WO2023071738A1 - 一种天线测试*** - Google Patents

一种天线测试*** Download PDF

Info

Publication number
WO2023071738A1
WO2023071738A1 PCT/CN2022/124095 CN2022124095W WO2023071738A1 WO 2023071738 A1 WO2023071738 A1 WO 2023071738A1 CN 2022124095 W CN2022124095 W CN 2022124095W WO 2023071738 A1 WO2023071738 A1 WO 2023071738A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
displacement
control
test
antenna
Prior art date
Application number
PCT/CN2022/124095
Other languages
English (en)
French (fr)
Inventor
曹宝华
Original Assignee
南京捷希科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京捷希科技有限公司 filed Critical 南京捷希科技有限公司
Publication of WO2023071738A1 publication Critical patent/WO2023071738A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the field of antenna testing, in particular to an antenna testing system.
  • 5G has entered the formal commercial stage, and operators around the world are purchasing base station equipment on a large scale for the construction of 5G networks.
  • the antenna and RRU are integrated together.
  • interference factors such as electromagnetic coupling and active standing waves cannot be completely eliminated;
  • the combination of a series of active components is very different from the way in which the passive antenna array performs amplitude-phase weighting through a passive power division network. Therefore, for 5G base stations using massive MIMO active antenna technology, the integrated OTA test method can effectively reflect its performance indicators.
  • OTA testing must be performed in a darkroom.
  • manual intervention is required to connect the antenna under test to the testing system, resulting in low testing efficiency.
  • the present application proposes an antenna testing system, which can at least solve the technical problem of low testing efficiency of existing testing systems.
  • An antenna testing system provided by the application includes:
  • the first carrying mechanism is arranged in the dark room
  • a transmission mechanism the transmission mechanism is arranged outside the dark room, and the transmission mechanism is used to transmit the antenna to be tested to the first carrying mechanism;
  • a plugging mechanism, the plugging mechanism is arranged in the dark room;
  • test mechanism the test mechanism is located in the dark room, and the test mechanism is used to test the antenna to be tested;
  • control mechanism is respectively connected with the first bearing mechanism, the transmission mechanism, the insertion mechanism and the testing mechanism, and the control mechanism is used to control the transmission mechanism and the testing mechanism,
  • the control mechanism is also used to control the plugging mechanism to connect the antenna to be tested when the antenna to be tested is delivered, and to disconnect the plugging mechanism from the tested antenna when the testing mechanism is finished. connection between antennas.
  • it further includes a second carrying mechanism, where the second carrying mechanism carries the antenna under test;
  • the transfer mechanism is used to transfer the second carrier mechanism to the first carrier mechanism
  • the plug-in mechanism includes a first plug-in module and a second plug-in module, the first plug-in module is connected to the first carrying mechanism, the second plug-in module is connected to the second carrying mechanism, The second plug-in module is connected to the antenna under test;
  • the control mechanism is connected to the first plug-in module, and the control mechanism is used to control the first plug-in module to connect to the second plug-in module when the second carrying mechanism is transferred to the position. disconnecting the connection between the first plug-in module and the second plug-in module when the testing by the testing mechanism ends.
  • the first carrying mechanism includes a displacement module and a lifting module, the lifting module is connected to the displacement module, and the first plug-in module is connected to the displacement module;
  • the transmission mechanism is used to transmit the second carrying mechanism to the displacement module
  • the control mechanism is connected to the lifting module, and the control mechanism is used to control the lifting module to rise when the second carrying mechanism is transferred to the position, so that the first plug-in module is connected to the second plug-in module.
  • the plug-in module, the control mechanism is also used to control the lowering of the lifting module when the test of the testing mechanism ends, so as to disconnect the first plug-in module from the second plug-in module.
  • the lifting module includes a jacking cylinder, and the jacking cylinder is respectively connected with the displacement module and the control mechanism.
  • the first bearing mechanism further includes a first limit module, and the first limit module is connected to the displacement module;
  • the control mechanism is connected with the first limit module, and the control mechanism is used for controlling the connection of the first limit module to the second load mechanism when the second load mechanism is transferred, so that the The first limit module applies a force in a target direction to the second bearing mechanism, and the target direction is opposite to the rising direction of the lifting module.
  • the second carrying mechanism includes a tray, the tray is provided with a groove, and the tray carries the antenna to be tested;
  • the first limiting module includes a positioning block and a rotating member, the first end of the rotating member is connected to the displacement module, and the second end of the rotating member is connected to the positioning block;
  • the control mechanism is connected to the rotating member, and the control mechanism is used to control the rotation of the rotating member and drive the positioning block to rotate, so that the positioning block is snapped into the groove and applied to the tray. force in the direction of the target.
  • the first limit module further includes a first telescopic piece, the first telescopic piece is respectively connected to the displacement module and the rotating piece, and the first telescopic piece is used for driving the rotating member to translate;
  • the control mechanism is connected to the first telescopic element, and the control mechanism is used to control the expansion and contraction of the first telescopic element and drive the rotating element to translate.
  • the first bearing mechanism further includes a second limit module
  • the second limit module includes a second telescopic piece and a baffle, and the second telescopic piece is respectively connected to the displacement The module is connected to the baffle;
  • the control mechanism is connected to the second telescopic element, and the control mechanism is used to control the expansion and contraction of the second telescopic element and drive the translation of the baffle, so that the baffle is connected to the second bearing mechanism and moves toward the The second bearing mechanism exerts force in the horizontal direction.
  • the displacement module includes a first displacement component, a second displacement component, and a third displacement component, the first displacement component is connected to the darkroom and the second displacement component respectively, and the The second displacement component is connected to the third displacement component, and the third displacement component is connected to the second bearing mechanism;
  • the control mechanism is respectively connected with the first displacement assembly, the second displacement assembly and the third displacement assembly, and the control mechanism is used to control the translation of the first displacement assembly along the first displacement track, and control the translation of the first displacement assembly.
  • the second displacement component is translated along the second displacement track
  • the third displacement component is controlled to translate along the third displacement track, and the first displacement track, the second displacement track and the third displacement track are in pairs vertical.
  • the test mechanism includes a support frame, a first test frame, a second test frame, a rotating assembly and a test assembly, the support frame is connected to the darkroom, and the first test frame is connected to the darkroom.
  • the supporting frame is connected, the second test frame is connected with the first test frame, the rotation assembly is connected with the second test frame, and the test assembly is connected with the rotation assembly;
  • the control mechanism is respectively connected with the first test frame, the second test frame, the rotating assembly and the test assembly, and the control mechanism is used to control the translation of the first test frame along the first horizontal track , controlling the translation of the second test frame along the second horizontal track, controlling the rotation of the rotating component and driving the rotation of the test component, controlling the test component to test the antenna under test, the first horizontal track and the The second horizontal trace is perpendicular.
  • control mechanism automatically connects/disconnects the antenna to be tested by the control mechanism, realizing automation, without manual intervention, and high efficiency, which can solve the technical problem of low test efficiency of the existing test system.
  • the application can realize process automation, simplify the test process and improve test efficiency under the premise of ensuring test accuracy.
  • Fig. 1 is a schematic diagram showing the positional relationship between a darkroom and a transmission mechanism in an antenna testing system according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram of an automatic feeding screen door in an antenna testing system according to an exemplary embodiment
  • Fig. 3 is a schematic diagram of the connection relationship between the darkroom, the first carrying mechanism and the second carrying mechanism in an antenna testing system according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing the connection relationship between the first carrying mechanism and the second carrying mechanism in an antenna testing system according to an exemplary embodiment
  • Fig. 5 is a schematic structural diagram of a first carrying mechanism in an antenna testing system according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram of a first displacement component in an antenna testing system according to an exemplary embodiment
  • Fig. 7 is a schematic diagram of a connection structure of a second displacement component and a third displacement component in an antenna testing system according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram of a pallet in a top view angle in an antenna testing system according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a pallet in an antenna testing system according to an exemplary embodiment, viewed from the bottom;
  • Fig. 10 is a schematic diagram of a connection structure of a third displacement component, a first limit module, and a second limit module in an antenna test system according to an exemplary embodiment
  • Fig. 11 is a schematic diagram of a connection structure between a third displacement component and a first limit module in an antenna testing system according to an exemplary embodiment
  • Fig. 12 is a schematic diagram of the connection structure of the third displacement component, the first limit module and the lifting module in an antenna test system according to an exemplary embodiment
  • Fig. 13 is a schematic structural diagram of a testing mechanism in an antenna testing system according to an exemplary embodiment
  • Fig. 14 is a schematic diagram showing the positional relationship between the testing mechanism and the first carrying mechanism in the antenna testing system according to an exemplary embodiment.
  • the present application proposes an antenna testing system, which can at least solve the technical problem of low testing efficiency of existing testing systems.
  • an antenna test system including:
  • the first carrying mechanism 2, the first carrying mechanism 2 is arranged in the darkroom 1;
  • a transmission mechanism 3, the transmission mechanism 3 is arranged outside the darkroom 1, and the transmission mechanism 3 is used to transmit the antenna to be tested to the first carrying mechanism 2;
  • Plug-in mechanism the plug-in mechanism is located in darkroom 1;
  • a testing mechanism 5, the testing mechanism 5 is set in the darkroom 1, and the testing mechanism 5 is used to test the antenna to be tested;
  • a control mechanism the control mechanism is respectively connected with the first carrying mechanism 2, the transmission mechanism 3, the plugging mechanism and the testing mechanism 5, the control mechanism is used to control the transmission mechanism 3 and the testing mechanism 5, and the control mechanism is also used to transmit When it is in place, control the plugging mechanism to connect the antenna to be tested, and disconnect the connection between the plugging mechanism and the antenna to be tested when the testing mechanism 5 finishes the test.
  • the anechoic chamber 1 may be an anechoic chamber 1, which is a necessary environment for OTA (Over-the-Air Technology) testing, and the anechoic chamber 1 includes a shielding body 15 and an absorber 16.
  • the absorber 16 may be a wedge-shaped absorber.
  • One side of the shielding body 15 is provided with an automatic feeding shielding door 10 .
  • the conveying mechanism 3 can be arranged opposite to the automatic feeding screen door 10 .
  • a photoelectric switch is arranged outside the automatic feeding screen door 10, and when the photoelectric switch senses that the transmission mechanism 3 transports the antenna to be tested to the doorway of the automatic feeding screen door 10, the screen door 10 can be opened automatically.
  • the transmission mechanism 3 When the transmission mechanism 3 transmits the antenna to be tested, the transmission mechanism 3 is arranged opposite to the first carrying mechanism 2 . When the screen door 10 is opened, the transmission mechanism 3 can transmit the antenna to be tested to the first carrying mechanism 2 .
  • the conveying mechanism 3 may be a belt conveying device or a roller conveying device.
  • the first carrying mechanism 2 is arranged in the darkroom 1 and can carry the antenna to be tested. The first carrying mechanism 2 can move in the darkroom 1 to adjust the position of the antenna to be tested, and the antenna to be tested can be tested at various positions.
  • the delivery mechanism 3 is a device for delivering the antenna to be tested to a designated testing location.
  • the transmission mechanism 3 can be equipped with an automatic guidance system, which can ensure that the system can automatically drive along the predetermined route without manual navigation, and automatically transport the antenna to be tested from the starting point to the destination.
  • the transmission mechanism 3 in the embodiment of this specification adopts a roller piggyback type, and the height of the roller is the same as that of the shield door 10 of the anechoic chamber 1 .
  • the antenna-to-be-test being delivered to a location may mean that the antenna-to-be-test is delivered to the antenna installation area in the first carrying mechanism 2 .
  • the plugging mechanism can connect the antenna to be tested when the antenna to be tested is delivered in place, and transmit electrical signals between the antenna to be tested and the control mechanism.
  • the electrical signal can be a signal for controlling the transmission parameters of the antenna. phase, amplitude, etc.
  • the signal sent by the control mechanism to the antenna under test through the plug-in mechanism includes radio frequency signals, optical signals, strong and weak electrical signals, etc. of the antenna under test.
  • the plugging mechanism can be disconnected from the antenna when the testing mechanism 5 finishes the test, so that the first carrier mechanism 2 can transfer the antenna to the transmission mechanism 3 , so that the antenna can be transported out of the darkroom 1 .
  • the testing mechanism 5 can send signals to the antenna under test, and can also receive signals from the antenna under test, so as to perform signal interaction with the antenna under test and test the performance of the antenna under test.
  • the control mechanism is respectively connected with the first carrying mechanism 2, the transmission mechanism 3, the plug-in mechanism and the testing mechanism 5.
  • the control mechanism is used to control the transmission mechanism 3 to transmit the antenna to be tested to the first carrying mechanism 2.
  • Control the plug-in mechanism to connect the antenna to be tested control the test mechanism 5 to perform the test when the plug-in mechanism is connected to the antenna to be tested, control the plug-in mechanism to disconnect the connection with the antenna to be tested when the test is over, and control the transmission at the end of the test Mechanism 3 transmits the antenna to be tested to the outside of darkroom 1 .
  • control mechanism automatically connects/disconnects the antenna to be tested by the control mechanism, which realizes automation without manual intervention and high efficiency, which can solve the technical problem of low test efficiency of the existing test system.
  • the embodiments of this specification can realize process automation, simplify the test process, improve test efficiency, and reduce floor space while ensuring test accuracy.
  • the automatic feeding screen door 10 can be one.
  • a single-input and single-out mode can be adopted to transmit the antenna to be tested or Send the antenna out from the darkroom 1.
  • the automatic feeding screen door 10 can also be two.
  • a straight-through entry and exit method can be adopted to transmit the antenna to be tested in the darkroom 1 through one automatic feeding screen door, and the antenna is passed through another automatic feeding screen door. Teleported from Darkroom 1.
  • Shield door 10 is a lifting structure, and is made up of door panel 11 and the driving mechanism 12 of left and right sides, and driving mechanism 12 is distributed in the left and right sides of door body, is symmetrical arrangement.
  • the driving mechanism 12 drives the door panel 11 to move up and down. At the lower limit position, it can also drive the door panel 11 to move back and forth, and when the door is closed, it continuously gives the door panel 11 a bonding force to the door frame to achieve the function of shielding and sealing.
  • Driving mechanism 12 is made up of driving cylinder 151, traction plate 141, guide plate 131 and concentric shaft group, and concentric shaft group is fixed on the door panel 11, and one section of roller is equipped with on the axle, and a section of copper sleeve is equipped with.
  • the roller slides in the guide groove of the guide plate 131 , and the copper sleeve slides in the slide groove of the traction plate 141 .
  • the driving cylinder 151 drives the traction plate 141 to move up and down.
  • the traction plate 141 has a 45° sliding groove, and the concentric shafts are assembled in the sliding groove. When the traction plate 141 moves up and down, it can simultaneously give the concentric shaft group horizontal and vertical force components .
  • the guide groove of guide plate 131 controls the direction of door movement.
  • the movement of the driving cylinder 151 is controlled by the solenoid valve, and when the solenoid valve suddenly loses power, the door panel 11 can stop moving immediately.
  • the shielding body 15 is also provided with a maintenance shielding door 14 on the other side, which is convenient for personnel to enter and exit for maintenance.
  • the wave-absorbing material is arranged on six surfaces inside the shielding body 15, which can reduce the influence of multipath effect on the test result caused by the signal reflection of the inner wall.
  • the anechoic chamber 1 also has basic lighting, video monitoring, temperature and humidity monitoring, and smoke detection and alarm functions to ensure the safety of the test.
  • it also includes a second carrying mechanism 6, and the second carrying mechanism 6 carries the antenna to be tested;
  • the transfer mechanism 3 is used to transfer the second carrier mechanism 6 to the first carrier mechanism 2;
  • the plug-in mechanism includes a first plug-in module 41 and a second plug-in module 42, the first plug-in module 41 is connected to the first carrier mechanism 2, the second plug-in module 42 is connected to the second carrier mechanism 6, and the second plug-in module 42 is connected to the second carrier mechanism 6.
  • Module 42 is connected with the antenna to be tested;
  • the control mechanism is connected with the first plug-in module 41, and the control mechanism is used to control the first plug-in module 41 to connect to the second plug-in module 42 when the second carrier mechanism 6 is transferred in place, and disconnect the second plug-in module 42 when the test mechanism 5 is finished testing.
  • a connection between a plug-in module 41 and a second plug-in module 42 is connected with the first plug-in module 41, and the control mechanism is used to control the first plug-in module 41 to connect to the second plug-in module 42 when the second carrier mechanism 6 is transferred in place, and disconnect the second plug-in module 42 when the test mechanism 5 is finished testing.
  • the second carrying mechanism 6 is detachably connected to the first carrying mechanism 2, the antenna to be tested can be installed on the second carrying mechanism 6, the second carrying mechanism 6 can be placed on the transmission mechanism 3, and the transmission mechanism 3.
  • the antenna to be tested can be transported by transporting the second carrying mechanism 6.
  • the antenna to be tested is installed on the second carrying mechanism 6, and then the second carrying mechanism 6 is transmitted.
  • the second carrying mechanism 6 can be used as the carrier of the antenna to be tested, which is convenient for the transmission mechanism 3 to transmit the antenna to be tested; it is also convenient for subsequent adjustment of the antenna to be tested. Location within chamber 1.
  • the operator can install the antenna to be tested on the second carrying mechanism 6 and connect the antenna to be tested to the second plug-in module 42 through a signal line.
  • the control mechanism controls the first plug-in module 41 to connect to the second plug-in module 42, and the The electrical connection lines between the antenna under test, the second plug module 42 , the first plug module 41 and the control mechanism enable the control mechanism to send electrical signals to the antenna under test for antenna testing.
  • the control mechanism can control the first plug-in module 41 to separate from the second plug-in module 42, disconnect the connection between the first plug-in module 41 and the second plug-in module 42, and avoid the influence of the signal line.
  • the conveying mechanism 3 conveys the second carrying mechanism 6 to the outside of the darkroom 1 .
  • connecting the first plug-in module 41 to the second plug-in module 42 can realize the connection between the antenna to be tested and the control mechanism, and the control method is simple and the operation is convenient.
  • the first carrying mechanism 2 includes a displacement module and a lifting module 29, the lifting module 29 is connected to the displacement module, and the first plug-in module 41 is connected to the displacement module;
  • the transmission mechanism 3 is used to transmit the second carrying mechanism 6 to the displacement module
  • the control mechanism is connected with the lifting module 29, and the control mechanism is used to control the lifting module 29 to rise when the second carrying mechanism 6 is transferred to the position, so that the first plug-in module 41 is connected to the second plug-in module 42.
  • the lifting module 29 is controlled to descend, so that the first plug-in module 41 and the second plug-in module 42 are disconnected.
  • the second carrying mechanism 6 can be placed on the displacement module.
  • the control mechanism can control the lifting module 29 to rise. Since the lifting module 29 is connected with the displacement module, the lifting module 29 can drive the displacement module to rise, so that the first plug-in module 41 on the displacement module Rise up and connect to the second plug-in module 42 .
  • the control mechanism can also control the lifting module 29 to descend when the testing mechanism 5 finishes testing, and the lifting module 29 can drive the displacement module to descend, so that the first plug-in module 41 descends and disconnects it from the second plug-in module 42 .
  • the structure of the embodiment of this specification is simple and easy to control.
  • the lifting module 29 includes a jacking cylinder, and the jacking cylinder is respectively connected with the displacement module and the control mechanism.
  • the function of the lifting module 29 in the embodiment of this specification can be realized by the jacking cylinder, and the control mechanism can control the jacking cylinder to extend upwards, push the displacement module upwards, and make the second plug-in module 42 on the displacement module rise and connect to the first plug-in module 41 .
  • the control mechanism can control the jacking cylinder to shrink downward. After losing the upward thrust of the jacking cylinder, the displacement module can automatically fall back, so that the second plug-in module 42 on the displacement module is disconnected from the first plug-in module 41.
  • the lifting module 29 in the embodiment of this specification has a simple structure and low cost.
  • the first bearing mechanism 2 further includes a first limit module 231, and the first limit module 231 is connected to the displacement module;
  • the control mechanism is connected with the first limit module 231, and the control mechanism is used to control the first limit module 231 to connect the second carrier mechanism 6 when the second carrier mechanism 6 is transferred, so that the first limit module 231 moves toward the second carrier mechanism 6.
  • the carrying mechanism 6 exerts a force in a target direction, and the target direction is opposite to the rising direction of the lifting module 29 .
  • the control mechanism when the second carrying mechanism 6 is transferred to the position, can control the first limit module 231 to connect to the second carrying mechanism 6, because the first limit module 231 is connected with the displacement module, thus, the second The second bearing mechanism 6 can be limited to the displacement module by the first limit module 231 .
  • the jacking cylinder When the jacking cylinder extends upward, it can drive the displacement module to rise, so that the second plug-in module 42 on the displacement module rises; in the embodiment of this specification, the force in the downward direction is applied to the second bearing mechanism 6 through the first limit module 231, which can Limiting the position of the second carrying mechanism 6 prevents the second carrying mechanism 6 from being jacked up and prevents the situation that the first plug-in module 41 cannot be connected to the second plug-in module 42, thereby ensuring the plugging effect of the plug-in mechanism.
  • the first limit module 231 is arranged at one end of the displacement module close to the first plug-in module 41 .
  • the second carrying mechanism 6 includes a tray 61, the tray 61 is provided with a groove, and the tray 61 carries the antenna to be tested;
  • the first limit module 231 includes a positioning block 2311 and a rotating member 2312, the first end of the rotating member 2312 is connected to the displacement module, and the second end of the rotating member 2312 is connected to the positioning block 2311;
  • the control mechanism is connected with the rotating member 2312 , and the control mechanism is used to control the rotation of the rotating member 2312 and drive the positioning block 2311 to rotate, so that the positioning block 2311 snaps into the groove and applies a force in a target direction to the tray 61 .
  • the transmission mechanism 3 can transmit the antenna to be tested through the transmission tray 61 , and the groove of the tray 61 can be used for the positioning block 2311 of the first limiting module 231 to be locked.
  • the rotating member 2312 can be rod-shaped, and the control mechanism can control the rotating member 2312 to rotate and drive the positioning block 2311 to rotate.
  • the control mechanism can control the rotating member 2312 to rotate to a horizontal position, and the positioning block 2311 is located below the tray 61 in the horizontal position, which can prevent the positioning block 2311 from blocking the transmission process of the tray 61.
  • the control mechanism can control the rotating member 2312 to rotate to the vertical position.
  • the positioning block 2311 When in the vertical position, the positioning block 2311 is clamped in the groove of the tray 61, and the bottom of the positioning block 2311 can be against the top of the groove. On the surface, the positioning block 2311 can apply a downward force to the tray 61 to realize the limiting function of the first limiting module 231 .
  • the tray 61 is used to rotate the antenna to be tested, and as a general component, it has the characteristics of strong compatibility and stable structure.
  • the tray 61 is provided with a support block 62, a heat dissipation hole 65 and a clamping block 63.
  • the antenna to be tested can be placed on the support block 62 of the tray 61.
  • the heat dissipation hole 65 is located below the antenna to be tested.
  • the heat dissipation hole 65 is conducive to the heat dissipation of the antenna to be tested.
  • the clamping block 63 can be clamped to the periphery of the antenna under test, so as to limit the antenna under test to the tray 61 .
  • the clamping block 63 can be fixed or adjustable.
  • the adjustable clamping block 63 is provided with a hand wheel 64, and the operator can turn the hand wheel 64 to adjust the distance between the clamping block 63 and the antenna to be tested. distance.
  • the first limit module 231 further includes a first telescopic member 2313, the first telescopic member 2313 is respectively connected with the displacement module and the rotating member 2312, and the first telescopic member 2313 is used to drive the rotating member 2312 to translate ;
  • the control mechanism is connected with the first telescopic member 2313, and the control mechanism is used to control the expansion and contraction of the first telescopic member 2313 and drive the rotating member 2312 to translate.
  • the first telescopic member 2313 can be a telescopic cylinder, the first telescopic member 2313 can expand and contract along the transmission direction of the transmission mechanism 3, and the first telescopic member 2313 can cooperate with the rotating member 2312 to clamp the positioning block 2311 in the concave in the slot.
  • the control mechanism can control the first telescopic member 2313 to extend away from the displacement module, and then control the rotating member 2312 to rotate to a horizontal position, and the positioning block 2311 is located under the pallet 61 in the horizontal position , can prevent the positioning block 2311 from blocking the movement of the tray 61 into the darkroom 1 .
  • the control mechanism can control the rotating member 2312 to rotate to a vertical position, and then control the first telescopic member 2313 to shrink in the direction close to the displacement module, so that the positioning block 2311 is clamped in the groove of the tray 61, and the positioning block
  • the bottom of the 2311 can be against the upper surface of the groove, and the positioning block 2311 can exert a downward force on the tray 61 to realize the limiting function of the first limiting module 231 .
  • the control mechanism can control the first telescopic member 2313 to extend away from the displacement module, and then control the rotating member 2312 to rotate to a horizontal position, so as to prevent the positioning block 2311 from blocking the tray 61 from moving outside the darkroom 1.
  • the first bearing mechanism 2 further includes a second limit module, the second limit module includes a second telescopic member 232 and a baffle 233, and the second telescopic member 232 is connected to the displacement module and the baffle respectively. 233 connection;
  • the control mechanism is connected with the second telescopic member 232, and the control mechanism is used to control the expansion and contraction of the second telescopic member 232 and drive the baffle plate 233 to translate, so that the baffle plate 233 is connected to the second carrying mechanism 6 and applies a horizontal force to the second carrying mechanism 6. force.
  • the control mechanism can control the second limiting module to apply a force in the horizontal direction to the tray 61, and further limit the tray 61, so as to avoid the displacement of the tray 61 and affect the antenna test. .
  • the third displacement assembly 23 is provided with a first edge 236 and a second edge 234 , and when one end of the tray 61 abuts against the first edge 236 , it means that the tray 61 is transferred to the position.
  • the second telescopic member 232 in the second limit module can extend and drive the baffle plate 233 to translate, so that the baffle plate 233 abuts against the tray 61, makes the tray 61 abut against the second edge 234, and fine-tunes the position of the tray 61 , so that the tray 61 is stuck between the baffle plate 233 and the second edge 234, and the tray 61 is further limited, so as to prevent the tray 61 from shifting and affecting the antenna test.
  • the displacement module includes a first displacement assembly 21, a second displacement assembly 22 and a third displacement assembly 23, the first displacement assembly 21 is connected to the darkroom 1 and the second displacement assembly 22 respectively, and the second displacement assembly The component 22 is connected with the third displacement component 23, and the third displacement component 23 is connected with the second bearing mechanism 6;
  • the control mechanism is respectively connected with the first displacement assembly 21, the second displacement assembly 22 and the third displacement assembly 23.
  • the control mechanism is used to control the translation of the first displacement assembly 21 along the first displacement track, and control the translation of the second displacement assembly 22 along the second displacement track.
  • Trajectory translation, the third displacement component 23 is controlled to translate along the third displacement trajectory, and the first displacement trajectory, the second displacement trajectory and the third displacement trajectory are perpendicular to each other.
  • the displacement module can be moved in the darkroom 1 to adjust the position of the antenna to be tested, so as to form different positional relationships between the antenna to be tested and the testing mechanism 5, so as to test the performance of the antenna more comprehensively.
  • the first displacement track can be a vertical track
  • the second displacement track can be a horizontal track perpendicular to the delivery direction of the delivery mechanism 3
  • the third displacement track can be a horizontal track parallel to the delivery direction of the delivery mechanism 3 .
  • the displacement module can be installed in the lower space of the anechoic chamber 1, and the displacement module can move on the first displacement track, the second displacement track and the third displacement track.
  • the displacement module can be used to transport the antenna to be tested to the feed door of the anechoic chamber 1 for connecting the antenna to be tested, and can also be used to move the antenna to be tested to a designated test position in the anechoic chamber 1 .
  • the first displacement assembly 21 is a lifting structure, which is used to change the test distance from the antenna to be tested to the test mechanism 5.
  • the first displacement assembly 21 includes a base 218, a first base plate, 4 ball screws 213, 2 guide shafts 214, 4 A lifter 217, a first guide rail 211, a first motor 215, a first reducer 216, and a first slider 212, and a base 218 is installed on the bottom surface of the darkroom 1.
  • the two first guide rails 211 are respectively arranged on two sides of the first bottom plate, and the first motor 215 , the first reducer 216 , the ball screw 213 and the guide shaft 214 are all connected to the first bottom plate.
  • the elevators 217 have built-in nut pairs, and the elevators 217 cooperate with the ball screw 213 to realize the first guide rails 211 on both sides. synchronous lifting action.
  • the first sliding block 212 is slidably disposed on the first guide rail 211 .
  • the control mechanism is connected with the first motor 215 , and the control mechanism transmits and controls the first guide rail 211 to move up and down along the ball screw 213 by controlling the first motor 215 .
  • the installation direction of the ball screw 213 is the direction of the first displacement track.
  • the second displacement assembly 22 includes a second base plate, a second guide rail 221, a second slide block 222, a second lead screw nut pair, a motor, a second reducer, a second motor, a second reducer, and a second lead screw nut pair
  • the composed driving device is installed on the first bottom plate of the first displacement assembly 21, and the two second guide rails 221 are cross-connected with the two first guide rails, and the installation direction of the second guide rails 221 is perpendicular to the installation direction of the first guide rails.
  • the second sliding block 222 is slidably disposed on the second guide rail 221 .
  • the bottom of the second guide rail 221 is connected with the first slider of the first displacement assembly 21 , so that the second guide rail 221 can slide on the first guide rail.
  • the control mechanism is connected with the second motor, and the control mechanism controls the movement of the second displacement assembly 22 on the first guide rail by controlling the second motor.
  • the setting direction of the first guide rail is the direction of the second displacement track.
  • the 3rd displacement assembly 23 comprises the 3rd bottom plate 230, the 3rd lead screw nut pair, the 3rd motor, the 3rd speed reducer and the drum assembly 237, the driving device that the 3rd lead screw nut pair, the 3rd motor, the 3rd speed reducer form Installed on the second bottom plate of the second displacement assembly 22 .
  • the third motor and the third reducer drive the screw to rotate, and drive the third displacement assembly 23 to move.
  • the third bottom plate 230 is mounted on the second sliding block 222 of the second displacement assembly 22 , so that the third bottom plate 230 can slide on the second guide rail 221 of the second displacement assembly 22 .
  • the control mechanism is connected with the third motor, and the control mechanism controls the movement of the third displacement assembly 23 on the second guide rail 221 by controlling the third motor.
  • the installation direction of the second guide rail 221 is the direction of the third displacement track.
  • the third bottom plate 230 of the third displacement assembly 23 is also provided with a roller assembly 237 , and the roller assembly 237 may be provided with 2 driven rollers and 3 driven rollers for the insertion and delivery of the tray 61 .
  • the roller assembly 237 can receive the tray 61 delivered by the delivery mechanism 3 , and can also deliver the tray 61 to the delivery mechanism 3 .
  • the lifting module 29 can be connected with the third bottom plate 230, the lifting module 29 can be a jacking cylinder, and the control mechanism can control the lifting of the roller assembly 237 through the jacking cylinder to plug in or disconnect the first plug-in module 41 and the second plug-in module 41.
  • the first plug-in module 41 is installed on the third bottom plate 230 of the third displacement assembly 23
  • the jacking cylinder is installed on the bottom of the third bottom plate 230 of the third displacement assembly 23
  • the second plug-in module 42 is installed On the pallet 61
  • the third bottom plate 230 can be lifted by the movement of the cylinder, so that the first plug-in module 41 is connected to the second plug-in module 42
  • the third bottom plate 230 can be driven down by the movement of the cylinder, so that the first plug-in module 41 can be connected to the second plug-in module 42.
  • the plug-in module 41 is pulled out from the second plug-in module 42 .
  • the test mechanism 5 includes a support frame 50, a first test frame 51, a second test frame 52, a rotating assembly and a test assembly 70, the support frame 50 is connected to the darkroom 1, and the first test frame 51 is connected to the darkroom 1.
  • the support frame 50 is connected, the second test frame 52 is connected with the first test frame 51, the rotation assembly is connected with the second test frame 52, and the test assembly 70 is connected with the rotation assembly;
  • the control mechanism is respectively connected with the first test frame 51, the second test frame 52, the rotating assembly and the test assembly 70.
  • the control mechanism is used to control the first test frame 51 to translate along the first horizontal track, and to control the second test frame 52 to move along the second horizontal track.
  • the horizontal track translates, controls the rotation of the rotating component and drives the test component 70 to rotate, controls the test component 70 to test the antenna under test, and the first horizontal track is perpendicular to the second horizontal track.
  • the support frame 50 is connected with the darkroom 1, and the support frame 50 plays a supporting role.
  • the first test frame 51 and the second test frame 52 can move in the darkroom 1 to adjust the position of the test assembly 70, so that the Different positional relationships are formed between the test antenna and the test mechanism 5, so as to test the performance of the antenna more comprehensively.
  • Both the first horizontal track and the second horizontal track are tracks in the horizontal direction.
  • the support frame 50 is provided with a first test guide rail, the direction of the first test guide rail is a first horizontal track, and the first test frame 51 is slid on the first test guide rail.
  • the first test rack 51 is provided with a second test guide rail, the direction of the second test guide rail is a second horizontal track, and the second test rack 52 is slidably disposed on the second test guide rail.
  • the testing mechanism 5 is installed in the head space of the anechoic chamber 1 .
  • the control mechanism can control the translation of the first test frame 51 along the first horizontal track, and control the translation of the second test frame 52 along the second horizontal track, so that the test assembly 70 can move in any direction in the horizontal plane.
  • the test assembly 70 is installed on the rotation assembly, and the pitch control at any angle is realized through the rotation assembly.
  • the test component 70 is a dual-polarized antenna corresponding to the polarization direction of the tested antenna.
  • the dual-polarized antenna is fixed on the antenna mounting plate, and the antenna mounting plate is fixed on the rotating assembly.
  • the control mechanism can control and obtain the status of the anechoic chamber 1, the transmission mechanism 3, the testing mechanism 5, the first carrying mechanism 2 and the second carrying mechanism 6, and the control mechanism includes a main control module, a driving module, a strong Electric module, weak current module.
  • the electrical components are installed inside the anechoic chamber 1 and communicate with the test cabinet outside the anechoic chamber 1 through a power supply and a signal filter.
  • the test cabinet is placed outside the darkroom 1 and is an independent standard cabinet.
  • the test cabinet includes a switch system, measuring instruments, an indoor baseband processing unit (BBU), and a program-controlled power supply.
  • BBU indoor baseband processing unit
  • the switch system mainly realizes the switching of the radio frequency channel, the input end is connected to the measurement probe port of the anechoic chamber 1, and the output end is connected to various measuring instruments to realize efficient testing.
  • the measuring instruments are commonly used signal sources, spectrum analyzers, and power meters to realize the testing and data analysis of the uplink and downlink signals of the antenna to be tested.
  • the indoor baseband processing unit realizes the control of the antenna to be tested.
  • the program-controlled power supply realizes the power supply of the antenna under test, as well as power-on and power-off control and monitoring.
  • the electromagnetic environment monitoring system collects the signal power within a certain distance through the monitoring probe.
  • the monitoring probe is generally installed on the wall or ceiling near the anechoic chamber 1, and then by setting the threshold value, when the test signal in the anechoic chamber 1 leaks After reaching a certain critical value outside, a system alarm will be issued to confirm the safety of the test.
  • it also collects external electromagnetic environment signals to monitor whether there is excessive radiation level to ensure the personal safety of employees in the production line.
  • the 5G base station adopts MIMO antenna design, and the number of oscillators is 64 or more.
  • the test in the R&D stage all the vibrators are often made to work together, so for the darkroom 1, the test aperture surface is very large, and the far-field distance is required to be large (2D 2 / ⁇ ). Therefore, in the production line test, it can be simplified to only test a single vibrator or a small group of vibrators, so that the requirements for far-field distance are relatively low.
  • the test items are generally amplitude and phase calibration.
  • the operator can install the antenna to be tested on the tray 61 of the second carrying mechanism 6, and place the tray 61 on the transfer mechanism 3.
  • the control mechanism can control the transfer mechanism 3 to transfer the tray 61 to the darkroom 1.
  • a photoelectric switch is arranged outside the automatic feeding shield door 10 of the darkroom 1. When the photoelectric switch senses that the transfer mechanism 3 transports the tray 61 to the automatic feeding shield door 10 When opening the door, the screen door 10 can be opened automatically.
  • the displacement module of the first carrying mechanism 2 can receive and carry the pallet 61 transmitted by the conveying mechanism 3 , the pallet 61 can be transmitted to the third displacement assembly 23 of the displacement module, when one end of the pallet 61 abuts against the third displacement assembly 23
  • a first edge 236 indicates that the tray 61 has been transported into position.
  • a photoelectric sensor can be used to detect whether the tray 61 is conveyed in place, and the photoelectric sensor can be connected with the control mechanism and the third displacement assembly 23 .
  • the control mechanism can control the automatic feeding screen door 10 to close. Further, the control mechanism can control the second limit module to limit the pallet 61 horizontally, then control the first limit module 231 to limit the pallet 61 vertically, and then control the lifting module 29 to lift the third displacement assembly 23, The first plug-in module 41 on the third displacement assembly 23 is connected to the second plug-in module 42 on the tray 61 .
  • control mechanism can control the first displacement component 21 to move on the first displacement track, control the second displacement component 22 to move on the second displacement track, and control the third displacement component 23 to move on the third displacement track, thereby adjusting the third displacement
  • control mechanism can also control the first test frame 51 to move on the first horizontal track, and control the second test frame 52 to move on the second horizontal track, thereby adjusting the horizontal position of the test assembly 70; the control mechanism can also control the rotation of the rotating assembly, The pitch angle of the test assembly 70 is adjusted.
  • the control mechanism controls the antenna under test and the test component 70 to perform signal interaction.
  • control mechanism can control the third displacement assembly 23, the second displacement assembly 22 and the first displacement assembly 21, align the position of the tray 61 with the automatic feeding screen door 10, and wait for the automatic feeding screen door 10 to be opened for the first time.
  • the three-displacement assembly 23 can transmit the tray 61 to the transmission mechanism 3 through the roller assembly 237 , and transmit the antenna to be tested to the outside of the darkroom 1 .
  • the embodiment of this manual combines the method of automatic production line, through the docking of the transmission mechanism 3, automatic feeding and unloading, automatic positioning, automatic plugging, automatic testing and other actions, the process of manual intervention is canceled. It can realize 24-hour unmanned management of the factory, save testing time, increase production capacity, and release human resources.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种天线测试***,包括:暗室(1);第一承载机构(2),第一承载机构(2)设于暗室(1)内;传送机构(3),传送机构(3)设于暗室(1)外,传送机构(3)用于向第一承载机构(2)传送待测天线;接插机构,接插机构设于暗室(1)内;测试机构(5),测试机构(5)设于暗室(1)内,测试机构(5)用于测试待测天线;控制机构,控制机构分别与第一承载机构(2)、传送机构(3)、接插机构和测试机构(5)连接,控制机构用于控制传送机构(3)和测试机构(5),控制机构还用于在待测天线被传送到位时控制接插机构连接待测天线,在测试机构(5)测试结束时断开接插机构与待测天线之间的连接。该测试***由控制机构自动地将接插机构连接/断开待测天线,实现自动化,无需人工干预,效率高。

Description

一种天线测试*** 技术领域
本发明涉及天线测试领域,具体涉及一种天线测试***。
背景技术
目前,5G已进入了正式商用阶段,全球的运营商都在大规模的集采基站设备用于5G网络的建设。对于5G基站天线而言,天线与RRU集成在一起,一方面电磁耦合、有源驻波等干扰因素不能完全消除;另一方面,有源天线的校准及幅相加权是通过各个射频通道上的一系列有源器件配合完成的,与无源天线阵列通过无源的功分网络来进行幅相加权的方式差别很大。所以对于采用了大规模MIMO有源天线技术的5G基站而言,一体化OTA测试方式才能有效反映其性能指标。
OTA测试必须在暗室中进行,对于流水线操作的生产线而言,在天线测试过程中,需要通过人工干预的方式连接待测天线和测试***,导致测试效率较低。
发明内容
本申请提出了一种天线测试***,至少可以解决现有测试***的测试效率较低的技术问题。
本申请提供的一种天线测试***,包括:
暗室;
第一承载机构,所述第一承载机构设于所述暗室内;
传送机构,所述传送机构设于所述暗室外,所述传送机构用于向所述第一承载机构传送待测天线;
接插机构,所述接插机构设于所述暗室内;
测试机构,所述测试机构设于所述暗室内,所述测试机构用于测试所 述待测天线;
控制机构,所述控制机构分别与所述第一承载机构、所述传送机构、所述接插机构和所述测试机构连接,所述控制机构用于控制所述传送机构和所述测试机构,所述控制机构还用于在所述待测天线被传送到位时控制所述接插机构连接所述待测天线,在所述测试机构测试结束时断开所述接插机构与所述待测天线之间的连接。
在一种可能的实现方式中,还包括第二承载机构,所述第二承载机构承载所述待测天线;
所述传送机构用于向所述第一承载机构传送所述第二承载机构;
所述接插机构包括第一接插模块和第二接插模块,所述第一接插模块与所述第一承载机构连接,所述第二接插模块与所述第二承载机构连接,所述第二接插模块与所述待测天线连接;
所述控制机构与所述第一接插模块连接,所述控制机构用于在所述第二承载机构被传送到位时控制所述第一接插模块连接所述第二接插模块,在所述测试机构测试结束时断开所述第一接插模块与所述第二接插模块之间的连接。
在一种可能的实现方式中,所述第一承载机构包括位移模块和升降模块,所述升降模块与所述位移模块连接,所述第一接插模块与所述位移模块连接;
所述传送机构用于向所述位移模块传送所述第二承载机构;
所述控制机构与所述升降模块连接,所述控制机构用于在所述第二承载机构被传送到位时控制所述升降模块上升,以使所述第一接插模块连接所述第二接插模块,所述控制机构还用于在所述测试机构测试结束时控制所述升降模块下降,以使所述第一接插模块与所述第二接插模块之间断开。
在一种可能的实现方式中,所述升降模块包括顶升气缸,所述顶升气缸分别与所述位移模块和所述控制机构连接。
在一种可能的实现方式中,所述第一承载机构还包括第一限位模块,所述第一限位模块与所述位移模块连接;
所述控制机构与所述第一限位模块连接,所述控制机构用于在所述第 二承载机构被传送到位时控制所述第一限位模块连接所述第二承载机构,以使所述第一限位模块向所述第二承载机构施加目标方向的力,所述目标方向与所述升降模块的上升方向相反。
在一种可能的实现方式中,所述第二承载机构包括托盘,所述托盘设有凹槽,所述托盘承载所述待测天线;
所述第一限位模块包括定位块和旋转件,所述旋转件的第一端与所述位移模块连接,所述旋转件的第二端与所述定位块连接;
所述控制机构与所述旋转件连接,所述控制机构用于控制所述旋转件旋转并带动所述定位块旋转,以使所述定位块卡接至所述凹槽并向所述托盘施加目标方向的力。
在一种可能的实现方式中,所述第一限位模块还包括第一伸缩件,所述第一伸缩件分别与所述位移模块和所述旋转件连接,所述第一伸缩件用于带动所述旋转件平移;
所述控制机构与所述第一伸缩件连接,所述控制机构用于控制所述第一伸缩件伸缩并带动所述旋转件平移。
在一种可能的实现方式中,所述第一承载机构还包括第二限位模块,所述第二限位模块包括第二伸缩件和挡板,所述第二伸缩件分别与所述位移模块和所述挡板连接;
所述控制机构与所述第二伸缩件连接,所述控制机构用于控制所述第二伸缩件伸缩并带动所述挡板平移,以使所述挡板连接所述第二承载机构并向所述第二承载机构施加水平方向的力。
在一种可能的实现方式中,所述位移模块包括第一位移组件、第二位移组件和第三位移组件,所述第一位移组件分别与所述暗室和所述第二位移组件连接,所述第二位移组件与所述第三位移组件连接,所述第三位移组件与所述第二承载机构连接;
所述控制机构分别与所述第一位移组件、所述第二位移组件和所述第三位移组件连接,所述控制机构用于控制所述第一位移组件沿第一位移轨迹平移,控制所述第二位移组件沿第二位移轨迹平移,控制所述第三位移组件沿第三位移轨迹平移,所述第一位移轨迹、所述第二位移轨迹和所述 第三位移轨迹之间两两垂直。
在一种可能的实现方式中,所述测试机构包括支撑架、第一测试架、第二测试架、旋转组件和测试组件,所述支撑架与所述暗室连接,所述第一测试架与所述支撑架连接,所述第二测试架与所述第一测试架连接,所述旋转组件与所述第二测试架连接,所述测试组件与所述旋转组件连接;
所述控制机构分别与所述第一测试架、所述第二测试架、所述旋转组件和所述测试组件连接,所述控制机构用于控制所述第一测试架沿第一水平轨迹平移,控制所述第二测试架沿第二水平轨迹平移,控制所述旋转组件旋转并带动所述测试组件旋转,控制所述测试组件测试所述待测天线,所述第一水平轨迹和所述第二水平轨迹相垂直。
本申请中,由控制机构自动地将接插机构连接/断开待测天线,实现自动化,无需人工干预,效率高,可以解决现有测试***的测试效率较低的技术问题。本申请可以实现流程自动化,在保障测试精度的前提下简化测试流程,提高测试效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据一示例性实施例示出的一种天线测试***中暗室和传送机构的位置关系示意图;
图2为根据一示例性实施例示出的一种天线测试***中自动进料屏蔽门的结构示意图;
图3为根据一示例性实施例示出的一种天线测试***中暗室、第一承载机构和第二承载机构的连接关系示意图;
图4为根据一示例性实施例示出的一种天线测试***中第一承载机构和第二承载机构的连接关系示意图;
图5为根据一示例性实施例示出的一种天线测试***中第一承载机构的结构示意图;
图6为根据一示例性实施例示出的一种天线测试***中第一位移组件的结构示意图;
图7为根据一示例性实施例示出的一种天线测试***中第二位移组件和第三位移组件的连接结构示意图;
图8为根据一示例性实施例示出的一种天线测试***中托盘在俯视视角下的结构示意图;
图9为根据一示例性实施例示出的一种天线测试***中托盘在仰视视角下的结构示意图;
图10为根据一示例性实施例示出的一种天线测试***中第三位移组件、第一限位模块和第二限位模块的连接结构示意图;
图11为根据一示例性实施例示出的一种天线测试***中第三位移组件和第一限位模块的连接结构示意图;
图12为根据一示例性实施例示出的一种天线测试***中第三位移组件、第一限位模块和升降模块的连接结构示意图;、
图13为根据一示例性实施例示出的一种天线测试***中测试机构的结构示意图;
图14为根据一示例性实施例示出的一种天线测试***中测试机构与第一承载机构的位置关系示意图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样 可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
本申请提出了一种天线测试***,至少可以解决现有测试***的测试效率较低的技术问题。
结合图1至图14所示,本说明书实施例提供一种天线测试***,包括:
暗室1;
第一承载机构2,第一承载机构2设于暗室1内;
传送机构3,传送机构3设于暗室1外,传送机构3用于向第一承载机构2传送待测天线;
接插机构,接插机构设于暗室1内;
测试机构5,测试机构5设于暗室1内,测试机构5用于测试待测天线;
控制机构,控制机构分别与第一承载机构2、传送机构3、接插机构和测试机构5连接,控制机构用于控制传送机构3和测试机构5,控制机构还用于在待测天线被传送到位时控制接插机构连接待测天线,在测试机构5测试结束时断开接插机构与待测天线之间的连接。
本说明书实施例中,暗室1可以是电波暗室1,电波暗室1是空中下载技术(OTA,Over-the-Air Technology)测试所必需的环境,电波暗室1包括屏蔽体15和吸波体16。吸波体16可以是尖劈形吸波材料。在屏蔽体15的其中一面上设置有自动进料屏蔽门10。传送机构3可以与自动进料屏蔽门10相对设置。自动进料屏蔽门10外设有光电开关,当光电开关感应到传送机构3将待测天线运送到自动进料屏蔽门10的门口时,屏蔽门10可以自动打开。
在传送机构3传送待测天线时,传送机构3与第一承载机构2相对设置。当屏蔽门10打开时,传送机构3可以向第一承载机构2传送待测天线。传送机构3可以为皮带传送设备,也可以为滚筒式传送设备。第一承载机构2设于暗室1内,可以承载待测天线,第一承载机构2可以在暗室1内移动,从而调整待测天线的位置,可以在各个位置对待测天线进行测试。传送机构3是用于将待测天线送到指定测试位置的装置。传送机构3上可以装备有自动导向***,可以保障***在不需要人工引航的情况下就能够 沿预定的路线自动行驶,将待测天线自动从起始点运送到目的地。本说明书实施例中的传送机构3采用辊筒背负式,辊筒高度与电波暗室1屏蔽门10高度相同。
待测天线被传送到位可以是指待测天线被传送至第一承载机构2中的天线安装区域。接插机构可以在待测天线被传送到位时连接待测天线,在待测天线和控制机构之间传输电信号,电信号可以是控制天线发射参数的信号,天线发射参数可以是天线发射信号的相位、幅度等。控制机构通过接插机构向待测天线发送的信号包含了待测天线的射频信号、光信号、强弱电信号等。接插机构可以在测试机构5测试结束时断开与天线之间的连接,便于第一承载机构2将天线传送至传送机构3,从而将天线运出暗室1。
测试机构5可以向待测天线发送信号,也可以接收待测天线发出的信号,从而与待测天线进行信号交互,测试待测天线的性能。
控制机构分别与第一承载机构2、传送机构3、接插机构和测试机构5连接,控制机构用于控制传送机构3向第一承载机构2传送待测天线,在待测天线被传送到位时控制接插机构连接待测天线,在接插机构连接待测天线时控制测试机构5进行测试,在测试结束时控制接插机构断开与待测天线之间的连接,在测试结束时控制传送机构3向暗室1外传送待测天线。
现有技术中,在待测天线被传送到位时,需要人工将接插机构连接于待测天线,效率较低。
本说明书实施例中,由控制机构自动地将接插机构连接/断开待测天线,实现自动化,无需人工干预,效率高,可以解决现有测试***的测试效率较低的技术问题。本说明书实施例可以实现流程自动化,在保障测试精度的前提下简化测试流程,提高测试效率,减小占地空间。
在一种可能的实现方式中,自动进料屏蔽门10可以为一扇,对应地,可以采用单进单出的方式,经由一扇自动进料屏蔽门10向暗室1内传送待测天线或者将天线从暗室1内传送出。自动进料屏蔽门10也可以为两扇,对应地,可以采用直通式进出的方式,经由一扇自动进料屏蔽门向暗室1内传送待测天线,经由另一扇自动进料屏蔽门将天线从暗室1内传送出。
屏蔽门10为升降结构,由门板11和左右两侧的驱动机构12组成,驱 动机构12分布于门体的左右两侧,呈对称布置。驱动机构12驱动门板11上下运动,在下限位置,还能驱动门板11做前后运动,并在门关闭的状态下,持续给门板11一个对门框的贴合力,达到屏蔽密封的功能。驱动机构12由驱动气缸151、牵引板141、导向板131及同心轴组组成,同心轴组固定在门板11上,轴上一段装有滚轮,一段装有铜套。滚轮在导向板131的导向槽内滑动,铜套在牵引板141的滑动槽内滑动。驱动气缸151带动牵引板141上下运动,牵引板141上有45°的滑动槽,同心轴组装于滑动槽内,牵引板141上下运动时,可同时给同心轴组水平和竖直方向的分力。导向板131的导向槽控制门运动的方向。驱动气缸151的运动通过电磁阀控制,在电磁阀突然断电时,门板11可立即停止运动。屏蔽体15在另一面上还设置有维护屏蔽门14,方便人员进出维护。吸波材料布置在屏蔽体15内部的六个面上,可以减小由于内壁的信号反射对测试结果造成的多径效应影响。电波暗室1还具备基础的照明、视频监控、温湿度监控、烟感探测报警功能,保证测试的安全性。
在一种可能的实现方式中,还包括第二承载机构6,第二承载机构6承载待测天线;
传送机构3用于向第一承载机构2传送第二承载机构6;
接插机构包括第一接插模块41和第二接插模块42,第一接插模块41与第一承载机构2连接,第二接插模块42与第二承载机构6连接,第二接插模块42与待测天线连接;
控制机构与第一接插模块41连接,控制机构用于在第二承载机构6被传送到位时控制第一接插模块41连接第二接插模块42,在测试机构5测试结束时断开第一接插模块41与第二接插模块42之间的连接。
本说明书实施例中,第二承载机构6可拆卸地连接于第一承载机构2,待测天线可安装于第二承载机构6上,第二承载机构6可以放置于传送机构3上,传送机构3可以通过传送第二承载机构6来传送待测天线。将待测天线安装至第二承载机构6,再传送第二承载机构6,第二承载机构6可以作为待测天线的载体,便于传送机构3传送待测天线;也便于后续调整待测天线在暗室1内的位置。
本说明书实施例中,操作人员可以将待测天线安装至第二承载机构6,并将待测天线通过信号线连接于第二接插模块42。第一接插模块41和第二接插模块42之间为可拆卸连接,在第二承载机构6被传送到位时,控制机构控制第一接插模块41连接第二接插模块42,接通待测天线、第二接插模块42、第一接插模块41和控制机构之间的电连接线路,使控制机构可以向待测天线发送电信号,以进行天线测试。在测试机构5测试结束时,控制机构可以控制第一接插模块41脱离第二接插模块42,断开第一接插模块41与第二接插模块42之间的连接,避免信号线影响传送机构3将第二承载机构6传送至暗室1外。本说明书实施例中,将第一接插模块41连接至第二接插模块42,即可实现待测天线与控制机构之间的连接,控制方式简单,操作便捷。
在一种可能的实现方式中,第一承载机构2包括位移模块和升降模块29,升降模块29与位移模块连接,第一接插模块41与位移模块连接;
传送机构3用于向位移模块传送第二承载机构6;
控制机构与升降模块29连接,控制机构用于在第二承载机构6被传送到位时控制升降模块29上升,以使第一接插模块41连接第二接插模块42,控制机构还用于在测试机构5测试结束时控制升降模块29下降,以使第一接插模块41与第二接插模块42之间断开。
本说明书实施例中,第二承载机构6可以放置在位移模块上。在第二承载机构6被传送到位时,控制机构可以控制升降模块29上升,由于升降模块29与位移模块连接,因此升降模块29可以带动位移模块上升,使位移模块上的第一接插模块41上升并连接至第二接插模块42。控制机构还可以在测试机构5测试结束时控制升降模块29下降,升降模块29可以带动位移模块下降,使第一接插模块41下降并使其与第二接插模块42之间断开。本说明书实施例的结构简单,易于控制。
在一种可能的实现方式中,升降模块29包括顶升气缸,顶升气缸分别与位移模块和控制机构连接。
本说明书实施例中的升降模块29的功能可以通过顶升气缸实现,控制机构可以控制顶升气缸向上伸展,将位移模块向上方顶推,使位移模块上 的第二接插模块42上升并连接至第一接插模块41。控制机构可以控制顶升气缸向下收缩,失去顶升气缸向上的顶推力后,位移模块可以自动回落,使位移模块上的第二接插模块42断开与第一接插模块41之间的连接,本说明书实施例中升降模块29的结构简单,成本较低。
在一种可能的实现方式中,第一承载机构2还包括第一限位模块231,第一限位模块231与位移模块连接;
控制机构与第一限位模块231连接,控制机构用于在第二承载机构6被传送到位时控制第一限位模块231连接第二承载机构6,以使第一限位模块231向第二承载机构6施加目标方向的力,目标方向与升降模块29的上升方向相反。
本说明书实施例中,在第二承载机构6被传送到位时,控制机构可以控制第一限位模块231连接第二承载机构6,因为第一限位模块231与位移模块连接,由此,第二承载机构6可以通过第一限位模块231限位于位移模块。顶升气缸向上伸展时可以带动位移模块上升,使位移模块上的第二接插模块42上升;本说明书实施例通过第一限位模块231向第二承载机构6施加向下方向的力,可以将第二承载机构6限位,避免第二承载机构6被顶升,避免第一接插模块41无法连接第二接插模块42的情况,可以保证接插机构的接插效果。
较佳地,本说明书实施例中第一限位模块231设于位移模块中靠近第一接插模块41的一端。
在一种可能的实现方式中,第二承载机构6包括托盘61,托盘61设有凹槽,托盘61承载待测天线;
第一限位模块231包括定位块2311和旋转件2312,旋转件2312的第一端与位移模块连接,旋转件2312的第二端与定位块2311连接;
控制机构与旋转件2312连接,控制机构用于控制旋转件2312旋转并带动定位块2311旋转,以使定位块2311卡接至凹槽并向托盘61施加目标方向的力。
本说明书实施例中,传送机构3可以通过传送托盘61来传送待测天线,托盘61的凹槽可以供第一限位模块231的定位块2311卡设。旋转件2312 可以为杆状,控制机构可以控制旋转件2312旋转并带动定位块2311旋转。在传送机构3向位移模块传送托盘61时,控制机构可以控制旋转件2312旋转至水平位置,在水平位置时定位块2311位于托盘61下方,可以避免定位块2311阻挡托盘61的传送过程。托盘61传送到位时,控制机构可以控制旋转件2312旋转至竖直位置,在竖直位置时定位块2311卡设于托盘61的凹槽中,定位块2311的底部可以抵靠于凹槽的上表面,定位块2311可以向托盘61施加向下的力,实现第一限位模块231的限位功能。托盘61用于旋转待测天线,作为通用零部件,具备兼容性强,结构稳定等特点。
托盘61设有支撑块62、散热孔65和卡接块63,待测天线可以放置于托盘61的支撑块62上,散热孔65位于待测天线下方,散热孔65有利于待测天线散热。卡接块63可以卡接至待测天线的四周,从而将待测天线限位于托盘61。卡接块63可以是固定式的,也可以是可调式的,可调式的卡接块63设置有手轮64,操作人员可以转动手轮64来调整卡接块63与待测天线之间的距离。
在一种可能的实现方式中,第一限位模块231还包括第一伸缩件2313,第一伸缩件2313分别与位移模块和旋转件2312连接,第一伸缩件2313用于带动旋转件2312平移;
控制机构与第一伸缩件2313连接,控制机构用于控制第一伸缩件2313伸缩并带动旋转件2312平移。
本说明书实施例中,第一伸缩件2313可以为伸缩气缸,第一伸缩件2313可以沿传送机构3的传送方向伸缩,第一伸缩件2313可以配合旋转件2312从而将定位块2311卡设于凹槽中。在传送机构3向位移模块传送托盘61时,控制机构可以控制第一伸缩件2313向远离位移模块的方向伸展,再控制旋转件2312旋转至水平位置,在水平位置时定位块2311位于托盘61下方,可以避免定位块2311阻挡托盘61向暗室1内移动。托盘61传送到位时,控制机构可以控制旋转件2312旋转至竖直位置,再控制第一伸缩件2313向靠近位移模块的方向收缩,使定位块2311卡设于托盘61的凹槽中,定位块2311的底部可以抵靠于凹槽的上表面,定位块2311可以向托盘61施加向下的力,实现第一限位模块231的限位功能。在测试结束时,控制机 构可以控制第一伸缩件2313向远离位移模块的方向伸展,再控制旋转件2312旋转至水平位置,避免定位块2311阻挡托盘61向暗室1外移动。
在一种可能的实现方式中,第一承载机构2还包括第二限位模块,第二限位模块包括第二伸缩件232和挡板233,第二伸缩件232分别与位移模块和挡板233连接;
控制机构与第二伸缩件232连接,控制机构用于控制第二伸缩件232伸缩并带动挡板233平移,以使挡板233连接第二承载机构6并向第二承载机构6施加水平方向的力。
本说明书实施例中,在托盘61被传送到位时,控制机构可以控制第二限位模块向托盘61施加水平方向的力,进一步对托盘61进行限位,避免托盘61发生移位而影响天线测试。
第三位移组件23设有第一边缘236和第二边缘234,当托盘61的一端抵靠至第一边缘236时说明托盘61被传送到位。第二限位模块中的第二伸缩件232可以伸展并带动挡板233平移,以使挡板233抵靠至托盘61,使托盘61抵靠至第二边缘234,对托盘61的位置进行微调,使托盘61卡在挡板233和第二边缘234之间,进一步对托盘61进行限位,避免托盘61发生移位而影响天线测试。
在一种可能的实现方式中,位移模块包括第一位移组件21、第二位移组件22和第三位移组件23,第一位移组件21分别与暗室1和第二位移组件22连接,第二位移组件22与第三位移组件23连接,第三位移组件23与第二承载机构6连接;
控制机构分别与第一位移组件21、第二位移组件22和第三位移组件23连接,控制机构用于控制第一位移组件21沿第一位移轨迹平移,控制第二位移组件22沿第二位移轨迹平移,控制第三位移组件23沿第三位移轨迹平移,第一位移轨迹、第二位移轨迹和第三位移轨迹之间两两垂直。
本说明书实施例中,位移模块可以在暗室1内移动,以调整待测天线的位置,使待测天线与测试机构5之间形成不同的位置关系,更全面地测试天线的性能。第一位移轨迹可以是竖直方向轨迹,第二位移轨迹可以是与传送机构3的传送方向相垂直的水平方向轨迹,第三位移轨迹可以是与 传送机构3的传送方向相平行的水平方向轨迹。
本说明书实施例中,位移模块可以安装于电波暗室1下部空间,位移模块可以在第一位移轨迹、第二位移轨迹和第三位移轨迹上移动。位移模块可用于将待测天线运送至电波暗室1进料门处进行待测天线接驳,还用于将待测天线移动到暗室1内的指定测试位置。
第一位移组件21为升降结构,用于改变待测天线到测试机构5的测试距离,第一位移组件21包括底座218、第一底板、4根滚珠丝杠213、2根导向轴214、4个升降机217、第一导轨211、第一电机215、第一减速机216和第一滑块212,底座218安装于暗室1底面。两个第一导轨211分别设于第一底板的两侧,第一电机215、第一减速机216、滚珠丝杠213和导向轴214均与第一底板连接。第一电机215经过第一减速机216减速后,通过传动轴分别将动力传递到4个升降机217上,升降机217内置螺母副,升降机217与滚珠丝杠213配合,实现两侧的第一导轨211的同步升降动作。第一滑块212滑设于第一导轨211上。控制机构与第一电机215连接,控制机构通过控制第一电机215来传动控制第一导轨211沿滚珠丝杠213升降。滚珠丝杠213的设置方向为第一位移轨迹方向。
第二位移组件22包括第二底板、第二导轨221、第二滑块222、第二丝杠螺母副、电机、第二减速机,第二电机、第二减速机、第二丝杠螺母副组成的驱动装置安装于第一位移组件21的第一底板上,两个第二导轨221均与两个第一导轨交叉连接,第二导轨221的设置方向与第一导轨的设置方向垂直。第二滑块222滑设于第二导轨221上。第二导轨221的底部与第一位移组件21的第一滑块连接,由此第二导轨221可在第一导轨上滑动。控制机构与第二电机连接,控制机构通过控制第二电机来控制第二位移组件22在第一导轨上移动。第一导轨的设置方向为第二位移轨迹方向。
第三位移组件23包括第三底板230、第三丝杠螺母副、第三电机、第三减速机和滚筒组件237,第三丝杠螺母副、第三电机、第三减速机组成的驱动装置安装于第二位移组件22的第二底板上。第三电机、第三减速机驱动丝杠旋转,带动第三位移组件23移动。第三底板230安装于第二位移组件22的第二滑块222上,由此第三底板230可在第二位移组件22的第二 导轨221上滑动。控制机构与第三电机连接,控制机构通过控制第三电机来控制第三位移组件23在第二导轨221上移动。第二导轨221的设置方向为第三位移轨迹方向。第三位移组件23的第三底板230上还设有滚筒组件237,滚筒组件237可以设有2个动力辊、3个被动辊,用于托盘61的接入和送出。滚筒组件237可接收传送机构3传送的托盘61,也可以向传送机构3传送托盘61。升降模块29可以与第三底板230连接,升降模块29可以是顶升气缸,控制机构可以通过顶升气缸控制滚筒组件237的升降,以接插或断开第一接插模块41和第二接插模块42之间的连接。
本说明书实施例中,第一接插模块41安装于第三位移组件23的第三底板230,顶升气缸安装于第三位移组件23的第三底板230的底部,第二接插模块42安装于托盘61上,可通过气缸的运动顶升第三底板230,使第一接插模块41连接至第二接插模块42,可通过气缸的运动带动第三底板230下降,从而将第一接插模块41从第二接插模块42拔出。
在一种可能的实现方式中,测试机构5包括支撑架50、第一测试架51、第二测试架52、旋转组件和测试组件70,支撑架50与暗室1连接,第一测试架51与支撑架50连接,第二测试架52与第一测试架51连接,旋转组件与第二测试架52连接,测试组件70与旋转组件连接;
控制机构分别与第一测试架51、第二测试架52、旋转组件和测试组件70连接,控制机构用于控制第一测试架51沿第一水平轨迹平移,控制第二测试架52沿第二水平轨迹平移,控制旋转组件旋转并带动测试组件70旋转,控制测试组件70测试待测天线,第一水平轨迹和第二水平轨迹相垂直。
本说明书实施例中,支撑架50与暗室1连接,支撑架50起到支撑作用,第一测试架51和第二测试架52可以在暗室1内移动,以调整测试组件70的位置,使待测天线与测试机构5之间形成不同的位置关系,更全面地测试天线的性能。第一水平轨迹和第二水平轨迹均为水平方向的轨迹。支撑架50设有第一测试导轨,第一测试导轨的方向为第一水平轨迹,第一测试架51滑设于第一测试导轨。第一测试架51设有第二测试导轨,第二测试导轨的方向为第二水平轨迹,第二测试架52滑设于第二测试导轨。
本说明书实施例中,测试机构5安装于电波暗室1的顶部空间。控制 机构可以控制第一测试架51沿第一水平轨迹平移,控制第二测试架52沿第二水平轨迹平移,从而使测试组件70在水平面内进行任意方向的移动。测试组件70安装于旋转组件上,通过旋转组件实现任意角度俯仰的控制。测试组件70为1只双极化天线,与被测天线的极化方向对应。双极化天线固定在天线安装板上,天线安装板固定在旋转组件上。
本说明书实施例中,控制机构可以对电波暗室1、传送机构3、测试机构5、第一承载机构2和第二承载机构6进行控制与状态获取,控制机构包括主控模块、驱动模块、强电模块、弱电模块。电气组件安装在电波暗室1内部,通过电源和信号滤波器与暗室1外的测试柜产生通信。测试柜置于暗室1外部,为一独立的标准机柜,测试柜包括开关***、测量仪表、室内基带处理单元(BBU)、程控电源。开关***主要实现射频通道的切换,输入端连接到电波暗室1的测量探头端口,输出端连接到各个测量仪表,实现高效测试。测量仪表为常用的信号源、频谱仪、功率计,实现对待测天线上行和下行信号的测试与数据分析。室内基带处理单元实现对待测天线的控制。程控电源实现对待测天线的电源供应,以及上下电控制和监测。
电磁环境监测***通过监测探头对一定距离内的信号功率进行采集,监测探头一般安装在电波暗室1附近的墙壁或者顶板上,然后通过设置门限值的方式,当电波暗室1内的测试信号泄露到外部达到一定临界值之后,进行***报警,确认测试安全性。同时也对外部电磁环境信号进行采集,监测是否有过大的辐射电平,保障生产线的员工的人身安全。
5G基站采用MIMO天线设计,振子数量位64甚至更多。在研发阶段测试,往往会让所有振子一起工作,这样对于暗室1来说,测试的口径面就很大,需要远场距离就很大(2D 2/λ)。所以在产线测试,可以简化为只测试单振子或者小组振,这样对远场距离的要求就比较低。单振子或者小组振测试时,需要移动测量探头到其相位中心上方,所以可以利用第一承载机构2和测试机构5的组合移动,可以在比较小的暗室1空间内完成所有单振子或者所有组振的测试,测试项一般为幅相校准等。
下面对本说明书实施例提供的天线测试***的测试方法进行说明。
操作人员可以将待测天线安装于第二承载机构6的托盘61上,并将托 盘61放置于传送机构3。控制机构可以控制传送机构3向暗室1内传送托盘61,暗室1的自动进料屏蔽门10外设有光电开关,当光电开关感应到传送机构3将托盘61运送到自动进料屏蔽门10的门口时,屏蔽门10可以自动打开。第一承载机构2的位移模块可以接收并承载传送机构3传送的托盘61,托盘61可被传送至位移模块的第三位移组件23上,当托盘61的一端抵靠至第三位移组件23的第一边缘236时则表示托盘61被传送到位。可通过光电传感器检测托盘61是否被传送到位,光电传感器可以与控制机构和第三位移组件23连接。传送到位时,控制机构可控制自动进料屏蔽门10关闭。进一步地,控制机构可以控制第二限位模块对托盘61进行水平限位,再控制第一限位模块231对托盘61进行竖向限位,再控制升降模块29顶升第三位移组件23,使第三位移组件23上的第一接插模块41连接至托盘61上的第二接插模块42。进一步地,控制机构可以控制第一位移组件21在第一位移轨迹移动,控制第二位移组件22在第二位移轨迹移动,控制第三位移组件23在第三位移轨迹移动,从而调整第三位移组件23上的待测天线的位置。此外,控制机构还可以控制第一测试架51在第一水平轨迹移动,控制第二测试架52在第二水平轨迹移动,从而调整测试组件70的水平位置;控制机构还可以控制旋转组件旋转,调整测试组件70的俯仰角。测试时控制机构控制待测天线和测试组件70进行信号交互。
测试完毕后,控制机构可以控制第三位移组件23、第二位移组件22和第一位移组件21,将托盘61的位置对齐于自动进料屏蔽门10,待自动进料屏蔽门10打开后第三位移组件23可以通过滚筒组件237向传送机构3传送托盘61,将待测天线传送至暗室1外。
本说明书实施例在满足产线测试需要的基础上,结合了自动化生产线的方式,通过传送机构3对接,自动进出料,自动定位,自动插接,自动测试等动作,取消了人工干预的过程,可实现工厂24小时无人化管理,节省测试时间,提高产能,释放人力资源。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更 都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种天线测试***,其特征在于,包括:
    暗室(1);
    第一承载机构(2),所述第一承载机构(2)设于所述暗室(1)内;
    传送机构(3),所述传送机构(3)设于所述暗室(1)外,所述传送机构(3)用于向所述第一承载机构(2)传送待测天线;
    接插机构,所述接插机构设于所述暗室(1)内;
    测试机构(5),所述测试机构(5)设于所述暗室(1)内,所述测试机构(5)用于测试所述待测天线;
    控制机构,所述控制机构分别与所述第一承载机构(2)、所述传送机构(3)、所述接插机构和所述测试机构(5)连接,所述控制机构用于控制所述传送机构(3)和所述测试机构(5),所述控制机构还用于在所述待测天线被传送到位时控制所述接插机构连接所述待测天线,在所述测试机构(5)测试结束时断开所述接插机构与所述待测天线之间的连接。
  2. 如权利要求1所述的天线测试***,其特征在于,还包括第二承载机构(6),所述第二承载机构(6)承载所述待测天线;
    所述传送机构(3)用于向所述第一承载机构(2)传送所述第二承载机构(6);
    所述接插机构包括第一接插模块(41)和第二接插模块(42),所述第一接插模块(41)与所述第一承载机构(2)连接,所述第二接插模块(42)与所述第二承载机构(6)连接,所述第二接插模块(42)与所述待测天线连接;
    所述控制机构与所述第一接插模块(41)连接,所述控制机构用于在所述第二承载机构(6)被传送到位时控制所述第一接插模块(41)连接所述第二接插模块(42),在所述测试机构(5)测试结束时断开所述第一接插模块(41)与所述第二接插模块(42)之间的连接。
  3. 如权利要求2所述的天线测试***,其特征在于,所述第一承载机构(2)包括位移模块和升降模块(29),所述升降模块(29)与所述位移模块连接,所述第一接插模块(41)与所述位移模块连接;
    所述传送机构(3)用于向所述位移模块传送所述第二承载机构(6);
    所述控制机构与所述升降模块(29)连接,所述控制机构用于在所述第二承载机构(6)被传送到位时控制所述升降模块(29)上升,以使所述第一接插模块(41)连接所述第二接插模块(42),所述控制机构还用于在所述测试机构(5)测试结束时控制所述升降模块(29)下降,以使所述第一接插模块(41)与所述第二接插模块(42)之间断开。
  4. 如权利要求3所述的天线测试***,其特征在于,所述升降模块(29)包括顶升气缸,所述顶升气缸分别与所述位移模块和所述控制机构连接。
  5. 如权利要求3所述的天线测试***,其特征在于,所述第一承载机构(2)还包括第一限位模块(231),所述第一限位模块(231)与所述位移模块连接;
    所述控制机构与所述第一限位模块(231)连接,所述控制机构用于在所述第二承载机构(6)被传送到位时控制所述第一限位模块(231)连接所述第二承载机构(6),以使所述第一限位模块(231)向所述第二承载机构(6)施加目标方向的力,所述目标方向与所述升降模块(29)的上升方向相反。
  6. 如权利要求5所述的天线测试***,其特征在于,所述第二承载机构(6)包括托盘(61),所述托盘(61)设有凹槽(610),所述托盘(61)承载所述待测天线;
    所述第一限位模块(231)包括定位块(2311)和旋转件(2312),所述旋转件(2312)的第一端与所述位移模块连接,所述旋转件(2312)的第二端与所述定位块(2311)连接;
    所述控制机构与所述旋转件(2312)连接,所述控制机构用于控制所 述旋转件(2312)旋转并带动所述定位块(2311)旋转,以使所述定位块(2311)卡接至所述凹槽(610)并向所述托盘(61)施加目标方向的力。
  7. 如权利要求6所述的天线测试***,其特征在于,所述第一限位模块(231)还包括第一伸缩件(2313),所述第一伸缩件(2313)分别与所述位移模块和所述旋转件(2312)连接,所述第一伸缩件(2313)用于带动所述旋转件(2312)平移;
    所述控制机构与所述第一伸缩件(2313)连接,所述控制机构用于控制所述第一伸缩件(2313)伸缩并带动所述旋转件(2312)平移。
  8. 如权利要求5所述的天线测试***,其特征在于,所述第一承载机构(2)还包括第二限位模块,所述第二限位模块包括第二伸缩件(232)和挡板(233),所述第二伸缩件(232)分别与所述位移模块和所述挡板(233)连接;
    所述控制机构与所述第二伸缩件(232)连接,所述控制机构用于控制所述第二伸缩件(232)伸缩并带动所述挡板(233)平移,以使所述挡板(233)连接所述第二承载机构(6)并向所述第二承载机构(6)施加水平方向的力。
  9. 如权利要求3所述的天线测试***,其特征在于,所述位移模块包括第一位移组件(21)、第二位移组件(22)和第三位移组件(23),所述第一位移组件(21)分别与所述暗室(1)和所述第二位移组件(22)连接,所述第二位移组件(22)与所述第三位移组件(23)连接,所述第三位移组件(23)与所述第二承载机构(6)连接;
    所述控制机构分别与所述第一位移组件(21)、所述第二位移组件(22)和所述第三位移组件(23)连接,所述控制机构用于控制所述第一位移组件(21)沿第一位移轨迹平移,控制所述第二位移组件(22)沿第二位移轨迹平移,控制所述第三位移组件(23)沿第三位移轨迹平移,所述第一位移轨迹、所述第二位移轨迹和所述第三位移轨迹之间两两垂直。
  10. 如权利要求1所述的天线测试***,其特征在于,所述测试机构(5)包括支撑架(50)、第一测试架(51)、第二测试架(52)、旋转组件和测试组件(70),所述支撑架(50)与所述暗室(1)连接,所述第一测试架(51)与所述支撑架(50)连接,所述第二测试架(52)与所述第一测试架(51)连接,所述旋转组件与所述第二测试架(52)连接,所述测试组件(70)与所述旋转组件连接;
    所述控制机构分别与所述第一测试架(51)、所述第二测试架(52)、所述旋转组件和所述测试组件(70)连接,所述控制机构用于控制所述第一测试架(51)沿第一水平轨迹平移,控制所述第二测试架(52)沿第二水平轨迹平移,控制所述旋转组件旋转并带动所述测试组件(70)旋转,控制所述测试组件(70)测试所述待测天线,所述第一水平轨迹和所述第二水平轨迹相垂直。
PCT/CN2022/124095 2021-10-28 2022-10-09 一种天线测试*** WO2023071738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111265831.8 2021-10-28
CN202111265831.8A CN115754492B (zh) 2021-10-28 2021-10-28 一种天线测试***

Publications (1)

Publication Number Publication Date
WO2023071738A1 true WO2023071738A1 (zh) 2023-05-04

Family

ID=85332797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124095 WO2023071738A1 (zh) 2021-10-28 2022-10-09 一种天线测试***

Country Status (2)

Country Link
CN (1) CN115754492B (zh)
WO (1) WO2023071738A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133495A (ja) * 1999-11-08 2001-05-18 Device Co Ltd アンテナ測定器
JP2004301514A (ja) * 2003-03-28 2004-10-28 Fujitsu Ltd アンテナ測定装置
JP2008224506A (ja) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp アンテナ測定装置
CN105466946A (zh) * 2014-08-25 2016-04-06 研祥智能科技股份有限公司 基于机器视觉的在线检测***及其检测方法
CN106291134A (zh) * 2016-11-10 2017-01-04 成都锐芯盛通电子科技有限公司 基于机器人的天线智能测试***及测试方法
CN106970271A (zh) * 2017-04-27 2017-07-21 旷良彬 一种数字化天线测试***及测试方法
CN107796995A (zh) * 2017-11-30 2018-03-13 上海英恒电子有限公司 微波暗室及相应的天线测试***
CN111413553A (zh) * 2020-04-02 2020-07-14 南京捷希科技有限公司 一种天线测试***及测试方法
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试***、方法、毫米波雷达和计算机可读存储介质
CN214375029U (zh) * 2021-03-19 2021-10-08 中山香山微波科技有限公司 紧缩场天线测试***
CN217112519U (zh) * 2021-10-28 2022-08-02 南京捷希科技有限公司 一种天线测试***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978249B1 (fr) * 2011-07-22 2013-07-26 Thales Sa Dispositif de calibration et de test pour une antenne active notamment une antenne de pointe avant d'un radar aeroporte
CN103424623B (zh) * 2012-05-24 2016-06-01 宸鸿科技(厦门)有限公司 电阻率量测装置
CN104038294B (zh) * 2013-03-06 2016-12-28 光宝电子(广州)有限公司 无线测试***及应用其的测量方法
CN207636670U (zh) * 2017-12-29 2018-07-20 陈奕铭 自动化天线测量***
CN108303603A (zh) * 2018-01-19 2018-07-20 广东柏兹电子科技有限公司 一种电波测试暗室装置
CN110687357A (zh) * 2018-07-05 2020-01-14 深圳市新益技术有限公司 天线测试用的自动接线***
CN109257916A (zh) * 2018-10-17 2019-01-22 深圳市艾特讯科技有限公司 屏蔽箱
FR3098437B1 (fr) * 2019-07-12 2021-06-11 Tobeca Équipement de fabrication additive
CN211180012U (zh) * 2019-11-14 2020-08-04 武汉虹信通信技术有限责任公司 微波暗室***
CN211603355U (zh) * 2019-12-18 2020-09-29 威太(苏州)智能科技有限公司 一种天线自动检测机
CN212255496U (zh) * 2020-04-08 2020-12-29 南京捷希科技有限公司 一种电波测试装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133495A (ja) * 1999-11-08 2001-05-18 Device Co Ltd アンテナ測定器
JP2004301514A (ja) * 2003-03-28 2004-10-28 Fujitsu Ltd アンテナ測定装置
JP2008224506A (ja) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp アンテナ測定装置
CN105466946A (zh) * 2014-08-25 2016-04-06 研祥智能科技股份有限公司 基于机器视觉的在线检测***及其检测方法
CN106291134A (zh) * 2016-11-10 2017-01-04 成都锐芯盛通电子科技有限公司 基于机器人的天线智能测试***及测试方法
CN106970271A (zh) * 2017-04-27 2017-07-21 旷良彬 一种数字化天线测试***及测试方法
CN107796995A (zh) * 2017-11-30 2018-03-13 上海英恒电子有限公司 微波暗室及相应的天线测试***
CN111413553A (zh) * 2020-04-02 2020-07-14 南京捷希科技有限公司 一种天线测试***及测试方法
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试***、方法、毫米波雷达和计算机可读存储介质
CN214375029U (zh) * 2021-03-19 2021-10-08 中山香山微波科技有限公司 紧缩场天线测试***
CN217112519U (zh) * 2021-10-28 2022-08-02 南京捷希科技有限公司 一种天线测试***

Also Published As

Publication number Publication date
CN115754492A (zh) 2023-03-07
CN115754492B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN212255496U (zh) 一种电波测试装置
CN102282664B (zh) 基板处理***与基板传送方法
CN102763210B (zh) 基板处理***及基板传送方法
CN217112519U (zh) 一种天线测试***
CN109814285A (zh) 检测显示面板缺陷的装置及***
WO2024087709A1 (zh) 一种双半片电池片效率检测装置
CN204287359U (zh) 一种摇臂式自动化屏蔽测试装置
CN108833907A (zh) 双摄像头测试装置及测试方法
CN105334360A (zh) 一种自动化屏蔽测试装置及其测试流水线
WO2023071738A1 (zh) 一种天线测试***
US11300609B2 (en) Electronic component pressing apparatus and electronic component testing apparatus
CN202083751U (zh) 一种组合式全电波暗室
KR20120054301A (ko) 디스플레이 패널용 에이징 검사 시스템 및 이를 이용한 에이징 검사 방법
WO2024124730A1 (zh) 一种基站测试***及测试方法
CN201732128U (zh) 测试玻璃基板的设备
CN110907956B (zh) 一种飞行器载抗干扰卫星定位组件试验***
CN106197527A (zh) 装配产品检测***
CN102841047A (zh) 一种洁净度监测***和卡匣
KR101899784B1 (ko) 공정 챔버 모니터링 장치 및 방법
CN110784273A (zh) 测试***及测试方法
CN108206982A (zh) 扬声器自动测试装置
CN210587730U (zh) 一种双轴变位机
US7102457B1 (en) Mechanically balanced microwave load pull tuner
CN112382597A (zh) 一种储片盒传输装置
JP2022536191A (ja) 貨物アクセスターミナル及びその組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE