WO2018070541A1 - イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体 - Google Patents

イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体 Download PDF

Info

Publication number
WO2018070541A1
WO2018070541A1 PCT/JP2017/037277 JP2017037277W WO2018070541A1 WO 2018070541 A1 WO2018070541 A1 WO 2018070541A1 JP 2017037277 W JP2017037277 W JP 2017037277W WO 2018070541 A1 WO2018070541 A1 WO 2018070541A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
isocyanate
group
unsaturated bond
mass ppm
Prior art date
Application number
PCT/JP2017/037277
Other languages
English (en)
French (fr)
Inventor
信寿 三宅
篠畑 雅亮
敦史 大久保
弘一 中岡
裕士 小杉
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2018545090A priority Critical patent/JP6641497B2/ja
Priority to EP17860948.3A priority patent/EP3527603A4/en
Priority to US16/340,633 priority patent/US11174337B2/en
Priority to CN201780062882.6A priority patent/CN109843963B/zh
Publication of WO2018070541A1 publication Critical patent/WO2018070541A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/205Compounds containing groups, e.g. carbamates

Definitions

  • the present invention relates to an isocyanate composition, a method for producing an isocyanate polymer, and an isocyanate polymer.
  • Isocyanates having an ethylenically unsaturated bond are useful as various synthetic intermediates.
  • an unsaturated urethane compound produced by reacting methacryloyloxyethyl isocyanate, which is an unsaturated isocyanate compound, with polyalkylene glycol, which is a compound having a hydroxyl group.
  • This unsaturated urethane compound is a material for contact lenses ( For example, see Patent Document 1), a solid solvent material of a polymer solid electrolyte (see, for example, Patent Document 2), and a material for immobilizing biological materials (see, for example, Patent Documents 3 and 4). .
  • Patent Document 5 A method for producing a compound having an ethylenically unsaturated bond by a reaction between a corresponding amine and phosgene is disclosed (see Patent Document 5).
  • the compound having an ethylenically unsaturated bond produced by such a method may contain impurities such as by-products and catalyst residues. Therefore, after synthesizing a compound having an ethylenically unsaturated bond, An operation for increasing the purity by removing impurities is generally performed (see, for example, Patent Documents 6 and 7).
  • the compound having an ethylenically unsaturated bond contains an ethylenically unsaturated bond and an isocyanate group in the molecule as a reactive functional group.
  • the compound added in the above-mentioned conventionally known method is a polymerization inhibitor and is used for the purpose of suppressing the polymerization of ethylenically unsaturated bonds.
  • the isocyanate constituting a compound having an ethylenically unsaturated bond depends on its structure, but the isocyanate group is unstable due to the effect of an ethylenically unsaturated bond or, in some cases, an inherent ester bond (reactivity is low). High) in many cases. For this reason, the above-mentioned compounds known as stabilizers for isocyanate compositions have not been sufficiently effective in improving the stability of the isocyanate.
  • an object of the present invention is to provide an isocyanate composition excellent in storage stability containing an isocyanate having an ethylenically unsaturated bond.
  • an isocyanate compound having an ethylenically unsaturated bond 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less of a compound different from the isocyanate compound based on the total mass of the isocyanate compound and represented by the following formula (1), And / or A compound having UV absorption in the region of the isocyanate decamer or higher in the measurement spectrum by gel permeation chromatography of 1.0 mass ppm to 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound, And / or 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less of a compound having an isocyanurate group and / or a biuret group based on the total mass of the isocyanate compound, An isocyanate composition containing
  • the isocyanate composition is a hydrocarbon compound, ether compound, sulfide compound, halogenated hydrocarbon in the range of 1.0 mass ppm to 2.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound.
  • At least one inert compound selected from the group consisting of a compound, a silicon-containing hydrocarbon compound, a silicon-containing ether compound and a silicon-containing sulfide compound.
  • the isocyanate composition further contains a carbonic acid derivative in a range of 1.0 mass ppm or more and 2.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound.
  • [1] or [2] The isocyanate composition described in 1.
  • the isocyanate composition is 1.0 mass ppm or more and 1.0 ⁇ 10 2 mass ppm or less of sulfuric acid and / or sulfate ester and / or based on the total mass of the isocyanate compound.
  • the isocyanate composition according to any one of [1] to [3], further containing 1.0 mass ppm to 1.0 ⁇ 10 2 mass ppm of phosphoric acid and / or a phosphoric ester. object.
  • the isocyanate composition is a basic amino compound in a range of 1.0 mass ppm to 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound, and / or The isocyanate composition according to any one of [1] to [4], further containing a halogen ion and / or a hydrolyzable halogen compound.
  • a compound having at least one, or a hydrocarbon compound, an ether compound, a sulfide compound, a halogenated hydrocarbon in an amount of 1.0 to 2.0 ⁇ 10 4 ppm by mass based on the total mass of the isocyanate compound At least one inert compound selected from the group consisting of a compound, a silicon-containing hydrocarbon compound, a silicon-containing ether compound and a silicon-containing sulfide compound.
  • An isocyanate composition containing [7] contains the isocyanate compound and a compound that is different from the isocyanate compound and has at least one unsaturated bond other than the unsaturated bond that forms an aromatic ring,
  • the isocyanate composition according to [7], wherein the compound different from the isocyanate compound and having at least one unsaturated bond other than the unsaturated bond forming an aromatic ring is a carbonic acid derivative.
  • the carbonic acid derivative is at least one compound selected from the group consisting of carbonic acid esters, N-unsubstituted carbamic acid esters, and N-substituted carbamic acid esters. object.
  • the isocyanate composition according to [9] wherein the N-substituted carbamic acid ester is a compound represented by the following formula (2).
  • R 3 represents a residue obtained by removing an isocyanate group from the isocyanate compound
  • R 4 represents an organic group.
  • the isocyanate composition is a compound that is different from the isocyanate compound and the isocyanate compound, and has at least one unsaturated bond other than the unsaturated bond that forms an aromatic ring, and the inert compound.
  • the isocyanate composition contains the isocyanate compound and a compound that is different from the isocyanate compound and has at least one unsaturated bond other than the unsaturated bond that forms an aromatic ring
  • the isocyanate composition according to any one of [1] to [16] is mixed with a bifunctional or higher isocyanate, and the isocyanate compound contained in the isocyanate composition and the bifunctional or higher isocyanate are mixed.
  • a process for producing an isocyanate polymer comprising a step of reacting with The isocyanate polymer includes a unit represented by the following formula (11), A method for producing an isocyanate polymer, wherein a nitrogen atom constituting the isocyanate polymer is bonded to a carbon atom.
  • R 25 , R 26 , and R 27 are each independently a residue obtained by removing an isocyanate group from the isocyanate compound contained in the isocyanate composition, or the bifunctional or higher functional isocyanate. The residue except an isocyanate group is shown, and at least one group of R 25 , R 26 and R 27 is a residue obtained by removing an isocyanate group from the isocyanate compound contained in the isocyanate composition.
  • An isocyanate polymer comprising a unit represented by the following formula (11), wherein a nitrogen atom constituting the isocyanate polymer is bonded to a carbon atom.
  • R 25 , R 26 and R 27 are each independently a residue obtained by removing an isocyanate group from an isocyanate compound having an ethylenically unsaturated bond, or an isocyanate group from an isocyanate having two or more functions. The removed residues are shown, and at least one of R 25 , R 26 and R 27 represents a residue obtained by removing an isocyanate group from an isocyanate compound having an ethylenically unsaturated bond.
  • an isocyanate composition containing an isocyanate having an ethylenically unsaturated bond with improved storage stability.
  • the isocyanate compound having an ethylenically unsaturated bond is not particularly limited, but a compound represented by the following formula (3) is preferably used.
  • X represents an organic group
  • R 5 , R 6 , and R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 4 to 10 carbon atoms. .
  • X is preferably an alkylene group having 1 to 8 carbon atoms which may contain either or both of an ether bond and a phenylene group, more preferably a carbon which may contain an ether bond.
  • the alkylene group is preferably a linear or branched alkylene group.
  • Specific examples of the linear alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group.
  • branched alkylene group examples include —C (CH 3 ) 2 —, —CH (CH 3 ) —, —CH (CH 2 CH 3 ) —, —C (CH 3 ) (CH 2 CH 3 ) —, —C (CH 3 ) (CH 2 CH 2 CH 3 ) —, —C (CH 2 CH 3 ) 2 — and the like; —CH (CH 3 ) CH 2 —, —CH (CH 3 ) CH (CH 3 ) —, —C (CH 3 ) 2 CH 2 —, —CH (CH 2 CH 3 ) CH 2 —, —C (CH 2 CH 3 ) 2 —CH 2 — and the like can be mentioned.
  • the alkylene group is preferably a linear alkylene group, more preferably an alkylene group having 1 to 5 carbon atoms, and still more preferably an ethylene group.
  • the alkylene group having 1 to 8 carbon atoms which may contain an ether bond means that an oxygen atom may be inserted between the carbon-carbon bonds in the alkylene group having 1 to 8 carbon atoms, Specifically, it is represented by — (CH 2 ) a — (O) b — (CH 2 ) c — (O) d — (CH 2 ) e —.
  • a + c + e represents an integer of 2 to 8
  • a and c represent an integer of 1 or more
  • b and d represent 0 or 1
  • alkylene group having 1 to 8 carbon atoms which may include an ether bond examples include —CH 2 —O— (CH 2 ) 3 —, — (CH 2 ) 2 —O— (CH 2 ) 2 —, — (CH 2 ) 3 —OCH 2 —, —CH 2 —O— (CH 2 ) 2 —, — (CH 2 ) 2 —O—CH 2 —, —CH 2 —O—CH 2 — are preferred, CH 2 —O— (CH 2 ) 3 —, — (CH 2 ) 2 —O— (CH 2 ) 2 —, — (CH 2 ) 3 —O—CH 2 —, —CH 2 —O— (CH 2 2 ) can be mentioned. Among these, — (CH 2 ) 2 —O— (CH 2 ) 2 — is preferable.
  • alkylene group having 1 to 8 carbon atoms which may include both the ether bond and the phenylene group include — (CH 2 ) 2 —Ph—O—, —Ph—O— (CH 2 ) 2 -,-(CH 2 ) 2 -Ph-O- (CH 2 ) 2- .
  • Specific examples of the alkylene group having 1 to 8 carbon atoms which may contain the phenylene group include — (CH 2 ) 2 —Ph—, —Ph— (CH 2 ) 2 —, — (CH 2 ). 2- Ph- (CH 2 ) 2- can be mentioned.
  • Examples of X include a phenylene group (—Ph—) and a group consisting of an ether bond and a phenylene group (—Ph—O— or —O—Ph—).
  • R 5 , R 6 , and R 7 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an organic group.
  • Examples of the alkyl group having 1 to 10 carbon atoms include a linear alkyl group and a branched alkyl group. Specific examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • branched alkyl group examples include 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, and 1-ethylbutyl group. And 2-ethylbutyl group.
  • R 5 , R 6 , and R 7 may be an aromatic group having 4 to 10 carbon atoms.
  • Specific examples of the aromatic group include a phenyl group, a naphthyl group, a furan group, a pyrrole group, and an indole group.
  • isocyanate compound represented by the general formula (3) examples include acrylic acid-2-isocyanato-ethyl ester, 2-methyl-acrylic acid-2-isocyanato-ethyl ester, and acrylic acid-2-isocyanato-propyl.
  • esters 2-methyl-acrylic acid-2-isocyanato-propyl ester, acrylic acid-3-isocyanato-propyl ester, 2-methyl-acrylic acid-3-isocyanato-propyl ester, acrylic acid-4-isocyanato-butyl ester, 2-methyl-acrylic acid-4-isocyanato-butyl ester, acrylic acid-5-isocyanato-pentyl ester, 2-methyl-acrylic acid-5-isocyanato-pentyl ester, acrylic acid-6-isocyanato-hexyl ester, 2- Methyl-acrylic -6-isocyanato-hexyl ester, acrylic acid-8-isocyanato-octyl ester, 2-methyl-acrylic acid-8-isocyanato-octyl ester, acrylic acid-10-isocyanato-decyl ester, 2-methyl-acrylic acid-10 -Isocyanato-decyl ester, acrylic
  • acrylic acid-2-isocyanato-ethyl ester, 2-methyl-acrylic acid-2 are suitable for applications requiring weather resistance and heat yellowing resistance and are easily available industrially.
  • -Isocyanato-ethyl ester, acrylic acid-2-isocyanato-propyl ester, 2-methyl-acrylic acid-2-isocyanato-propyl ester, acrylic acid-3-isocyanato-propyl ester, 2-methyl-acrylic acid-3-isocyanato -Propyl ester is preferred.
  • the said isocyanate compound may be used individually or may be used together.
  • the isocyanate compound having an ethylenically unsaturated bond may be an isocyanate compound produced by any method, and can be produced using a known method.
  • R 1 represents an a-valent organic group
  • R 2 represents a monovalent organic group
  • a represents an integer of 1 or 2.
  • R 1 is preferably an aliphatic group having 2 to 10 carbon atoms or an aromatic group having 6 to 10 carbon atoms.
  • examples of the aliphatic group include a residue obtained by removing a hydrogen atom from a compound such as methane, ethane, propane, butane, heptane, hexane, heptane, octane, nonane, and decane.
  • aromatic groups include a hydrogen atom from a compound such as benzene, methylbenzene, ethylbenzene, butylbenzene, octylbenzene, nonylbenzene, diphenyl, terphenyl, phenylpropylbenzene, di (phenylpropyl) benzene, diphenyl ether, and the like. Residues other than are included.
  • R 2 is preferably an aliphatic group having 2 to 10 carbon atoms or an aromatic group having 6 to 25 carbon atoms.
  • examples of the aliphatic group include a residue obtained by removing a hydrogen atom from a compound such as methane, ethane, propane, butane, heptane, hexane, heptane, octane, nonane, and decane.
  • aromatic groups include a hydrogen atom from a compound such as benzene, methylbenzene, ethylbenzene, butylbenzene, octylbenzene, nonylbenzene, diphenyl, terphenyl, phenylpropylbenzene, di (phenylpropyl) benzene, diphenyl ether, and the like. Residues other than are included.
  • the compound represented by the above formula (1) specifically includes ethyl acetate, butyl acetate, hexyl acetate, methyl propionate, ethyl butyrate, butyl butyrate, Ethyl herbate, butyl valerate, ethyl hexanoate, ethyl octanoate, butyl caprate, phenyl acetate, benzyl acetate, methyl benzoate, ethyl benzoate, phenyl benzoate, benzyl benzoate, diethyl phthalate, dibutyl phthalate, phthalate Examples include benzyl butyl acid.
  • the compound represented by the above formula (1) may be a reaction product of a compound having an ethylenically unsaturated bond and a hydroxy compound described later.
  • a compound having an ethylenically unsaturated bond is a compound represented by the above formula (3)
  • a hydroxy compound is a compound represented by the following formula (16), wherein the above formula (
  • the compound represented by the above formula (1) may be a compound represented by the following formula (14).
  • R 2 represents a group defined by the above formula (1).
  • R 2 represents a group defined by the above formula (1)
  • R 5 , R 6 , and R 7 represent a group defined by the above formula (3).
  • R 29 represents a residue obtained by removing one isocyanate group from an isocyanate compound, and w represents an integer of 1 or more. Moreover, the terminal group is not described.
  • R 29 in the above formula (15) represents a residue obtained by removing one isocyanate group from an isocyanate compound, but may be a residue obtained by removing an isocyanate group from an isocyanate compound having an ethylenically unsaturated bond.
  • R 29 in the above formula (15) is a compound represented by the following formula (8).
  • the residue of R 29 in the above formula (15) obtained by removing one isocyanate group from the isocyanate compound is a residue obtained by removing the isocyanate group from an isocyanate compound other than the isocyanate compound having the ethylenically unsaturated bond. May be.
  • the isocyanate compound for example, in the case of a bifunctional diisocyanate compound, an aliphatic diisocyanate having 4 to 30 carbon atoms, an alicyclic diisocyanate having 8 to 30 carbon atoms, and an aromatic group having 8 to 30 carbon atoms are used.
  • the diisocyanate contained is preferably used.
  • the structural isomer when a structural isomer exists in the above-described compound, the structural isomer is also included in the above example.
  • a trifunctional diisocyanate compound 1,8-diisocyanate-4-isocyanatomethyloctane, 1,3,6-triisocyanatehexane, 1,8-diisocyanato-4- (isocyanatomethyl) -2, 4,7-trimethyloctane, 1,5-diisocyanato-3- (isocyanatomethyl) pentane, 1,6,11-triisocyanatoundecane, 1,4,7-triisocyanatoheptane, 1,2,2- Triisocyanatobutane, 1,2,6-triisocyanatohexane, 1-isocyanato-2,2-bis (isocyanatomethyl) butane, 1,3,5-triisocyanatocyclohexane, 1,7-diisocyanato-4 -(
  • the compound is defined by GPC measurement. Specifically, for example, in GPC using tetrahydrofuran as a developing solvent, when polystyrene is used as a molecular weight standard substance, it is a peak having UV absorption at a wavelength of 254 nm in an isocyanate decameric region or more.
  • the compound containing an isocyanurate group and / or a biuret group is a compound containing a group represented by the following formula (6 ′) or formula (7 ′).
  • R 29 represents a residue obtained by removing one isocyanate group from a bifunctional or higher functional isocyanate compound.
  • the isocyanate constituting the compound having an isocyanurate group and / or biuret group may be an isocyanate represented by the formula (6 ′) or the formula (7 ′), or may be other isocyanates, Preferred is an isocyanate other than the isocyanate represented by the formula (6 ′) or the formula (7 ′).
  • an isocyanate other than the isocyanate represented by the formula (6 ′) or the formula (7 ′) the above ⁇ compound having UV absorption in the region of the isocyanate decamer or higher in the measurement spectrum by gel permeation chromatography>
  • the isocyanate mentioned in the item can be preferably used.
  • the amount of the compound containing an isocyanurate group or biuret group in the isocyanate composition may be an amount obtained by adding a compound containing an isocyanurate group and / or biuret group, or determined by GPC using a developing solvent as tetrahydrofuran.
  • the isocyanate composition of the present invention is a compound other than the isocyanate having the ethylenically unsaturated bond, together with the isocyanate having the ethylenically unsaturated bond, and at least an unsaturated bond other than the unsaturated bond constituting the aromatic ring.
  • the compound which has unsaturated bonds other than the unsaturated bond which comprises the aromatic ring is the compound represented by Formula (1) defined above, or in the measurement spectrum by gel permeation chromatography, isocyanate 10 It is not a compound having UV absorption in the region of the monomer or higher, or a compound having an isocyanurate group and / or a biuret group.
  • the compound having an unsaturated bond other than the unsaturated bond constituting the aromatic ring according to the present invention (hereinafter also referred to as “unsaturated bond compound”) has at least one unsaturated bond other than the unsaturated bond constituting the aromatic ring.
  • the unsaturated bond is preferably a carbon-oxygen unsaturated bond.
  • An example of such a compound is a carbonic acid derivative.
  • the carbonic acid derivative refers to a compound represented by the following formula (4).
  • Z 1 and Z 2 each independently represent a residue obtained by removing a hydrogen atom from a hydroxy compound, or an amino group optionally substituted with an organic group.
  • Examples of the compound represented by the above formula (4) include urea compounds, N-unsubstituted carbamic acid esters, carbonate esters, and N-substituted carbamic acid esters.
  • a urea compound is a compound having at least one urea bond in the molecule.
  • the urea compound used in the isocyanate composition of the present invention is preferably a compound having one urea bond and is represented by the following formula (5).
  • R 9 , R 10 , R 11 and R 12 are each independently an aliphatic group having 1 to 20 carbon atoms or an aliphatic group having 7 to 20 carbon atoms substituted with an aromatic compound.
  • R 9 , R 10 , R 11 and R 12 are each a hydrogen atom; methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, Chain alkyl groups such as dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group; phenyl group, methylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, pentyl Phenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, de
  • Examples of the urea compound represented by the formula (5) include urea, methyl urea, ethyl urea, propyl urea, butyl urea, pentyl urea, hexyl urea, heptyl urea, octyl urea, nonyl urea, decyl urea, undecyl urea, dodecyl urea.
  • Tridecyl urea Tridecyl urea, tetradecyl urea, pentadecyl urea, hexadecyl urea, heptadecyl urea, octadecyl urea, nonadecyl urea, phenyl urea, N- (methylphenyl) urea, N- (ethylphenyl) urea, N- (propylphenyl) urea, N -(Butylphenyl) urea, N- (pentylphenyl) urea, N- (hexylphenyl) urea, N- (heptylphenyl) urea, N- (octylphenyl) urea, N- (nonylphenyl) urea, N- ( Decylphenyl) urea, N-biphenylurea, N- (d
  • N-unsubstituted carbamic acid ester a compound represented by the following formula (6) is preferably used as the N-unsubstituted carbamic acid ester.
  • R 13 represents an aliphatic group having 1 to 20 carbon atoms, an aliphatic group substituted with an aromatic group having 7 to 20 carbon atoms, or an aromatic group having 6 to 20 carbon atoms. .
  • Examples of the aliphatic group represented by R 13 are groups that do not contain active hydrogen and are composed of a chain hydrocarbon group, a cyclic hydrocarbon group, and a chain hydrocarbon group and a cyclic hydrocarbon group. Is mentioned.
  • the aliphatic group for R 13 may contain an atom other than carbon and hydrogen, and the atom is preferably a specific nonmetallic atom (for example, oxygen, nitrogen, sulfur, silicon, or halogen atom).
  • the aliphatic group for R 13 is preferably an aliphatic group containing an oxygen atom as an atom other than carbon and hydrogen, or an aliphatic group containing no atom other than carbon and hydrogen.
  • aliphatic group substituted with an aromatic group of R 13 a linear or branched alkyl group having 1 to 14 carbon atoms is substituted with an aromatic group having 6 to 19 carbon atoms.
  • the aliphatic group substituted with the aromatic group may contain atoms other than carbon and hydrogen.
  • a chain-like or branched-chain alkyl group is a group that does not contain active hydrogen, and may contain atoms other than carbon and hydrogen, and these atoms are specific non-metallic atoms (oxygen, nitrogen, sulfur, silicon or A halogen atom).
  • aromatic groups include groups that do not contain active hydrogen, and include monocyclic aromatic groups, condensed polycyclic aromatic groups, bridged cyclic aromatic groups, ring assembly aromatic groups, and heterocyclic rings. And a formula aromatic group.
  • the aromatic group may contain an atom other than carbon and hydrogen, and the atom is preferably a specific nonmetallic atom (oxygen, nitrogen, sulfur, silicon, or halogen atom).
  • the aromatic group is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted anthryl group.
  • the aliphatic group and the aromatic group are preferably a group containing an oxygen atom as an atom other than carbon and oxygen, or a hydrocarbon group not containing an atom other than carbon and hydrogen.
  • Examples of the aromatic group represented by R 13 include a group containing no active hydrogen, and include a monocyclic aromatic group, a condensed polycyclic aromatic group, a bridged cyclic aromatic group, a ring assembly aromatic group, a hetero group And cyclic aromatic groups.
  • the aromatic group contains atoms other than carbon and hydrogen, the atoms are composed of specific nonmetallic atoms (oxygen, nitrogen, sulfur, silicon, or halogen atoms).
  • the aromatic group is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted anthryl group.
  • substituents examples include a hydrogen atom, an aliphatic group (a chain hydrocarbon group, a cyclic hydrocarbon group, and a group composed of a chain hydrocarbon group and a cyclic hydrocarbon group), an aliphatic group, A group composed of an aromatic group can be exemplified.
  • the aromatic group is preferably a group containing an oxygen atom as an atom other than carbon and oxygen, or a hydrocarbon group not containing an atom other than carbon and hydrogen.
  • R 13 examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, A linear alkyl group having 1 to 50 carbon atoms such as a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group; a phenyl group, a methylphenyl group, an ethylphenyl group, a propylphenyl group, a butylphenyl group, Pentylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylpheny
  • N-unsubstituted carbamic acid ester represented by the above formula (6) include methyl carbamate, ethyl carbamate, propyl carbamate, butyl carbamate, pentyl carbamate, hexyl carbamate, heptyl carbamate, Octyl carbamate, nonyl carbamate, decyl carbamate, undecyl carbamate, dodecyl carbamate, tridecyl carbamate, tetradecyl carbamate, pentadecyl carbamate, hexadecyl carbamate, heptadecyl carbamate, octadecyl carbamate, nonadecyl carbamate, carbamate Phenyl, carbamic acid (methylphenyl), carbamic acid (ethylphenyl), carbamic acid (propylphenyl), carbamic acid (butylphenyl), carbami
  • the carbonate ester refers to a compound in which one or two hydrogen atoms of carbonic acid (CO (OH) 2 ) are substituted with an aliphatic group or an aromatic group.
  • a compound represented by the following formula (7) is preferably used.
  • R 14 and R 15 each independently represents an aliphatic group having 1 to 20 carbon atoms, an aliphatic group having 7 to 20 carbon atoms substituted with an aromatic group, or 6 to 6 carbon atoms. 20 aromatic groups are shown. ]
  • R 14 and R 15 include the same groups as R 13 in the above formula (6).
  • Specific examples of the carbonate ester include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, dipentyl carbonate, dihexyl carbonate, diheptyl carbonate, dioctyl carbonate, dinonyl carbonate, didecyl carbonate, diundecyl carbonate, didodecyl carbonate, ditridecyl carbonate, ditetradecyl carbonate, Dipentadecyl carbonate, dihexadecyl carbonate, diheptadecyl carbonate, dioctadecyl carbonate, dinonadecyl carbonate, diphenyl carbonate, di (methylphenyl) carbonate, di (ethylphenyl) carbonate, di (propylphenyl) carbonate, di (butylphenyl) carbonate, di (butylpheny
  • N-substituted carbamic acid ester examples include compounds represented by the following formula (1).
  • R 3 represents a residue obtained by removing an isocyanate group from the isocyanate compound having an ethylenically unsaturated bond
  • R 4 represents an organic group.
  • R 3 is a residue obtained by removing an isocyanate group (—NCO) from an isocyanate compound having an ethylenically unsaturated bond, and is an organic group having an ethylenically unsaturated bond.
  • the compound represented by the formula (2) can be produced by a reaction between an isocyanate compound having an ethylenically unsaturated bond and a hydroxy compound.
  • an isocyanate compound having an ethylenically unsaturated bond and a hydroxy compound having a stoichiometric ratio of 1 or less with respect to the isocyanate group of the isocyanate compound having an ethylenically unsaturated bond correspond to the formula (2).
  • the compound can be produced and used for the preparation of the composition of the present invention without purification.
  • the isocyanate compound having an ethylenically unsaturated bond in the present invention is the above.
  • R 3 in the above formula (2) is a group represented by the following formula (8).
  • R 4 is derived from a hydroxy compound and can be represented as a residue excluding the hydroxy group (—OH) constituting the hydroxy compound.
  • hydroxy compounds obtained by adding a hydroxy group to R 4 as (R 4 OH) to define R 4.
  • the hydroxy compound R 4 OH as defined herein also represents an R 2 in the formula ((R 4, the formula in 2) (16).
  • the hydroxy compound (R 4 OH) may be an alcohol or an aromatic hydroxy compound.
  • the hydroxy compound (R 4 OH) is an alcohol, it is a compound represented by the following formula (9).
  • R 16 is an aliphatic group having 1 to 20 carbon atoms, or an aliphatic group having 7 to 20 carbon atoms bonded to an aromatic group, which is substituted with s hydroxy groups.
  • S represents an integer of 1 to 3.
  • R 16 is a group having no active hydrogen other than the hydroxy group.
  • Examples of the aliphatic group for R 16 include a chain hydrocarbon group, a cyclic hydrocarbon group, and a group in which a chain hydrocarbon group and a cyclic hydrocarbon group are bonded (for example, substituted with a chain hydrocarbon group).
  • the aliphatic group for R 16 may contain an atom other than a carbon atom and a hydrogen atom, and the atom is preferably a specific nonmetallic atom (oxygen, nitrogen, sulfur, silicon, or halogen atom).
  • the aliphatic group for R 16 is preferably an aliphatic group containing oxygen as an atom other than carbon and hydrogen, or an aliphatic group not containing an atom other than carbon and hydrogen.
  • examples of the aliphatic group to which an aromatic group is bonded include an alkyl group and a cycloalkyl group to which an aromatic group having 6 to 12 carbon atoms is bonded.
  • examples of the aromatic group bonded to the aliphatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, a bridged cyclic aromatic group, a ring assembly aromatic group, and a heterocyclic aromatic group.
  • Preferred are a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, and a substituted or unsubstituted anthryl group.
  • the aromatic group may have an atom other than a carbon atom and a hydrogen atom, and the atom is preferably a specific nonmetallic atom (oxygen, nitrogen, sulfur, silicon, or halogen atom).
  • R 16 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, and structural isomers thereof.
  • a cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and structural isomers thereof; methylcyclopentyl group, ethylcyclopentyl group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group , Butylcyclohexyl group, pentylcyclohexyl group, hexylcyclohexyl group, dimethylcyclohexyl group, diethylcyclohexyl group, dibutylcyclohexyl group and their structural isomers, etc.
  • phenylmethyl group phenylethyl group, phenylpropyl group, phenylbutyl group, phenylpentyl group, phenylhexyl group, phenylheptyl group, phenyloctyl group, phenylnonyl group and aralkyl groups such as structural isomers thereof be able to.
  • a carbon atom other than the aromatic ring constituting the hydroxy compound Alcohol having one or two hydroxy groups directly bonded to is generally preferable because of low viscosity, and monoalcohol having one alcoholic hydroxy group is more preferable.
  • Specific examples of the alcohol include compounds exemplified as alcohols in [0069] of International Publication No. 2014/0669605 Pamphlet.
  • alkyl alcohols having 1 to 20 carbon atoms are preferably used from the viewpoints of availability, solubility of raw materials and products, and the like.
  • the hydroxy compound (R 4 OH) is an aromatic hydroxy compound, it can be used industrially, and is generally monovalent to trivalent (ie, a hydroxy group bonded to an aromatic ring has a low viscosity). 1 to 3 integer) aromatic hydroxy compounds are preferred.
  • an aromatic hydroxy compound the compound represented by following formula (10) is mentioned, for example.
  • ring A represents an aromatic hydrocarbon ring which may have a substituent, and ring A may be monocyclic or polycyclic.
  • t represents an integer of 1 to 3.
  • t is preferably 1.
  • substituents that ring A can have include a halogen atom, an aliphatic group, and an aromatic group.
  • the substituent may be a cyclic hydrocarbon group (monocyclic hydrocarbon group, condensed polycyclic hydrocarbon group, bridged cyclic hydrocarbon group, spiro hydrocarbon group, ring assembly hydrocarbon group, side chain A cyclic hydrocarbon group), a heterocyclic group, a heterocyclic spiro group, a heterocyclic group such as a hetero-bridged cyclic group, an acyclic hydrocarbon group, and an acyclic hydrocarbon group and a cyclic group.
  • a group in which more than one species are bonded can be exemplified.
  • substituents that can be preferably used in the present invention are acyclic hydrocarbon groups and cyclic hydrocarbon groups (monocyclic hydrocarbon groups, considering the difficulty of side reactions).
  • a group in which at least two kinds of groups are bonded to each other (a group substituted with each other).
  • Preferred substituents for substituting ring A include a group consisting of an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an ether group (for example, a substituted or unsubstituted alkyl ether group, aryl ether group, aralkyl ether group).
  • a group selected from two or more groups selected from the above group; a group selected from two or more groups described above is a group linked by a saturated hydrocarbon bond or an ether bond, or a halogen atom. Examples thereof include a group in which the sum of the number of carbon atoms constituting ring A and the number of carbon atoms constituting all substituents replacing ring A is an integer of 6 to 50.
  • Ring A includes a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, naphthacene ring, chrysene ring, pyrene ring, triphenylene ring, pentalene ring, azulene ring, heptalene ring, indacene ring, biphenylene ring, acenaphthylene ring, and aceanthrylene.
  • Ring A preferably includes at least one structure selected from a benzene ring and a naphthalene ring.
  • aromatic hydroxy compound having a benzene ring as a skeleton which is easily available, is preferable from the viewpoint of industrial use.
  • aromatic hydroxy compounds include aromatic hydroxy compounds represented by the following formula (17).
  • R 17 , R 18 , R 19 , R 20 and R 21 are each independently a chain alkyl group, a cycloalkyl group, an aryl group, a chain alkyl group to which an aromatic group is bonded, or an aromatic group.
  • preferred R 17 to R 21 are groups independently selected from the groups shown in the following (i) to (v).
  • an aromatic group having 1 to 44 carbon atoms wherein each carbon atom constituting the aromatic ring is independently a hydrogen atom, a chain alkyl group having 1 to 38 carbon atoms, or 4 to 38 carbon atoms.
  • An alkyl group having 7 to 38 atoms bonded to an aromatic group, a cycloalkyl group having 7 to 38 carbon atoms bonded to an aromatic group, and an alkyl having 7 to 38 carbon atoms bonded to an aromatic group A group to which one or more groups selected from oxy groups are bonded,
  • a polyoxyalkylene alkyl ether group having 2 to 44 carbon atoms and having no hydroxy group at the terminal, an aromatic group having 6 to 44 carbon atoms, and an alkyl having 7 to 44 carbon atoms bonded to an aromatic group A group to which one or more groups selected from a group and an aralkyloxy group having 7 to 44 carbon atoms are bonded.
  • the “aralkyloxy group” represents a group in which an oxygen atom is bonded to the aralkyl group defined above.
  • R 17 to R 21 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group and their structures.
  • Chain alkyl groups such as isomers; cycloalkyl groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group; methylcyclopentyl group, ethylcyclopentyl group, methylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, butyl A group composed of a chain alkyl group and a cycloalkyl group, such as a cyclohexyl group, a pentylcyclohexyl group, a hexylcyclohexyl group, a dimethylcyclohexyl group, a diethylcyclohexyl group, a dibutylcyclohexyl group, and structural isomers thereof; a methoxy group Chain alkyloxy such as ethoxy group, propoxy group, butyloxy group,
  • the isocyanate composition of the present invention is at least one compound selected from the group consisting of hydrocarbon compounds, ether compounds, sulfide compounds, halogenated hydrocarbon compounds, silicon-containing hydrocarbon compounds, silicon-containing ether compounds, and silicon-containing sulfide compounds.
  • active compound means a compound that does not react with an isocyanate compound during storage of the isocyanate composition and under a polyurethane formation reaction.
  • Inactive compounds are classified into the following compounds A to G.
  • the hydrocarbon compounds are compounds A and B
  • the ether compounds and sulfide compounds are the following compounds C to E
  • the halogenated hydrocarbon compounds are the following compounds F
  • silicon-containing hydrocarbon compounds silicon-containing ether compounds and silicon-containing sulfide compounds.
  • the compounds A to G listed here do not contain an unsaturated bond other than the aromatic ring, and the above-mentioned “compound represented by the formula (1)” “isocyanate decamer in the spectrum measured by gel permeation chromatography”.
  • the compound having UV absorption in the above-mentioned region, “compound having isocyanurate group and / or biuret group”, and “unsaturated bond compound” are not included.
  • Compound A is an aliphatic hydrocarbon compound having a linear, branched or cyclic structure.
  • Compound A is preferably a hydrocarbon compound having 5 to 20 carbon atoms.
  • Specific examples of compound A include pentane, hexane, heptane, octane, nonane, decane, dodecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclopentane, ethylcyclopentane.
  • Compound B is an aromatic hydrocarbon compound that may be substituted with an aliphatic hydrocarbon group.
  • Compound B is preferably a hydrocarbon compound having 5 to 20 carbon atoms.
  • Specific examples of compound B include benzene, toluene, ethylbenzene, butylbenzene, pentylbenzene, hexylbenzene, octylbenzene, biphenyl, terphenyl, diphenylethane, (methylphenyl) phenylethane, dimethylbiphenyl, benzyltoluene, naphthalene, methyl.
  • Naphthalene, ethyl naphthalene, butyl naphthalene, structural isomers thereof and the like can be mentioned.
  • Compound C is a compound having an ether bond or sulfide bond and an aliphatic hydrocarbon group, and is a compound in which the same or different aliphatic hydrocarbon compounds are bonded through an ether bond or a sulfide bond.
  • Compound C is preferably a compound having 2 to 20 carbon atoms.
  • compound C examples include ethyl ether, butyl ether, octyl ether, nonyl ether, decyl ether, methyl ethyl ether, methyl butyl ether, methyl octyl ether, methyl nonyl ether, methyl decyl ether, ethyl butyl ether, ethyl octyl ether, ethyl nonyl.
  • Ether ethyl decyl ether, butyl octyl ether, butyl nonyl ether, butyl decyl ether, octyl nonyl ether, octyl decyl ether, dicyclopentyl ether, dicyclohexyl ether, dicyclooctyl ether, cyclohexyl ethyl ether, cyclohexyl butyl ether, cyclohexyl octyl ether, cyclohexyl Nonyl ether, cyclohexyl decyl ether, tetraethyl Ethers in which hydrocarbon compounds such as N-glycol dimethyl ether and structural isomers thereof are bonded through an ether bond; ethyl sulfide, butyl sulfide, octyl sulfide, nonyl sulfide,
  • the compound D is a compound having an ether bond or sulfide bond and an aromatic hydrocarbon group, and is a compound in which the same or different aromatic hydrocarbon compounds are bonded through an ether bond or a sulfide bond.
  • Compound D is preferably a compound having 2 to 20 carbon atoms.
  • compound D include diphenyl ether, (methylphenyl) -phenyl ether, (ethylphenyl) -phenylether, (butylphenyl) -phenylether, (hexylphenyl) -phenylether, (methylphenyl) ether, (ethyl Phenyl) ether, (butylphenyl) ether, (hexylphenyl) ether, dibenzylether, di (methylbenzyl) ether, di (ethylbenzyl) ether, di (butylbenzyl) ether, di (pentylbenzyl) ether, di ( Hexylbenzyl) ether, di (octylbenzyl) ether, diphenylether and aromatic hydrocarbon compounds such as structural isomers thereof bonded via an ether bond; diphenyl sulfide, (methylphenol ) -Phenyl sulfide, (ethyl
  • Compound E is a compound having an ether bond or sulfide bond, an aliphatic hydrocarbon group, and an aromatic hydrocarbon group.
  • Compound E is preferably a compound having 7 to 20 carbon atoms.
  • Specific examples of compound E include phenyl-methyl-ether, phenyl-ethyl-ether, phenyl-butyl-ether, phenyl-octyl-ether, phenyl-nonyl-ether, phenyl-decyl-ether, benzyl-ethyl-ether, Benzyl-butyl-ether, benzyl-octyl-ether, benzyl-nonyl-ether, benzyl-decyl-ether, (methylphenyl) ethyl ether, (methylphenyl) butyl ether, (methylphenyl) octyl ether, (methylphenyl) nonyl ether , (Methylpheny
  • Compound F is a halide in which at least one hydrogen atom constituting the aliphatic hydrocarbon compound or at least one hydrogen atom constituting the aromatic hydrocarbon compound is substituted with a halogen atom.
  • Compound F is preferably a compound having 2 to 20 carbon atoms.
  • compound F examples include chloroethane, chloropropane, chlorobutane, chloropentane, chlorohexane, chloroheptane, chlorooctane, chlorononane, chlorodecane, chlorododecane, chlorotetradecane, chloropentadecane, chlorohexadecane, chlorooctadecane, chlorononadecane, and chlorocyclopentane.
  • Compound G is a compound in which some or all of the carbon atoms of Compounds A to E are substituted with silicon atoms.
  • Specific examples of the compound G include tetraethylsilane, tetrabutylsilane, tetrahexylsilane, tetracyclohexylsilane, tetraphenylsilane, dimethyldibutylsilane, dimethyldicyclohexylsilane, dimethyldiphenylsilane, hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane.
  • a compound having an ether bond or a sulfide bond such as Compound C, Compound D, and Compound E may generate an oxide or a peroxide depending on conditions.
  • compounds A, B, C, D, E, and G are preferable, and compounds A, B, and G are more preferable.
  • An amino compound is a derivative of ammonia, a compound in which one hydrogen is substituted with an alkyl group or an aryl group (primary), a compound in which two hydrogens are substituted (secondary), and a compound in which all three are substituted ( Third level).
  • the basic amino compounds that can be preferably used in the present invention are secondary and tertiary amino compounds, and aliphatic amines, aromatic amines, heterocyclic amines, and basic amino acids can be preferably used.
  • Examples thereof include diethylamine, triethylamine, N, N′-diisopropylethylamine, tetramethylethylenediamine, aniline, ethylphenylamine, diethylphenylamine, 1,8-bis (dimethylamino) naphthalene, pyrrolidine, piperidine, piperazine, Morpholine, 1,4-diazabicyclo [2,2,2] octane (DABCO), imidazole, pyridine, 4-dimethylaminopyridine, diazabicycloundecene (DBU), 7-methyl-1,5,7-triaza And bicyclo [4,4,0] decene (MTBD).
  • DBU diazabicycloundecene
  • MTBD 7-methyl-1,5,7-triaza And bicyclo [4,4,0] decene
  • Halogen ion and / or hydrolyzable halogen compound (sometimes referred to as Compound I)>
  • halogen ions include chlorine ions, bromine ions, and iodine ions.
  • Hydrolyzable halogen compounds include carbamoyl chloride compounds in which hydrochloric acid is added to an isocyanate group of an isocyanate compound, and carbamoyl bromides in which hydrogen bromide is added to an isocyanate group.
  • Compound I is different from Compound F described above.
  • the sulfate ester in the present embodiment refers to a compound constituted by an ester bond of alcohol and sulfuric acid. Specific examples include benzenesulfonic acid, vinylsulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, monomethylsulfuric acid, monoethylsulfuric acid. And mono n-propyl sulfate. Further, sulfuric acid may be used.
  • the phosphoric acid ester in the present embodiment refers to an ester obtained by dehydration condensation of phosphoric acid and alcohol, and may be a phosphoric acid monoester, a phosphoric acid diester, or a phosphoric acid triester.
  • the content of the isocyanate compound having an ethylenically unsaturated bond is preferably 97% by mass or more, and more preferably 98% by mass or more. In addition, 99.5 mass% or less may be sufficient as content of the isocyanate compound which has an ethylenically unsaturated bond, and 99 mass% or less may be sufficient as it.
  • the first aspect of the isocyanate composition of the present invention is an isocyanate compound having an ethylenically unsaturated bond and 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less based on the total mass of the isocyanate compound.
  • a compound different from the isocyanate compound and represented by the formula (1) (hereinafter sometimes referred to as compound X), and / or 1.0 mass ppm or more based on the total mass of the isocyanate compound
  • compound X a compound having UV absorption in a region of an isocyanate mass decameric or higher
  • Compound Y a compound having UV absorption in a region of an isocyanate mass decameric or higher
  • Compound Y a compound having UV absorption in a region of an isocyanate mass decameric or higher
  • / or 1.0 mass ppm to 1.0 ⁇ 10 the total mass of reference of the isocyanate compound 4 mass p
  • compound Z compounds containing isocyanurate groups or biuret groups and
  • the above-mentioned compound X, compound Y, and compound Z may be used individually by 1 type, and may be used in combination of multiple types.
  • a compound containing an unsaturated bond as represented by the above formula (1) tends to oxidize an unsaturated bond, and an unsaturated bond compound as a contaminant tends to cause coloring.
  • the unsaturated bond compound in the isocyanate composition of the first aspect works effectively during storage of the isocyanate composition, and has the effect of improving the stability of the isocyanate compound without coloring the isocyanate composition.
  • the unsaturated bond between carbon and oxygen contained in the ester group of the compound has reactivity with water and oxygen, and the ethylenic attributed to water and oxygen It is estimated that the modification reaction of the isocyanate compound having an unsaturated bond can be suppressed. In addition, in the case of a compound having an unsaturated bond between carbon and oxygen, the tendency to exert the effect is often increased.
  • the content of the compound represented by the formula (1) In order to suppress the modification reaction of the isocyanate compound, it is preferable to increase the content of the compound represented by the formula (1). On the other hand, if the content of the compound is too large, the unsaturated as described above. Coloring due to bonding may occur and the appearance during use may be impaired.
  • the content of the unsaturated bond compound in the first aspect is 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less based on the isocyanate compound, and the lower limit of the content range is 3 It is preferably 0.0 mass ppm or more, more preferably 5.0 mass ppm or more, still more preferably 10 mass ppm or more, and the upper limit of the content range is 5.0 ⁇ 10 3 mass It is preferably not more than ppm, more preferably not more than 3.0 ⁇ 10 3 mass ppm, and still more preferably not more than 1.0 ⁇ 10 3 mass ppm.
  • Compound Y also has the same effect as the compound represented by formula (1). Although the mechanism by which the compound has an effect is not clear, the present inventors may be because the compound has a 1-nylon skeleton highly reactive with water, oxygen, etc. as described above. I guess. Compound Z also has the same effect as Compound X and Compound Y.
  • the isocyanate composition according to the first aspect preferred in the present invention is a hydrocarbon compound or ether having 1.0 mass ppm or more and 2.0 ⁇ 10 4 mass ppm or less based on the isocyanate compound, in addition to the above-described compound.
  • Unsaturation comprising at least one inert compound selected from the group consisting of compounds, sulfide compounds, halogenated hydrocarbon compounds, silicon-containing hydrocarbon compounds, silicon-containing ether compounds, and silicon-containing sulfide compounds, and constituting an aromatic ring
  • it further contains an inert compound having no carbon-carbon unsaturated bond and no carbon-oxygen double bond. These compounds may be contained individually by 1 type, or multiple types may be contained.
  • these inactive compounds do not have a reaction point with water, oxygen, etc., and are unlikely to have the same action as the above-mentioned compounds. Furthermore, it has been found that the isocyanate composition of the first embodiment in which these compounds are further added also has an effect of improving the stability of the isocyanate.
  • the isocyanate composition is stored in a closed storage container such as a glass container, a funnel or a drum can.
  • a very small amount of water, oxygen, or the like is mixed when leaking from the outside or filling the storage container with the isocyanate composition. It is estimated that no increase in viscosity or generation of gel components occurs.
  • the isocyanate composition of the first aspect a part of these compounds coexisting in a small amount is vaporized in the storage container and is present as a gas phase component in the gas phase part of the storage container, so that a small amount coexists. It is speculated that the influence of water and oxygen may be suppressed.
  • the content of these inert compounds is large, but on the other hand, if too much, the properties such as viscosity, which is originally expected as an isocyanate composition, may greatly change. is there.
  • the content of the inert compound in the first aspect is 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less, and the lower limit of the content range is 3.0 mass ppm or more.
  • the upper limit of the content range is preferably 5.0 ⁇ 10 3 mass ppm or less, It is more preferably 3.0 ⁇ 10 3 mass ppm or less, and further preferably 1.0 ⁇ 10 3 mass ppm or less.
  • the isocyanate composition of the first aspect further includes a carbonic acid derivative in a range of 1.0 mass ppm to 2.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound, in addition to the above-described compound. It preferably contains
  • composition containing an isocyanate compound having an ethylenically unsaturated bond the range of 1.0 ppm by mass to 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound in the composition Compound Y and / or Compound Y in the range of 1.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass based on the total mass of the isocyanate compound in the composition
  • composition containing an isocyanate compound having an ethylenically unsaturated bond the range being 1.0 mass ppm to 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound in the composition Compound Y and / or Compound Y in the range of 1.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass based on the total mass of the isocyanate compound in the composition
  • the compound acts effectively during storage of the isocyanate composition, and has the effect of improving the stability of the isocyanate compound without coloring the isocyanate composition.
  • ester site of the compound has reactivity with water and oxygen, and the modification reaction of an isocyanate compound having an ethylenically unsaturated bond caused by water or oxygen It is estimated that it can be suppressed.
  • the content of the carbonic acid derivative is large.
  • the content of the carbonic acid derivative in the first embodiment is 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less, and the lower limit of the content range is 3.0 mass ppm or more.
  • it is 5.0 ppm by mass or more, more preferably 10 ppm by mass or more, and the upper limit of the content range is preferably 5.0 ⁇ 10 3 ppm by mass or less.
  • the isocyanate composition of the first aspect includes sulfuric acid and / or sulfuric acid in the range of 1.0 mass ppm to 1.0 ⁇ 10 3 mass ppm based on the isocyanate in addition to the above-described compound. It is preferable to further contain an ester and / or phosphoric acid and / or a phosphoric ester in the range of 1.0 mass ppm or more and 1.0 ⁇ 10 3 mass ppm,
  • a composition containing an isocyanate compound having an ethylenically unsaturated bond the range being 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound in the composition Compound Y and / or Compound Y in the range of 1.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass based on the total mass of the isocyanate compound in the composition
  • a composition containing an isocyanate compound having an ethylenically unsaturated bond the range being 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound in the composition Compound Y and / or Compound Y in the range of 1.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass based on the total mass of the isocyanate compound in the composition
  • a composition containing an isocyanate compound having an ethylenically unsaturated bond the range being 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm based on the total mass of the isocyanate compound in the composition Compound Y and / or Compound Y in the range of 1.0 ppm by mass or more and 1.0 ⁇ 10 4 ppm by mass based on the total mass of the isocyanate compound in the composition
  • a preferable concentration range of sulfuric acid and / or sulfuric acid ester is 1.0 mass ppm or more and 1.0 ⁇ 10 2 mass ppm or less based on an isocyanate compound having an ethylenically unsaturated bond, and the lower limit of the content range is 3.0 mass ppm or more, more preferably 5.0 mass ppm or more, and the upper limit of the content range is further preferably 5.0 ⁇ 10 1 mass ppm or less.
  • a preferable concentration range of phosphoric acid and / or phosphate ester is 1.0 mass ppm or more and 1.0 ⁇ 10 2 mass ppm or less based on an isocyanate compound having an ethylenically unsaturated bond,
  • the lower limit is preferably 3.0 mass ppm or more, more preferably 5.0 mass ppm or more, and the upper limit of the content range is further 5.0 ⁇ 10 1 mass ppm or less. preferable.
  • the isocyanate composition of the first aspect includes, in addition to the above-described compound, a basic amino compound in the range of 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm based on the isocyanate compound and / or Alternatively, it preferably contains a halogen ion and / or a hydrolyzable halogen compound.
  • compositions further containing a basic amino compound and / or a halogen ion and / or a hydrolyzable halogen compound also have an effect of improving the stability during storage. Although the mechanism that exerts such an effect is not clear, it is estimated that the halogen compound traps oxygen or water that impairs the stability of the isocyanate compound, thereby improving the stability of the isocyanate compound. Yes.
  • the content of the basic amino compound and / or the halogen ion and / or the hydrolyzable halogen compound is large.
  • the content of the basic amino compound and / or halogen ion and / or hydrolyzable halogen compound in the first aspect is 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less.
  • the lower limit of the range is preferably 3.0 ppm by mass or more, more preferably 5.0 ppm by mass or more, still more preferably 10 ppm by mass or more
  • the upper limit of the content range is 5 ppm. preferably .0 ⁇ and 10 3 ppm by mass or less, more preferably at most 3.0 ⁇ 10 3 ppm by weight, further preferably 1.0 ⁇ 10 3 ppm by mass or less.
  • a second aspect of the isocyanate composition of the present invention includes an isocyanate containing an ethylenically unsaturated bond, and is 1.0 mass ppm or more and 1 based on the total mass of the isocyanate compound containing the ethylenically unsaturated bond.
  • Consists of silicon hydrocarbon compounds, silicon-containing ether compounds and silicon-containing sulfide compounds At least one inert compound selected from the group consisting of an unsaturated compound having no carbon-carbon unsaturated bond other than an unsaturated bond constituting an aromatic ring, and an isocyanate compound having an ethylenically unsaturated bond.
  • sulfuric acid in the range of 1.0 mass ppm to 1.0 ⁇ 10 3 mass ppm, and / or sulfuric acid ester, and / or 1.0 mass ppm to 1.0 ⁇ 10 3 mass ppm In the range of phosphoric acid and / or phosphate ester.
  • An isocyanate compound having an ethylenically unsaturated bond is different from the isocyanate compound having an ethylenically unsaturated bond, and has at least one unsaturated bond other than the unsaturated bond constituting the aromatic ring Isocyanate composition containing (unsaturated bond compound)
  • an isocyanate composition having improved stability during storage can be provided.
  • the content of the unsaturated bond compound is 1.0 mass ppm to 1.0 ⁇ 10 4 mass ppm (0.0001 mass% to 1 mass%) based on the isocyanate compound having an ethylenically unsaturated bond. .
  • An unsaturated bond compound may be used individually by 1 type, and multiple types may be mixed and used for it.
  • unsaturated bonds tend to be easily oxidized, but the unsaturated bond compound used in the present embodiment works effectively when the isocyanate composition is stored, and without coloring the isocyanate composition. And the effect of improving the stability of isocyanate. Although the mechanism by which such an effect is manifested is not clear, the unsaturated bond in the unsaturated bond compound has an ethylenically unsaturated bond caused by water or oxygen by selectively acting with water or oxygen. It is estimated that the modification reaction of the isocyanate compound can be suppressed.
  • content of the unsaturated bond compound in this Embodiment is 1.0 mass ppm or more and 1.0 * 10 ⁇ 4 > mass ppm or less, and the minimum of the range of content is 3.0 mass ppm or more It is preferably 5.0 ppm by mass or more, more preferably 10 ppm by mass or more, and the upper limit of the content range is preferably 5.0 ⁇ 10 3 ppm by mass or less. 3.0 ⁇ 10 3 mass ppm or less is more preferable, and 1.0 ⁇ 10 3 mass ppm or less is still more preferable.
  • the above-mentioned isocyanate composition containing an unsaturated bond compound is selected from the group consisting of hydrocarbon compounds, ether compounds, sulfide compounds, halogenated hydrocarbon compounds, silicon-containing hydrocarbon compounds, silicon-containing ether compounds, and silicon-containing sulfide compounds. It can further contain at least one selected inert compound. These inactive compounds may be used alone or in combination. These inert compounds can be expected to exhibit the same effects as described in VI) below, and contribute to the improvement of the stability of the isocyanate composition in combination with the effects of the unsaturated bond compound.
  • an isocyanate composition having improved stability during storage.
  • the content of the inert compound is 1.0 mass ppm or more and 2.0 ⁇ 10 4 mass ppm or less (0.0001 mass% or more and 2 mass% or less) based on the compound having an ethylenically unsaturated bond.
  • An inert compound may be used individually by 1 type, and multiple types may be mixed and used for it.
  • the above-mentioned inert compound does not have a reaction point with water, oxygen or the like, and is unlikely to have the same action as the above unsaturated bond compound.
  • the isocyanate composition of the present embodiment to which an inert compound was added also exhibited the effect of improving the stability of the isocyanate.
  • the isocyanate composition is stored in a closed storage container such as a canister or drum.
  • a very small amount of water, oxygen, or the like is mixed when leaking from the outside or filling the storage container with the isocyanate composition. It is estimated that no increase in viscosity or generation of gel components occurs.
  • a small amount of the inert compound coexisting in the storage container is vaporized in the storage container and is present as a gas phase component in the gas phase part of the storage container, so that the trace amount coexists. It is speculated that the influence of water and oxygen may be suppressed.
  • the content of the inert compound is large, but on the other hand, if there are too many inert compounds, the performance such as viscosity, which is originally expected as an isocyanate composition, is greatly changed. In some cases.
  • the content of the inert compound in the present embodiment is 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less, and the lower limit of the content range is 3.0 mass ppm or more. It is preferably 5.0 ppm by mass or more, more preferably 10 ppm by mass or more, and the upper limit of the content range is preferably 5.0 ⁇ 10 3 ppm by mass or less. 3.0 ⁇ 10 3 mass ppm or less is more preferable, and 1.0 ⁇ 10 3 mass ppm or less is still more preferable.
  • Isocyanate composition containing an ethylenically unsaturated bond-containing isocyanate compound and sulfuric acid and / or sulfuric acid ester and / or phosphoric acid and / or phosphoric acid ester
  • an isocyanate composition having improved stability during storage can be provided.
  • the content of sulfuric acid and / or sulfuric acid ester and / or phosphoric acid and / or phosphoric acid ester is 1.0 mass ppm or more and 1.0 ⁇ 10 6 based on the compound having an ethylenically unsaturated bond. It is 2 mass ppm or less. These compounds may be used individually by 1 type, and may be used in mixture of multiple types.
  • the lower limit of the range of the content is preferably 3.0 mass ppm or more, more preferably 5.0 mass ppm or more, the content of
  • the upper limit of the range is more preferably 5.0 ⁇ 10 1 mass ppm or less, and in the case of phosphoric acid and / or phosphate ester, 1.0 mass ppm or more and 1.0 ⁇ 10 2 based on the isocyanate compound.
  • the lower limit of the content range is preferably 3.0 ppm by mass or more, more preferably 5.0 ppm by mass or more,
  • the upper limit of the range of chromatic amount is more preferably not more than 5.0 ⁇ 10 1 mass ppm.
  • the isocyanate composition containing the inert compound of the present embodiment can contain the various unsaturated bond compounds described above. These unsaturated bond compounds may be used alone or in combination. These unsaturated bond compounds can be expected to exhibit the same effect as described in the composition of V), and contribute to the improvement of the stability of the isocyanate composition in combination with the effect of the inert compound.
  • the isocyanate compound having an ethylenically unsaturated bond, the compound represented by the formula (1), and a spectrum measured by gel permeation chromatography absorb UV in the region of the isocyanate decamer or higher.
  • a compound having an isocyanurate group and / or a biuret group, and an inert compound (hydrocarbon compound, ether compound, sulfide compound, halogenated hydrocarbon compound, silicon-containing hydrocarbon compound, silicon-containing ether compound and Silicon-containing sulfide compounds, inactive compounds having no carbon-carbon unsaturated bonds and carbon-oxygen double bonds in addition to unsaturated bonds constituting aromatic rings), basic amino compounds, halogen ions , Produced by appropriately combining hydrolyzable halogen compounds It is possible.
  • the isocyanate compound having an ethylenically unsaturated bond can be produced using a known method. For example, reaction of a corresponding amine and phosgene can be mentioned.
  • an isocyanate compound having an ethylenically unsaturated bond produced by the above-described known method is used as an isocyanate compound having an ethylenically unsaturated bond after undergoing a purification process by a known method.
  • the compound represented by the formula (1) a compound having UV absorption in the region of isocyanate decamer or higher, a compound having an isocyanurate group and / or a biuret group, unsaturated It can be produced by appropriately mixing with a compound having a bond, an inert compound, sulfuric acid, sulfate ester, phosphoric acid, phosphate ester, basic amino compound, hydrolyzable halogen compound and the like.
  • These compounds constituting the isocyanate composition of the present embodiment may be added in advance so as to become the isocyanate composition of the present embodiment in the above-described production process of the isocyanate compound, or newly obtained after obtaining the isocyanate compound. You may add so that it may become the isocyanate composition of this embodiment.
  • the compound having UV absorption in the region of the isocyanate decamer or higher is, for example, after reacting an isocyanate compound having one or more isocyanate groups in the molecule in the presence of a catalyst.
  • the polymerization reaction is stopped by adding a terminator.
  • the catalyst the same catalyst as that used in the isocyanurate formation reaction described later can be used.
  • the amount of the catalyst used varies depending on the type of compound used, but can be 1.0 ⁇ 10 ⁇ 4 parts by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of the isocyanate compound.
  • the upper limit of the amount of the catalyst used is preferably 5.0 ⁇ 10 ⁇ 1 parts by mass or less, more preferably 1.0 ⁇ 10 10 from the viewpoint of suppressing coloring or discoloration of the product and controlling the reaction. ⁇ 1 part by mass or less, more preferably 2.0 ⁇ 10 ⁇ 2 parts by mass or less. From the viewpoint of reactivity, the lower limit of the amount of catalyst used is more preferably 1.0 ⁇ 10 ⁇ 3 parts by mass, and still more preferably 2.0 ⁇ 10 ⁇ 3 parts by mass.
  • the same terminator as that used in the isocyanurate-forming reaction described later can be used.
  • the amount of the terminator used can be appropriately adjusted according to the amount of catalyst used and the type of compound used, but it is preferably used in an amount of 1 equivalent or more based on the amount of catalyst used.
  • the temperature at which the polymerization reaction of the isocyanate compound is carried out in the presence of a catalyst is preferably ⁇ 20 ° C. to 60 ° C. As the reaction temperature increases, the isocyanuration reaction tends to proceed, and in order to obtain a 1-nylon structure, the reaction temperature is preferably low. On the other hand, the polymerization temperature of the isocyanate compound is too low. Since the reaction becomes too slow, the temperature is more preferably ⁇ 10 ° C. to 50 ° C., further preferably 0 ° C. to 40 ° C.
  • Polymerization of the isocyanate compound can be carried out in the presence or absence of a solvent, but it is desirable to carry out in the presence of a solvent from the viewpoint of ease of reaction control and ease of operation.
  • a solvent which is inert to the isocyanate compound to be used and dissolves the starting isocyanate compound and the polymer to be produced is selected.
  • acetates such as ethyl acetate, butyl acetate, and amyl acetate
  • aromatic hydrocarbons such as benzene, toluene, xylene, and monochlorobenzene can be used alone or in combination.
  • the progress of the polymerization can be traced by sampling the reaction solution as appropriate and performing gel permeation chromatography measurement. When a peak is confirmed in the desired molecular weight region, the reaction can be stopped by adding a terminator. That's fine.
  • the isocyanuration reaction is carried out in the absence of a solvent, the unreacted isocyanate compound works as a solvent by dissolving the conversion rate to 50% or less, and the resulting polymer can be dissolved.
  • the compound having UV absorption in the region of the isocyanate decamer is, for example, unreacted isocyanate compound and
  • the solvent may be removed and recovered, or the reaction solution may be used for production of the isocyanate composition of the present embodiment.
  • the method is not particularly limited, and unreacted polyisocyanate and solvent can be removed by, for example, distillation purification. Further, the removal is desirably performed at a low temperature.
  • the removal is preferably performed using a device having a large evaporation area with respect to a liquid such as a falling thin film evaporator, a thin film evaporator, a molecular distillation device, etc., and having a high evaporation efficiency. .
  • the compound containing an isocyanurate group or biuret group can be produced by a method similar to ⁇ Method for producing isocyanate polymer> described later.
  • the compound containing a biuret group uses, for example, water, monovalent tertiary alcohol, formic acid, hydrogen sulfide, organic primary monoamine, organic primary diamine, etc. as the biuretizing agent, and the reaction temperature is 70 ° C.
  • the reaction temperature is in the range of ⁇ 200 ° C, and the reaction is carried out for 10 minutes to 24 hours.
  • the unreacted polyisocyanate and solvent are separated from the composition containing the isocyanate polymer by treatment such as thin film distillation or solvent extraction. Can be manufactured.
  • a solvent similar to ⁇ Isocyanate polymer production method> described later may be used.
  • the present invention comprises a step of mixing the above-described isocyanate composition with a bifunctional or higher isocyanate and reacting the isocyanate compound contained in the above isocyanate composition with a bifunctional or higher isocyanate.
  • a method for producing an isocyanate polymer is provided.
  • the manufacturing method of this embodiment will be described.
  • isocyanurate formation reaction is mainly described, as will be described later, known reactions such as iminooxadiazine diionization reaction and uretdioneization reaction can be used depending on the catalyst or reaction conditions to be used.
  • the mixing ratio of the isocyanate composition described above and the bifunctional or higher isocyanate can be arbitrarily prepared.
  • the bifunctional or higher functional isocyanate is not particularly limited and can be appropriately changed according to the target isocyanurate.
  • an isocyanurate polymer that can be suitably used for applications requiring weather resistance
  • aliphatic and / or alicyclic isocyanates are preferred.
  • an aromatic isocyanate can be selected for the purpose of applying to a field where weather resistance or the like is not required.
  • the isocyanuration reaction is preferably performed in the presence of an isocyanuration catalyst.
  • an isocyanuration catalyst for example, a catalyst having basicity is generally preferable, and the following compounds (i) to (viii) are exemplified.
  • a hydroxide or an organic acid salt of tetraalkylammonium (tetramethylammonium, tetraethylammonium, etc.) (for example, a salt of acetate, butyrate, decanoate, etc.).
  • hydroxide or organic acid salt (for example, acetate, butyrate, decanoate, etc.) of trialkylhydroxyalkylammonium (trimethylhydroxypropylammonium, trimethylhydroxyethylammonium, triethylhydroxypropylammonium, triethylhydroxyethylammonium, etc.) Salt).
  • Metal alkoxides such as sodium and potassium.
  • Aminosilyl group-containing compound for example, hexamethyldidiasan).
  • Phosphorus compounds such as tributylphosphine.
  • Fluorine compound or polyhydrofluoride compound for example, tetraalkylammonium fluoride such as tetramethylammonium fluoride hydrate, tetraethylammonium fluoride, etc.
  • tetraalkylammonium fluoride such as tetramethylammonium fluoride hydrate, tetraethylammonium fluoride, etc.
  • (Viii) a compound having a structure represented by the following formula (12) or formula (13) (for example, 3,3,3-trifluoropropanoic acid, 3,3,4,4,4-pentafluorobutanoic acid, 3,3,4,4,5,5,5-heptafluoropentanoic acid, 3,3-difluoroprop-2-enoic acid, etc.) and a quaternary ammonium ion or quaternary phosphonium ion.
  • formula (12) or formula (13) for example, 3,3,3-trifluoropropanoic acid, 3,3,4,4,4-pentafluorobutanoic acid, 3,3,4,4,5,5,5-heptafluoropentanoic acid, 3,3-difluoroprop-2-enoic acid, etc.
  • R 22 and R 23 each independently represents a perfluoroalkyl group having 1 to 30 carbon atoms
  • R ′ each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. And a group selected from the group consisting of aromatic groups.
  • R 22 , R 23 and R ′ may contain a hetero atom.
  • R 22 and R 23 may each independently be a linear, branched or cyclic saturated perfluoroalkyl group or an unsaturated perfluoroalkyl group.
  • the catalyst (i) or the compound (ii) is preferable from the viewpoint of catalyst efficiency and isocyanuration reaction selectivity.
  • the catalyst (vi) when it is desired to form a large proportion of the uretdione structure, it is preferable to use the catalyst (vi).
  • the catalyst (vii) or the catalyst (viii) described above when it is desired to form a large proportion of the iminooxadiazinedione structure, it is preferable to use the catalyst (vii) or the catalyst (viii) described above.
  • the amount of the isocyanurate-forming catalyst added to the reaction system of the isocyanurate-forming reaction can be appropriately adjusted according to the type of catalyst used, the concentration of other components in the reaction system, etc. 1.0 ⁇ 10 ⁇ 4 parts by mass or more and 1.0 parts by mass or less can be used.
  • the upper limit of the amount of the isocyanurate-forming catalyst used is preferably 5.0 ⁇ 10 ⁇ 1 part by mass or less, more preferably from the viewpoint of suppressing coloration or discoloration of the product and controlling the reaction. It is 0 ⁇ 10 ⁇ 1 part by mass or less, more preferably 2.0 ⁇ 10 ⁇ 2 part by mass or less. From the viewpoint of reactivity, the lower limit of the amount of the isocyanurate-forming catalyst used is more preferably 1.0 ⁇ 10 ⁇ 3 parts by mass, and still more preferably 2.0 ⁇ 10 ⁇ 3 parts by mass.
  • the above-mentioned isocyanurate-forming catalyst can simultaneously be an allophanate catalyst. Therefore, it is also possible to add the hydroxy group-containing compound before or during the isocyanuration reaction and to proceed the isocyanuration reaction and the allophanate reaction simultaneously.
  • the hydroxy group-containing compound is preferably a compound having one or two hydroxy groups in one molecule formed only of carbon, hydrogen and oxygen. More preferred is a compound having only one hydroxy group.
  • Specific examples of the compound having one hydroxy group include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol and the like, which have two hydroxy groups.
  • Examples of the compound include ethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 2-ethylhexanediol and the like, and two or more kinds can be used in combination.
  • the reaction temperature of the isocyanuration reaction is not particularly limited, but is preferably 0 ° C. to 200 ° C. If it is less than 0 ° C., the reaction rate is small and not practical, and if it is reacted at a high temperature exceeding 200 ° C., side reactions or extreme coloring of the product tends to occur.
  • the lower limit of the reaction temperature is more preferably 40 ° C., further preferably 50 ° C., and particularly preferably 60 ° C. from the viewpoint of the reaction rate.
  • the upper limit of the reaction temperature is more preferably 150 ° C. from the viewpoint of coloring of the product itself, more preferably 120 ° C., and particularly preferably 110 ° C.
  • the reaction time for the isocyanuration reaction is not particularly limited, and can be carried out, for example, in the range of 10 seconds to 24 hours.
  • methods for confirming the end point of the isocyanuration reaction include a method for measuring the isocyanate group content (NCO%) in the reaction mixture, a method for measuring the refractive index, and a method for measuring the reaction mixture by gel permeation chromatography. Is done.
  • the measuring method of the content rate (NCO%) of the isocyanate group in a reaction mixture is mentioned later.
  • the mass ratio of the isocyanate polymer obtained by reaction with respect to the initial mass of the compound is preferably 50% or less (more preferably 40% or less, still more preferably 25% or less). Further, from the viewpoint of sufficiently obtaining the yield of the isocyanurate compound, the conversion rate of the reaction is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more.
  • the isocyanuration reaction can be stopped by adding a catalyst terminator to deactivate the isocyanuration catalyst when the isocyanuration reaction reaches the target conversion rate. . If a catalyst terminator is not added, the process of distilling off residual monomers and solvents from the isocyanate polymer and the isocyanurate reaction further progress during storage, resulting in a product with a higher viscosity or a gel content. is there. Therefore, it is preferable to deactivate the isocyanurate-forming catalyst by adding a catalyst terminator when the target conversion rate is reached.
  • the catalyst terminator for example, sulfuric acid, phosphoric acid, acidic phosphoric acid esters, hydrochloric acid, sulfonic acid compounds and the like can be used.
  • the reaction product of the catalyst stopper and the catalyst is precipitated as a solid, it is preferably separated by a method such as filtration using a filter or celite.
  • the isocyanuration reaction can be carried out in the presence or absence of a solvent, but it is desirable to carry out in the presence of a solvent from the viewpoint of ease of control of the reaction and ease of operation.
  • the solvent used for the isocyanurate reaction a solvent which is inert to the isocyanate compound to be used and dissolves the starting isocyanate compound and the generated isocyanurate compound is selected.
  • acetates such as ethyl acetate, butyl acetate, and amyl acetate; aromatic hydrocarbons such as benzene, toluene, xylene, and monochlorobenzene can be used alone or as a solvent.
  • the conversion rate of the isocyanurate reaction in the absence of a solvent is preferably 5% to 50%, more preferably 10% to 40%.
  • the isocyanurate compound can also be recovered, for example, by removing unreacted isocyanate compound and solvent from the reaction system.
  • the method of removal is not particularly limited, and for example, unreacted isocyanate compound and solvent can be removed by distillation purification. Further, the removal is desirably performed at a low temperature. For example, the removal is preferably performed using a device having a large evaporation area with respect to a liquid such as a falling thin film evaporator, a thin film evaporator, a molecular distillation device, etc., and having a high evaporation efficiency. .
  • the isocyanate polymer obtained by the production method described above includes a unit represented by the following formula (11), and a nitrogen atom constituting the isocyanate polymer is bonded to a carbon atom. That is, the manufacturing method mentioned above mixes the isocyanate composition containing the isocyanate compound which has the above-mentioned ethylenically unsaturated bond, and bifunctional or more isocyanate, The said isocyanate compound contained in the said isocyanate composition and bifunctional or more It is a manufacturing method of an isocyanate polymer that reacts with an isocyanate of the above, and includes a unit represented by the following formula (11), and the nitrogen atom constituting the isocyanate polymer is bonded to a carbon atom. Is.
  • R 25 , R 26 and R 27 are each independently a residue obtained by removing an isocyanate group from an isocyanate compound contained in the isocyanate composition, or an isocyanate from the bifunctional or higher isocyanate.
  • excluding group shows at least 1 group among R ⁇ 25 >, R ⁇ 26> , R ⁇ 27 > shows the residue remove
  • the present invention provides an isocyanate polymer that includes a unit represented by the following formula (11) and in which a nitrogen atom constituting the isocyanate polymer is bonded to a carbon atom.
  • R 25 , R 26 and R 27 are each independently a residue obtained by removing an isocyanate group from an isocyanate compound having an ethylenically unsaturated bond, or an isocyanate group derived from a bifunctional or higher functional isocyanate. The removed residue is shown, and at least one group of R 25 , R 26 and R 27 is a residue obtained by removing an isocyanate group from the isocyanate compound.
  • R 25 , R 26 and R 27 are each independently an organic group, and at least one of R 25 , R 26 and R 27 contains an ethylenic double bond. An organic group is preferred.
  • ⁇ Use of isocyanate polymer> Using a composition containing various isocyanate polymers obtained by the above-described production method, a part or all of the isocyanate groups of the isocyanate polymer is blocked with a blocking agent by a known method to produce a blocked isocyanate polymer. You can also. In addition, for the purpose of improving water dispersibility, a part of the isocyanate groups of the various isocyanate polymers obtained by the above method are modified with an active hydrogen-containing hydrophilic compound by a known method. A combined composition can also be obtained.
  • the isocyanate polymer obtained by the above-described production method may be reacted with a blocking agent and an active hydrogen-containing hydrophilic compound, respectively.
  • the isocyanate polymer mentioned above can also be used as a raw material of UV hardening coating material.
  • the isocyanate composition of the present embodiment has an effect of improving stability during storage.
  • the isocyanate composition of the present embodiment is suitably used as a raw material for paints, adhesives and the like as appropriate.
  • the present invention also provides a method for storing an isocyanate compound having an ethylenically unsaturated bond.
  • the storage method of the present embodiment is 1.0 mass ppm or more and 1.0 ⁇ 10 4 mass ppm or less based on the isocyanate compound having an ethylenically unsaturated bond and the isocyanate compound.
  • an inert compound having no carbon-carbon unsaturated bond other than the unsaturated bond constituting the aromatic ring and a step of preparing an isocyanate composition.
  • the isocyanate compound having an ethylenically unsaturated bond is stored for a long period of, for example, 100 days or more, such as 200 days or more, such as 300 days or more, such as 500 days or more, by the storage method of this embodiment, the isocyanate compound Can be prevented from increasing in viscosity and chromaticity.
  • GC ⁇ Gas chromatography
  • LC Liquid chromatograph
  • LC-10AT system manufactured by Shimadzu Corporation
  • Column Two Inertsil-ODS columns (manufactured by GL Sciences) connected in series
  • Developing solvent 5 mmol / L
  • Developing solvent flow rate 2 mL / min
  • Column temperature 35 ° C
  • Detector differential refractive index detector and photodiode array detector (measurement wavelength range: 200 nm to 300 nm)
  • Combustion pretreatment device Automatic combustion device AQF-100 (Mitsubishi Analytic) Furnace temperature: Inret 900 ° C, Outlet 1000 ° C Gas flow rate: Ar / O 2 400 mL / min, O 2 200 mL / min Ion chromatograph: ICS-1500 (manufactured by DIONEX) Guard column: AG12A Separation column: AS12A Suppressor: ASRS-300 Suppressor current 50mA Eluent: 2.7 mM Na 2 CO 3, 0.3 mM NaHCO 3
  • a purified isocyanate liquid is supplied to a multistage distillation column (selected from a regular packed distillation column, an irregular packed distillation column, and a plate distillation column).
  • the pressure at the top of the distillation column is controlled (absolute pressure), and the amount of heat necessary for distillation is supplied from a reboiler.
  • a fraction is extracted from the side cut line provided below in the height direction from the top of the tower. Analyze the resulting fraction.
  • Isocyanate Composition MOI synthesized by Synthesis Example A-1 and purified by the same method as in Example 1 was mixed with the reaction product obtained in Synthesis Example B-2, and MOI and isocyanate decamer were mixed. An isocyanate composition containing a compound having UV absorption in the above region was prepared. In the isocyanate composition, the concentration of the compound having UV absorption in the region of the isocyanate decamer or higher was 30 ppm by mass with respect to the MOI mass.
  • a crude isocyanate was synthesized by a known method, and the crude isocyanate was purified by any of Synthesis Examples D-1 to D-3. Then, an isocyanate composition was prepared using the obtained purified isocyanate. The isocyanate composition was stored in the same manner. The results are shown in Tables 1-5. In Comparative Examples 2, 4, and 6, gel was generated in the isocyanate after storage, and GPC measurement could not be performed.
  • MOI methacryloyloxyethyl isocyanate
  • AOI acryloyloxyethyl isocyanate.
  • the isocyanate used is an isocyanate contained in an isocyanate composition, and 1 equivalent of a hydroxy compound (aromatic hydroxy) with respect to the isocyanate group of the isocyanate.
  • Compound or alcohol Compound or alcohol.
  • “compound having UV absorption in the region of the isocyanate decamer or higher” is the same as in Synthesis Example B-2, except that the isocyanate composition is used instead of methacryloyloxyethyl isocyanate. It was manufactured using what was synthesized using the isocyanate contained in the product.
  • Duranate TPA-100, TKA-100 and TLA-100 manufactured by Asahi Kasei Corporation were used.
  • phosphoric acid and phosphoric acid ester represent the amount actually added, and the other components represent analytical values of the composition.
  • Example E-1 200 g of hexamethylene diisocyanate and 200 g of the composition of Example 1 were weighed in a thermometer, a stirrer, and a reactor consisting of a nitrogen sealed tube and a 500 mL four-necked glass flask, and the composition of Example 1 was weighed and replaced with nitrogen in the reactor. Warmed up. Thereafter, 140 g of 2-ethylhexanol was added and stirred for 10 minutes. Thereafter, 50 g of a 5% isobutanol solution of tetrabutylammonium acetate was added over 60 minutes. During the reaction, the temperature was adjusted to 65 ⁇ 2 ° C.
  • reaction terminator 5 g of 85% aqueous phosphoric acid solution was added, the temperature was raised to 100 ° C., and stirring was continued for 1 hour after reaching 100 ° C.
  • the reaction solution was a colorless and transparent liquid.
  • This reaction solution was filtered through a membrane filter having a pore size of 1 ⁇ m to separate reaction residues, and then unreacted hexamethylene diisocyanate and MOI were distilled off using a thin film distillation apparatus to obtain a polyisocyanate composition.
  • the obtained polyisocyanate composition was almost colorless and transparent.
  • 5 g of the polyisocyanate composition was obtained, 5 g of phenol and 10 g of acetonitrile were added, and the mixture was stirred at 80 ° C. for 24 hours to react the isocyanate group and phenol in the mixture to obtain a carbamate.
  • the mixture was analyzed by liquid chromatography, the following four compounds were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、エチレン性不飽和結合を有するイソシアネート化合物と、式(1)(式中、Rはa価の有機基を表し、Rは一価の有機基を表し、aは1または2の整数を表す)で表される化合物、および/または、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物とを含有するイソシアネート組成物;およびエチレン性不飽和結合を有するイソシアネート化合物と、芳香環を構成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物、又は、炭化水素化合物等の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合を有しない不活性化合物とを含有するイソシアネート組成物;等を提供する。

Description

イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体
 本発明は、イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体に関する。
 本願は、2016年10月14日に、日本に出願された特願2016‐203144号、2016年10月14日、日本に出願された特願2016-203113に基づき優先権を主張し、その内容をここに援用する。
 エチレン性不飽和結合を有するイソシアネートは種々の合成用中間体として有用である。例えば、不飽和イソシアネート化合物であるメタクリロイルオキシエチルイソシアネートと、水酸基を有する化合物であるポリアルキレングリコールとを反応させて製造した不飽和ウレタン化合物があるが、この不飽和ウレタン化合物は、コンタクトレンズの材料(例えば特許文献1参照)、高分子固体電解質の固体溶媒の材料(例えば特許文献2参照)、生物学的材料を固定化する材料(例えば特許文献3、4参照)として用いることが提案されている。
 エチレン性不飽和結合を有する化合物は、対応するアミンとホスゲンとの反応によって製造する方法が開示されている(特許文献5参照)。しかしながら、このような方法で製造されるエチレン性不飽和結合を有する化合物は、副生物、触媒残渣等の不純物が含まれる場合があり、そのため、エチレン性不飽和結合を有する化合物を合成した後に、不純物を除いて純度を高める操作が一般的に行われている(例えば、特許文献6、7参照)。
 また、エチレン性不飽和結合を有するイソシアネート化合物の輸送・保管のために、重合防止剤を添加する方法や(例えば、特許文献8参照)。第3級アミン塩酸塩を添加する方法が開示されている(例えば、特許文献9参照)。
特開平6-322051号公報 特開平6-187822号公報 特開昭60-234582号公報 特開昭60-234583号公報 特開2006-232797号公報 特許第4273531号公報 特許第4823546号公報 国際公開第2011/074503号パンフレット 特開2016-150922号公報
 エチレン性不飽和結合を有する化合物は、反応性官能基として、エチレン性不飽和結合とイソシアネート基とを分子内に含有する。上記した従来公知の方法において添加される化合物は重合禁止剤であり、エチレン性不飽和結合の重合を抑える目的で使用されている。一方、エチレン性不飽和結合を有する化合物を構成するイソシアネートは、その構造にも依るが、エチレン性不飽和結合や、場合によっては内在するエステル結合の効果によってイソシアネート基が不安定な(反応性が高い)場合が多い。そのため、イソシアネート組成物の安定剤として公知の上記化合物では、当該イソシアネートの安定性改善については効果が十分ではなかった。
 本発明は、このような事情に鑑み、エチレン性不飽和結合を有するイソシアネートを含む、貯蔵安定性に優れたイソシアネート組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、特定の成分からなるイソシアネート組成物によって上記課題を達成されることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の態様を含む。
[1]エチレン性不飽和結合を有するイソシアネート化合物と、
 前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、前記イソシアネート化合物と異なる化合物であって下記式(1)で表される化合物、
および/または、
 前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物、
および/または、
前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、イソシアヌレート基および/またはビウレット基を有する化合物と、
 を含有する、イソシアネート組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、Rはa価の有機基を表し、Rは一価の有機基を表し、aは1または2の整数を表す。)
[2]前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppmの範囲の炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群から選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合及び炭素-酸素間の二重結合を有しない不活性化合物をさらに含有する、[1]に一項に記載のイソシアネート組成物。
[3]前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体をさらに含有する、[1]又は[2]に記載のイソシアネート組成物。
[4]前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、硫酸、及び/又は、硫酸エステル、及び/又は、
 1.0質量ppm以上1.0×10質量ppm以下の、リン酸、及び/又は、リン酸エステルとをさらに含有する、[1]~[3]のいずれか一項に記載のイソシアネート組成物。
[5]前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppmの範囲の、塩基性アミノ化合物、および/または、
ハロゲンイオン、および/または、加水分解性ハロゲン化合物をさらに含有する[1]~[4]のいずれか一項に記載のイソシアネート組成物。
[6]エチレン性不飽和結合を有するイソシアネート化合物と、
 前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、前記イソシアネート化合物と異なる化合物であって、芳香環を構成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物、又は、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合を有しない不活性化合物、および/または、
1.0質量ppm以上1.0×10質量ppm以下の、硫酸、及び/又は、硫酸エステル、及び/又は、
 1.0質量ppm以上1.0×10質量ppm以下の、リン酸、及び/又は、リン酸エステルと、
 を含有する、イソシアネート組成物。
[7]前記イソシアネート組成物が、前記イソシアネート化合物と、前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物とを含有し、
 前記芳香環を形成する不飽和結合以外の不飽和結合が、炭素-酸素間の二重結合である、[6]に記載のイソシアネート組成物。
[8]前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物が、炭酸誘導体である、[7]に記載のイソシアネート組成物。
[9]前記炭酸誘導体が、炭酸エステル、N-無置換カルバミン酸エステル、及び、N-置換カルバミン酸エステルからなる群から選ばれる、少なくとも1種の化合物である、[8]に記載のイソシアネート組成物。
[10]前記N-置換カルバミン酸エステルが、下記式(2)で表される化合物である、[9]に記載のイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000006
[式(2)中、Rは前記イソシアネート化合物からイソシアネート基を除いた残基を示し、Rは有機基を示す。]
[11]前記イソシアネート組成物が、前記イソシアネート化合物と、前記不活性化合物とを含有する、[10]に記載のイソシアネート組成物。
[12]前記イソシアネート組成物が、前記イソシアネート化合物と、前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物と、前記不活性化合物とを含有する、[6]に記載のイソシアネート組成物。
[13]前記イソシアネート組成物が、前記イソシアネート化合物と、前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物とを含有し、
 前記芳香環を形成する不飽和結合以外の不飽和結合が、炭素-酸素間の二重結合である、[6]に記載のイソシアネート組成物。
[14]前記芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物が、炭酸誘導体である、[13]に記載のイソシアネート組成物。
[15]前記炭酸誘導体が、炭酸エステル、N-無置換カルバミン酸エステル、及び、N-置換カルバミン酸エステルからなる群から選ばれる少なくとも1種の化合物である、[14]に記載のイソシアネート組成物。
[16]イソシアネート組成物全体質量を基準として、前記イソシアネート化合物を97質量%以上含む、[1]~[15]のいずれか一項に記載のイソシアネート組成物。
[17][1]~[16]のいずれか一項に記載のイソシアネート組成物と2官能以上のイソシアネートとを混合し、前記イソシアネート組成物に含有される前記イソシアネート化合物と前記2官能以上のイソシアネートとを反応させる工程を含むイソシアネート重合体の製造方法であって、
 前記イソシアネート重合体が下記式(11)で表される単位を含み、
 前記イソシアネート重合体を構成する窒素原子が、炭素原子と結合していることを特徴とする、イソシアネート重合体の製造方法。
Figure JPOXMLDOC01-appb-C000007
[式(11)中、R25、R26、R27は、各々独立に、前記イソシアネート組成物に含有される前記イソシアネート化合物からイソシアネート基を除いた残基、または、前記2官能以上のイソシアネートからイソシアネート基を除いた残基を示し、R25、R26、R27のうち少なくとも1つの基は、前記イソシアネート組成物に含有される前記イソシアネート化合物からイソシアネート基を除いた残基を示す。]
[18]下記式(11)で表される単位を含み、前記イソシアネート重合体を構成する窒素原子が、炭素原子と結合している、イソシアネート重合体。
Figure JPOXMLDOC01-appb-C000008
[式(11)中、R25、R26、R27は、各々独立に、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基、または、2官能以上のイソシアネートからイソシアネート基を除いた残基を示し、R25、R26、R27のうち少なくとも1つの基は、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基を示す。]
 本発明によれば、貯蔵安定性が改善された、エチレン性不飽和結合を有するイソシアネートを含有するイソシアネート組成物が提供される。
合成例B-2で得られた反応生成物の、ゲル浸透クロマトチャートである。
 本発明の好適な実施形態について以下に説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
<エチレン性不飽和結合を有するイソシアネート化合物>
 本発明のイソシアネート組成物において、エチレン性不飽和結合を有するイソシアネート化合物としては、特に限定されないが、下記式(3)で表される化合物が好ましく使用される。
Figure JPOXMLDOC01-appb-C000009
[式中、Xは有機基を表し、R、R、及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、又は炭素数4~10の芳香族基を表す。]
 式(3)において、Xは、好ましくはエーテル結合及びフェニレン基のいずれか又は両方を含んでいてもよい炭素数1~8のアルキレン基であり、より好ましくはエーテル結合を含んでいてもよい炭素数1~8のアルキレン基であり、さらに好ましくは炭素数1~5のアルキレン基である。
 上記アルキレン基としては、直鎖状又は分岐鎖状のアルキレン基が好ましい。
 直鎖状のアルキレン基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等が挙げられる。
 分岐鎖状のアルキレン基としては、具体的には、-C(CH-、-CH(CH)-、-CH(CHCH)-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-、-C(CHCH-等;-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-、-C(CHCH-CH-等が挙げられる。
 上記アルキレン基としては、直鎖状のアルキレン基が好ましく、炭素数1~5のアルキレン基がより好ましく、エチレン基がさらに好ましい。
 上記エーテル結合を含んでいてもよい炭素数1~8のアルキレン基とは、炭素数1~8のアルキレン基中の炭素-炭素結合間に酸素原子が挿入されていてもよいことを意味し、具体的には、-(CH-(O)-(CH-(O)-(CH-で表される。前記式中、a+c+eは2~8の整数を表し、a及びcは1以上の整数を表し、b及びdは0又は1を表し、dが0のときはeも0である。
 エーテル結合を含んでもいてよい炭素数1~8のアルキレン基の具体例としては、-CH-O-(CH-、-(CH-O-(CH-、-(CH-OCH-、-CH-O-(CH-、-(CH-O-CH-、-CH-O-CH-が好ましく、-CH-O-(CH-、-(CH-O-(CH-、-(CH-O-CH-、-CH-O-(CH-を挙げることができる。この中でも、-(CH-O-(CH-が好ましい。
 また、上記エーテル結合及びフェニレン基の両方を含んでいてもよい炭素数1~8のアルキレン基の具体例としては、-(CH-Ph-O-、-Ph-O-(CH-、-(CH-Ph-O-(CH-を挙げることができる。また、上記フェニレン基を含んでいてもよい炭素数1~8のアルキレン基の具体例としては、-(CH-Ph-、-Ph-(CH-、-(CH-Ph-(CH-を挙げることができる。
 また、Xの例としては、フェニレン基(-Ph-)、エーテル結合とフェニレン基とからなる基(-Ph-O-又は-O-Ph-)を挙げることもできる。
 式(3)において、R、R、及びRは、各々独立に、水素、炭素数1~10のアルキル基又は有機基を表す。
 炭素数1~10のアルキル基としては、直鎖状アルキル基、分岐鎖状アルキル基が挙げられる。直鎖状アルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。分岐鎖状アルキル基としては、具体的には、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルブチル基、2-エチルブチル基等が挙げられる。
 また、R、R、及びRは、炭素数4~10の芳香族基であってもよい。芳香族基の具体例としては、フェニル基、ナフチル基、フラン基、ピロール基、インドール基等が挙げられる。
 上記一般式(3)で表されるイソシアネート化合物の具体例としては、アクリル酸-2-イソシアナト-エチルエステル、2-メチル-アクリル酸-2-イソシアナト-エチルエステル、アクリル酸-2-イソシアナト-プロピルエステル、2-メチル-アクリル酸-2-イソシアナト-プロピルエステル、アクリル酸-3-イソシアナト-プロピルエステル、2-メチル-アクリル酸-3-イソシアナト-プロピルエステル、アクリル酸-4-イソシアナト-ブチルエステル、2-メチル-アクリル酸-4-イソシアナト-ブチルエステル、アクリル酸-5-イソシアナト-ペンチルエステル、2-メチル-アクリル酸-5-イソシアナト-ペンチルエステル、アクリル酸-6-イソシアナト-ヘキシルエステル、2-メチル-アクリル酸-6-イソシアナト-ヘキシルエステル、アクリル酸-8-イソシアナト-オクチルエステル、2-メチル-アクリル酸-8-イソシアナト-オクチルエステル、アクリル酸-10-イソシアナト-デシルエステル、2-メチル-アクリル酸-10-イソシアナト-デシルエステル、アクリル酸-11-イソシアナト-ウンデシルエステル、2-メチル-アクリル酸-11-イソシアナト-ウンデシルエステル、アクリル酸-12-イソシアナト-ドデシルエステル、2-メチル-アクリル酸-12-イソシアナト-ドデシルエステル等が挙げられる。
 これらのうち、耐候性及び耐熱黄変性が要求される用途に好適であり、且つ工業的に入手容易である観点からは、アクリル酸-2-イソシアナト-エチルエステル、2-メチル-アクリル酸-2-イソシアナト-エチルエステル、アクリル酸-2-イソシアナト-プロピルエステル、2-メチル-アクリル酸-2-イソシアナト-プロピルエステル、アクリル酸-3-イソシアナト-プロピルエステル、2-メチル-アクリル酸-3-イソシアナト-プロピルエステルが好ましい。また、上記イソシアネート化合物は、単独で使用しても複数を併用してもよい。
 これらのエチレン性不飽和結合を有するイソシアネート化合物は、どのような方法によって製造されたイソシアネート化合物であってもよく、公知の方法を用いて製造することができる。
<式(1)で表される化合物>
 本発明における下記式(1)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000010
(式中、Rはa価の有機基を表し、Rは一価の有機基を表し、aは1または2の整数を表す。)
 上記式(1)において、Rは、好ましくは炭素数2~10の脂肪族基、または炭素数6~10の芳香族基である。具体的には、脂肪族基の例としては、メタン、エタン、プロパン、ブタン、ヘプタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の化合物からa個の水素原子を除いた残基が挙げられ、芳香族基の例としては、ベンゼン、メチルベンゼン、エチルベンゼン、ブチルベンゼン、オクチルベンゼン、ノニルベンゼン、ジフェニル、ターフェニル、フェニルプロピルベンゼン、ジ(フェニルプロピル)ベンゼン、ジフェニルエーテル等の化合物からa個の水素原子を除いた残基が挙げられる。
 上記式(1)において、Rは、好ましくは、炭素数2~10の脂肪族基または炭素数6~25の芳香族基である。具体的には、脂肪族基の例としては、メタン、エタン、プロパン、ブタン、ヘプタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の化合物からa個の水素原子を除いた残基が挙げられ、芳香族基の例としては、ベンゼン、メチルベンゼン、エチルベンゼン、ブチルベンゼン、オクチルベンゼン、ノニルベンゼン、ジフェニル、ターフェニル、フェニルプロピルベンゼン、ジ(フェニルプロピル)ベンゼン、ジフェニルエーテル等の化合物からa個の水素原子を除いた残基が挙げられる。
 以上の好ましいR、Rを考慮すると、上記式(1)で表される化合物としては、具体的には、酢酸エチル、酢酸ブチル、酢酸ヘキシル、プロピオン酸メチル、酪酸エチル、酪酸ブチル、吉草酸エチル、吉草酸ブチル、ヘキサン酸エチル、オクタン酸エチル、カプリン酸ブチル、酢酸フェニル、酢酸ベンジル、安息香酸メチル、安息香酸エチル、安息香酸フェニル、安息香酸ベンジル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ベンジルブチル等が挙げられる。
 また、上記式(1)で表される化合物は、エチレン性不飽和結合を有する化合物と、後述するヒドロキシ化合物との反応生成物であってもよい。具体的には、例えば、エチレン性不飽和結合を有する化合物が上記式(3)で表される化合物であって、ヒドロキシ化合物が下記式(16)で表される化合物であって、上記式(1)で表される化合物がこれらの反応生成物である場合、上記式(1)で表される化合物は下記式(14)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000011
[式中、Rは上記式(1)で定義した基を表す。]
Figure JPOXMLDOC01-appb-C000012
[式中、Rは上記式(1)で定義した基を表し、R、R、及びRは上記式(3)で定義した基を表す。]
<ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物>
 本発明の、ゲル浸透クロマトグラフィー(GPC)による測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物は、その構造を完全に特定することは難しいが、本願発明者らは、下記式(15)で表される1-ナイロン体構造を主骨格とする化合物と推定している。
Figure JPOXMLDOC01-appb-C000013
[式中、R29はイソシアネート化合物から1つのイソシアネート基を除いた残基を表し、wは1以上の整数を表す。また、末端基は記載していない。]
 上記式(15)におけるR29はイソシアネート化合物から1つのイソシアネート基を除いた残基を表すが、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基であってもよく、具体的には、エチレン性不飽和結合を有する化合物が上記式(3)で表される化合物の場合、上記式(15)におけるR29は下記式(8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000014
[式中、X、R、R、及びRは、上記式(3)で定義した基を表す。]
 また、上記式(15)におけるR29の、イソシアネート化合物から1つのイソシアネート基を除いた残基は、前記エチレン性不飽和結合を有するイソシアネート化合物以外のイソシアネート化合物からイソシアネート基を除いた残基であってもよい。
 その場合のイソシアネート化合物としては、例えば、2官能のジイソシアネート化合物の場合は、炭素数4~30の脂肪族ジイソシアネート、炭素数8~30の脂環族ジイソシアネート、炭素数8~30の芳香族基を含有するジイソシアネートが好ましく使用され、具体的には、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,4-ジイソシアナト-2-メチルブタン、1,6-ヘキサメチレンジイソシアネート、1,6-ジイソシアナト-2,5-ジメチルヘキサン、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、リジンエチルエステルジイソシアネート等の炭素数4~30の脂肪族ジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、水添テトラメチルキシリレンジイソシアネート、ノルボルネンジイソシアネート等の炭素数8~30の脂環族ジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ナフタレンジイソシアネート等の炭素数8~30の芳香族基を含有するジイソシアネートが挙げられる。
 なお、前記した化合物に構造異性体が存在する場合は、その構造異性体も前記例に含まれる。また、例えば、3官能のジイソシアネート化合物としては、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートヘキサン、1,8-ジイソシアナト-4-(イソシアナトメチル)-2,4,7-トリメチルオクタン、1,5-ジイソシアナト-3-(イソシアナトメチル)ペンタン、1,6,11-トリイソシアナトウンデカン、1,4,7-トリイソシアナトヘプタン、1,2,2-トリイソシアナトブタン、1,2,6-トリイソシアナトヘキサン、1-イソシアナト-2,2-ビス(イソシアナトメチル)ブタン、1,3,5-トリイソシアナトシクロヘキサン、1,7-ジイソシアナト-4-(3-イソシアナトプロピル)ヘプタン、1,3-ジイソシアナト-2-(イソシアナトメチル)-2-メチルプロパン、1,3,5-トリイソシアナトベンゼン、1,3,5-トリイソシアナト-2-メチルベンゼン、1,3,5-トリス(1-イソシアナトプロパン-2-イル)ベンゼン、1,3,5-トリス(1-イソシアナトプロパン-2-イル)-2-メチルベンゼン、1,3,5-トリス(1-イソシアナトメチル)-2-メチルベンゼン、2,2’-((2-イソシアナト-1,3-フェニレン)ビス(メチレン))ビス(イソシアネートベンゼン)等を挙げることができる。
 上記したように、当該化合物はGPC測定によって定義される。具体的には、例えば、展開溶媒をテトラヒドロフランとしたGPCにおいて、分子量の標準物質としてポリスチレンを用いた場合に、イソシアネートの10量体以上の領域に、波長254nmのUV吸収を有するピークである。ゲル浸透クロマトグラフィー(GPC)による測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物の場合、当該組成物での含有量を直接測定することは難しいが、例えば、GPCにUV検出器と示差屈折率検出器を備え付けておき(並列に接続されていても直列に接続されていてもよい)、示差屈折率での、2官能以上のイソシアネートに相当するピークの面積(A)と、ゲル浸透クロマトグラフィーによる測定スペクトルにおいてイソシアネート10量体以上の領域にUV吸収(波長254nm)を持つ化合物に相当するピークの面積(B)から、(B)/(A)によって算出される値をゲル浸透クロマトグラフィーによる測定スペクトルにおいてイソシアネート10量体以上の領域にUV吸収を持つ化合物の濃度とすることができる。
<イソシアヌレート基および/またはビウレット基を含有する化合物>
 イソシアヌレート基および/またはビウレット基を含有する化合物は、下記式(6’)または式(7’)で表される基を含有する化合物である。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 前記式中、R29は2官能以上のイソシアネート化合物から1つのイソシアネート基を除いた残基を表す。
 イソシアヌレート基および/またはビウレット基を有する化合物を構成するイソシアネートは、前記式(6’)または式(7’)で表されるイソシアネートであっても、それ以外のイソシアネートであってもよいが、好ましくは、前記式(6’)または式(7’)で表されるイソシアネート以外のイソシアネートである。前記式(6’)または式(7’)で表されるイソシアネート以外のイソシアネートの場合も、前記<ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物>の項で挙げたイソシアネートを好ましく使用できる。
 イソシアネート組成物中の、イソシアヌレート基またはビウレット基を含有する化合物の量は、イソシアヌレート基および/またはビウレット基を含有する化合物を添加した量としてもよいし、展開溶媒をテトラヒドロフランとしたGPCによって定量することもできる。GPCで定量する方法としては、具体的には、GPCに示差屈折率検出器を備え付けておき、示差屈折率での、前記式(6’)または式(7’)で表されるイソシアネート化合物に相当するピークの面積(A)と、イソシアヌレート基および/またはビウレット基を含有する化合物に相当するピークの面積(B)から、(B)/(A)によって算出される。
<芳香環を構成する不飽和結合以外の不飽和結合を有する化合物>
 本発明のイソシアネート組成物は、前記エチレン性不飽和結合を有するイソシアネートと共に、前記エチレン性不飽和結合を有するイソシアネート以外の化合物であって、芳香環を構成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物、及び/又は後述する不活性化合物と、を含有する。なお、ここでいう芳香環を構成する不飽和結合以外の不飽和結合を有する化合物は、上で定義した、式(1)で表される化合物、またはゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物、イソシアヌレート基および/またはビウレット基を有する化合物でない。
 本発明に係る芳香環を構成する不飽和結合以外の不飽和結合を有する化合物(以下、「不飽和結合化合物」ともいう)は、芳香環を構成する不飽和結合以外の不飽和結合を少なくとも1つ有し、その不飽和結合は、好ましくは、炭素-酸素間の不飽和結合である。
 このような化合物としては、例えば、炭酸誘導体を挙げることができる。
(炭酸誘導体)
 本発明において、炭酸誘導体とは、下記式(4)で表される化合物を指す。
Figure JPOXMLDOC01-appb-C000017
[式中、Z、Zは、各々独立に、ヒドロキシ化合物から水素原子を除いた残基、又は、有機基で置換されていてもよいアミノ基を示す。]
 上記式(4)で表される化合物としては、例えば、尿素化合物、N-無置換カルバミン酸エステル、炭酸エステル、及び、N-置換カルバミン酸エステルが挙げられる。
≪尿素化合物≫
 尿素化合物とは、分子中に尿素結合を少なくとも1つ有する化合物である。本発明のイソシアネート組成物に用いる尿素化合物は、好ましくは、尿素結合を1つ有する化合物であり、下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000018
[式中、R、R10、R11及びR12は、各々独立に、炭素原子数1~20の脂肪族基、炭素原子数7~20の、芳香族化合物で置換された脂肪族基、炭素原子数6~20の芳香族基、又は水素原子を示し、RとR11を構成する炭素原子数の合計は0~20の整数であり、R10とR12を構成する炭素原子数の合計は0~20の整数である。]
 R、R10、R11及びR12としては、水素原子;メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基等の鎖状アルキル基;フェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ビフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジペンチルフェニル基、ジヘキシルフェニル基、ジヘプチルフェニル基、ターフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基等の炭素原子数が6~20の芳香族基;フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基、フェニルノニル基等の炭素原子数が7~20のアラルキル基を例示することができる。
 式(5)で表される尿素化合物としては、尿素、メチル尿素、エチル尿素、プロピル尿素、ブチル尿素、ペンチル尿素、ヘキシル尿素、ヘプチル尿素、オクチル尿素、ノニル尿素、デシル尿素、ウンデシル尿素、ドデシル尿素、トリデシル尿素、テトラデシル尿素、ペンタデシル尿素、ヘキサデシル尿素、ヘプタデシル尿素、オクタデシル尿素、ノナデシル尿素、フェニル尿素、N-(メチルフェニル)尿素、N-(エチルフェニル)尿素、N-(プロピルフェニル)尿素、N-(ブチルフェニル)尿素、N-(ペンチルフェニル)尿素、N-(ヘキシルフェニル)尿素、N-(ヘプチルフェニル)尿素、N-(オクチルフェニル)尿素、N-(ノニルフェニル)尿素、N-(デシルフェニル)尿素、N-ビフェニル尿素、N-(ジメチルフェニル)尿素、N-(ジエチルフェニル)尿素、N-(ジプロピルフェニル)尿素、N-(ジブチルフェニル)尿素、N-(ジペンチルフェニル)尿素、N-(ジヘキシルフェニル)尿素、N-(ジヘプチルフェニル)尿素、N-ターフェニル尿素、N-(トリメチルフェニル)尿素、N-(トリエチルフェニル)尿素、N-(トリプロピルフェニル)尿素、N-(トリブチルフェニル)尿素、N-(フェニルメチル)尿素、N-(フェニルエチル)尿素、N-(フェニルプロピル)尿素、N-(フェニルブチル)尿素、N-(フェニルペンチル)尿素、N-(フェニルヘキシル)尿素、N-(フェニルヘプチル)尿素、N-(フェニルオクチル)尿素、N-(フェニルノニル)尿素、ジメチル尿素、ジエチル尿素、ジプロピル尿素、ジブチル尿素、ジペンチル尿素、ジヘキシル尿素、ジヘプチル尿素、ジオクチル尿素、ジノニル尿素、ジデシル尿素、ジウンデシル尿素、ジドデシル尿素、ジトリデシル尿素、ジテトラデシル尿素、ジペンタデシル尿素、ジヘキサデシル尿素、ジヘプタデシル尿素、ジオクタデシル尿素、ジノナデシル、ジフェニル尿素、ジ(メチルフェニル)尿素、ジ(エチルフェニル)尿素、ジ(プロピルフェニル)尿素、ジ(ブチルフェニル)尿素、ジ(ペンチルフェニル)尿素、ジ(ヘキシルフェニル)尿素、ジ(ヘプチルフェニル)尿素、ジ(オクチルフェニル)尿素、ジ(ノニルフェニル)尿素、ジ(デシルフェニル)尿素、ジ(ビフェニル)尿素、ジ(ジメチルフェニル)尿素、ジ(ジエチルフェニル)尿素、ジ(ジプロピルフェニル)尿素、ジ(ジブチルフェニル)尿素、ジ(ジペンチルフェニル)尿素、ジ(ジヘキシルフェニル)尿素、ジ(ジヘプチルフェニル)尿素、ジ(ターフェニル)尿素、ジ(トリメチルフェニル)尿素、ジ(トリエチルフェニル)尿素、ジ(トリプロピルフェニル)尿素、ジ(トリブチルフェニル)尿素、ジ(フェニルメチル)尿素、ジ(フェニルエチル)尿素、ジ(フェニルプロピル)尿素、ジ(フェニルブチル)尿素、ジ(フェニルペンチル)尿素、ジ(フェニルヘキシル)尿素、ジ(フェニルヘプチル)尿素、ジ(フェニルオクチル)尿素、ジ(フェニルノニル)尿素等が挙げられる
 これらの中でも、上記式(5)において、R、R10、R11及びR12が水素原子である、尿素が好ましい。
≪N-無置換カルバミン酸エステル≫
 本発明においては、N-無置換カルバミン酸エステルとしては、下記式(6)で表される化合物が好ましく使用される。
Figure JPOXMLDOC01-appb-C000019
[式中、R13は、炭素原子数1~20の脂肪族基、炭素原子数7~20の、芳香族基で置換された脂肪族基、炭素原子数6~20の芳香族基を示す。]
 R13の脂肪族基の例としては、活性水素を含まない基であって、鎖状炭化水素基、環状炭化水素基、及び、鎖状炭化水素基と環状炭化水素基とから構成される基が挙げられる。R13の脂肪族基は、炭素及び水素以外の原子を含んでいてもよく、当該原子は、特定の非金属原子(例えば、酸素、窒素、硫黄、ケイ素又はハロゲン原子)であることが好ましい。R13の脂肪族基は、炭素及び水素以外の原子として酸素原子を含む脂肪族基か、炭素及び水素以外の原子を含まない脂肪族基であることが好ましい。
 R13の、芳香族基で置換された脂肪族基の例としては、炭素原子数1~14の鎖状又は分岐鎖状アルキル基が、炭素原子数6~19の芳香族基で置換された基が挙げられる。該芳香族基で置換された脂肪族基は、炭素及び水素以外の原子を含んでいてもよい。鎖状又は分岐鎖状アルキル基は、活性水素を含まない基であり、炭素及び水素以外の原子を含んでいてもよく、当該原子は、特定の非金属原子(酸素、窒素、硫黄、ケイ素又はハロゲン原子)であることが好ましい。また、芳香族基の例としては、活性水素を含まない基であって、単環式芳香族基、縮合多環式芳香族基、架橋環式芳香族基、環集合芳香族基、ヘテロ環式芳香族基等が挙げられる。芳香族基は、炭素及び水素以外の原子を含んでいてもよく、当該原子は、特定の非金属原子(酸素、窒素、硫黄、ケイ素又はハロゲン原子)であることが好ましい。芳香族基は、好ましくは、置換又は無置換のフェニル基、置換又は無置換のナフチル基、置換又は無置換のアントリル基である。脂肪族基及び芳香族基は、炭素及び酸素以外の原子として酸素原子を含む基、又は炭素及び水素以外の原子を含まない炭化水素基であることが好ましい。
 R13の芳香族基の例としては、活性水素を含まない基であって、単環式芳香族基、縮合多環式芳香族基、架橋環式芳香族基、環集合芳香族基、ヘテロ環式芳香族基等が挙げられる。芳香族基が、炭素及び水素以外の原子を含む場合は、該原子は特定の非金属原子(酸素、窒素、硫黄、ケイ素又はハロゲン原子)で構成される。芳香族基は、好ましくは、置換又は無置換のフェニル基、置換又は無置換のナフチル基、置換又は無置換のアントリル基である。前記置換基の例としては、水素原子、脂肪族基(鎖状炭化水素基、環状炭化水素基、及び、鎖状炭化水素基と環状炭化水素基とから構成される基)、脂肪族基と芳香族基とから構成される基を挙げることができる。芳香族基は、炭素及び酸素以外の原子として酸素原子を含む基、又は炭素及び水素以外の原子を含まない炭化水素基であることが好ましい。
 R13の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル、エイコシル基等の炭素原子数が1~50の鎖状アルキル基;フェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ビフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジペンチルフェニル基、ジヘキシルフェニル基、ジヘプチルフェニル基、ターフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基等の炭素原子数が6~50の芳香族基;フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基、フェニルノニル基等の炭素原子数が7~50のアラルキル基等を挙げることができる。
 上記式(6)で表されるN-無置換カルバミン酸エステルの具体例としては、カルバミン酸メチル、カルバミン酸エチル、カルバミン酸プロピル、カルバミン酸ブチル、カルバミン酸ペンチル、カルバミン酸ヘキシル、カルバミン酸ヘプチル、カルバミン酸オクチル、カルバミン酸ノニル、カルバミン酸デシル、カルバミン酸ウンデシル、カルバミン酸ドデシル、カルバミン酸トリデシル、カルバミン酸テトラデシル、カルバミン酸ペンタデシル、カルバミン酸ヘキサデシル、カルバミン酸ヘプタデシル、カルバミン酸オクタデシル、カルバミン酸ノナデシル、カルバミン酸フェニル、カルバミン酸(メチルフェニル)、カルバミン酸(エチルフェニル)、カルバミン酸(プロピルフェニル)、カルバミン酸(ブチルフェニル)、カルバミン酸(ペンチルフェニル)、カルバミン酸(ヘキシルフェニル)、カルバミン酸(ヘプチルフェニル)、カルバミン酸(オクチルフェニル)、カルバミン酸(ノニルフェニル)、カルバミン酸(デシルフェニル)、カルバミン酸(ビフェニル)、カルバミン酸(ジメチルフェニル)、カルバミン酸(ジエチルフェニル)、カルバミン酸(ジプロピルフェニル)、カルバミン酸(ジブチルフェニル)、カルバミン酸(ジペンチルフェニル)、カルバミン酸(ジヘキシルフェニル)、カルバミン酸(ジヘプチルフェニル)、カルバミン酸(ターフェニル)、カルバミン酸(トリメチルフェニル)、カルバミン酸(トリエチルフェニル)、カルバミン酸(トリプロピルフェニル)、カルバミン酸(トリブチルフェニル)、カルバミン酸(フェニルメチル)、カルバミン酸(フェニルエチル)、カルバミン酸(フェニルプロピル)、カルバミン酸(フェニルブチル)、カルバミン酸(フェニルペンチル)、カルバミン酸(フェニルヘキシル)、カルバミン酸(フェニルヘプチル)、カルバミン酸(フェニルオクチル)、カルバミン酸(フェニルノニル)及びこれらの構造異性体等を挙げることができる。
≪炭酸エステル≫
 本明細書において、炭酸エステルとは、炭酸(CO(OH))の、1又は2個の水素原子を、脂肪族基又は芳香族基で置換した化合物をいう。本発明においては、下記式(7)で表される化合物が好ましく使用される。
Figure JPOXMLDOC01-appb-C000020
[式中、R14及びR15は、各々独立に、炭素原子数1~20の脂肪族基、炭素原子数7~20の、芳香族基で置換された脂肪族基、炭素原子数6~20の芳香族基を示す。]
 R14及びR15の例としては、上記式(6)のR13と同様の基を挙げることができる。
 炭酸エステルの具体例としては、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジブチル、炭酸ジペンチル、炭酸ジヘキシル、炭酸ジヘプチル、炭酸ジオクチル、炭酸ジノニル、炭酸ジデシル、炭酸ジウンデシル、炭酸ジドデシル、炭酸ジトリデシル、炭酸ジテトラデシル、炭酸ジペンタデシル、炭酸ジヘキサデシル、炭酸ジヘプタデシル、炭酸ジオクタデシル、炭酸ジノナデシル、炭酸ジフェニル、炭酸ジ(メチルフェニル)、炭酸ジ(エチルフェニル)、炭酸ジ(プロピルフェニル)、炭酸ジ(ブチルフェニル)、炭酸ジ(ペンチルフェニル)、炭酸ジ(ヘキシルフェニル)、炭酸ジ(ヘプチルフェニル)、炭酸ジ(オクチルフェニル)、炭酸ジ(ノニルフェニル)、炭酸ジ(デシルフェニル)、炭酸ジ(ビフェニル)、炭酸ジ(ジメチルフェニル)、炭酸ジ(ジエチルフェニル)、炭酸ジ(ジプロピルフェニル)、炭酸ジ(ジブチルフェニル)、炭酸ジ(ジペンチルフェニル)、炭酸ジ(ジヘキシルフェニル)、炭酸ジ(ジヘプチルフェニル)、炭酸ジ(フェニルフェニル)、炭酸ジ(トリメチルフェニル)、炭酸ジ(トリエチルフェニル)、炭酸ジ(トリプロピルフェニル)、炭酸ジ(トリブチルフェニル)、炭酸ジ(フェニルメチル)、炭酸ジ(フェニルエチル)、炭酸ジ(フェニルプロピル)、炭酸ジ(フェニルブチル)、炭酸ジ(フェニルペンチル)、炭酸ジ(フェニルヘキシル)、炭酸ジ(フェニルヘプチル)、炭酸ジ(フェニルオクチル)、炭酸ジ(フェニルノニル)及びこれらの構造異性体等を挙げることができる。
≪N-置換カルバミン酸エステル≫
 N-置換カルバミン酸エステルとしては、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式中、Rは、前記エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基を示し、Rは有機基を示す。)
 Rは、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基(-NCO)を除いた残基であり、エチレン性不飽和結合を有する有機基である。
 式(2)で表される化合物は、エチレン性不飽和結合を有するイソシアネート化合物とヒドロキシ化合物との反応によって製造することができる。例えば、エチレン性不飽和結合を有するイソシアネート化合物と、該エチレン性不飽和結合を有するイソシアネート化合物のイソシアネート基に対して化学量論比で1以下のヒドロキシ化合物を混合して式(2)に相当する化合物を製造し、精製等を行うことなく、本発明の組成物の調製に使用することができる。
 したがって、エチレン性不飽和結合を有するイソシアネート化合物とヒドロキシ化合物との反応によって、式(2)で表される化合物を製造する場合であって、本発明におけるエチレン性不飽和結合を有するイソシアネート化合物として上記式(3)で表される化合物を用いる場合には、上記式(2)におけるRは下記式(8)で表される基である。
Figure JPOXMLDOC01-appb-C000022
[式中、Xは有機基を表し、R、R、及びR、R、及びRは、上記式(3)で定義した基を表す。]
 Rはヒドロキシ化合物に由来し、ヒドロキシ化合物を構成するヒドロキシ基(-OH)を除いた残基として表すことができる。以下、Rの説明を簡便にするために、Rにヒドロキシ基を付加したヒドロキシ化合物(ROH)としてRを定義する。なお、ここで定義するヒドロキシ化合物ROHは、上記式((2)におけるR、上記式(16)におけるRをも表す。
 ヒドロキシ化合物(ROH)は、アルコールであっても芳香族ヒドロキシ化合物であってもよい。
 ヒドロキシ化合物(ROH)がアルコールの場合、下記式(9)で表される化合物である。
Figure JPOXMLDOC01-appb-C000023
[式中、R16は、s個のヒドロキシ基で置換された、炭素原子数1~20の脂肪族基、又は炭素原子数7~20の、芳香族基が結合した脂肪族基からなる基を示し、sは1~3の整数を示す。ただし、R16はヒドロキシ基以外に活性水素を有しない基である。]
 R16の脂肪族基の例としては、鎖状炭化水素基、環状炭化水素基、及び、鎖状炭化水素基と環状炭化水素基とが結合した基(例えば、鎖状炭化水素基で置換された環状炭化水素基、環状炭化水素基で置換された鎖状炭化水素基などを指す)が挙げられる。R16の脂肪族基は、炭素原子及び水素原子以外の原子を含んでいてもよく、当該原子は、特定の非金属原子(酸素、窒素、硫黄、ケイ素又はハロゲン原子)であることが好ましい。R16の脂肪族基は、炭素及び水素以外の原子として酸素を含む脂肪族基か、炭素及び水素以外の原子を含まない脂肪族基であることが好ましい。
 また、芳香族基が結合した脂肪族基の例としては、炭素原子数6~12の芳香族基が結合したアルキル基、シクロアルキル基が挙げられる。脂肪族基に結合した芳香族基の例としては、単環式芳香族基、縮合多環式芳香族基、架橋環式芳香族基、環集合芳香族基、ヘテロ環式芳香族基等が挙げられる。好ましくは、置換又は無置換のフェニル基、置換又は無置換のナフチル基、置換又は無置換のアントリル基である。芳香族基は、炭素原子および水素原子以外の原子を有していてもよく、当該原子は、特定の非金属原子(酸素、窒素、硫黄、ケイ素、又はハロゲン原子)であることが好ましい。
 このようなR16としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基及びこれらの構造異性体等の鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基及びこれらの構造異性体等のシクロアルキル基;メチルシクロペンチル基、エチルシクロペンチル基、メチルシクロヘキシル基、エチルシクロヘキシル基、プロピルシクロヘキシル基、ブチルシクロヘキシル基、ペンチルシクロヘキシル基、ヘキシルシクロヘキシル基、ジメチルシクロヘキシル基、ジエチルシクロヘキシル基、ジブチルシクロヘキシル基及びこれらの構造異性体等の鎖状アルキル基とシクロアルキル基とから構成される基;フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基、フェニルノニル基及びこれらの構造異性体等のアラルキル基等を挙げることができる。
 これらのアルコールを用いて、式(1)の化合物を製造する場合、これらのアルコールのうち、工業的な使用を考えれば、アルコール性ヒドロキシ基(上記ヒドロキシ化合物を構成する、芳香環以外の炭素原子に直接結合するヒドロキシ基)を1個又は2個有するアルコールが、一般に低粘度であるため好ましく、上記アルコール性ヒドロキシ基が1個である、モノアルコールがより好ましい。
 アルコールとして、具体的には、国際公開2014/069605号パンフレットの[0069]にアルコールとして例示されている化合物が挙げられる。
 具体的には、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ドデシルアルコール、オクタデシルアルコール及びこれらの構造異性体等の無置換アルキルアルコール;シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール及びこれらの構造異性体等の無置換シクロアルキルアルコール;メチルシクロペンチルアルコール、エチルシクロペンチルアルコール、メチルシクロヘキシルアルコール、エチルシクロヘキシルアルコール、プロピルシクロヘキシルアルコール、ブチルシクロヘキシルアルコール、ペンチルシクロヘキシルアルコール、ヘキシルシクロヘキシルアルコール、ジメチルシクロヘキシルアルコール、ジエチルシクロヘキシルアルコール、ジブチルシクロヘキシルアルコール及びこれらの構造異性体等の鎖状アルキル基とシクロアルキルアルコールとから構成されるアルコール;フェニルメチルアルコール、フェニルエチルアルコール、フェニルプロピルアルコール、フェニルブチルアルコール、フェニルペンチルアルコール、フェニルヘキシルアルコール、フェニルヘプチルアルコール、フェニルオクチルアルコール、フェニルノニルアルコール及びこれらの構造異性体等の芳香族基で置換されたアルキルアルコールなどを挙げることができる。
 これらの中でも、入手のし易さ、原料や生成物の溶解性等の観点から、炭素原子数1~20のアルキルアルコールが好ましく使用される。
 上記ヒドロキシ化合物(ROH)が芳香族ヒドロキシ化合物の場合、工業的に使用することができ、一般的に低粘度である点から、1~3価(すなわち、芳香環に結合したヒドロキシ基が1個から3個の整数個)の芳香族ヒドロキシ化合物が好ましい。芳香族ヒドロキシ化合物として、例えば、下記式(10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
[式中、環Aは、置換基を有していてもよい芳香族炭化水素環を示し、環Aは、単環でも多環でもよい。tは、1~3の整数を示す。]
 上記式(10)中、tは、1であることが好ましい。
 環Aが有することができる置換基としては、ハロゲン原子、脂肪族基、及び芳香族基を挙げることができる。例えば、置換基としては、環式炭化水素基(単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基)、ヘテロ環基、ヘテロ環式スピロ基、ヘテロ架橋環基等の環式基、非環式炭化水素基、及び、非環式炭化水素基と環式基とがそれぞれ1種以上結合した基を挙げることができる。
 このような置換基のなかで、本発明で好ましく使用できる置換基は、副反応の起こりにくさを考えれば、非環式炭化水素基、及び環式炭化水素基(単環式炭化水素基、縮合多環式炭化水素基、架橋環式炭化水素基、スピロ炭化水素基、環集合炭化水素基、側鎖のある環式炭化水素基)からなる群より選ばれる基、並びに前記群から選ばれる少なくとも2種以上の基が互いに結合した基(互いに置換した基)である。
 好ましい環Aを置換する置換基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、エーテル基(例えば、置換又は無置換の、アルキルエーテル基、アリールエーテル基、アラルキルエーテル基)からなる群より選ばれる基、2種以上の上記群から選ばれる基が互いに結合した基;2種以上の上記群より選ばれる基が飽和炭化水素結合又はエーテル結合で連結された基、又はハロゲン原子であって、環Aを構成する炭素原子数と、環Aを置換する全ての置換基を構成する炭素原子数との合計が6~50の整数となる基等を挙げることができる。
 環Aとしては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ナフタセン環、クリセン環、ピレン環、トリフェニレン環、ペンタレン環、アズレン環、ヘプタレン環、インダセン環、ビフェニレン環、アセナフチレン環、アセアントリレン環、アセフェナントリレン環等を挙げることができる。環Aは、好ましくは、ベンゼン環及びナフタレン環から選ばれる少なくとも1つの構造を含む。
 これらの芳香族ヒドロキシ化合物を用いて、式(1)の化合物を製造する場合、工業的な使用の観点から、入手が容易であるベンゼン環を骨格とする芳香族ヒドロキシ化合物が好ましい。このような芳香族ヒドロキシ化合物としては、下記式(17)で表される芳香族ヒドロキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
[式中、R17、R18、R19、R20及びR21は、各々独立に、鎖状アルキル基、シクロアルキル基、アリール基、芳香族基が結合した鎖状アルキル基、芳香族基が結合したシクロアルキル基、エーテル基からなる群から選ばれる基(置換又は無置換の、アルキルエーテル、アリールエーテル又は芳香族基が結合したアルキルエーテル);2種以上の上記群から選ばれる基が互いに結合した基;2種以上の上記群から選ばれる基が飽和脂肪族結合又はエーテル結合で連結された基;ハロゲン原子;又は水素原子を示し、R17~R21を構成する炭素原子数の合計は0~44の整数である。]
 上記式(17)において、好ましいR17~R21は、下記(i)~(v)に示す基から、各々独立に選ばれる基である。
(i)水素原子、
(ii)ハロゲン原子、
(iii)構成する炭素原子数が1~44の炭素官能基であり、α位の炭素原子に、各々独立に、炭素原子数1~43の鎖状アルキル基、炭素原子数1~43のシクロアルキル基、炭素原子数1~43のアルコキシ基、炭素原子数2~43であって末端にヒドロキシ基を有しないポリオキシアルキレンアルキルエーテル基、炭素原子数6~43のアリール基、炭素原子数7~43の、芳香族基が結合したアルキル基、炭素原子数7~43の、芳香族基が結合したシクロアルキル基、及び炭素原子数7~43の芳香族基が結合したアルキルオキシ基、から選ばれる1種以上の基が結合した基、
(iv)炭素原子数1~44の芳香族基であり、芳香環を構成する炭素原子に、各々独立に、水素原子、炭素原子数1~38の鎖状アルキル基、炭素原子数4~38のシクロアルキル基、炭素原子数1~38のアルコキシ基、炭素原子数2~38であって末端にヒドロキシ基を有しないポリオキシアルキレンアルキルエーテル基、炭素原子数6~38の芳香族基、炭素原子数7~38の、芳香族基が結合したアルキル基、炭素原子数7~38の、芳香族基が結合したシクロアルキル基、及び炭素原子数7~38の、芳香族基が結合したアルキルオキシ基、から選ばれる1種以上の基が結合した基、
(v)炭素原子数1~44の酸素官能基であり、酸素原子に、炭素原子数1~44のアルキル基、炭素原子数1~44のシクロアルキル基、炭素原子数1~44のアルコキシ基、炭素原子数2~44であって末端にヒドロキシ基を有しないポリオキシアルキレンアルキルエーテル基、炭素原子数6~44の芳香族基、炭素原子数7~44の、芳香族基が結合したアルキル基、及び炭素原子数7~44のアラルキルオキシ基、から選ばれる1種以上の基が結合した基。
 ここで、「アラルキルオキシ基」とは、上で定義したアラルキル基に酸素原子が結合した基を表している。
 R17~R21の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基及びこれらの構造異性体等の鎖状アルキル基;シクロペンチル基、シクロヘキチル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;メチルシクロペンチル基、エチルシクロペンチル基、メチルシクロヘキシル基、エチルシクロヘキシル基、プロピルシクロヘキシル基、ブチルシクロヘキシル基、ペンチルシクロヘキシル基、ヘキシルシクロヘキシル基、ジメチルシクロヘキシル基、ジエチルシクロヘキシル基、ジブチルシクロヘキシル基及びこれらの構造異性体等の鎖状アルキル基とシクロアルキル基とから構成される基;メトキシ基、エトキシ基、プロポキシ基、ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基及びこれらの構造異性体等の鎖状アルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基等のシクロアルキルオキシ基;メチルシクロペンチルオキシ基、エチルシクロペンチルオキシ基、メチルシクロヘキシルオキシ基、エチルシクロヘキシルオキシ基、プロピルシクロヘキシルオキシ基、ブチルシクロヘキシルオキシ基、ペンチルシクロヘキシルオキシ基、ヘキシルシクロヘキシルオキシ基、ジメチルシクロヘキシルオキシ基、ジエチルシクロヘキシルオキシ基、ジブチルシクロヘキシルオキシ基及びこれらの構造異性体等の鎖状アルキル基とシクロアルキル基とから構成される基に対応するアルキルオキシ基;フェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ビフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、ジブチルフェニル基、ジペンチルフェニル基、ジヘキシルフェニル基、ジヘプチルフェニル基、ターフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、トリブチルフェニル基及びこれらの構造異性体等の芳香族基;1-メチル-1-フェニルエチル基、1-フェニルエチル基等の芳香族基とアルキル基とから構成される基;フェノキシ基、メチルフェノキシ基、エチルフェノキシ基、プロピルフェノキシ基、ブチルフェノキシ基、ペンチルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、フェニルフェノキシ基、ジメチルフェノキシ基、ジエチルフェノキシ基、ジプロピルフェノキシ基、ジブチルフェノキシ基、ジペンチルフェノキシ基、ジヘキシルフェノキシ基、ジヘプチルフェノキシ基、ジフェニルフェノキシ基、トリメチルフェノキシ基、トリエチルフェノキシ基、トリプロピルフェノキシ基、トリブチルフェノキシ基及びこれらの構造異性体等の芳香族オキシ基;フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基、フェニルオクチル基、フェニルノニル基等のアラルキル基;フェニルメトキシ基、フェニルエトキシ基、フェニルプロピルオキシ基、フェニルブチルオキシ基、フェニルペンチルオキシ基、フェニルヘキシルオキシ基、フェニルヘプチルオキシ基、フェニルオクチルオキシ基、フェニルノニルオキシ基及びこれらの構造異性体等のアラルキルオキシ基等を挙げることができる。
<不活性化合物>
 本発明のイソシアネート組成物は、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の化合物(以下、「不活性化合物」ともいう。)を含有していてもよい。本明細書において、「不活性化合物」とは、イソシアネート組成物の貯蔵中及びポリウレタンの生成反応下において、イソシアネート化合物と反応しない化合物を意味する。
 不活性化合物は、下記化合物A~Gに分類される。炭化水素化合物は化合物A及び化合物Bに、エーテル化合物及びスルフィド化合物は下記化合物C~Eに、ハロゲン化炭化水素化合物は下記化合物Fに、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物は下記化合物Gにそれぞれ分類される。なお、ここに挙げる化合物A~化合物Gは芳香族環以外に不飽和結合を含まず、上述した「式(1)で表される化合物」「ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物」「イソシアヌレート基および/またはビウレット基を有する化合物」、「不飽和結合化合物」は含まれない。
(化合物A)
 化合物Aは、直鎖状、分岐鎖状又は環状構造を有する脂肪族炭化水素化合物である。化合物Aは、好ましくは、炭素数5~20の炭化水素化合物である。化合物Aの具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、プロピルシクロヘキサン、ブチルシクロヘキサン、ペンチルシクロヘキサン、ヘキシルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、ジブチルシクロヘキサン及びこれらの構造異性体等が挙げられる。
(化合物B)
 化合物Bは、脂肪族炭化水素基で置換されていてもよい芳香族炭化水素化合物である。化合物Bは、好ましくは、炭素原子数5~20の炭化水素化合物である。化合物Bの具体例としては、ベンゼン、トルエン、エチルベンゼン、ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、オクチルベンゼン、ビフェニル、ターフェニル、ジフェニルエタン、(メチルフェニル)フェニルエタン、ジメチルビフェニル、ベンジルトルエン、ナフタレン、メチルナフタレン、エチルナフタレン、ブチルナフタレン及びこれらの構造異性体等が挙げられる。
(化合物C)
 化合物Cは、エーテル結合又はスルフィド結合と、脂肪族炭化水素基とを有する化合物であり、同種又は異種の脂肪族炭化水素化合物が、エーテル結合又はスルフィド結合を介して結合した化合物である。化合物Cは、好ましくは、炭素原子数2~20の化合物である。化合物Cの具体例としては、エチルエーテル、ブチルエーテル、オクチルエーテル、ノニルエーテル、デシルエーテル、メチルエチルエーテル、メチルブチルエーテル、メチルオクチルエーテル、メチルノニルエーテル、メチルデシルエーテル、エチルブチルエーテル、エチルオクチルエーテル、エチルノニルエーテル、エチルデシルエーテル、ブチルオクチルエーテル、ブチルノニルエーテル、ブチルデシルエーテル、オクチルノニルエーテル、オクチルデシルエーテル、ジシクロペンチルエーテル、ジシクロヘキシルエーテル、ジシクロオクチルエーテル、シクロヘキシルエチルエーテル、シクロヘキシルブチルエーテル、シクロヘキシルオクチルエーテル、シクロヘキシルノニルエーテル、シクロヘキシルデシルエーテル、テトラエチレングリコールジメチルエーテル及びこれらの構造異性体等の炭化水素化合物がエーテル結合を介して結合したエーテル類;エチルスルフィド、ブチルスルフィド、オクチルスルフィド、ノニルスルフィド、デシルスルフィド、メチルエチルスルフィド、メチルブチルスルフィド、メチルオクチルスルフィド、メチルノニルスルフィド、メチルデシルスルフィド、エチルブチルスルフィド、エチルオクチルスルフィド、エチルノニルスルフィド、エチルデシルスルフィド、ブチルオクチルスルフィド、ブチルノニルスルフィド、ブチルデシルスルフィド、オクチルノニルスルフィド、オクチルデシルスルフィド、ジシクロペンチルスルフィド、ジシクロヘキシルスルフィド、ジシクロオクチルスルフィド、シクロヘキシルエチルスルフィド、シクロヘキシルブチルスルフィド、シクロヘキシルオクチルスルフィド、シクロヘキシルノニルスルフィド、シクロヘキシルデシルスルフィド及びこれらの構造異性体等の炭化水素化合物がスルフィド結合を介して結合したスルフィド類が挙げられる。
(化合物D)
 化合物Dは、エーテル結合又はスルフィド結合と、芳香族炭化水素基とを有する化合物であり、同種又は異種の芳香族炭化水素化合物が、エーテル結合又はスルフィド結合を介して結合した化合物である。化合物Dは、好ましくは、炭素原子数2~20の化合物である。化合物Dの具体例としては、ジフェニルエーテル、(メチルフェニル)-フェニルエーテル、(エチルフェニル)-フェニルエーテル、(ブチルフェニル)-フェニルエーテル、(ヘキシルフェニル)-フェニルエーテル、(メチルフェニル)エーテル、(エチルフェニル)エーテル、(ブチルフェニル)エーテル、(ヘキシルフェニル)エーテル、ジベンジルエーテル、ジ(メチルベンジル)エーテル、ジ(エチルベンジル)エーテル、ジ(ブチルベンジル)エーテル、ジ(ペンチルベンジル)エーテル、ジ(ヘキシルベンジル)エーテル、ジ(オクチルベンジル)エーテル、ジフェニルエーテル及びこれらの構造異性体等の芳香族炭化水素化合物がエーテル結合を介して結合した芳香族エーテル類;ジフェニルスルフィド、(メチルフェニル)-フェニルスルフィド、(エチルフェニル)-フェニルスルフィド、(ブチルフェニル)-フェニルスルフィド、(ヘキシルフェニル)-フェニルスルフィド、(メチルフェニル)スルフィド、(エチルフェニル)スルフィド、(ブチルフェニル)スルフィド、(ヘキシルフェニル)スルフィド、ジ(メチルベンジル)スルフィド、ジ(エチルベンジル)スルフィド、ジ(ブチルベンジル)スルフィド、ジ(ペンチルベンジル)スルフィド、ジ(ヘキシルベンジル)スルフィド、ジ(オクチルベンジル)スルフィド、ジフェニルスルフィド、ジベンジルスルフィド及びこれらの構造異性体等の芳香族炭化水素化合物がスルフィド結合を介して結合した芳香族スルフィド類が挙げられる。
(化合物E)
 化合物Eは、エーテル結合又はスルフィド結合と、脂肪族炭化水素基と、芳香族炭化水素基とを有する化合物である。化合物Eは、好ましくは、炭素原子数7~20の化合物である。化合物Eの具体例としては、フェニル-メチル-エーテル、フェニル-エチル-エーテル、フェニル-ブチル-エーテル、フェニル-オクチル-エーテル、フェニル-ノニル-エーテル、フェニル-デシル-エーテル、ベンジル-エチル-エーテル、ベンジル-ブチル-エーテル、ベンジル-オクチル-エーテル、ベンジル-ノニル-エーテル、ベンジル-デシル-エーテル、(メチルフェニル)エチルエーテル、(メチルフェニル)ブチルエーテル、(メチルフェニル)オクチルエーテル、(メチルフェニル)ノニルエーテル、(メチルフェニル)デシルエーテル、(エチルフェニル)エチルエーテル、(エチルフェニル)ブチルエーテル、(エチルフェニル)オクチルエーテル、(エチルフェニル)ノニルエーテル、(エチルフェニル)デシルエーテル、(ブチルフェニル)エチルエーテル、(ブチルフェニル)ブチルエーテル、(ブチルフェニル)オクチルエーテル、(ブチルフェニル)ノニルエーテル、(ブチルフェニル)デシルエーテル及びこれらの構造異性体等が挙げられる。
(化合物F)
 化合物Fは、脂肪族炭化水素化合物を構成する少なくとも1つの水素原子、又は、芳香族炭化水素化合物を構成する少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化物である。化合物Fは、好ましくは、炭素原子数2~20の化合物である。化合物Fの具体例としては、クロロエタン、クロロプロパン、クロロブタン、クロロペンタン、クロロヘキサン、クロロヘプタン、クロロオクタン、クロロノナン、クロロデカン、クロロドデカン、クロロテトラデカン、クロロペンタデカン、クロロヘキサデカン、クロロオクタデカン、クロロノナデカン、クロロシクロペンタン、クロロシクロヘキサン、クロロシクロヘプタン、クロロシクロオクタン、クロロメチルシクロペンタン、クロロエチルシクロペンタン、クロロメチルシクロヘキサン、クロロエチルシクロヘキサン、クロロプロピルシクロヘキサン、クロロブチルシクロヘキサン、クロロペンチルシクロヘキサン、クロロヘキシルシクロヘキサン、クロロジメチルシクロヘキサン、クロロジエチルシクロヘキサン、クロロジブチルシクロヘキサン、クロロベンゼン、クロロメチルベンゼン、クロロエチルベンゼン、クロロブチルベンゼン、クロロペンチルベンゼン、クロロヘキシルベンゼン、クロロオクチルベンゼン、クロロビフェニル、クロロターフェニル、クロロジフェニルエタン、クロロ(メチルフェニル)フェニルエタン、クロロジメチルビフェニル、クロロベンジルトルエン、クロロナフタレン、クロロメチルナフタレン、クロロエチルナフタレン、クロロブチルナフタレン、ジクロロエタン、ジクロロプロパン、ジクロロブタン、ジクロロペンタン、ジクロロヘキサン、ジクロロヘプタン、ジクロロクタン、ジクロロノナン、ジクロロデカン、ジクロロドデカン、ジクロロテトラデカン、ジクロロペンタデカン、ジクロロヘキサデカン、ジクロロクタデカン、ジクロロノナデカン、ジクロロシクロペンタン、ジクロロシクロヘキサン、ジクロロシクロヘプタン、ジクロロシクロオクタン、ジクロロメチルシクロペンタン、ジクロロエチルシクロペンタン、ジクロロメチルシクロヘキサン、ジクロロエチルシクロヘキサン、ジクロロプロピルシクロヘキサン、ジクロロブチルシクロヘキサン、ジクロロペンチルシクロヘキサン、ジクロロヘキシルシクロヘキサン、ジクロロジメチルシクロヘキサン、ジクロロジエチルシクロヘキサン、ジクロロジブチルシクロヘキサン、ジクロロベンゼン、ジクロロメチルベンゼン、ジクロロエチルベンゼン、ジクロロブチルベンゼン、ジクロロペンチルベンゼン、ジクロロヘキシルベンゼン、ジクロロクチルベンゼン、ジクロロビフェニル、ジクロロターフェニル、ジクロロジフェニルエタン、ジクロロ(メチルフェニル)フェニルエタン、ジクロロジメチルビフェニル、ジクロロベンジルトルエン、ジクロロナフタレン、ジクロロメチルナフタレン、ジクロロエチルナフタレン、ジクロロブチルナフタレン、ジブロモエタン、ジブロモプロパン、ジブロモブタン、ジブロモペンタン、ジブロモヘキサン、ジブロモヘプタン、ジブロモクタン、ジブロモノナン、ジブロモデカン、ジブロモドデカン、ジブロモテトラデカン、ジブロモペンタデカン、ジブロモヘキサデカン、ジブロモクタデカン、ジブロモノナデカン、ジブロモシクロペンタン、ジブロモシクロヘキサン、ジブロモシクロヘプタン、ジブロモシクロオクタン、ジブロモメチルシクロペンタン、ジブロモエチルシクロペンタン、ジブロモメチルシクロヘキサン、ジブロモエチルシクロヘキサン、ジブロモプロピルシクロヘキサン、ジブロモブチルシクロヘキサン、ジブロモペンチルシクロヘキサン、ジブロモヘキシルシクロヘキサン、ジブロモジメチルシクロヘキサン、ジブロモジエチルシクロヘキサン、ジブロモジブチルシクロヘキサン、ジブロモベンゼン、ジブロモメチルベンゼン、ジブロモエチルベンゼン、ジブロモブチルベンゼン、ジブロモペンチルベンゼン、ジブロモヘキシルベンゼン、ジブロモクチルベンゼン、ジブロモビフェニル、ジブロモターフェニル、ジブロモジフェニルエタン、ジブロモ(メチルフェニル)フェニルエタン、ジブロモジメチルビフェニル、ジブロモベンジルトルエン、ジブロモナフタレン、ジブロモメチルナフタレン、ジブロモエチルナフタレン、ジブロモブチルナフタレン、ジフルオロエタン、ジフルオロプロパン、ジフルオロブタン、ジフルオロペンタン、ジフルオロヘキサン、ジフルオロヘプタン、ジフルオロクタン、ジフルオロノナン、ジフルオロデカン、ジフルオロドデカン、ジフルオロテトラデカン、ジフルオロペンタデカン、ジフルオロヘキサデカン、ジフルオロクタデカン、ジフルオロノナデカン、ジフルオロシクロペンタン、ジフルオロシクロヘキサン、ジフルオロシクロヘプタン、ジフルオロシクロオクタン、ジフルオロメチルシクロペンタン、ジフルオロエチルシクロペンタン、ジフルオロメチルシクロヘキサン、ジフルオロエチルシクロヘキサン、ジフルオロプロピルシクロヘキサン、ジフルオロブチルシクロヘキサン、ジフルオロペンチルシクロヘキサン、ジフルオロヘキシルシクロヘキサン、ジフルオロジメチルシクロヘキサン、ジフルオロジエチルシクロヘキサン、ジフルオロジブチルシクロヘキサン、ジフルオロベンゼン、ジフルオロメチルベンゼン、ジフルオロエチルベンゼン、ジフルオロブチルベンゼン、ジフルオロペンチルベンゼン、ジフルオロヘキシルベンゼン、ジフルオロクチルベンゼン、ジフルオロビフェニル、ジフルオロターフェニル、ジフルオロジフェニルエタン、ジフルオロ(メチルフェニル)フェニルエタン、ジフルオロジメチルビフェニル、ジフルオロベンジルトルエン、ジフルオロナフタレン、ジフルオロメチルナフタレン、ジフルオロエチルナフタレン、ジフルオロブチルナフタレン及びこれらの構造異性体等が挙げられる。
(化合物G)
 化合物Gは、上記化合物A~Eの炭素原子の一部又は全部がケイ素原子に置換された化合物である。化合物Gの具体例としては、テトラエチルシラン、テトラブチルシラン、テトラヘキシルシラン、テトラシクロヘキシルシラン、テトラフェニルシラン、ジメチルジブチルシラン、ジメチルジシクロヘキシルシラン、ジメチルジフェニルシラン、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサシクロヘキシルシクロトリシロキサン、トリメチルトリシクロヘキシルシクロトリシロキサン、トリメチルトリフェニルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、オクタエチルシクロテトラシロキサン、オクタシクロヘキシルシクロテトラシロキサン、テトラメチルテトラシクロヘキシルシクロテトラシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、テトラメチルテトラフェニルトリシロキサン、ペンタメチルペンタフェニルテトラシロキサン及びこれらの構造異性体等が挙げられる。
 これらの中でも、化合物C、化合物D、化合物Eのようなエーテル結合又はスルフィド結合を有する化合物は、条件によっては酸化物や過酸化物を生成する場合がある。熱的に安定であるという観点から、化合物A、B、C、D、E、Gが好ましく、化合物A、B、Gがより好ましい。
<塩基性アミノ化合物>
 アミノ化合物はアンモニアの誘導体で、アルキル基やアリール基でその水素が一つ置換された化合物(第一級),二つ置換された化合物(第二級),および三つとも置換された化合物(第三級)がある。本発明で好ましく使用できる塩基性アミノ化合物は、二級、三級のアミノ化合物であり、脂肪族アミン、芳香族アミン、複素環式アミン、塩基性アミノ酸が好ましく使用できる。
 このような例としては、ジエチルアミン、トリエチルアミン、N,N’-ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、アニリン、エチルフェニルアミン、ジエチルフェニルアミン、1,8-ビス(ジメチルアミノ)ナフタレン、ピロリジン、ピペリジン、ピペラジン、モルホリン、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)、イミダゾール、ピリジン、4-ジメチルアミノピリジン、ジアザビシクロウンデセン(DBU)、7-メチル-1,5,7-トリアザビシクロ[4,4,0]デセン(MTBD)などがあげられる。
<ハロゲンイオン、および/または加水分解性ハロゲン化合物(化合物Iと称する場合がある)>
 ハロゲンイオンとしては、塩素イオン、臭素イオン、ヨウ素イオンがあげられ、加水分解性ハロゲン化合物としては、イソシアネート化合物のイソシアネート基に塩酸が付加したカルバモイルクロリド化合物、イソシアネート基に臭化水素が付加したカルバモイルブロミド化合物があげられ、イソシアネート化合物の好ましい例は、上記式(3)で表されるイソシアネート化合物である。なお、化合物Iは上記した化合物Fとは異なる。
<硫酸および/または硫酸エステル>
 本実施形態における硫酸エステルは、アルコールと硫酸のエステル結合により構成される化合物を指し、具体例としては、ベンゼンスルホン酸、ビニルスルホン酸、メタンスルホン酸、p-トルエンスルホン酸、モノメチル硫酸、モノエチル硫酸、モノn-プロピル硫酸等が挙げられる。また、硫酸であってもよい。
<リン酸および/またはリン酸エステル>
 本実施形態におけるリン酸エステルは、リン酸とアルコールが脱水縮合したエステルを指し、リン酸モノエステル、リン酸ジエステル、リン酸トリエステルであってよい。具体的には、メチルリン酸、ジメチルリン酸、ブチルリン酸、ジブチルリン酸、イソデシルリン酸、ジイソデシルリン酸、2-エチルヘキシルリン酸、ジ-2-エチルヘキシルリン酸、ラウリルリン酸、ジラウリルリン酸、ステアリルリン酸、ジステアリルリン酸、ジオレイルリン酸、フェニルホスホン酸等が挙げられる。また、リン酸であってもよい。
<イソシアネート組成物>
 本発明のイソシアネート組成物において、エチレン性不飽和結合を有するイソシアネート化合物の含有量は、97質量%以上であることが好ましく、98質量%以上であることがより好ましい。なお、エチレン性不飽和結合を有するイソシアネート化合物の含有量は、99.5質量%以下であってもよく、99質量%以下であってもよい。
(第1の態様)
 本発明のイソシアネート組成物の第1の態様は、エチレン性不飽和結合を有するイソシアネート化合物と、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、前記イソシアネート化合物と異なる化合物であって式(1)で表される化合物(以下、化合物Xと称する場合がある)、および/または、前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート質量10量体以上の領域にUV吸収を持つ化合物(以下、化合物Yと称する場合がある)、および/または、前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、イソシアヌレート基またはビウレット基を有する化合物(以下、化合物Zと称する場合がある)とを、含有する。
 上記した化合物X、化合物Yおよび化合物Zは、1種類を単独で用いても良いし、複数種を組み合わせて用いてもよい。
 一般的に、上記式(1)で表されるような、不飽和結合を含有する化合物は、不飽和結合が酸化されやすい傾向があり、混入物としての不飽和結合化合物は着色の原因となりやすい。しかし、第1の態様のイソシアネート組成物における不飽和結合化合物は、イソシアネート組成物の貯蔵時に有効に作用し、イソシアネート組成物を着色させることなく、イソシアネート化合物の安定性を向上させる効果を奏する。
 このような効果が発現する機構は明らかではないが、当該化合物のエステル基に含まれる炭素-酸素間の不飽和結合が水や酸素との反応性を有し、水や酸素に起因するエチレン性不飽和結合を有するイソシアネート化合物の変性反応を抑制することができるのではないかと推定している。また、炭素-酸素間の不飽和結合を有する化合物の場合、その効果を奏する傾向が大きくなる場合が多い。
 イソシアネート化合物の変性反応を抑制するためには式(1)で表される化合物の含有量を多くすることが好ましいが、一方で、当該化合物の含有量が多すぎると、上記したような不飽和結合に起因する着色を生じて使用時の外観を損ねる場合がある。このため、第1の態様における不飽和結合化合物の含有量は、イソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、10質量ppm以上であることが更に好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが好ましく、3.0×10質量ppm以下であることがより好ましく、1.0×10質量ppm以下であることが更に好ましい。
化合物Yも式(1)で表される化合物と同様の効果を奏する。当該化合物が効果を奏する機構は明らかではないが、本発明者らは、当該化合物が上記したような、水や酸素等との反応性の高い1-ナイロン骨格を有しているためではないかと推測している。
 化合物Zも化合物X、化合物Yと同様の効果を奏する。
 本発明で好ましい第1の態様のイソシアネート組成物は、上記した化合物に加えて、前記イソシアネート化合物を基準として、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群から選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合及び炭素-酸素間の二重結合を有しない不活性化合物をさらに含有する。これらの化合物は1種類を単独で含有されていても、複数種類が含有されていても良い。
 一般的に、上記のこれらの不活性化合物は水や酸素等との反応点を持たず、上記した化合物と同じ作用をするとは考えにくいのであるが、本願発明者が検討したところ、驚くべきことに、これらの化合物をさらに添加した第1の態様のイソシアネート組成もイソシアネートの安定性を向上させる効果を奏することを見出した。
 このような効果が発現する機構は明らかではないが、イソシアネート化合物は一般的に水や酸素を嫌うため、イソシアネート組成物は密閉したガラス容器や一斗缶やドラム缶等の保存容器中で貯蔵される。しかしながら、通常の貯蔵の場合では、外部からの漏れ込みや、イソシアネート組成物の保存容器への充填の際に水や酸素等がごく微量混入し、この水や酸素の作用によってイソシアネート組成物の望まない高粘度化やゲル成分の発生を惹起すると推定される。これに対して、第1の態様のイソシアネート組成物では、微量共存するこれらの化合物一部が保存容器内で気化し、保存容器の気相部分に気相成分として存在することで、微量共存する水や酸素の影響を抑制しているのではないかと推測している。
 上記の事情を考慮すると、これらの不活性化合物の含有量は多い方が好ましいが、一方で、あまりに多いと、イソシアネート組成物として本来期待している、粘度等の性能を大きく変えてしまう場合もある。このため、第1の態様における不活性化合物の含有量は1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、10質量ppm以上であることが更に好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが好ましく、3.0×10質量ppm以下であることがより好ましく、1.0×10質量ppm以下であることが更に好ましい。
 また、第1の態様のイソシアネート組成物は、上記した化合物に加えて、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体をさらに含有していることが好ましく、
I)エチレン性不飽和結合を有するイソシアネート化合物を含有する組成物であって、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物X、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Y、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Zを、含有するイソシアネート組成物であって、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体をさらに含有している組成物、
II)エチレン性不飽和結合を有するイソシアネート化合物を含有する組成物であって、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物X、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Y、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Zを、含有するイソシアネート組成物であって、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合及び炭素-酸素間の二重結合を有しない不活性化合物と、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体をさらに含有している組成物であってもよい。
 一般的に、炭酸誘導体は、不飽和結合が酸化されやすい傾向があり、混入物としての不飽和結合化合物は着色の原因となりやすい。しかし、第1の態様のイソシアネート組成物において、上記化合物は、イソシアネート組成物の貯蔵時に有効に作用し、イソシアネート組成物を着色させることなく、イソシアネート化合物の安定性を向上させる効果を奏する。
 このような効果が発現する機構は明らかではないが、当該化合物のエステル部位が水や酸素との反応性を有し、水や酸素に起因するエチレン性不飽和結合を有するイソシアネート化合物の変性反応を抑制することができるのではないかと推定している。
 上記の事情を考慮すると、炭酸誘導体の含有量は多い方が好ましいが、一方で、あまりに多いと、かえって着色を促進する結果を招く場合がある。このため、第1の態様における炭酸誘導体の含有量は1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、10質量ppm以上であることが更に好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが好ましく、3.0×10質量ppm以下であることがより好ましく、1.0×10質量ppm以下であることが更に好ましい。
 また、第1の態様のイソシアネート組成物は、上記した化合物に加えて、前記イソシアネートを基準として、1.0質量ppm以上1.0×10質量ppmの範囲の、硫酸、および/または、硫酸エステル、および/または、1.0質量ppm以上1.0×10質量ppmの範囲の、リン酸、および/または、リン酸エステルをさらに含有していることが好ましく、
III)エチレン性不飽和結合を有するイソシアネート化合物を含有する組成物であって、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物X、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Y、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Zを、含有するイソシアネート組成物であって、1.0質量ppm以上1.0×10質量ppmの範囲の硫酸、および/または、硫酸エステル、および/または、1.0質量ppm以上1.0×10質量ppmの範囲の、リン酸、および/または、リン酸エステルをさらに含有している組成物、
IV)エチレン性不飽和結合を有するイソシアネート化合物を含有する組成物であって、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物X、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Y、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Zを、含有するイソシアネート組成物であって、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体と、1.0質量ppm以上1.0×10質量ppmの範囲の硫酸、および/または、硫酸エステル、および/または、1.0質量ppm以上1.0×10質量ppmの範囲の、リン酸、および/または、リン酸エステルをさらに含有している組成物、
V)エチレン性不飽和結合を有するイソシアネート化合物を含有する組成物であって、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物X、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Y、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppmの範囲の、化合物Zを、含有するイソシアネート組成物であって、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合及び炭素-酸素間の二重結合を有しない不活性化合物と、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体と、1.0質量ppm以上1.0×10質量ppmの範囲の、硫酸、および/または、硫酸エステル、および/または、1.0質量ppm以上1.0×10質量ppmの範囲の、リン酸、および/または、リン酸エステルをさらに含有している組成物であってもよい。
硫酸および/または硫酸エステルの好ましい濃度範囲は、エチレン性不飽和結合を有するイソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが更に好ましい。
リン酸および/またはリン酸エステルの好ましい濃度範囲は、エチレン性不飽和結合を有するイソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが更に好ましい。
 また、第1の態様のイソシアネート組成物は、上記した化合物に加えて、前記イソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppmの範囲の、塩基性アミノ化合物および/またはハロゲンイオンおよび/または加水分解性ハロゲン化合物をさらに含有していることが好ましい。
これらの、塩基性アミノ化合物および/またはハロゲンイオンおよび/または加水分解性ハロゲン化合物とをさらに含有する組成物も、貯蔵時の安定性が向上する効果を奏する。このような効果を奏する機構は明らかではないが、イソシアネート化合物の安定性を損なう酸素や水をハロゲン原子がトラップすることで、イソシアネート化合物の安定性が改善する効果を奏するのではないかと推定している。
上記の事情を考慮すると、塩基性アミノ化合物および/またはハロゲンイオンおよび/または加水分解性ハロゲン化合物の含有量は多い方が好ましいが、一方で、あまりに多いと、かえって着色を促進する結果を招く場合がある。このため、第1の態様における塩基性アミノ化合物および/またはハロゲンイオンおよび/または加水分解性ハロゲン化合物の含有量は1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、10質量ppm以上であることが更に好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが好ましく、3.0×10質量ppm以下であることがより好ましく、1.0×10質量ppm以下であることが更に好ましい。
(第2の態様)
 本発明のイソシアネート組成物の第2の態様は、エチレン性不飽和結合を含有するイソシアネートを含み、前記エチレン性不飽和結合を含有するイソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、前記エチレン性不飽和結合を有するイソシアネート化合物とは異なる化合物であって芳香環を構成する不飽和結合以外の少なくとも1つの不飽和結合を有する化合物、又は、前記エチレン性不飽和結合を有するイソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物および含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合を有しない不活性化合物、前記エチレン性不飽和結合を有するイソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppmの範囲の硫酸、および/または、硫酸エステル、および/または、1.0質量ppm以上1.0×10質量ppmの範囲の、リン酸、および/または、リン酸エステル、を含有する。
 第2の態様のイソシアネート組成物としては複数種の好ましい形態がある。以下、好ましい形態について2つの例を挙げて説明するが、本発明はこれらに限定されるものではない。
VI)エチレン性不飽和結合を有するイソシアネート化合物と、前記エチレン性不飽和結合を有するイソシアネート化合物とは異なる化合物であって、芳香環を構成する不飽和結合以外の少なくとも1つの不飽和結合を有する化合物(不飽和結合化合物)と、を含有するイソシアネート組成物
 上記VI)で示した本実施形態のイソシアネート組成物によれば、貯蔵時の安定性が向上したイソシアネート組成物を提供することができる。
 不飽和結合化合物の含有量は、エチレン性不飽和結合を有するイソシアネート化合物を基準として1.0質量ppm以上1.0×10質量ppm以下(0.0001質量%以上1質量%以下)である。不飽和結合化合物は1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 一般的に、不飽和結合は酸化されやすい傾向があるが、本実施の形態で使用される、不飽和結合化合物は、イソシアネート組成物の貯蔵時に有効に作用し、イソシアネート組成物を着色させることなく、イソシアネートの安定性を向上させる効果を奏する。
 このような効果が発現する機構は明らかではないが、不飽和結合化合物中の不飽和結合が水や酸素等と選択的に作用することで、水や酸素に起因するエチレン性不飽和結合を有するイソシアネート化合物の変性反応を抑制することができるのではないかと推定している。
 イソシアネートの変性反応を抑制するためには不飽和結合化合物の含有量を多くすることが好ましいが、一方で、不飽和結合化合物の含有量が多すぎると、上記したような不飽和結合に起因する着色を生じて使用時の外観を損ねる場合がある。このため、本実施の形態における不飽和結合化合物の含有量は1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、10質量ppm以上であることが更に好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが好ましく、3.0×10質量ppm以下であることがより好ましく、1.0×10質量ppm以下であることが更に好ましい。
 上記した、不飽和結合化合物を含有するイソシアネート組成物は、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物、含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物を更に含有することができる。これらの不活性化合物は、1種類でも複数種を用いてもよい。これらの不活性化合物は、下記のVI)にて説明する効果と同様の効果を発現することが期待でき、不飽和結合化合物の効果と相まってイソシアネート組成物の安定性向上に寄与する。
VII)エチレン性不飽和結合を有するイソシアネート化合物と、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物および含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物と、を含有するイソシアネート組成物
 上記VII)で示した本実施形態によれば、貯蔵時の安定性が向上したイソシアネート組成物を提供することができる。
 不活性化合物の含有量は、エチレン性不飽和結合を有する化合物を基準として1.0質量ppm以上2.0×10質量ppm以下(0.0001質量%以上2質量%以下)である。不活性化合物は1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 一般的に、上記の不活性化合物は水や酸素等との反応点を持たず、上記した不飽和結合化合物と同じ作用をするとは考えにくい。しかしながら、本願発明者が検討したところ、驚くべきことに、不活性化合物を添加した本実施の形態のイソシアネート組成もイソシアネートの安定性を向上させる効果を奏した。
 このような効果が発現する機構は明らかではないが、イソシアネートは一般的に水や酸素を嫌うため、イソシアネート組成物は密閉した一斗缶やドラム缶等の保存容器にて貯蔵される。しかしながら、通常の貯蔵の場合では、外部からの漏れ込みや、イソシアネート組成物の保存容器への充填の際に水や酸素等がごく微量混入し、この水や酸素の作用によってイソシアネート組成物の望まない高粘度化やゲル成分の発生を惹起すると推定される。これに対して、本実施の形態の組成物では、微量共存する一部の不活性化合物が保存容器内で気化し、保存容器の気相部分に気相成分として存在することで、微量共存する水や酸素の影響を抑制しているのではないかと推測している。
 上記の事情を考慮すると、不活性化合物の含有量は多い方が好ましいが、一方で、不活性化合物があまりに多いと、イソシアネート組成物として本来期待している、粘度等の性能を大きく変えてしまう場合もある。このため、本実施の形態における不活性化合物の含有量は、1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、10質量ppm以上であることが更に好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが好ましく、3.0×10質量ppm以下であることがより好ましく、1.0×10質量ppm以下であることが更に好ましい。
VIII)エチレン性不飽和結合を有するイソシアネート化合物と、硫酸、および/または、硫酸エステル、および/または、リン酸、および/または、リン酸エステルと、を含有するイソシアネート組成物
上記VIII)で示した本実施形態によれば、貯蔵時の安定性が向上したイソシアネート組成物を提供することができる。
 硫酸、および/または、硫酸エステル、および/または、リン酸、および/または、リン酸エステルの含有量は、エチレン性不飽和結合を有する化合物を基準として1.0質量ppm以上1.0×10質量ppm以下である。これらの化合物は1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 硫酸、硫酸エステル、リン酸、リン酸エステルが前記イソシアネート組成物の貯蔵時の安定性を向上させる効果を奏する機構は明らかではないが、本実施形態の組成物において、これらの化合物は、前記式(15)で表される1-ナイロン体構造の形成を適度に抑制し、当該化合物の増加による組成物全体のゲル化を抑制しているのではないかと推測している。したがって、イソシアネートの安定性をより改善するためには、これらの化合物が適切な濃度範囲で含有していることが好ましく、硫酸及び/又は硫酸エステルの場合、イソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが更に好ましく、リン酸及び/又はリン酸エステルの場合、イソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppm以下であり、含有量の範囲の下限は、3.0質量ppm以上であることが好ましく、5.0質量ppm以上であることがより好ましく、含有量の範囲の上限は、5.0×10質量ppm以下であることが更に好ましい。
 また、本実施の形態の不活性化合物を含有するイソシアネート組成物は、上記した種々の不飽和結合化合物を含有することできる。これらの不飽和結合化合物は、1種類を用いても複数種を用いても良い。これらの不飽和結合化合物は、上記V)の組成物にて説明した効果と同様のを発現することが期待でき、不活性化合物の効果と相まってイソシアネート組成物の安定性向上に寄与する。
<イソシアネート組成物の製造方法>
  本実施形態のイソシアネート組成物は、エチレン性不飽和結合を有するイソシアネート化合物と、前記式(1)で表される化合物、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物、イソシアヌレート基および/またはビウレット基を有する化合物、さらには、不活性化合物(炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合及び炭素-酸素間の二重結合を有しない不活性化合物)、塩基性アミノ化合物、ハロゲンイオン、加水分解性ハロゲン化合物を適宜組み合わせて製造することができる。
 エチレン性不飽和結合を有するイソシアネート化合物は、公知の方法を用いて製造することができる。例えば、対応するアミンとホスゲンとの反応等が挙げられる。
 本実施形態のイソシアネート組成物は、前記した公知の方法で製造されたエチレン性不飽和結合を有するイソシアネート化合物を公知の方法による精製工程を経たものをエチレン性不飽和結合を有するイソシアネート化合物として使用して、前記式(1)で表される化合物、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物、イソシアヌレート基および/またはビウレット基を有する化合物、不飽和結合を有する化合物、不活性化合物、、硫酸、硫酸エステル、リン酸、リン酸エステル、塩基性アミノ化合物、加水分解性ハロゲン化合物等と適宜混合することによって製造することができる。本実施形態のイソシアネート組成物を構成するこれらの化合物は、前記したイソシアネート化合物の製造工程で、本実施形態のイソシアネート組成物となるように予め添加してもよいし、イソシアネート化合物を得てから改めて本実施形態のイソシアネート組成物となるように添加してもよい。
 前記ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物は、例えば、分子内に1つ以上のイソシアネート基を有するイソシアネート化合物を、触媒存在下で反応させた後、停止剤を加えて重合反応を停止させて製造される。触媒としては、後述するイソシアヌレート化反応に用いる触媒と同じものを使用することができる。触媒の使用量は、使用する化合物の種類によっても異なるが、イソシアネート化合物100質量部に対して1.0×10-4質量部以上1.0質量部以下とすることができる。触媒の使用量の上限値は、生成物の着色又は変色の抑制、及び、反応制御の観点から、好ましくは5.0×10-1質量部以下であり、より好ましくは、1.0×10-1質量部以下であり、更に好ましくは2.0×10-2質量部以下である。触媒の使用量の下限値は、反応性の観点から、より好ましくは1.0×10-3質量部以上であり、更に好ましくは2.0×10-3質量部以上である。
停止剤としては、後述するイソシアヌレート化反応に用いる停止剤と同じものを使用することができる。停止剤の使用量は、触媒の使用量や用いる化合物の種類に応じて適宜調整できるが、使用した触媒量に対して1当量以上用いることが好ましい。
 触媒存在下でイソシアネート化合物の重合反応をおこなう温度は、好ましくは-20℃~60℃である。反応温度が高くなると、イソシアヌレート化反応が進行しやすくなる傾向にあり、1-ナイロン構造体を得るためには反応温度は低い方が好ましいが、一方で、あまりに低い反応温度ではイソシアネート化合物の重合反応が遅くなりすぎることから、より好ましくは-10℃~50℃、さらに好ましくは0℃~40℃である。
 当該イソシアネート化合物の重合は、溶剤の存在下でも、不存在下でも、実施することができるが、反応のコントロールの容易さ及び操作の容易さの観点からは、溶剤の存在下で行うことが望ましい。溶剤としては、使用するイソシアネート化合物に不活性で、且つ原料のイソシアネート化合物及び生成する重合体を溶解する溶剤が選択される。具体的には、溶剤として、酢酸エチル、酢酸ブチル、酢酸アミル等の酢酸エステル類;ベンゼン、トルエン、キシレン、モノクロルベンゼン等の芳香族炭化水素類などを単独又は混合して用いることができる。
 重合の進行は、反応液を適宜サンプリングし、ゲル浸透クロマトグラフィー測定をおこなうことで追跡することができ、所望の分子量領域にピークが確認された時点で、停止剤を加えて反応を停止させればよい。溶剤の不存在下でイソシアヌレート化反応を行う場合には、転化率を50%以下に止めることで、未反応のイソシアネート化合物が溶剤として働き、生成する重合体を溶解することができる。
このような方法で製造された、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体の領域にUV吸収を持つ化合物は、上記の反応終了後、例えば、反応系中から未反応のイソシアネート化合物及び溶剤を除去して回収してもよいし、反応液のまま、本実施形態のイソシアネート組成物の製造に用いても良い。イソシアヌレート化合物を回収する場合、方法は特に制限されず、例えば蒸留精製によって未反応のポリイソシアネート及び溶剤を除去することができる。また、当該除去は、低温で行うことが望ましく、例えば、流下薄膜式蒸発缶、薄膜蒸発装置、分子蒸留装置等の液に対する蒸発面積が大きく、蒸発効率のよい装置を用いて実施することが好ましい。
 また、イソシアヌレート基またはビウレット基を含有する化合物については、イソシアヌレート基を含有する化合物は、後述する<イソシアネート重合体の製造方法>と同様の方法によって製造することができる。ビウレット基を含有する化合物は、ビウレット化剤として、例えば、水、1価の第3級アルコール、蟻酸、硫化水素、有機第1級モノアミン、有機第1級ジアミン等を用い、反応温度を70℃~200℃の範囲とし、10分~24時間反応させ、反応終了後、未反応のポリイソシアネートや溶媒を、例えば薄膜蒸留法や溶剤抽出法等の処理により、イソシアネート重合体を含む組成物から分離して製造することができる。ビウレット化反応の際に、後述する<イソシアネート重合体の製造方法>と同様の溶剤を用いてもよい。
<イソシアネート重合体の製造方法>
 本実施形態において、本発明は、上述したイソシアネート組成物と2官能以上のイソシアネートとを混合し、上述したイソシアネート組成物に含有される前記イソシアネート化合物と、2官能以上のイソシアネートとを反応させる工程を含む、イソシアネート重合体の製造方法を提供する。以下、本実施形態の製造方法について説明する。なお、イソシアヌレート化反応について主に述べるが、後述するように、用いる触媒又は反応条件によって、イミノオキサジアジンジオン化反応及びウレトジオン化反応等の、公知の反応を用いることもできる。
 上述したイソシアネート組成物と、2官能以上のイソシアネートとの混合比は任意に調製することができる。2官能以上のイソシアネートは、特に制限されず、目的のイソシアヌレートに応じて適宜変更することができる。例えば、耐候性が要求される用途に好適に用いることができるイソシアヌレート重合体が得られる観点からは、脂肪族及び/又は脂環式であるイソシアネートが好ましい。また、耐候性等が要求されない分野に適用する目的で、芳香族イソシアネートを選択することもできる。
 イソシアヌレート化反応は、好ましくはイソシアヌレート化触媒の存在下で行う。具体的なイソシアヌレート化触媒としては、例えば一般に塩基性を有するものが好ましく、以下の(i)~(viii)の化合物等が例示される。
 (i)テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム等)のヒドロキシド又は有機酸塩(例えば、酢酸塩、酪酸塩、デカン酸塩等の塩)。
 (ii)トリアルキルヒドロキシアルキルアンモニウム(トリメチルヒドロキシプロピルアンモニウム、トリメチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム等)のヒドロキシド又は有機酸塩(例えば、酢酸塩、酪酸塩、デカン酸塩等の塩)。
 (iii)酢酸、カプリン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸の金属塩(例えば、スズ塩、亜鉛塩、鉛塩、ナトリウム塩、カリウム塩等)。
 (iv)ナトリウム、カリウム等の金属アルコキシド。
 (v)アミノシリル基含有化合物(例えば、ヘキサメチルジジラサン等)。
 (vi)トリブチルホスフィン等の燐系化合物。
 (vii)フッ素化合物又はポリフッ化水素化合物(例えば、テトラメチルアンモニウムフルオリド水和物、テトラエチルアンモニウムフルオリド等のテトラアルキルアンモニウムフルオリド等)。
 (viii)下記式(12)又は式(13)で表される構造を含む化合物(例えば、3,3,3-トリフルオロプロパン酸、3,3,4,4,4-ペンタフルオロブタン酸、3,3,4,4,5,5,5-ヘプタフルオロペンタン酸、3,3-ジフルオロプロパ-2-エン酸等)と、第4級アンモニウムイオン又は第4級ホスホニウムイオンとからなる化合物。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
[式(12)、(13)中、R22及びR23は各々独立に炭素数1~30のパーフルオロアルキル基を表し、R’は各々独立に水素原子、炭素数1~20のアルキル基及び芳香族基からなる群より選ばれる基を表す。R22、R23及びR’はヘテロ原子を含有していてもよい。]
 式(12)、(13)において、R22及びR23は各々独立に、直鎖状、分岐状若しくは環状の飽和パーフルオロアルキル基又は不飽和パーフルオロアルキル基であってもよい。
 イソシアヌレート化触媒としては、上記の中でも、触媒効率及びイソシアヌレート化反応選択性の観点から上記触媒(i)又は(ii)の化合物が好ましい。また、ウレトジオン構造の割合を多く形成したい場合には、上記の触媒(vi)の使用が好ましい。また、イミノオキサジアジンジオン構造の割合を多く形成したい場合には、上記した触媒(vii)又は触媒(viii)の使用が好ましい。
 イソシアヌレート化反応の反応系中に添加するイソシアヌレート化触媒の量は、使用する触媒の種類や反応系中の他成分の濃度等に応じて適宜調整できるが、例えば、前記イソシアネート化合物100質量部に対して1.0×10-4質量部以上1.0質量部以下とすることができる。イソシアヌレート化触媒の使用量の上限値は、生成物の着色又は変色の抑制、及び、反応制御の観点から、好ましくは5.0×10-1質量部以下であり、より好ましくは、1.0×10-1質量部以下であり、更に好ましくは2.0×10-2質量部以下である。イソシアヌレート化触媒の使用量の下限値は、反応性の観点から、より好ましくは1.0×10-3質量部以上であり、更に好ましくは2.0×10-3質量部以上である。
 上記で示したイソシアヌレート化触媒は、同時にアロファネート触媒にもなりうる。そのため、イソシアヌレート化反応前又は反応中にヒドロキシ基含有化合物を添加し、イソシアヌレート化反応とアロファネート化反応を同時に進行させることも可能である。
 この場合のヒドロキシ基含有化合物とは、炭素、水素及び酸素のみで形成されている1分子中にヒドロキシ基を1個又は2個有する化合物が好ましい。更に好ましくは、ヒドロキシ基を1個のみ有する化合物である。ヒドロキシ基1個を有する化合物の具体例としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコールなどが例示され、ヒドロキシ基2個を有する化合物としては、エチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、2-エチルヘキサンジオール等が例示され、2種以上を併用することもできる。
 イソシアヌレート化反応の反応温度は、特に限定されないが、0℃~200℃であることが好ましい。0℃未満では反応速度が小さく実用的ではなく、200℃を超える高温で反応させると副反応や生成物の極度の着色等を生じやすくなる傾向がある。その中でも、反応温度の下限値は、反応速度の観点から、40℃であることがより好ましく、50℃であることが更に好ましく、60℃であることが特に好ましい。反応温度の上限値は、生成物自体の着色等の観点から150℃であることがより好ましく、更に好ましくは120℃であり、特に好ましくは110℃である。
 イソシアヌレート化反応の反応時間は特に制限されず、例えば、10秒~24時間の範囲で実施することができる。
 イソシアヌレート化反応の終点の確認方法としては、反応混合物におけるイソシアネート基の含有率(NCO%)を測定する方法、屈折率を測定する方法、反応混合物のゲルパーミエーションクロマトグラフィー測定による方法等が例示される。なお、反応混合物におけるイソシアネート基の含有率(NCO%)の測定方法については後述する。
 イソシアヌレート化反応が進みすぎると、生成物の粘度が上昇し、イソシアヌレート化合物の含有割合が増加して、目的とする物性の製品が得られない場合があるため、反応の転化率(原料イソシアネート化合物の初期質量に対する反応して得られたイソシアネート重合体の質量割合)は、50%以下(より好ましくは40%以下、更に好ましくは25%以下)に止めることが好ましい。また、イソシアヌレート化合物の収量を十分に得る観点からは、反応の転化率は、5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがより好ましい。
 本実施形態の製造方法では、イソシアヌレート化反応が目的の転化率に達した段階で、触媒停止剤を加えてイソシアヌレート化触媒を失活させることにより、イソシアヌレート化反応を停止することができる。触媒停止剤を加えないと、イソシアネート重合体から残モノマーや溶媒を留去する工程や、貯蔵時において、イソシアヌレート化反応が更に進行し、製品が高粘度化したり、ゲル分が発生する場合がある。したがって、目的の転化率に達した時点で、触媒停止剤を加えてイソシアヌレート化触媒を失活させることが好ましい。
 触媒停止剤としては、例えば、硫酸、リン酸、酸性リン酸エステル類、塩酸、スルホン酸化合物等を使用することができる。触媒停止剤と触媒との反応生成物が固体として析出する場合には、フィルター又はセライトを用いるろ過等の方法によって分離することが好ましい。
 イソシアヌレート化反応は、溶剤の存在下でも、不存在下でも、実施することができるが、反応のコントロールの容易さ及び操作の容易さの観点からは、溶剤の存在下で行うことが望ましい。
 イソシアヌレート化反応に用いる溶剤としては、使用するイソシアネート化合物に不活性で、かつ原料のイソシアネート化合物及び生成するイソシアヌレート化合物を溶解する溶剤が選択される。具体的には、溶剤として、酢酸エチル、酢酸ブチル、酢酸アミル等の酢酸エステル類;ベンゼン、トルエン、キシレン、モノクロルベンゼン等の芳香族炭化水素類等を単独で又は混合して用いることができる。
 また、溶剤の不存在下でイソシアヌレート化反応を行う場合には、転化率を50%以下に止めることで、未反応のイソシアネート化合物が溶剤として働き、生成するイソシアヌレート化合物を溶解することができる。このような観点から、溶剤の不存在下でのイソシアヌレート化反応の転化率は、5%~50%とすることが好ましく、10%~40%とすることがより好ましい。
 イソシアヌレート化反応の反応終了後、例えば、反応系中から未反応のイソシアネート化合物及び溶剤を除去することにより、イソシアヌレート化合物を回収することもできる。除去の方法は、特に制限されず、例えば蒸留精製によって未反応のイソシアネート化合物及び溶剤を除去することができる。また、当該除去は、低温で行うことが望ましく、例えば、流下薄膜式蒸発缶、薄膜蒸発装置、分子蒸留装置等の液に対する蒸発面積が大きく、蒸発効率のよい装置を用いて実施することが好ましい。
<イソシアネート重合体>
 上述した製造方法により得られるイソシアネート重合体は、下記式(11)で表される単位を含み、前記イソシアネート重合体を構成する窒素原子が、炭素原子と結合している。すなわち、上述した製造方法は、上述のエチレン性不飽和結合を有するイソシアネート化合物を含むイソシアネート組成物と2官能以上のイソシアネートとを混合し、前記イソシアネート組成物に含有される前記イソシアネート化合物と2官能以上のイソシアネートとを反応させる、イソシアネート重合体の製造方法であって、下記式(11)で表される単位を含み、前記イソシアネート重合体を構成する窒素原子が、炭素原子と結合している、というものである。
Figure JPOXMLDOC01-appb-C000028
[式(11)中、R25、R26、R27は、各々独立に、前記イソシアネート組成物に含有されるイソシアネート化合物からイソシアネート基を除いた残基、または、前記2官能以上のイソシアネートからイソシアネート基を除いた残基を示し、R25、R26、R27のうち少なくとも1つの基は、前記イソシアネート化合物からイソシアネート基を除いた残基を示す。]
 したがって、本発明は、1実施形態において、下記式(11)で表される単位を含み、イソシアネート重合体を構成する窒素原子が、炭素原子と結合している、イソシアネート重合体を提供する。
Figure JPOXMLDOC01-appb-C000029
[式(11)中、R25、R26、R27は、各々独立に、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基、または、2官能以上のイソシアネートからイソシアネート基を除いた残基を示し、R25、R26、R27のうち少なくとも1つの基は、前記イソシアネート化合物からイソシアネート基を除いた残基を示す。]
 上記式(11)中、R25、R26、R27は、各々独立に、有機基であって、R25、R26、R27のうち少なくとも1つの基は、エチレン性二重結合を含む有機基であることが好ましい。
<イソシアネート重合体の利用>
 上述した製造方法により得られた各種イソシアネート重合体を含む組成物を用いて、公知の方法で、イソシアネート重合体のイソシアネート基の一部または全てをブロック剤で封鎖し、ブロックイソシアネート重合体を製造することもできる。
 また、水分散性を向上させる目的のため、上記方法により得られた各種イソシアネート重合体のイソシアネート基の一部を、公知の方法によって活性水素含有親水性化合物で変性した、親水性基変性イソシアネート重合体の組成物を得ることもできる。
 また、水系1液の塗料、コーティング剤用架橋剤として使用する場合には、上述した製造方法により得られたイソシアネート重合体にブロック剤と活性水素含有親水性化合物をそれぞれ反応させてもよい。
 また、上述したイソシアネート重合体を、UV硬化塗料の原料として使用することもできる。
 以上に述べたように、本実施の形態のイソシアネート組成物は貯蔵時の安定性が向上する効果を奏する。本実施の形態のイソシアネート組成物は、適宜、塗料、接着剤等の原料として好適に使用される。
<イソシアネート組成物の貯蔵方法>
 1実施形態において、本発明は、エチレン性不飽和結合を有するイソシアネート化合物の貯蔵方法も提供する。本実施形態の貯蔵方法は、第1の態様にあっては、エチレン性不飽和結合を有するイソシアネート化合物と、前記イソシアネート化合物を基準として、1.0質量ppm以上1.0×10質量ppm以下の、化合物X、および/または、前記組成物中の前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、質量化合物Y、および/または化合物Zを含有するイソシアネート組成物、また第2の態様にあっては、1.0質量ppm以上1.0×10質量ppm以下の、前記イソシアネートと異なる化合物であって、芳香環を構成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物、又は、前記イソシアネート化合物を基準として、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合を有しない不活性化合物と、を含有する、イソシアネート組成物を調製する工程を含む。
 本実施形態の貯蔵方法により、エチレン性不飽和結合を有するイソシアネート化合物を、例えば100日以上、例えば200日以上、例えば300日以上、例えば500日以上の長期にわたって貯蔵した場合においても、前記イソシアネート化合物の高粘度化及び色度上昇を防止することが出来る。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
<数平均分子量>
 測定試料の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した。GPCの測定方法は以下の通りであった。
 使用機器:HLC-8120(東ソー社製)、
 使用カラム:TSK GEL SuperH1000、TSK GEL SuperH2000、TSK GEL SuperH3000(いずれも東ソー社製)、
 試料濃度:5wt/vol%(試料50mgを1mLのテトラヒドロフラン(THF)に溶解させた)
 キャリア:THF、
 検出方法:視差屈折計、
 流出量:0.6mL/分、
 カラム温度:30℃
 検量線の作成には、分子量1,000~20,000のポリスチレンを用いた。
<ガスクロマトグラフィー(GC)>
 カラム:内径0.32mm、長さ30m、液相膜厚1.0μm(J&W Scientific社製DB-1)
 カラム温度:初期温度50℃、その後10℃/分で昇温、最終温度300℃(15分間保持)
 注入口温度:300℃
 検出器温度:300℃
 検出器:水素炎イオン化検出器
 キャリアガス:ヘリウム
 キャリアガス流量(カラム):1.2mL/分
<液体クロマトグラフィー(LC)>
液体クロマトグラフ:LC-10ATシステム(島津製作所社製)
 カラム:Inertsil-ODSカラム(GLサイエンス社製)を2本直列に接続
 展開溶媒:5mmol/L酢酸アンモニウム水溶液(A液)とアセトニトリル(B液)の混合液
 展開溶媒流量:2mL/min
 カラム温度:35℃
 検出器:示差屈折率検出器、および、フォトダイオードアレイ検出器(測定波長範囲:200nm~300nm)
<ハーゼン色数(APHA)>
ハーゼンメーターにて測定して得られた数値とした。
<塩素濃度と臭素濃度の測定>
 燃焼前処理装置のサンプルボードに、秤量した試料を乗せ、サンプルボードを燃焼部に移動さえて、自動燃焼装置で燃焼させて、ガス化した成分を吸収液に吸収させた。吸収液をイオンクロマトグラフ装置に注入して目的成分を定量した。
 燃焼前処理装置:自動燃焼装置AQF-100(三菱アナリティック社製)
 炉温度:Inret 900℃、Outlet 1000℃
 ガス流量:Ar/O 400mL/分、O 200mL/分
 イオンクロマトグラフ:ICS-1500(DIONEX社製)
 ガードカラム:AG12A
 分離カラム:AS12A
 サプレッサー:ASRS-300 サプレッサー電流50mA
 溶離液:2.7mM NaCO3、0.3mM NaHCO
[合成例A-1]
 エタノールアミン塩酸塩とメタクリル酸無水物とを反応させて、2-(2-メチルアクリロイルオキシ)-エチルアンモニウムクロリドを合成した。次に、カルボニルジイミダゾールと2-(2-メチルアクリロイルオキシ)-エチルアンモニウムクロリドを反応させて、2-メチル-アクリル酸-2-[(イミダゾール-1-カルボニル)-アミノ]エチルエステルを合成した。次に、該2-メチル-アクリル酸-2-[(イミダゾール-1-カルボニル)-アミノ]エチルエステルと塩化水素とを反応させて粗メタクリロイルオキシエチルイソシアネート(以下、MOIと称する場合がある)を得た。
[合成例A-2]
 メタクリル酸とエタノールアミンとから、2-アミノエチルメタクリレート塩酸塩を生成し、次に、2-アミノエチルメタクリレート塩酸塩をホスゲンと反応させて、メタクリロイルオキシエチルイソシアネートを合成した。ここにトリエチルアミン塩酸塩を添加して約200ppmのトリエチルアミン塩酸塩を含有するメタクリロイルオキシエチルイソシアネートとした。
[合成例A-3]
 エタノールアミン塩酸塩とアクリル酸とを反応させて、2-アクリロイルオキシ-エチルアンモニウムクロリドを合成した。次に、カルボニルジイミダゾールと2-アクリロイルオキシ-エチルアンモニウムクロリドを反応させて、アクリル酸-2-[(イミダゾール-1-カルボニル)-アミノ]エチルエステルを合成した。次に、該アクリル酸-2-[(イミダゾール-1-カルボニル)-アミノ]エチルエステルと塩化水素とを反応させてアクリロイルオキシエチルイソシアネート(以下、AOIと称する場合がある)を得た。
[合成例A-4]
 アクリル酸とエタノールアミンとから2-アミノエチルアクリレート塩酸塩を生成し、次に2-アミノエチルアクリレート塩酸塩をホスゲンと反応させて、3-クロロプロピオン酸エステル誘導体を合成した。次に、3-クロロプロピオン酸エステル誘導体をトリエチルアミン存在下で脱塩化水素し、アクリロイルオキシエチルイソシアネートを得た。該アクリロイルオキシエチルイソシアネートには約200ppmのトリエチルアミン塩酸塩が含まれていた。
[合成例D-1]
 多段蒸留塔(規則充填物蒸留塔、不規則充填物蒸留塔、棚段蒸留塔から選択)に被精製イソシアネート液を供給する。蒸留塔の塔頂部での圧力をコントロール(絶対圧)し、蒸留に必要な熱量はリボイラーより供給する。塔内の温度分布が安定したのち、塔頂部より高さ方向で下に具備するサイドカットラインより留分を抜き出す。得られた留分を分析する。
[合成例D-2]
 流下薄膜式分子蒸留機(例えば柴田科学株式会社製 MS-300型)に被精製イソシアネート液を供給し、気化させた組成物成分を冷却器面で捕らえ、回収器に抜き出す。
[合成例D-3]
 フォーリングフィルム型蒸発器に、熱媒ジャケットまたはヒーターで蒸留に必要な熱量を供給し、該フォーリングフィルム型蒸発器上部から被精製イソシアネート組成物を供給し、向流または併流で気相ガスを抜き出す。
[実施例1]
・イソシアネート組成物の調製
 合成例A-1で得られた粗MOIを、流下薄膜式分子蒸留機(柴田科学社製 MS-300型)により、ジャケット温度80℃、圧力0.7kPaで蒸留精製し、精製MOIを得た。GCで測定した精製MOIのMOI含有量は、99質量%以上であった。これに炭酸ジメチルを、MOI質量に対して13質量ppmとなるように加えて、MOIおよび炭酸ジメチルからなるイソシアネート組成物を調製した。APHAは25であった。
・イソシアネート組成物の貯蔵
 上記で得られたイソシアネート組成物500gを、1LのSUS製貯蔵容器に入れ、窒素置換して貯蔵し、日本国岡山県倉敷市児島地区の貯蔵環境で300日間貯蔵した。貯蔵期間終了後、GPCにて分子量を測定したところ、メタクリロイルオキシエチルイソシアネートで表される化合物を表すピーク(ピーク1と呼称する)よりも高分子量側に見られるピークは、ピーク1に対して8%程度の面積であった。また、APHAは30であった。
[合成例B―1]
 合成例A-1により合成し、実施例1と同様の方法で精製したMOI100g(645mmol)とフェノール60.7g(645mmol)を窒素雰囲気下100℃で加熱し反応させた。液体クロマトグラフィーにて反応生成物を分析し、フェノール残量を確認したところ検出下限界以下であった。当該反応生成物を「イソシアネートとフェノールとの反応生成物」と称し、「N-置換カルバミン酸エステル」として使用した。
[実施例2]
・イソシアネート組成物の調製
 合成例A-1で得た粗MOIを流下薄膜式分子蒸留機(柴田科学社製 MS-300型)により、ジャケット温度80℃、圧力0.7kPaで蒸留精製し、精製MOIを得た。GCで測定した該精製MOI中のメタクリロイルオキシエチルイソシアネート含有量は99質量%以上で、APHAは20であった。これに、合成例B-1得られた、イソシアネートとフェノールとの反応生成物を、MOI質量に対し、20質量ppm添加し、MOI、およびイソシアネートとフェノールとの反応生成物からなるイソシアネート組成物を製造した。
・イソシアネート組成物の貯蔵
 上記で調製したイソシアネート組成物を、実施例1と同様の方法で貯蔵した。その結果を表1に示す。
[合成例B-2]
 下記式(18)で表されるチタン触媒10.5mg(4.6×10-2mmol)とメタクリロイルオキシエチルイソシアネートを窒素雰囲気下24時間、25℃で反応させた。得られた反応生成物は、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物であった。該反応生成物のゲル浸透クロマトチャートを図1に示す。図1中、横軸はゲル浸透クロマトグラフの保持時間、縦軸はUV検出器(波長254nm)の吸収を表す。「MOI10量体」と記載のある保持時間はMOI10量体に相当する分子量の保持時間を表し、「MOI」と記載のある保持時間はMOIに相当する分子量の保持時間を表す。
Figure JPOXMLDOC01-appb-C000030
[実施例3]
・イソシアネート組成物の調製
 合成例A-1により合成し、実施例1と同様の方法で精製したMOIと合成例B-2で得られた反応生成物とを混合し、MOIおよびイソシアネート10量体以上の領域にUV吸収を持つ化合物を含むイソシアネート組成物を調製した。該イソシアネート組成物中、イソシアネート10量体以上の領域にUV吸収を持つ化合物の濃度は、MOI質量に対し、30質量ppmであった。
[実施例4]
・イソシアネート組成物の調製
 上記合成例A-3で得たAOIとエチルベンゼンとを混合し、AOIとエチルベンゼンとを含むイソシアネート組成物を調製した。該イソシアネート組成物中、エチルベンゼンの濃度は、MOI質量に対し、50質量ppmであった。
・イソシアネート組成物の貯蔵
 上で調製したイソシアネート組成物を、実施例1と同様の方法で貯蔵した。その結果を表1に示す。
[実施例5~75、比較例1~14]
 公知の方法で粗イソシアネートを合成し、合成例D-1~D-3のいずれかの方法粗イソシアネートを精製した後、得られた精製イソシアネートを用いてイソシアネート組成物を調製し、実施例1と同様の方法でイソシアネート組成物の貯蔵をおこなった。その結果を表1~5に示す。なお、比較例2、4、6では貯蔵後のイソシアネートにゲルが発生しGPC測定を実施できなかった。
 表中、MOIはメタクリロイルオキシエチルイソシアネートを、AOIはアクリロイルオキシエチルイソシアネートを表す。なお、上記合成例B-1のようにイソシアネートとフェノールとの反応によって得られる化合物を本発明の式(2)で表される化合物として使用する場合は「イソシアネートとフェノールとの反応生成物」と記載した。
 式(1)で表される化合物に相当する化合物の合成においては、イソシアネートは、イソシアネート組成物に含有されるイソシアネートを使用し、該イソシアネートのイソシアネート基に対して1当量のヒドロキシ化合物(芳香族ヒドロキシ化合物またはアルコール)を用いた。実施例○○および比較例○○において、「イソシアネート10量体以上の領域にUV吸収を持つ化合物」は、上記合成例B-2のと同様の方法で、メタクリロイルオキシエチルイソシアネートの代わりにイソシアネート組成物に含有されるイソシアネートを使用して合成したものを用いて製造した。
 また、イソシアヌレート基および/またはビウレット基を含有する化合物として、旭化成社製デュラネート TPA-100、TKA-100、TLA-100を用いた。
 表中、リン酸、リン酸エステルは実際に添加した量を表し、その以外の成分は該組成物の分析値を表す。
[比較例1]
 合成例A-2で得られたメタクリロイルオキシエチルイソシアネートを用い、多段蒸留塔を用いて蒸留をおこなった。メタクリロイルオキシエチルイソシアネートの仕込み量に対して約25%の留分を除去したのち、メタクリロイルオキシエチルイソシアネートを回収した。なお、蒸留装置の内温は75℃~78℃、圧力を0.7kPaであった。
 得られたイソシアネートをイソシアネート組成物として使用し、実施例1と同様の方法で貯蔵した。その結果を表5に示す。
[比較例2]
 合成例A-4で得られたアクリロイルオキシエチルイソシアネートを用い、多段蒸留塔を用いて蒸留をおこなった。アクリロイルオキシエチルイソシアネートの仕込み量に対して約25%の留分を除去したのち、アクリロイルオキシエチルイソシアネートを回収した。なお、蒸留装置の内温は62℃~67℃、圧力を0.7kPaであった。
 得られたイソシアネートをイソシアネート組成物として使用し、実施例1と同様の方法で貯蔵した。その結果を表5に示す。
[実施例E-1]
 温度計、撹拌機、および窒素シール管と500mL四ツ口ガラスフラスコからなる反応装置にヘキサメチレンジイソシアネートを200gと、実施例1の組成物200gを計量し、反応装置窒素で置換し、65℃に加温した。その後、2-エチルヘキサノール140gを添加し10分間攪拌をおこなった。その後、テトラブチルアンモニウムの酢酸塩の5%イソブタノール溶液50gを60分間かけて添加した。反応中は、65±2℃となるように温度調整をおこなった。反応停止剤として85%リン酸水溶液5gを加え100℃に昇温し、100℃到達後1時間撹拌を続けた。反応液は無色透明の液体であった。この反応液を細孔サイズ1μmのメンブレンフィルターで濾過して、反応残渣を分離した後、薄膜蒸留装置により未反応のヘキサメチレンジイソシアネートとMOIを留去し、ポリイソシアネート組成物を得た。得られたポリイソシアネート組成物はほぼ無色透明であった。該ポリイソシアネート組成物を5gを取得し、フェノール5gとアセトニトリル10gを加えて、80℃で24時間撹拌し、当該混合物中のイソシアネート基とフェノールとを反応させてカルバメート体とした。当該混合物を液体クロマトグラフィーで分析したところ、下記に示す4種の化合物が観測された。
Figure JPOXMLDOC01-appb-C000031
 したがって、フェノールと反応させる前のイソシアネート基を含有する化合物は、下記に示す4種の化合物であり、本実施例E-1で下記に示す化合物が製造されたことがわかる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037

Claims (18)

  1.  エチレン性不飽和結合を有するイソシアネート化合物と、
     前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、前記イソシアネート化合物と異なる化合物であって下記式(1)で表される化合物、
    および/または、
     前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、ゲル浸透クロマトグラフィーによる測定スペクトルにおいて、イソシアネート10量体以上の領域にUV吸収を持つ化合物、
     および/または、
    前記イソシアネート化合物の全質量を基準として1.0質量ppm以上1.0×10質量ppm以下の、イソシアヌレート基および/またはビウレット基を有する化合物と、
     を含有する、イソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはa価の有機基を表し、Rは一価の有機基を表し、aは1または2の整数を表す。)
  2.  前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppmの範囲の炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群から選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合及び炭素-酸素間の二重結合を有しない不活性化合物をさらに含有する、請求項1に記載のイソシアネート組成物。
  3. 前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppmの範囲の炭酸誘導体をさらに含有する請求項1または2に記載のイソシアネート組成物。
  4.  前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、硫酸、及び/又は、硫酸エステル、及び/又は、
     1.0質量ppm以上1.0×10質量ppm以下の、リン酸、及び/又は、リン酸エステルとをさらに含有する、請求項1~3のいずれか一項に記載のイソシアネート組成物。
  5.  前記イソシアネート組成物が、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppmの範囲の、塩基性アミノ化合物、および/または、
     ハロゲンイオン、および/または、加水分解性ハロゲン化合物をさらに含有する請求項1~4のいずれか一項に記載のイソシアネート組成物。
  6.  エチレン性不飽和結合を有するイソシアネート化合物と、
     前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上1.0×10質量ppm以下の、前記イソシアネート化合物と異なる化合物であって、芳香環を構成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物、又は、前記イソシアネート化合物の全質量を基準として、1.0質量ppm以上2.0×10質量ppm以下の、炭化水素化合物、エーテル化合物、スルフィド化合物、ハロゲン化炭化水素化合物、含ケイ素炭化水素化合物、含ケイ素エーテル化合物及び含ケイ素スルフィド化合物からなる群より選ばれる少なくとも1種の不活性化合物であって、芳香環を構成する不飽和結合以外に炭素-炭素間の不飽和結合を有しない不活性化合物、および/または、
    1.0質量ppm以上1.0×10質量ppm以下の、硫酸、及び/又は、硫酸エステル、及び/又は、
     1.0質量ppm以上1.0×10質量ppm以下の、リン酸、及び/又は、リン酸エステルと、
     を含有する、イソシアネート組成物。
  7.  前記イソシアネート組成物が、前記イソシアネート化合物と、前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物とを含有し、
     前記芳香環を形成する不飽和結合以外の不飽和結合が、炭素-酸素間の二重結合である、請求項6に記載のイソシアネート組成物。
  8.  前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物が、炭酸誘導体である、請求項7に記載のイソシアネート組成物。
  9.  前記炭酸誘導体が、炭酸エステル、N-無置換カルバミン酸エステル、及び、N-置換カルバミン酸エステルからなる群から選ばれる、少なくとも1種の化合物である、請求項8に記載のイソシアネート組成物。
  10. 前記N-置換カルバミン酸エステルが、下記式(2)で表される化合物である、請求項9に記載のイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rは前記イソシアネート化合物からイソシアネート基を除いた残基を示し、Rは有機基を示す。]
  11.  前記イソシアネート組成物が、前記イソシアネート化合物と、前記不活性化合物とを含有する、請求項6に記載のイソシアネート組成物。
  12.  前記イソシアネート組成物が、前記イソシアネート化合物と、前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物と、前記不活性化合物とを含有する、請求項6に記載のイソシアネート組成物。
  13.  前記イソシアネート組成物が、前記イソシアネート化合物と、前記イソシアネート化合物と異なる化合物であって、芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物とを含有し、
     前記芳香環を形成する不飽和結合以外の不飽和結合が、炭素-酸素間の二重結合である、請求項12に記載のイソシアネート組成物。
  14.  前記芳香環を形成する不飽和結合以外の不飽和結合を少なくとも1つ有する化合物が、炭酸誘導体である、請求項13に記載のイソシアネート組成物。
  15.  前記炭酸誘導体が、炭酸エステル、N-無置換カルバミン酸エステル、及び、N-置換カルバミン酸エステルからなる群から選ばれる少なくとも1種の化合物である、請求項14に記載のイソシアネート組成物。
  16.  イソシアネート組成物全体質量を基準として、前記イソシアネート化合物を97質量%以上含む、請求項1~15のいずれか一項に記載のイソシアネート組成物。
  17.  請求項1~16のいずれか一項に記載のイソシアネート組成物と2官能以上のイソシアネートとを混合し、前記イソシアネート組成物に含有される前記イソシアネート化合物と前記2官能以上のイソシアネートとを反応させる工程を含むイソシアネート重合体の製造方法であって、
     前記イソシアネート重合体が下記式(11)で表される単位を含み、
     前記イソシアネート重合体を構成する窒素原子が、炭素原子と結合していることを特徴とする、イソシアネート重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式(11)中、R25、R26、R27は、各々独立に、前記イソシアネート組成物に含有される前記イソシアネート化合物からイソシアネート基を除いた残基、または、前記2官能以上のイソシアネートからイソシアネート基を除いた残基を示し、R25、R26、R27のうち少なくとも1つの基は、前記イソシアネート組成物に含有される前記イソシアネート化合物からイソシアネート基を除いた残基を示す。]
  18.  下記式(11)で表される単位を含み、前記イソシアネート重合体を構成する窒素原子が、炭素原子と結合している、イソシアネート重合体。
    Figure JPOXMLDOC01-appb-C000004
    [式(11)中、R25、R26、R27は、各々独立に、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基、または、2官能以上のイソシアネートからイソシアネート基を除いた残基を示し、R25、R26、R27のうち少なくとも1つの基は、エチレン性不飽和結合を有するイソシアネート化合物からイソシアネート基を除いた残基を示す。]
PCT/JP2017/037277 2016-10-14 2017-10-13 イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体 WO2018070541A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018545090A JP6641497B2 (ja) 2016-10-14 2017-10-13 イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体
EP17860948.3A EP3527603A4 (en) 2016-10-14 2017-10-13 ISOCYANATE COMPOSITION, PROCESS FOR PRODUCTION OF ISOCYANATE POLYMER, AND ISOCYANATE POLYMER
US16/340,633 US11174337B2 (en) 2016-10-14 2017-10-13 Isocyanate composition, method for producing isocyanate polymer and isocyanate polymer
CN201780062882.6A CN109843963B (zh) 2016-10-14 2017-10-13 异氰酸酯组合物、异氰酸酯聚合物的制造方法和异氰酸酯聚合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016203144 2016-10-14
JP2016-203113 2016-10-14
JP2016203113 2016-10-14
JP2016-203144 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070541A1 true WO2018070541A1 (ja) 2018-04-19

Family

ID=61905640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037277 WO2018070541A1 (ja) 2016-10-14 2017-10-13 イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体

Country Status (6)

Country Link
US (1) US11174337B2 (ja)
EP (1) EP3527603A4 (ja)
JP (1) JP6641497B2 (ja)
CN (1) CN109843963B (ja)
TW (1) TW201829525A (ja)
WO (1) WO2018070541A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040045A1 (ja) * 2018-08-20 2020-02-27 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
WO2020040048A1 (ja) * 2018-08-20 2020-02-27 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
WO2021141002A1 (ja) * 2020-01-06 2021-07-15 昭和電工株式会社 イソシアナト基を有する(メタ)アクリル酸エステル化合物およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070539A1 (ja) * 2016-10-14 2018-04-19 旭化成株式会社 イソシアネート組成物及びイソシアネート重合体の製造方法
CN112851908B (zh) * 2021-01-14 2023-03-03 万华化学集团股份有限公司 含有脲二酮基团的多异氰酸酯的制备方法及存储稳定的二异氰酸酯单体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228523A (ja) * 1998-02-06 1999-08-24 Showa Denko Kk イソシアナトアルキル(メタ)アクリレートの製造方法
JP2007084809A (ja) * 2005-08-25 2007-04-05 Jsr Corp 側鎖不飽和重合体、感放射線性樹脂組成物および液晶表示素子用スペーサー
JP2008143872A (ja) * 2006-12-13 2008-06-26 Mitsui Chemicals Inc ビス(イソシアナトメチル)ノルボルナンの安定化方法。

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641500B2 (ja) 1984-04-30 1994-06-01 旭オーリン株式会社 重合体生成物の製造方法
DE3416140A1 (de) 1984-05-02 1985-11-07 Bayer Ag, 5090 Leverkusen Immobilisierung von portaminobacter rubrum und verwendung des immobilisierten praeparates zur umwandlung von sucrose zu isomaltulose
DE3416141A1 (de) 1984-05-02 1985-11-07 Bayer Ag, 5090 Leverkusen Verfahren zur immobilisierung von biologischem material
EP0160260A3 (de) 1984-05-02 1986-10-08 Bayer Ag Verfahren zur Immobilisierung von biologischem Material
US5260439A (en) * 1989-03-01 1993-11-09 Mitsui Toatsu Chemicals, Incorporated Polymerizable monomer having at least one isopropenyl phenyl group and being capable of forming a high surface hardness transparent resin
JPH04154824A (ja) 1990-10-19 1992-05-27 Dainippon Ink & Chem Inc 硬化性樹脂組成物及びそれを用いた塗料
JP2669299B2 (ja) 1992-10-23 1997-10-27 昭和電工株式会社 高分子固体電解質
US5597661A (en) 1992-10-23 1997-01-28 Showa Denko K.K. Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
US5484863A (en) 1993-03-10 1996-01-16 Johnson & Johnson Vision Products, Inc. Polymeric ophthalmic lens prepared from unsaturated polyoxyethylene monomers
DE4331085A1 (de) 1993-09-13 1995-03-16 Basf Ag Stabile, nach phosgenfreien Verfahren erhältliche Polyisocyanatzusammensetzungen und ein Verfahren zu ihrer Herstellung
DE4440288A1 (de) * 1994-11-11 1996-05-15 Basf Ag Verwendung von 3-Arylacrylsäureestern als Lichtschutzmittel und Stabilisatoren für nicht lebendes organisches Material
JP4443637B2 (ja) 1996-06-05 2010-03-31 昭和電工株式会社 イソシアナート化合物の精製方法
JP3828618B2 (ja) 1996-09-02 2006-10-04 昭和電工株式会社 安定な不飽和ウレタン、ウレア及びアミド化合物
US6245935B1 (en) 1998-02-06 2001-06-12 Showa Denko Kabushiki Kaisha Method for producing isocyanatoalkyl (meth)acrylate
WO2005092842A1 (en) 2004-03-25 2005-10-06 Showa Denko K.K. Method for producing (meth)acrylate derivative having isocyanate group
US20070112164A1 (en) * 2005-11-17 2007-05-17 Bayer Materialscience Llc Low surface energy, ethylenically unsaturated polyisocyanate addition compounds and their use in coating compositions
CN102652147B (zh) 2009-12-14 2013-11-20 昭和电工株式会社 聚合性化合物和含有该化合物的固化性组合物
EP2377847A1 (en) 2010-04-14 2011-10-19 3M Innovative Properties Company Process for producing isocyanates
CN102050938B (zh) * 2010-12-07 2012-08-08 南昌航空大学 基于多元异氰酸酯和多元羟基聚丙烯酸酯的紫外光固化聚氨酯树脂的制备方法
EP2676951B1 (en) 2011-02-15 2018-04-18 Showa Denko K.K. Stabilized isocyanate group-containing ethylene-based unsaturated compound
KR101538566B1 (ko) 2011-02-15 2015-07-21 쇼와 덴코 가부시키가이샤 안정화된 이소시아네이트기 함유 에틸렌성 불포화 화합물
CN107815087B (zh) * 2011-10-28 2023-02-28 巴斯夫欧洲公司 包含(环)脂族二异氰酸酯的聚异氰酸酯的颜色稳定的固化组合物
TWI530510B (zh) * 2012-11-01 2016-04-21 旭化成化學股份有限公司 聚異氰酸酯組成物及異氰酸酯聚合物組成物
DE102013204124A1 (de) * 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden
WO2015133494A1 (ja) * 2014-03-04 2015-09-11 三井化学株式会社 イソシアヌレート組成物
JP6529156B2 (ja) 2015-02-18 2019-06-12 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
WO2016160135A1 (en) * 2015-04-03 2016-10-06 Henkel IP & Holding GmbH (meth)acrylate-functionalized extended isosorbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228523A (ja) * 1998-02-06 1999-08-24 Showa Denko Kk イソシアナトアルキル(メタ)アクリレートの製造方法
JP2007084809A (ja) * 2005-08-25 2007-04-05 Jsr Corp 側鎖不飽和重合体、感放射線性樹脂組成物および液晶表示素子用スペーサー
JP2008143872A (ja) * 2006-12-13 2008-06-26 Mitsui Chemicals Inc ビス(イソシアナトメチル)ノルボルナンの安定化方法。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527603A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020040048A1 (ja) * 2018-08-20 2021-08-26 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
CN112513009A (zh) * 2018-08-20 2021-03-16 昭和电工株式会社 组合物、组合物的制造方法及不饱和化合物的制造方法
WO2020040045A1 (ja) * 2018-08-20 2020-02-27 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
KR20210024090A (ko) * 2018-08-20 2021-03-04 쇼와 덴코 가부시키가이샤 조성물, 조성물의 제조 방법 및 불포화 화합물의 제조 방법
US11401237B2 (en) 2018-08-20 2022-08-02 Showa Denko K.K. Composition, production method for composition, and production method for unsaturated compound
CN112533895A (zh) * 2018-08-20 2021-03-19 昭和电工株式会社 组合物、组合物的制造方法及不饱和化合物的制造方法
KR102593371B1 (ko) * 2018-08-20 2023-10-23 가부시끼가이샤 레조낙 조성물, 조성물의 제조 방법 및 불포화 화합물의 제조 방법
KR102591541B1 (ko) * 2018-08-20 2023-10-19 가부시끼가이샤 레조낙 조성물, 조성물의 제조 방법 및 불포화 화합물의 제조 방법
KR20210024089A (ko) * 2018-08-20 2021-03-04 쇼와 덴코 가부시키가이샤 조성물, 조성물의 제조 방법 및 불포화 화합물의 제조 방법
WO2020040048A1 (ja) * 2018-08-20 2020-02-27 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
JPWO2020040045A1 (ja) * 2018-08-20 2021-08-10 昭和電工株式会社 組成物、組成物の製造方法および不飽和化合物の製造方法
CN112533895B (zh) * 2018-08-20 2023-02-17 昭和电工株式会社 组合物、组合物的制造方法及不饱和化合物的制造方法
JP7276341B2 (ja) 2018-08-20 2023-05-18 株式会社レゾナック 組成物、組成物の製造方法および不飽和化合物の製造方法
JP7276342B2 (ja) 2018-08-20 2023-05-18 株式会社レゾナック 組成物、組成物の製造方法および不飽和化合物の製造方法
US11661474B2 (en) 2018-08-20 2023-05-30 Showa Denko K.K. Composition, production method for composition, and production method for unsaturated compound
CN114929668A (zh) * 2020-01-06 2022-08-19 昭和电工株式会社 具有异氰酸酯基的(甲基)丙烯酸酯化合物及其制造方法
WO2021141002A1 (ja) * 2020-01-06 2021-07-15 昭和電工株式会社 イソシアナト基を有する(メタ)アクリル酸エステル化合物およびその製造方法

Also Published As

Publication number Publication date
JP6641497B2 (ja) 2020-02-05
EP3527603A1 (en) 2019-08-21
CN109843963A (zh) 2019-06-04
JPWO2018070541A1 (ja) 2019-06-27
US11174337B2 (en) 2021-11-16
US20200048405A1 (en) 2020-02-13
TW201829525A (zh) 2018-08-16
CN109843963B (zh) 2022-05-13
EP3527603A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018070541A1 (ja) イソシアネート組成物、イソシアネート重合体の製造方法およびイソシアネート重合体
JP7107986B2 (ja) イソシアネート組成物及びイソシアネート重合体の製造方法
JP6666459B2 (ja) イソシアネート組成物、イソシアネート組成物の製造方法、及びイソシアネート重合体の製造方法
JP6475301B2 (ja) ポリイソシアネート組成物及びイソシアネート重合体組成物
BR122022025792B1 (pt) Composição de isocianato, e, método para a produção de um polímero de isocianato
JP7331611B2 (ja) イソシアネート組成物、重合性組成物、化合物、重合物、レンズ、コーティング剤、および、イソシアネート化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017860948

Country of ref document: EP

Effective date: 20190514