WO2023072096A1 - 含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用 - Google Patents

含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用 Download PDF

Info

Publication number
WO2023072096A1
WO2023072096A1 PCT/CN2022/127444 CN2022127444W WO2023072096A1 WO 2023072096 A1 WO2023072096 A1 WO 2023072096A1 CN 2022127444 W CN2022127444 W CN 2022127444W WO 2023072096 A1 WO2023072096 A1 WO 2023072096A1
Authority
WO
WIPO (PCT)
Prior art keywords
membered
group
alkyl
independently
butyl
Prior art date
Application number
PCT/CN2022/127444
Other languages
English (en)
French (fr)
Inventor
***
魏毅
袁宏斌
刘康志
Original Assignee
优领医药科技(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优领医药科技(香港)有限公司 filed Critical 优领医药科技(香港)有限公司
Publication of WO2023072096A1 publication Critical patent/WO2023072096A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • the invention belongs to the field of medicine synthesis. It specifically relates to tetrahydrofuran-containing polycyclic derivatives, their pharmaceutically acceptable salts and their preparation methods, and their use as CDK2 inhibitors in the preparation of medicines for treating cancer.
  • the cell cycle is the period of time between successive cell divisions during which cells replicate and divide precisely through the precise control of multiple enzymatic reactions.
  • the cell cycle has four main phases, G1, S, G2, and M phases, and cell cycle transitions are mainly regulated by CDKs family kinases.
  • CDKs Cyclin-dependent kinases
  • CDKs Cyclin-dependent kinases
  • CDK1 participates in M phase activities
  • CDK2 participates in G1, S, M phase activities
  • CDK4/6 participates in G1 phase activities.
  • the remaining CDKs 5/7/8/9/19 were also recently found to have important roles in regulating cycle activity.
  • Cyclin-dependent kinases constitute a heterodimeric family of serine/threonine protein kinases involved in the cell cycle and transcription. They include two broad categories: cell cycle CDKs and transcriptional CDKs. The function of CDK depends on the specific interaction with the regulatory protein cyclins (cyclins), and cyclins and CDKs form heterodimers to activate and regulate the cell cycle process.
  • cyclin E/CDK2 Overexpression of CDK2 is associated with abnormal regulation of the cell cycle.
  • the cyclin E/CDK2 complex plays an important role in the regulation of G1/S transition, histone biosynthesis and centrosome duplication. Cyclin D/CDK4/6 and cyclin E/CDK2 progressively phosphorylate retinoblastoma (Rb), release the G1 transcription factor E2F, and promote entry into S phase.
  • Rb retinoblastoma
  • E2F G1 transcription factor
  • Cyclin E a regulatory cycle protein of CDK2, is frequently overexpressed in cancer. Amplification or overexpression of Cyclin E has long been associated with adverse outcomes in breast cancer. Overexpression of cyclin E2 (CCNE2) is associated with the following factors. Amplification or overexpression of cyclin E1 (CCNE1) has also been associated with adverse outcomes in ovarian, gastric, endometrial and other cancers. Cyclin E overexpression or amplification also causes breast cancer to be resistant to CDK4/6 inhibitors. Inhibiting CDK2 can inhibit the growth of cancer cells with overexpression of Cyclin E. In addition, inhibiting CDK2 can also inhibit MYCN-related cancers. CDK2 inhibitors have good prospects for cancer treatment.
  • CDK1 plays a key role in the M-phase transition of cells, and inhibition of CDK1 activity will bring greater toxicity.
  • CDK1 and CDK2 are very similar in the kinase structure region, so it is extremely difficult to develop highly selective CDK2 inhibitors.
  • CDK inhibitors include CDK4/6 inhibitors, CDK7 inhibitors, CDK9 inhibitors, CDK2/4/6 inhibitors and CDK2/9 inhibitors, but CDK2-specific inhibitors with better selectivity agents still have potential advantages.
  • the present invention discovers a series of novel CDK2 kinase inhibitor compounds, which specifically inhibit CDK2 and have good selectivity.
  • the object of the present invention is to provide a compound shown in general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, wherein the structure shown in general formula (I) is as follows:
  • L is selected from a bond, -C(O)-, -S(O) m- , -C(O)( CH2 ) n- or -( CH2 ) n- ;
  • R is selected from hydrogen, deuterium, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl , 3-12 membered heterocyclic group, C 6-14 aryl group, 5-14 membered heteroaryl group, -(CH 2 ) n OR a , -(CH 2 ) n SR a , -(CH 2 ) n NR b R a , -(CH 2 ) n C(O)R a , -(CH 2 ) n C(O)NR b R a , -(CH 2 ) n NR b C(O)R a , -(CH 2 ) n S(O) m R a , -(CH 2 ) n S(O) m NR b R a , -(CH 2 ) n S
  • R x selected from or Ry ;
  • Ring A is selected from C 3-12 cycloalkyl, 3-12 membered heterocyclic group, C 6-14 aryl or 5-14 membered heteroaryl, said C 3-12 cycloalkyl, 3-12 membered Heterocyclyl, C 6-14 aryl or 5-14 membered heteroaryl, optionally, further replaced by deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, oxo, thio, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl , C 3-12 cycloalkyl, 3-12 membered heterocyclic group, C 6-14 aryl group, 5-14 membered heteroaryl group, C 3-12 cycloalkyloxy group, 3-12 membered heterocyclic group oxygen Substituted by one or more substituents in
  • R is independently selected from hydrogen, deuterium, halogen, hydroxyl, mercapto , nitro, cyano, amino, oxo, thio, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 Alkoxy , C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocyclyl, C 6-14 aryl, 5-14 membered heteroaryl, C 3-12 cycloalkyloxy, 3-12 membered heterocyclyloxy, C 6-14 aryloxy, 5-14 membered heteroaryl Oxygen, -(CH 2 ) n OR c , -(CH 2 ) n SR d , -(CH 2 ) n NR d R c , -O(CH 2 ) n NR d R c , -(CH 2 )
  • any two R 1 and their atoms together form a C 3-12 cycloalkyl group, a 3-12 membered heterocyclic group, a C 6-14 aryl group or a 5-14 membered heteroaryl group, and the C 3 -12 cycloalkyl, 3-12 membered heterocyclyl, C6-14 aryl and 5-14 membered heteroaryl, optionally, further replaced by deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino , oxo, thio, C 1-6 alkyl , C 1-6 haloalkyl , C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2- 6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocyclyl, C 6-14 aryl, 5-14 membered heteroaryl, C 3-12 cycloalkyloxy
  • One or more substituents
  • Ry is selected from hydrogen, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio C 1-6 hydroxyalkyl, C 2-6 alkenyl or C 2-6 alkynyl, the amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy , C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl and C 2-6 alkynyl, optionally, further deuterium, halogen, hydroxyl, mercapto, nitro, cyano , amino, oxo, thio, C 1-6 alkyl , C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl , C 2-6 alkenyl, C 2-6 alkynyl,
  • R a , R b , R c and R d are each independently selected from hydrogen, deuterium, halogen, hydroxyl, mercapto , nitro, cyano, amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1 -6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocycle Base, C 6-14 aryl, 5-14 membered heteroaryl, C 3-12 cycloalkyloxy, 3-12 membered heterocyclyloxy, C 6-14 aryloxy or 5-14 membered Heteroaryloxy , the amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12
  • R a and R b and their atoms together form a 3-12 membered heterocyclic group or a 5-14 membered heteroaryl group, the 3-12 membered heterocyclic group and 5-14 membered heteroaryl group, any Optionally, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, oxo, thio, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy , C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocyclyl, C 6- 14 aryl, 5-14 membered heteroaryl, C 3-12 cycloalkyloxy, 3-12 membered heterocyclyloxy, C 6-14 aryloxy and 5-14 membered heteroaryloxy Substituted by one or more substituents in ; and
  • x is an integer from 0 to 10;
  • n is an integer from 0 to 10;
  • n 0, 1 or 2.
  • the present invention also provides a preferred scheme, the compound represented by the general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, the definition of some groups can be as follows, The definition of other groups can be as described in any scheme of the present invention (hereinafter referred to as "the present invention also provides a preferred scheme"), in R, the C 1-6 alkyl is independently C 1-4 alkyl , such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the C 1-6 haloalkyl is independently a C 1-4 haloalkyl, and the alkyl is preferably methyl, ethyl, n-propyl, isopropyl , n-butyl, isobutyl, sec-butyl or tert-butyl; the halo can be F, Cl, Br or I, such as F.
  • the C 1-6 hydroxyalkyl is independently a C 1-4 hydroxyalkyl, and the alkyl is preferably methyl, ethyl, n-propyl, iso Propyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the C 2-6 alkenyl is independently a C 2-4 alkenyl, such as vinyl, propenyl or butenyl.
  • the C 2-6 alkynyl is independently a C 2-4 alkynyl, such as ethynyl, propynyl or butynyl.
  • the C 3-12 cycloalkyl is independently a C 3-6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, bicyclo[1.1 .1] pentyl or cyclohexyl, also for example cyclopropyl, cyclobutyl or
  • the present invention also provides a preferred scheme.
  • the 3-12 membered heterocyclic group is independently a 3-8 membered heterocyclic group (for example, 7 members); the heteroatom in the 3-8 membered heterocyclic group is The number can be 1 or 2 (eg 1) independently; the heteroatoms in the 3-8 membered heterocyclic group can be independently selected from one or both of N and O (eg N).
  • the present invention also provides a preferred scheme, in R, the C 6-14 aryl is independently a C 6-10 aryl, such as phenyl or naphthyl.
  • the 5-14 membered heteroaryl group is independently a 5-6 membered heteroaryl group (such as 6 members), wherein the heteroatom in the 5-6 membered heteroaryl group is The number can be 1 or 2 (eg 1) independently; the heteroatoms in the 5-6 membered heteroaryl group can be independently selected from one or both of N and O (eg N).
  • the C 3-12 cycloalkyl is a C 3-6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • the 3-12 membered heterocyclic group is a C 3-8 membered heterocyclic group; the number of heteroatoms in the 3-8 membered heterocyclic group can be independently 1 or 2 (eg 1); wherein the heteroatoms in the 3-8 membered heterocyclic group can be independently selected from one or both of N and O (eg N).
  • the present invention also provides a preferred solution, in the ring A, the C 6-14 aryl is a C 6-10 aryl, such as phenyl or naphthyl.
  • the 5-14 membered heteroaryl group is independently a 5-10 membered heteroaryl group (such as 5-membered, 6-membered, 9-membered), and the 5-10-membered heteroaryl group is independently
  • the aryl group is independently a 5-6 membered heteroaryl group or a 5-membered and 6-membered heteroaryl group, wherein the number of heteroatoms in the 5-6 membered heteroaryl group can be independently 1 or 2 (for example, 2), The number of heteroatoms in the 5-membered and 6-membered heteroaryl can be independently 1 or 4 (for example, 4); the heteroatoms in the 5-6-membered heteroaryl and the 5-membered and 6-membered heteroaryl can be independently selected from one or both of N and O (eg N).
  • the present invention also provides a preferred scheme, in the ring A, the C 1-6 alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or Tert-butyl, also eg methyl, ethyl or propyl.
  • the C 1-6 alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or Tert-butyl, also eg methyl, ethyl or propyl.
  • the C 1-6 haloalkyl is independently a C 1-4 haloalkyl, and the alkyl is preferably methyl, ethyl, n-propyl, isopropyl Base, n-butyl, isobutyl, sec-butyl or tert-butyl; said halo can be F, Cl, Br or I, such as F.
  • the C 1-6 alkoxy group is independently a C 1-4 alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropyl oxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy.
  • the C 1-6 alkylthio group is independently a C 1-4 alkylthio group, such as methylthio, ethylthio, n-propylthio, isopropyl Thio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio.
  • the C 1-6 hydroxyalkyl is independently a C 1-4 hydroxyalkyl, and the alkyl is preferably methyl, ethyl, n-propyl, Isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the C 2-6 alkenyl is independently a C 2-4 alkenyl, such as vinyl, propenyl or butenyl.
  • the C 2-6 alkynyl is independently a C 2-4 alkynyl, such as ethynyl, propynyl or butynyl.
  • the present invention also provides a preferred solution, in the ring R 1 , the halogen is independently F, Cl, Br or I, such as F.
  • the present invention also provides a preferred scheme, in the ring R 1 , the C 1-6 alkyl group, the alkyl group is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl radical, sec-butyl or tert-butyl, such as methyl or ethyl.
  • the C 1-6 haloalkyl is independently a C 1-4 haloalkyl, and the alkyl is preferably methyl, ethyl, n-propyl, iso Propyl, n-butyl, isobutyl, sec-butyl or tert-butyl; the halo can be F, Cl, Br or I, such as F.
  • the C 1-6 alkoxy group is independently a C 1-4 alkoxy group, such as methoxy, ethoxy, n-propoxy, iso Propoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy.
  • the C 1-6 hydroxyalkyl is independently a C 1-4 hydroxyalkyl, and the alkyl is preferably methyl, ethyl, n-propyl , isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the present invention also provides a preferred solution, in the ring R 1 , the C 2-6 alkenyl is independently a C 2-4 alkenyl, such as vinyl, propenyl or butenyl.
  • the present invention also provides a preferred solution, in the ring R 1 , the C 2-6 alkynyl is independently a C 2-4 alkynyl, such as ethynyl, propynyl or butynyl.
  • the C 3-12 cycloalkyl is independently a C 3-6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, bicyclic [1.1.1] Pentyl or cyclohexyl, also eg cyclopropyl.
  • the 3-12 membered heterocyclic group is independently a 3-8 membered heterocyclic group (for example, 7 members); among the 3-8 membered heterocyclic groups
  • the number of heteroatoms can be independently 1 or 2 (such as 1); the heteroatoms in the 3-8 membered heterocyclic group can be independently selected from one or both of N and O (such as N) .
  • the present invention also provides a preferred solution, in the ring R 1 , the C 6-14 aryl group is independently a C 6-10 aryl group, such as phenyl or naphthyl.
  • the present invention also provides a preferred scheme, in the ring R 1 , the 5-14 membered heteroaryl is 5-6 membered heteroaryl or 5-6 membered heteroaryl, wherein the 5-6 membered heteroaryl
  • the number of heteroatoms in the aryl and 5-membered and 6-membered heteroaryl groups can be 1 or 2 independently; the heteroatoms in the 5-6-membered heteroaryl group and 5-membered and 6-membered heteroaryl groups can be independently One or two selected from N and O (for example, N).
  • the C 3-12 cycloalkyloxy is independently a C 3-6 cycloalkyloxy, such as cyclopropyloxy, cyclobutyl Oxy, cyclopentyloxy or cyclohexyloxy, also eg cyclopropyloxy.
  • the C 1-6 alkyl is independently a C 1-4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl base, isobutyl, sec-butyl or tert-butyl.
  • the C 1-6 haloalkyl is independently a C 1-4 haloalkyl, C 1-4 alkyl, the alkyl is preferably methyl, ethyl Base, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl; said halo can be F, Cl, Br or I, such as F.
  • the C 1-6 alkoxy group is independently a C 1-4 alkoxy group, such as methoxy, ethoxy, n-propoxy, iso Propoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy.
  • the C 1-6 alkylthio group is independently a C 1-4 alkylthio group, such as methylthio, ethylthio, n-propylthio, iso Propylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio.
  • the present invention also provides a preferred scheme, in the ring R y , the C 1-6 hydroxyalkyl is independently a C 1-4 hydroxyalkyl, and the alkyl is preferably methyl, ethyl, n-propyl , isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the present invention also provides a preferred solution, in the ring R y , the C 2-6 alkenyl is independently a C 2-4 alkenyl, such as vinyl, propenyl or butenyl.
  • the present invention also provides a preferred solution, in the ring R y , the C 2-6 alkynyl is independently a C 2-4 alkynyl, such as ethynyl, propynyl or butynyl.
  • the C 3-12 cycloalkyl is independently a C 3-6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, bicyclic [1.1.1] Pentyl or cyclohexyl, also eg cyclopropyl.
  • the present invention also provides a preferred scheme, in the ring R y , the 3-12 membered heterocyclic group is independently a 3-8 membered heterocyclic group; the number of heteroatoms in the 3-8 membered heterocyclic group is independently Ground can be 1 or 2; the heteroatoms in the 3-8 membered heterocyclic group can be independently selected from one or both of N and O.
  • the present invention also provides a preferred solution, in the ring R y , the C 6-14 aryl is independently a C 6-10 aryl, such as phenyl or naphthyl.
  • the 5-14 membered heteroaryl group is a 5-6 membered heteroaryl group, wherein the number of heteroatoms in the 5-6 membered heteroaryl group is independent can be 1 or 2; the heteroatoms in the 5-6 membered heteroaryl group can be independently selected from one or both of N and O.
  • the present invention also provides a preferred scheme, in R a , R b , R c and R d , the C 1-6 alkyl is independently a C 1-4 alkyl, such as methyl, ethyl, n-propyl base, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the present invention also provides a preferred scheme, in R a , R b , R c and R d , the C 1-6 haloalkyl is independently a C 1-4 haloalkyl, and the alkyl is preferably methyl, Ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl; said halo can be F, Cl, Br or I, for example F.
  • the present invention also provides a preferred solution, in R a , R b , R c and R d , the C 1-6 alkoxy group is independently a C 1-4 alkoxy group, such as methoxy, ethoxy , n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy.
  • the C 1-6 alkylthio group is independently a C 1-4 alkylthio group, such as methylthio, ethylthio , n-propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio.
  • the present invention also provides a preferred scheme, in R a , R b , R c and R d , the C 1-6 hydroxyalkyl is independently a C 1-4 hydroxyalkyl, and the alkyl is preferably methyl radical, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the present invention also provides a preferred solution, in R a , R b , R c and R d , the C 2-6 alkenyl is independently a C 2-4 alkenyl, such as vinyl, propenyl or butyl Alkenyl.
  • the present invention also provides a preferred solution, in R a , R b , R c and R d , the C 2-6 alkynyl is independently a C 2-4 alkynyl, such as ethynyl, propynyl or butynyl.
  • the present invention also provides a preferred solution, in R a , R b , R c and R d , the C 3-12 cycloalkyl is independently a C 3-6 cycloalkyl, such as cyclopropyl, cyclo Butyl, cyclopentyl, bicyclo[1.1.1]pentyl or cyclohexyl, also eg cyclopropyl.
  • the 3-12 membered heterocyclic group is independently a 3-8 membered heterocyclic group (such as 4-membered, 7-membered) ;
  • the number of heteroatoms in the 3-8 membered heterocyclic group can be independently 1 or 2 (eg 1); the heteroatoms in the 3-8 membered heterocyclic group can be independently selected from N and O One or both of them (eg N).
  • the present invention also provides a preferred solution, in R a , R b , R c and R d , the C 6-14 aryl groups are independently C 6-10 aryl groups, such as phenyl or naphthyl.
  • the 5-14 membered heteroaryl group is independently a 5-6 membered heteroaryl group (for example, 6 members), wherein The number of heteroatoms in the 5-6 membered heteroaryl group can be independently 1 or 2 (for example, 1); the heteroatoms in the 5-6 membered heteroaryl group can be independently selected from one of N and O One or two (eg N).
  • the present invention also provides a preferred scheme, the compound shown, its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, its specific structure is shown in general formula (I-A) or general formula (I-B):
  • the R is selected from 3-10 membered nitrogen-containing heterocyclic group, 5-10 membered nitrogen-containing heteroaryl group, -C(O)R a or -C(O)NR b R a , the 3-10 membered nitrogen-containing heterocyclic group and 5-10 membered nitrogen-containing heteroaryl group, optionally further replaced by deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, oxo , Thio, C 1-3 alkyl , C 1-3 haloalkyl, C 1-3 alkoxy, C 1-3 alkylthio, C 1-3 hydroxyalkyl , C 2-3 alkenyl , C 2-3 alkynyl, C 3-8 cycloalkyl, 3-8 membered heterocyclyl, C 6-10 aryl, 5-10 membered heteroaryl, C 3-8 cycloalkyloxy, 3- One or more substituents in 8-membered heterocycly
  • R a and R b are each independently selected from hydrogen, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl , C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocyclyl, C 6-14 Aryl, 5-14 membered heteroaryl, C 3-12 cycloalkyloxy, 3-12 membered heterocyclyloxy, C 6-14 aryloxy or 5-14 membered heteroaryloxy, The amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocycl
  • R a and R b and their atoms together form a 3-10 membered heterocyclic group or a 5-10 membered heteroaryl group, the 3-10 membered heterocyclic group and 5-10 membered heteroaryl group, any Optionally, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, oxo, thio, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy , C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-12 cycloalkyl, 3-12 membered heterocyclyl, C 6- 14 aryl, 5-14 membered heteroaryl, C 3-12 cycloalkyloxy, 3-12 membered heterocyclyloxy, C 6-14 aryloxy and 5-14 membered heteroaryloxy Substituted by one or more substituents.
  • the present invention also provides a preferred scheme, the compound shown, its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, its specific structure is shown in general formula (II):
  • Rings A, L, R 1 , R a , R b and x are as defined in general formula (I).
  • the present invention also provides a preferred scheme, the compound shown, its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, its specific structure is as general formula (II-A) or general formula (II-B ) as shown:
  • Rings A, L, R 1 , R a , R b and x are as described above.
  • the ring A is selected from a 5-6 membered monocyclic heteroaryl group, an 8-10 membered bicyclic fused heterocyclic group or an 8-10 membered bicyclic fused heteroaryl group.
  • the ring A is selected from pyrazolyl, pyridyl or pyrazolo 5-6 membered heteroaryl.
  • the ring A is selected from pyrazolyl, pyridyl or pyrazolopyrimidinyl.
  • the ring A is selected from
  • said L is a bond, -C(O)- or -C(O)CH 2 .
  • the present invention also provides a kind of preferred scheme, shown compound, its prodrug, stereoisomer or its pharmaceutically acceptable salt, its specific structure is as shown in general formula (III):
  • R x , R a and R b are as defined in general formula (I).
  • the present invention also provides a preferred scheme, the compound shown, its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, its specific structure is shown in general formula (IV):
  • R 1 , R a , R b and x are as defined in general formula (I).
  • the present invention also provides a preferred scheme, the R a is selected from hydrogen or methyl;
  • the R b is selected from methyl, ethyl, tert-butyl, isobutyl, cyclopropyl, cyclobutyl or bicyclo [1.1.1] pentyl, the methyl, ethyl, isopropyl , tert-butyl, isobutyl, cyclopropyl, cyclobutyl and bicyclo[1.1.1]pentyl, optionally further replaced by one or more of methyl, ethyl, isopropyl or tert-butyl replaced by a substituent;
  • R a and R b and their atoms together form an azetidinyl group or a 7-azabicyclo[2.2.1]heptanyl group, and the azetidinyl group and 7-azabicyclo [2.2.1] Heptane optionally further substituted with one or more methyl groups.
  • the present invention also provides a preferred solution, for
  • the present invention also provides a preferred solution, for
  • the present invention also provides a preferred scheme, R independently selected from hydrogen, deuterium, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy or C 3-12 cycloalkane
  • R independently selected from hydrogen, deuterium, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy or C 3-12 cycloalkane
  • the C 1-6 alkyl group, C 1-6 haloalkyl group, C 1-6 alkoxy group and C 3-8 cycloalkyl group are further replaced by deuterium, halogen, C 1-6 alkyl group, C 1 -6 haloalkyl, C 1-6 alkoxy and C 3-12 cycloalkyl are substituted by one or more substituents.
  • R is independently selected from deuterium, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy or C 3-8 cycloalkyl, The C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy and C 3-8 cycloalkyl, further replaced by deuterium, halogen, C 1-6 alkyl, C 1-6 One or more substituents in haloalkyl, C 1-6 alkoxy and C 3-8 cycloalkyl.
  • R 1 is independently selected from C 1-6 alkyl, and the C 1-6 alkyl is optionally further replaced by C 1-6 alkyl and C 1-6 alkoxy Substituted by one or more substituents in the group.
  • the present invention also provides a preferred scheme, the shown compound, its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, its specific structure is as general formula (IV-A) and general formula (IV-B ) as shown:
  • R 1 , R a , R b and x are as defined in general formula (I).
  • said R a and R b are each independently selected from hydrogen, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, C 1-6 alkyl, C 1-6 6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-8 cycloalkyl, 3-10 membered heterocyclyl, C 6-10 aryl, 5-10 membered heteroaryl, C 3-8 cycloalkyloxy, 3-8 membered heterocyclyloxy, C 6-10 aryloxy or 5-10 membered heteroaryloxy, the amino, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1- 6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-8 cyclo
  • R a and R b and their atoms together form a 3-10 membered heterocyclic group or a 5-10 membered heteroaryl group, the 3-10 membered heterocyclic group and 5-10 membered heteroaryl group, any Optionally, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, oxo, thio, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy , C 1-6 alkylthio, C 1-6 hydroxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-8 cycloalkyl, 3-8 membered heterocyclyl, C 6- 10 aryl, 5-10 membered heteroaryl, C 3-8 cycloalkyloxy, 3-8 membered heterocyclyloxy, C 6-10 aryloxy and 5-10 membered heteroaryloxy Substituted by one or more substituents.
  • said Ra is selected from hydrogen or methyl
  • the R b is selected from methyl, ethyl, isopropyl, tert-butyl, isobutyl, cyclopropyl, cyclobutyl or bicyclo [1.1.1] pentyl, the methyl, ethyl , isopropyl, tert-butyl, isobutyl, cyclopropyl, cyclobutyl and bicyclo[1.1.1]pentyl, optionally further replaced by methyl, ethyl, isopropyl, cyclopropyl or One or more substituents in tert-butyl are substituted;
  • R a and R b and their atoms together form an azetidinyl group or a 7-azabicyclo[2.2.1]heptanyl group, and the azetidinyl group and 7-azabicyclo [2.2.1] Heptane optionally further substituted with one or more methyl groups.
  • R c and R d are each independently selected from hydrogen, deuterium, halogen, hydroxyl, mercapto, nitro, cyano, amino, C 1-3 alkyl, C 1-3 haloalkyl, C 1-3 alkoxy, C 1-3 alkylthio, C 1-3 hydroxyalkyl, C 2-3 alkenyl, C 2-3 alkynyl, C 3-8 cycloalkyl, 3-8 membered heterocyclyl, C 6-10 Aryl, 5-10 membered heteroaryl, C 3-8 cycloalkyloxy, 3-8 membered heterocyclyloxy, C 6-10 aryloxy or 5-10 membered heteroaryloxy, The amino, C 1-3 alkyl, C 1-3 haloalkyl, C 1-3 alkoxy, C 1-3 alkylthio, C 1-3 hydroxyalkyl, C 2-3 alkenyl, C 2-3 alkynyl, C 3-8 cycloalkyl, 3-8 membered heterocyclyl, C 6
  • said R 1 is independently selected from -CN, -NH 2 , -OH, -CH 3 , -CF 3 , -OCH 3 , -CH 2 OCH 3 , -CH 2 NH 2 , -CH(OH)CH 3 , -C(O)NH 2 , -CH 2 N(CH 3 ) 2 , -C(O)N(CH 3 ) 2 , -(CH 2 ) 2 OCH 3 , - OCH(CH 3 ) 2 , —O(CH 2 ) 2 OCH 3 , or —O(CH 2 ) 2 N(CH 3 ) 2 .
  • said R 1 is independently selected from H, D, F, Cl, -CN, -NH 2 , -OH, -CH 3 , -CF 3 , -CD 3 , -OCH 3 , -OCF 3 , -CH 2 OCH 3 , -(CH 2 ) 2 OCH 3 ,
  • R is L chooses -C(O)-, R x is selected from Or R y ; ring A is selected from 5-14 membered heteroaryl, and said 5-14 membered heteroaryl is optionally replaced by deuterium, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1 -6 alkoxy and one or more substituents in C 3-12 cycloalkyl are substituted; R 1 is independently selected from hydrogen, deuterium, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy or C 3-12 cycloalkyl, the C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy and C 3-12 cycloalkyl, any Optionally further substituted by one or more substituents in deuterium, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy and C 3-12 cycloalkyl, any Optionally further substitute
  • R y is selected from C 1-6 alkyl, and the C 1-6 alkyl is substituted by one or more substituents in 5-14 membered heteroaryl; the 5-14 membered heteroaryl is further substituted by One or more C 1-6 alkyl, C 1-6 haloalkyl and C 1-6 alkoxy substituted.
  • R is -LR x is
  • -LR x is R is 5-10 membered nitrogen-containing heteroaryl or -(CH 2 ) n C(O)NR b R a ; n is 0, R a is hydrogen, R b is C 1- substituted by C 3-12 cycloalkyl 6 alkyl, C 3-12 cycloalkyl or C 3-12 cycloalkyl substituted by C 1-6 alkyl; or, together with the atoms where they are located, form azetidinyl or 7-azabicyclo [2.2.1] Heptyl, said azetidinyl and 7-azabicyclo [2.2.1] heptane, optionally further substituted by one or more methyl groups; said 5 -10-membered nitrogen-containing heteroaryl, optionally further substituted by one or more substituents in deuterium, halogen and C 1-3 alkyl.
  • R is
  • R is
  • -LR x is
  • the present invention also provides a preferred solution. When the present invention does not specify whether it is substituted or unsubstituted, it is generally understood as unsubstituted.
  • each compound of the general formula shown above its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, specifically selected from the following compounds:
  • the present invention also relates to a method for preparing a compound represented by general formula (I) as described above, its prodrug or stereoisomer and a pharmaceutically acceptable salt thereof, which is characterized in that it comprises the following steps:
  • Formula (Ia) and formula (Ib) introduce R groups through common organic reactions such as single-step or multi-step nucleophilic substitution, coupling reaction, Mitsunobu reaction, esterification reaction, etc., to obtain compounds or stereoisomers shown in formula (Ic) body and its pharmaceutically acceptable salt;
  • the compound shown in formula (Ic) obtains compound or stereoisomer and pharmaceutically acceptable salt thereof shown in formula (Id) through reduction reaction;
  • Formula (Id) and formula (Ie) obtain the compound or its stereoisomer shown in formula (If) by amidation reaction, nucleophilic substitution or coupling reaction and other common organic reactions;
  • Formula (Ig) obtains the compound represented by formula (I), its prodrug or stereoisomer and pharmaceutically acceptable salt thereof through separation and purification;
  • the compound represented by formula (I) is further obtained by chiral resolution to obtain a single-configuration compound, its prodrug or stereoisomer, and a pharmaceutically acceptable salt thereof;
  • X is selected from but not limited to hydroxyl, halogen or trifluoromethanesulfonate (OTf) etc.;
  • X2 is selected from but not limited to hydroxyl, halogen or trifluoromethanesulfonate (OTf) etc.;
  • R 1a is a protecting group on the pyrazole nitrogen selected from, but not limited to, tert-butyl (t-Bu), tetrahydro-2H-pyran-2-yl (THP), (trimethylsilyl)ethoxymethyl base (SEM), p-methoxybenzyl (PMB), etc.;
  • the present invention also relates to a method for preparing the compound represented by the aforementioned general formula (II), its prodrug or stereoisomer and a pharmaceutically acceptable salt thereof, which is characterized in that it comprises the following steps:
  • Formula (IIa) reacts with formula (IIb) to obtain the compound represented by formula (IIc), its prodrug or stereoisomer and pharmaceutically acceptable salt thereof;
  • Formula (IIc) obtains the compound represented by formula (II), its prodrug or stereoisomer and pharmaceutically acceptable salt thereof through separation and purification;
  • the compound represented by formula (II) is obtained by chiral resolution to obtain a single-configuration compound, its prodrug or stereoisomer, and a pharmaceutically acceptable salt thereof;
  • Rings A, L, R 1 , R a , R b and x are as defined in general formula (II).
  • the present invention relates to a kind of intermediate compound shown in formula (IIa) or its stereoisomer and salt thereof, and its concrete structure is as follows:
  • Rings A, L, R 1 , R a , R b and x are as defined in general formula (II).
  • the present invention relates to an intermediate compound represented by formula (IIa) or its stereoisomer and pharmaceutically acceptable salt thereof, and its specific structure is as follows:
  • Rings A, L, R 1 , R a , R b and x are as defined in general formula (II).
  • formula (IIa) is selected from the following compounds:
  • the present invention further relates to a method for preparing the intermediate compound represented by the formula (IIa) or its stereoisomer and pharmaceutically acceptable salt thereof, which is characterized in that it comprises the following steps:
  • Formula (IIa-1) and formula (IIa-2) obtain the compound shown in formula (IIa-3) or its stereoisomer and its pharmaceutically by common organic reaction such as amidation reaction, nucleophilic substitution or coupling reaction acceptable salt;
  • Formula (IIa-3) reacts with phenyl p-nitrochloroformate to generate the compound shown in formula (IIa-4) or its stereoisomers and pharmaceutically acceptable salts thereof;
  • Formula (IIa-4) removes the protecting group R 1a to obtain the compound represented by formula (IIa) or its stereoisomer and pharmaceutically acceptable salt thereof;
  • X is selected from but not limited to hydroxyl, halogen or trifluoromethanesulfonate (OTf) etc.;
  • R 1a is a protecting group on the pyrazole nitrogen selected from, but not limited to, tert-butyl (t-Bu), tetrahydro-2H-pyran-2-yl (THP), (trimethylsilyl)ethoxymethyl base (SEM), p-methoxybenzyl (PMB), etc.;
  • Rings A, L, R 1 , R a , R b and x are as defined in general formula (II).
  • the present invention relates to a kind of intermediate compound shown in formula (IIa-1) or its stereoisomer and salt thereof, and its concrete structure is as follows:
  • R 1a is a protecting group on the pyrazole nitrogen selected from, but not limited to, tert-butyl (t-Bu), tetrahydro-2H-pyran-2-yl (THP), (trimethylsilyl)ethoxymethyl base (SEM), p-methoxybenzyl (PMB); said salts can be pharmaceutically acceptable salts, etc.
  • formula (IIa-1) is selected from the following compounds:
  • the present invention further relates to a method for preparing the intermediate compound represented by the formula (IIa-1) or its stereoisomer and pharmaceutically acceptable salt thereof, which is characterized in that it comprises the following steps:
  • the compound shown in formula (IIa-1f) obtains the compound shown in formula (IIa-1g) through the epoxidation reaction with m-chloroperoxybenzoic acid (mCPBA);
  • the compound represented by formula (IIa-1g) is ring-closed under acidic conditions to obtain the intermediate compound represented by formula (Ia) or its stereoisomer and pharmaceutically acceptable salt thereof;
  • the compound represented by formula (Ia) can be obtained by reducing the compound represented by formula (IIa-1) or its stereoisomer and pharmaceutically acceptable salt thereof;
  • X is selected from but not limited to halogen, trifluoromethanesulfonate (OTf) or hydroxyl etc.;
  • R 1a is as defined in formula (IIa-1).
  • the present invention also relates to a pharmaceutical composition, which comprises the compounds of the above-mentioned general formulas, their prodrugs, stereoisomers or pharmaceutically acceptable salts thereof, and one or more pharmaceutically acceptable doses for treating diseases. acceptable carrier or excipient.
  • the present invention further relates to the compound represented by general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and the use of the above pharmaceutical composition in the preparation of medicines for treating CDK2-mediated diseases.
  • the present invention further relates to the compound represented by the general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and the use of the above pharmaceutical composition in the preparation of drugs for treating abnormal growth of cells.
  • the present invention further relates to the compound represented by the general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and the use of the above pharmaceutical composition in the preparation of a drug for treating cancer.
  • the present invention further relates to a compound represented by general formula (I), its stereoisomer or a pharmaceutically acceptable salt thereof, and a method for treating diseases mediated by CDK2 with its pharmaceutical composition.
  • the present invention further relates to a compound represented by general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and a method for treating abnormal cell growth with its pharmaceutical composition.
  • the present invention further relates to the use of the compound represented by the general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and its pharmaceutical composition for treating cancer.
  • the cancer may be ovarian cancer.
  • the present invention further relates to the use of the compound represented by general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and its pharmaceutical composition for treating diseases mediated by CDK2.
  • the present invention further relates to the use of the compound represented by the general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and its pharmaceutical composition for treating abnormal growth of cells.
  • the present invention further relates to the use of the compound represented by the general formula (I), its prodrug, stereoisomer or pharmaceutically acceptable salt thereof, and its pharmaceutical composition for treating cancer.
  • alkyl refers to a hydrocarbon group lacking one hydrogen in a saturated aliphatic chain hydrocarbon, which is a straight or branched chain group containing 1 to 20 carbon atoms, preferably an alkyl group containing 1 to 8 carbon atoms, more preferably 1 An alkyl group of 1 to 6 carbon atoms, most preferably an alkyl group of 1 to 3 carbon atoms.
  • Non-limiting examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1 ,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, n-hexyl, 1-ethyl-2- Methylpropyl, 1,1,2-trimethylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3 -Dimethylbutyl, 2-ethylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylbutyl, n-heptyl, 2 -Methylhexyl, 3-methylhexyl, 4-methylhe
  • Alkyl groups may be substituted or unsubstituted, and when substituted, substituents may be substituted at any available point of attachment, said substituents being preferably one or more of the following groups independently selected from alkyl radical, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkane Oxygen, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, oxo, carboxyl or carboxylate, preferably methyl, ethyl, isopropyl, tert-butyl, haloalkyl in the present invention , deuterated alkyl, alkoxy substituted alkyl and hydroxy substituted alkyl.
  • alkylene refers to a group in which one hydrogen of an alkyl group is further substituted, that is, a hydrocarbon group lacking two hydrogens in a saturated aliphatic chain hydrocarbon, which is a straight-chain or branched chain group containing 1 to 20 carbon atoms , preferably an alkylene group having 1 to 8 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and most preferably an alkylene group having 1 to 3 carbon atoms.
  • Non-limiting examples include “methylene” (-CH 2 -), “ethylene” (-(CH 2 ) 2 -), “n-propylene” (-(CH 2 ) 3 -), “ethylene Isopropyl” (-(CH)(CH 3 )(CH 2 )-), “n-butylene” (-(CH 2 ) 4 -), etc.
  • alkenyl refers to an unsaturated aliphatic hydrocarbon group containing at least two carbon atoms and at least one carbon-carbon double bond, which is a straight or branched chain group containing 2 to 20 carbon atoms, preferably containing An alkenyl group of 2 to 8 carbon atoms, more preferably an alkenyl group of 2 to 6 carbon atoms, most preferably an alkenyl group of 2 to 4 carbon atoms.
  • Alkenyl groups may be substituted or unsubstituted, and when substituted, the substituents are preferably one or more of the following groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylthio, Alkylamino, halogen, mercapto, hydroxy, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycle Alkylthio.
  • alkynyl refers to an unsaturated aliphatic alkynyl group containing at least two carbon atoms and at least one carbon-carbon triple bond, which is a straight-chain or branched group containing 2 to 20 carbon atoms, preferably An alkynyl group containing 2 to 8 carbon atoms, more preferably an alkynyl group of 2 to 6 carbon atoms, most preferably an alkynyl group of 2 to 4 carbon atoms.
  • alkynyl containing at least two carbon atoms and at least one carbon-carbon triple bond, which is a straight-chain or branched group containing 2 to 20 carbon atoms, preferably An alkynyl group containing 2 to 8 carbon atoms, more preferably an alkynyl group of 2 to 6 carbon atoms, most preferably an alkynyl group of 2 to 4 carbon atoms.
  • alkynyl ethynyl, 1-propynyl, 2-propynyl,
  • Alkynyl groups may be substituted or unsubstituted, and when substituted, the substituents are preferably one or more of the following groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylthio, Alkylamino, halogen, mercapto, hydroxy, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycle Alkylthio.
  • cycloalkyl refers to a saturated or partially unsaturated monocyclic or polycyclic non-aromatic cyclic hydrocarbon substituent, the cycloalkyl ring atoms containing 3 to 20 carbon atoms, preferably containing 3 to 12 carbon atoms, more preferably containing 3 to 6 carbon atoms.
  • Non-limiting examples of monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, cycloheptyl, cycloheptatriene Cyclopropyl, cyclooctyl, etc., preferably cyclopropyl, cyclobutyl, cyclohexyl, cyclopentyl and cycloheptyl; polycyclic cycloalkyl includes spirocycloalkyl, fused cycloalkyl and bridged cycloalkyl, etc.
  • spirocycloalkyl refers to a polycyclic group containing 5 to 20 carbon atoms, sharing one carbon atom (called a spiro atom) between monocyclic rings, which may contain one or more double bonds, and which has no aromatic properties as a whole. (that is, the whole cannot form a conjugated ⁇ -electron system), but there can be one ring or multiple rings with a conjugated ⁇ -electron system.
  • the spirocycloalkyl ring atoms are preferably 6 to 14 carbon atoms, more preferably 7 to 10 carbon atoms.
  • the spirocycloalkyl group can be divided into single spirocycloalkyl, double spirocycloalkyl or polyspirocycloalkyl, preferably single spirocycloalkyl and double spirocycloalkyl. More preferably, it is a 4-membered/4-membered, 4-membered/5-membered, 4-membered/6-membered, 5-membered/5-membered or 5-membered/6-membered monospirocycloalkyl group.
  • Non-limiting examples of spirocycloalkyl groups include:
  • fused cycloalkyl refers to an all-carbon polycyclic group containing 5 to 20 carbon atoms, each ring in the system sharing adjacent pairs of carbon atoms with other rings in the system, wherein one or more rings can Containing one or more double bonds, the whole is not aromatic (that is, the whole cannot form a conjugated ⁇ -electron system), but there can be one ring or multiple rings with a conjugated ⁇ -electron system.
  • the fused cycloalkyl ring atoms are preferably 6 to 14 carbon atoms, more preferably 7 to 10 carbon atoms.
  • bicyclic, tricyclic, tetracyclic or polycyclic condensed cycloalkyl groups preferably bicyclic or tricyclic, more preferably 5-membered/5-membered or 5-membered/6-membered bicycloalkyl groups.
  • fused cycloalkyl groups include:
  • bridged cycloalkyl refers to an all-carbon polycyclic group containing 5 to 20 carbon atoms, any two rings sharing two carbon atoms that are not directly connected, which may contain one or more double bonds, and which as a whole are not It is aromatic (that is, the whole cannot form a conjugated ⁇ -electron system), but there can be one ring or multiple rings with a conjugated ⁇ -electron system.
  • the bridged cycloalkyl ring atoms are preferably 6 to 14 carbon atoms, more preferably 7 to 10 carbon atoms.
  • bridged cycloalkyl groups preferably bicyclic, tricyclic or tetracyclic, more preferably bicyclic or tricyclic.
  • bridged cycloalkyl groups include:
  • the cycloalkyl ring may be fused to a cycloalkyl or aryl ring, where the ring attached to the parent structure may be a cycloalkyl or aryl ring, non-limiting examples include indanyl, tetrahydronaphthalene base, benzocycloheptyl, etc.
  • Cycloalkyl groups may be optionally substituted or unsubstituted, and when substituted, the substituents are preferably one or more of the following groups independently selected from alkyl, alkenyl, alkynyl, alkoxy, alkane Thio, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio , heterocycloalkylthio, oxo, carboxyl or carboxylate.
  • heterocyclyl refers to a saturated or partially unsaturated monocyclic or polycyclic non-aromatic cyclic hydrocarbon substituent comprising 3 to 20 ring atoms, one or more of which is selected from nitrogen, oxygen, phosphorus, Heteroatoms of boron or S(O) m (where m is an integer from 0 to 2), excluding ring portions of -OO-, -OS- or -SS-, the remaining ring atoms being carbon.
  • Heterocyclyl preferably contains 3 to 12 ring atoms, of which 1 to 4 are heteroatoms; more preferably contains 3 to 10 ring atoms; further preferably contains 3 to 8 ring atoms; most preferably contains 3 to 8 ring atoms .
  • Non-limiting examples of monocyclic heterocyclyl groups include oxetane, tetrahydropyranyl, azepanyl, pyrrolidinyl, imidazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, dihydroimidazolyl , dihydrofuryl, dihydropyrazolyl, dihydropyrrolyl, piperidinyl, pyridonyl, piperazinyl, morpholinyl, thiomorpholinyl, homopiperazinyl, pyranyl, etc., preferably Oxetane, tetrahydrofuranyl, tetrahydropyranyl, azepanyl, piperidinyl, pyridinonyl and piperazinyl.
  • Polycyclic heterocyclic groups include spiro rings, fused rings and bridged ring heterocyclic groups, etc.; wherein the spiro rings, condensed rings and bridged ring heterocyclic groups are optionally connected to other groups through single bonds, or through Any two or more atoms on the ring are further linked to other cycloalkyl groups, heterocyclyl groups, aryl groups and heteroaryl groups.
  • spiroheterocyclyl refers to a polycyclic heterocyclic group containing 5 to 20 ring atoms, one atom (called spiro atom) shared between monocyclic rings, wherein one or more ring atoms are selected from nitrogen, oxygen, phosphorus , boron or S(O) m (wherein m is an integer from 0 to 2) heteroatoms, and the remaining ring atoms are carbon. It may contain one or more double bonds, is not aromatic as a whole (ie cannot form a conjugated ⁇ -electron system as a whole), but may have a ring or rings with a conjugated ⁇ -electron system.
  • the spiroheterocyclyl ring atoms are preferably 6 to 14 membered, more preferably 7 to 10 membered. According to the number of spiro atoms shared between the rings, the spiroheterocyclyl can be divided into single spiroheterocyclyl, double spiroheterocyclyl or polyspiroheterocyclyl, preferably single spiroheterocyclyl and double spiroheterocyclyl.
  • spiroheterocyclyls include:
  • fused heterocyclyl refers to a polycyclic heterocyclic group containing 5 to 20 ring atoms, each ring in the system sharing an adjacent pair of atoms with other rings in the system, wherein one or more ring atoms are selected from A heteroatom from nitrogen, oxygen, phosphorus, boron or S(O) m (where m is an integer from 0 to 2), the remaining ring atoms being carbon.
  • One or more of its rings can contain one or more double bonds, and its whole is not aromatic (that is, it cannot form a conjugated ⁇ -electron system as a whole), but one or more rings can have a conjugated ⁇ -electron system .
  • the fused heterocyclyl ring atoms are preferably 6 to 14 membered, more preferably 7 to 10 membered. According to the number of constituent rings, it can be divided into bicyclic, tricyclic, tetracyclic or polycyclic fused heterocyclic groups, preferably bicyclic or tricyclic, more preferably 5-membered/5-membered or 5-membered/6-membered bicyclic fused heterocyclic groups.
  • fused heterocyclic groups include:
  • bridged heterocyclic group refers to a polycyclic heterocyclic group containing 5 to 20 ring atoms, any two rings share two atoms that are not directly connected, wherein one or more ring atoms are selected from nitrogen, oxygen, A heteroatom of phosphorus, boron or S(O) m (where m is an integer from 0 to 2), the remaining ring atoms being carbon. It may contain one or more double bonds, is not aromatic as a whole (ie cannot form a conjugated ⁇ -electron system as a whole), but may have a ring or rings with a conjugated ⁇ -electron system.
  • the bridging heterocyclyl ring atoms are preferably 6 to 14 membered, more preferably 7 to 10 membered. According to the number of constituent rings, it can be divided into bicyclic, tricyclic, tetracyclic or polycyclic bridged heterocyclic groups, preferably bicyclic, tricyclic or tetracyclic, more preferably bicyclic or tricyclic.
  • bridged heterocyclyl groups include:
  • the heterocyclyl ring may be fused to a cycloalkyl, heterocyclyl, aryl or heteroaryl ring, wherein the ring attached to the parent structure may be a cycloalkyl, heterocyclyl, aryl ring or Heteroaryl rings, non-limiting examples of which include:
  • aryl refers to a 6 to 20 membered all-carbon monocyclic or fused polycyclic (that is, rings sharing adjacent pairs of carbon atoms) group having a conjugated pi-electron system, preferably 6 to 14 aryl ring atoms Yuan, more preferably 6 to 10, such as phenyl and naphthyl. Phenyl is more preferred.
  • Aryl groups may be substituted or unsubstituted, and when substituted, the substituents are preferably one or more of the following groups independently selected from alkyl, alkenyl, alkynyl, alkoxy, alkylthio, Alkylamino, halogen, mercapto, hydroxy, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycle Alkylthio, carboxyl or carboxylate.
  • heteroaryl refers to a heteroaromatic system comprising 1 to 4 heteroatoms, 5 to 20 ring atoms, wherein the heteroatoms are selected from oxygen, sulfur or nitrogen and the like. Heteroaryl is divided into monocyclic heteroaryl and polycyclic heteroaryl; heteroaryl ring atoms are preferably 5 to 14 members, more preferably 5 to 10 members; monocyclic heteroaryl ring atoms are preferably 5 or 6 members Elements such as imidazolyl, furyl, thienyl, thiazolyl, pyrazolyl, oxazolyl, isoxazolyl, pyrrolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, thiadiazole, pyr Zinc group, pyridazinyl group, oxadiazolyl group, etc., preferably pyridyl group, oxazolyl group, isoxazolyl
  • Polycyclic heteroaryl generally means that the heteroaryl ring is fused to aryl or heteroaryl to form a polycyclic fused heteroaryl, wherein the ring connected to the parent structure can be an aryl ring or a heteroaryl ring,
  • the polycyclic fused heteroaryl is preferably a bicyclic fused heteroaryl, non-limiting examples of bicyclic fused heteroaryl include:
  • Heteroaryl groups may be optionally substituted or unsubstituted, and when substituted, the substituents are preferably one or more of the following groups independently selected from alkyl, alkenyl, alkynyl, alkoxy, alkane Thio, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio , heterocycloalkylthio, carboxyl or carboxylate.
  • haloalkyl refers to a group in which the hydrogens of an alkyl group are replaced by one or more halogens, wherein alkyl is as defined above.
  • Non-limiting examples of haloalkyl include: monofluoromethyl, difluoromethyl, trifluoromethyl, monochloromethyl, dichloromethyl, trichloromethyl, 1-fluoroethyl, 2-fluoroethyl , 1,1-difluoroethyl, 1,2-difluoroethyl, etc.
  • the haloalkyl group may be optionally substituted or unsubstituted, and when substituted, the substituent is preferably one or more of the following groups, It is independently selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, heterocycl
  • “Hydroxyalkyl” means an alkyl group in which a hydrogen is replaced by one or more hydroxy groups, wherein alkyl is as defined above.
  • Non-limiting examples of hydroxyalkyl groups include: hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, 1-hydroxypropyl, 1-hydroxybutyl, etc., hydroxyalkyl
  • the group may be optionally substituted or unsubstituted, and when substituted, the substituent is preferably one or more of the following groups independently selected from alkyl, alkenyl, alkynyl, alkoxy, alkylthio , alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, hetero Cycloalkylthio, carboxyl or carb
  • alkoxy refers to -O-(alkyl), wherein alkyl is as defined above.
  • alkoxy include: methoxy, ethoxy, propoxy or butoxy, alkoxy may be optionally substituted or unsubstituted, and when substituted, the substituent is preferably one or more of the following groups independently selected from alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, hetero Cycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, carboxyl or carboxylate.
  • alkylthio refers to -S-(alkyl), wherein alkyl is as defined above.
  • alkylthio include: methylthio, ethylthio, propylthio, butylthio, alkylthio may be optionally substituted or unsubstituted, and when substituted, the substituent is preferably one or more of the following groups independently selected from alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, hetero Cycloalkyl, aryl, heteroaryl, cycloalkoxy, heterocycloalkoxy, cycloalkylthio, heterocycloalkylthio, carboxyl or carboxylate.
  • cycloalkyloxy refers to -O-(cycloalkyl), wherein cycloalkyl is as defined above.
  • heterocyclyloxy refers to -O-(heterocyclyl), wherein heterocyclyl is as defined above.
  • C 6-14 aryloxy refers to -O-(C 6-14 aryl), wherein C 6-14 aryl is as defined above.
  • 5-14 membered heteroaryloxy refers to -O-(5-14 membered heteroaryloxy), wherein 5-14 membered heteroaryloxy is as defined above.
  • Halogen refers to fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • Amino refers to -NH2 .
  • Cyano refers to -CN.
  • Niro refers to -NO2 .
  • Carboxy refers to -C(O)OH.
  • THF tetrahydrofuran
  • PE petroleum ether
  • EA means ethyl acetate
  • IPA means isopropanol.
  • MeOH means methanol
  • DMF N,N-dimethylformamide
  • TFA trifluoroacetic acid
  • ACN means acetonitrile
  • DMA refers to N,N-dimethylacetamide.
  • Et2O means diethyl ether
  • DCM dichloromethane
  • DCE 1,2 dichloroethane
  • DIPEA N,N-diisopropylethylamine
  • NBS N-bromosuccinimide
  • NIS N-iodosuccinimide
  • Cbz-Cl refers to benzyl chloroformate
  • Pd 2 (dba) 3 refers to tris(dibenzylideneacetone)dipalladium.
  • Dppf refers to 1,1'-bisdiphenylphosphinoferrocene.
  • HATU refers to 2-(7-benzotriazole oxide)-N,N,N',N'-tetramethyluronium hexafluorophosphate.
  • KHMDS refers to potassium bistrimethyldisilazide.
  • LiHMDS refers to lithium bistrimethyldisilazide.
  • MeLi means methyllithium
  • n-BuLi refers to n-butyllithium
  • NaBH(OAc) 3 refers to sodium triacetoxyborohydride.
  • X is selected from A, B, or C
  • X is selected from A, B, and C
  • X is A, B, or C
  • X is A, B, and C
  • the hydrogen described in the present invention can be replaced by its isotope deuterium, and any hydrogen in the example compounds involved in the present invention can also be replaced by deuterium.
  • Optional or “optionally” means that the subsequently described event or circumstance can but need not occur, and that the description includes instances where the event or circumstance occurs or does not occur.
  • a heterocyclic group optionally substituted with an alkyl group means that an alkyl group may but need not be present, and the description includes cases where the heterocycle group is substituted with an alkyl group and cases where the heterocycle group is not substituted with an alkyl group .
  • Substituted means that one or more hydrogens in a group, preferably 5, more preferably 1 to 3 hydrogens are independently substituted by a corresponding number of substituents. It goes without saying that substituents are only in their possible chemical positions and that a person skilled in the art can determine (by experiment or theory) possible or impossible substitutions without undue effort. For example, an amino or hydroxyl group with free hydrogen may be unstable when bonded to a carbon atom with an unsaturated (eg, ethylenic) bond.
  • “Pharmaceutical composition” means a mixture containing one or more compounds described herein, or a physiologically/pharmaceutically acceptable salt or prodrug thereof, and other chemical components, and other components such as a physiologically/pharmaceutically acceptable carrier and excipients.
  • the purpose of the pharmaceutical composition is to promote the administration to the organism, facilitate the absorption of the active ingredient and thus exert biological activity.
  • “Pharmaceutically acceptable salt” refers to the salt of the compound of the present invention, which is safe and effective when used in mammals, and has proper biological activity.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention lies in: the compound of the embodiment of the present invention has good inhibitory activity to CDK2/CycE1 kinase, and has good selectivity to CDK2/CDK1 kinase inhibition.
  • the compounds of the examples of the present invention have good inhibitory activity on the proliferation of OVCAR-3 cells.
  • the compounds of the examples of the present invention showed better permeability and lower efflux activity on the Caco-2 cell model.
  • the embodiment of the present invention obviously optimizes the pharmacokinetic properties of the product.
  • the compounds described herein can be synthesized by a variety of methods well known to those skilled in the art of organic synthesis, using starting materials that are commercially available or can be prepared by known experimental procedures.
  • the compounds of the present invention can be synthesized by using the following methods, or synthetic methods known in the field of synthetic organic chemistry, combined with method changes mastered by those skilled in the art.
  • Preferred synthetic methods include, but are not limited to, those described below. For a more detailed description of the individual reaction steps, see the "Examples" section below.
  • the starting materials in the synthesis steps can be synthesized using or according to methods known in the art, or can be purchased from Sigma-Aldrich Co.Ltd, Bide Pharmatech Ltd. ), Shaoyuan Chemical (Accela ChemBio Co.Ltd) and other companies.
  • LCMS data used for the characterization of the examples were obtained by an Agilent 1260-6120/6125 MSD system with DAD detector. Test methods include:
  • Pillar C18 4.6 ⁇ 50mm, 2.5 ⁇ m
  • DMSO-d 6 deuterated dimethyl sulfoxide
  • silica gel chromatography is generally based on silica gel or prepacked silica gel column as the carrier, petroleum ether/ethyl acetate or dichloromethane/methanol and other systems as the eluent; reversed-phase silica gel chromatography is generally based on C18 silica gel column as the carrier, using UV Detectors (214nm and 254nm) and preparative LCMS were used for detection, and the mobile phases included systems such as acetonitrile/water (0.1% formic acid), acetonitrile/water (0.1% trifluoroacetic acid) and acetonitrile/water (0.1% ammonia).
  • Supercritical fluid chromatography generally adopts different types of columns as carriers, and uses a system such as CO 2 /methanol containing 0.2% NH 3 (7M ammonia
  • 5-Nitro-1H-pyrazole-3-carboxylic acid methyl ester (15.0 g, 87.7 mmol), triphenylphosphine (69.1 g, 263 mmol) and tert-butanol (19.5 g, 263 mmol) were dissolved in tetrahydrofuran (150 mL) middle.
  • diethyl azodicarboxylate 45.8 g, 263 mmol
  • Step 6 1-(1-(tert-butyl)-3-nitro-1H-pyrazol-5-yl)-2-(oxapropan-2-yl)ethan-1-ol (A- 7)
  • Step 8 5-(3-Amino-1-(tert-butyl)-1H-pyrazol-5-yl)tetrahydrofuran-3-ol (A-9)
  • Step 9 N-(1-(tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-(methoxymethyl)-1- Methyl-1H-pyrazole-5-carboxamide (A-10)
  • Step 10 5-(1-(tert-butyl)-3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazole- 5-yl) tetrahydrofuran-3-yl (4-nitrophenyl) carbonate (A-11)
  • Step 11 5-(3-(3-(Methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl (4-Nitrophenyl)carbonate (Intermediate A)
  • Step 2 cis-5-(1-(tert-butyl)-3-nitro-1H-pyrazol-5-yl)tetrahydrofuran-3-ol (B-2)
  • Step 3 cis-5-(3-Amino-1-(4-tert-butyl)-1H-pyrazol-5-yl)tetrahydrofuran-3-ol (Intermediate B)
  • Step 7 cis-5-(1-((4-methoxyphenyl)methyl)-3-nitropyrazol-5-yl)tetrahydrofuran-3-ol (C-7)
  • Step 8 cis-5-(1-(4-methoxybenzyl)-3-aminopyrazol-5-yl)tetrahydrofuran-3-ol (Intermediate C)
  • Step 1 N-(1-tert-butyl-5-(4-oxotetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-(methoxymethyl)-1-methyl -1H-pyrazole-5-carboxamide (D-1)
  • Step 2 cis-N-(1-tert-butyl-5-((2R,4R)-4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-(methoxy Methyl)-1-methyl-1H-pyrazole-5-carboxamide (D-2)
  • lithium triethylboron 58.5 mL, 1.0 mol/L solution in tetrahydrofuran, 58.5 mmol was added to compound D-1 (11.00 g, 29.26 mmol) in tetrahydrofuran (440 mL), and the The reaction mixture was stirred at -65°C for 2 hours. After the reaction was completed, water (100 mL) was added to the reaction system at 0° C. to quench the reaction. Then, water (300 mL) was added to the reaction system for dilution, and the mixture was extracted with ethyl acetate (400 mL ⁇ 2).
  • Step 3 cis-5-(1-(tert-butyl)-3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H- Pyrazol-5-yl) tetrahydrofuran-3-yl (4-nitrophenyl) carbonate (intermediate D)
  • Example 1 cis-5-(3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl tert-butyl carbamate
  • Example 1A and Example 1B are Example 1A and Example 1B:
  • Example 1 cis-5-(3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl Tert-butyl carbamate (Example 1) was resolved by chiral preparative HPLC (column: CHIRALPAK AD-H 250mm 20mm, 5 ⁇ m, mobile phase: 35% IPA (NH 4 OH 0.2%), flow rate: 40mL/min) Example 1A (62.1 mg, yield: 11%) and Example 1B (66.4 mg, yield: 12%) were obtained separately.
  • Examples 3-11 were prepared with reference to the synthesis methods of Examples 1, 1A and 1B, and the specific characterization data are as follows:
  • Examples 3-7 and 9-10 in the above table were separated by chiral preparation (CHIRALPAK IC 250mm ⁇ 20mm, 5 ⁇ m, 40% MeOH (0.2% NH 4 OH), flow rate: 40g/min) to obtain the corresponding single-configuration compounds ;
  • Example 11 was separated by chiral preparation (CHIRALPAK OJ-H 250mm ⁇ 20mm, 5 ⁇ m, 40% MeOH (0.2% NH 4 OH), flow rate: 40g/min) to obtain the corresponding single-configuration compound.
  • Example 12 cis-5-(3-(1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl tert-butylcarbamate ester
  • Step 1 cis-N-(1-(tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-1-methyl-1H-pyrazole- 5-Formamide (12-2)
  • Step 2 cis-5-(1-(tert-butyl)-3-(1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3- Base (4-nitrophenyl) carbonate (12-3)
  • Step 3 cis-5-(3-(1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4-nitrophenyl ) carbonate (12-4)
  • Step 4 cis-5-(3-(1-Methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl tert-butylcarbamate (Example 12)
  • Example 12A and Example 12B are Example 12A and Example 12B:
  • Example 12 was resolved by chiral preparative HPLC (column: CHIRALPAK WHELK-01 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 50mL/min) to obtain Example 12A (11.5mg, Yield: 16%) and Example 12B (14.2 mg, Yield: 20%).
  • Examples 14-15 were prepared with reference to the synthesis methods of Examples 1, 1A and 1B, and the specific characterization data are as follows:
  • Example 14 in the above table was separated by chiral preparation (CHIRALPAK WHELK-01 250mm ⁇ 20mm, 5 ⁇ m m, mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 50mL/min) to obtain the corresponding single configuration compound ;
  • Example 15 was separated by chiral preparation (CHIRALPAK AD-H 250mm 20mm, 5 ⁇ m, mobile phase: 35% isopropanol (0.2% ammonia water), flow rate: 40g/min) to obtain the corresponding single configuration compound.
  • Example 18 cis-N-(5-(4-((4-isopropylpyridin-2-yl)tetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-(methoxy Methyl)-1-methyl-1H-pyrazole-5-carboxamide
  • Step 2 2-((5-(1-(tert-butyl)-5-nitro-1H-pyrazol-3-yl)tetrahydrofuran-3-yl)oxy)-4-(prop-1-ene -2-yl)pyridine (18-3)
  • Step 3 1-(tert-butyl)-3-(-4-((isopropylpyridin-2-yl)oxy)tetrahydrofuran-2-yl)-1H-pyrrol-5-amine (Compound 18-4 )
  • Step 4 cis-N-(1-(tert-butyl)-5-(4-((4-isopropylpyridin-2-yl)oxy)tetrahydrofuran-2-yl)-1H-pyrazole- 3-yl)-3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamide (18-5)
  • Step 5 cis-N-(5-(4-((4-isopropylpyridin-2-yl)tetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-(methoxy Methyl)-1-methyl-1H-pyrazole-5-carboxamide (Example 18)
  • Example 18A and Example 18B are Example 18A and Example 18B:
  • Example 18 was further resolved by chiral preparative HPLC (column: CHIRALPAK OJ-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol/0.2% ammonia; flow rate: 50mL/min) to obtain Example 18A (27mg, yield : 36%) and Example 18B (25 mg, yield: 34%).
  • Example 20 cis-5-(3-(1-methyl-3-(trifluoromethoxy)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl(4-nitrophenyl)carbonate
  • Step 4 cis-N-(1-(tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-1-methyl-3-(trifluoro Methoxy)-1H-pyrazole-5-carboxamide (20-6)
  • Step 5 cis-5-(1-(tert-butyl)-3-(1-methyl-3-(trifluoromethoxy)-1H-pyrazole-5-carboxamido)-1H-pyridine Azol-5-yl)tetrahydrofuran-3-yl(4-nitrophenyl)carbonate (20-7)
  • Step 6 cis-5-(3-(1-methyl-3-(trifluoromethoxy)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran- 3-yl (4-nitrophenyl) carbonate (20-8)
  • Step 7 cis-5-(3-(1-methyl-3-(trifluoromethoxy)-1H-pyrazole-5-carboxamide)-1H-pyrazol-5-yl)tetrahydrofuran-3 -yl tert-butyl carbamate (Example 20)
  • Example 20A and Example 20B are Example 20A and Example 20B:
  • Example 20 was further purified by chiral separation (column model: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40mL/min) to obtain Example 20A (28.1 mg, yield: 31%) and Example 20B (25.8mg, yield: 28%).
  • column model: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40mL/min column model: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40mL/min
  • Step 6 cis-5-(1-tert-butyl)-3-(6-methoxymethyl)-4-methylnicotinamido-1H-pyrazol-5-yl)tetrahydrofuran-3-yl (4-nitrophenyl) carbonate (21-7)
  • compound 21-6 (0.15g, 0.77mmol), pyridine (0.122g, 1.54mmol), p-nitrophenyl chloroformate (0.19mg, 0.93mmol) and 4-dimethylaminopyridine (9.44mg , 0.0774 mmol) was dissolved in dichloromethane (10 mL), and the reaction mixture was stirred at room temperature for 5 hours. After the reaction was completed, water (10 mL) was added to the reaction system to quench the reaction. The reaction mixture was extracted with dichloromethane (10 mL ⁇ 3), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 7 cis-5-(3-(6-methoxymethyl)-4-methylnicotinamide-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4-nitrophenyl ) carbonate (21-8)
  • Step 8 cis-5-(3-(6-Methoxymethyl-4-methylnicotinyl)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl tert-butylcarbamate (Example 21)
  • Example 21A and Example 21B are Example 21A and Example 21B:
  • Example 21 Separation and purification by chiral preparation of SFC (instrument: SFC Thar prep 80; column: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia); flow rate: 40g/min) was implemented Example 21A (20.0 mg, yield: 29%) and Example 21B (19.5 mg, yield: 28%).
  • Step 1 cis-N-(1-tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-2-(2-methoxypyridine-4 -yl)acetamide (22-2)
  • Step 2 cis-5-(1-tert-butyl)-3-(2-(2-methoxypyridin-4-yl)acetamido)-1H-pyrazol-5-yl)tetrahydrofuran-3- Base (4-nitrophenyl) carbonate (22-3)
  • compound 22-2 (0.27g, 0.72mmol), pyridine (0.114g, 1.44mmol), p-nitrophenyl chloroformate (0.17g, 0.86mmol) and 4-dimethylaminopyridine (10mg, 0.070 mmol) was dissolved in dichloromethane (10 mL), and stirred at room temperature for 5 hours. After the reaction was completed, water (10 mL) was added to the reaction system to quench the reaction, the reaction mixture was extracted with dichloromethane (10 mL ⁇ 3), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure .
  • Step 3 cis-5-(3-(2-(2-methoxypyridin-4-yl)acetamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4-nitrobenzene base) carbonate (22-4)
  • Step 4 cis-5-(3-(2-(2-methoxypyridin-4-yl)acetamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-tert-butylcarbamate (Example 22)
  • Example 22A and Example 22B are Example 22A and Example 22B:
  • Example 22 Separation and purification were carried out by chiral preparation of SFC (instrument: SFC Thar prep 80; column: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia); flow rate: 40g/min)
  • Example 22A (6.3 mg, yield: 8%) and Example 22B (8.9 mg, yield: 11%).
  • Example 23 cis-5-(3-(3-(cyclopropoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl) Tetrahydrofuran-3-yl tert-butylcarbamate
  • compound 23-2 (0.750g, 4.07mmol) was dissolved in acetonitrile (25mL), then phosphorus tribromide (1.65g, 6.01mmol) was added, and the reaction system was heated to 80°C and stirred for 2 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, and water (100 mL) was added to quench the reaction. After continuing to stir for 5 minutes, ethyl acetate (100 mL) was added to the reaction system. The reaction mixture was separated, and the aqueous phase was extracted with ethyl acetate (50 mL ⁇ 2).
  • Step 5 cis-N-(1-(tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-(cyclopropoxymethyl) -1-methyl-1H-pyrazole-5-carboxamide (23-6)
  • HATU 0.586 g, 1.33 mmol
  • N,N-dimethylformamide 5 mL
  • N,N-dimethylformamide 5 mL
  • N,N-diisopropylethylamine 0.287g, 2.22mmol
  • Intermediate B 0.250g, 1.11mmol
  • the reaction system was warmed up to 50°C and stirred for 2 hours. After the reaction, the reaction system was diluted with water (30 mL), and then extracted with ethyl acetate (20 mL ⁇ 3).
  • Step 6 cis-5-(1-(tert-butyl)-3-(3-(cyclopropoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H- Pyrazol-5-yl) tetrahydrofuran-3-yl (4-nitrophenyl) carbonate (23-7)
  • Step 7 cis-5-(3-(3-(cyclopropoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl(4-nitrophenyl) carbonate (23-8)
  • Step 8 cis-5-(3-(3-(cyclopropoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl tert-butyl carbamate (Example 23)
  • Example 23A and Example 23B are Example 23A and Example 23B:
  • Example 23 was further purified by chiral preparative SFC (column: CHIRALPAK IC, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40mL/min) to obtain Example 23A (6.4mg, yield : 7%) and Example 23B (7.1 mg, yield: 8%).
  • chiral preparative SFC column: CHIRALPAK IC, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40mL/min
  • Example 24 cis-5-(3-(4-fluoro-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl tert-butyl base carbamate
  • Step 4 cis-N-(1-tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-4-fluoro-1-methyl-1H- Pyrazole-5-carboxamide (24-5)
  • Step 5 cis-5-(1-tert-butyl)-3-(4-fluoro-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl (4-nitrophenyl) carbonate (24-6)
  • compound 24-5 (40mg, 0.11mmol), pyridine (27mg, 0.34mmol), p-nitrophenyl chloroformate (28mg, 0.13mmol) and 4-dimethylaminopyridine (2.0mg, 0.016mmol ) was dissolved in dichloromethane (5 mL), and stirred at room temperature for 5 hours. After the reaction was completed, water (10 mL) was added to quench the reaction, and the reaction mixture was extracted with dichloromethane (10 mL ⁇ 3). The combined organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step 6 cis-5-(4-fluoro-1-methylpyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4-nitrophenyl)carbonic acid Esters (24-7)
  • Step 7 cis-5-(3-(4-fluoro-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yltert-butyl Carbamate (Example 24)
  • Example 24A and Example 24B are Example 24A and Example 24B:
  • Example 24 was further purified by chiral SFC (column: CHIRALPAK AD-H, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40g/min) to obtain Example 24A (3.3mg, yield Yield: 9%) and Example 24B (3.3 mg, yield: 9%).
  • chiral SFC column: CHIRALPAK AD-H, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40g/min
  • Example 25 cis-5-(3-(3-fluoro-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl tert-butyl base carbamate
  • Step 3 cis-N-(1-(tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-3-fluoro-1-methyl-1H -pyrazole-5-carboxamide (25-4)
  • Step 4 cis-5-(1-(tert-butyl)-3-(3-fluoro-1-methyl-1H-pyrazole-5-carboxamide)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl (4-nitrophenyl) carbonate (25-5)
  • Step 5 cis-5-(3-(3-fluoro-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4- Nitrophenyl) carbonate (25-6)
  • Step 6 cis-5-(3-(3-Fluoro-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yltert-butyl Carbamate (Example 25)
  • Example 25A and Example 25B are Example 25A and Example 25B:
  • Example 25 was further purified by chiral SFC separation (column: CHIRALPAK AD-H, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40mL/min) to obtain Example 25A (19.4mg, Yield: 23%) and Example 25B (19.3 mg, Yield: 23%).
  • chiral SFC separation column: CHIRALPAK AD-H, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40mL/min
  • Step 3 cis-N-(1-(tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-1-cyclopropyl-1H-pyrazole -5-Carboxamide (26-4)
  • Step 4 cis-5-(1-(tert-butyl)-3-(1-cyclopropyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3 - Base (4-nitrophenyl) carbonate (26-5)
  • Step 5 cis-5-(3-(1-cyclopropyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4-nitrobenzene base) carbonate (26-6)
  • Example 26A and Example 26B are Example 26A and Example 26B:
  • Example 26 was further purified by SFC chiral separation (column model: CHIRALPAK AD-H, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40g/min) to obtain Example 26A (21.8 mg, yield: 25%) and Example 26B (20.4 mg, yield: 24%).
  • SFC chiral separation column model: CHIRALPAK AD-H, 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40g/min
  • Step 3 cis-N-(1-tert-butyl)-5-(4-hydroxytetrahydrofuran-2-yl)-1H-pyrazol-3-yl)-1-cyclopropylmethyl-1H-pyridine Azole-5-carboxamide (27-4)
  • Step 4 cis-5-(1-tert-butyl)-3-(1-cyclopropylmethyl)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl (4-nitrophenyl) carbonate (27-5)
  • Step 5 cis-5-(3-(1-cyclopropylmethyl)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4- Nitrophenyl) carbonate (27-6)
  • Step 6 cis(5-(3-(1-(cyclopropylmethyl)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yltert-butyl Base carbamate (Example 27)
  • Example 27A and Example 27B are Example 27A and Example 27B:
  • Example 27 was separated and purified by chiral SFC (instrument: SFC Thar prep 80; column: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2% ammonia water); flow rate: 40g/min) to obtain the example 27A (37.7 mg, yield: 29%) and Example 27B (30.5 mg, yield: 24%).
  • Example 28 cis-5-(3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazole-5-yl)tetrahydrofuran -3-yl-7-azabicyclo[2.2.1]heptane-7-carboxylate
  • Step 1 cis-5-(1-tert-butyl-3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazole-5 -yl)tetrahydrofuran-3-yl-7-azabicyclo[2.2.1]heptane-7-carboxylate (28-1)
  • Step 2 cis-5-(3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran- 3-yl-7-azabicyclo[2.2.1]heptane-7-carboxylate (Example 28)
  • Example 28A and Example 28B are Example 28A and Example 28B:
  • Example 28 was resolved by chiral preparative SFC (column: CHIRALPAK-OJ, mobile phase: carbon dioxide/methanol (triethylamine), flow rate: 12.5mL/min) to obtain Example 28A (19.7mg, yield: 88%) and Example 28B (23.0 mg, yield: 98%)
  • Example 29 cis-5-(3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-ylbicyclo[1.1.1]pentan-1-ylcarbamate
  • Step 1 cis-5-(1-tert-butyl-3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazole-5 -yl)tetrahydrofuran-3-ylbicyclo[1.1.1]pentane-1-ylcarbamate (29-1)
  • Step 2 cis-5-(3-(3-(methoxymethyl)-1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran- 3-ylbicyclo[1.1.1]pentan-1-ylcarbamate (Example 29)
  • Example 29A and Example 29B are Example 29A and Example 29B:
  • Example 29 was resolved by chiral preparative HPLC (column: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40mL/min) to obtain Example 29A (9.1mg, Yield: 65%) and Example 29B (9.9 mg, Yield: 71%).
  • Example 30 cis-5-(3-(1-(S)-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl-( 1-(S)-1-methyl-1-cyclopropylmethyl)carbamate
  • Step 1 cis-N-(5-(4-Hydroxytetrahydrofuran-2-yl)-1-(4-methoxybenzyl)-1H-pyrazol-3-yl)-1-methyl-1H- Pyrazole-5-carboxamide (30-2)
  • Step 2 cis-5-(1-(4-methoxybenzyl)-3-(1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran -3-yl-(4-nitrophenyl) carbonate (30-3)
  • Step 3 cis-5-(3-(1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4-nitrophenyl ) carbonate (30-4)
  • Step 4 cis-5-(3-(1-methyl-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(1-(S)- Methylcyclobutyl) carbamate (Example 30)
  • Example 30A and Example 30B are Example 30A and Example 30B:
  • Example 30 was resolved by chiral preparative SFC (column: CHIRALPAK-AD; mobile phase: carbon dioxide/isopropanol (formic acid); flow rate: 1.8mL/min) to obtain Example 30A (5.0mg, yield: 67%) and Example 30B (4.9 mg, yield: 65%).
  • Example 31A and Example 31B are Example 31A and Example 31B:
  • Example 31 was resolved by chiral preparative SFC (column: CHIRALPAK-AD; mobile phase: carbon dioxide/isopropanol (diethylamine); flow rate: 0.8mL/min) to obtain Example 31A (3.5mg, yield: 70% ) and Example 31B (3.5 mg, yield: 70%).
  • Example 32 cis(3-Methyl-1H-pyrazole-5-carboxamido-3,4-dideuterium)-1H-pyrazol-5-yltetrahydrofuran-3-yltert-butylcarbamate ester
  • compound 32-3 300 mg, 0.739 mmol was dissolved in deuterium aqueous solution (40% concentration, 5 mL) of deuterated sodium hydroxide (99.5% deuterated), and zinc powder (4.7 mg, 0.073 mmol) was added , and the mixture was stirred at 80 °C for 1 h. After the reaction was completed, the reaction mixture was concentrated under reduced pressure to obtain crude compound 32-4 (80 mg).
  • Step 4 cis-N-(5-Hydroxytetrahydrofuran-2-yl)-1-(4-methoxybenzyl)-1H-pyrazol-3-yl)-1-methyl-1H-pyrazole -3,4-Dideuterium-5-carboxamide (32-5)
  • N,N-diisopropylethylamine (181mg, 1.40mmol) to compound 32-4 (80mg, 0.70mmol) in N,N-dimethylformamide solution (5mL) at room temperature and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (533mg, 1.40mmol), the reaction solution was stirred at room temperature for 0.5 hours, cis-5-(3-Amino-1-(4-methoxybenzyl)-1H-pyrazol-5-yl)tetrahydrofuran-3-ol (Intermediate C, 203 mg, 0.702 mmol) was added.
  • Step 5 cis-5-(1-(4-methoxybenzyl)-3-(1-methyl-1H-pyrazole-5-carboxamido-3,4-dideuterium)-1H- Pyrazol-5-yl)tetrahydrofuran-3-yl-(4-nitrophenyl)carbonate (32-6)
  • compound 32-5 120mg, 0.30mmol
  • pyridine 72mg, 0.65mmol
  • p-nitrophenyl chloroformate 74mg, 0.39mmol
  • 4-dimethylaminopyridine 4.0mg , 0.033mmol
  • Step 6 cis-5-(3-(1-methyl-1H-pyrazole-5-carboxamido-3,4-dideuterium)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl (4-nitrophenyl) carbonate (32-7)
  • Step 7 cis-5-(3-(1-methyl-1H-pyrazole-5-carboxamido-3,4-dideuterium)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl tert-Butyl carbamate (Example 32)
  • Example 32A and Example 32B are Example 32A and Example 32B:
  • Example 32 (30mg, 0.079mmol) was resolved by chiral SFC (column: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% ethanol (0.2%) ammonia water; flow rate: 40g/min) to obtain Example 32A ( 9.4 mg, yield: 31%) and Example 32B (10 mg, yield: 33%).
  • Step 3 cis-N-(5-(4-Hydroxytetrahydrofuran-2-yl)-1-(4-methoxybenzyl)-1H-pyrazol-3-yl)-1-(trideuterio Methyl)-1H-pyrazole-5-carboxamide (33-4)
  • Step 4 cis-5-(1-(4-methoxybenzyl)-3-(1-(trideuteromethyl)-1H-pyrazole-5-carboxamido)-1H-pyrazole -5-yl) tetrahydrofuran-3-yl (4-nitrophenyl) carbonate (33-5)
  • Step 5 cis-5-(3-(1-(trideuteromethyl)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yl(4 -Nitrophenyl) carbonate (33-6)
  • Step 6 cis-5-(3-(1-(trideuteromethyl)-1H-pyrazole-5-carboxamido)-1H-pyrazol-5-yl)tetrahydrofuran-3-yltert-butyl Base carbamate (Example 33)
  • Example 33A and Example 33B are Example 33A and Example 33B:
  • Example 33 (50mg, 0.13mmol) was separated by a chiral SFC column (column: CHIRALPAK AD-H 250mm ⁇ 20mm, 5 ⁇ m; mobile phase: 40% isopropanol (0.2% ammonia water); flow rate: 40g/min)
  • Example 33A (24.1 mg, yield: 48%) and Example 33B (22.8 mg, yield: 46%) were obtained.
  • All compounds were initially prepared as 10 mM stock solutions in DMSO, subsequently diluted in DMSO to 50 ⁇ their final concentrations, and 10 ⁇ L of each DMSO dilution was transferred to 90 ⁇ L of 1 ⁇ kinase buffer (50 mM HEPES pH 7.5, 10 mM MgCl 2,2 mM DTT and 0.01% Brij-35) in one well of a new 96-well cluster plate, and then mixed for 10 minutes. 5 ⁇ L of each compound dilution was then added to the 384-well plate. Add 10 ⁇ L of enzyme solution containing CDK2/CycE1 or CDK1/cyclinB (final concentration 3 nM) to each well, mix and incubate at room temperature for 10 minutes.
  • 1 ⁇ kinase buffer 50 mM HEPES pH 7.5, 10 mM MgCl 2,2 mM DTT and 0.01% Brij-35
  • the compounds shown in the present invention show an IC50 inhibitory activity of about 0.01 nM to 10 nM in the CDK2/CycE1 enzymatic activity experiment; , showing an IC 50 inhibitory activity of about 1 nM to 1000 nM.
  • the selectivity of the compounds of the embodiments of the present invention to CDK2/CDK1 inhibitory activity is 2 to 1000 times; the selectivity of some compounds of the embodiments is 10 to 30; the selectivity of the compounds of some embodiments is 30 to 50; some embodiments The selectivity of the compound is even greater than 50 times.
  • Table 1 The inhibitory activity and selectivity factor of compounds of the present invention to CDK2/CycE1 and CDK1/cyclinB
  • A means IC 50 ⁇ 10nM;
  • B means greater than 10nM ⁇ IC 50 ⁇ 50nM;
  • C means 50nM ⁇ IC 50 ⁇ 250nM;
  • D means 250nM ⁇ IC 50 ⁇ 1000nM;
  • E means IC 50 >1000nM;
  • the IC 50 values of the kinase inhibition of CDK4/CycD1, CDK6/CycD3 and CDK7/cycH/MAT1 by the compounds shown in the present invention are shown in Table 2.
  • Table 2 The inhibitory activity of compounds of the present invention to CDK4/CycD1, CDK6/CycD3 and CDK7/cycH/MAT1
  • the proliferation inhibitory activity of the compounds of the present invention on OVCAR-3 cells was tested.
  • OVCAR-3 culture conditions RPMI1640, 20% FBS, 1% penicillin and streptomycin, 0.01 mg/mL bovine insulin.
  • Day 0 Seed the cells into a 96-well plate, add 120 ⁇ L medium and culture overnight.
  • Day 1 Compounds were dissolved in DMSO to a stock solution of 10 mM. Reference and test compounds were diluted in DMSO to 200-fold final concentrations. The compound in DMSO was diluted 3 times to 8 different concentrations in a 96-well plate, and then the test compound was diluted 40 times with cell culture medium, and 30 ⁇ L (5 ⁇ ) compound solution was added to each well of cells. Centrifuge the cell plate at 1000 rpm for 1 min, then incubate the cell plate at 37 °C and 5% CO for 7 days. 0.5% DMSO medium was used as blank control, and cells cultured in 0.5% DMSO medium solution were used as 100% control.
  • the inhibition rate was calculated according to the following formula:
  • Inhibition rate 100-100*(compound drug-treated reading-low control reading)/(high control reading-low control reading), IC 50 was calculated according to the formula.
  • the permeability of the inventive compound at the administered concentration was studied by the Caco-2 cell model.
  • Step 1 Caco-2 cells (ATCC) were cultured in a culture flask at 37° C. under 5% CO 2 conditions with DMEM culture solution added with 10% FBS, 1% PS and 1% NEAA. The cells grow confluent to 70%-80%, the cells are digested with 0.25% EDTA-trypsin, counted, diluted with DMEM culture medium to 80,000 cells/well, the cells are seeded in Transwell-24 well plates, and placed in a CO 2 incubator Medium culture, the medium was discarded every two to three days, and fresh medium was added, and the culture was continued at 37°C and 5% CO 2 for 18 to 22 days.
  • ATCC Caco-2 cells
  • Step 2 Dilute the TC stock solution 1000 times with the transport buffer solution preheated to 37°C, and mix well to obtain the test compound dosing solution, the dosing concentration is 10 ⁇ M. Discard the cell culture medium, and add transport buffer preheated to 37°C to rinse. For the transport study from the apical membrane side to the basal side (the transport direction is A ⁇ B), add 500 ⁇ L of control compound or test compound to the A side For the dosing solution, add 1300 ⁇ L of transport buffer to the B side.
  • Step 3 Evaluate the integrity of the cell monolayer by measuring the transmembrane resistance value (TEER) of the cell monolayer, and the transmembrane resistance value of each cell hole is required to be not less than 600 Ohms.
  • TEER transmembrane resistance value
  • Step 4 Detect the concentration of test compound TC and positive control nadolol, propranolol, P-gp substrate paclitaxel in the sample by LC/MS/MS method
  • v is the volume of the receiving pool; A is the area of the transport membrane; C is the initial concentration of incubation; is the amount of drug transported per unit time

Abstract

提供了一种含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用。特别地,提供了通式(I)所示的化合物、其药学上可接受的盐和含有该化合物的药物组合物,以及其作为CDK2抑制剂在治疗癌症中的用途。

Description

含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用
本申请要求申请日为2021年10月25日的中国专利申请2021112420210的优先权,本申请要求申请日为2022年8月25日的中国专利申请2022110367844的优先权,本申请要求申请日为2022年10月14日的中国专利申请2022112838508的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于药物合成领域。具体涉及含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法,以及其作为CDK2抑制剂在制备治疗癌症的药物中的应用。
背景技术
不受控制的持续的增殖是癌症和其他增殖紊乱的标志,因此诱导细胞周期阻滞可有效抑制肿瘤的生长。细胞周期是细胞连续***之间的一段时间,在此期间,细胞通过对多种酶反应的精确控制实现细胞的精确复制和***。在真核生物中,细胞周期有4个主要阶段,G1、S、G2、M期,细胞周期转换主要被CDKs家族激酶调控。
细胞周期蛋白依赖性激酶(CDK)属于丝/苏氨酸蛋白激酶家族,是一种由细胞周期催化激酶亚基和调节亚基组成的异二聚体复合物,是参与细胞周期调节的关键激酶,目前已发现11个CDK成员。根据CDK功能的不同,可以将其主要分为两大类。一类CDK参与细胞周期调控,主要包括CDK1、CDK2、CDK4、CDK6等;另一大类CDK参与转录调节,主要包括CDK7、CDK8、CDK9、CDK10、CDK11等。CDK1参与M期活动;CDK2参与G1、S、M期活动;CDK4/6参与G1期活动。其余的CDK 5/7/8/9/19最近也被发现在调控周期活动中有重要作用。
细胞周期蛋白依赖激酶(CDK)构成了一个异二聚体家族的丝氨酸/苏氨酸蛋白激酶参与细胞周期和转录。它们包括两大类:细胞周期CDK和转录CDK。CDK的功能依赖于与调控蛋白细胞周期蛋白(cyclins)的特定相互作用,cyclins与CDKs形成异二聚体而激活调节细胞周期过程。
CDK2的过量表达与细胞周期的异常调节有关。细胞周期蛋白E/CDK2复合物在调控G1/S转换、组蛋白生物合成和中心体复制方面起着重要作用。细胞周期蛋白D/CDK4/6和细胞周期蛋白E/CDK2对视网膜母细胞瘤(Rb)进行逐步的磷酸化,释放G1转录因子E2F,促进进入S期。在S期早期,细胞周期蛋白A/CDK2的激活促进了允许DNA复制的内源性底物的磷酸化和E2F的失活,以完成S期。
Cyclin E是CDK2的调节性周期蛋白,在癌症中经常过度表达。Cyclin E的扩增或过度表达长期以来一直与乳腺癌的不良后果有关。细胞周期蛋白E2(CCNE2)的过度表达与下列因素有关。细胞 周期蛋白E1(CCNE1)的扩增或过表达也与卵巢癌、胃癌、子宫内膜癌和其他癌症的不良后果有关。Cyclin E过度表达或扩增也引起乳腺癌对CDK4/6的抑制剂耐药。抑制CDK2能够抑制Cyclin E过表达的癌症细胞生长,此外抑制CDK2也能够抑制MYCN相关的癌症,CDK2抑制剂具有良好的癌症治疗前景。
CDK1在细胞M期转换时起着关键左右,抑制CDK1活性会带来比较大的毒性。CDK1和CDK2在激酶结构区域极为相似,因此开发高度选择性的CDK2抑制剂有着极大的难度。目前已经有多种CDK抑制剂被发现,包括CDK4/6抑制剂、CDK7抑制剂、CDK9抑制剂、CDK2/4/6抑制剂及CDK2/9抑制剂,但是选择性较好的CDK2特异性抑制剂仍然具有潜在的优势。
发明内容
本发明发现了一系列新型的CDK2激酶抑制剂化合物,且对CDK2特异性抑制,具有良好的选择性。
本发明的目的在于提供一种通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,其中通式(I)所示的结构如下:
Figure PCTCN2022127444-appb-000001
其中,
Figure PCTCN2022127444-appb-000002
表示顺式构型(即四氢呋喃环上的两个取代基在同一侧);
L选自键、-C(O)-、-S(O) m-、-C(O)(CH 2) n-或-(CH 2) n-;
R选自氢、氘、C 1-6烷基、C 1-6卤代烷基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、-(CH 2) nOR a、-(CH 2) nSR a、-(CH 2) nNR bR a、-(CH 2) nC(O)R a、-(CH 2) nC(O)NR bR a、-(CH 2) nNR bC(O)R a、-(CH 2) nS(O) mR a、-(CH 2) nS(O) mNR bR a、-(CH 2) nS(O)(=NR b)R a、-(CH 2) nN=S(=O)R aR b或-(CH 2) nNR bS(O) mR a,所述的C 1-6烷基、C 1-6卤代烷基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基和5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
R x选自
Figure PCTCN2022127444-appb-000003
或R y
环A选自C 3-12环烷基、3-12元杂环基、C 6-14芳基或5-14元杂芳基,所述的C 3-12环烷基、3-12元 杂环基、C 6-14芳基或5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
R 1独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1- 6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基、5-14元杂芳基氧基、-(CH 2) nOR c、-(CH 2) nSR d、-(CH 2) nNR dR c、-O(CH 2) nNR dR c、-(CH 2) nC(O)R c、-(CH 2) nC(O)NR dR c、-(CH 2) nNR bC(O)R c、-(CH 2) nS(O) mR c、-(CH 2) nS(O) mNR dR c、-(CH 2) nS(O)(=NR d)R c、-(CH 2) nN=S(=O)R cR d或-(CH 2) nNR dS(O) mR c,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
或者,任意两个R 1以及它们所在的原子一起形成C 3-12环烷基、3-12元杂环基、C 6-14芳基或5-14元杂芳基,所述的C 3-12环烷基、3-12元杂环基、C 6-14芳基和5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1- 6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
R y选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基或C 2-6炔基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基和C 2-6炔基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
R a、R b、R c和R d各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1- 6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基或5-14元杂芳基氧基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2- 6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2- 6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
或者,R a和R b以及它们所在的原子一起形成3-12元杂环基或5-14元杂芳基,所述的3-12元杂环基和5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;且
x为0~10的整数;
n为0~10的整数;
m为0、1或2。
本发明还提供了一种优选方案,所述通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,某些基团的定义可如下所述,其他基团的定义可如本发明任一方案所述(以下简称“本发明还提供了一种优选方案”),R中,所述C 1-6烷基独立地为C 1-4烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,R中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F。
本发明还提供了一种优选方案,R中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,R中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基。
本发明还提供了一种优选方案,R中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基。
本发明还提供了一种优选方案,R中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基、环丁基或
Figure PCTCN2022127444-appb-000004
本发明还提供了一种优选方案,R中,所述3-12元杂环基独立地为3-8元杂环基(例如7元);其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,R中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基。
本发明还提供了一种优选方案,R中,所述5-14元杂芳基独立地为5-6元杂芳基(例如6元),其中的5-6元杂芳基中杂原子个数独立地可为1或2个(例如1个);其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,环A中,所述C 3-12环烷基为C 3-6环烷基,例如为环丙基、环丁基、环戊基或环己基。
本发明还提供了一种优选方案,环A中,所述3-12元杂环基为C 3-8元杂环基;其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,环A中,所述C 6-14芳基为C 6-10芳基,例如苯基或萘基。
本发明还提供了一种优选方案,环A中,所述5-14元杂芳基独立地为5-10元杂芳基(例如5元、6元、9元),5-10元杂芳基独立地为5-6元杂芳基或5元并6元杂芳基,其中的5-6元杂芳基中杂原子个数独立地可为1或2个(例如2个),5元并6元杂芳基中杂原子个数独立地可为1或4个(例如4个);其中的5-6元杂芳基和5元并6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,环A中,所述C 1-6烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基,还例如甲基、乙基或丙基。
本发明还提供了一种优选方案,环A中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F。
本发明还提供了一种优选方案,环A中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基。
本发明还提供了一种优选方案,环A中,所述C 1-6烷硫基独立地为C 1-4烷硫基,例如甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、仲丁硫基或叔丁硫基。
本发明还提供了一种优选方案,环A中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,环A中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基。
本发明还提供了一种优选方案,环A中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基。
本发明还提供了一种优选方案,环R 1中,所述卤素独立地为F、Cl、Br或I,例如F。
本发明还提供了一种优选方案,环R 1中,所述C 1-6烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基,例如甲基或乙基。
本发明还提供了一种优选方案,环R 1中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F。
本发明还提供了一种优选方案,环R 1中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基。
本发明还提供了一种优选方案,环R 1中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,环R 1中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基。
本发明还提供了一种优选方案,环R 1中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基。
本发明还提供了一种优选方案,环R 1中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基。
本发明还提供了一种优选方案,环R 1中,所述3-12元杂环基独立地为3-8元杂环基(例如7元);其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,环R 1中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基。
本发明还提供了一种优选方案,环R 1中,所述5-14元杂芳基立地为5-6元杂芳基或5元并6元杂芳基,其中的5-6元杂芳基和5元并6元杂芳基中杂原子个数独立地可为1或2个;其中的5-6元杂芳基和5元并6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,环R 1中,所述C 3-12环烷基氧基独立地为C 3-6环烷基氧基,例如为环丙基氧基、环丁基氧基、环戊基氧基或环己基氧基,还例如环丙基氧基。
本发明还提供了一种优选方案,环R y中,所述C 1-6烷基独立地为C 1-4烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,环R y中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,C 1-4烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F。
本发明还提供了一种优选方案,环R y中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基。
本发明还提供了一种优选方案,环R y中,所述C 1-6烷硫基独立地为C 1-4烷硫基,例如甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、仲丁硫基或叔丁硫基。
本发明还提供了一种优选方案,环R y中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,环R y中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基。
本发明还提供了一种优选方案,环R y中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基。
本发明还提供了一种优选方案,环R y中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基。
本发明还提供了一种优选方案,环R y中,所述3-12元杂环基独立地为3-8元杂环基;其中的3-8元杂环基中杂原子个数独立地可为1或2个;其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种。
本发明还提供了一种优选方案,环R y中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基。
本发明还提供了一种优选方案,环R y中,所述5-14元杂芳基立地为5-6元杂芳基基,其中的5-6元杂芳基中杂原子个数独立地可为1或2个;其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 1-6烷基独立地为C 1-4烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 1-6烷硫基独立地为C 1-4烷硫基,例如甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、仲丁硫基或叔丁硫基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 2-6炔基独立地为C 2-4炔基,例如为 乙炔基、丙炔基或丁炔基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述3-12元杂环基独立地为3-8元杂环基(例如4元、7元);其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基。
本发明还提供了一种优选方案,R a、R b、R c和R d中,所述5-14元杂芳基独立地为5-6元杂芳基(例如6元),其中的5-6元杂芳基中杂原子个数独立地可为1或2个(例如1个);其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
本发明还提供了一种优选方案,所示的化合物、其前药、立体异构体或其药学上可接受的盐,其具体结构如通式(I-A)或通式(I-B)所示:
Figure PCTCN2022127444-appb-000005
其中:
L、R和R x如通式(I)所定义。
在本发明的一个优选实施方式中,所述R选自3-10元含氮杂环基、5-10元含氮杂芳基、-C(O)R a或-C(O)NR bR a,所述的3-10元含氮杂环基和5-10元含氮杂芳基,任选地进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1- 3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代;
R a和R b各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基或5-14元杂芳基氧基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6- 14芳基氧基和5-14元杂芳基氧基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6- 14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
或者,R a和R b以及它们所在的原子一起形成3-10元杂环基或5-10元杂芳基,所述的3-10元杂环基和5-10元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代。
本发明还提供了一种优选方案,所示的化合物、其前药、立体异构体或其药学上可接受的盐,其具体结构如通式(II)所示:
Figure PCTCN2022127444-appb-000006
其中:
环A、L、R 1、R a、R b和x如通式(I)所定义。
本发明还提供了一种优选方案,所示的化合物、其前药、立体异构体或其药学上可接受的盐,其具体结构如通式(II-A)或通式(II-B)所示:
Figure PCTCN2022127444-appb-000007
其中:
环A、L、R 1、R a、R b和x如前所述。
在本发明的一个优选实施方式中,所述环A选自5-6元单环杂芳基、8-10元双环稠杂环基或8-10元双环稠杂芳基。
在本发明的进一步优选实施方式中,所述环A选自吡唑基、吡啶基或吡唑并5-6元杂芳基。
在本发明的进一步优选实施方式中,所述环A选自吡唑基、吡啶基或吡唑并嘧啶基。
在本发明的进一步优选实施方式中,所述环A选自
Figure PCTCN2022127444-appb-000008
Figure PCTCN2022127444-appb-000009
在本发明的一个优选实施方式中,所述L为键、-C(O)-或-C(O)CH 2
本发明还提供了一种优选方案,所示的化合物、其前药、立体异构体或其药学上可接受的盐,其 具体结构如通式(III)所示:
Figure PCTCN2022127444-appb-000010
其中:
R x、R a和R b如通式(I)所定义。
本发明还提供了一种优选方案,所示的化合物、其前药、立体异构体或其药学上可接受的盐,其具体结构如通式(IV)所示:
Figure PCTCN2022127444-appb-000011
其中:
R 1、R a、R b和x如通式(I)所定义。
本发明还提供了一种优选方案,所述R a选自氢或甲基;
所述R b选自甲基、乙基、叔丁基、异丁基、环丙基、环丁基或双环[1.1.1]戊烷基,所述的甲基、乙基、异丙基、叔丁基、异丁基、环丙基、环丁基和双环[1.1.1]戊烷基,任选地进一步被甲基、乙基、异丙基或叔丁基中的一个或多个取代基所取代;
或者,R a和R b以及它们所在的原子一起形成氮杂环丁烷基或7-氮杂双环[2.2.1]庚烷基,所述的氮杂环丁烷基和7-氮杂双环[2.2.1]庚烷,任选地进一步被一个或多个甲基所取代。
本发明还提供了一种优选方案,
Figure PCTCN2022127444-appb-000012
Figure PCTCN2022127444-appb-000013
Figure PCTCN2022127444-appb-000014
本发明还提供了一种优选方案,
Figure PCTCN2022127444-appb-000015
Figure PCTCN2022127444-appb-000016
本发明还提供了一种优选方案,R 1独立地选自氢、氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基或C 3-12环烷基,所述的C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-8环烷基,进一步被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基中的一个或多个取代基所取代。
本发明还提供了一种优选方案,R 1独立地选自氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基或C 3-8环烷基,所述的C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-8环烷基,进一步被氘、卤素、C 1-6烷 基、C 1-6卤代烷基、C 1-6烷氧基和C 3-8环烷基中的一个或多个取代基所取代。
本发明还提供了一种优选方案,R 1独立地选自C 1-6烷基,所述的C 1-6烷基任选地进一步被C 1-6烷基和C 1-6烷氧基中的一个或多个取代基所取代。
本发明还提供了一种优选方案,所示的化合物、其前药、立体异构体或其药学上可接受的盐,其具体结构如通式(IV-A)和通式(IV-B)所示:
Figure PCTCN2022127444-appb-000017
其中:
R 1、R a、R b和x如通式(I)所定义。
在本发明的一个优选实施方式中,所述R a和R b各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-10元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6- 10芳基氧基或5-10元杂芳基氧基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-10元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基,任选地,进一步被氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代;
或者,R a和R b以及它们所在的原子一起形成3-10元杂环基或5-10元杂芳基,所述的3-10元杂环基和5-10元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代。
在本发明进一步优选实施方式中,所述R a选自氢或甲基;
所述R b选自甲基、乙基、异丙基、叔丁基、异丁基、环丙基、环丁基或双环[1.1.1]戊烷基,所述的甲基、乙基、异丙基、叔丁基、异丁基、环丙基、环丁基和双环[1.1.1]戊烷基,任选地进一步被甲基、乙基、异丙基、环丙基或叔丁基中的一个或多个取代基所取代;
或者,R a和R b以及它们所在的原子一起形成氮杂环丁烷基或7-氮杂双环[2.2.1]庚烷基,所述的氮杂环丁烷基和7-氮杂双环[2.2.1]庚烷,任选地进一步被一个或多个甲基所取代。
在本发明进一步优选实施方式中,所述
Figure PCTCN2022127444-appb-000018
选自
Figure PCTCN2022127444-appb-000019
Figure PCTCN2022127444-appb-000020
在本发明的一个优选实施方式中,所述R 1独立地选自氢、氘、氰基、氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3羟烷基、-CH 2OR c、-(CH 2) 2OR c、-CH 2NR dR c、-(CH 2) 2NR dR c、-O(CH 2) 2NR dR c、-CH 2S(O)(=NR d)R c、-S(O)(=NR d)R c、-CH 2N=S(=O)R cR d或-C(O)NR dR c,所述的氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基和C 1-3羟烷基,任选地进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代;
R c和R d各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基或5-10元杂芳基氧基,所述的氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基,任选地,进一步被氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代。
在本发明的进一步优选实施方式中,所述R 1独立地选自-CN、-NH 2、-OH、-CH 3、-CF 3、-OCH 3、-CH 2OCH 3、-CH 2NH 2、-CH(OH)CH 3、-C(O)NH 2、-CH 2N(CH 3) 2、-C(O)N(CH 3) 2、-(CH 2) 2OCH 3、-OCH(CH 3) 2、-O(CH 2) 2OCH 3或-O(CH 2) 2N(CH 3) 2
在本发明的进一步优选实施方式中,所述R 1独立地选自H、D、F、Cl、-CN、-NH 2、-OH、-CH 3、-CF 3、-CD 3、-OCH 3、-OCF 3、-CH 2OCH 3、-(CH 2) 2OCH 3
Figure PCTCN2022127444-appb-000021
在本发明的进一步优选实施方式中,R为
Figure PCTCN2022127444-appb-000022
L选-C(O)-,R x为选自
Figure PCTCN2022127444-appb-000023
或R y;环A选自5-14元杂芳基,所述的5-14元杂芳基任选地被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基中的一个或多个取代基所取代;R 1独立地选自氢、氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基或C 3-12环烷基,所述的C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基,任选 地进一步被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基中的一个或多个取代基所取代;
R y选自C 1-6烷基,所述的C 1-6烷基被5-14元杂芳基中的一个或多个取代基所取代;所述5-14元杂芳基进一步被一个或多个C 1-6烷基、C 1-6卤代烷基和C 1-6烷氧基所取代。
在本发明的进一步优选实施方式中,R为
Figure PCTCN2022127444-appb-000024
-L-R x
Figure PCTCN2022127444-appb-000025
Figure PCTCN2022127444-appb-000026
在本发明的进一步优选实施方式中,-L-R x
Figure PCTCN2022127444-appb-000027
R为
Figure PCTCN2022127444-appb-000028
Figure PCTCN2022127444-appb-000029
5-10元含氮杂芳基或-(CH 2) nC(O)NR bR a;n为0,R a为氢,R b为被C 3-12环烷基取代的C 1-6烷基、C 3-12环烷基或被C 1-6烷基取代的C 3-12环烷基;或者,以及它们所在的原子一起形成氮杂环丁烷基或7-氮杂双环[2.2.1]庚烷基,所述的氮杂环丁烷基和7-氮杂双环[2.2.1]庚烷,任选地进一步被一个或多个甲基所取代;所述的5-10元含氮杂芳基,任选地进一步被氘、卤素和C 1-3烷基中的一个或多个取代基所取代。
在本发明的进一步优选实施方式中,-L-R x
Figure PCTCN2022127444-appb-000030
R为
Figure PCTCN2022127444-appb-000031
Figure PCTCN2022127444-appb-000032
在本发明的进一步优选实施方式中,R为
Figure PCTCN2022127444-appb-000033
Figure PCTCN2022127444-appb-000034
在本发明的进一步优选实施方式中,-L-R x
Figure PCTCN2022127444-appb-000035
R为
Figure PCTCN2022127444-appb-000036
在本发明的进一步优选实施方式中,R为
Figure PCTCN2022127444-appb-000037
Figure PCTCN2022127444-appb-000038
在本发明的进一步优选实施方式中,-L-R x
Figure PCTCN2022127444-appb-000039
Figure PCTCN2022127444-appb-000040
本发明还提供了一种优选方案,当本发明没有特别说明是取代还是未取代,通常理解为未取代。
本发明还提供了一种优选方案,如上所示的各通式化合物、其前药、立体异构体或其药学上可接受的盐,具体选自如下化合物:
Figure PCTCN2022127444-appb-000041
Figure PCTCN2022127444-appb-000042
Figure PCTCN2022127444-appb-000043
本发明还涉及一种制备如前所述所述的通式(I)所示的化合物、其前药或立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
Figure PCTCN2022127444-appb-000044
式(Ia)与式(Ib)通过单步或多步亲核取代、偶联反应、Mitsunobu反应、酯化反应等常见有机反应引入R基团,得到式(Ic)所示化合物或立体异构体及其药学上可接受盐;
式(Ic)所示的化合物通过还原反应得到如式(Id)所示的化合物或立体异构体及其药学上可接受 盐;
式(Id)与式(Ie)通过酰胺化反应、亲核取代或者偶联反应等常见有机反应得到式(If)所示的化合物或其立体异构体;
式(If)所示的化合物脱去保护基团R 1a得到式(Ig)所示化合物、其前药或立体异构体及其药学上可接受盐;
式(Ig)通过分离纯化得到式(I)所示的化合物、其前药或立体异构体及其药学上可接受盐;
任选地,式(I)所示的化合物进一步通过手性拆分得到单一构型化合物、其前药或立体异构体及其药学上可接受盐;
其中:
X 1选自但不限于羟基、卤素或三氟甲磺酸酯基(OTf)等;
X 2选自但不限于羟基、卤素或三氟甲磺酸酯基(OTf)等;
R 1a为吡唑氮上的保护基,选自但不限于叔丁基(t-Bu)、四氢-2H-吡喃-2-基(THP)、(三甲基硅烷基)乙氧甲基(SEM)、对甲氧基苄基(PMB)等;
L、R和R x如通式(I)所定义。
本发明还涉及一种制备如前所述的通式(II)所示的化合物、其前药或立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
Figure PCTCN2022127444-appb-000045
式(IIa)与式(IIb)发生反应得到式(IIc)所示的化合物、其前药或立体异构体及其药学上可接受盐;
式(IIc)通过分离纯化得到式(II)所示的化合物、其前药或立体异构体及其药学上可接受盐;
任选地,式(II)所示的化合物通过手性拆分得到单一构型化合物、其前药或立体异构体及其药学上可接受盐;
其中:
环A、L、R 1、R a、R b和x如通式(II)所定义。
本发明涉及一种式(IIa)所示的中间体化合物或其立体异构体及其盐,其具体结构如下:
Figure PCTCN2022127444-appb-000046
其中:
环A、L、R 1、R a、R b和x如通式(II)所定义。
本发明涉及一种式(IIa)所示的中间体化合物或其立体异构体及其药学上可接受盐,其具体结构如下:
Figure PCTCN2022127444-appb-000047
其中:
环A、L、R 1、R a、R b和x如通式(II)所定义。
本发明的一个优选实施方式,所述式(IIa)选自如下化合物:
Figure PCTCN2022127444-appb-000048
本发明进一步涉及一种制备所述式(IIa)所示的中间体化合物或其立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
Figure PCTCN2022127444-appb-000049
式(IIa-1)与式(IIa-2)通过酰胺化反应、亲核取代或者偶联反应等常见有机反应得到式(IIa-3)所示的化合物或其立体异构体及其药学上可接受盐;
式(IIa-3)与对硝基氯甲酸苯酯反应生成式(IIa-4)所示的化合物或其立体异构体及其药学上可接受盐;
式(IIa-4)脱去保护基团R 1a得到式(IIa)所示化合物或其立体异构体及其药学上可接受盐;
其中:
X 1选自但不限于羟基、卤素或三氟甲磺酸酯基(OTf)等;
R 1a为吡唑氮上的保护基,选自但不限于叔丁基(t-Bu)、四氢-2H-吡喃-2-基(THP)、(三甲基硅烷基)乙氧甲基(SEM)、对甲氧基苄基(PMB)等;
环A、L、R 1、R a、R b和x如通式(II)所定义。
本发明涉及一种式(IIa-1)所示的中间体化合物或其立体异构体及其盐,其具体结构如下:
Figure PCTCN2022127444-appb-000050
其中:
R 1a为吡唑氮上的保护基,选自但不限于叔丁基(t-Bu)、四氢-2H-吡喃-2-基(THP)、(三甲基硅烷基)乙氧甲基(SEM)、对甲氧基苄基(PMB);所述的盐可为药学上可接受的盐等。
本发明的一个优选实施方式,所述式(IIa-1)选自如下化合物:
Figure PCTCN2022127444-appb-000051
本发明进一步涉及一种制备所述式(IIa-1)所示的中间体化合物或其立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
Figure PCTCN2022127444-appb-000052
式(IIa-1a)所示的化合物与式(IIa-1b)反应得到式(IIa-1c)所示的化合物;
式(IIa-1c)所示的化合物通过还原反应得到式(IIa-1d)所示的化合物,式(IIa-1d)再经过氧化反应得到式(IIa-1e)所示的化合物;
式(IIa-1e)所示的化合物与烯丙基三氟硼酸钾通过加成反应,得到式(IIa-1f)所示的化合物;
式(IIa-1f)所示的化合物通过与间氯过氧苯甲酸(mCPBA)的环氧化反应,得到式(IIa-1g)所示的化合物;
式(IIa-1g)所示的化合物在酸性条件下关环得到式(Ia)所示的中间体化合物或其立体异构体及其药学上可接受盐;
式(Ia)所示的化合物通过还原反应可得到式(IIa-1)所示的化合物或其立体异构体及其药学上可接受盐;
其中:
X 4选自但不限于卤素、三氟甲磺酸酯基(OTf)或羟基等;
R 1a如式(IIa-1)所定义。
本发明还涉及一种药物组合物,其包含有治疗疾病效剂量的如上所述各通式化合物、其前药、立体异构体或其药学上可接受的盐,以及一种或多种药学上可接受的载体或赋形剂。
本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及上述药物组合物在制备治疗CDK2介导的疾病的药物中的用途。
本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及上述药物组合物在制备治疗细胞异常生长的药物中的用途。
本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及上述药物组合物在制备治疗癌症的药物中的用途。
另一方面,本发明进一步涉及通式(I)所示的化合物、其立体异构体或其药学上可接受的盐,以及其药物组合物治疗由CDK2介导的疾病的方法。
另一方面,本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的 盐,以及其药物组合物治疗细胞异常生长的方法。
另一方面,本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及其药物组合物治疗癌症的用途。
本发明的一个优选实施方式,所述癌症可为卵巢癌。
另一方面,本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及其药物组合物治疗由CDK2介导的疾病的用途。
另一方面,本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及其药物组合物治疗细胞异常生长的用途。
另一方面,本发明进一步涉及通式(I)所示的化合物、其前药、立体异构体或其药学上可接受的盐,以及其药物组合物治疗癌症的用途。
发明的详细说明
除非有相反陈述,在说明书和权利要求书中使用的技术术语有下述含义。
术语“烷基”指饱和脂肪链烃中缺少一个氢的烃基,其为包含1至20个碳原子的直链或支链基团,优选含有1至8个碳原子的烷基,更优选1至6个碳原子的烷基,最优选1至3个碳原子的烷基。非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、正戊基、1,1-二甲基丙基、1,2-二甲基丙基、2,2-二甲基丙基、1-乙基丙基、2-甲基丁基、3-甲基丁基、正己基、1-乙基-2-甲基丙基、1,1,2-三甲基丙基、1,1-二甲基丁基、1,2-二甲基丁基、2,2-二甲基丁基、1,3-二甲基丁基、2-乙基丁基、2-甲基戊基、3-甲基戊基、4-甲基戊基、2,3-二甲基丁基、正庚基、2-甲基己基、3-甲基己基、4-甲基己基、5-甲基己基、2,3-二甲基戊基、2,4-二甲基戊基、2,2-二甲基戊基、3,3-二甲基戊基、2-乙基戊基、3-乙基戊基、正辛基、2,3-二甲基己基、2,4-二甲基己基、2,5-二甲基己基、2,2-二甲基己基、3,3-二甲基己基、4,4-二甲基己基、2-乙基己基、3-乙基己基、4-乙基己基、2-甲基-2-乙基戊基、2-甲基-3-乙基戊基、正壬基、2-甲基-2-乙基己基、2-甲基-3-乙基己基、2,2-二乙基戊基、正癸基、3,3-二乙基己基、2,2-二乙基己基,及其各种支链异构体等。烷基可以是取代的或非取代的,当被取代时,取代基可以在任何可使用的连接点上被取代,所述取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、氧代基、羧基或羧酸酯基,本发明优选甲基、乙基、异丙基、叔丁基、卤代烷基、氘代烷基、烷氧基取代的烷基和羟基取代的烷基。
术语“亚烷基”是指烷基的一个氢进一步被取代的基团,即饱和脂肪链烃中缺少两个氢的烃基,其为包含1至20个碳原子的直链或支链基团,优选含有1至8个碳原子的亚烷基,更优选1至6个碳原子的亚烷基,最优选1至3个碳原子的亚烷基。非限制性实例包括“亚甲基”(-CH 2-)、“亚乙基”(-(CH 2) 2-)、“亚正丙基”(-(CH 2) 3-)、“亚异丙基”(-(CH)(CH 3)(CH 2)-)、“亚正丁基”(-(CH 2) 4-)等。
术语“烯基”指至少含有两个碳原子和至少包含一个碳-碳双键组成的不饱和脂肪族烃基团,其为包含2至20个碳原子的直链或支链基团,优选含有2至8个碳原子的烯基,更优选2至6个碳原子的烯基,最优选2至4个碳原子的烯基。例如乙烯基、1-丙烯基、2-丙烯基、1-、2-或3-丁烯基等。烯基可以是取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基。
术语“炔基”指至少含有两个碳原子和至少包含一个碳-碳三键组成的不饱和脂肪族炔基团,其为包含2至20个碳原子的直链或支链基团,优选含有2至8个碳原子的炔基,更优选2至6个碳原子的炔基,最优选2至4个碳原子的炔基。例如乙炔基、1-丙炔基、2-丙炔基、1-、2-或3-丁炔基等。炔基可以是取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基。
术语“环烷基”指饱和或部分不饱和单环或多环非芳香环状烃取代基,环烷基环原子包含3至20个碳原子,优选包含3至12个碳原子,更优选包含3至6个碳原子。单环环烷基的非限制性实例包括环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环己二烯基、环庚基、环庚三烯基、环辛基等,优选环丙基、环丁基、环己基、环戊基和环庚基;多环环烷基包括螺环烷基、稠环烷基和桥环烷基等。
术语“螺环烷基”指含有5至20个碳原子,单环之间共用一个碳原子(称螺原子)的多环基团,其可以含有一个或多个双键,其整体不具有芳香性(即整体不能形成共轭的π电子***),但可以有一个环或多个环具有共轭的π电子***。螺环烷基环原子优选为6至14个碳原子,更优选为7至10个碳原子。根据环与环之间共用螺原子的数目将螺环烷基分为单螺环烷基、双螺环烷基或多螺环烷基,优选为单螺环烷基和双螺环烷基。更优选为4元/4元、4元/5元、4元/6元、5元/5元或5元/6元单螺环烷基。螺环烷基的非限制性实例包括:
Figure PCTCN2022127444-appb-000053
等;
术语“稠环烷基”指含有5至20个碳原子,***中的每个环与体系中的其他环共享毗邻的一对碳原子的全碳多环基团,其中一个或多个环可以含有一个或多个双键,其整体不具有芳香性(即整体不能形成共轭的π电子***),但可以有一个环或多个环具有共轭的π电子***。稠环烷基环原子优选为6至14个碳原子,更优选为7至10个碳原子。根据组成环的数目可以分为双环、三环、四环或多环稠环烷基,优选为双环或三环,更优选为5元/5元或5元/6元双环烷基。稠环烷基的非限制性实例包括:
Figure PCTCN2022127444-appb-000054
等。
术语“桥环烷基”指含有5至20个碳原子,任意两个环共用两个不直接连接的碳原子的全碳多环基团,其可以含有一个或多个双键,其整体不具有芳香性(即整体不能形成共轭的π电子***),但可以有一个环或多个环具有共轭的π电子***。桥环烷基环原子优选为6至14元个碳原子,更优选为7至10个碳原子。根据组成环的数目可以分为双环、三环、四环或多环桥环烷基,优选为双环、三环或四环,更有选为双环或三环。桥环烷基的非限制性实例包括:
Figure PCTCN2022127444-appb-000055
等。
所述环烷基环可以稠合于环烷基或芳基环上,其中与母体结构连接在一起的环可以为环烷基或芳基环,非限制性实例包括茚满基、四氢萘基、苯并环庚烷基等。环烷基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、氧代基、羧基或羧酸酯基。
术语“杂环基”指饱和或部分不饱和单环或多环非芳香环状烃取代基,其包含3至20个环原子,其中一个或多个环原子为选自氮、氧、磷、硼或S(O) m(其中m是整数0至2)的杂原子,但不包括-O-O-、-O-S-或-S-S-的环部分,其余环原子为碳。杂环基优选包含3至12个环原子,其中1~4个是杂原子;更优选包含3至10个环原子;进一步优选包含3至8个环原子;最优选包含3至8个环原子。单环杂环基的非限制性实例包括氧杂环丁烷、四氢吡喃基、氮杂环庚烷基、吡咯烷基、咪唑烷基、四氢呋喃基、四氢噻吩基、二氢咪唑基、二氢呋喃基、二氢吡唑基、二氢吡咯基、哌啶基、吡啶酮基、哌嗪基、吗啉基、硫代吗啉基、高哌嗪基、吡喃基等,优选氧杂环丁烷、四氢呋喃基、四氢吡喃基、氮杂环庚烷基、哌啶基、吡啶酮基和哌嗪基。多环杂环基包括螺环、稠环和桥环的杂环基等;其中涉及到的螺环、稠环和桥环的杂环基任选与其他基团通过单键相连接,或者通过环上的任意两个或者两个以上的原子与其他环烷基、杂环基、芳基和杂芳基进一步并环连接。
术语“螺杂环基”指含有5至20个环原子,单环之间共用一个原子(称螺原子)的多环杂环基团,其中一个或多个环原子选自氮、氧、磷、硼或S(O) m(其中m是整数0至2)的杂原子,其余环原子为碳。其可以含有一个或多个双键,其整体不具有芳香性(即整体不能形成共轭的π电子***),但可以有一个环或多个环具有共轭的π电子***。螺杂环基环原子优选为6至14元,更优选为7至10元。根据环与环之间共用螺原子的数目将螺杂环基分为单螺杂环基、双螺杂环基或多螺杂环基,优选为单螺 杂环基和双螺杂环基。更优选为4元/4元、4元/5元、4元/6元、5元/5元或5元/6元单螺杂环基。螺杂环基的非限制性实例包括:
Figure PCTCN2022127444-appb-000056
Figure PCTCN2022127444-appb-000057
等。
术语“稠杂环基”指含有5至20个环原子,***中的每个环与体系中的其他环共享毗邻的一对原子的多环杂环基团,其中一个或多个环原子选自氮、氧、磷、硼或S(O) m(其中m是整数0至2)的杂原子,其余环原子为碳。其一个或多个环可以含有一个或多个双键,其整体不具有芳香性(即整体不能形成共轭的π电子***),但可以有一个环或多个环具有共轭的π电子***。稠杂环基环原子优选为6至14元,更优选为7至10元。根据组成环的数目可以分为双环、三环、四环或多环稠杂环基,优选为双环或三环,更优选为5元/5元或5元/6元双环稠杂环基。稠杂环基的非限制性实例包括:
Figure PCTCN2022127444-appb-000058
Figure PCTCN2022127444-appb-000059
等。
术语“桥杂环基”指含有5至20个环原子,任意两个环共用两个不直接连接的原子的多环杂环基团,其中一个或多个环原子为选自氮、氧、磷、硼或S(O) m(其中m是整数0至2)的杂原子,其余环原子为碳。其可以含有一个或多个双键,其整体不具有芳香性(即整体不能形成共轭的π电子***),但可以有一个环或多个环具有共轭的π电子***。桥杂环基环原子优选为6至14元,更优选为7至10元。根据组成环的数目可以分为双环、三环、四环或多环桥杂环基,优选为双环、三环或四环,更有选为双环或三环。桥杂环基的非限制性实例包括:
Figure PCTCN2022127444-appb-000060
等。
所述杂环基环可以稠合于环烷基、杂环基、芳基或杂芳基环上,其中与母体结构连接在一起的环可以为环烷基、杂环基、芳基环或杂芳基环,其非限制性实例包括:
Figure PCTCN2022127444-appb-000061
Figure PCTCN2022127444-appb-000062
等。
杂环基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自氧代基(=O)、硫代基(=S)、烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“芳基”指具有共轭的π电子体系的6至20元全碳单环或稠合多环(也就是共享毗邻碳原子对的环)基团,芳基环原子优选为6至14元,更优选为6至10元,例如苯基和萘基。更优选苯基。
芳基可以是取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“杂芳基”指包含1至4个杂原子、5至20个环原子的杂芳族体系,其中杂原子选自氧、硫或氮等。杂芳基分为单环杂芳基和多环杂芳基;杂芳基环原子优选为5至14元,更优选为5至10元;单环杂芳基环原子优选为5元或6元,例如咪唑基、呋喃基、噻吩基、噻唑基、吡唑基、噁唑基、异噁唑基、吡咯基、***基、四唑基、吡啶基、嘧啶基、噻二唑、吡嗪基、哒嗪基、噁二唑基等,优选吡啶基、噁唑基、异噁唑基、吡啶基、嘧啶基、吡唑基、噻唑基、噻二唑基和噁二唑基。多环杂芳基一般指所述杂芳基环稠合于芳基或杂芳基形成多环稠杂芳基,其中与母体结构连接在一起的环可以为芳基环或杂芳基环,多环稠杂芳基优选双环稠杂芳基,双环稠杂芳基非限制性实例包括:
Figure PCTCN2022127444-appb-000063
Figure PCTCN2022127444-appb-000064
等。
杂芳基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“卤代烷基”指烷基中的氢被一个或多个卤素取代的基团,其中烷基的定义如上所述。卤代烷基的非限制性实例包括:一氟甲基、二氟甲基、三氟甲基、一氯甲基、二氯甲基、三氯甲基、1-氟乙基、2-氟乙基、1,1-二氟乙基、1,2-二氟乙基等,卤代烷基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
“羟烷基”指烷基中的氢被一个或多个羟基取代的基团,其中烷基如上所定义。羟烷基的非限制性实例包括:羟甲基、1-羟基乙基、2-羟基乙基、1,2-二羟基乙基、1-羟基丙基、1-羟基丁基等,羟烷基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“烷氧基”指-O-(烷基),其中烷基的定义如上所述。烷氧基的非限制性实例包括:甲氧基、乙氧基、丙氧基或丁氧基,烷氧基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“烷硫基”指-S-(烷基),其中烷基的定义如上所述。烷硫基的非限制性实例包括:甲硫基、乙硫基、丙硫基、丁硫基,烷硫基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷氧基、烷硫基、烷基氨基、卤素、巯基、羟基、硝 基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷氧基、杂环烷氧基、环烷硫基、杂环烷硫基、羧基或羧酸酯基。
术语“环烷基氧基”指-O-(环烷基),其中环烷基的定义如上所述。
术语“杂环基氧基”指-O-(杂环基),其中杂环基的定义如上所述。
术语“C 6-14芳基氧基”指-O-(C 6-14芳基),其中C 6-14芳基的定义如上所述。
术语“5-14元杂芳基氧基”指-O-(5-14元杂芳基氧基),其中5-14元杂芳基氧基的定义如上所述。
“羟基”指-OH。
“卤素”指氟(F)、氯(Cl)、溴(Br)或碘(I)。
“氨基”指-NH 2
“氰基”指-CN。
“硝基”指-NO 2
“羧基”指-C(O)OH。
“THF”指四氢呋喃。
“PE”指石油醚。
“EA”指乙酸乙酯。
“IPA”指异丙醇。
“MeOH”指甲醇。
“DMF”指N,N-二甲基甲酰胺。
“TFA”指三氟乙酸。
“ACN”指乙腈。
“DMA”指N,N-二甲基乙酰胺。
“Et 2O”指***。
“DCM”指二氯甲烷。
“DCE”指1,2二氯乙烷。
“DIPEA”指N,N-二异丙基乙胺。
“NBS”指N-溴代丁二酰亚胺。
“NIS”指N-碘代丁二酰亚胺。
“Cbz-Cl”指氯甲酸苄酯。
“Pd 2(dba) 3”指三(二亚苄基丙酮)二钯。
“Dppf”指1,1’-双二苯基膦二茂铁。
“HATU”指2-(7-氧化苯并三氮唑)-N,N,N’,N’-四甲基脲六氟磷酸酯。
“KHMDS”指双三甲基二硅基胺基钾。
“LiHMDS”指双三甲基二硅基胺基锂。
“MeLi”指甲基锂。
“n-BuLi”指正丁基锂。
“NaBH(OAc) 3”指三乙酰氧基硼氢化钠。
“X选自A、B、或C”、“X选自A、B和C”、“X为A、B或C”、“X为A、B和C”等不同用语均表达了相同的意义,即表示X可以是A、B、C中的任意一种或几种。
本发明所述的氢均可被其同位素氘所取代,本发明涉及的实施例化合物中的任一氢也均可被氘取代。
本发明的所有化合物,如所示化合物结构与名称有冲突,以结构表示为准。
“任选”或“任选地”意味着随后所描述的事件或环境可以但不必发生,该说明包括该事件或环境发生或不发生的场合。例如,“任选被烷基取代的杂环基团”意味着烷基可以但不是必须存在,该说明包括杂环基团被烷基取代的情形和杂环基团不被烷基取代的情形。
“取代的”指基团中的一个或多个氢,优选为5个,更优选为1~3个氢彼此独立地被相应数目的取代基取代。不言而喻,取代基仅处在它们的可能的化学位置,本领域技术人员能够在不付出过多努力的情况下确定(通过实验或理论)可能或不可能的取代。例如,具有游离氢的氨基或羟基与具有不饱和(如烯属)键的碳原子结合时可能是不稳定的。
“药物组合物”表示含有一种或多种本文所述化合物或其生理学上/可药用的盐或前体药物与其他化学组分的混合物,以及其他组分例如生理学/可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。
“可药用盐”是指本发明化合物的盐,这类盐用于哺乳动物体内时具有安全性和有效性,且具有应有的生物活性。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明实施例化合物对CDK2/CycE1激酶具有良好的抑制活性,且对CDK2/CDK1激酶抑制具有良好的选择性。本发明实施例化合物对于OVCAR-3细胞增殖具有良好的抑制活性。本发明实施例化合物在Caco-2细胞模型上表现出更好的渗透性和更低的外排活性。本发明实施例明显优化了产品药物代谢动力学性质。
具体实施方式
化学合成方法:
在此描述的化合物可以利用商业化可获得的或者由已知实验方法可制备的起始原料,通过有机合成领域技术人员掌握的多种方法进行合成。本发明的化合物可以采用下述方法,或合成有机化学领域中已知的合成方法,结合本领域技术人员所掌握的方法变化来合成。优选的合成方法包括但不限于以下描述。有关各个反应步骤的更详细说明,请参阅下面的“实施例”部分。
如无特殊说明,合成步骤中的起始原料可以采用或按照本领域已知的方法来合成,或可购买自西格玛奥德里奇(Sigma-Aldrich Co.Ltd)、毕得医药(Bide Pharmatech Ltd.)、韶远化学(Accela ChemBio Co.Ltd)等公司。
在无特殊说明的情况下,本发明的所有反应均在连续的磁力搅拌下,在干燥氮气或氩气氛下进行,溶剂为干燥溶剂,反应温度单位为摄氏度。
分析方法和仪器设备:
用于实施例表征的LCMS数据是通过带有DAD检测器的Agilent 1260-6120/6125MSD***获得的。测试方法包括:
LCMS方法A:
柱子:HALO C18 4.6×30mm,2.7μm
柱温:45℃
流动相:溶剂A为0.025%三氟乙酸+99.975%水;溶剂B为0.025%三氟乙酸+99.975%乙腈
流速:1.8mL/min
梯度:在0.8分钟内,溶剂B由5%至95%线性递增,然后在95%下保持0.8分钟,最后溶剂B在5%下保持到2.0分钟
LCMS方法B:
柱子:HALO C18 4.6×30mm,2.7μm
柱温:45℃
流动相:溶剂A为0.1%甲酸+99.9%水;溶剂B为0.1%甲酸+99.9%乙腈
流速:1.8mL/min
梯度:在0.8分钟内,溶剂B由5%至95%线性递增,然后在95%下保持0.8分钟,最后溶剂B在5%下保持到2.0分钟
LCMS方法C:
柱子:
Figure PCTCN2022127444-appb-000065
C18 4.6×50mm,2.5μm
柱温:40℃
流动相:溶剂A为0.05%氨水+99.5%水;溶剂B为100%乙腈
流速:1.8mL/min
梯度:在2.5分钟内,溶剂B由5%至95%线性递增到1分钟,然后在95%下保持到2分钟,最后溶剂B从2.05分钟开始保持5%到2.5分钟
用于实施例表征的NMR数据是通过Bruker傅立叶变换光谱仪( 1H NMR:400MHz)获得的。数据以化学位移(多重性、氢原子数目)的形式给出。化学位移以内标四甲基硅烷(δ 四甲基硅烷=0ppm)和/或参考溶剂峰来进行指定,所述参考溶剂峰在 1H NMR光谱中对于氘代二甲基亚砜(DMSO-d 6)为2.49ppm,对于氘代甲醇(CD 3OD)为3.30ppm,对于氘代乙腈(CD 3CN)为1.94ppm,对于氘代氯仿(CDCl 3)为7.24ppm。
纯化方法:
实施例和中间体的纯化通过硅胶色谱法、反相硅胶色谱法和/或超临界流体色谱法(SFC)进行。硅胶色谱法一般是以硅胶或预装硅胶柱为载体、石油醚/乙酸乙酯或二氯甲烷/甲醇等体系为洗脱剂;反相硅胶色谱法一般是以C18硅胶柱为载体,使用UV检测器(214nm和254nm)和制备型LCMS进行检测,流动相包括乙腈/水(0.1%甲酸)、乙腈/水(0.1%三氟乙酸)和乙腈/水(0.1%氨水)等体系。超临界流体色谱法(SFC)一般是采用不同类型的柱子作为载体,以CO 2/含0.2%NH 3的甲醇(7M氨甲醇溶液)等体系为流动相。
中间体的制备:
中间体A:5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯
Figure PCTCN2022127444-appb-000066
合成路线:
Figure PCTCN2022127444-appb-000067
Figure PCTCN2022127444-appb-000068
步骤1:5-硝基-1H-吡唑-3-甲酸甲酯(A-2)
在0℃将氯化亚砜(98.5g,0.83mol)加入到5-硝基-1氢-吡唑-3-甲酸(50.0g,0.32mol)的甲醇溶液(500mL)中,反应液在70℃下搅拌16小时。反应结束后真空浓缩除去溶剂。冰浴冷却下,加水稀释并用碳酸氢钠饱和水溶液将pH调至8,然后用乙酸乙酯萃取,饱和食盐水洗涤后,有机相真空浓缩并干燥,得到化合物A-2(粗品,白色固体,48.0g)。LC-MS(ESI),m/z:[M+H] +=170.1
1H NMR(400MHz,DMSO-d 6)δ15.23(s,1H),7.53(s,1H),3.90(s,3H).
步骤2:1-(叔-丁基)-3-硝基-1H-吡唑-5-甲酸甲酯(A-3)
将5-硝基-1H-吡唑-3-甲酸甲酯(15.0g,87.7mmol)、三苯基膦(69.1g,263mmol)和叔丁醇(19.5g,263mmol)溶于四氢呋喃(150mL)中。于0℃下逐滴向以上溶液中加入偶氮二甲酸二乙酯(45.8g,263mmol),并将混合物于70℃下搅拌16小时。混合物经乙酸乙酯萃取,饱和食盐水洗涤后,有机相真空浓缩并干燥,所得粗产物通过硅胶色谱法(PE:DCM=3:1)纯化得到化合物A-3(粉红色油状物,10.0g,产率:50%)。LC-MS(ESI),m/z:[M+H] +=227.2
步骤3:(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)甲醇(A-4)
0℃下向1-(叔-丁基)-3-硝基-1H-吡唑-5-甲酸甲酯(11.0g,48.4mmol)的四氢呋喃溶液(55.0mL)中分批加入硼氢化锂(3.20g,31.7mmol),并将混合物于室温中搅拌16小时。加水稀释并用乙酸乙酯萃取,饱和食盐水洗涤后,有机相真空浓缩并干燥。所得粗产物通过硅胶色谱法(PE:EA=4:1)纯化得到化合物A-4(黄色油状物,7.3g,产率:72%)。LC-MS(ESI),m/z:[M+H] +=199.2
步骤4:1-(叔-丁基)-3-硝基-1H-吡唑-5-甲醛(A-5)
(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)甲醇(6.0g,30.1mmol)的乙酸乙酯溶液(55.0mL)中分批加入二氧化锰(78.5g,903mmol),将反应混合物于80℃下搅拌16小时。过滤并用乙酸乙酯洗涤滤饼,有机相真空浓缩。所得粗产物通过硅胶色谱法(PE:EA=10:1)纯化得到化合物A-5(淡黄色油状物,4.0g,产率:67%)。LC-MS(ESI),m/z:[M+H] +=197.2.
1H NMR(400MHz,DMSO-d 6)δ10.04(s,1H),7.94(s,1H),1.69(s,9H).
步骤5:1-(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)丁-3-烯-1-醇(A-6)
室温下,向1-(叔-丁基)-3-硝基-1H-吡唑-5-甲醛(1.80g,9.1mmol)和四丁基碘化铵(0.34g,0.91mmol)的二氯甲烷和水混合溶液(36.0mL)中加入烯丙基三氟硼酸钾(2.69g,18.2mmol),混合物于室温下搅拌2小时。混合物经二氯甲烷萃取,饱和食盐水洗涤后,真空浓缩并干燥,所得残留物通过硅胶色谱法(PE:EA=3:1)纯化得到化合物A-6(黄色油状物,1.60g,产率:74%)。LC-MS(ESI),m/z:[M+H] +=239.3.
1H NMR(400MHz,DMSO-d 6)δ7.09(s,1H),5.82(ddt,J=17.2,10.2,6.8Hz,1H),5.69(s,1H),5.19–5.02(m,2H),5.00(s,1H),2.59(td,J=6.8,4.0Hz,2H),1.65(s,9H).
步骤6:1-(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)-2-(噁丙环-2-基)乙烷-1-醇(A-7)
室温下向1-(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)丁-3-烯-1-醇(4.50g,18.8mmol)的二氯甲烷溶液(50.0mL)中分批加入3-氯过氧苯甲酸(9.75g,56.5mmol),混合物于40℃下搅拌16小时。混合物经二氯甲烷萃取,饱和食盐水洗涤后,有机相真空浓缩并干燥,所得残留物通过硅胶色谱法(PE:EA=3:2)纯化得到化合物A-7(无色油状物,4.00g,产率:83%)。LC-MS(ESI),m/z:[M+H] +=255.3.
步骤7:5-(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)四氢呋喃-3-醇(A-8)
室温下向1-(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)-2-(噁丙环-2-基)乙烷-1-醇(1.00g,3.90mmol)的1,4-二噁烷溶液(50.0mL)中逐滴加入浓硫酸(380mg,3.90mmol),并将混合物于50℃下搅拌16小时。冰浴下,向反应体系加水稀释并用碳酸氢钠饱和水溶液将pH调至8,然后用乙酸乙酯萃取,饱和食盐水洗涤后,真空浓缩并干燥,所得粗产物通过硅胶色谱法(PE:EA=1:1)纯化得到化合物A-8(无色油状物,400mg,产率:41%)。
LC-MS(ESI),m/z:[M+H] +=255.3.
步骤8:5-(3-氨基-1-(叔-丁基)-1H-吡唑-5-基)四氢呋喃-3-醇(A-9)
室温下向5-(1-(叔-丁基)-3-硝基-1H-吡唑-5-基)四氢呋喃-3-醇(600mg,2.35mmol)的四氢呋喃溶液(15.0mL)中加入钯碳(300mg),混合物于氢气氛围中50℃下搅拌16小时。待反应完成后,反应混合物经二氯甲烷萃取,饱和食盐水洗涤后,真空浓缩并干燥,所得粗产物通过硅胶色谱法(PE:EA=20:1)纯化得到化合物A-9(淡黄色油状物,300mg,产率:57%)。LC-MS(ESI),m/z:[M+H] +=226.1.
步骤9:N-(1-(叔-丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺(A-10)
将3-(甲氧基甲基)-1-甲基-1H-吡唑-5-羧酸(230mg,1.35mmol)溶于N,N-二甲基甲酰胺溶液(10.0mL)中,室温下向以上溶液中加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(668mg,1.76mmol),混合物于室温下搅拌30分钟。然后下向以上溶液中分别加入N,N-二异丙基乙胺(349mg,2.70mmol),5-(3-氨基-1-(叔-丁基)-1氢-吡唑-5-基)四氢呋喃-3-醇(335mg,1.49mmol),并将反应混合物于70℃下搅拌16小时。待反应完成后,反应混合物经乙酸乙酯萃取,饱和食盐水洗涤后,有机相真空浓缩并干燥,所得粗产物通过硅柱胶色谱法(DCM:MeOH=20:1)纯化得到化合物A-10(黄色固体,280mg,产率:55%)。LC-MS(ESI),m/z:[M+H] +=378.2.
步骤10:5-(1-(叔-丁基)-3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(A-11)
将N-(1-(叔-丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰 胺(300mg,0.79mmol)、4-二甲氨基吡啶(10mg,0.082mmol)和吡啶(189mg,2.38mmol)溶于四氢呋喃溶液(150mL)中,并在0℃下向以上溶液中加入4-硝基苯基氧基甲酰氯(104mg,0.52mmol),并将反应混合物于室温下搅拌16小时。待反应完成后,将混合物用乙酸乙酯萃取,饱和食盐水洗涤后,真空浓缩并干燥,所得粗产物通过硅胶色谱法(PE:EA=1:2)纯化得到化合物A-11(白色油状物,300mg,产率:70%)。LC-MS(ESI),m/z:[M+H] +=543.20.
步骤11:5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(中间体A)
5-(1-(叔-丁基)-3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(600mg,2.35mmol)的甲酸溶液(5.0mL)于75℃下搅拌16小时。待反应完成后,将反应混合物减压浓缩得到中间体A(淡黄色油状物,粗品,600mg),直接用于下一步。LC-MS(ESI),m/z:[M+H] +=487.1.
中间体B:顺式-5-(3-氨基-1-(4-叔丁基)-1H-吡唑-5-基)四氢呋喃-3-醇
Figure PCTCN2022127444-appb-000069
合成路线:
Figure PCTCN2022127444-appb-000070
步骤1:5-(1-(叔丁基)-3-硝基-1H-吡唑-5-基)四氢呋喃-3-酮(B-1)
室温氮气保护下,向5-(1-(叔丁基)-3-硝基-1H-吡唑-5-基)四氢呋喃-3-醇(3.30g,12.9mmol)的二氯甲烷(50mL)溶液中分批加入氯铬酸吡啶(2.80g,25.9mmol),并将反应混合物在室温搅拌过夜。随后向反应体系中补加氯铬酸吡啶(1.40g,12.9mmol)并继续搅拌2小时。待反应完成后,将反应混合物减压浓缩,所的残留物通过硅胶色谱法(石油醚:乙酸乙酯=10:1–1:1)纯化得到化合物B-1(2.0g,产率:61%)。LC-MS(ESI),m/z:[M+H]+=254.1
步骤2:顺式-5-(1-(叔丁基)-3-硝基-1H-吡唑-5-基)四氢呋喃-3-醇(B-2)
氮气保护,在-60℃下,向化合物B-1(3.7g,15mmol)的四氢呋喃(20mL)溶液中,缓慢加入三乙基硼氢化锂(1M的四氢呋喃溶液,18.3mL,36.5mmol)。滴加完毕后,将反应混合物在-60℃氮气保护下搅拌2小时。待反应完成后,将反应体系中用饱和氯化铵水溶液(50mL)淬灭,乙酸乙酯萃取(20mL×3),合并有机相,再用饱和食盐水洗涤,无水硫酸钠干燥,过滤除去固体并减压浓缩。所得残留物通过硅胶色谱法(二氯甲烷:甲醇=20:1)分离纯化得到化合物B-2(2.8g,产率68%)。LC-MS(ESI), m/z:[M+H] +=256.0
步骤3:顺式-5-(3-氨基-1-(4-叔丁基)-1H-吡唑-5-基)四氢呋喃-3-醇(中间体B)
在氢气氛围下,向化合物B-2(600mg,2.35mmol)的四氢呋喃溶液(15mL)中加入钯/碳(300mg),并将该反应混合物在50℃搅拌16小时。待反应完成后,将反应混合物过滤,并用二氯甲烷/甲醇混合溶液(二氯甲烷:甲醇=10:1)洗涤滤饼。将滤液减压浓缩,所得残留物经过硅胶柱层析色谱(二氯甲烷:甲醇=20:1)得到中间体B(300mg,产率:57%)。LC-MS(ESI),m/z:[M+H] +=226.1
1H NMR(400M,DMSO-d 6)δ7.15–7.13(m,1H),5.39–5.28(m,1H),4.48–4.40(m,1H),4.05–3.99(m,1H),3.77–3.75(m,1H),3.66–3.62(m,1H),3.52–3.38(m,1H),1.66–1.62(m,9H).
中间体C:顺式-5-(3-氨基-1-(4-甲氧基苄基)-1H-吡唑-5-基)四氢呋喃-3-醇
Figure PCTCN2022127444-appb-000071
合成路线:
Figure PCTCN2022127444-appb-000072
步骤1:5-硝基-1H-吡唑-3-羧酸甲酯(C-1)
氮气氛围下,向0℃下的5-硝基-1H-吡唑-3-羧酸(100g,0.637mol)的甲醇(1000mL)溶液中缓慢滴加氯化亚砜(348g,2.93mol)。滴加完成后,将该反应混合物在0℃下搅拌10分钟,然后升温至70℃并在此温度下搅拌3小时。待反应完成后,将反应混合物冷却至室温,减压浓缩。将所得残留物溶解于乙酸乙酯(1000mL)后,用饱和碳酸氢钠水溶液和饱和食盐水洗涤,无水硫酸钠干燥后过滤除去固体。将滤液减压浓缩后得到粗品化合物C-1(107g),直接用于下一步。LC-MS(ESI),m/z:[M+H] +=172.0
步骤2:1-(4-甲氧苄基)-3-硝基-1H-吡唑-5-羧酸甲酯(C-2)
氮气氛围下,向化合物C-1(30g,0.18mol)的N,N-二甲基甲酰胺(300mL)的溶液中加入对甲氧基苄溴(52g,0.26mol)和无水碳酸钾(48g,0.35mol)。将反应混合物在50℃搅拌15小时。待反应完成后, 将反应混合物冷却到室温,过滤除去固体并将滤液减压浓缩,所得残留物经过打浆(石油醚:乙酸乙酯=10:1)收集固体。将固体烘干后得到化合物C-2(36g,71%)。LC-MS(ESI),m/z:[M+H] +=309.0
步骤3:1-(4-甲氧基苄基)-3-硝基-1H-吡唑-5-甲醇(C-3)
氮气氛围下,向0℃的化合物C-2(130g,0.421mol)的四氢呋喃(1.3L)溶液中分批加入硼氢化钠(39g,1.8mol)。加入完成后,让反应混合物自然恢复到室温,并在室温下搅拌15小时。待反应完成后,向反应混合物中缓慢加入冰水混合物(1L)并搅拌30分钟。将水相用乙酸乙酯(700mL×3)萃取,合并有机相并用饱和食盐水洗涤,有机相用无水硫酸钠干燥后过滤除去固体。将所得滤液减压浓缩得到粗品化合物C-3(120g),直接用于下一步反应。LC-MS(ESI),m/z:[M+H] +=285.9
步骤4:1-(4-甲氧基苄基)-3-硝基-1H-吡唑-5-甲醛(C-4)
氮气氛围下,将草酰氯(32mL,0.38mol)的二氯甲烷(500mL)溶液冷却至-78℃,并向反应中缓慢加入二甲基亚砜(34mL,0.48mol),并将反应混合物在-78℃搅拌1小时。向反应中滴加化合物C-3(50g,0.19mol)的二氯甲烷溶液(200mL),在滴加完成后将反应混合物在-78℃搅拌2小时。向反应中缓慢滴加三乙胺(131g,1.30mol),滴加完成后,将反应体系的温度自然恢复至-20℃,并在此温度下将反应混合物搅拌1小时。待反应完成后,向反应混合物中加水(300mL)淬灭,并用二氯甲烷萃取(200mL×3)。有机相合并后使用饱和食盐水洗涤,无水硫酸钠干燥后过滤除去固体。将滤液减压浓缩,所得残留物经过硅胶柱层析色谱(石油醚:乙酸乙酯=2:1)纯化,得到化合物C-4(40g,产率:81%)。 1H NMR(400MHz,DMSO-d 6)δ9.96(s,1H),7.85(s,1H),7.30–7.22(m,3H),6.96–6.88(m,3H),5.73(s,2H),3.73(s,3H).
步骤5:1-(1-(4-甲氧苄基)-3-硝基-1H-吡唑-5-基)丁-3-炔-1-醇(C-5)
氮气氛围下,将含有锌粉(18g,0.28mol)的四氢呋喃(240mL)悬浮液冷却至0℃,并向上述悬浮液中缓慢滴加炔丙基溴(16g,0.14mol)。滴加完成后,将反应混合物在0℃搅拌1小时。随后,向反应体系中加入化合物C-4(24g,0.92mol)的四氢呋喃(100mL)溶液。滴加完成后,将反应体系的温度缓慢恢复到室温,并将反应混合物在室温搅拌16小时。待反应完成后,向反应混合物中加水(300mL)猝灭,过滤除去固体,并将滤饼用乙酸乙酯洗涤。所得滤液用乙酸乙酯(300mL×3)萃取后将有机相合并,使用饱和食盐水洗涤,无水硫酸钠干燥后过滤除去固体。将滤液减压浓缩,所的残留物用硅胶柱层析色谱(石油醚:乙酸乙酯=2:1)纯化,得到化合物C-5(20g,产率:74%)。LC-MS(ESI),m/z:[M+Na] +=324.1
步骤6:5-(1-((4-甲氧基苯基)甲基)-3-硝基吡唑-5-基)四氢呋喃-3-酮(C-6)
氮气氛围下,向化合物C-5(50g,0.17mol)的1,2-二氯乙烷溶液(500mL)中缓慢加入二溴吡啶氮氧化物(57g,0.33mol)的1,2-二氯乙烷溶液(500mL)、甲磺酸(19g,0.20mol)的1,2-二氯乙烷溶液(0.2mol/L,1000mL)以及三苯基膦金(I)双三氟甲烷磺酰亚胺(3.68g,4.98mmol)的1,2-二氯乙烷(36mL)溶 液。将该反应混合物在室温下搅拌16小时。待反应完成后,向反应混合物中加入水(1000mL)稀释,并用二氯甲烷(200mL×2)萃取。有机相合并后用饱和食盐水洗涤,无水硫酸钠干燥,过滤除去固体。将滤液减压浓缩,所得残留物用硅胶柱层析色谱(石油醚:乙酸乙酯=2:1)纯化,得到化合物C-6(29.0g,产率:55%)。LC-MS(ESI),m/z:[M+Na] +=340.1
步骤7:顺式-5-(1-((4-甲氧基苯基)甲基)-3-硝基吡唑-5-基)四氢呋喃-3-醇(C-7)
氮气氛围下,将化合物C-6(16.7g,52.7mmol)的四氢呋喃(170mL)溶液冷却至-70℃,并向反应中缓慢加入三乙基硼氢化锂(1.0mol/L,130mL,130mmol),并将反应混合物在-60℃搅拌2小时。待反应完成后,向反应混合物中加入饱和氯化铵水溶液(300mL)淬灭,并用乙酸乙酯(200mL×3)萃取。有机相合并后用饱和食盐水洗涤,无水硫酸钠干燥,过滤除去固体。将滤液减压浓缩,所的残留物用硅胶柱层析色谱(石油醚:乙酸乙酯=2:1)纯化,得到化合物C-7(12.4g,产率:78%)。LC-MS(ESI),m/z:[M+Na] +=342.0
1H NMR(400M,DMSO-d 6)δ7.23(d,J=8.7Hz,2H),7.06(s,1H),6.92(d,J=8.7Hz,2H),5.43(s,2H),5.15–5.04(m,2H),4.44–4.39(m,1H),3.78–3.74(m,1H),3.73(s,3H),3.48–3.42(m,1H),1.92–1.85(m,1H).
步骤8:顺式-5-(1-(4-甲氧基苄基)-3-氨基吡唑-5-基)四氢呋喃-3-醇(中间体C)
在氢气氛围下,向化合物C-7(50g,0.16mol)的四氢呋喃溶液(500mL)中加入钯/碳(10g),并将该反应混合物在室温下搅拌16小时。待反应完成后,将反应混合物过滤,并将滤液减压浓缩,得到粗品化合物中间体C(40g),直接用于下一步反应。LC-MS(ESI),m/z:[M+H] +=290.1
中间体D:顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯
Figure PCTCN2022127444-appb-000073
合成路线:
Figure PCTCN2022127444-appb-000074
步骤1:N-(1-叔丁基-5-(4-氧代四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5- 甲酰胺(D-1)
向化合物A-10(25.80g,68.25mmol)的二氯甲烷溶液(387mL)中加入吡啶氯铬酸盐(22.00g,102.4mmol),并将该反应混合物在室温下搅拌16小时。待反应结束后,向反应体系中加入水(400mL),并将混合物用二氯甲烷萃取(400mL×2)。将有机相合并后用饱和食盐水(400mL×2)洗涤,无水硫酸钠干燥,过滤除去固体。将滤液减压浓缩,所得残留物经过硅胶色谱(二氯甲烷:甲醇=50:1)纯化得到化合物D-1(15.0g,58%)。LC-MS(ESI),m/z:[M+H] +=376.1
步骤2:顺式-N-(1-叔丁基-5-((2R,4R)-4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺(D-2)
在-65℃下,向化合物D-1(11.00g,29.26mmol)的四氢呋喃溶液(440mL)中加入三乙基硼锂(58.5mL,1.0mol/L的四氢呋喃溶液,58.5mmol),并将该反应混合物在-65℃下搅拌2小时。待反应结束后,在0℃下向反应体系中加水(100mL)淬灭反应。然后,向反应体系中加入水(300mL)稀释,并将混合物用乙酸乙酯(400mL×2)萃取。将有机相合并后用饱和食盐水(400mL×2)洗涤,无水硫酸钠干燥,过滤除去固体。将滤液减压浓缩,所得残留物经过硅胶色谱(二氯甲烷:甲醇=100:1到1:1)纯化得到化合物D-2(10.0g,90%)。LC-MS(ESI),m/z:[M+H] +=378.2
步骤3:顺式-5-(1-(叔-丁基)-3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(中间体D)
将化合物D-2(10.00g,26.46mmol)和4-二甲氨基吡啶(323mg,2.64mmol)溶于二氯甲烷(200mL)中,并在室温下向以上溶液中加入吡啶(6.28g,79.4mmol)和4-硝基苯基氧基甲酰氯(7.98mg,39.7mmol),并将反应混合物于室温下搅拌16小时。待反应完成后,将混合物用乙酸乙酯萃取,饱和食盐水洗涤后,真空浓缩并干燥,所得粗产物通过硅胶色谱法(石油醚:乙酸乙酯=100:1到3:7)纯化得到中间体D(11.20g,78%)。LC-MS(ESI),m/z:[M+H] +=543.20
实施例的制备:
实施例1:顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基叔-丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000075
合成路线:
Figure PCTCN2022127444-appb-000076
室温下向5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(600mg,1.23mmol)的四氢呋喃溶液(20mL)中逐滴加入叔丁基胺(902mg,12.3mmol),混合物于室温下搅拌1小时。待反应结束后,反应混合物经乙酸乙酯萃取,合并有机相。用饱和食盐水洗涤后,真空浓缩并干燥,所得残余物通过制备HPLC(柱子:Gemini 5u C18 150×21.2mm;流动相:乙腈(30-40%)/水(0.1%甲酸);流速:20mL/min)得到顺式产物实施例1(HPLC前峰,t R=4.43min,150mg,LC-MS(ESI),m/z:[M+H] +=421.20)和反式产物实施例1’(HPLC后峰,t R=4.581min,140mg,产率:33%,LC-MS(ESI),m/z:[M+H] +=421.20)。
实施例1A和实施例1B:
(3R,5R)-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基叔-丁基氨基甲酸酯(实施例1A)和(3S,5S)-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基叔-丁基氨基甲酸酯(实施例1B)
Figure PCTCN2022127444-appb-000077
顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基叔-丁基氨基甲酸酯(实施例1)经手性制备HPLC(柱子:CHIRALPAK AD-H 250mm 20mm,5μm,流动相:35%IPA(NH 4OH 0.2%),流速:40mL/min)拆分得到实施例1A(62.1mg,产率:11%)和实施例1B(66.4mg,产率:12%)。
实施例1A:
t R=2.35min.
LC-MS(ESI),m/z:[M+H] +=421.2.
1H NMR(400MHz,DMSO-d 6)δ12.49(s,1H),10.81(s,1H),7.13(s,1H),6.95(s,1H),6.58(s,1H),5.15(br,1H),4.85(br,1H),4.34(s,2H),4.06(s,3H),3.86(br,2H),3.27(s,3H),2.75–2.64(m,1H),1.93(br,1H),1.22(s,9H).
实施例1B:
t R=4.64min.
LC-MS(ESI),m/z:[M+H] +=421.2.
1H NMR(400MHz,DMSO-d 6)δ12.49(s,1H),10.81(s,1H),7.13(s,1H),6.95(s,1H),6.58(s,1H),5.15(br,1H),4.85(br,1H),4.34(s,2H),4.05(s,3H),3.85(br,2H),3.27(s,3H),2.75–2.64(m,1H),1.93(br,1H),1.22(s,9H).
实施例3~11参考实施例1、1A和1B的合成方法制备得到,具体表征数据如下:
Figure PCTCN2022127444-appb-000078
Figure PCTCN2022127444-appb-000079
Figure PCTCN2022127444-appb-000080
Figure PCTCN2022127444-appb-000081
Figure PCTCN2022127444-appb-000082
Figure PCTCN2022127444-appb-000083
Figure PCTCN2022127444-appb-000084
Figure PCTCN2022127444-appb-000085
上表中实施例3~7和9~10通过手性制备(CHIRALPAK IC 250mm×20mm,5μm,40%MeOH(0.2%NH 4OH),流速:40g/min)分离得到对应的单一构型化合物;实施例11通过手性制备(CHIRALPAK OJ-H 250mm×20mm,5μm,40%MeOH(0.2%NH 4OH),流速:40g/min)分离得到对应的单一构型化合物。
实施例12:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000086
合成路线:
Figure PCTCN2022127444-appb-000087
步骤1:顺式-N-(1-(叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-1-甲基-1H-吡唑-5-甲酰胺(12-2)
氮气保护下,向化合物12-1(0.135g,1.07mmol)的N,N-二甲基甲酰胺(5mL)溶液中,加入HATU(0.446g,1.17mmol),并将反应混合物在25℃下搅拌0.5小时。然后向体系中加入N,N-二异丙基乙基胺(0.252g,1.95mmol)和中间体B(0.22g,0.98mmol)。将反应体系升温至50℃并搅拌2小时。反应完全后,加水(20mL)稀释,混合物用乙酸乙酯(15mL×3)萃取。合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到化合物12-2(0.24g,产率:73%)。LC-MS(ESI),m/z:[M+H] +=333.9
步骤2:顺式-5-(1-(叔丁基)-3-(1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(12-3)
氮气保护下,向化合物12-2(0.24g,0.72mmol)的二氯甲烷(3mL)和四氢呋喃(3mL)混合溶液中,加入氯甲酸-4-硝基苯酯(0.218g,1.08mmol)、吡啶(0.171g,2.16mmol)和4-二甲氨基吡啶(9.0mg,0.070mmol),并将反应混合物于室温下搅拌16小时。待反应完成后,向反应体系加水(20mL)稀释,并将混合物用乙酸乙酯(15mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤除掉固体然后减压浓缩。所得残留物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到化合物12-3(0.20g,产率:55%)。LC-MS(ESI),m/z:[M+H] +=499.2
步骤3:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(12-4)
将化合物12-3(0.20g,0.40mmol)溶于甲酸(4mL)溶液中,并将反应混合物升温至85℃,然后搅拌2小时。反应结束后将反应液减压浓缩,所得残余物为粗品化合物12-4(0.15g),直接用于下一步反应。LC-MS(ESI),m/z:[M+H] +=442.8
步骤4:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例12)
室温下,向化合物12-4(0.15g,0.34mmol)的四氢呋喃(3mL)溶液中加入叔丁胺(0.248g,3.39mmol),并将反应混合物于室温下搅拌16小时。待反应结束后,将反应液直接减压浓缩,所得残余物通过制备HPLC分离纯化(柱子:Gemini-C18 150×21.2mm,5μm;流动相:乙腈/水(0.1%三氟乙酸);梯度:30%-40%),得到实施例12。LC-MS(ESI),m/z:[M+H] +=376.9
实施例12A和实施例12B:
(3S,5S)-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例12A)和(3R,5R)-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例12B)
Figure PCTCN2022127444-appb-000088
实施例12经手性制备HPLC(柱子:CHIRALPAK WHELK-01 250mm×20mm,5μm;流动相:40%异丙醇(0.2%氨水);流速:50mL/min)拆分得到实施例12A(11.5mg,产率:16%)和实施例12B(14.2mg,产率:20%)。
实施例12A:
t R=3.08min
LC-MS(ESI),m/z:[M+H] +=376.9
1H NMR(400MHz,CD 3OD)δ7.54(d,J=2.1Hz,1H),6.98(d,J=2.1Hz,1H),6.55(s,1H),5.25–5.19(m,1H),5.08–5.01(m,1H),4.19(s,3H),4.08–4.04(m,1H),3.98–3.94(m,1H),2.79–2.70(m,1H),2.20–2.12(m,1H),1.30(s,9H).
实施例12B:
t R=3.31min
LC-MS(ESI),m/z:[M+H] +=376.9
1H NMR(400MHz,CD 3OD)δ7.48(d,J=2.1Hz,1H),6.92(d,J=2.1Hz,1H),6.51(s,1H),5.21–5.14(m,1H),5.02–4.95(m,1H),4.13(s,3H),4.01(d,J=10.2Hz,1H),3.91(dd,J=10.3,4.5Hz,1H),2.75–2.63(m,1H),2.16–2.06(m,1H),1.25(s,9H).
实施例14-15参考实施例1、1A和1B的合成方法制备得到,具体表征数据如下:
Figure PCTCN2022127444-appb-000089
Figure PCTCN2022127444-appb-000090
上表中实施例14通过手性制备(CHIRALPAK WHELK-01 250mm×20mm,5μm m,流动相:40%异丙醇(0.2%氨水);流速:50mL/min)分离得到对应的单一构型化合物;实施例15通过手性制备(CHIRALPAK AD-H 250mm 20mm,5μm,流动相:35%异丙醇(0.2%氨水),流速:40g/min)分离得到对应的单一构型化合物。
实施例18:顺式-N-(5-(4-((4-异丙基吡啶-2-基)四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺
合成路线:
Figure PCTCN2022127444-appb-000091
步骤1:2-氟-4-(丙-1-烯-2-基)吡啶(18-2)
在室温下,向化合物18-1(3.35g,19.0mmol)和4,4,5,5-四甲基-2-(丙-1-烯-2-基)-1,3-二氧杂硼烷(9.58g,56.9mmol)的1,4-二氧六环/水(24mL)溶液中加入碳酸钾(7.88g,56.9mmol)和1,1'-双二苯基膦二茂铁二氯化钯(0.70g,0.95mmol)。氩气氛围下,将该反应混合物在70℃搅拌16小时。待反应完成后,将反应混合物冷却至室温,加入水(150mL)稀释,并用乙酸乙酯(150mL×2)萃取。将有机相合并后用饱和食盐水(200mL×2)洗涤,无水硫酸钠干燥,并过滤除去固体。将滤液减压浓缩,所得残留物经过硅胶色谱(乙酸乙酯:石油醚=1:9)纯化得到化合物18-2(1.1g,产率:42%)。LC-MS(ESI),m/z:[M+H] +=138.1
步骤2:2-((5-(1-(叔丁基)-5-硝基-1H-吡唑-3-基)四氢呋喃-3-基)氧基)-4-(丙-1-烯-2-基)吡啶(18-3)
在0℃下,向化合物18-2(250mg,1.82mmol)和5-(1-叔丁基-5-硝基吡唑-3-基)四氢呋喃-3-醇(A-8,512mg,2.00mmol)的N,N-二甲基甲酰胺(10mL)溶液中加入氢化钠(60%,1.83g,4.56mmol)。将该反应混合物在80℃搅拌16小时。待反应完成后,在0℃下用水猝灭反应。将淬灭后的混合物加水(100mL)稀释,并用乙酸乙酯(100mL×2)萃取。将有机相合并后用水(100mL×2)洗涤,无水硫酸钠干燥,并过滤除去固体。将滤液减压浓缩,得到化合物18-3(284mg,产率:42%)。LC-MS(ESI),m/z:[M+H] +=373.2
步骤3:1-(叔丁基)-3-(-4-((异丙基吡啶-2-基)氧基)四氢呋喃-2-基)-1H-吡咯-5-胺(化合物18-4)
在氢气氛围下,向化合物18-3(300mg,0.804mmol)的四氢呋喃/水(5mL)溶液中加入钯/碳(300mg,2.82mmol)和氢氧化钯/碳(300mg,2.09mmol)。将该反应混合物在100℃搅拌16小时。待反应完成后,将反应混合物过滤,并用二氯甲烷/甲醇混合溶液(二氯甲烷:甲醇=10:1)洗涤滤饼。将滤液减压浓缩,所得残留物经过硅胶柱层析色谱(乙酸乙酯:石油醚=1:9)纯化得到化合物18-4(220mg,产率:79%)。LC-MS(ESI),m/z:[M+H] +=345.3
步骤4:顺式-N-(1-(叔丁基)-5-(4-((4-异丙基吡啶-2-基)氧基)四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺(18-5)
向5-(甲氧基甲基)-2-甲基吡唑-3-羧酸(50mg,0.29mmol)的N,N-二甲基甲酰胺(5mL)溶液中加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(145mg,0.382mmol),将反应混合物在室温下搅拌30分钟。向反应体系中加入N,N-二异丙基乙胺(76mg,0.59mmol)和化合物18-4(111mg,0.322mmol),并将反应混合物在室温下搅拌2小时。待反应完成后,将反应混合物冷却至室温,加入水(100mL)稀释,并用乙酸乙酯(100mL×2)萃取。将有机相合并后用饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥,并过滤除去固体。将滤液减压浓缩,所得残留物经过硅胶柱层析色谱(乙酸乙酯:石油醚=3:2)纯化得到化合物18-5(90mg,产率:62%)。LC-MS(ESI),m/z:[M+H] +=497.2
步骤5:顺式-N-(5-(4-((4-异丙基吡啶-2-基)四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺(实施例18)
将化合物18-5(80mg,0.16mmol)加入甲酸(3mL)中,将该反应混合物在40℃搅拌16小时。待反应完成后,将反应混合物冷却至室温,加入水(100mL)稀释,并用乙酸乙酯(100mL×2)萃取。将有机相合并后用饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥,并过滤除去固体。将滤液减压浓缩,所得残留物经制备HPLC纯化(柱子:Gemini-C18 150×21.2mm,5μm;流动相:乙腈/水(0.1%甲酸);梯度:0-35%),得到化合物实施例18。LC-MS(ESI),m/z:[M+H] +=441.2
实施例18A和实施例18B:
N-(5-((2R,4R)-4-((4-异丙基吡啶-2-基)氧基)四氢呋喃-2-基)-1H-吡唑-3-基)-3-(甲氧基甲基)-1-甲基-1H-吡唑-5-氨基甲酸酯和N-(5-((2S,4S)-4-((4-异丙基吡啶-2-基)氧基)四氢呋喃-2-基)-1H-吡唑-3-基)-3- (甲氧基甲基)-1-甲基-1H-吡唑-5-氨基甲酸酯
Figure PCTCN2022127444-appb-000092
将实施例18经手性制备HPLC(柱子:CHIRALPAK OJ-H 250mm×20mm,5μm;流动相:40%乙醇/0.2%氨水;流速:50mL/min)进一步拆分得到实施例18A(27mg,产率:36%)和实施例18B(25mg,产率:34%)。
实施例18A:
t R=2.22min
LC-MS(ESI),m/z:[M+H] +=441.2
1H NMR(400MHz,DMSO-d 6)δ12.55(s,1H),10.80(s,1H),8.05(d,J=5.3Hz,1H),7.13(s,1H),6.90(dd,J=5.3,1.2Hz,1H),6.69(s,1H),6.63(s,1H),5.56(s,1H),4.98(t,J=6.8Hz,1H),4.34(s,2H),4.06(s,3H),4.03–3.96(m,2H),3.27(s,3H),2.89–2.75(m,2H),2.15–2.05(m,1H),1.17(d,J=6.9Hz,6H).
实施例18B:
t R=2.90min
LC-MS(ESI),m/z:[M+H] +=441.2
1H NMR(400MHz,DMSO-d 6)δ12.55(s,1H),10.80(s,1H),8.05(d,J=5.3Hz,1H),7.13(s,1H),6.90(dd,J=5.3,1.2Hz,1H),6.69(s,1H),6.63(s,1H),5.56(s,1H),4.98(t,J=6.8Hz,1H),4.34(s,2H),4.06(s,3H),4.03–3.96(m,2H),3.27(s,3H),2.88–2.74(m,2H),2.15–2.06(m,1H),1.17(d,J=6.9Hz,6H).
实施例20:顺式-5-(3-(1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯
Figure PCTCN2022127444-appb-000093
合成路线:
Figure PCTCN2022127444-appb-000094
Figure PCTCN2022127444-appb-000095
步骤1:2,2-二氟-2-((5-(甲氧基羰基)-1-甲基-1H-吡唑-3-基)氧基)乙酸(20-3)
室温下,向化合物20-1(1.0g,6.4mmol)的1,4-二氧六环(20mL)溶液中,加入氢化钠(0.384g,9.61mmol)。反应混合物在25℃下搅拌30分钟后,加入2-溴-2,2-二氟乙酸钠(1.89g,9.61mmol),将混合物升温至80℃搅拌16小时。待反应完全后,加入1,4-二氧六环(50mL)稀释。将混合物抽滤,滤液减压浓缩。得到的固体中加入盐酸二氧六环溶液(4.0mol/L),室温搅拌2分钟,然后减压浓缩除去溶剂,所得残余物用水(50mL)稀释,并用乙酸乙酯(50mL×2)萃取,将合并的有机层用无水硫酸钠干燥并浓缩。残余物通过制备HPLC分离得到产物化合物20-3(1.10g,产率:68%)。LC-MS(ESI),m/z:[M+H] +=251.1
步骤2:1-甲基-3-(三氟甲氧基)-1H-吡唑-5-羧酸甲酯(20-4)
室温和氮气保护条件下,向化合物20-3(0.50g,2.0mol)的氘代氯仿(10mL)溶液中加入二氟化氙(1.0g,6.0mol)。反应体系在超声下室温反应2分钟,然后在25℃搅拌下20分钟。反应结束后,向反应体系中加水(50mL)稀释,并将混合物用氯仿(50mL×2)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=5:1)分离纯化得到化合物20-4(0.30g,产率:67%)。LC-MS(ESI),m/z:[M+H] +=225.0
步骤3:1-甲基-3-(三氟甲氧基)-1H-吡唑-5-羧酸(20-5)
于25℃下,向化合物20-4(0.30g,1.34mmol)的甲醇(5mL)和水(5mL)混合溶液中,加入氢氧化钠(0.16g,4.0mmol)。将反应混合物于25℃搅拌2小时。待反应完成后,向体系中加入稀盐酸(1.0mol/L)调整pH=5,并将混合物用乙酸乙酯(20mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并浓缩,得粗产物化合物20-5(0.25g)。LC-MS(ESI),m/z:[M+H] +=211.1
步骤4:顺式-N-(1-(叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺(20-6)
氮气保护下,向化合物20-5(0.25g,1.2mmol)的N,N-二甲基甲酰胺(5mL)溶液中,加入HATU(0.547g,1.44mmol),反应混合物在25℃下搅拌0.5小时。然后,向反应体系中加入N,N-二异丙基乙基胺(0.464g,3.60mmol)和中间体B(0.268g,1.19mmol)。升温至50℃并搅拌2小时。反应结束后,向反应体系中加水(20mL)稀释,并将混合物用乙酸乙酯(15mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得化合物20-6(0.35g,产率:71%)。LC-MS(ESI),m/z:[M+H] +=418.2
步骤5:顺式-5-(1-(叔丁基)-3-(1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基))碳酸盐(20-7)
氮气保护下,向化合物20-6(0.30g,0.72mmol)的二氯甲烷(5mL)和四氢呋喃(5mL)混合溶液中,加入4-硝基苯氯甲酸酯(0.29g,1.44mmol),吡啶(0.17g,2.16mmol)和4-二甲氨基吡啶(9.0mg,0.07mmol),并将反应混合物在25℃下搅拌16小时。待反应结束后,向反应体系中加水(20mL)稀释,并将混合物用乙酸乙酯(15mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到化合物20-7(0.30g,产率:68%)。LC-MS(ESI),m/z:[M+H] +=583.2
步骤6:顺式-5-(3-(1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(20-8)
将化合物20-7(0.28g,0.48mmol)溶于甲酸(10mL)中,升温至90℃,搅拌2小时。待反应结束后,将反应液减压浓缩,得粗产物20-8(0.30g),直接用于下一步反应。LC-MS(ESI),m/z:[M+H] +=527.1
步骤7:顺式-5-(3-(1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例20)
室温下,向化合物20-8(0.10g,0.20mmol)的四氢呋喃(3mL)溶液中,加入叔丁胺(0.16mg,2.0mmol)。将反应混合物继续搅拌16小时。反应完成后将反应液减压浓缩,所得残余物通过制备HPLC分离纯化(柱子:Gemini-C18,150×21.2mm,5μm;流动相:乙腈/水(0.1%甲酸);梯度:30%-34%),得到实施例20。LC-MS(ESI),m/z:[M+H] +=460.9
实施例20A和实施例20B:
(3R,5R)-5-(3-(1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3,S5S)-5-(3-(1-甲基-3-(三氟甲氧基)-1H-吡唑-5-甲酰胺)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000096
实施例20通过手性分离(色谱柱型号:CHIRALPAK AD-H 250mm×20mm,5μm;流动相:40%异丙醇(0.2%氨水);流速:40mL/min)进一步纯化得到实施例20A(28.1mg,产率:31%)和实施例20B(25.8mg,产率:28%)。
实施例20A:
t R=1.57min
LC-MS(ESI),m/z:[M+H] +=460.9
1H NMR(400MHz,CD 3OD)δ6.80(s,1H),6.55(s,1H),5.20–5.14(m,1H),5.01–4.95(m,1H),4.11(s,3H),4.06–4.01(m,1H),3.97–3.91(m,1H),2.76–2.67(m,1H),2.16–2.10(m,1H),1.28(s,9H).
实施例20B:
t R=2.62min
LC-MS(ESI),m/z:[M+H] +=460.8
1H NMR(400MHz,CD 3OD)δ6.77(s,1H),6.53(s,1H),5.20–5.14(m,1H),5.01–4.95(m,1H),4.08(s,3H),4.01(d,J=10.3Hz,1H),3.91(dd,J=10.4,4.3Hz,1H),2.75–2.63(m,1H),2.14–2.06(m,1H),1.26(s,9H).
实施例21:顺式-5-(3-(6-甲氧基甲基-4-甲基烟酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000097
合成路线:
Figure PCTCN2022127444-appb-000098
步骤1:5-溴-4-甲基吡啶-2-甲醇(21-2)
氮气保护下,将硼烷-四氢呋喃络合物(0.074L,0.074mol)中滴入化合21-1(4.0g,0.019mol)的四氢呋喃溶液(30mL)中。室温下搅拌12小时后,向反应混合物中加入饱和氯化铵水溶液(100mL)淬灭,用二氯甲烷萃取(30mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱法(石油醚:乙酸乙酯=5:1)纯化,得到化合物21-2(2.0g,产率:52%)。LC-MS(ESI),m/z:[M+H] +=202.1,204.1
步骤2:5-溴-2-甲氧基甲基-4-甲基吡啶(21-3)
氮气保护和0℃下,将氢化钠(0.48g,0.012mol)分批加入到化合物21-2(2.00g,9.90mmol)的四氢呋喃溶液(30mL)中,将反应混合物在0℃搅拌0.5小时后,将碘甲烷(2.81g,0.012mol)加入到反应液中,随后移除冷浴,将反应混合物在室温下搅拌2小时。反应完毕后,向反应体系中加入饱和氯化铵 水溶液(100mL)淬灭反应,用二氯甲烷萃取(30mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱(石油醚:乙酸乙酯=5:1)纯化,得到化合物21-3(0.50g,产率:23%)。LC-MS(ESI),m/z:[M+H] +=216.1,218.1.
步骤3:6-甲氧基甲基-4-甲基烟酸叔丁酯(21-4)
氮气保护下,将化合物21-3(0.30g,1.39mmol)的四氢呋喃溶液(10mL)降温至-78℃,滴加丁基锂(1.20mL,2.78mmol)。反应液在-78℃下搅拌0.5小时,然后滴加碳酸酐二叔丁酯(0.606g,2.78mmol)的四氢呋喃溶液(5mL),滴加完毕后继续在-78℃下反应2小时。待反应完成后,向反应体系中加入饱和氯化铵水溶液(15mL),用二氯甲烷萃取(10mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶柱层析纯化(石油醚:乙酸乙酯=5:1),得到化合物21-4(0.130g,产率:39%)。LC-MS(ESI),m/z:[M+H] +=238.1
步骤4:6-甲氧基甲基-4-甲基烟酸(21-5)
室温下,将化合物21-4(0.13g,0.55mmol)溶于二氯甲烷(2.0mL)中,降温至0℃,滴加盐酸/二氧六环溶液(4mol/L,5.0ml)。将反应液保持在0℃下搅拌3小时。待反应完毕后,向反应体系中加入饱和碳酸氢钠水溶液(10mL),并将反应混合物用二氯甲烷萃取(10mL×3),合并有机相,饱和食盐水洗涤,水相加盐酸(2mol/L)调至pH=5,再用二氯甲烷萃取(10mL×3)。合并的有机相用无水硫酸钠干燥,过滤后减压浓缩,得到化合物21-5(95.0mg,产率:95%)。LC-MS(ESI),m/z:[M+H] +=182.0
步骤5:顺式-N-(1-叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-6-甲氧基甲基-4-甲基烟酰胺(21-6)
氮气保护下,向化合物21-5(0.301g,1.33mmol)的N,N二甲基甲酰胺溶液(8mL)中加入二环己基碳二亚胺(0.18g,0.87mmol)和4-二甲氨基吡啶(81mg,0.67mmol)。常温下搅拌0.5小时,随后加入中间体B(0.15g,0.67mmol),加料完成后继续搅拌2小时。待反应完毕后,向反应体系中加入水(30mL)淬灭反应,并用二氯甲烷萃取(10mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱纯化(石油醚:乙酸乙酯=1:9),得到化合物21-6(0.14g,产率:54%)。LC-MS(ESI),m/z:[M+H] +=389.0
步骤6:顺式-5-(1-叔丁基)-3-(6-甲氧基甲基)-4-甲基烟酰胺基-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(21-7)
氮气保护下,将化合物21-6(0.15g,0.77mmol)、吡啶(0.122g,1.54mmol)、氯甲酸对硝基苯酯(0.19mg,0.93mmol)和4-二甲氨基吡啶(9.44mg,0.0774mmol)溶于二氯甲烷(10mL)中,将反应混合物在室温搅拌5小时。待反应完毕后,向反应体系中加入水(10mL)淬灭反应。反应混合物用二氯甲烷萃取(10mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱(石油醚:乙酸乙酯=5:1)分离纯化,得到化合物21-7(0.115g,产率:27%)。LC-MS(ESI),m/z: [M+H] +=553.8
步骤7:顺式-5-(3-(6-甲氧基甲基)-4-甲基烟酰胺基-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(21-8)
室温下,将化合物21-7(0.11g,0.20mmol)溶于甲酸(3mL)中,升温至90℃,搅拌2小时。反应完毕后将反应液减压浓缩,得到粗产物化合物21-8(80mg)。LC-MS(ESI),m/z:[M+H] +=497.8
步骤8:顺式-5-(3-(6-甲氧基甲基-4-甲基烟酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例21)
氮气保护下,向化合物21-8(80mg,0.16mmol)的四氢呋喃(5mL)溶液中加入N,N-二异丙基乙胺(21mg,0.16mmol)和叔丁胺(59mg,0.80mmol)。反应液在室温下继续搅拌5小时。反应结束后,加入水(10mL)淬灭反应,并用二氯甲烷萃取(5mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过制备HPLC(柱子:Gemini-C18 150×21.2mm,5μm;流动相:乙腈/水(0.1%甲酸);梯度:30-95%)分离纯化得到实施例21(41.0mg)。LC-MS(ESI),m/z:[M+H] +=432.0
实施例21A和实施例21B:
(3R,5R)-5-(3-(6-甲氧基甲基-4-甲基烟酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-5-(3-(6-甲氧基甲基-4-甲基烟酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000099
实施例21通过手性制备SFC(仪器:SFC Thar prep 80;柱子:CHIRALPAK AD-H 250mm×20mm,5μm;流动相:40%乙醇(0.2%氨水);流速:40g/min)分离纯化得到实施例21A(20.0mg,产率:29%)和实施例21B(19.5mg,产率:28%)。
实施例21A:
t R=5.04min
LC-MS(ESI),m/z:[M+H] +=431.9
1H NMR(400MHz,DMSO-d 6)δ12.43(s,1H),10.91(s,1H),8.52(s,1H),7.34(s,1H),6.96(s,1H),6.62(brs,1H),5.18–5.10(m,1H),4.90–4.79(m,1H),4.50(s,2H),91–3.83(m,2H),3.36(s,3H),2.74–2.67(m,1H),2.41(s,3H),2.01–1.94(m,1H),1.22(s,9H).
实施例21B:
t R=7.14min
LC-MS(ESI),m/z:[M+H] +=432.0
1H NMR(400MHz,DMSO-d 6)δ12.43(s,1H),10.91(s,1H),8.52(s,1H),7.35(s,1H),6.94(s,1H),6.62(s,1H),5.20–5.09(m,1H),4.91–4.81(s,1H),4.50(s,2H),3.90–3.76(m,2H),3.38(s,3H),2.76–2.65(m,1H),2.41(s,3H),2.01–1.93(m,1H),1.22(s,9H).
实施例22:顺式-5-(3-(2-(2-甲氧基吡啶-4-基)乙酰氨基)-1H-吡唑-5-基)四氢呋喃-3-叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000100
合成路线:
Figure PCTCN2022127444-appb-000101
步骤1:顺式-N-(1-叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-2-(2-甲氧基吡啶-4-基)乙酰胺(22-2)
氮气保护下,向化合物22-1(0.10g,0.60mmol)的二氯甲烷(8mL)中加入三乙胺(61mg,0.60mmol)、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(0.14g,0.60mmol)和4-二甲氨基吡啶(73mg,0.60mmol)。反应液在室温下搅拌0.5小时后,将中间体B(0.14g,0.60mmol)加入到反应液中,室温下继续反应2小时。待反应完毕后,向反应体系中加入水(15mL)淬灭反应,并将反应混合物用二氯甲烷萃取(5mL×3),饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱纯化(石油醚:乙酸乙酯=1:9)得到化合物22-2(0.12g,产率:53%)。LC-MS(ESI),m/z:[M+H] +=375.1
步骤2:顺式-5-(1-叔丁基)-3-(2-(2-甲氧基吡啶-4-基)乙酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(22-3)
氮气保护下,将化合物22-2(0.27g,0.72mmol),吡啶(0.114g,1.44mmol),氯甲酸对硝基苯酯(0.17g,0.86mmol)和4-二甲氨基吡啶(10mg,0.070mmol)溶于二氯甲烷(10mL)中,室温搅拌5小时。待反应完毕后,向反应体系加入水(10mL)淬灭反应,反应混合物用二氯甲烷萃取(10mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱纯化(石油醚:乙酸乙酯=5:1)分离纯化,得到产物化合物22-3(0.180g,产率:46%)。LC-MS(ESI),m/z:[M+H] +=539.8
步骤3:顺式-5-(3-(2-(2-甲氧基吡啶-4-基)乙酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳 酸酯(22-4)
室温下,将化合物22-3(0.16g,0.30mmol)溶于甲酸(3mL)中,升温至90℃然后搅拌2小时。反应完毕后减压浓缩反应液,得到粗产物化合物22-4(0.120g),直接用于下一步反应。LC-MS(ESI),m/z:[M+H] +=484.1
步骤4:顺式-5-(3-(2-(2-甲氧基吡啶-4-基)乙酰氨基)-1H-吡唑-5-基)四氢呋喃-3-叔丁基氨基甲酸酯(实施例22)
室温下,向化合物22-4(90mg,0.19mmol)的四氢呋喃(5mL)溶液中加入N,N-二异丙基乙胺(48mg,0.37mmol)和叔丁胺(68mg,0.93mmol)。将反应混合物在室温下搅拌5小时。待反应结束后,向反应体系中加入水(10mL)淬灭反应,并将混合物用二氯甲烷萃取(5mL×3),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过制备HPLC(色谱柱:Gemini-C18 150×21.2mm,5μm;流动相:乙腈-水(0.1%甲酸);梯度:10-95%)分离纯化得到实施例22(16.0mg,产率:20%)。LC-MS(ESI),m/z:[M+H] +=418.2.
实施例22A和实施例22B:
(3R,5R)-5-(3-(2-(2-甲氧基吡啶-4-基)乙酰氨基)-1H-吡唑-5-基)四氢呋喃-3-叔丁基氨基甲酸酯和(3S,5S)-5-(3-(2-(2-甲氧基吡啶-4-基)乙酰氨基)-1H-吡唑-5-基)四氢呋喃-3-叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000102
实施例22通过手性制备SFC(仪器:SFC Thar prep 80;柱子:CHIRALPAK AD-H 250mm×20mm,5μm;流动相:40%乙醇(0.2%氨水);流速:40g/min)分离纯化得到实施例22A(6.3mg,产率:8%)和实施例22B(8.9mg,产率:11%)。
实施例22A:
t R=3.17min
LC-MS(ESI),m/z:[M+H] +=418.2
1H NMR(400MHz,CD 3OD)δ7.95(d,J=5.3Hz,1H),6.85(dd,J=5.3,1.3Hz,1H),6.70(s,1H),6.34(brs,1H),5.07(s,1H),4.94–4.83(m,1H),3.94–3.89(m,1H),3.83(d,J=4.5Hz,1H),3.79(s,3H),3.58(s,2H),2.62–2.52(m,1H),2.04–1.96(m,1H),1.14(s,9H).
实施例22B:
t R=5.82min
LC-MS(ESI),m/z:[M+H] +=418.2
1H NMR(400MHz,CD 3OD)δ8.03(d,J=5.3Hz,1H),6.92(dd,J=5.3,0.9Hz,1H),6.77(s,1H),6.43(brs,1H),5.14(s,1H),5.00–4.91(m,1H),3.98(d,J=10.3Hz,1H),3.90(d,J=3.6Hz,1H),3.87(s,3H),3.65(s,2H),2.70–2.59(m,1H),2.07(d,J=9.0Hz,1H),1.22(s,9H).
实施例23:顺式-5-(3-(3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸
Figure PCTCN2022127444-appb-000103
合成路线:
Figure PCTCN2022127444-appb-000104
步骤1:3-(羟甲基)-1-甲基-1H-吡唑-5-甲酸乙酯(23-2)
氮气保护下,将化合物23-1(5.0g,0.029mol)、碘甲烷(8.35g,5.90mmol)和碳酸钾(8.13g,5.90mmol)溶于乙腈(50mL)中。将反应体系升温至80℃并搅拌10小时。待反应完成后,将反应混合物降至室温,过滤,滤饼用乙腈(20mL)淋洗。将滤液减压浓缩,所得残留物通过硅胶柱层色谱(石油醚:乙酸乙酯=2:1)纯化得到化合物23-2(1.30g,产率:20%)。LC-MS(ESI),m/z:[M+H] +=185.1
步骤2:3-溴甲基-1-甲基吡唑-5-甲酸乙酯(23-3)
氮气保护下,将化合物23-2(0.750g,4.07mmol)溶于乙腈(25mL)中,随后加入三溴化磷(1.65g,6.01mmol),并将反应体系升温至80℃搅拌2小时。待反应结束后,将反应混合物冷却至室温,加水(100mL)淬灭反应。继续搅拌5分钟后,向反应体系中加入乙酸乙酯(100mL)。将反应混合物分液,水相用乙酸乙酯萃取(50mL×2)。合并的有机相饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。 所得残留物通过硅胶色谱纯化(石油醚:乙酸乙酯=2:1)得到化合物23-3(0.83g,产率:78%)。LC-MS(ESI),m/z:[M+H] +=247.1,249.1
步骤3:3-环丙氧基甲基-1-甲基吡唑-5-羧酸乙酯(23-4)
室温下,将环丙醇(0.390g,6.71mol)溶于四氢呋喃(30mL)中。将反应体系降温至0℃后分批加入氢化钠(269mg,60%,6.71mol),加完后继续搅拌0.5小时。向反应中加入化合物23-3(0.830g,3.35mol),在室温下搅拌10小时。反应结束后加水(100mL)淬灭反应。搅拌5分钟后,反应混合物用乙酸乙酯萃取(50mL×3)。合并的有机相饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱纯化(石油醚:乙酸乙酯=1:1)纯化得到产物化合物23-5(0.468g,产率:55%)。LC-MS(ESI),m/z:[M+H] +=225.0
步骤4:3-环丙氧基甲基-1-甲基吡唑-5-羧酸(23-5)
室温下,将化合物23-4(0.20g,0.89mmol)和一水合氢氧化锂(74.8mg,1.78mmol)溶于四氢呋喃和水(10:1,20mL)中。将反应混合物在室温下搅拌过夜。反应结束后,向反应体系中加入水(50ml),随后用稀盐酸(1mol/L)调整体系的pH至3-4,反应混合物用乙酸乙酯萃取(50mL×3),合并的有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(二氯甲烷:甲醇=20:1)纯化得到化合物23-5(0.130g,产率:67%)。LC-MS(ESI),m/z:[M+H] +=197.1
步骤5:顺式-N-(1-(叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺(23-6)
氮气保护下,向化合物23-5(0.218g,1.11mmol)的N,N-二甲基甲酰胺(5mL)溶液中加入HATU(0.586g,1.33mmol),将反应混合物搅拌0.5小时。然后向体系中加入N,N-二异丙基乙基胺(0.287g,2.22mmol)和中间体B(0.250g,1.11mmol)。将反应体系升温至50℃并搅拌2小时。反应结束后,向反应体系中加水(30mL)稀释,然后用乙酸乙酯(20mL×3)萃取。合并的有机相饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(石油醚:乙酸乙酯=1:1)得到化合物23-6(0.250g,产率:56%)。LC-MS(ESI),m/z:[M+H] +=404.1
步骤6:顺式-5-(1-(叔丁基)-3-(3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(23-7)
氮气保护下,向化合物23-6(0.25g,0.62mmol)的二氯甲烷(5mL)和四氢呋喃(5mL)溶液中,加入4-硝基苯氯甲酸酯(0.19g,0.93mmol)、吡啶(0.147g,1.86mmol)和4-二甲氨基吡啶(8.0mg,0.066mmol)。反应混合物于25℃下搅拌16小时。反应完成后加水(20mL)稀释,混合物用乙酸乙酯(15mL×3)萃取。合并的有机相饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(石油醚:乙酸乙酯=1:1)得到产物23-7(0.280g,产率:79%)。LC-MS(ESI),m/z:[M+H] +=569.2.
步骤7:顺式-5-(3-(3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4- 硝基苯基)碳酸酯(23-8)
将化合物23-7(0.28g,0.49mmol)溶于四氢呋喃(3mL)和甲酸(3mL)中,并将反应混合物在70℃搅拌72小时。反应结束后将反应混合物减压浓缩,所得残留物通过硅胶色谱法(二氯甲烷:甲醇=20:1)纯化得到化合物23-8(0.100g,产率:40%)。LC-MS(ESI),m/z:[M+H] +=523.1
步骤8:顺式-5-(3-(3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例23)
室温下,向化合物23-8(0.10g,0.20mmol)的四氢呋喃溶液(3mL)中,加入叔丁胺(0.143g,1.96mmol),并将反应混合物继续搅拌16小时。反应完全后将反应体系浓缩,所得残余物通过制备HPLC纯化(柱子:Gemini-C18,150×21.2mm,5μm;流动相:乙腈/水(0.1%三氟乙酸);梯度:30%-32%),得到实施例23(30.0mg,产率:34%)。LC-MS(ESI),m/z:[M+H] +=446.9.
实施例23A和实施例23B:
(3S,5S)-5-(3-(3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3R,5R)-5-(3-(3-(环丙氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000105
实施例23通过手性制备SFC(柱子:CHIRALPAK IC,250mm×20mm,5μm;流动相:40%乙醇(0.2%氨水);流速:40mL/min)进一步纯化得到实施例23A(6.4mg,产率:7%)和实施例23B(7.1mg,产率:8%)。
实施例23A:
t R=2.18min
LC-MS(ESI),m/z:[M+H] +=446.9
1H NMR(400MHz,CD 3OD)δ6.96(s,1H),6.71–6.54(m,1H),5.27–5.17(m,1H),5.08–5.00(m,1H),4.56(s,2H),4.15(s,3H),4.08–4.04(m,1H),3.98–3.94(m,1H),3.46–3.42(m,1H),2.80–2.70(m,1H),2.20–2.10(m,1H),1.30(s,9H),0.64–0.58(m,2H),0.56–0.50(m,2H).
实施例23B:
t R=2.35min
LC-MS(ESI),m/z:[M+H] +=446.9
1H NMR(400MHz,CD 3OD)δ6.96(s,1H),6.63(s,1H),5.25–5.20(m,1H),5.10–5.00(m,1H),4.56(s,2H),4.15(s,3H),4.08–4.04(m,1H),3.98–3.94(m,1H),3.46–3.40(m,1H),2.79–2.69(m,1H),2.20–2.10(m,1H),1.30(s,9H),0.64–0.58(m,2H),0.56–0.50(m,2H).
实施例24:顺式-5-(3-(4-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000106
合成路线:
Figure PCTCN2022127444-appb-000107
步骤1:1-甲基-1H-吡唑-5-甲酸甲酯(24-2)
室温下,向化合物24-1(2.5g,0.020mol)的N,N二甲基甲酰胺(30mL)溶液中加入碳酸钾(5.5g,0.040mol)和碘甲烷(3.4g,0.020mol),然后在室温下反应6小时。反应完毕后加入水(80mL)淬灭反应。反应混合物用二氯甲烷(20mL×3)萃取。合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(石油醚:乙酸乙酯=5:1)得到化合物24-2(1.80g,产率:58%)。LC-MS(ESI),m/z:[M+H] +=141.1
步骤2:4-氟-1-甲基吡唑-5-羧酸甲酯(24-3)
室温下,向化合物24-2(1.8g,0.013mol)的硝基甲烷(20mL)溶液中加入碳酸钠(0.551g,5.20mmol)和1-氯甲基-4-氟-1,4-氮
Figure PCTCN2022127444-appb-000108
双环[2.2.2]辛烷双(四氟硼酸盐)(5.1g,0.014mol)。反应体系升温至80℃并搅拌12小时。反应完毕后,加入水(30mL)淬灭反应。反应混合物用二氯甲烷萃取(20mL×3)。合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(石油醚:乙酸乙酯=5:1)得到化合物24-3(0.30g,产率:15%)。LC-MS(ESI),m/z:[M+H] +=159.1
步骤3:4-氟-1-甲基-1H-吡唑-5-羧酸(24-4)
室温下,将化合物24-3(0.460g,2.91mmol)和一水合氢氧化锂(0.244g,5.82mmol)溶于四氢呋喃和水的混合液(10:1,15mL)中。反应液室温搅拌过夜。反应完全后,加入水50mL,随后用稀盐酸(1mol/L)调整pH至3-4,混合物用乙酸乙酯萃取(50mL×2)。合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱纯化(二氯甲烷:甲醇=20:1)得到化合物24-4(0.230g,产率:49%)。LC-MS(ESI),m/z:[M+H] +=145.1
步骤4:顺式-N-(1-叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-4-氟-1-甲基-1H-吡唑-5-甲酰胺(24-5)
氮气保护下,向化合物24-4(96mg,0.66mmol)的N,N-二甲基甲酰胺(8mL)溶液中加入HATU(0.38g,0.99mmol)和N,N-二异丙基乙基胺(0.172g,1.33mmol)。将反应混合物搅拌0.5小时后向体系中加入中间体B(0.15g,0.66mmol)。将反应体系继续搅拌2小时。反应结束后,向反应体系中加水(30mL)稀释,反应混合物用二氯甲烷萃取(20mL×3)。合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残留物通过硅胶色谱纯化(二氯甲烷:甲醇=20:1)得到产物化合物24-5(54mg,产率:23%)。LC-MS(ESI),m/z:[M+H] +=517.2
步骤5:顺式-5-(1-叔丁基)-3-(4-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(24-6)
氮气保护下,将化合物24-5(40mg,0.11mmol)、吡啶(27mg,0.34mmol)、氯甲酸对硝基苯酯(28mg,0.13mmol)和4-二甲氨基吡啶(2.0mg,0.016mmol)溶于二氯甲烷(5mL)中,室温下搅拌5小时。反应完毕后,加入水(10mL)淬灭反应,反应混合物用二氯甲烷萃取(10mL×3)。合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(二氯甲烷:甲醇=20:1)得到产物化合物24-6(46mg,产率:78%)。LC-MS(ESI),m/z:[M+H] +=517.2
步骤6:顺式-5-(4-氟-1-甲基吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(24-7)
室温下,将化合物24-6(46mg,0.089mmol)溶于甲酸(3mL)中,室温搅拌2小时。反应混合物减压浓缩得到粗产物24-7(50mg),直接用于下一步反应。LC-MS(ESI),m/z:[M+H] +=461.1.
步骤7:顺式-5-(3-(4-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例24)
室温下,向化合物24-7(50mg,0.11mmol)的四氢呋喃溶液(5mL)中加入叔丁胺(40mg,0.54mmol)和N,N-二异丙基乙胺(28mg,0.21mmol),搅拌5小时。反应完全后,向反应体系中加入水(10mL)淬灭反应,反应混合物用二氯甲烷萃取(5mL×3)。合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得粗产品通过硅胶色谱纯化(二氯甲烷:甲醇=20:1)得到实施例24(7.0mg)。LC-MS(ESI),m/z:[M+H] +=395.1.
实施例24A和实施例24B:
(3R,5R)-5-(3-(4-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-5-(3-(4-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000109
实施例24通过手性SFC(柱子:CHIRALPAK AD-H,250mm×20mm,5μm;流动相:40%乙醇(0.2%氨水);流速:40g/min)进一步纯化得到实施例24A(3.3mg,产率:9%)和实施例24B(3.3mg,产率:9%)。
实施例24A:
t R=2.76min
LC-MS(ESI),m/z:[M+H] +=395.1
1H NMR(400MHz,CD 3OD)δ7.50–7.43(m,1H),6.58–6.49(m,1H),5.21(s,1H),5.06–4.96(m,1H),4.08(s,3H),4.05(s,1H),3.98–3.92(m,1H),2.75–2.65(m,1H),2.20-2.10(m,1H),1.30(s,9H).
实施例24B:
t R=6.23min
LC-MS(ESI),m/z:[M+H] +=395.1
1H NMR(400MHz,CD 3OD)δ7.50–7.43(m,1H),6.58–6.49(m,1H),5.21(s,1H),5.06–4.96(m,1H),4.08(s,3H),4.05(s,1H),3.98–3.92(m,1H),2.75–2.65(m,1H),2.20-2.10(m,1H),1.30(s,9H).
实施例25:顺式-5-(3-(3-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000110
合成路线:
Figure PCTCN2022127444-appb-000111
Figure PCTCN2022127444-appb-000112
步骤1:3-氟-1-甲基-1H-吡唑-5-甲酸乙酯(25-2)
室温下,向化合物25-1(1.00g,6.30mmol)的N,N-二甲基甲酰胺(15mL)溶液中加入碳酸钾(1.74g,12.6mmol)和碘甲烷(1.34g,9.50mmol),将反应混合物搅拌2小时。反应结束后加水(150mL)稀释,并将混合物用乙酸乙酯萃取(100mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=10:1)纯化得到化合物25-2(0.65g,产率:60%)。
1H NMR(400MHz,CDCl 3)δ6.29(d,J=6.0Hz,1H),4.32(q,J=7.2Hz,2H),4.04(s,3H),1.35(t,J=7.2Hz,3H).
步骤2:3-氟-1-甲基-1H-吡唑-5-羧酸(25-3)
室温下,向化合物25-2(0.65g,38mmol)的四氢呋喃(5mL)和水(5mL)混合溶液中,加入一水合氢氧化锂(0.48g,11mmol),并将反应混合物搅拌1小时。反应结束后向体系中加入稀盐酸(1mol/L)调整pH至5,然后混合物用乙酸乙酯萃取(20mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物为粗产物化合物25-3(0.48g)。
1H NMR(400MHz,DMSO-d 6)δ13.7(brs,1H),6.50(d,J=6.0Hz,1H),3.98(s,3H).
步骤3:顺式-N-(1-(叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-3-氟-1-甲基-1H-吡唑-5-甲酰胺(25-4)
室温下,向化合物25-3(0.12g,0.83mmol)的N,N-二甲基甲酰胺(3mL)溶液中加入HATU(0.380g,1.00mmol),并将反应混合物搅拌0.5小时。然后向体系中加入N,N-二异丙基乙基胺(0.323g,2.50mmol)和中间体B(0.19g,0.83mmol)。加料完毕后将反应体系升温至50℃并搅拌2小时。反应结束后,向反应中加水(20mL)稀释,并将混合物用乙酸乙酯萃取(15mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到产物化合物25-4(0.15g,产率:51%)。LC-MS(ESI),m/z:[M+H] +=352.2
步骤4:顺式-5-(1-(叔丁基)-3-(3-氟-1-甲基-1H-吡唑-5-甲酰胺)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(25-5)
室温下,向化合物25-4(0.15g,0.43mmol)的二氯甲烷(3mL)和四氢呋喃(3mL)混合溶液中,加入 4-硝基苯氯甲酸酯(0.17g,0.85mmol)、吡啶(0.101g,1.28mmol)和4-二甲氨基吡啶(5.0mg,0.041mmol),并将反应混合物继续搅拌16小时。反应结束后,向反应体系中加水(20mL)稀释,并将混合物用乙酸乙酯萃取(15mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到化合物25-5(0.120g,产率:54%)。LC-MS(ESI),m/z:[M+H] +=516.8
步骤5:顺式-5-(3-(3-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(25-6)
室温下,将化合物25-5(0.12g,0.23mmol)溶于甲酸(4mL)中,随后将反应体系升温至90℃,并继续搅拌1小时。反应结束后,将反应混合物冷却至室温,然后减压浓缩,所得残余物为粗产物化合物25-6(0.100g),直接用于下一步。LC-MS(ESI),m/z:[M+H] +=460.7
步骤6:顺式-5-(3-(3-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例25)
室温下,向化合物25-6(0.10g,0.22mmol)的四氢呋喃溶液(3mL)中,加入叔丁胺(0.158g,2.17mmol),并将反应混合物搅拌16小时。反应结束后,将反应混合物减压浓缩,所得残余物通过制备HPLC纯化(柱子:Gemini-C18,150×21.2mm,5μm;流动相:乙腈/水(0.1%甲酸);梯度:30%-34%),得到实施例25(50.0mg)。LC-MS(ESI),m/z:[M+H] +=394.9
实施例25A和实施例25B:
(3R,5R)-5-(3-(3-氟)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-5-(3-(3-氟-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000113
实施例25通过手性SFC分离(柱子:CHIRALPAK AD-H,250mm×20mm,5μm;流动相:40%乙醇(0.2%氨水);流速:40mL/min)进一步纯化得到实施例25A(19.4mg,产率:23%)和实施例25B(19.3mg,产率:23%)。
实施例25A:
t R=2.88min
LC-MS(ESI),m/z:[M+H] +=394.9
1H NMR(400MHz,CD 3OD)δ6.62(brs,1H),6.53(d,J=5.8Hz,1H),5.25–5.20(m,1H),5.10–5.00 (m,1H),4.06(s,3H),4.05–4.03(m,1H),3.98–3.93(m,1H),2.80–2.70(m,1H),2.20–2.10(m,1H),1.30(s,9H).
实施例25B:
t R=7.10min
LC-MS(ESI),m/z:[M+H] +=394.9
1H NMR(400MHz,CD 3OD)δ6.62(brs,1H),6.53(d,J=5.8Hz,1H),5.25–5.20(m,1H),5.10–5.00(m,1H),4.06(s,3H),4.05–4.03(s,1H),3.98–3.93(m,1H),2.80–2.70(m,1H),2.20–2.10(m,1H),1.30(s,9H).
实施例26:顺式-5-(3-(1-环丙基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000114
合成路线:
Figure PCTCN2022127444-appb-000115
步骤1:1-环丙基-1H-吡唑-5-甲酸乙酯(26-2)
氮气保护下,向化合物26-1(1.00g,7.10mmol)的1,2-二氯乙烷(15mL)溶液中加入环丙基硼酸(1.22g,14.2mmol)、2,2-联吡啶(1.29g,7.10mmol)、醋酸铜(1.29g,7.10mmol)和碳酸钠(1.51g,14.20mmol)。随后将反应混合物升温至70℃并搅拌16小时。反应结束后,向反应体系加水(100mL)稀释,反应液过滤,滤液用乙酸乙酯(100mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=10:1)分离纯化得到化合物26-2(0.28g,产 率:22%)。LC-MS(ESI),m/z:[M+H] +=181.0
步骤2:1-环丙基-1H-吡唑-5-羧酸(26-3)
室温下,向化合物26-2(0.20g,1.1mmol)的四氢呋喃(5mL)和水(5mL)混合溶液中,加入一水合氢氧化锂(0.14g,3.3mmol),将反应混合物搅拌1小时。反应结束后,向体系中加入稀盐酸(1mol/L)调整pH至5,然后将混合物用乙酸乙酯萃取(10mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残留物为粗产物化合物26-3(0.13g)。LC-MS(ESI),m/z:[M+H] +=153.1
步骤3:顺式-N-(1-(叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-1-环丙基-1H-吡唑-5-甲酰胺(26-4)
室温下,向化合物26-3(0.12g,0.79mmol)的N,N-二甲基甲酰胺(3mL)溶液中加入HATU(0.36g,0.95mmol),并将反应混合物继续搅拌0.5小时。然后向体系中加入N,N-二异丙基乙基胺(0.306g,2.37mmol)和中间体B(0.18g,0.79mmol)。加料完毕后将反应体系升温至50℃并搅拌2小时。反应结束后加水(20mL)稀释,并将混合物用乙酸乙酯萃取(15mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=10:1)分离纯化得到产物化合物26-4(0.15g,产率:53%)。LC-MS(ESI),m/z:[M+H] +=360.2
步骤4:顺式-5-(1-(叔丁基)-3-(1-环丙基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(26-5)
室温下,向化合物26-4(0.15g,0.42mmol)的二氯甲烷(3mL)和四氢呋喃(3mL)混合溶液中加入4-硝基苯氯甲酸酯(0.17g,0.83mmol)、吡啶(0.099g,1.2mmol)和4-二甲氨基吡啶(5.0mg,0.041mmol),将反应混合物继续搅拌16小时。反应结束后,向反应体系中加水(20mL)稀释,并将混合物用乙酸乙酯萃取(15mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到产物化合物26-5(0.160g,产率:73%)。LC-MS(ESI),m/z:[M+H] +=525.1
步骤5:顺式-5-(3-(1-环丙基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(26-6)
室温下,将化合物26-5(0.16g,0.31mmol)溶于甲酸(4mL)中,随后将反应体系升温至85℃,继续搅拌1小时。反应结束后将反应体系冷却至室温,然后将反应混合物减压浓缩,所得残余物为粗产物化合物26-6(0.120g),直接用于下一步。LC-MS(ESI),m/z:[M+H] +=469.1
步骤6:顺式-5-(3-(1-环丙基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例26)
室温下,向化合物26-6(0.10g,0.21mmol)的四氢呋喃溶液(3mL)中加入叔丁胺(0.156g,2.14mmol),搅拌16小时。反应结束后将,反应混合物减压浓缩,所得残余物通过制备液相色谱法分离纯化(色谱 柱型号:Gemini-C18,150x 21.2mm,5μm,流动相:乙腈/水(0.1%甲酸),梯度:29%-31%),得到实施例26(50.0mg)。LC-MS(ESI),m/z:[M+H] +=402.9.
实施例26A和实施例26B:
(3R,5R)-5-(3-(1-环丙基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-5-(3-(1-环丙基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000116
实施例26通过SFC手性分离(色谱柱型号:CHIRALPAK AD-H,250mm×20mm,5μm;流动相:40%异丙醇(0.2%氨水);流速:40g/min)进一步纯化得到实施例26A(21.8mg,产率:25%)和实施例26B(20.4mg,产率:24%)。
实施例26A:
t R=2.51min
LC-MS(ESI),m/z:[M+H] +=402.9
1H NMR(400MHz,CD 3OD)δ7.42(d,J=2.1Hz,1H),6.83(d,J=1.7Hz,1H),6.61(brs,1H),5.25–5.12(m,1H),5.05–4.95(m,1H),4.31–4.19(m,1H),4.04–3.99(m,1H),3.94–3.89(m,1H),2.75–2.65(m,1H),2.17–2.05(m,1H),1.25(s,9H),1.15–1.10(m,2H),1.04–0.98(m,2H).
实施例26B:
t R=5.34min
LC-MS(ESI),m/z:[M+H] +=402.9
1H NMR(400MHz,CD 3OD)δ7.42(d,J=2.1Hz,1H),6.83(d,J=1.7Hz,1H),6.61(brs,1H),5.25–5.20(m,1H),5.05–4.95(m,1H),4.31–4.19(m,1H),4.04–3.99(m,1H),3.94–3.89(m,1H),2.75–2.65(m,1H),2.15–2.05(m,1H),1.25(s,9H),1.15–1.10(m,2H),1.04–0.98(m,2H).
实施例27:顺式-5-(3-(1-(环丙基甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000117
合成路线:
Figure PCTCN2022127444-appb-000118
步骤1:1-环丙基甲基吡唑-5-羧酸甲酯(27-2)
室温下,向化合物27-1(2.0g,0.016mol)的N,N二甲基甲酰胺溶液(20mL)溶液中加入碳酸铯(10g,0.032mol)和溴甲基环丙烷(2.58g,0.019mol),将反应混合物室温下搅拌6小时。反应完毕后,向反应体系中加入水(80mL)淬灭反应,反应混合物用二氯甲烷萃取(20mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=5:1)分离纯化得到产物化合物27-2(0.850g,产率:29%)。
1H NMR(400MHz,CDCl 3)δ7.49(d,J=2.0Hz,1H),6.84(d,J=2.0Hz,1H),4.44(d,J=7.2Hz,2H),3.88(s,3H),1.42–1.31(m,1H),0.53–0.48(m,2H),0.43–0.39(m,2H).
步骤2:1-环丙基甲基吡唑-5-羧酸(27-3)
室温下,向化合物27-2(0.85g,4.7mmol)的四氢呋喃(20mL)和水(14mL)混合溶液中,加入一水合氢氧化锂(0.594g,14.2mmol),将反应混合物在室温搅拌2小时。反应结束后,向体系中加入稀盐酸(1mol/L)调整pH至5,然后混合物用二氯甲烷萃取(20mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物为粗产物化合物27-3(0.58g)。LC-MS(ESI),m/z:[M+H] +=167.1
步骤3:顺式-N-(1-叔丁基)-5-(4-羟基四氢呋喃-2-基)-1H-吡唑-3-基)-1-环丙基甲基-1H-吡唑-5-甲酰胺(27-4)
室温下,向化合物27-3(0.50g,3.1mmol)的N,N-二甲基甲酰胺(10mL)溶液中加入N,N-二异丙基乙基胺(0.778g,6.02mmol)和HATU(1.70g,4.52mmol),将反应混合物搅拌0.5小时,然后向体系中加入中间体B(0.678g,3.09mmol)。加料完毕后反应继续搅拌2小时。反应结束后,向反应体系中加水(30mL)稀释,并将混合物用二氯甲烷萃取(10mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:9)分离纯化得到产物化合 物27-4(0.40g,产率:35%)。LC-MS(ESI),m/z:[M+H] +=374.2
步骤4:顺式-5-(1-叔丁基)-3-(1-环丙基甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(27-5)
室温下,向化合物27-4(0.40g,1.07mmol)的二氯甲烷(10mL)溶液中加入4-硝基苯氯甲酸酯(0.258g,1.29mmol)、吡啶(0.170g,2.14mmol)和4-二甲氨基吡啶(13.1mg,0.11mmol),反应混合物搅拌5小时。反应结束后加水(10mL)稀释,并将混合物用二氯甲烷萃取(10mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=5:1)分离纯化得到产物化合物27-5(0.33g,产率:61%)。LC-MS(ESI),m/z:[M+H] +=538.8
步骤5:顺式-5-(3-(1-环丙基甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(27-6)
室温下,将化合物27-5(0.24g,0.45mmol)溶于甲酸(3mL)中,升温至90℃,搅拌2小时。反应结束后,将反应体系冷却至室温,然后减压浓缩,所得残余物为粗产物化合物27-6(0.180g),直接用于下一步。LC-MS(ESI),m/z:[M+H] +=483.0
步骤6:顺式(5-(3-(1-(环丙基甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例27)
氮气保护下,向化合物27-6(0.15g,0.31mmol)的四氢呋喃(5mL)溶液中加入N,N-二异丙基乙胺(60mg,0.47mmol)和叔丁胺(0.40g,0.78mmol)。室温下搅拌5小时。反应结束后,向反应体系中加入水(10mL)淬灭反应。反应混合物用二氯甲烷萃取(5mL×3),合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后减压浓缩。所得残余物通过制备HPLC(柱子:Gemini-C18 150×21.2mm,5μm;流动相:乙腈/水(0.1%甲酸);梯度:10-95%)纯化得到实施例27(80.0mg)。LC-MS(ESI),m/z:[M+H] +=417.1.
实施例27A和实施例27B:
(3R,5R)-5-(3-(1-(环丙基甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-5-(3-(1-(环丙基甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000119
实施例27通过手性SFC(仪器:SFC Thar prep 80;柱子:CHIRALPAK AD-H 250mm×20mm, 5μm;流动相:40%乙醇(0.2%氨水);流速:40g/min)分离纯化得到实施例27A(37.7mg,产率:29%)和实施例27B(30.5mg,产率:24%)。
实施例27A:
t R=2.61min
LC-MS(ESI),m/z:[M+H] +=417.1
1H NMR(400MHz,DMSO-d 6)δ12.50(s,1H),10.81(s,1H),7.47(d,J=1.6Hz,1H),7.12(s,1H),6.89(s,1H),6.55(s,1H),5.16–5.06(m,1H),4.87–4.76(m,1H),4.35(d,J=7.1Hz,2H),3.86–3.73(m,2H),2.72–2.63(m,1H),1.97–1.88(m,1H),1.28–1.20(m,1H),1.18(s,9H),0.47–0.35(m,2H),0.33–0.26(m,2H).
实施例27B:
t R=4.75min
LC-MS(ESI),m/z:[M+H] +=417.2
1H NMR(400MHz,DMSO-d 6)δ12.50(s,1H),10.81(s,1H),7.47(d,J=1.6Hz,1H),7.12(s,1H),6.89(s,1H),6.55(s,1H),5.16–5.06(m,1H),4.87–4.76(m,1H),4.35(d,J=7.1Hz,2H),3.86–3.73(m,2H),2.72–2.63(m,1H),1.97–1.88(m,1H),1.28–1.20(m,1H),1.18(s,9H),0.47–0.35(m,2H),0.33–0.26(m,2H).
实施例28:顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基-7-氮杂二环[2.2.1]庚烷-7-甲酸酯
Figure PCTCN2022127444-appb-000120
合成路线:
Figure PCTCN2022127444-appb-000121
步骤1:顺-5-(1-叔丁基-3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-7-氮杂二环[2.2.1]庚烷-7-甲酸酯(28-1)
室温下,将中间体D(150mg,0.276mmol)、7-氮杂双环[2.2.1]庚烷盐酸盐(111mg,0.830mmol)和DIEA(214mg,1.66mmol)加入THF(2mL)中。将该混合物于40℃搅拌2小时之后冷却至室温。混合物经乙酸乙酯萃取,合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥后,过滤除去固体。将滤液真空浓缩并干燥,所得粗产物通过硅胶色谱法(二氯甲烷:甲醇=15:1)纯化得到化合物28-1(110mg,产率:80%)。LC-MS(ESI),m/z:[M+H] +=501.3
步骤2:顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基-7-氮杂二环[2.2.1]庚烷-7-甲酸酯(实施例28)
室温下,化合物28-1(110mg,0.220mmol)加入甲酸(2mL)中。将该混合物于75℃搅拌12小时之后冷却至室温。将反应混合物真空浓缩并干燥,所得残余物通过制备HPLC(柱子:Gemini 5u C18 150×21.2mm;流动相:乙腈-水(0.1%甲酸);梯度:40-60%;流速:20mL/min)得到实施例28(45mg,产率:46%)。LC-MS(ESI),m/z:[M+H] +=445.1.
实施例28A和实施例28B:
(3R,5R)-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基-7-氮杂二环[2.2.1]庚烷-7-甲酸酯和(3S,5S)-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基-7-氮杂二环[2.2.1]庚烷-7-甲酸酯
Figure PCTCN2022127444-appb-000122
实施例28经手性制备SFC(柱子:CHIRALPAK-OJ,流动相:二氧化碳/甲醇(三乙胺),流速:12.5mL/min)拆分得到实施例28A(19.7mg,产率:88%)和实施例28B(23.0mg,产率:98%)
实施例28A:
t R=2.09min.
LC-MS(ESI),m/z:[M+H] +=445.1
1H NMR(400MHz,DMSO-d 6)δ12.48(s,1H),10.80(s,1H),7.13(s,1H),6.61(s,1H),5.19(s,1H),5.04–5.00(m,1H),4.33(s,2H),4.08(s,2H),4.05(s,3H),3.94–3.86(m,2H),3.27(s,2H),2.69–2.57(m,1H),2.16–2.02(m,1H),1.60–1.57(m,4H),1.34(d,J=6.7Hz,4H).
实施例28B:
t R=2.73min.
LC-MS(ESI),m/z:[M+H] +=445.1
1H NMR(400MHz,DMSO-d 6)δ12.47(s,1H),10.81(s,1H),7.12(s,1H),6.60(s,1H),5.24–5.13(m,1H),5.01(s,1H),4.34(s,2H),4.08(s,2H),4.05(s,3H),3.94–3.86(m,2H),3.27(s,3H),2.61(dd,J=14.2,6.4Hz,1H),2.08(dd,J=13.6,3.4Hz,1H),1.60–1.58(m,4H),1.34(d,J=6.8Hz,4H).
实施例29:顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基二环[1.1.1]戊烷-1-基氨基甲酸酯
Figure PCTCN2022127444-appb-000123
合成路线:
Figure PCTCN2022127444-appb-000124
步骤1:顺-5-(1-叔丁基-3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基二环[1.1.1]戊烷-1-基氨基甲酸酯(29-1)
室温下,将中间体D(100mg,0.184mmol)和N,N-二异丙基乙胺(71mg,0.55mmol)加入THF(5mL)中。将该混合物于室温下搅拌0.5小时之后,加入双环[1.1.1]戊-1-胺盐酸盐(33mg,0.28mmol)。将该混合物于室温下搅拌5小时。反应混合物经乙酸乙酯萃取,合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥后,过滤除去固体。将滤液真空浓缩并干燥,所得粗产物通过制备薄层色谱法(二氯甲烷:甲醇=20:1)纯化得到化合物29-1(80mg,产率:89%).LC-MS(ESI),m/z:[M+H] +=487.2
步骤2:顺式-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基二环[1.1.1]戊烷-1-基氨基甲酸酯(实施例29)
室温下,将化合物29-1(60mg,0.087mmol)加入甲酸(5mL)中。将该混合物于75℃搅拌2小时之后冷却至室温。将反应混合物真空浓缩并干燥,所得残余物通过制备HPLC(柱子:Gemini 5u C18 150×21.2mm;流动相:乙腈-水(0.1%甲酸);梯度:40-60%;流速:20mL/min)得到实施例29(28mg,产率:44%).LC-MS(ESI),m/z:[M+H] +=431.2
实施例29A和实施例29B:
(3R,5R)-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基二环[1.1.1]戊烷-1-基氨基甲酸酯和(3S,5S)-5-(3-(3-(甲氧基甲基)-1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基二环[1.1.1]戊烷-1-基氨基甲酸酯
Figure PCTCN2022127444-appb-000125
实施例29经手性制备HPLC(柱子:CHIRALPAK AD-H 250mm×20mm,5μm;流动相:40%异丙醇(0.2%氨水);流速:40mL/min)拆分得到实施例29A(9.1mg,产率:65%)和实施例29B(9.9mg,产率:71%)。
实施例29A:
t R=1.61min
LC-MS(ESI),m/z:[M+H] +=431.2
1H NMR(400MHz,DMSO-d 6)δ12.51(s,1H),10.79(s,1H),7.93(s,1H),7.13(s,1H),6.57(s,1H),5.16(dd,J=6.8,3.4Hz,1H),4.87(s,1H),4.35(s,2H),4.06(s,3H),3.86(s,2H),3.28(s,3H),2.76–2.67(m,1H),2.36(s,1H),1.91(m,7H).
实施例29B:
t R=2.81min
LC-MS(ESI),m/z:[M+H] +=431.2
1H NMR(400MHz,DMSO-d 6)δ12.51(s,1H),10.79(s,1H),7.93(s,1H),7.13(s,1H),6.57(s,1H),5.16(dd,J=6.8,3.4Hz,1H),4.87(s,1H),4.35(s,2H),4.06(s,3H),3.86(s,2H),3.28(s,3H),2.76–2.67(m,1H),2.36(s,1H),1.91(m,7H).
实施例30:顺式-5-(3-(1-(S)-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(1-(S)-1-甲基-1-环丙基甲基)氨基甲酸酯
Figure PCTCN2022127444-appb-000126
合成路线:
Figure PCTCN2022127444-appb-000127
步骤1:顺式-N-(5-(4-羟基四氢呋喃-2-基)-1-(4-甲氧苄基)-1H-吡唑-3-基)-1-甲基-1H-吡唑-5-甲酰胺(30-2)
将2-甲基吡唑-3-羧酸(140mg,1.11mmol)和中间体C(321mg,1.11mmol)溶于二氯乙烷中,在室温下向搅拌中的反应混合物中加入三乙胺(337mg,3.33mmol)和1-丙基磷酸酐(706mg,2.22mmol)。将反应混合物在室温下搅拌5小时。反应结束后,用二氯甲烷萃取,合并的有机相用无水硫酸钠干燥。 过滤后,减压浓缩滤液。残余物通过硅胶色谱纯化(二氯甲烷:甲醇=92:8),得到化合物30-2(170mg,产率:38%)。LC-MS(ESI),m/z:[M+H] +=398.1
步骤2:顺式-5-(1-(4-甲氧苄基)-3-(1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(4-硝基苯基)碳酸酯(30-3)
室温下,向化合物30-2(160mg,0.403mmol)和4-二甲氨基吡啶(4.0mg,0.033mmol)在二氯甲烷(5mL)中的悬浊液中加入吡啶(96mg,1.2mmol)和对硝基苯基氯甲酸酯(162mg,0.806mmol)。将反应混合物在室温下搅拌16小时。反应结束后,将反应液直接旋干,残余物通过硅胶色谱纯化(石油醚:乙酸乙酯=0~3:7),得到化合物30-3(200mg,产率:88%)。LC-MS(ESI),m/z:[M+H] +=563.0
步骤三:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(30-4)
将化合物30-3(200mg,0.357mmol)溶于三氟乙酸(3mL)中,并将反应混合物在75℃下搅拌16小时。反应混合物冷却至室温后,减压浓缩得到化合物30-4(120mg,产率:76%)。LC-MS(ESI),m/z:[M+H] +=443.1
步骤四:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基(1-(S)-甲基环丁基)氨基甲酸酯(实施例30)
将(1S)-1-环丙基乙胺(58mg,0.68mmol)溶于四氢呋喃中,加入N,N-二异丙基乙胺(175mg,1.36mmol)。在室温下搅拌反应半小时后加入化合物30-4(60mg,0.14mmol),继续搅拌16小时。反应结束后,加入水,用乙酸乙酯萃取,饱和食盐水洗涤,无水硫酸钠干燥,过滤,有机相减压浓缩滤液,残余物经制备HPLC纯化得到实施例30(15mg,29%)。LC-MS(ESI),m/z:[M+H] +=389.1.
实施例30A和实施例30B:
(3R,5R)-5-(3-(1-(S)-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(1-(S)-1-甲基-1-环丙基甲基)氨基甲酸酯和(3S,5S)-5-(3-(1-(S)-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(1-(S)-1-甲基-1-环丙基甲基)氨基甲酸酯
Figure PCTCN2022127444-appb-000128
实施例30经手性制备SFC(柱子:CHIRALPAK-AD;流动相:二氧化碳/异丙醇(甲酸);流速:1.8mL/min)拆分得到实施例30A(5.0mg,产率:67%)和实施例30B(4.9mg,产率:65%)。
实施例30A:
t R=11.61min.
LC-MS(ESI),m/z:[M+H] +=389.1
1H NMR(400MHz,DMSO-d 6)δ12.53(s,1H),10.81(s,1H),7.50(s,1H),7.17(d,J=13.8Hz,2H),6.56(s,1H),5.16(s,1H),4.84(s,1H),4.09(s,3H),3.86(s,2H),3.03–2.94(m,1H),2.74–2.66(m,1H),1.97(s,1H),1.10(d,J=6.6Hz,3H),0.86–0.79(m,1H),0.41–0.29(m,2H),0.28–0.21(m,1H),0.14–0.06(m,1H).
实施例30B:
t R=14.13min.
LC-MS(ESI),m/z:[M+H] +=389.1
1H NMR(400MHz,DMSO-d 6)δ12.52(s,1H),10.81(s,1H),7.49(d,J=1.8Hz,1H),7.17(d,J=11.3Hz,2H),6.58(s,1H),5.16(s,1H),4.85(s,1H),4.09(s,3H),3.86(s,2H),3.03–2.94(m,1H),2.75–2.66(m,1H),2.01–1.91(m,1H),1.10(d,J=6.6Hz,3H),0.87–0.77(m,1H),0.41–0.28(m,2H),0.28–0.21(m,1H),0.14–0.06(m,1H).
实施例31:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(1-甲基环丁基)氨基甲酸酯
Figure PCTCN2022127444-appb-000129
合成路线:
Figure PCTCN2022127444-appb-000130
将1-甲基环丁烷-1-胺(115mg,1.36mmol)溶于四氢呋喃后加入N,N-二异丙基乙胺(263mg,2.03mmol)。在室温下搅拌反应半小时后加入化合物12-4(60mg,0.14mmol),并将反应混合物在室温下搅拌16小时。反应结束后,向反应体系和中加入水,用乙酸乙酯萃取,饱和食盐水洗涤,无水硫酸钠干燥,过滤,有机相减压浓缩滤液,残余物经得到化合物实施例31(10mg,19%)。LC-MS(ESI),m/z:[M+H] +=389.1.
实施例31A和实施例31B:
(3R,5R)-5-(3-(1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(1-甲基环丁基)氨基甲酸酯和(3S,5S)-5-(3-(1-甲基-1H-吡唑-5-甲酰氨基)-1H-吡唑-5-基)四氢呋喃-3-基-(1-甲基环丁基)氨基甲酸酯
Figure PCTCN2022127444-appb-000131
实施例31经手性制备SFC(柱子:CHIRALPAK-AD;流动相:二氧化碳/异丙醇(二乙胺);流速:0.8mL/min)拆分得到实施例31A(3.5mg,产率:70%)和实施例31B(3.5mg,产率:70%)。
实施例31A:
t R=3.44min.
LC-MS(ESI),m/z:[M+H] +=389.1
1H NMR(400MHz,DMSO-d 6)δ12.52(s,1H),10.81(s,1H),7.49(s,1H),7.34(s,1H),7.16(s,1H),6.59(s,1H),5.16(s,1H),4.86(s,1H),4.09(s,3H),3.85(s,2H),2.74–2.65(m,1H),2.27–2.18(m,2H),1.95(s,1H),1.85–1.77(m,2H),1.75–1.67(m,2H),1.32(s,3H).
实施例31B:
t R=14.65min.
LC-MS(ESI),m/z:[M+H] +=389.1
1H NMR(400MHz,DMSO-d 6)δ12.52(s,1H),10.81(s,1H),7.49(s,1H),7.34(s,1H),7.16(s,1H),6.59(s,1H),5.16(s,1H),4.85(s,1H),4.09(s,3H),3.86(s,2H),2.74–2.65(m,1H),2.28–2.17(m,2H),1.95(s,1H),1.85–1.76(m,2H),1.75–1.65(m,2H),1.32(s,3H).
实施例32:顺式(3-甲基-1H-吡唑-5-甲酰胺基-3,4-二氘)-1H-吡唑-5-基四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000132
合成路线:
Figure PCTCN2022127444-appb-000133
Figure PCTCN2022127444-appb-000134
步骤1:1-甲基-1H-吡唑-5-甲酸乙酯(32-2)
于室温下,将化合物1H-吡唑-5-甲酸乙酯(1.1g,7.9mmol)溶于N,N-二甲基甲酰胺(10mL)中。向反应中加入碳酸钾(2.1g,16mmol)和碘甲烷(1.4g,9.4mmol)并将反应混合物在室温下搅拌12小时。液质检测反应完毕后,向反应体系中加水(30mL)稀释,并将混合物用乙酸乙酯萃取(10mL×3),合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱纯化(石油醚:乙酸乙酯=5:1)得到化合物32-2(560mg,收率:46%)。LC-MS(ESI)m/z:[M+H] +=155.1
步骤2:3,4-二碘-1-甲基-1H-吡唑-5-羧酸乙酯(32-3)
于室温下,将化合物32-2(500mg,3.24mmol)溶于四氯化碳(8mL)中。向反应中加入碘(1.65g,6.48mmol)、碘酸(570mg,3.24mmol)、醋酸(19mg,0.32mmol)和硫酸(106mg,0.32mmol),并将反应混合物在80℃下搅拌2小时。反应完毕后,向反应体系加水(30mL)稀释,并将混合物用乙酸乙酯萃取(10mL×3),合并的有机相经饱和食盐水(10mL)洗涤,减压浓缩。所得残余物通过硅胶色谱法纯化(石油醚:乙酸乙酯=1:1)得到化合物32-3(1.3g,收率:98%)。LC-MS(ESI)m/z:[M+H] +=406.8
步骤3:1-甲基吡唑-3,4-二氘-5-羧酸(32-4)
于室温下,将化合物32-3(300mg,0.739mmol)溶于氘代氢氧化钠(99.5%氘代)的氘水溶液(40%浓度,5mL)中,加入锌粉(4.7mg,0.073mmol),并将混合物在80℃下搅拌1小时。待反应完成后,将反应混合物减压浓缩,得到粗品化合物32-4(80mg)。
1H NMR(400MHz,CDCl 3)δ4.21(s,3H).
步骤4:顺式-N-(5-羟基四氢呋喃-2-基)-1-(4-甲氧基苄基)-1H-吡唑-3-基)-1-甲基-1H-吡唑-3,4-二氘-5-甲酰胺(32-5)
氮气保护下,在室温下将化合物32-4(80mg,0.70mmol)的N,N-二甲基甲酰胺溶液(5mL)中加入N,N-二异丙基乙胺(181mg,1.40mmol)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(533mg,1.40mmol),反应液在室温下搅拌0.5小时后,将顺式-5-(3-氨基-1-(4-甲氧基苄基)-1H-吡唑-5-基)四氢呋喃-3-醇(中间体C,203mg,0.702mmol)加入。将该反应混合物在室温下搅拌2小时。液质检测反应完毕后,向反应体系和中加水(15mL)稀释,并将混合物用二氯甲烷萃取(10mL×3),合并的有机相经饱和食盐水(10mL)洗涤,减压浓缩。所得残余物通过硅胶色谱纯化(石油醚:乙酸乙酯=5:1)得到化合物32-5(120mg,收率:43%)。LC-MS(ESI)m/z:[M+H] +=400.0
步骤5:顺式-5-(1-(4-甲氧基苄基)-3-(1-甲基-1H-吡唑-5-甲酰胺基-3,4-二氘)-1H-吡唑-5-基)四氢呋喃-3-基-(4-硝基苯基)碳酸酯(32-6)
氮气保护下,在室温下将化合物32-5(120mg,0.30mmol)、吡啶(72mg,0.65mmol),氯甲酸对硝基苯酯(74mg,0.39mmol)和4-二甲氨基吡啶(4.0mg,0.033mmol)溶于二氯甲烷(10mL)中。将反应混合物在室温搅拌5小时。液质监控反应完毕后,加入水(10mL)稀释,并用二氯甲烷萃取(10mL×3),合并的有机相用饱和食盐水(10mL)洗涤,减压浓缩,所得残留物经过硅胶色谱纯化(石油醚:乙酸乙酯=2:1)纯化得到化合物32-6(150mg,收率:89%)。LC-MS(ESI)m/z:[M+H] +=565.0
步骤6:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基-3,4-二氘)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(32-7)
在室温下,将化合物32-6(150mg,0.266mmol)溶于三氟乙酸(3mL)中,90℃下搅拌2小时,反应完毕后将反应液减压浓缩得到粗品化合物32-7(100mg)。LC-MS(ESI)m/z:[M+H] +=445.0
步骤7:顺式-5-(3-(1-甲基-1H-吡唑-5-甲酰胺基-3,4-二氘)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例32)
在室温下,向化合物32-7(100mg,0.225mmol)的四氢呋喃溶液(5mL)中,加入N,N-二异丙基乙胺(60mg,0.47mmol)和叔丁胺(82.3mg,1.13mmol)。将反应混合物在室温下搅拌5小时。待反应完成后,将反应混合物加入水(10mL)稀释,并用二氯甲烷萃取(5mL×3),饱和食盐水(5mL)洗涤,减压浓缩。所得残余物通过制备HPLC(柱子:Gemini-C18 150×21.2mm,5μm;流动相:10–95%乙腈-水(0.1%甲酸);流速:20mL/min)纯化得到实施例32(30mg,产率:34%)。LC-MS(ESI)m/z:[M+H] +=379.1.
实施例32A和实施例32B:
(3R,5R)-(3-甲基-1H-吡唑-5-甲酰胺基-3,4-二氘)-1H-吡唑-5-基四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-(3-甲基-1H-吡唑-5-甲酰胺基-3,4-二氘)-1H-吡唑-5-基四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000135
实施例32(30mg,0.079mmol)经手性SFC(柱子:CHIRALPAK AD-H 250mm×20mm,5μm;流动相:40%乙醇(0.2%)氨水;流速:40g/min)拆分得到实施例32A(9.4mg,产率:31%)和实施例32B(10mg,产率:33%)。
实施例32A:
t R=2.7min
LC-MS(ESI),m/z:[M+H] +=379.1
1H NMR(400MHz,MeOD)δ6.52(s,1H),5.10(s,1H),4.93(s,1H),4.06(s,3H),3.94(d,J=10.2Hz,1H),3.87–3.81(m,1H),2.62(dt,J=14.5,7.6Hz,1H),2.08–1.98(m,1H),1.18(s,9H).
实施例32B:
t R=6.1min
LC-MS(ESI),m/z:[M+H] +=379.1
1H NMR(400MHz,MeOD)δ6.64(s,1H),5.22(s,1H),5.05(s,1H),4.18(s,3H),4.06(d,J=10.2Hz,1H),3.98–3.94(m,1H),2.74(dt,J=14.5,7.6Hz,1H),2.19–2.11(m,1H),1.30(s,9H).
实施例33:顺式-5-(3-(1-(三氘代甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000136
合成路线:
Figure PCTCN2022127444-appb-000137
步骤1:1-(三氘代甲基)-1H-吡唑-5-甲酸乙酯(33-2)
在氮气保护下,室温下,向1H-吡唑-5-甲酸乙酯(2.00g,14.3mmol)的N,N-二甲基甲酰胺(20mL)溶液中加入氘代碘甲烷(4.15g,28.6mmol)和碳酸钾(3.95g,28.6mmol)。将反应混合物在室温下搅拌2小时。待反应完成后,向反应混合物加水(100mL)稀释后过滤。滤液用乙酸乙酯(100mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱(石油醚:乙酸乙酯=5:1)分离纯化得到化合物33-2(1.00g,产率:45%)。LC-MS(ESI),m/z:[M+H] +=158.1
步骤2:1-(三氘代甲基)-1H-吡唑-5-羧酸(33-3)
在室温下,向四氢呋喃(5mL)和水(5mL)混合溶液中加入化合物33-2(500mg,3.18mmol),并将反应混合物是室温下搅拌1小时。待反应完成后,向体系中加入稀盐酸(1mol/L)调整pH=5,并将酸化后的混合物用乙酸乙酯(20mL×3)萃取。将合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩后得到化合物33-3(0.36g,产率:87%)。LC-MS(ESI)m/z:[M+H] +=130.1
步骤3:顺式-N-(5-(4-羟基四氢呋喃-2-基)-1-(4-甲氧基苄基)-1H-吡唑-3-基)-1-(三氘代甲基)-1H-吡唑-5-甲酰胺(33-4)
在氮气保护下,室温下,向化合物33-3(100mg,0.769mmol)的N,N-二甲基甲酰胺(3mL)溶液中加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(354mg,0.931mmol)。将该混合物在室温下搅拌0.5小时后,加入N,N-二异丙基乙基胺(301mg,2.32mmol)和中间体C(224mg,0.775mmol)。将反应混合物在室温继续搅拌2小时。待反应完成后,将反应混合物加水(20mL)稀释,并用乙酸乙酯(15mL×3)萃取。合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)纯化得到化合物33-4(220mg,产率:70%)。
LC-MS(ESI)m/z:[M+H] +=401.1
步骤4:顺式-5-(1-(4-甲氧基苄基)-3-(1-(三氘代甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(33-5)
在室温下,向化合物33-4(220mg,0.549mmol)的二氯甲烷(3mL)和四氢呋喃(3mL)混合溶液中加入4-硝基苯氯甲酸酯(167mg,0.829mmol)、吡啶(131mg,1.65mmol)和4-二甲氨基吡啶(7mg,0.06mmol)。反应混合物于室温下搅拌16小时后,将反应混合物加水(20mL)稀释,并用乙酸乙酯(15mL×3)萃取,合并的有机相经饱和食盐水洗涤,无水硫酸钠干燥,过滤并减压浓缩。所得残余物通过硅胶色谱法(石油醚:乙酸乙酯=1:1)分离纯化得到化合物33-5(150mg,产率:50%)。LC-MS(ESI),m/z:[M+H] +=566.1
步骤5:顺式-5-(3-(1-(三氘代甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基(4-硝基苯基)碳酸酯(33-6)
室温下,将化合物33-5(150mg,0.265mmol)溶于甲酸(3mL)中并将该反应混合物于85℃搅拌1小时。反应结束后,将反应混合物减压浓缩,浓缩所得残余物即为粗品化合物33-6(100mg)。该粗品直接用于下一步反应。LC-MS(ESI)m/z:[M+H] +=445.8
步骤6:顺式-5-(3-(1-(三氘代甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯(实施例33)
室温下,向化合物33-6(100mg,0.225mmol)的四氢呋喃溶液(3mL)中加入叔丁胺(164mg,2.25mmol),并将该反应混合物于室温搅拌16小时。反应结束后,将反应体系减压浓缩,浓缩所得残余物通过制备HPLC纯化(柱子:Gemini-C18 150×21.2mm,5μm;流动相:乙腈/水(0.1%三氟乙酸);梯 度:30%-34%;流速:20mL/min),得到实施例33(50mg,产率:58%)。LC-MS(ESI),m/z:[M+H] +=380.2.
实施例33A和实施例33B:
(3R,5R)-5-(3-(1-(三氘代甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯和(3S,5S)-5-(3-(1-(三氘代甲基)-1H-吡唑-5-甲酰胺基)-1H-吡唑-5-基)四氢呋喃-3-基叔丁基氨基甲酸酯
Figure PCTCN2022127444-appb-000138
将实施例33(50mg,0.13mmol)通过手性SFC色谱柱分离(柱子:CHIRALPAK AD-H 250mm×20mm,5μm;流动相:40%异丙醇(0.2%氨水);流速:40g/min)得到实施例33A(24.1mg,产率:48%)和实施例33B(22.8mg,产率:46%)。
实施例33A:
t R=2.38min
LC-MS(ESI)m/z:[M+H] +=380.1
1H NMR(400MHz,CD 3OD)δ7.53(d,J=2.1Hz,1H),6.97(d,J=2.1Hz,1H),6.60(d,J=16.6Hz,1H),5.22(s,1H),5.03(t,J=6.3Hz,1H),4.06(d,J=10.2Hz,1H),3.98–3.94(m,1H),2.77–2.70(m,1H),2.16(dd,J=6.1,5.0Hz,1H),1.30(s,9H).
实施例33B:
t R=5.39min
LC-MS(ESI)m/z:[M+H] +=380.1
1H NMR(400MHz,CD 3OD)δ7.53(d,J=2.1Hz,1H),6.96(d,J=2.1Hz,1H),6.58(d,J=16.6Hz,1H),5.22(s,1H),5.03(t,J=6.3Hz,1H),4.06(d,J=10.2Hz,1H),3.98–3.94(m,1H),2.77–2.70(m,1H),2.16(dd,J=6.1,5.0Hz,1H),1.30(s,9H).
生物评价
以下结合测试进一步描述解释本发明,但这些实施例并非意味着限制本发明的范围。
一、酶学活性实验
(一)CDK1/CDK2酶活测试
1.实验目的:
测试本发明化合物CDK2/CycE1及CDK1/cyclinB的体外酶学活性。
2.实验仪器和试剂:
名称 来源 Cat.No. Lot No.
CDK1/cyclinB Millipore 14-450M 25729U
CDK2/CycE1 Carna 04-165 12CBS-0569C
Peptide18 GL 114202 P080319-XY114202
EDTA Gibco 15575-038 846901
HEPES,pH7.5 Gibco 11344-041 1653630
Triton X-100 Sigma T9284 SLBS6421
Brij-35 solution Sigma B4184 018K61251
MgCl2 Sigma M2670-500g BCBM7703V
DTT Sigma D0632-10G SLBK4951V
EGTA Sigma E3889-25G 129K54001V
96 well plate Corning 3365 22008026
384well plate Corning 3573 7419022
3.实验方法:
所有的化合物最初在DMSO中制备成10mM的母液,随后在DMSO中稀释到50×其最终浓度,将每个DMSO稀释液的10μL转移到含有90μL 1×激酶缓冲液(50mM HEPES pH 7.5,10mM MgCl 2,2mM DTT和0.01%Brij-35)的新96孔集束板的一个孔中,然后混合10分钟。随后将5μL每个化合物稀释液加入384孔板中。在每个孔中加入10μL含有CDK2/CycE1或CDK1/cyclinB(终浓度3nM)的酶溶液,混合后在室温下孵化10分钟。随后在每个孔中加入10μL含有FAM标记的肽(最终浓度为3000nM FAM-P18(5-FAM-QSPKKG-CONH2))、ATP(最终浓度分别为77μM或20μM)的1×激酶缓冲液的肽溶液。所有反应在20-30℃孵育30分钟,然后加入25μL终止缓冲液(100mM HEPES pH 7.5,50mM EDTA,0.2%Coating Reagent#3和0.015%Brij-35)终止。
4.数据处理方法:
反应结束后使用Caliper EZ ReaderⅡ检测,抑制率=[(MA-X)/(MA-MI)]×100%,其中MA=仅DMSO对照的值,MI=无酶对照的值,X=任何特定化合物剂量下的值。然后通过绘制剂量-反应曲线,使用XLfit计算IC 50值。
5.实验结果:
通过以上方案得出,本发明所示的化合物在CDK2/CycE1酶学活性实验中,显示出约0.01nM至10nM的IC 50抑制活性;本发明所示的化合物在CDK1/cyclinB酶学活性实验中,显示出约1nM至 1000nM的IC 50抑制活性。
本发明实施例化合物对CDK2/CDK1抑制活性的选择性倍数为2~1000倍;有些实施例化合物的选择性倍数为10~30;有些实施例化合物的选择性倍数为30~50;有些实施例化合物的选择性倍数甚至大于50倍。
表1本发明化合物对CDK2/CycE1和CDK1/cyclinB的抑制活性及选择性倍数
Figure PCTCN2022127444-appb-000139
Figure PCTCN2022127444-appb-000140
以上表格中“A”、“B”、“C”、“D”、“E”以及“+”、“++”、“+++”、“++++”、“+++++”和“++++++”表示含义如下:
“A”表示IC 50≤10nM;“B”表示大于10nM<IC 50≤50nM;“C”表示50nM<IC 50≤250nM;“D”表示250nM<IC 50≤1000nM;“E”表示IC 50>1000nM;
“+”表示1<N≤3;“++”表示3<N≤10;“+++”表示10<N≤30;“++++”表示30<N≤50;“+++++” 表示N>50。
6.实验结论:
以上数据显示,本发明实施例化合物对CDK2/CycE1激酶具有良好的抑制活性,且对CDK2/CDK1激酶抑制具有良好的选择性。
(二)CDK4/CDK6/CDK7酶活测试
1.实验目的:
测试本发明化合物CDK4/CycD1、CDK6/cycD3以及CDK7/cycH/MAT1的体外酶学活性。
2.实验仪器和试剂:
名称 来源 Cat.No. Lot No.
CDK4/CycD1 ProQinase 0142-0143-1 007
CDK6/cycD3 Carna 04-107 15CBS-0744C
CDK7/cyclinH/MAT1 Millipore 14-476M WAD0131-B
Peptide8 GL 112396 P170731-SY112396
Peptide CTD3 GL SY346885 P160205-SY346885
EDTA Gibco 15575-038 846901
HEPES,pH7.5 Gibco 11344-041 1653630
Brij-35 solution Sigma B4184 018K61251
MgCl 2 Sigma M2670-500g BCBM7703V
DTT Sigma D0632-10G SLBK4951V
EGTA Sigma E3889-25G 129K54001V
96孔反应板 Corning 3365 22008026
384孔反应板 Corning 3573 7419022
3.实验方法:
本实验通过利用荧光微流体迁移率检测技术(Mobility-Shift Assay),检测小分子抑制剂对CDK4/CycD1,CDK6/cycD3和CDK7/cyclinH/MAT1激酶的抑制作用。激酶催化ATP脱去一个磷酸基团生成ADP,并将该磷酸基团转移到底物肽上,该底物肽带有荧光标记,其产物因增加了一个磷酸基团,所带的电荷发生了变化,在电泳泳动过程中,底物和磷酸化的产物因迁移率不同被分开,并分别被检测到,其量与荧光信号成正比。利用Caliper仪器测定底物与产物的量,并计算出产物的转化率,进而计算出抑制率。
所有的化合物,用100%DMSO配制成初始浓度的50倍,转移50μL到384孔Echo板中;按照客户的需求用100%DMSO进行稀释,转移50μL 100%DMSO到两个空的孔中作为不加化合物和不 加酶的对照。使用Echo 550转移400nL化合物到384孔反应板中。转移10μL的用1倍激酶缓冲液(50mM HEPES pH 7.5,10mM MgCl 2,2mM DTT and 0.01%Brij-35)配置的CDK4/CycD1,CDK6/cycD3和CDK7/cyclinH/MAT1 2倍激酶溶液到384孔板反应板中,阴性对照孔加入1倍激酶缓冲液。混匀后室温下孵育10分钟;将FAM标记的多肽(CDK4/CycD1,CDK6/cycD3上终浓度均是3000nM FAM-P8,CDK7/cyclinH/MAT1上终浓度均是3000nM FAM-CTD3),ATP(CDK4/CycD1,CDK6/cycD3和CDK7/cyclinH/MAT1上终浓度分别是672μM,800μM和70μM)加入1倍激酶缓冲液,形成2倍底物溶液;转移10μL上述2倍底物溶液到384孔板反应板中起始反应;28℃下孵育60分钟,向384孔板反应板中加25μL终止液(100mM HEPES pH 7.5,50mM EDTA,0.2%Coating Reagent#3and 0.015%Brij-35)终止反应。
4.数据处理方法:
在CaliperEZ Reader II(下游电压:-500V,上游电压:-2250V,基准压力:-0.5PSI,筛选压力:-1.2PSI)上读取转化率数据。把转化率转化成抑制率数据。抑制百分比=[(MA–X)/(MA–MI)]×100%。“MI”为不加酶进行反应的对照样孔读数;“MA”为加入DMSO作为对照孔读数;“X”为化合物不同孔读数。使用Excel软件中的XLFit(excel add-in version 5.4.0.8)拟合计算IC 50值。
5.实验结果:
通过以上方案得出,本发明所示的化合物对CDK4/CycD1、CDK6/CycD3和CDK7/cycH/MAT1的激酶抑制的IC 50值如表2所示。
表2本发明化合物对CDK4/CycD1、CDK6/CycD3和CDK7/cycH/MAT1的抑制活性
Figure PCTCN2022127444-appb-000141
Figure PCTCN2022127444-appb-000142
“NA”表示未测试。
6.实验结论:
以上数据显示,本发明实施例化合物对CDK4/CycD1、CDK6/cycD3和CDK7/cycH/MAT1的激酶抑制活性较弱;本发明实施例化合物对CDK2/CDK4、CDK2/CDK6以及CDK2/CDK7激酶抑制具有良好的选择性。
二、细胞活性实验
1.实验目的:
测试本发明化合物对OVCAR-3细胞的增殖抑制活性。
2.实验仪器和试剂
酶标仪:TECAN Spark 10M(TECAN)
名称 来源 编号
OVCAR-3 ATCC HTB-161
FBS Gibco 10099141
RPMI1640 ATCC 302001
Penicillin/Streptomycin(100×) Gibco 15140122
Insulin from bovine pancreas MNCGENE CC101
celltiter-glo luminescent cell viability assay kit Fisher scientific G7573
3.实验方法
OVCAR-3培养条件:RPMI1640,20%FBS,1%青霉素和链霉素,0.01mg/mL牛胰岛素。
第0天:将细胞种入96孔板中,加入120μL培养基培养过夜。
第1天:将化合物溶于DMSO中至10mM的储备溶液。将参考和测试化合物在DMSO中稀释至200倍终浓度。在96孔板中对DMSO中的化合物进行3倍稀释至8个不同浓度,然后用细胞培养基稀释试验化合物40倍,在每孔细胞中加入30μL(5×)化合物溶液。在1000rpm下离心细胞板1分钟,然后在37℃和5%CO 2下培养细胞板7天。0.5%DMSO培养基作为空白对照,0.5%DMSO培养基溶液培养的细胞作为100%对照。
第8天:细胞使用
Figure PCTCN2022127444-appb-000143
试剂进行检测。
4.数据处理:
抑制率按照以下公式计算:
抑制率=100-100*(化合物药物处理的读数-低对照的读数)/(高对照的读数-低对照的读数),根据公式计算IC 50
5.实验结果:
通过以上方案得出,本发明实施例化合物对OVCAR-3细胞的增值抑制的IC 50如表3所示。
表3本发明化合物对OVCAR-3细胞的增值抑制活性
实施例编号 IC 50(nM)
1A 58
3A 132
3B 173
4B 193
5A 182
5B 61
6B 57
7B 169
9A 103
9B 57
12A 112
12B 44
14B 144
20A 85
20B 195
21A 120
22A 32
22B 89
23A 169
23B 96
24A 135
25A 31
25B 137
26A 78
26B 144
27A 146
28A 71
28B 139
29A 36
29B 193
30A 39
30B 47
31A 48
31B 73
32A 63
32B 181
33A 60
33B 165
PF07104091 294
6.实验结论:
以上数据显示,本发明实施例化合物对于OVCAR-3细胞增殖具有良好的抑制活性。三、Caco-2细胞渗透性实验
1.实验目的:
通过Caco-2细胞模型对发明化合物在给药浓度下的渗透性进行研究。
2.实验仪器:
仪器名称 型号 厂商
离心机 Heraeus MULTIFUGE X3R Thermo Fisher
电子分析天平 DENVER TB-25 丹佛仪器(北京)有限公司
质谱仪 4000Q TRAP AB SCIEX
高效液相色谱仪 LC-20AD Shimadzu
自动进样器 RACK CHANGER II Shimadzu
3.实验试剂:
试剂 供应商 货号
DMEM Gibco 11995073
FBS Gibco 10091148
PS Invitrogen 15140‐122
HBSS Sigma H8264
HEPES Invitrogen 15630080
BSA VWR Life Science 0332
Nadolol LGC 15401000
Propranolol sigma P0884
Taxol Aladdine T7191
4.实验方法
第一步:将Caco-2细胞(ATCC)用加入10%FBS、1%PS和1%NEAA的DMEM培养液,于37℃,5%CO 2条件下在培养瓶中培养。细胞生长融合至70%~80%,将细胞用0.25%EDTA-胰酶消化,计数,用DMEM培养液稀释至80,000个细胞/孔,细胞接种于Transwell-24孔板,置于CO 2培养箱中培养,每隔两到三天将培养基弃去,加入新鲜培养基,继续于37℃,5%CO 2条件下培养,连续培养18~22天。
第二步:将TC储备液用预热至37℃的转运缓冲液1000倍稀释,混合均匀,即为受试化合物给药溶液,给药浓度为10μM。将细胞培养液弃去,加入预热至37℃的转运缓冲液润洗,对于顶膜侧至基底侧的转运研究(转运方向为A→B),A侧加入500μL含对照化合物或受试化合物的给药溶液,B侧加入1300μL转运缓冲液。对于基底侧至顶膜侧的转运研究(转运方向为B→A),A侧加入500μL转运缓冲液,B侧加入1300μL含对照化合物或受试化合物的给药溶液。细胞板孵育90min。孵育结束后,取样品加入一定体积沉淀剂。振荡混匀1min,4000rpm/分钟离心15min。取上清复溶后LC-MS/MS检测分析。
第三步:通过测定细胞单层的跨膜电阻值(TEER)来评价细胞单层的完整性,要求每个细胞孔的跨膜电阻值不小于600Ohms。
第四步:通过LC/MS/MS方法检测样品中受试化合物TC和阳性对照纳多洛尔、***、P-gp底物紫杉醇的浓度
5.数据处理:
利用以下公式计算出TC以及阳性化合物的表观渗透系数(Papp)以及表观渗透系数的比率Efflux ratio(ER)。
Figure PCTCN2022127444-appb-000144
流出比率(Efflux ratio)=Papp (B→A)/Papp (A→B)
注:v为接收池的体积;A为转运膜的面积;C为孵育初始浓度;
Figure PCTCN2022127444-appb-000145
为单位时间药物转运量
6.实验结果:
通过以上方案得出,本发明实施例化合物的渗透性实验数据如表4所示:
表4
Figure PCTCN2022127444-appb-000146
Figure PCTCN2022127444-appb-000147
7.实验结论:
以上数据显示,本发明实施例化合物在Caco-2细胞模型上表现出更好的渗透性和更低的外排活性。
四、代谢稳定性测定
1.实验目的:
测试化合物在肝细胞中的稳定性。
种属 性别 供应商 货号
人肝细胞 男女混合 BioIVT X008001
使用台盼蓝测定冷冻保存的肝细胞的活力,并用缓冲液将细胞浓度调节至10 6个细胞/mL。在24孔板中,将400μL阳性对照/测试化合物溶液(培养介质中含2μM化合物)与400μL肝细胞(每毫升200万个细胞)一起培养。在不同时间点(0、15、30、60、90和120分钟),通过将300μL人硫酸吲哚酚(IS)添加到30μL反应混合物中并在4℃以4000rpm离心15分钟,来停止反应。取100μL上清液用LC-MS/MS分析。体外肝细胞清除率是根据化合物从其初始浓度的消除半衰期(t 1/2)来估计的。计算每种化合物(测试或对照)与IS的峰面积比。药物消除速率常数k(min-1)、t 1/2(min)和体外固有清除率CL int(微升/分钟/百万细胞)根据以下等式计算:
K=-斜率
t 1/2=0.693/k
CL int=(0.693/t 1/2)×(培养体积(μL)/细胞数(百万))
CL in=体外CL int×(肝重(g)/体重(Kg))×(细胞数(百万)/肝重(g))
CL hepatic=(Q hep×F u×CL int)/(Q hep+F u×CL int)
提取率=CL hepatic/Q hep
4.实验结果:
通过以上方案得出本发明所示的化合物在人肝稳定性试验实验的结果如下表5所示:
表5
Figure PCTCN2022127444-appb-000148
5.实验结论:
以上数据显示,本发明实施例化合物在人肝细胞稳定性试验实验中显示出较好的代谢稳定性。
五、药代动力学研究
实验目的:测试化合物在比格犬体内实验的药代动力学
实验材料:比格犬(雄性,Marshall Bio)
实验操作:
3条雄性比格犬,Crossover给药。在给药前一天下午17点30分对比格犬进行禁食处理,给药后4小时恢复喂食。给药第一周期,单次前肢头静脉注射待测化合物,给药剂量为1mg/kg;洗脱7天后,进行第二周期,单次口服待测化合物,给药剂量为10mg/kg。前肢头静脉注射组于给药前,给药结束后5min,15min,30min,1h,2h,4h,8h,12h及24h通过颈静脉取血。单次口服组于给药前,给药结束后15min,30min,1h,2h,4h,8h,12h及24h通过颈静脉取血。取血置于EDTA-K2抗凝管中,每个时间点取800μL全血。血样采集后,立即放在湿冰上等待离心。样品将在30分钟内离心(设置保持4度,10分钟,3000转/分),以获得血浆。将血浆样本分别放入2支试管(目标为150μL/支)。取50μL血浆加入5μL MeOH,然后加入200μL含有5ng/mL ISTD(Terfenadine)的MeOH/ACN溶液,振荡混合均匀后4000rpm离心15min,取上清液用MeOH/r水(1:1,v/v,0.1%FA)稀释5倍,使用LC-MS/MS进样,以分析方法定量分析血药浓度,并计算药代参数,如达峰浓度,达峰时间,清除率,半衰期,药时曲线下面积,生物利用度等。
实验结果:
通过以上方案得出,本发明实施例化合物的药代动力学数据如表6所示:
表6
Figure PCTCN2022127444-appb-000149
Figure PCTCN2022127444-appb-000150
实验结论:
本发明化合物在犬中具有良好的药代动力学参数;尤其是实施例12B,相比参比化合物PF-07104091,清除率要低9倍,暴露量高近24倍,生物利用度也是要高1倍。
六、体内药效研究
实验目的
评价化合物在OVCAR-3肿瘤小鼠移植模型上的体内药效。
动物与模型
动物信息
Balb/c裸小鼠,6-9周,雌性,购于江苏集萃药康生物科技有限公司。小鼠饲养于12小时光照12小时黑暗环境。接种前用小鼠耳标标记小鼠。
细胞信息
模型 Accession ID 肿瘤类型
OVCAR-3 CVCL_0465 人卵巢癌
实验操作
细胞培养
OVCAR-3肿瘤细胞在含20%牛血清及10μ/mL胰岛素的RPMI1640培养液中进行培养。细胞置于培养箱内,温度37℃,CO 2浓度5%。细胞生长进入对数期时收集并计数细胞。
细胞接种
收集1x 10 7OVCAR-3细胞重悬于0.2毫升的PBS与Matrigel(1:1)的混悬液中,并接种于每只小鼠右侧背部靠右肩位置。
分组
当荷瘤小鼠肿瘤平均肿瘤体积达到150-200mm 3时,对小鼠进行有机分组并开始给药。
小鼠观察于数据采集
细胞接种后,每天检查小鼠发病于死亡。每周测量肿瘤与小鼠体重两次。
肿瘤体积按以下公式计算:
肿瘤体积(mm 3)=长(mm)x宽(mm)x宽(mm)/2。
给药方式:口服,每天给药两次,给药周期28天。
实验结束后安乐死动物。
用Excel等软件处理数据,并计算化合物抑瘤率TGI(%)。
TGI(%)=(1-药物处理组平均肿瘤体积/对照组平均肿瘤体积)x 100%
试验结果如下表
表7化合物的移植瘤药效参数
Figure PCTCN2022127444-appb-000151
实验结果
以上结果显示,在OVCAR-3小鼠移植瘤模型中,实施例12B在75mg/kg剂量下显示出良好的肿瘤增长抑制效果;并且,显示出比PF-07104091在175mg/kg剂量下更好的肿瘤增长抑制效果。

Claims (23)

  1. 一种通式(I)所示的化合物、其前药、立体异构体或其药学上可接受盐:
    Figure PCTCN2022127444-appb-100001
    其中,
    Figure PCTCN2022127444-appb-100002
    表示顺式构型(即四氢呋喃环上的两个取代基在同一侧);
    L选自键、-C(O)-、-S(O) m-、-C(O)(CH 2) n-或-(CH 2) n-;
    R选自氢、氘、C 1-6烷基、C 1-6卤代烷基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、-(CH 2) nOR a、-(CH 2) nSR a、-(CH 2) nNR bR a、-(CH 2) nC(O)R a、-(CH 2) nC(O)NR bR a、-(CH 2) nNR bC(O)R a、-(CH 2) nS(O) mR a、-(CH 2) nS(O) mNR bR a、-(CH 2) nS(O)(=NR b)R a、-(CH 2) nN=S(=O)R aR b或-(CH 2) nNR bS(O) mR a,所述的C 1-6烷基、C 1-6卤代烷基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基和5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    R x选自
    Figure PCTCN2022127444-appb-100003
    或R y
    环A选自C 3-12环烷基、3-12元杂环基、C 6-14芳基或5-14元杂芳基,所述的C 3-12环烷基、3-12元杂环基、C 6-14芳基或5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    R 1独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1- 6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基、5-14元杂芳基氧基、-(CH 2) nOR c、-(CH 2) nSR d、-(CH 2) nNR dR c、-O(CH 2) nNR dR c、-(CH 2) nC(O)R c、-(CH 2) nC(O)NR dR c、-(CH 2) nNR bC(O)R c、-(CH 2) nS(O) mR c、-(CH 2) nS(O) mNR dR c、-(CH 2) nS(O)(=NR d)R c、-(CH 2) nN=S(=O)R cR d或-(CH 2) nNR dS(O) mR c,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基,任选地,进一步被氘、卤素、羟基、巯基、 硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    或者,任意两个R 1以及它们所在的原子一起形成C 3-12环烷基、3-12元杂环基、C 6-14芳基或5-14元杂芳基,所述的C 3-12环烷基、3-12元杂环基、C 6-14芳基和5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1- 6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    R y选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基或C 2-6炔基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基和C 2-6炔基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    R a、R b、R c和R d各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1- 6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基或5-14元杂芳基氧基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2- 6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2- 6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    或者,R a和R b以及它们所在的原子一起形成3-12元杂环基或5-14元杂芳基,所述的3-12元杂环基和5-14元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;且
    x为0~10的整数;
    n为0~10的整数;
    m为0、1或2。
  2. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,R选自3-10元含氮杂环基、5-10元含氮杂芳基、-C(O)R a或-C(O)NR bR a,所述的3-10元含氮杂环基和5-10元含氮杂芳基,任选地进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1- 3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代;
    R a和R b各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基或5-14元杂芳基氧基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6- 14芳基氧基和5-14元杂芳基氧基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6- 14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代;
    或者,R a和R b以及它们所在的原子一起形成3-8元杂环基或5-10元杂芳基,所述的3-8元杂环基和5-10元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-12环烷基、3-12元杂环基、C 6-14芳基、5-14元杂芳基、C 3-12环烷基氧基、3-12元杂环基氧基、C 6-14芳基氧基和5-14元杂芳基氧基中的一个或多个取代基所取代。
  3. 根据权利要求1或2所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,通式(I)进一步如通式(II)所示:
    Figure PCTCN2022127444-appb-100004
    其中:
    环A、L、R 1、R a、R b和x如权利要求1所述;
    较佳地,通式(I)进一步如通式(II-A)和通式(II-B)所示:
    Figure PCTCN2022127444-appb-100005
    其中:
    环A、L、R 1、R a、R b和x如权利要求1所述。
  4. 根据权利要求1-3任一项所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,所述化合物满足如下条件种的一种或多种:
    (1)环A选自5-6元单环杂芳基、8-10元双环稠杂环基或8-10元双环稠杂芳基;较佳地,所述环A选自吡唑基或吡唑并5-6元杂芳基;更佳地,所述环A选自吡唑基、吡啶基或吡唑并嘧啶基;例如,
    Figure PCTCN2022127444-appb-100006
    (2)L为键、-C(O)-或-C(O)CH 2-;
    (3)所述R a选自氢或甲基;所述R b选自甲基、乙基、叔丁基、异丁基、环丙基、环丁基或双环[1.1.1]戊烷基,所述的甲基、乙基、异丙基、叔丁基、异丁基、环丙基、环丁基和双环[1.1.1]戊烷基,任选地进一步被甲基、乙基、环丙基、异丙基或叔丁基中的一个或多个取代基所取代;
    或者,R a和R b以及它们所在的原子一起形成氮杂环丁烷基或7-氮杂双环[2.2.1]庚烷基,所述的氮杂环丁烷基和7-氮杂双环[2.2.1]庚烷,任选地进一步被一个或多个甲基所取代;较佳地,
    Figure PCTCN2022127444-appb-100007
    Figure PCTCN2022127444-appb-100008
    Figure PCTCN2022127444-appb-100009
    例如
    Figure PCTCN2022127444-appb-100010
    Figure PCTCN2022127444-appb-100011
    (4)R 1独立地选自氢、氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基,进一步被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基中的一个或多个取代基所取代;较佳地,R 1独立地选自氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-8环烷基,进一步被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-8环烷基中的一个或多个取代基所取代;更佳地,R 1独立地选C 1-6烷基,进一步被C 1-6烷基和C 1-6烷氧基中的一个或多个取代基所取代。
  5. 根据权利要求1-4任一项所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,通式(I)进一步如通式(III)所示:
    Figure PCTCN2022127444-appb-100012
    其中:
    R x、R a和R b如权利要求1-4所述;较佳地,通式(I)进一步如通式(IV)所示:
    Figure PCTCN2022127444-appb-100013
    其中:
    R 1、R a、R b和x如权利要求1-4所述;更佳地,通式(I)进一步如通式(IV-A)和通式(IV-B)所示:
    Figure PCTCN2022127444-appb-100014
    其中:
    R 1、R a、R b和x如权利要求1-4所述。
  6. 根据权利要求1-5任一项所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,R a和R b各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-10元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基或5-10元杂芳基氧基,所述的氨基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-10元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基,任选地,进一步被氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代;
    或者,R a和R b以及它们所在的原子一起形成3-10元杂环基或5-10元杂芳基,所述的3-10元杂环基和5-10元杂芳基,任选地,进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、C 1-6烷硫基、C 1-6羟烷基、C 2-6烯基、C 2-6炔基、C 3-8环烷 基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基中的一个或多个取代基所取代。
  7. 根据权利要求1-6任一项所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,R a选自氢或甲基;
    R b选自甲基、乙基、异丙基、叔丁基、异丁基、环丙基、环丁基或双环[1.1.1]戊烷基,所述的甲基、乙基、异丙基、叔丁基、异丁基、环丙基、环丁基和双环[1.1.1]戊烷基,任选地进一步被甲基、乙基、异丙基或叔丁基中的一个或多个取代基所取代;
    或者,R a和R b以及它们所在的原子一起形成氮杂环丁烷基或7-氮杂双环[2.2.1]庚烷基,所述的氮杂环丁烷基和7-氮杂双环[2.2.1]庚烷,任选地进一步被一个或多个甲基所取代;较佳地,
    Figure PCTCN2022127444-appb-100015
    选自
    Figure PCTCN2022127444-appb-100016
    Figure PCTCN2022127444-appb-100017
  8. 根据权利要求1-7任一项所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,R 1独立地选自氢、氘、氰基、氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3羟烷基、-CH 2OR c、-(CH 2) 2OR c、-CH 2NR dR c、-(CH 2) 2NR dR c、-O(CH 2) 2NR dR c、-CH 2S(O)(=NR d)R c、-S(O)(=NR d)R c、-N=S(=O)R cR d、-CH 2N=S(=O)R cR d或-C(O)NR dR c,所述的氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基和C 1-3羟烷基,任选地进一步被氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基、5-10元杂芳基氧基中的一个或多个取代基所取代;
    R c和R d各自独立地选自氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基或5-10元杂芳基氧基,所述的氨基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧基和5-10元杂芳基氧基,任选地,进一步被氢、氘、卤素、羟基、巯基、硝基、氰基、氨基、氧代基、硫代基、C 1-3烷基、C 1-3卤代烷基、C 1-3烷氧基、C 1-3烷硫基、C 1-3羟烷基、C 2-3烯基、C 2-3炔基、C 3-8环烷基、3-8元杂环基、C 6-10芳基、5-10元杂芳基、C 3-8环烷基氧基、3-8元杂环基氧基、C 6-10芳基氧 基和5-10元杂芳基氧基中的一个或多个取代基所取代较佳地,R 1独立地选自H、D、F、Cl、-CN、-NH 2、-OH、-CH 3、-CF 3、-CD 3、-OCH 3、-OCF 3、-CH 2OCH 3、-(CH 2) 2OCH 3
    Figure PCTCN2022127444-appb-100018
    Figure PCTCN2022127444-appb-100019
  9. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,R为
    Figure PCTCN2022127444-appb-100020
    L选-C(O)-,R x为选自
    Figure PCTCN2022127444-appb-100021
    或R y;环A选自5-14元杂芳基,所述的5-14元杂芳基被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基中的一个或多个取代基所取代;R 1独立地选自氢、氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基,进一步被氘、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基和C 3-12环烷基中的一个或多个取代基所取代;R y选自C 1-6烷基,所述的C 1-6烷基被5-14元杂芳基中的一个或多个取代基所取代;所述5-14元杂芳基进一步被一个或多个C 1-6烷基、C 1-6卤代烷基和C 1-6烷氧基所取代;
    较佳地,R为
    Figure PCTCN2022127444-appb-100022
    -L-R x
    Figure PCTCN2022127444-appb-100023
    Figure PCTCN2022127444-appb-100024
  10. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,-L-R x
    Figure PCTCN2022127444-appb-100025
    R为
    Figure PCTCN2022127444-appb-100026
    5-10元含氮杂芳基或-(CH 2) nC(O)NR bR a;n为0,R a为氢,R b为被C 3-12环烷基取代的C 1-6烷基、C 3-12环烷基或被C 1-6烷基取代的C 3-12环烷基;或者,以及它们所在的原子一起形成氮杂环丁烷基或7-氮杂双环[2.2.1]庚烷基,所述的氮杂环丁烷基和7-氮杂双环[2.2.1]庚烷,任选地进一步被一个或多个甲基所取代;所述的5-10元含氮杂芳基,任选地进一步被氘、卤素和C 1-3烷基中的一个或多个取代基所取代;较佳地,-L-R x
    Figure PCTCN2022127444-appb-100027
    R为
    Figure PCTCN2022127444-appb-100028
    Figure PCTCN2022127444-appb-100029
  11. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,R为
    Figure PCTCN2022127444-appb-100030
    Figure PCTCN2022127444-appb-100031
    较佳地,R为
    Figure PCTCN2022127444-appb-100032
    和/或,-L-R x
    Figure PCTCN2022127444-appb-100033
    Figure PCTCN2022127444-appb-100034
  12. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,所述化合物不为
    Figure PCTCN2022127444-appb-100035
    Figure PCTCN2022127444-appb-100036
    Figure PCTCN2022127444-appb-100037
    Figure PCTCN2022127444-appb-100038
    Figure PCTCN2022127444-appb-100039
    Figure PCTCN2022127444-appb-100040
    Figure PCTCN2022127444-appb-100041
  13. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,所述化合物满足如下条件中的一种或多种:
    (1)R中,所述C 1-6烷基独立地为C 1-4烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (2)R中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F;
    (3)R中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (4)R中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基;
    (5)R中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基;
    (6)R中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基、环丁基或
    Figure PCTCN2022127444-appb-100042
    (7)R中,所述3-12元杂环基独立地为3-8元杂环基(例如7元);其中的3-8元杂环基中杂原 子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (8)R中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基;
    (9)R中,所述5-14元杂芳基独立地为5-6元杂芳基(例如6元),其中的5-6元杂芳基中杂原子个数独立地可为1或2个(例如1个);其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (10)环A中,所述C 3-12环烷基为C 3-6环烷基,例如为环丙基、环丁基、环戊基或环己基;
    (11)环A中,所述3-12元杂环基为C 3-8元杂环基;其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (12)环A中,所述C 6-14芳基为C 6-10芳基,例如苯基或萘基;
    (13)环A中,所述5-14元杂芳基为5-10元杂芳基独立地为5-10元杂芳基(例如6元、5元、9元),5-10元杂芳基独立地为5-6元杂芳基或5元并6元杂芳基,其中的5-6元杂芳基中杂原子个数独立地可为1或2个(例如2个);其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (14)环A中,所述C 1-6烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基,还例如甲基、乙基或丙基;
    (15)环A中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F;
    (16)环A中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基;
    (17)环A中,所述C 1-6烷硫基独立地为C 1-4烷硫基,例如甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、仲丁硫基或叔丁硫基;
    (18)环A中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (19)环A中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基;
    (20)环A中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基;
    (21)环R 1中,所述卤素独立地为F、Cl、Br或I,例如F;
    (22)环R 1中,所述C 1-6烷基独立地为C 1-4烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基,例如甲基或乙基;
    (23)环R 1中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙 基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F;
    (24)环R 1中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基;
    (25)环R 1中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (26)环R 1中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基;
    (27)环R 1中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基;
    (28)环R 1中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基;
    (29)环R 1中,所述3-12元杂环基独立地为3-8元杂环基(例如7元);其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (30)环R 1中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基;
    (31)环R 1中,所述5-14元杂芳基立地为5-6元杂芳基或5元并6元杂芳基,其中的5-6元杂芳基和5元并6元杂芳基中杂原子个数独立地可为1或2个;其中的5-6元杂芳基和5元并6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (32)环R 1中,所述C 3-12环烷基氧基独立地为C 3-6环烷基氧基,例如为环丙基氧基、环丁基氧基、环戊基氧基或环己基氧基,还例如环丙基氧基;
    (33)环R y中,所述C 1-6烷基独立地为C 1-4烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (34)环R y中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,C 1-4烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F;
    (35)环R y中,所述C 1-6烷氧基独立地为C 1-4烷硫基,例如甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、仲丁硫基或叔丁硫基;
    (36)环R y中,所述C 1-6烷硫基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基;
    (37)环R y中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (38)环R y中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基;
    (39)环R y中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基;
    (40)环R y中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环 [1.1.1]戊烷基或环己基,还例如环丙基;
    (41)环R y中,所述3-12元杂环基独立地为3-8元杂环基;其中的3-8元杂环基中杂原子个数独立地可为1或2个;其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种;
    (42)环R y中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基;
    (43)环R y中,所述5-14元杂芳基立地为5-6元杂芳基基,其中的5-6元杂芳基中杂原子个数独立地可为1或2个;其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种;
    (44)R a、R b、R c和R d中,所述C 1-6烷基独立地为C 1-4烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (45)R a、R b、R c和R d中,所述C 1-6卤代烷基独立地为C 1-4卤代烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;所述卤代可为F、Cl、Br或I,例如F;
    (46)R a、R b、R c和R d中,所述C 1-6烷氧基独立地为C 1-4烷氧基,例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基或叔丁氧基;
    (47)R a、R b、R c和R d中,所述C 1-6烷硫基独立地为C 1-4烷硫基,例如甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、仲丁氧基或叔丁硫基;
    (48)R a、R b、R c和R d中,所述C 1-6羟烷基独立地为C 1-4羟烷基,所述烷基优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;
    (49)R a、R b、R c和R d中,所述C 2-6烯基独立地为C 2-4烯基,例如为乙烯基、丙烯基或丁烯基;
    (50)R a、R b、R c和R d中,所述C 2-6炔基独立地为C 2-4炔基,例如为乙炔基、丙炔基或丁炔基;
    (51)R a、R b、R c和R d中,所述C 3-12环烷基独立地为C 3-6环烷基,例如为环丙基、环丁基、环戊基、双环[1.1.1]戊烷基或环己基,还例如环丙基;
    (52)R a、R b、R c和R d中,所述3-12元杂环基独立地为3-8元杂环基(例如4元、7元);其中的3-8元杂环基中杂原子个数独立地可为1或2个(例如1个);其中的3-8元杂环基中的杂原子可独立地选自N和O中的一种或两种(例如N);
    (53)R a、R b、R c和R d中,所述C 6-14芳基独立地为C 6-10芳基,例如苯基或萘基;
    和(54)R a、R b、R c和R d中,所述5-14元杂芳基独立地为5-6元杂芳基(例如6元),其中的5-6元杂芳基中杂原子个数独立地可为1或2个(例如1个);其中的5-6元杂芳基中的杂原子可独立地选自N和O中的一种或两种(例如N)。
  14. 根据权利要求1所述的化合物、其前药、立体异构体或其药学上可接受盐,其特征在于,选自如下化合物:
    Figure PCTCN2022127444-appb-100043
    Figure PCTCN2022127444-appb-100044
    Figure PCTCN2022127444-appb-100045
    Figure PCTCN2022127444-appb-100046
  15. 一种制备权利要求1所述的通式(I)所示的化合物、其前药或立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
    Figure PCTCN2022127444-appb-100047
    式(Ia)与式(Ib)通过单步或多步亲核取代、偶联反应、Mitsunobu反应、酯化反应常见有机反应引入R基团,得到式(Ic)所示化合物或立体异构体及其药学上可接受盐;
    式(Ic)所示的化合物通过还原反应得到如式(Id)所示的化合物或立体异构体及其药学上可接受盐;
    式(Id)与式(Ie)通过酰胺化反应、亲核取代或者偶联反应常见有机反应得到式(If)所示的化合物或其立体异构体;
    式(If)所示的化合物脱去保护基团R 1a得到式(Ig)所示化合物、其前药或立体异构体及其药学上可接受盐;
    式(Ig)通过分离纯化得到式(I)所示的化合物、其前药或立体异构体及其药学上可接受盐;
    任选地,式(I)所示的化合物进一步通过手性拆分得到单一构型化合物、其前药或立体异构体及其药学上可接受盐;
    其中:
    X 1选自但不限于羟基、卤素或三氟甲磺酸酯基(OTf);
    X 2选自但不限于羟基、卤素或三氟甲磺酸酯基(OTf);
    R 1a为吡唑氮上的保护基,选自但不限于叔丁基(t-Bu)、四氢-2H-吡喃-2-基(THP)、(三甲基硅烷基)乙氧甲基(SEM);
    L、R和R x如权利要求1-14任一项所述。
  16. 一种制备权利要求3所述通式(II)所示的化合物、其前药或立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
    Figure PCTCN2022127444-appb-100048
    式(IIa)与式(IIb)发生反应得到式(IIc)所示的化合物、其前药或立体异构体及其药学上可接受盐;
    式(IIc)通过分离纯化得到式(II)所示的化合物、其前药或立体异构体及其药学上可接受盐;
    任选地,式(II)所示的化合物通过手性拆分得到单一构型化合物、其前药或立体异构体及其药学上可接受盐;
    其中:
    环A、L、R 1、R a、R b和x如权利要求1-14所述。
  17. 一种式(IIa)所示的中间体化合物或其立体异构体及盐,其具体结构如下:
    Figure PCTCN2022127444-appb-100049
    其中:
    环A、L、R 1、R a、R b和x如权利要求1-8所述;
    较佳地,所述盐为药学上可接受的盐;
    更佳地,所述式(IIa)选自如下化合物:
    Figure PCTCN2022127444-appb-100050
    Figure PCTCN2022127444-appb-100051
  18. 一种制备权利要求17所述式(IIa)所示的中间体化合物或其立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
    Figure PCTCN2022127444-appb-100052
    式(IIa-1)与式(IIa-2)通过酰胺化反应、亲核取代或者偶联反应常见有机反应得到式(IIa-3)所示的化合物或其立体异构体及其药学上可接受盐;
    式(IIa-3)与对硝基氯甲酸苯酯反应生成式(IIa-4)所示的化合物或其立体异构体及其药学上可接受盐;
    式(IIa-4)脱去保护基团R 1a得到式(IIa)所示化合物或其立体异构体及其药学上可接受盐;
    其中:
    X 3选自但不限于羟基、卤素或三氟甲磺酸酯基(OTf);
    R 1a为吡唑氮上的保护基,选自但不限于叔丁基(t-Bu)、四氢-2H-吡喃-2-基(THP)、(三甲基硅烷基) 乙氧甲基(SEM);
    环A、L、R 1、R a、R b和x如权利要求1-14所述。
  19. 一种式(IIa-1)所示的中间体化合物或其立体异构体及其盐,其具体结构如下:
    Figure PCTCN2022127444-appb-100053
    其中:
    R 1a为吡唑氮上的保护基,选自但不限于叔丁基(t-Bu)、四氢-2H-吡喃-2-基(THP)、(三甲基硅烷基)乙氧甲基(SEM)、对甲氧基苄基(PMB);所述的盐可为药学上可接受的盐;
    较佳地,所述式(IIa-1)选自如下化合物:
    Figure PCTCN2022127444-appb-100054
  20. 一种制备权利要求19所述式(IIa-1)所示的中间体化合物或其立体异构体及其药学上可接受盐的方法,其特征在于,包含以下步骤:
    Figure PCTCN2022127444-appb-100055
    式(IIa-1a)所示的化合物与式(IIa-1b)反应得到式(IIa-1c)所示的化合物;
    式(IIa-1c)所示的化合物通过还原反应得到式(IIa-1d)所示的化合物,式(IIa-1d)再经过氧化反应得到式(IIa-1e)所示的化合物;
    式(IIa-1e)所示的化合物与烯丙基三氟硼酸钾通过加成反应,得到式(IIa-1f)所示的化合物;
    式(IIa-1f)所示的化合物通过与间氯过氧苯甲酸(mCPBA)的环氧化反应,得到式(IIa-1g)所示的化合物;
    式(IIa-1g)所示的化合物在酸性条件下关环得到式(Ia)所示的中间体化合物或其立体异构体及其药学上可接受盐;
    式(Ia)所示的化合物通过还原反应可得到式(IIa-1)所示的化合物或其立体异构体及其药学上可接受盐;
    其中:
    X 4选自但不限于卤素、三氟甲磺酸酯基(OTf)或羟基;
    R 1a如权利要求6所述。
  21. 一种药用组合物,其包括治疗有效剂量的权利要求1~14中任一项所述的化合物、其前药、立体异构体或其药学上可接受的盐,以及一种或多种药学上可接受的载体或赋形剂。
  22. 根据权利要求1~14中任一项所述的化合物、其前药、立体异构体或其药学上可接受的盐,或权利要求21所述的药物组合物在制备治疗由CDK2介导的疾病药物中的用途。
  23. 根据权利要求1~14中任一项所述的化合物、其前药、立体异构体或其药学上可接受的盐,或权利要求21所述的药物组合物在制备治疗异常细胞生长的药物中的用途,优选地,在制备治疗癌症的药物中的用途,更优选地,所述癌症为卵巢癌。
PCT/CN2022/127444 2021-10-25 2022-10-25 含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用 WO2023072096A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111242021.0 2021-10-25
CN202111242021 2021-10-25
CN202211036784.4 2022-08-25
CN202211036784 2022-08-25
CN202211283850 2022-10-14
CN202211283850.8 2022-10-14

Publications (1)

Publication Number Publication Date
WO2023072096A1 true WO2023072096A1 (zh) 2023-05-04

Family

ID=86076598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127444 WO2023072096A1 (zh) 2021-10-25 2022-10-25 含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN116023367A (zh)
TW (1) TW202320750A (zh)
WO (1) WO2023072096A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541208A (zh) * 2001-05-30 2004-10-27 用作细胞周期蛋白依赖性激酶抑制剂的2-苯氨基-嘧啶衍生物
US20050234059A1 (en) * 2002-04-26 2005-10-20 Michael Robin Hale Heterocyclic inhibitors of ERK2 and uses thereof
WO2006087230A1 (de) * 2005-02-17 2006-08-24 Schering Aktiengesellschaft Verwendung von cdk ii inhibitoren zur fertilitätskontrolle
CN107614499A (zh) * 2015-05-29 2018-01-19 帝人制药株式会社 吡啶并[3,4‑d]嘧啶衍生物及其药学上可允许的盐
WO2022174031A1 (en) * 2021-02-12 2022-08-18 Relay Therapeutics, Inc. Cdk inhibitors and methods of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541208A (zh) * 2001-05-30 2004-10-27 用作细胞周期蛋白依赖性激酶抑制剂的2-苯氨基-嘧啶衍生物
US20050234059A1 (en) * 2002-04-26 2005-10-20 Michael Robin Hale Heterocyclic inhibitors of ERK2 and uses thereof
WO2006087230A1 (de) * 2005-02-17 2006-08-24 Schering Aktiengesellschaft Verwendung von cdk ii inhibitoren zur fertilitätskontrolle
CN107614499A (zh) * 2015-05-29 2018-01-19 帝人制药株式会社 吡啶并[3,4‑d]嘧啶衍生物及其药学上可允许的盐
WO2022174031A1 (en) * 2021-02-12 2022-08-18 Relay Therapeutics, Inc. Cdk inhibitors and methods of use thereof

Also Published As

Publication number Publication date
TW202320750A (zh) 2023-06-01
CN116023367A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
TWI787620B (zh) 唑磺醯胺衍生物
CN105408320B (zh) 用于治疗癌症的作为癌症干细胞途径激酶抑制剂的3-(芳基或杂芳基)甲基吲哚-2-酮衍生物
WO2015140133A1 (en) Piperidine-dione derivatives
CN106573937B (zh) 作为fshr调节剂的吡唑化合物及其用途
CN108329311B (zh) 作为选择性***受体下调剂的三环类化合物及其应用
JP5255438B2 (ja) プロテインキナーゼ阻害薬として有用なベンズイミダゾール
EP3354653B1 (en) Fused ring pyrimidine compound, intermediate, and preparation method, composition and use thereof
JP2013014632A (ja) ピラジンキナーゼ阻害剤
WO2021018009A1 (zh) Egfr抑制剂、组合物及其制备方法
CN112552294A (zh) 含哌嗪杂环类衍生物抑制剂、其制备方法和应用
WO2018170204A1 (en) 9,10,11,12-tetrahydro-8h-[1,4]diazepino[5',6':4,5]thieno[3,2-f]quinolin-8-one compounds and uses thereof
CN109415341A (zh) 作为TGF-βR1抑制剂的苯并三氮唑衍生的α,β不饱和酰胺类化合物
TW202317564A (zh) Cdk2抑制劑及其製備方法和用途
TW202035422A (zh) 作為cdk抑制劑的大環化合物、其製備方法及其在醫藥上的應用
CN108299420B (zh) 作为选择性***受体下调剂的五环类化合物及其应用
WO2021160087A1 (zh) 喹啉基膦氧化合物及其组合物和用途
CN115785154A (zh) 杂芳环化合物及其医药用途
WO2023072096A1 (zh) 含四氢呋喃多环类衍生物、其药学上可接受的盐及其制备方法和应用
WO2021136354A1 (zh) 联苯类衍生物抑制剂、其制备方法和应用
CN115803325B (zh) 一种egfr抑制剂及其制备方法和应用
WO2022237825A1 (zh) 具有egfr抑制活性的氮杂芳基衍生物、其制备方法和应用
WO2023143514A1 (zh) 含丙烯酮类生物抑制剂、其制备方法和应用
WO2023041066A1 (zh) 含嘧啶并二氢吡唑啉酮类衍生物、其药学上可接受的盐及其制备方法和应用
CN117263943A (zh) 聚(adp核糖)聚合酶选择性抑制剂
WO2022262699A1 (zh) 取代的苯并咪唑类化合物及包含该化合物的组合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885973

Country of ref document: EP

Kind code of ref document: A1