WO2023077869A1 - 一种高钛钢用连铸保护渣及其制备方法 - Google Patents

一种高钛钢用连铸保护渣及其制备方法 Download PDF

Info

Publication number
WO2023077869A1
WO2023077869A1 PCT/CN2022/106864 CN2022106864W WO2023077869A1 WO 2023077869 A1 WO2023077869 A1 WO 2023077869A1 CN 2022106864 W CN2022106864 W CN 2022106864W WO 2023077869 A1 WO2023077869 A1 WO 2023077869A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous casting
mold flux
titanium steel
present
slag
Prior art date
Application number
PCT/CN2022/106864
Other languages
English (en)
French (fr)
Inventor
张敏
曾建华
王谦
吴国荣
Original Assignee
攀钢集团攀枝花钢铁研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 攀钢集团攀枝花钢铁研究院有限公司 filed Critical 攀钢集团攀枝花钢铁研究院有限公司
Priority to JP2023519714A priority Critical patent/JP2023552262A/ja
Priority to KR1020237005445A priority patent/KR102676576B1/ko
Publication of WO2023077869A1 publication Critical patent/WO2023077869A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metallurgy, and in particular relates to a continuous casting mold flux for high titanium steel and a preparation method thereof.
  • titanium in the steel will not only react with oxygen in the steel and in the air to form titanium oxide during the casting process, but also react with SiO 2 and Fe 2 O 3 in mold slag. , Al 2 O 3 , Na 2 O, B 2 O 3 and other oxides undergo a series of complex chemical reactions to form titanium oxide.
  • the titanium oxide with high melting point enters the mold flux, which leads to the increase of the melting point and viscosity of the mold flux and the deterioration of its performance.
  • TiO 2 will also combine with CaO in the mold flux to precipitate perovskite with high melting point, which will affect the lubrication and heat transfer between the slab and the mold, and eventually cause defects such as slag inclusions, cracks and depressions under the slab skin.
  • the traditional mold flux for titanium-containing steel lowers the melting point of the mold flux by adding a large amount of Na 2 O, B 2 O 3 , K 2 O and other fluxes. Because these liquid slags have no time to pass through the slag layer, the sintered layer is thickened, so this method cannot realize the continuous casting of high-titanium steel. Therefore, the production of high-titanium steel is generally in the form of injection molding, which limits the application field of high-titanium steel and makes it difficult to achieve large-scale and low-cost production.
  • the object of the present invention is to provide a continuous casting mold flux for high titanium steel and its preparation method.
  • the continuous casting mold flux for high titanium steel provided by the present invention has better performance.
  • the invention provides a continuous casting mold flux for high-titanium steel, the composition of which is:
  • the balance is impurities.
  • the mass content of the CaO is 1-5%.
  • the mass content of SiO 2 is 23-27%.
  • the mass content of the Fe 2 O 3 is 2-8%.
  • the mass content of F is 6-12%.
  • the mass content of Li 2 O is 4-8%.
  • the mass content of the BaO is 40-45%.
  • the mass content of the C is 5-12%.
  • the melting point of the continuous casting mold flux for high titanium steel is 850°C-1150°C
  • the viscosity is 0.08-0.28 Pa ⁇ S
  • the devitrification rate is 82-100%.
  • the present invention provides a method for preparing the continuous casting mold flux for high titanium steel described in the above technical solution, comprising:
  • Bauxite, alumina, barium carbonate, barium fluoride, fluorite, quartz sand, lithium carbonate and carbonaceous materials are prepared to obtain continuous casting mold flux for high titanium steel.
  • the present invention designs and develops mold mold powder suitable for continuous casting;
  • the mold powder provided by the invention effectively reduces Fe 2 O 3 , Al
  • the reactivity of 2 O 3 , Na 2 O, B 2 O 3 and other substances with titanium in steel stabilizes the performance of the mold flux;
  • the mold flux provided by the invention greatly reduces the CaO content in the slag, effectively preventing high
  • the production of melting point perovskite ensures the stability of high titanium steel casting process performance.
  • the poured high-titanium steel slab has no surface cracks, good internal quality, no central cracks and middle cracks, and continuous casting for more than 120 minutes is realized.
  • the CaO content in the mold flux provided by the present invention is very low, which prevents TiO 2 from entering into the mold flux to form perovskite with a high melting point, resulting in deterioration of the mold flux performance; no addition of Na 2 O, K 2 O, B 2 O 3 , Fe 2 O 3 and other fluxes that can react with titanium prevent the problem of large changes in the performance of the mold flux caused by the reaction of these fluxes with titanium; at the same time, it also prevents the sintering of the mold flux after the content of these low melting point phases in the mold flux is too high.
  • SiO 2 is the main network former, the appropriate content of SiO 2 can effectively maintain the stability of mold slag structure and performance; add 3 ⁇ 10wt% Li 2 O component, the addition of Li 2 O can effectively and stably coordinate the performance of mold flux.
  • Li 2 O does not react with [Ti] in molten steel and has a significant effect on regulating the performance of mold flux.
  • the physical and chemical properties of mold flux provided by the invention are melting point: 850°C-1150°C, viscosity: 0.08-0.28Pa ⁇ S, crystallization rate: 82-100%, not only can effectively coordinate and control lubrication And heat transfer characteristics, it also has a strong ability to absorb TiO 2 inclusions, and the slag system can be continuously poured for 120 minutes, and the performance of the mold slag is stable.
  • the invention provides a continuous casting mold flux for high-titanium steel, the composition of which is:
  • the balance is impurities.
  • the mass content of the CaO is preferably 1-5%, more preferably 2-4%, most preferably 3%; the mass content of the SiO2 is preferably 23-27%, more preferably 25% %; the mass content of the Fe 2 O 3 is preferably 2 to 8%, more preferably 3 to 6%, and most preferably 4 to 5%; the mass content of the F is preferably 6 to 12%, more preferably 8-10%, most preferably 9%; the mass content of the Li 2 O is preferably 4-8%, more preferably 5-7%, most preferably 6%; the mass content of the BaO is preferably 40- 45%, more preferably 42-43%; the mass content of C is preferably 5-12%, more preferably 8-10%, most preferably 9%.
  • the total mass content of Na 2 O+K 2 O+B 2 O 3 +Fe 2 O 3 in the impurities is preferably ⁇ 3%.
  • the melting point of the continuous casting mold flux for high titanium steel provided by the present invention is preferably 850°C-1150°C, the viscosity is preferably 0.08-0.28 Pa ⁇ S, and the devitrification rate is preferably 82-100%.
  • the present invention provides a method for preparing the continuous casting slag for high-titanium steel described in the above technical solution, comprising:
  • Bauxite, alumina, barium carbonate, barium fluoride, fluorite, quartz sand, lithium carbonate and carbonaceous materials are prepared to obtain continuous casting mold flux for high titanium steel.
  • the mass content of Al 2 O 3 in the bauxite is preferably >77%.
  • the alumina is preferably aluminum oxide for electrolytic aluminum; the mass content of Al 2 O 3 in the alumina is preferably >77%.
  • the mass content of BaCO in the barium carbonate is preferably >96%
  • the mass content of BaF in the barium fluoride is preferably >96%
  • the mass content of CaF in the fluorite is preferably >86%
  • the mass content of SiO2 in the quartz sand is preferably >92%
  • the mass content of Li2CO3 in the lithium carbonate is preferably >97%
  • the mass content of C in the carbonaceous material is preferably >95%.
  • the preparation method of the continuous casting slag for high-titanium steel preferably includes:
  • the mold flux premelt is prepared into continuous casting mold flux for high titanium steel.
  • grinding is preferably carried out during the mixing process; the particle size of the mixture obtained after the mixing is preferably 1mm-5mm, more preferably 2-4mm, most preferably 3mm.
  • the resulting mixture was mixed with water and pelletized.
  • the mass of the water is preferably 10-20% of the mass of the mixture, more preferably 13-17%, most preferably 15%.
  • the method of pelletizing and drying is not particularly limited in the present invention, and the method of pelletizing and drying can be carried out by methods well known to those skilled in the art.
  • the smelting is preferably carried out in an induction furnace or other smelting equipment; the smelting is preferably to melt the dried pellets into a liquid state.
  • the present invention has no special limitation on the cooling, drying and crushing methods, and the cooling, drying and crushing methods known to those skilled in the art can be used.
  • the particle size of the crushed product is preferably less than 5mm.
  • the preparation method of the mold flux preferably includes:
  • the slurry is granulated and then dried to obtain mold flux for continuous casting of high titanium steel.
  • the crushing is preferably crushing to below 200 mesh.
  • the mixing is preferably carried out in a refiner.
  • the mass of the water is preferably 0.7-1.1 times the mass of the mold flux premelt, more preferably 0.8-1 time, and most preferably 0.9 times.
  • the binder is preferably a cellulose binder.
  • the mass of the binder is preferably 1.5-1.8%, more preferably 1.6-1.7%, of the mass of the mold flux premelt.
  • the mixing is preferably refined grinding; the time of the refined grinding is preferably 40-70 minutes, more preferably 50-60 minutes, most preferably 55 minutes.
  • the granulation method is preferably spray-making hollow granules.
  • the drying is preferably drying by using a drying tower.
  • the moisture in the continuous casting mold flux for high titanium steel is preferably ⁇ 0.6wt%; the particle size is preferably 0.01-1.5mm, more preferably 0.05-1mm, more preferably 0.1-0.8mm, more preferably 0.2-0.6 mm, most preferably 0.3-0.5 mm.
  • the CaO content in the mold flux provided by the present invention is very low, which prevents TiO 2 from entering into the mold flux to form perovskite with a high melting point, resulting in deterioration of the mold flux performance; no addition of Na 2 O, K 2 O, B 2 O 3 , Fe 2 O 3 and other fluxes that can react with titanium prevent the problem of large changes in the performance of the mold flux caused by the reaction of these fluxes with titanium; at the same time, it also prevents the sintering of the mold flux after the content of these low melting point phases in the mold flux is too high.
  • SiO 2 is the main network former, the appropriate content of SiO 2 can effectively maintain the stability of mold slag structure and performance; add 3 ⁇ 10wt% Li 2 O component, the addition of Li 2 O can effectively and stably coordinate the performance of mold flux.
  • Li 2 O does not react with [Ti] in molten steel and has a significant effect on regulating the performance of mold flux.
  • the physical and chemical properties of mold flux provided by the invention are melting point: 850°C-1150°C, viscosity: 0.08-0.28Pa ⁇ S, crystallization rate: 82-100%, not only can effectively coordinate and control lubrication And heat transfer characteristics, it also has a strong ability to absorb TiO 2 inclusions, and the slag system can be continuously poured for 120 minutes, and the performance of the mold slag is stable.
  • Viscometer and hemispherical point melting point test method are used to test the viscosity and melting point of mold flux.
  • the detection method of crystallization rate is: use image software to observe the fracture of mold flux to obtain the crystal ratio; use fluorescence analysis method to detect the composition of mold flux Analysis, the continuous casting mold flux for high-titanium steel prepared in the embodiment was detected, and the detection results are shown in Table 1.
  • the obtained slab has no transverse and longitudinal cracks on the surface, and no looseness and cracks inside.
  • the CaO content in the mold flux provided by the present invention is very low, which prevents TiO 2 from entering into the mold flux to form perovskite with a high melting point, resulting in deterioration of the mold flux performance; no addition of Na 2 O, K 2 O, B 2 O 3 , Fe 2 O 3 and other fluxes that can react with titanium prevent the problem of large changes in the performance of the mold flux caused by the reaction of these fluxes with titanium; at the same time, it also prevents the sintering of the mold flux after the content of these low melting point phases in the mold flux is too high.
  • SiO 2 is the main network former, the appropriate content of SiO 2 can effectively maintain the stability of mold slag structure and performance; add 3 ⁇ 10wt% Li 2 O component, the addition of Li 2 O can effectively and stably coordinate the performance of mold flux.
  • Li 2 O does not react with [Ti] in molten steel and has a significant effect on regulating the performance of mold flux.
  • the physical and chemical properties of mold flux provided by the invention are melting point: 850°C-1150°C, viscosity: 0.08-0.28Pa ⁇ S, crystallization rate: 82-100%, not only can effectively coordinate and control lubrication And heat transfer characteristics, it also has a strong ability to absorb TiO 2 inclusions, and the slag system can be continuously poured for 120 minutes, and the performance of the mold slag is stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明提供了一种高钛钢用连铸保护渣,成分为:0~6wt%的CaO;20~30wt%的SiO2;0~10wt%的Fe2O3;5~14wt%的F;3~10wt%的LiO2;35~50wt%的BaO;3~15wt%的C;余量为杂质。本发明针对高钛钢,设计开发了适用于连铸浇注使用的结晶器保护渣;本发明提供的保护渣有效降低了Fe2O3、Al2O3、Na2O、B2O3等物质与钢中钛的反应性,从而稳定了保护渣的性能;另外,本发明提供的保护渣大幅降低了渣中CaO含量,有效防止了高熔点钙钛矿的生产,确保了高钛钢浇注过程性能的稳定性。本发明还提供了一种高钛钢用连铸保护渣的制备方法。

Description

一种高钛钢用连铸保护渣及其制备方法 技术领域
本发明属于冶金技术领域,尤其涉及一种高钛钢用连铸保护渣及其制备方法。
背景技术
在高钛钢浇铸过程中因钢水中钛含量较高,钢中钛在浇注过程不仅会与钢中和空气中的氧反应生成氧化钛,还会与保护渣中的SiO 2、Fe 2O 3、Al 2O 3、Na 2O、B 2O 3等氧化物发生一系列复杂化学反应生成氧化钛。这些高熔点的氧化钛进入到保护渣中导致保护渣熔点、粘度升高及性能恶化。TiO 2还会与保护渣中的CaO结合析出高熔点的钙钛矿,影响铸坯和结晶器之间润滑和传热,最终引起铸坯皮下夹渣、裂纹和凹陷等缺陷。传统含钛钢用保护渣通过加入大量的Na 2O、B 2O 3、K 2O等熔剂来降低保护渣熔点,但这些低熔点物相含量过高后,导致保护渣熔化过快,但这些液渣由于来不及穿越渣层,导致烧结层增厚,因此,该方法也无法实现高钛钢的连续浇注使用。故目前高钛钢的生产一般采用模注形式,从而限制了高钛钢的应用领域以及很难实现规模化和低成本生产。
发明内容
有鉴于此,本发明的目的在于提供一种高钛钢用连铸保护渣及其制备方法,本发明提供的高钛钢用连铸保护渣具有较好的性能。
本发明提供了一种高钛钢用连铸保护渣,成分为:
0~6wt%的CaO;
20~30wt%的SiO 2
0~10wt%的Fe 2O 3
5~14wt%的F;
3~10wt%的Li 2O;
35~50wt%的BaO;
3~15wt%的C;
余量为杂质。
优选的,所述CaO的质量含量为1~5%。
优选的,所述SiO 2的质量含量为23~27%。
优选的,所述Fe 2O 3的质量含量为2~8%。
优选的,所述F的质量含量为6~12%。
优选的,所述Li 2O的质量含量为4~8%。
优选的,所述BaO的质量含量为40~45%。
优选的,所述C的质量含量为5~12%。
优选的,所述高钛钢用连铸保护渣的熔点为850℃~1150℃,粘度为0.08~0.28Pa·S,析晶率为82~100%。
本发明提供了一种上述技术方案所述的高钛钢用连铸保护渣的制备方法,包括:
将铝矾土、氧化铝、碳酸钡、氟化钡、萤石、石英砂、碳酸锂和碳质材料制备得到高钛钢用连铸保护渣。
本发明针对高钛钢,尤其是Ti在0.3~2.0wt%的钢种,设计开发了适用于连铸浇注使用的结晶器保护渣;本发明提供的保护渣有效降低了Fe 2O 3、Al 2O 3、Na 2O、B 2O 3等物质与钢中钛的反应性,从而稳定了保护渣的性能;另外,本发明提供的保护渣大幅降低了渣中CaO含量,有效防止了高熔点钙钛矿的生产,确保了高钛钢浇注过程性能的稳定性。本发明提供的保护渣使用后,浇注出的高钛钢铸坯表面无裂纹,内部质量良好,无中心裂纹和中间裂纹,且实现了大于120分钟的连续浇注。
本发明提供的保护渣中CaO含量非常低,避免了TiO 2进入到保护渣中生成高熔点的钙钛矿,导致保护渣性能恶化;未添加Na 2O、K 2O、B 2O 3、Fe 2O 3等会与钛反应的熔剂,防止了这些熔剂因与钛反应带来的保护渣性能变化较大的问题;同时也防止了保护渣中这些低熔点物相含量过高后,烧结层增厚,液渣消耗降低,导致连铸断浇的问题;SiO 2是主要的网络形成体,适当含量的SiO 2能有效保持保护渣结构及性能的稳定性;添加3~10wt%的Li 2O组分,Li 2O的加入能有效且稳定地协调保护渣的性能,Li 2O不与钢水中[Ti]反应且其调节保护渣性能作用明显,因此Li 2O是高钛钢保护渣中助溶剂的良好选择;本发明提供的保护渣的理化性能为熔点:850℃~1150℃、粘度:0.08~0.28Pa·S, 析晶率:82~100%,不仅能有效协调控制润滑和传热特性,还具有很强的吸收TiO 2夹杂的能力,且该渣系能在连续浇注120分钟后,保护渣性能稳定。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种高钛钢用连铸保护渣,成分为:
0~6wt%的CaO;
20~30wt%的SiO 2
0~10wt%的Fe 2O 3
5~14wt%的F;
3~10wt%的Li 2O;
35~50wt%的BaO;
3~15wt%的C;
余量为杂质。
在本发明中,所述CaO的质量含量优选为1~5%,更优选为2~4%,最优选为3%;所述SiO 2的质量含量优选为23~27%,更优选为25%;所述Fe 2O 3的质量含量优选为2~8%,更优选为3~6%,最优选为4~5%;所述F的质量含量优选为6~12%,更优选为8~10%,最优选为9%;所述Li 2O的质量含量优选为4~8%,更优选为5~7%,最优选为6%;所述BaO的质量含量优选为40~45%,更优选为42~43%;所述C的质量含量优选为5~12%,更优选为8~10%,最优选为9%。
在本发明中,所述杂质中Na 2O+K 2O+B 2O 3+Fe 2O 3的总质量含量优选≤3%。
本发明提供的高钛钢用连铸保护渣的熔点优选为850℃~1150℃,粘度优选为0.08~0.28Pa·S,析晶率优选为82~100%。
本发明提供了一种上述技术方案所述的高钛钢用连铸渣的制备方法,包括:
将铝矾土、氧化铝、碳酸钡、氟化钡,萤石、石英砂、碳酸锂和碳质材料制备得到高钛钢用连铸保护渣。
在本发明中,所述铝矾土中Al 2O 3的质量含量优选>77%。
在本发明中,所述氧化铝优选为电解铝用氧化铝;所述氧化铝中Al 2O 3的质量含量优选>77%。
在本发明中,所述碳酸钡中BaCO 3的质量含量优选>96%,所述氟化钡中BaF 2的质量含量优选>96%,所述萤石中CaF 2的质量含量优选>86%,所述石英砂中SiO 2的质量含量优选>92%,所述碳酸锂中Li 2CO 3的质量含量优选>97%,所述碳质材料中C的质量含量优选>95%。
在本发明中,所述高钛钢用连铸渣的制备方法优选包括:
将铝矾土、氧化铝、碳酸钡、氟化钡,萤石、石英砂、碳酸锂和碳质材料混合后造球烘干,熔炼后冷却、烘干,得到保护渣预熔料;
将所述保护渣预熔料制备成高钛钢用连铸保护渣。
在本发明中,所述混合过程中优选进行研磨;所述混合后得到的混合物的粒度优选为1mm~5mm,更优选为2~4mm,最优选为3mm。
在本发明中,所述混合后优选还包括:
将得到的混合物和水混合后进行造球。
在本发明中,所述水的质量优选为混合物质量的10~20%,更优选为13~17%,最优选为15%。
本发明对所述造球和烘干的方法没有特殊的限制,采用本领域技术人员熟知的方法进行造球和烘干的方法即可。
在本发明中,所述熔炼优选在感应炉或其他熔炼设备中进行;所述熔炼优选为将烘干后的球团熔融为液态。
本发明对所述冷却、烘干和破碎的方法没有特殊的限制,采用本领域技术人员熟知的冷却、烘干和破碎的方法即可。在本发明中,所述破碎后的产物粒径优选小于5mm。
本发明对所述预熔料制备保护渣的方法没有特殊的限制,采用本领域技术人员熟知的保护渣的制备方法即可。
在本发明中,所述保护渣的制备方法优选包括:
将所述保护渣预熔料破碎后和碳质材料混合,得到混合物;
将所述混合物和水、粘结剂混合,得到浆料;
将所述浆料造粒后烘干,得到高钛钢用连铸保护渣。
在本发明中,所述破碎优选为破碎加工到200目以下。
在本发明中,所述混合优选在精磨机中进行。
在本发明中,所述水的质量优选为保护渣预熔料质量的0.7~1.1倍,更优选为0.8~1倍,最优选为0.9倍。
在本发明中,所述粘结剂优选为纤维素粘结剂。
在本发明中,所述粘结剂的质量优选为保护渣预熔料质量的1.5~1.8%,更优选为1.6~1.7%。
在本发明中,所述混合优选为精磨;所述精磨的时间优选为40~70分钟,更优选为50~60分钟,最优选为55分钟。
在本发明中,所述造粒的方法优选为喷雾造空心颗粒。
在本发明中,所述烘干优选为采用干燥塔烘干。
在本发明中,所述高钛钢用连铸保护渣中的水分优选<0.6wt%;粒度优选为0.01~1.5mm,更优选为0.05~1mm,更优选为0.1~0.8mm,更优选为0.2~0.6mm,最优选为0.3~0.5mm。
本发明提供的保护渣中CaO含量非常低,避免了TiO 2进入到保护渣中生成高熔点的钙钛矿,导致保护渣性能恶化;未添加Na 2O、K 2O、B 2O 3、Fe 2O 3等会与钛反应的熔剂,防止了这些熔剂因与钛反应带来的保护渣性能变化较大的问题;同时也防止了保护渣中这些低熔点物相含量过高后,烧结层增厚,液渣消耗降低,导致连铸断浇的问题;SiO 2是主要的网络形成体,适当含量的SiO 2能有效保持保护渣结构及性能的稳定性;添加3~10wt%的Li 2O组分,Li 2O的加入能有效且稳定地协调保护渣的性能,Li 2O不与钢水中[Ti]反应且其调节保护渣性能作用明显,因此Li 2O是高钛钢保护渣中助溶剂的良好选择;本发明提供的保护渣的理化性能为熔点:850℃~1150℃、粘度:0.08~0.28Pa·S,析晶率:82~100%,不仅能有效协调控制润滑和传热特性,还具有很强的吸收TiO 2夹杂的能力,且该渣系能在连续浇注120分钟后,保护渣性能稳定。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。鉴于本领域的技术人员在连铸领域开展了大量的保护渣设计以及连铸工艺方面的研究工作,在理论与实践方面均积累了大量的、丰富的经验。在认真阅读了本实施例及其相应的分析后,一定能够根据其它的具体条件,在本发明提出的工艺技术或者渣料组分及其相应比例的范围内,(至多 再做几次有限的常规试验)具体的选择出几组满足其它条件的保护渣等渣料配方,以实现本发明所述的技术效果。所以,以下仅举出部分实施例。但不应将此理解为本发明上述主题的范围仅限于以下的实例,凡基于本发明上述内容所实现的技术均属于本发明的范围。
实施例1~4
将铝矾土、电解铝用氧化铝、碳酸钡、氟化钡、萤石、石英砂、碳酸锂和碳质材料配料后进行研磨,得到粒径均为1mm~5mm的粉末;搅拌混匀后,再加入10~20%的水,再进行搅拌直至均匀,然后进行造球、烘干,将烘干的球进感应炉冶炼至球完全熔融为液态,再冷却、烘干、破碎(破碎后粒径小于5mm)后得保护渣预熔料,再按保护渣常规工艺制备,将预熔料破碎加工到200目以下,加入碳质材料后一起放入精磨机中,配入1倍的水(水的质量为预熔料质量的1倍),1.6%的纤维素粘结剂(纤维素粘结剂的质量为预熔料质量的1.6%),精磨50分钟后的得到浆料;将所述浆料进行喷雾造空心颗粒后进入干燥塔烘干,得到保护渣;将保护渣装入密封袋,水分小于0.6wt%,粒度0.01~1.5mm。
采用粘度仪和半球点熔点测试方法测试保护渣的粘度和熔点,析晶率的检测方法为:采用图像软件对保护渣的断口进行观测,得到晶体比例;用荧光分析方法对保护渣成分进行检测分析,对实施例制备的高钛钢用连铸保护渣进行检测,检测结果如表1所示。
表1实施例制备的保护渣成分和物理化学性质检测结果
Figure PCTCN2022106864-appb-000001
采用本发明实施例制备的连铸保护渣浇注钢中Ti含量0.3~2.0%的钢种且浇注时间≥120分钟,得到的铸坯表面无横向和纵向裂纹,内部无疏松和裂纹。
本发明提供的保护渣中CaO含量非常低,避免了TiO 2进入到保护渣中生成高熔点的钙钛矿,导致保护渣性能恶化;未添加Na 2O、K 2O、B 2O 3、Fe 2O 3等会与钛反应的熔剂,防止了这些熔剂因与钛反应带来的保护渣性能变化较大的问题;同时也防止了保护渣中这些低熔点物相含量过高后,烧结层增厚,液渣消耗降低,导致连铸断浇的问题;SiO 2是主要的网络形成体,适当含量的SiO 2能有效保持保护渣结构及性能的稳定性;添加3~10wt%的Li 2O组分,Li 2O的加入能有效且稳定地协调保护渣的性能,Li 2O不与钢水中[Ti]反应且其调节保护渣性能作用明显,因此Li 2O是高钛钢保护渣中助溶剂的良好选择;本发明提供的保护渣的理化性能为熔点:850℃~1150℃、粘度:0.08~0.28Pa·S,析晶率:82~100%,不仅能有效协调控制润滑和传热特性,还具有很强的吸收TiO 2夹杂的能力,且该渣系能在连续浇注120分钟后,保护渣性能稳定。
虽然已参考本发明的特定实施例描述并说明本发明,但是这些描述和说明并不限制本发明。所属领域的技术人员可清晰地理解,在不脱离如由所附权利要求书定义的本发明的真实精神和范围的情况下,可进行各种改变,以使特定情形、材料、物质组成、物质、方法或过程适宜于本申请的目标、精神和范围。所有此类修改都意图在此所附权利要求书的范围内。虽然已参考按特定次序执行的特定操作描述本文中所公开的方法,但应理解,可在不脱离本发明的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非本文中特别指示,否则操作的次序和分组并非本申请的限制。

Claims (10)

  1. 一种高钛钢用连铸保护渣,成分为:
    0~6wt%的CaO;
    20~30wt%的SiO 2
    0~10wt%的Fe 2O 3
    5~14wt%的F;
    3~10wt%的Li 2O;
    35~50wt%的BaO;
    3~15wt%的C;
    余量为杂质。
  2. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述CaO的质量含量为1~5%。
  3. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述SiO 2的质量含量为23~27%。
  4. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述Fe 2O 3的质量含量为2~8%。
  5. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述F的质量含量为6~12%。
  6. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述Li 2O的质量含量为4~8%。
  7. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述BaO的质量含量为40~45%。
  8. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述C的质量含量为5~12%。
  9. 根据权利要求1所述的高钛钢用连铸保护渣,其特征在于,所述高钛钢用连铸保护渣的熔点为850℃~1150℃,粘度为0.08~0.28Pa·S,析晶率为82~100%。
  10. 一种权利要求1所述的高钛钢用连铸保护渣的制备方法,包括:
    将铝矾土、氧化铝、碳酸钡、氟化钡、萤石、石英砂、碳酸锂和碳质材 料制备得到高钛钢用连铸保护渣。
PCT/CN2022/106864 2021-11-02 2022-07-20 一种高钛钢用连铸保护渣及其制备方法 WO2023077869A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023519714A JP2023552262A (ja) 2021-11-02 2022-07-20 高チタン鋼の連続鋳造用モールドパウダー及びその製造方法
KR1020237005445A KR102676576B1 (ko) 2021-11-02 2022-07-20 고티타늄강용 연속주조 보호 슬래그 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111288492.5A CN113953472B (zh) 2021-11-02 2021-11-02 一种高钛钢用连铸保护渣及其制备方法
CN202111288492.5 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023077869A1 true WO2023077869A1 (zh) 2023-05-11

Family

ID=79468936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106864 WO2023077869A1 (zh) 2021-11-02 2022-07-20 一种高钛钢用连铸保护渣及其制备方法

Country Status (3)

Country Link
JP (1) JP2023552262A (zh)
CN (1) CN113953472B (zh)
WO (1) WO2023077869A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953472B (zh) * 2021-11-02 2023-02-03 攀钢集团攀枝花钢铁研究院有限公司 一种高钛钢用连铸保护渣及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185195A (ja) * 1991-09-05 1993-07-27 Kawasaki Steel Corp 連続鋳造用モールドパウダー
JPH07241655A (ja) * 1994-03-02 1995-09-19 Nippon Steel Corp Ti含有鋼用連続鋳造パウダー
CN105642849A (zh) * 2016-02-25 2016-06-08 唐山市鑫焱昌科技有限公司 含钛钢连铸用结晶器保护渣
CN108127094A (zh) * 2018-01-11 2018-06-08 重庆大学 一种高钛钢用非反应性保护渣
CN108213365A (zh) * 2018-01-11 2018-06-29 重庆大学 一种高铝钢用非反应性保护渣
CN111500919A (zh) * 2020-05-29 2020-08-07 攀钢集团攀枝花钢铁研究院有限公司 高洁净度高钛低碳钢的生产方法
CN113102702A (zh) * 2021-04-09 2021-07-13 东北大学 一种高钛钢用高碱度低反应性连铸保护渣及其制备方法
CN113953472A (zh) * 2021-11-02 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 一种高钛钢用连铸保护渣及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087273A (ja) * 2015-11-12 2017-05-25 品川リフラクトリーズ株式会社 Ti含有鋼の連続鋳造用モールドパウダー及び連続鋳造方法
CN111531140B (zh) * 2020-05-22 2022-05-24 攀钢集团攀枝花钢铁研究院有限公司 含钛钢用高氧化钛的连铸保护渣
CN111570740A (zh) * 2020-05-29 2020-08-25 攀钢集团攀枝花钢铁研究院有限公司 高铝钢用连铸保护渣及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185195A (ja) * 1991-09-05 1993-07-27 Kawasaki Steel Corp 連続鋳造用モールドパウダー
JPH07241655A (ja) * 1994-03-02 1995-09-19 Nippon Steel Corp Ti含有鋼用連続鋳造パウダー
CN105642849A (zh) * 2016-02-25 2016-06-08 唐山市鑫焱昌科技有限公司 含钛钢连铸用结晶器保护渣
CN108127094A (zh) * 2018-01-11 2018-06-08 重庆大学 一种高钛钢用非反应性保护渣
CN108213365A (zh) * 2018-01-11 2018-06-29 重庆大学 一种高铝钢用非反应性保护渣
CN111500919A (zh) * 2020-05-29 2020-08-07 攀钢集团攀枝花钢铁研究院有限公司 高洁净度高钛低碳钢的生产方法
CN113102702A (zh) * 2021-04-09 2021-07-13 东北大学 一种高钛钢用高碱度低反应性连铸保护渣及其制备方法
CN113953472A (zh) * 2021-11-02 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 一种高钛钢用连铸保护渣及其制备方法

Also Published As

Publication number Publication date
KR20230066327A (ko) 2023-05-15
CN113953472B (zh) 2023-02-03
JP2023552262A (ja) 2023-12-15
CN113953472A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
KR101322442B1 (ko) 알루미나 - 티타늄 옥사이드 - 지르코니아 용융 입자
CN101736131B (zh) 一种钢水精炼用预熔型脱硫剂及其制备方法
CN101502871A (zh) 大方坯连铸结晶器保护渣及其制备方法
CN111531140B (zh) 含钛钢用高氧化钛的连铸保护渣
CN100462327C (zh) 一种制备电熔镁铝尖晶石的方法
CN105642849A (zh) 含钛钢连铸用结晶器保护渣
CN102233414B (zh) 高铝高锰型无磁钢结晶器保护渣及其制造方法
WO2023077869A1 (zh) 一种高钛钢用连铸保护渣及其制备方法
CN110315039A (zh) 一种无氟保护渣在含钛钢连铸中的应用
CN107285747A (zh) 一种锆刚玉磨料的生产工艺
CN112028651A (zh) 一种铬刚玉料及其生产方法
US5179997A (en) Process for insulating molten steel during continuous casting
CN109852821A (zh) 一种钒铁渣的处理方法
CN111893241A (zh) 一种预熔型铝镁钙合成渣及其制备方法
CN111676346A (zh) 含钛钢用精炼渣及其制备方法和使用方法
CN107400783A (zh) 一种高纯镁精炼剂及高纯镁精炼工艺
CN114029462B (zh) 一种高钛低铝钢用含稀土氧化物的连铸保护渣及制备方法
KR20070020871A (ko) 알루미늄 및 형석을 함유하는 제강용 플럭스 조성물
KR102676576B1 (ko) 고티타늄강용 연속주조 보호 슬래그 및 이의 제조 방법
CN105174732A (zh) 一种高强度玻璃纤维及其制备方法和用途
CN110560649B (zh) 一种新型高铝钢保护渣及其应用
CN102399941B (zh) 超低钛、碳钢脱硫用铝酸钙的制备方法
CN101709353B (zh) 铸铁用复合脱硫材料及其制备方法
CN109702158A (zh) 一种高铝钢连铸用保护渣及其制备方法和应用
CN101708532B (zh) 铸钢除渣复合材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023519714

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888904

Country of ref document: EP

Kind code of ref document: A1