行わず、該検量線からカルボニル化合物の定量を行った。
 また、H-NMR及びガスクロマトグラフィー分析を行った結果、TTIが収率70質量%で生成しており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は3.7であった。
工程(1-3):軽沸分離工程
 図3に示す装置を使用して反応を行った。なお、実施例1-1以降の軽沸分離においても図3に示す装置を使用した。
 連続多段蒸留塔301の中段に、貯槽205からライン31を経て、反応液(1-2)を3.73kg/時間で連続的にフィードし、該液相成分の蒸留分離を行った。蒸留分離に必要な熱量は、塔下部液をリボイラーA32とライン33とを経て循環させることにより供給した。連続多段蒸留塔の搭底部の液温度は220℃、塔頂の圧力は1.5kPaであった。連続多段蒸留塔301の登頂から留出するガスを、ライン32を経て、コンデンサー(凝縮器)A31で凝縮し、ライン36を経て貯槽302へ連続的に抜き出した。また、ライン34の定常状態における抜き出し速度は1.49kg/時間であり、貯槽303に連続的に抜き出した。貯槽303に回収した液(以下、「反応液(1-3)」と称する)は7.45kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(1-2)に対してTTIが収率82質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は4.6であった。
工程(1-4):高沸分離工程
 図4に示す装置を使用して反応を行った。なお、実施例1-1以降の高沸分離においても図4に示す装置を使用した。
 薄膜蒸留装置401(日本国、神鋼環境ソリューション社製)を190℃に加熱し、内部の圧力を0.3kPaとした。工程(1-3)で貯槽303に回収した反応液(1-3)をライン41を経て約1.0kg/時間で薄膜蒸留装置401の上部に供給して、イソシアネートと高沸成分の分離を行った。生成した気相成分はライン42及びコンデンサー(凝縮器)A41を経て、貯槽402に移送した。貯槽402より回収した液は3.35kgであり、TTIの回収率は121質量%であった。なお、TTI回収率が100質量%を超えているのは、熱分解工程又は軽沸分離工程で生成するイソシアネート変性物の一部がTTIに再生するためである。
[実施例1-2]
工程(2-2):カルバメート化合物の熱分解工程
 実施例1-1の反応液(1-1)を19.4kg、炭酸ジフェニルを19.4kg使用し、反応液(1-1)を約13分かけて反応器に供給して反応を開始し、ジャケット温度248℃、内温240℃、還流比0.4、圧力を14から26kPaの範囲で反応を行い、反応液(1-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は20.96kgであった。この反応液(以下、「反応液(2-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、TTIが収率78質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は4.3であった。
工程(2-3):軽沸分離工程
 反応液(2-2)を4.19kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.26kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は6.29kgであり、NMR,LC,ガスクロマトグラフィーで分析した結果、供給した反応液(2-2)に対してTTIが収率77質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は6.3であった。
工程(2-4):高沸分離工程
 工程(2-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.36kgであり、TTIの回収率は116質量%であった。
[実施例1-3]
工程(3-2):カルバメート化合物の熱分解工程
 実施例1-1の反応液(1-1)を19.4kg、炭酸ジフェニルを19.4kg使用し、反応液(1-1)を約9分かけて反応器に供給して反応を開始し、ジャケット温度258℃、内温250℃、還流比2.0、圧力を21から32kPaの範囲で反応を行い、反応液(1-1)を全て移送後2.5時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は22.12kgであった。この反応液(以下、「反応液(3-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、TTIが収率73質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は3.9であった。
工程(3-3):軽沸分離工程
 反応液(3-2)を4.42kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.42kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は7.08kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(3-2)に対してTTIが収率80質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は5.5であった。
工程(3-4):高沸分離工程
 工程(3-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.35kgであり、TTIの回収率は119質量%であった。
[実施例1-4]
工程(4-2):カルバメート化合物の熱分解工程
 実施例1-1の反応液(1-1)を19.4kg、炭酸ジフェニルを19.4kg使用し、反応液(1-1)を約14分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比1.5、圧力を8から14kPaの範囲で反応を行い、反応液(1-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の重量は22.12kgであった。この反応液(以下、「反応液(4-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、TTIが収率79質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.6であった。
工程(4-3):軽沸分離工程
 反応液(4-2)を4.42kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.68kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は8.41kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(4-2)に対してTTIが収率85質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.6であった。
工程(4-4):高沸分離工程
 工程(4-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.05kgであり、TTIの回収率は125質量%であった。
[実施例1-5]
工程(5-1):カルバメート化合物の製造工程
 炭酸ジフェニルの代わりに尿素0.23kg(69.2mol)を使用し、貯槽102に供給したフェノールが25.87kg(275.2mol)、反応器104の反応温度を240℃にして30分攪拌したこと以外は実施例1-1と同様の操作でカルバメート合成を行った。貯槽107に抜き出したフェノール、及びアンモニア量は24.14kgであった。
 反応後の溶液(以下、「反応液(5-1)」と称する)を液体クロマトグラフィーで分析した結果、対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(5-1)を、ライン16を経て、貯槽106に移送した。反応液(5-1)の質量は10.79kgであった。
工程(5-2):カルバメート化合物の熱分解工程
 実施例1-1の反応液(5-1)を10.8kg、炭酸ジフェニルを28.0kg使用し、反応液(5-1)を約13分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比1.7、圧力を8から14kPaの範囲で反応を行い、反応液(5-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は21.34kgであった。この反応液(以下、「反応液(5-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、TTIが収率78質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.5であった。
工程(5-3):軽沸分離工程
 反応液(5-2)を4.27kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.75kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は8.75kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(5-2)に対してTTIが収率84質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.5であった。
工程(5-4):高沸分離工程
 工程(5-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.05kgであり、TTIの回収率は128質量%であった。
[実施例1-6]
工程(6-1):カルバメート化合物の製造工程
 フェノールの代わりに4-クミルフェノール 12.40kg(58.5mol)をバッフル付きSUS製反応器104に供給し、フェノールの代わりに4-クミルフェノール 18.97kg(89.47mol)をバッフル付きSUS製反応器105に供給したこと以外は実施例1-5と同様の操作でカルバメート合成を行った。貯槽107に抜き出した4-クミルフェノール、及びアンモニア量は16.97kgであった。
 反応後の溶液(以下、「反応液(6-1)」と称する)を液体クロマトグラフィーで分析した結果、対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(6-1)を、ライン16を経て、貯槽106に移送した。反応液(6-1)の質量は17.96kgであった。
工程(6-2):カルバメート化合物の熱分解工程
 反応液(6-1)を18.0kg、炭酸ビス(4-クミルフェニル)を28.0kg使用し、反応液(6-1)を約12分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比1.5、圧力を3から5kPaの範囲で反応を行い、反応液(6-1)を全て移送後3時間4-クミルフェノールの抜き出しを継続したこと以外は、実施例1-5と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は32.19kgであった。この反応液(以下、「反応液(6-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、TTIが収率75質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.4であった。反応液(6-2)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-3a)~(I-3c)で表される化合物の混合物であった。
Figure JPOXMLDOC01-appb-C000080
工程(6-3):軽沸分離工程
 反応液(6-2)を16.10kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が15.77kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は31.55kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(6-2)に対してTTIが収率95質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.6であった。
工程(6-4):高沸分離工程
 工程(6-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.19kgであり、TTIの回収率は122質量%であった。
[比較例1-1]
工程(1’-2):カルバメート化合物の熱分解工程
 実施例1-1の反応液(1-1)を19.4kg、バーレルプロセス油B-03(ベンジルトルエン、松村石油株式会社)を5.45kg使用し、反応液(1-1)を約14分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比1.5、圧力を25から35kPaの範囲で反応を行い、反応液(1-1)を全て移送後1.5時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は5.71kgであった。この反応液(以下、「反応液(1’-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、TTIが収率69質量%で生成していた。この時の反応液にはカルボニル化合物の生成は見られず、イソシアヌレート基やカルボジイミド基、ウレトンイミン基、アロファネート基を有する副生物が見られた。
工程(1’-3):軽沸分離工程
 反応液(1’-2)を4.35kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.74kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行ったところ運転途中で液が高粘度化し、運転継続が困難であった。
[実施例1-7]
工程(7-1):カルバメート化合物の製造工程
 図1に示す装置を使用して反応を行った。
 ライン14を閉止した状態で、4,4’-ジアミノジフェニルメタン3.33kg(16.8mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール2.53kg(27.0mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール2.53kg(27.0mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル11.96kg(55.6mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、4,4’-ジアミノジフェニルメタンとフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール7.58kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(7-1)」と称する)を液体クロマトグラフィーで分析した結果、4,4’-ジアミノジフェニルメタンに対応するカルバメート化合物が収率95質量%で生成していた。ライン16を開き、上記反応液(7-1)を、ライン16を経て貯槽106に移送した。反応液(7-1)の質量は12.77kgであった。
工程(7-2):カルバメート化合物の熱分解工程
 反応液(7-1)を12.77kg、炭酸ジフェニルを12.77kg使用し、反応液(7-1)を約10分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比0.8、圧力を11から16kPaの範囲で反応を行い、反応液(7-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は11.75kgであった。この反応液(以下、「反応液(7-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-2)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000081
 得られたカルボニル化合物からLCの検量線を作成し、絶対検量線法によりカルボニル化合物の定量を行った。また、NMR、及びガスクロマトグラフィーで分析した結果、ジフェニルメタンジイソシアネート(MDI)が収率70質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.3であった。
工程(7-3):軽沸分離工程
 反応液(7-2)を2.35kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.97kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は9.87kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(7-2)に対してMDIが収率79質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.3であった。
工程(7-4):高沸分離工程
 工程(7-3)で貯槽303に回収した液を使用し、運転温度170℃、内部の圧力を0.3kPaとしたこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.54kgであり、MDIの回収率は130質量%であった。
[実施例1-8]
 工程(8-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、リジンβ-アミノエチルエステル3塩酸塩3.33kg(16.8mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール2.52kg(26.7mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール2.52kg(26.7mol)を貯槽102よりライン15を経てバッフル付きSUS製反応容器105に供給し、炭酸ジフェニル11.91kg(55.6mol)を貯槽103よりライン13を経て上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経てリジンβ-アミノエチルエステル3塩酸塩とフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール8.22kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(8-1)」と称する)を液体クロマトグラフィーで分析した結果、リジンβ-アミノエチルエステルに対応するカルバメート化合物が収率96質量%で生成していた。ライン16を開き、上記反応液(8-1)を、ライン16を経て貯槽106に移送した。反応液(8-1)の質量は11.45kgであった。
工程(8-2):カルバメート化合物の熱分解工程
 反応液(8-1)を11.45kg、炭酸ジフェニルを10.00kg使用し、反応液(8-1)を約15分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比3.2、圧力を11から16kPaの範囲で反応を行い、反応液(8-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液(以下、「反応液(8-2)」と称する)の質量は9.01kgであった。反応液(8-2)のH-NMR及びガスクロマトグラフィー質量分析の結果をそれぞれ図6A及び図6Bに示す。また、反応液(8-2)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-4a)~(I-4c)で表される化合物の混合物であった。
Figure JPOXMLDOC01-appb-C000082
 得られたカルボニル化合物からLCの検量線を作成し、絶対検量線法によりカルボニル化合物の定量を行った。また、NMR、及びガスクロマトグラフィーで分析した結果、リジントリイソシアネート(LTI)が収率77質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.4であった。
工程(8-3):軽沸分離工程
 反応液(8-2)を1.80kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.10kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は5.50kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(8-2)に対してLTIが収率83質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.4であった。
工程(8-4):高沸分離工程
 工程(8-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.1kPaとしたこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は2.38kgであり、LTIの回収率は125質量%であった。
[実施例1-9]
工程(9-1):カルバメート化合物の製造工程
 フェノールの代わりに2-メトキシフェノール 0.84kg(6.75mol)をバッフル付きSUS製反応器104に供給し、フェノールの代わりに2-メトキシフェノール 0.84kg(6.75mol)を、炭酸ジフェニルの代わりに炭酸ビス(2-メトキシフェニル) 15.26kg(55.6mol)をバッフル付きSUS製反応器105に供給したこと以外は実施例1-8と同様の操作でカルバメート合成を行った。貯槽107に抜き出した2-メトキシフェノール量は6.35kgであった。
 反応後の溶液(以下、「反応液(9-1)」と称する)を液体クロマトグラフィーで分析した結果、対応するカルバメート化合物が収率98質量%で生成していた。ライン16を開き、上記反応液(9-1)を、ライン16を経て、貯槽106に移送した。反応液(9-1)の質量は13.95kgであった。
工程(9-2):カルバメート化合物の熱分解工程
 反応液(9-1)を14.0kg、炭酸ビス(2-メトキシフェニル)を8.0kg使用し、反応液(9-1)を約14分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比3.0、圧力を8から13kPaの範囲で反応を行い、反応液(9-1)を全て移送後3時間2-メトキシフェノールの抜き出しを継続したこと以外は、実施例1-8と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は12.05kgであった。この反応液(以下、「反応液(9-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、LTIが収率78質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.5であった。反応液(9-2)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-5a)~(I-5c)で表される化合物の混合物であった。
Figure JPOXMLDOC01-appb-C000083
工程(9-3):軽沸分離工程
 反応液(9-2)を圧力1.0kPaの条件で、2.41kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.16kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は5.79kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(9-2)に対してLTIが収率85質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.2であった。
工程(9-4):高沸分離工程
 工程(9-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は2.43kgであり、LTIの回収率は123質量%であった。
[実施例1-10]
工程(10-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、リジンメチルエステル二塩酸塩3.33kg(14.3mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール1.91kg(20.3mol)を貯槽102よりライン12を経て上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール1.91kg(20.3mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル10.17kg(47.5mol)を貯槽103よりライン13を経て上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、リジンメチルエステル二塩酸塩とフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール5.93kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(10-1)」と称する)を液体クロマトグラフィーで分析した結果、リジンメチルエステルに対応するカルバメート化合物が収率97質量%で生成していた。ライン16を開き、上記反応液(10-1)を、ライン16を経て貯槽106に移送した。反応液(10-1)の質量は11.38kgであった。
工程(10-2):カルバメート化合物の熱分解工程
 反応液(10-1)を11.38kg、炭酸ジフェニルを11.38kg使用し、反応液(10-1)を約12分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比0.9、圧力を20から29kPaの範囲で反応を行い、反応液(10-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は19.35kgであった。この反応液(以下、「反応液(10-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-7a)~(I-7b)で表される化合物の混合物であった。
Figure JPOXMLDOC01-appb-C000084
 得られたカルボニル化合物からLCの検量線を作成し、絶対検量線法によりカルボニル化合物の定量を行った。また、NMR、ガスクロマトグラフィーで分析した結果、リジンジイソシアネート(LDI)が収率81質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.4であった。
工程(10-3):軽沸分離工程
 反応液(10-2)を3.87kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.47kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は7.35kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(10-2)に対してLDIが収率86質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.5であった。
工程(10-4):高沸分離工程
 工程(10-3)で貯槽303に回収した液を使用し、運転温度180℃、内部の圧力を0.1kPaとしたこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.57kgであり、LDIの回収率は122質量%であった。
[実施例1-11]
工程(11-1):カルバメート化合物の製造工程
 リジンメチルエステル二塩酸塩の代わりにリジンエチルエステル二塩酸塩3.33kg(13.5mol)と、フェノール1.70kg(18.04mol)をバッフル付きSUS製反応器104に供給し、フェノール1.70kg(18.04mol)と、炭酸ジフェニル9.59kg(44.81mol)をバッフル付きSUS製反応器105に供給したこと以外は実施例1-10と同様の操作でカルバメート合成を行った。貯槽107に抜き出したフェノール量は5.59kgであった。
 反応後の溶液(以下、「反応液(11-1)」と称する)を液体クロマトグラフィーで分析した結果、対応するカルバメート化合物が収率97質量%で生成していた。ライン16を開き、上記反応液(11-1)を、ライン16を経て、貯槽106に移送した。反応液(11-1)の質量は10.74kgであった。
工程(11-2):カルバメート化合物の熱分解工程
 反応液(11-1)を10.7kg、炭酸ジフェニルを10.74kg使用し、反応液(11-1)を約12分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比0.9、圧力を20から29kPaの範囲で反応を行い、反応液(11-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-10と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は18.25kgであった。この反応液(以下、「反応液(11-2)」と称する)をNMR、LC、及びガスクロマトグラフィーで分析した結果、LDI-Etが収率82質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.3であった。反応液(11-2)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-10a)~(I-10b)で表される化合物の混合物であった。
Figure JPOXMLDOC01-appb-C000085
工程(11-3):軽沸分離工程
 反応液(11-2)を3.65kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.31kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は6.57kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(11-2)に対してLDI-Etが収率85質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.2であった。
工程(11-4):高沸分離工程
 工程(11-3)で貯槽303に回収した液を使用したこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.10kgであり、LDI―Etの回収率は120質量%であった。
[実施例1-12]
工程(12-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、4,4’-メチレンビス(シクロヘキシルアミン)3.33kg(15.8mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール2.29kg(24.4mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール2.29kg(24.4mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル11.27kg(52.7mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、4,4’-メチレンビス(シクロヘキシルアミン)とフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール6.94kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(12-1)」と称する)を液体クロマトグラフィーで分析した結果、4,4’-メチレンビス(シクロヘキシルアミン)に対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(12-1)を、ライン16を経て貯槽106に移送した。反応液(12-1)の質量は12.24kgであった。
工程(12-2):カルバメート化合物の熱分解工程
 反応液(12-1)を12.24kg、炭酸ジフェニルを12.24kg使用し、反応液(12-1)を約10分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.5、圧力を11から16kPaの範囲で反応を行い、反応液(12-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は9.79kgであった。この反応液(以下、「反応液(12-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-16)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000086
 得られたカルボニル化合物からLCの検量線を作成し、絶対検量線法によりカルボニル化合物の定量を行った。また、NMR、LC、及びガスクロマトグラフィーで分析した結果、メチレンビス(シクロヘキシルイソシアネート)(HMDI)が収率76質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は2.0であった。
工程(12-3):軽沸分離工程
 反応液(12-2)を1.96kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.65kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は8.22kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(12-2)に対してHMDIが収率82質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は3.4であった。
工程(12-4):高沸分離工程
 工程(12-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.3kPaとしたこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.85kgであり、HMDIの回収率は125質量%であった。
[実施例1-13]
工程(13-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、1,3-ジ(アミノメチル)シクロヘキサン3.33kg(23.1mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール4.11kg(43.7mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次にライン16を閉止した状態で、フェノール4.11kg(43.7mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル16.44kg(76.8mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、1,3-ジ(アミノメチル)シクロヘキサンとフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール11.74kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(13-1)」とも称する)を液体クロマトグラフィーで分析した結果、1,3-ジ(アミノメチル)シクロヘキサンに対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(13-1)を、ライン16を経て貯槽106に移送した。反応液(13-1)の質量は16.24kgであった。
工程(13-2):カルバメート化合物の熱分解工程
 反応液(13-1)を16.24kg、炭酸ジフェニルを16.24kg使用し、反応液(13-1)を約15分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.0、圧力を11から16kPaの範囲で反応を行い、反応液(13-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、実施例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は13.97kgであった。この反応液(以下、「反応液(13-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-19)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000087
 得られたカルボニル化合物からLCの検量線を作成し、絶対検量線法によりカルボニル化合物の定量を行った。また、NMR、LC、及びガスクロマトグラフィーで分析した結果、1,3-ビス(イソシアナトメチル)シクロヘキサン(HXDI)が収率78質量%で生成していた。この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は1.7であった。
工程(13-3):軽沸分離工程
 反応液(13-2)を2.79kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.90kg/時間であること以外は、実施例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は9.50kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(13-2)に対してHXDIが収率77質量%で回収されており、この時の反応液の{3×(イソシアヌレート基のモル量)+2×(カルボジイミド基のモル量)+3×(ウレトンイミン基のモル量)+2×(アロファネート基のモル量)}÷(カルボニル化合物のモル量)の値は3.6であった。
工程(13-4):高沸分離工程
 工程(13-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.3kPaとしたこと以外は実施例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.93kgであり、HXDIの回収率は122質量%であった。
<イソシアネート化合物及び該イソシアネート化合物に対応するカルボニル化合物(I)の製造>
[合成例1-1]
(TTI及びTTIに対応するカルボニル化合物(I-1a)~(I-1c)の製造)
1.工程(1-1):カルバメート化合物の製造工程
 図1に示す装置を使用して反応を行った。なお、合成例1-1以降のカルバメート化合物の製造においても図1に示す装置を使用した。
 ライン14を閉止した状態で、4-アミノメチル-1,8-オクタンジアミン3.33kg(19.2mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール5.50kg(58.5mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール5.50kg(58.5mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応器105に供給し、炭酸ジフェニル20.52kg(95.9mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、4-アミノメチル-1,8-オクタンジアミンとフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール15.53kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(1-1)」と称する)を液体クロマトグラフィーで分析した結果、4-アミノメチル-1,8-オクタンジアミンに対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(1-1)を、ライン16を経て、貯槽106に移送した。反応液(1-1)の質量は19.40kgであった。
2.工程(1-2):カルバメート化合物の熱分解工程
 図2に示す装置を使用して反応を行った。なお、合成例1-1以降のカルバメート化合物の熱分解においても図2に示す装置を使用した。
 ライン24を閉止した状態で、貯槽202より炭酸ジフェニル19.40kgをライン22を経て、バッフル付きSUS製反応容器201に供給した。多段蒸留塔203の温度を170℃まで昇温し、反応容器201のジャケット温度を228℃に加熱して、圧力を14kPaまで減圧した。工程(1-1)で貯槽106に回収した反応液(1-1)19.40kgを120℃に加熱し、ライン21を経て、約15分で反応容器201に供給して、カルバメート化合物の熱分解を行った。圧力を8から14kPaの範囲に調整し、熱分解によって生成するフェノールを蒸留塔203で炭酸ジフェニルや生成物の1,8-ジイソシアナト-4-イソシアナトメチルオクタン(TTI)と分離し、ライン25、コンデンサーA21、及びライン27を経て貯槽204に回収した。この時の還流比は1.2であった。反応液(1-1)を全て移送後、更に内温220℃でフェノールの抜き出しを継続した。反応液(1-1)を全て移送してから4時間後に反応を終了し、反応液をライン28より抜き出し、貯槽205に移送した。貯槽205に移送した反応液の質量は18.63kgであった。この反応液(以下、「反応液(1-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-1a)~(I-1c)で表される化合物の混合物(以降、この混合物を、「混合物(I-1)」と称する場合がある)であった。また、H-NMR及びガスクロマトグラフィー分析を行った結果、TTIが収率70質量%で生成していた。
Figure JPOXMLDOC01-appb-C000088
3.工程(1-3):軽沸分離工程
 図3に示す装置を使用して反応を行った。なお、合成例1-1以降の軽沸分離においても図3に示す装置を使用した。
 連続多段蒸留塔301の中段に、貯槽205からライン31を経て、反応液(1-2)を3.73kg/時間で連続的にフィードし、該液相成分の蒸留分離を行った。蒸留分離に必要な熱量は、塔下部液をリボイラーA32とライン33とを経て循環させることにより供給した。連続多段蒸留塔の搭底部の液温度は220℃、塔頂の圧力は1.5kPaであった。連続多段蒸留塔301の登頂から留出するガスを、ライン32を経て、コンデンサー(凝縮器)A31で凝縮し、ライン36を経て貯槽302へ連続的に抜き出した。また、ライン34の定常状態における抜き出し速度は1.49kg/時間であり、貯槽303に連続的に抜き出した。貯槽303に回収した液(以下、「反応液(1-3)」と称する)は7.45kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(1-2)に対してTTIが収率82質量%で回収された。
4.工程(1-4):高沸分離工程
 図4に示す装置を使用して反応を行った。なお、合成例1-1以降の高沸分離においても図4に示す装置を使用した。
 薄膜蒸留装置401(日本国、神鋼環境ソリューション社製)を190℃に加熱し、内部の圧力を0.3kPaとした。工程(1-3)で貯槽303に回収した反応液(1-3)をライン41を経て約1.0kg/時間で薄膜蒸留装置401の上部に供給して、イソシアネートと高沸成分の分離を行った。生成した気相成分はライン42及びコンデンサー(凝縮器)A41を経て、貯槽402に移送した。貯槽402より回収した液は3.35kgであり、TTIの回収率は121質量%であった。なお、TTI回収率が100質量%を超えているのは、熱分解工程又は軽沸分離工程で生成するイソシアネート変性物の一部がTTIに再生するためである。
[合成例1-2]
(TTI及びTTIに対応するカルボニル化合物(I-2a)~(I-2c)の製造)
 合成例1-1において、フェノールの代わりに2-メトキシフェノールを、炭酸ジフェニルの代わりに炭酸ビス(2-メトキシフェニル)を使用したこと以外は、合成例1-1と同様の方法を用いて、TTIを製造した。このとき、単離されたカルボニル化合物は、以下の式(I-2a)~(I-2c)で表される化合物の混合物(以降、この混合物を、「混合物(I-2)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000089
[合成例1-3]
(TTI及びTTIに対応するカルボニル化合物(I-3a)~(I-3c)の製造)
 合成例1-1において、フェノールの代わりに4-クミルフェノールを、炭酸ジフェニルの代わりに炭酸ビス(4-クミルフェノール)を使用したこと以外は、合成例1-1と同様の方法を用いて、TTIを製造した。このとき、単離されたカルボニル化合物は、以下の式(I-3a)~(I-3c)で表される化合物の混合物(以降、この混合物を、「混合物(I-3)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000090
[合成例1-4]
(LTI及びLTIに対応するカルボニル化合物(I-4a)~(I-4b)の製造)
1.工程(4-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、リジンβ-アミノエチルエステル3塩酸塩3.33kg(16.8mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール2.52kg(26.7mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール2.52kg(26.7mol)を貯槽102よりライン15を経てバッフル付きSUS製反応容器105に供給し、炭酸ジフェニル11.91kg(55.6mol)を貯槽103よりライン13を経て上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経てリジンβ-アミノエチルエステル3塩酸塩とフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール8.22kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(4-1)」と称する)を液体クロマトグラフィーで分析した結果、リジンβ-アミノエチルエステルに対応するカルバメート化合物が収率96質量%で生成していた。ライン16を開き、上記反応液(4-1)を、ライン16を経て貯槽106に移送した。反応液(4-1)の質量は11.45kgであった。
2.工程(4-2):カルバメート化合物の熱分解工程
 反応液(4-1)を11.45kg、炭酸ジフェニルを10.00kg使用し、反応液(4-1)を約15分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比3.2、圧力を11から16kPaの範囲で反応を行い、反応液(4-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は9.01kgであった。この反応液(以下、「反応液(4-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-4a)~(I-4c)で表される化合物の混合物であった。(以降、この混合物を、「混合物(I-4)」と称する場合がある)また、NMR、及びガスクロマトグラフィーで分析した結果、リジントリイソシアネート(LTI)が収率77質量%で生成していた。
Figure JPOXMLDOC01-appb-C000091
3.工程(4-3):軽沸分離工程
 反応液(4-2)を1.80kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.10kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は5.50kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(4-2)に対してLTIが収率83質量%で回収された。
4.工程(4-4):高沸分離工程
 工程(4-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.1kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は2.38kgであり、LTIの回収率は125質量%であった。
[合成例1-5]
(LTI及びLTIに対応するカルボニル化合物(I-5a)~(I-5b)の製造)
 合成例1-4において、フェノールの代わりに2-メトキシフェノールを、炭酸ジフェニルの代わりに炭酸ビス(2-メトキシフェニル)を使用したこと以外は、合成例1-4と同様の方法を用いて、LTIを製造した。このとき、単離されたカルボニル化合物は、以下の式(I-5a)~(I-5c)で表される化合物の混合物(以降、この混合物を、「混合物(I-5)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000092
[合成例1-6]
(LDI及びLDIに対応するカルボニル化合物(I-7a)~(I-7b)の製造)
1.工程(6-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、リジンメチルエステル二塩酸塩3.33kg(14.3mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール1.91kg(20.3mol)を貯槽102よりライン12を経て上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール1.91kg(20.3mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル10.17kg(47.5mol)を貯槽103よりライン13を経て上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、リジンメチルエステル二塩酸塩とフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール5.93kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(6-1)」と称する)を液体クロマトグラフィーで分析した結果、リジンメチルエステルに対応するカルバメート化合物が収率97質量%で生成していた。ライン16を開き、上記反応液(6-1)を、ライン16を経て貯槽106に移送した。反応液(6-1)の質量は11.38kgであった。
2.工程(6-2):カルバメート化合物の熱分解工程
 反応液(6-1)を11.38kg、炭酸ジフェニルを11.38kg使用し、反応液(6-1)を約12分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比0.9、圧力を20から29kPaの範囲で反応を行い、反応液(6-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は19.35kgであった。この反応液(以下、「反応液(6-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-7a)~(I-7b)で表される化合物の混合物(以降、この混合物を、「混合物(I-7)」と称する場合がある)であった。また、NMR、ガスクロマトグラフィーで分析した結果、リジンジイソシアネート(LDI)が収率81質量%で生成していた。
Figure JPOXMLDOC01-appb-C000093
3、工程(6-3):軽沸分離工程
 反応液(6-2)を3.87kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.47kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は7.35kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(6-2)に対してLDIが収率86質量%で回収された。
4.工程(6-4):高沸分離工程
 工程(6-3)で貯槽303に回収した液を使用し、運転温度180℃、内部の圧力を0.1kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.57kgであり、LDIの回収率は122質量%であった。
[合成例1-7]
(LDI及びLDIに対応するカルボニル化合物(I-8a)~(I-8b)の製造)
 合成例1-6において、フェノールの代わりに2-メトキシフェノール、炭酸ジフェニルの代わりに炭酸ビス(2-メトキシフェニル)を使用したこと以外は、合成例1-6と同様の方法を用いて、LDIを製造した。このとき、単離されたカルボニル化合物は、以下の式(I-8a)~(I-8b)で表される化合物の混合物(以降、この混合物を、「混合物(I-8)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000094
[合成例1-8]
(LDI―Et及びLDI―Etに対応するカルボニル化合物(I-10a)~(I-10b)の製造)
 合成例1-6において、リジンメチルエステル二塩酸塩の代わりにリジンエチルエステル二塩酸塩を使用したこと以外は、合成例1-6と同様の方法を用いて、LDI―Etを製造した。このとき、単離されたカルボニル化合物は、以下の式(I-10a)~(I-10b)で表される化合物の混合物(以降、この混合物を、「混合物(I-10)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000095
[合成例1-9]
(HDI及びHDIに対応するカルボニル化合物(I-20)の製造)
1.工程(9-1):カルバメート化合物の製造工程
 4-アミノメチル―1,8-オクタンジアミンの代わりにヘキサメチレンジアミンを3.33kg、炭酸ジフェニルを20.40kg、を使用し、フェノール5.50kgをヘキサメチレンジアミンと混合し、フェノール5.50kgを反応器に供給した以外は、工程(1-1)と同じ方法で、ヘキサメチレンジアミンから対応するカルバメートを合成し、反応液を120℃まで昇温し、内部の圧力を1.0kPaにすることで、液中のフェノール15.42kgを抜き出した。
 反応後の溶液(以下、「反応液(9-1)」と称する)を液体クロマトグラフィーで分析した結果、ヘキサメチレンジアミンに対応するカルバメート化合物が収率99質量%で生成していた。上記反応液(9-1)の質量は19.31kgであった。
2.工程(9-2):カルバメート化合物の熱分解工程
 反応液(9-1)を19.31kg、炭酸ジフェニルを19.31kg使用し、反応液(9-1)を約15分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比2.2、圧力を20から29kPaの範囲で反応を行い、反応液(9-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。反応後の反応液(以下、「反応液(9-2)」と称する)の質量は33.22kgであった。反応液(9-2)のカルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-20)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000096
 また、NMR、及びガスクロマトグラフィーで分析した結果、ヘキサメチレンジイソシアネート(HDI)が収率78質量%で生成していた。
3.工程(9-3):軽沸分離工程
 反応液(9-2)を6.64kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が0.930kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は4.65kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(9-2)に対してHDIが収率83質量%で回収された。
4.工程(9-4):高沸分離工程
 工程(9-3)で貯槽303に回収した液を使用し、運転温度170℃、内部の圧力を0.1kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.55kgであり、HDIの回収率は122質量%であった。
[合成例1-10]
(HMDIとHMDIに対応するカルボニル化合物(I-8)の製造)
1.工程(10-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、4,4’-メチレンビス(シクロヘキシルアミン)3.33kg(15.8mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール2.29kg(24.4mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール2.29kg(24.4mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル11.27kg(52.7mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、4,4’-メチレンビス(シクロヘキシルアミン)とフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール6.94kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(10-1)」と称する)を液体クロマトグラフィーで分析した結果、4,4’-メチレンビス(シクロヘキシルアミン)に対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(10-1)を、ライン16を経て貯槽106に移送した。反応液(8-1)の質量は12.24kgであった。
2.工程(10-2):カルバメート化合物の熱分解工程
 反応液(10-1)を12.24kg、炭酸ジフェニルを12.24kg使用し、反応液(10-1)を約10分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.5、圧力を11から16kPaの範囲で反応を行い、反応液(10-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は9.79kgであった。この反応液(以下、「反応液(10-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-16)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000097
 また、NMR、LC、及びガスクロマトグラフィーで分析した結果、メチレンビス(シクロヘキシルイソシアネート)(HMDI)が収率76質量%で生成していた。
3.工程(10-3):軽沸分離工程
 反応液(10-2)を1.96kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.65kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は8.22kgであり、NMR,LC,ガスクロマトグラフィーで分析した結果、供給した反応液(10-2)に対してHMDIが収率82質量%で回収された。
4.工程(10-4):高沸分離工程
 工程(10-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.85kgであり、HMDIの回収率は125質量%であった。
[合成例1-11]
(HXDI及びHXDIに対応するカルボニル化合物(I-19)の製造)
1.工程(11-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、1,3-ジ(アミノメチル)シクロヘキサン3.33kg(23.1mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール4.11kg(43.7mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次にライン16を閉止した状態で、フェノール4.11kg(43.7mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル16.44kg(76.8mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、1,3-ジ(アミノメチル)シクロヘキサンとフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール11.74kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(11-1)」とも記す。)を液体クロマトグラフィーで分析した結果、1,3-ジ(アミノメチル)シクロヘキサンに対応するカルバメート化合物が収率99質量%で生成していた。ライン16を開き、上記反応液(11-1)を、ライン16を経て貯槽106に移送した。反応液(11-1)の質量は16.24kgであった。
2.工程(11-2):カルバメート化合物の熱分解工程
 反応液(11-1)を16.24kg、炭酸ジフェニルを16.24kg使用し、反応液(11-1)を約15分かけて反応器に供給して反応を開始し、ジジャケット温度238℃、内温230℃、還流比4.0、圧力を11から16kPaの範囲で反応を行い、反応液(11-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は13.97kgであった。この反応液(以下、「反応液(11-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-19)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000098
 また、NMR、LC、及びガスクロマトグラフィーで分析した結果、1,3-ビス(イソシアナトメチル)シクロヘキサン(HXDI)が収率78質量%で生成していた。
3.工程(11-3):軽沸分離工程
 反応液(11-2)を2.79kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.90kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は9.50kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(11-2)に対してHXDIが収率77質量%で回収された。
4.工程(11-4):高沸分離工程
 工程(11-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.93kgであり、HMDIの回収率は122質量%であった。
[合成例1-12]
(PDI及びPDIに対応するカルボニル化合物(I-21)の製造)
1.工程(12-1):カルバメート化合物の製造工程
 4-アミノメチル―1,8-オクタンジアミンの代わりに1,5-ジアミノペンタンを3.33kg、炭酸ジフェニルを23.20kg、を使用し、フェノール6.48kgを1,5-ジアミノペンタンと混合し、フェノール6.48kgを反応器に供給した以外は合成例1-1の工程(1-1)と同じ方法を用いて、1,5-ジアミノペンタンから対応するカルバメートを合成し、反応液を120℃まで昇温し、内部の圧力を1.0kPaにすることで、液中のフェノール18.01kgを抜き出した。
 反応後の溶液(以下、「反応液(12-1)」と称する)を液体クロマトグラフィーで分析した結果、1,5-ジアミノペンタンに対応するカルバメート化合物が収率99質量%で生成していた。上記反応液(12-1)の1,5-ジアミノペンタンは21.48kgであった。
2.工程(12-2):カルバメート化合物の熱分解工程
 反応液(12-1)を21.48kg、炭酸ジフェニルを21.48kg使用し、反応液(12-1)を約11分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.5、圧力を20から29kPaの範囲で反応を行い、反応液(12-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。反応後の反応液の質量は37.38kgであった。この反応液(以下、「反応液(12-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-21)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000099
 また、NMR、ガスクロマトグラフィーで分析した結果、ペンタメチレンジイソシアネート(PDI)が収率71質量%で生成していた。
3.工程(12-3):軽沸分離工程
 反応液(12-2)を7.48kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.20kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は5.98kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(12-2)に対してPDIが収率87質量%で回収された。
4.工程(12-4):高沸分離工程
 工程(12-3)で貯槽303に回収した液を使用し、運転温度160℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.53kgであり、PDIの回収率は115%であった。
[合成例1-13]
(IPDI及びIPDIに対応するカルボニル化合物(I-22a)~(I-22b)の製造)
1.工程(13-1):カルバメート化合物の製造工程
 4-アミノメチル―1,8-オクタンジアミンの代わりにイソホロンジアミンを3.33kg、炭酸ジフェニルを13.92kg、を使用し、フェノール3.22kgをイソホロンジアミンと混合し、フェノール3.22kgを反応器に供給した以外は合成例1-1の工程(1-1)と同じ方法を用いて、イソホロンジアミンから対応するカルバメートを合成し、反応液を120℃まで昇温し、内部の圧力を1.0kPaにすることで、液中のフェノール9.4kgを抜き出した。
 反応後の溶液(以下、「反応液(13-1)」と称する)を液体クロマトグラフィーで分析した結果、イソホロンジアミンに対応するカルバメート化合物が収率99質量%で生成していた。上記反応液(13-1)の質量は14.29kgであった。
2.工程(13-2):カルバメート化合物の熱分解工程
 反応液(13-2)を14.29kg、炭酸ジフェニルを14.29kg使用し、反応液(13-2)を約11分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.9、圧力を20から29kPaの範囲で反応を行い、反応液(13-2)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。反応後の反応液の質量は23.44kgであった。この反応液(以下、「反応液(13-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-22a)~(I-22b)で表される化合物の混合物(以降、この混合物を、「混合物(I-22)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000100
 また、NMR、ガスクロマトグラフィーで分析した結果、イソホロンジイソシアネート(IPDI)が収率75質量%で生成していた。
3.工程(13-3):軽沸分離工程
 反応液(13-2)を4.69kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が0.80kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は3.98kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(13-2)に対してIPDIが収率82質量%で回収された。
4.工程(13-4):高沸分離工程
 工程(13-3)で貯槽303に回収した液を使用し、運転温度190℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.18kgであり、IPDIの回収率は120質量%であった。
[合成例1-14]
(XDI及びXDIに対応するカルボニル化合物(I-23)の製造)
1.工程(14-1):カルバメート化合物の製造工程
 4-アミノメチル―1,8-オクタンジアミンの代わりにキシリレンジアミンを3.33kg、炭酸ジフェニルを17.42kgを使用し、フェノール4.45kgをキシリレンジアミンと混合し、フェノール4.45kgを反応器に供給した以外は合成例1-1の工程(1-1)と同じ方法を用いて、キシリレンジアミンから対応するカルバメートを合成し、反応液を120℃まで昇温し、内部の圧力を1.0kPaにすることで、液中のフェノール12.64kgを抜き出した。
 反応後の溶液(以下、「反応液(14-1)」と称する)を液体クロマトグラフィーで分析した結果、キシリレンジアミンに対応するカルバメート化合物が収率98質量%で生成していた。上記反応液(14-1)の質量は16.99kgであった。
2.工程(14-2):カルバメート化合物の熱分解工程
 反応液(14-1)を16.99kg、炭酸ジフェニルを16.99kg使用し、反応液(14-1)を約11分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.5、圧力を20から29kPaの範囲で反応を行い、反応液(14-2)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。反応後の反応液の質量は28.89kgであった。この反応液(以下、「反応液(14-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-23)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000101
 また、NMR、ガスクロマトグラフィーで分析した結果、キシリレンジイソシアネート(XDI)が収率78質量%で生成していた。
3.工程(14-3):軽沸分離工程
 反応液(14-2)を5.78kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が0.87kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は3.98kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(14-2)に対してXDIが収率88質量%で回収された。
4.工程(14-4):高沸分離工程
 工程(14-3)で貯槽303に回収した液を使用し、運転温度170℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.87kgであり、XDIの回収率は125質量%であった。
[合成例1-15]
(MDI及びMDIに対応するカルボニル化合物(I-13)の製造)
1.工程(15-1):カルバメート化合物の製造工程
 ライン14を閉止した状態で、4,4’-ジアミノジフェニルメタン3.33kg(16.8mol)を貯槽101よりライン11を経て、バッフル付きSUS製反応容器104に供給し、フェノール2.53kg(27.0mol)を貯槽102よりライン12を経て、上記反応容器104に供給し、攪拌することで均一化した。次に、ライン16を閉止した状態で、フェノール2.53kg(27.0mol)を貯槽102よりライン15を経て、バッフル付きSUS製反応容器105に供給し、炭酸ジフェニル11.96kg(55.6mol)を貯槽103よりライン13を経て、上記反応容器105に供給した。上記反応容器105の液温を65℃に調整し、攪拌することで均一化した後、反応容器104よりライン14を経て、4,4’-ジアミノジフェニルメタンとフェノールの混合液を内温が70℃を超えないように供給した。2時間攪拌を継続した後、反応液を120℃まで昇温し、内部の圧力を約1kPaにすることで、液中のフェノール7.58kgをライン17及びコンデンサー(凝縮器)A11を通じて貯槽107に抜き出した。
 反応後の溶液(以下、「反応液(15-1)」と称する)を液体クロマトグラフィーで分析した結果、4,4’-ジアミノジフェニルメタンに対応するカルバメート化合物が収率95質量%で生成していた。ライン16を開き、上記反応液(15-1)を、ライン16を経て貯槽106に移送した。反応液(15-1)の質量は12.77kgであった。
2.工程(15-2):カルバメート化合物の熱分解工程
 反応液(15-1)を12.77kg、炭酸ジフェニルを12.77kg使用し、反応液(15-1)を約10分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比0.8、圧力を11から16kPaの範囲で反応を行い、反応液(15-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。貯槽205に移送した反応液の質量は11.75kgであった。この反応液(以下、「反応液(15-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-13)で表される化合物であった。
Figure JPOXMLDOC01-appb-C000102
 また、NMR、ガスクロマトグラフィーで分析した結果、MDIが収率70質量%で生成していた。
3.工程(15-3):軽沸分離工程
 反応液(15-2)を2.35kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が1.97kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は9.87kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(15-2)に対してMDIが収率79質量%で回収された。
4.工程(15-4):高沸分離工程
 工程(15-3)で貯槽303に回収した液を使用し、運転温度170℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は4.54kgであり、MDIの回収率は130質量%であった。
[合成例1-16]
(TDI及びTDIに対応するカルボニル化合物(I-24a)~(I-24b)の製造)
1.工程(16-1):カルバメート化合物の製造工程
 4-アミノメチル-1,8-オクタンジアミンの代わりにトリレン-2,4-ジアミン3.33kg、炭酸ジフェニル19.41kgを使用し、フェノール5.15kgをキシリレンジアミンと混合し、フェノール5.15kgを反応器に供給した以外は合成例1-1の工程(1-1)と同じ方法を用いて、トリレン-2,4-ジアミンから対応するカルバメートを合成し、反応液を120℃まで昇温し、内部の圧力を1.0kPaにすることで、液中のフェノール14.49kgを抜き出した。
 反応後の溶液(以下、「反応液(16-1)」と称する)を液体クロマトグラフィーで分析した結果、対応するカルバメート化合物が収率96質量%で生成していた。上記反応液(16-1)の質量は18.54kgであった。
2.工程(16-2):カルバメート化合物の熱分解工程
 反応液(16-1)を18.54kg、炭酸ジフェニルを18.54kg使用し、反応液(16-1)を約11分かけて反応器に供給して反応を開始し、ジャケット温度238℃、内温230℃、還流比4.7、圧力を20から29kPaの範囲で反応を行い、反応液(16-1)を全て移送後3時間フェノールの抜き出しを継続したこと以外は、合成例1-1と同様の操作で熱分解反応を行った。反応後の反応液の質量は11.75kgであった。この反応液(以下、「反応液(16-2)」と称する)の一部をカラム分取装置で精製することで、カルボニル化合物を単離した。単離されたカルボニル化合物は、以下の式(I-24a)~(I-24b)で表される化合物の混合物(以降、この混合物を、「混合物(I-24)」と称する場合がある)であった。
Figure JPOXMLDOC01-appb-C000103
 また、NMR、ガスクロマトグラフィーで分析した結果、トルイレンジイソシアネート(TDI)が収率71質量%で生成していた。
3.工程(16-3):軽沸分離工程
 反応液(16-2)を2.35kg/時間で連続的にフィードし、ライン34の定常状態における抜き出し速度が0.94kg/時間であること以外は、合成例1-1と同様の操作で軽沸分離を行った。貯槽303に回収した液は4.70kgであり、NMR、LC、及びガスクロマトグラフィーで分析した結果、供給した反応液(16-2)に対してTDIが収率85質量%で回収された。
4.工程(16-4):高沸分離工程
 工程(16-3)で貯槽303に回収した液を使用し、運転温度160℃、内部の圧力を0.3kPaとしたこと以外は合成例1-1と同様の操作で高沸分離を行った。貯槽402に回収した液は3.27kgであり、TDIの回収率は119質量%であった。
<カルバート化合物(III)の製造>
[合成例2-1]
(カルバメート化合物(III-1a)~(III-24b)の製造)
 各イソシアネート化合物100.0gに対し、下記表に記載の種類及び配合量のヒドロキシ化合物(V)を添加し、120℃、3時間反応させることで、各イソシアネート化合物に対応するカルバメート化合物(III)を合成した。
 なお、カルバメート化合物(III-1a)~(III-1c)はその混合物(III-1)、カルバメート化合物(III-2a)~(III-2c)はその混合物(III-2)、カルバメート化合物(III-3a)~(III-3c)はその混合物(III-3)、カルバメート化合物(III-4a)~(III-4c)はその混合物(III-4)、カルバメート化合物(III-5a)~(III-5b)はその混合物(III-5)、カルバメート化合物(III-7a)~(III-7b)はその混合物(III-7)、カルバメート化合物(III-8a)~(III-8b)はその混合物(III-8)、カルバメート化合物(III-10a)~(III-10b)はその混合物(III-10)、カルバメート化合物(III-22a)~(III-22b)はその混合物(III-11)、カルバメート化合物(III-24a)~(III-24b)はその混合物(III-24)として得られた。これらカルバメート化合物の構造は後述するとおりである。
Figure JPOXMLDOC01-appb-T000104
[実施例1~62及び比較例1~6]
(イソシアネート組成物A-a1~A-a46及びA-b1~A-b6の製造)
 イソシアネート化合物(II)、カルボニル化合物(I)、カルバメート化合物(III)、及び炭酸エステル(IV)の種類及び含有量が以下の各表に示すとおりとなるように混合して、各イソシアネート組成物を得た。
 なお、用いたイソシアネート化合物(II)、カルボニル化合物(I)、カルバメート化合物(III)、及び炭酸エステル(IV)の種類の詳細は以下に示すとおりである。
(イソシアネート化合物(II))
 イソシアネート化合物(II)としては、上記合成方法で得られた以下に示す化合物を用いた。
 TTI:4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート
 LTI:2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート(リジントリイソシアネート)
 LDI:リジンメチルエステルジイソシアネート
 LDI―Et:リジンエチルエステルジイソシアネート
 HDI:ジイソシアナトヘキサン
 HMDI:メチレンビス(シクロヘキシルイソシアネート)
 HXDI:1,3-ビス(イソシアナトメチル)シクロヘキサン
 PDI:ジイソシアナトペンタン
 IPDI:3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート
 XDI:ジイソシアナトキシレン
 MDI:ジイソシアナトジフェニルメタン
 TDI:ジイソシアナトトルエン
(カルボニル化合物(I))

 カルボニル化合物(I)としては、上記合成方法で得られた、以下の式(I-1a)~(I-24b)で表される化合物を用いた。なお、なお、カルボニル化合物(I-1a)~(I-1c)はその混合物(I-1)、カルボニル化合物(I-2a)~(I-2c)はその混合物(I-2)、カルボニル化合物(I-3a)~(I-3c)はその混合物(I-3)、カルボニル化合物(I-4a)~(I-4c)はその混合物(I-4)、カルボニル化合物(I-5a)~(I-5b)はその混合物(I-5)、カルボニル化合物(I-7a)~(I-7b)はその混合物(I-7)、カルボニル化合物(I-8a)~(I-8b)はその混合物(I-8)、カルボニル化合物(I-10a)~(I-10b)はその混合物(I-10)、カルボニル化合物(I-22a)~(I-22b)はその混合物(I-11)、カルボニル化合物(I-24a)~(I-24b)はその混合物(I-24)をそれぞれ用いた。
Figure JPOXMLDOC01-appb-C000105
 
Figure JPOXMLDOC01-appb-C000106
 
Figure JPOXMLDOC01-appb-C000107
 
Figure JPOXMLDOC01-appb-C000108
 
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
(カルバメート化合物(III))
 カルバメート化合物(III)としては、上記合成方法で得られた、以下の式(III-1a)~(III-24b)で表される化合物を用いた。なお、カルバメート化合物(III-1a)~(III-1c)はその混合物(III-1)、カルバメート化合物(III-2a)~(III-2c)はその混合物(III-2)、カルバメート化合物(III-3a)~(III-3c)はその混合物(III-3)、カルバメート化合物(III-4a)~(III-4c)はその混合物(III-4)、カルバメート化合物(III-5a)~(III-5b)はその混合物(III-5)、カルバメート化合物(III-7a)~(III-7b)はその混合物(III-7)、カルバメート化合物(III-8a)~(III-8b)はその混合物(III-8)、カルバメート化合物(III-10a)~(III-10b)はその混合物(III-10)、カルバメート化合物(III-22a)~(III-22b)はその混合物(III-11)、カルバメート化合物(III-24a)~(III-24b)はその混合物(III-24)、をそれぞれ用いた。
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
(炭酸エステル(IV))
 炭酸エステル(IV)としては、以下に示す化合物を用いた。
 DPC:炭酸ジフェニル
 GAC:炭酸ビス(2-メトキシフェニル)
 DPCP:炭酸ビス(4-クミルフェニル)
 得られた各イソシアネート組成物について、上述した保存試験を実施し、各評価を行った。結果を以下の各表に示す。

Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
 上記各表から、イソシアネート化合物(II)及びカルボニル化合物(I)を特定の量含有するイソシアネート組成物A-a1~A-a62(実施例1~62)では、着色が十分に抑制され、且つ、保存安定性に優れていた。
 また、イソシアネート化合物(II)及びカルボニル化合物(I)に加えて、カルバメート化合物(III)及び炭酸エステル(IV)を更に含有するイソシアネート組成物A-a1~A-a8、A-a11~A-a18、及びA-a21~A-a62(実施例1~8、11~18、及び21~62)では、保存前後の色差の変化がより小さく、変性量もより少なく、保存安定性に特に優れていた。
 一方、イソシアネート化合物(II)の含有量がイソシアネート組成物の総質量に対して97質量%未満であるイソシアネート組成物A-b1及びA-b4(比較例1及び4)では、保存前後の色差の変化が大きく、変性量も多く、保存安定性が劣っていた。
 また、カルボニル化合物(I)を含まない、又は、カルボニル化合物(I)の含有量がイソシアネート組成物の総質量に対して1.0×10質量ppm超であるイソシアネート組成物A-b2、A-b3、A-b5、及びA-b6(比較例2、3、5、及び6)では、保存前後の色差の変化が大きく、変性量も多く、保存安定性が劣っていた。
 本実施形態のカルボニル化合物及びその製造方法によれば、新規のカルボニル化合物を提供することができる。本実施形態のイソシアネート化合物の製造方法は、前記カルボニル化合物を用いる方法であり、イソシアネート化合物の製造時における副生成物の装置への固着を防ぎ、イソシアネート化合物の収率を向上することができる。
 また、本実施形態のイソシアネート組成物によれば、着色が十分に抑制され、且つ、保存安定性に優れたイソシアネート組成物を提供することができる。
 11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,31,32,33,34,35,36,41,42,43:ライン
 A11,A21,A31,A41:コンデンサー
 A32:リボイラー
 101,102,103,106,107,202,204,205,302,303,402,403:貯槽
 104,105,201:バッフル付きSUS製反応容器
 203,301:多段蒸留塔
 401:薄膜蒸留装置

Claims (15)

  1.  下記一般式(I)で表されるカルボニル化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
  2.  前記R11が、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であり、且つ、
     前記R12が、酸素原子を含んでもよい、炭素数6以上20以下の1価の芳香族炭化水素基である、請求項1に記載のカルボニル化合物。
  3.  前記R11が、1以上2以下のエステル基を有してもよい、炭素数5以上15以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上15以下の2価以上3価以下の芳香族炭化水素基であり、
     前記R12が、酸素原子を含んでもよい、炭素数6以上15以下の1価の芳香族炭化水素基であり、
     前記n11が、1以上4以下の整数であり、
     前記n12が、0以上3以下の整数であり、且つ、
     前記n11とn12の和が、2以上4以下の整数である、請求項1又は2に記載のカルボニル化合物。
  4.  請求項1~3のいずれか一項に記載のカルボニル化合物の製造方法であって、
     イソシアネート化合物及びカルバメート化合物からなる群より選ばれる1種以上の化合物と、
     炭酸エステル及びヒドロキシ化合物からなる群より選ばれる1種以上の化合物と、
    を、混合し、加熱して、前記カルボニル化合物を合成することを含む、製造方法。
  5.  前記イソシアネート化合物が下記一般式(II)で表される化合物である、請求項4に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
  6.  前記カルバメート化合物が、下記一般式(III)で表される化合物である、請求項4又は5に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(III)中、R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。R32は1価の有機基であり、関係式:R32=R12を満たす。n31は1以上8以下の整数であり、n32は0以上7以下の整数であり、n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。)
  7.  前記炭酸エステルが下記一般式(IV)で表される化合物である、請求項4~6のいずれか一項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(IV)中、R41及びR42は、それぞれ独立に、1価の有機基であり、関係式:R41=R42=R12を満たす。)
  8.  前記ヒドロキシ化合物が下記一般式(V)で表される化合物である、請求項4~7のいずれか一項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(V)中、R51は、1価の有機基であり、関係式:R51=R12を満たす。)
  9.  請求項1~3にいずれか一項に記載のカルボニル化合物存在下で、下記一般式(II)で表されるイソシアネート化合物を含む反応液を蒸留精製し、連続的に気相成分として、前記イソシアネート化合物を回収することを含む、イソシアネート化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
  10.  イソシアネート組成物の総質量に対して、
     97質量%以上のイソシアネート化合物と、
     2.0質量ppm以上1.0×10質量ppm以下の下記一般式(I)で表されるカルボニル化合物と、
    を含有し、
     前記イソシアネート化合物と前記カルボニル化合物は異なる化合物である、イソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(I)中、R11は(n11+n12)価の有機基であり、R12は1価の有機基である。n11は1以上8以下の整数であり、n12は0以上7以下の整数であり、n11とn12の和は2以上8以下の整数である。)
  11.  前記R11が、1以上4以下のエステル基又は窒素原子を有してもよい、炭素数1以上20以下の2価以上4価以下の脂肪族炭化水素基、又は、炭素数6以上20以下の2価以上3価以下の芳香族炭化水素基であり、且つ、
     前記R12が、酸素原子を含んでもよい、炭素数6以上20以下の1価の芳香族炭化水素基である、請求項10に記載のイソシアネート組成物。
  12.  前記イソシアネート化合物が、下記一般式(II)で表される化合物である、請求項10又は11に記載のイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(II)中、R21はn21価の有機基であり、関係式:R21=R11を満たす。n21は、2以上8以下の整数であり、関係式:n21=n11+n12を満たす。)
  13.  前記イソシアネート組成物の総質量に対して、それぞれ2.0質量ppm以上1.0×10質量ppm以下の、カルバメート化合物及び炭酸エステルからなる群より選ばれる1種以上の化合物を更に含有する、請求項10~12のいずれか一項に記載のイソシアネート組成物。
  14.  前記カルバメート化合物が、下記一般式(III)で表される化合物である、請求項13に記載のイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(III)中、R31は(n31+n32)価の有機基であり、関係式:R31=R11を満たす。R32は1価の有機基であり、関係式:R32=R12を満たす。n31は1以上8以下の整数であり、n32は0以上7以下の整数であり、n31とn32の和は2以上8以下の整数であり、関係式:n31+n32=n11+n12を満たす。)
  15.  前記炭酸エステルが、下記一般式(IV)で表される化合物である、請求項13又は14に記載のイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000010
    (一般式(IV)中、R41及びR42は、それぞれ独立に、1価の有機基であり、関係式:R41=R42=R12を満たす。)
PCT/JP2022/041614 2021-11-08 2022-11-08 カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物 WO2023080258A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021182189 2021-11-08
JP2021182192 2021-11-08
JP2021-182192 2021-11-08
JP2021-182189 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023080258A1 true WO2023080258A1 (ja) 2023-05-11

Family

ID=86241628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041614 WO2023080258A1 (ja) 2021-11-08 2022-11-08 カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物

Country Status (1)

Country Link
WO (1) WO2023080258A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002834A (ja) * 2001-04-19 2003-01-08 Tanabe Seiyaku Co Ltd 医薬組成物
JP2008526761A (ja) * 2004-12-31 2008-07-24 アラントス ファーマシューティカルズ インコーポレイテッド 多環式ビス−アミドmmp阻害剤
WO2015030106A1 (ja) * 2013-09-02 2015-03-05 国立大学法人京都大学 Ggt阻害作用を有する化合物及びggtファミリー酵素阻害剤
CN112661930A (zh) * 2020-11-27 2021-04-16 万华化学集团股份有限公司 一种苯二亚甲基二异氰酸酯组合物及光学树脂
CN113024563A (zh) * 2019-12-24 2021-06-25 中国药科大学 嘧啶并五元杂环类化合物或其可药用的盐、异构体及其制备方法、药物组合物和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002834A (ja) * 2001-04-19 2003-01-08 Tanabe Seiyaku Co Ltd 医薬組成物
JP2008526761A (ja) * 2004-12-31 2008-07-24 アラントス ファーマシューティカルズ インコーポレイテッド 多環式ビス−アミドmmp阻害剤
WO2015030106A1 (ja) * 2013-09-02 2015-03-05 国立大学法人京都大学 Ggt阻害作用を有する化合物及びggtファミリー酵素阻害剤
CN113024563A (zh) * 2019-12-24 2021-06-25 中国药科大学 嘧啶并五元杂环类化合物或其可药用的盐、异构体及其制备方法、药物组合物和用途
CN112661930A (zh) * 2020-11-27 2021-04-16 万华化学集团股份有限公司 一种苯二亚甲基二异氰酸酯组合物及光学树脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENGLUND ETHAN A., GOPI HOSAHUDYA N., APPELLA DANIEL H.: "An Efficient Synthesis of a Probe for Protein Function: 2,3-Diaminopropionic Acid with Orthogonal Protecting Groups", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 2, 1 January 2004 (2004-01-01), US , pages 213 - 215, XP093062691, ISSN: 1523-7060, DOI: 10.1021/ol0361599 *

Similar Documents

Publication Publication Date Title
JP5591289B2 (ja) イソシアネートの製造方法
US9145358B2 (en) N-substituted carbamic acid ester production method, isocyanate production method using such N-substituted carbamic acid ester, and composition for transfer and storage of N-substituted carbamic acid ester comprising N-substituted carbamic acid ester and aromatic hydroxy compound
US8053595B2 (en) Process for producing isocyanates
JP6666459B2 (ja) イソシアネート組成物、イソシアネート組成物の製造方法、及びイソシアネート重合体の製造方法
TWI441805B (zh) A method for producing an isocyanate using a composition containing a amine formate and an aromatic hydroxy compound, and a method for producing and treating a mixture of a ketamine formate
EP3527600A1 (en) Isocyanate composition and production method for isocyanate polymer
WO2014069605A1 (ja) ポリイソシアネート組成物及びイソシアネート重合体組成物
WO2018070541A1 (ja) イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体
WO2023080258A1 (ja) カルボニル化合物、カルボニル化合物の製造方法、イソシアネート化合物の製造方法、及びイソシアネート組成物
US20230139979A1 (en) Organic amine collection method
CN108250406B (zh) 含软链段的多胺基甲酸酯、多元异氰酸酯、胺甲酸酯预聚物及聚胺甲酸酯弹性体及制备方法
WO2023080257A1 (ja) イソシアネート化合物の製造方法、カルバメート化合物の製造方法、アミン化合物の回収方法、イソシアネート組成物
US11174222B2 (en) Multistep process for the preparation of diisocyanates
US20180208550A1 (en) Method for producing a cyclic isocyanate
JP2023092840A (ja) イソシアネートの製造方法
JP2023091331A (ja) イソシアネートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890078

Country of ref document: EP

Kind code of ref document: A1