WO2023068159A1 - アルミナ質焼結体、および静電チャック - Google Patents

アルミナ質焼結体、および静電チャック Download PDF

Info

Publication number
WO2023068159A1
WO2023068159A1 PCT/JP2022/038222 JP2022038222W WO2023068159A1 WO 2023068159 A1 WO2023068159 A1 WO 2023068159A1 JP 2022038222 W JP2022038222 W JP 2022038222W WO 2023068159 A1 WO2023068159 A1 WO 2023068159A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
alumina
vacancies
alumina sintered
pores
Prior art date
Application number
PCT/JP2022/038222
Other languages
English (en)
French (fr)
Inventor
元樹 堀田
誉幸 松岡
貴道 小川
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020247011208A priority Critical patent/KR20240054354A/ko
Priority to TW111139215A priority patent/TW202325681A/zh
Publication of WO2023068159A1 publication Critical patent/WO2023068159A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to an alumina sintered body and an electrostatic chuck.
  • Electrostatic chuck members for high-power applications require a dense structure with as few pores as possible and a withstand voltage that can withstand high electric fields.
  • Patent Document 1 may not have sufficient withstand voltage for high-power applications. Therefore, it is desired to further increase the withstand voltage of the alumina sintered body.
  • Patent Document 2 describes the density of the alumina sintered body, it does not refer to the number or position of the pores. Such a problem is not limited to members for electrostatic chucks, but is a problem common to alumina sintered bodies used in various members for semiconductor manufacturing apparatuses.
  • the present invention has been made to solve the above-mentioned problems, and provides a technique for improving the withstand voltage of an alumina sintered body, and a technique for reducing pores in an alumina sintered body. intended to provide
  • the present invention has been made to solve at least one of the above problems, and can be implemented as the following forms.
  • the main component is alumina (Al 2 O 3 ), and the content of magnesia (MgO) with respect to the content of alumina is 0.00 mol % ⁇ MgO ⁇ 0.20 mol %.
  • an alumina sintered body is provided. This alumina sintered body has a density of 3.96 g/cm 3 or more and a standard deviation of the grain size of alumina crystal grains of less than 4.0 ⁇ m.
  • the standard deviation of the grain size of the alumina crystal grains is less than 4.0 ⁇ m, so the variation in grain size is small, and the existence ratio of abnormal grains of alumina is small. Therefore, compared to an alumina sintered body having the same density, the number of pores can be reduced as compared with an alumina crystal grain having a standard deviation of 4.0 ⁇ m or more. That is, since the alumina sintered body of this form has a high density and few pores, it is possible to improve the denseness. In addition, the withstand voltage can be improved by reducing pores.
  • the amount of pores present may be 0.050/ ⁇ m 2 or less. By doing so, an alumina sintered body having a high withstand voltage can be obtained.
  • the vacancies are divided into first vacancies that are vacancies existing at grain boundaries and second vacancies that are vacancies existing within crystal grains.
  • the ratio of the abundance of the second vacancies to the abundance of the vacancies may be 20% or more.
  • the alumina sintered body of the above aspect may have a dielectric breakdown voltage of 200 kV/mm or more. By doing so, a high withstand voltage can be obtained, so that it can be used for, for example, an electrostatic chuck to which high power can be applied.
  • the surface roughness Sa of the surface irradiated with plasma for 40 minutes may be 50 nm or less. By doing so, an alumina sintered body having high plasma resistance can be obtained.
  • an alumina sintered body with high plasma resistance in, for example, an electrostatic chuck, it is possible to suppress deterioration in the gas sealability and chucking force of the wafer mounting surface.
  • an electrostatic chuck for holding an object.
  • the electrostatic chuck is formed on any one of a first surface on which the object is held, a second surface that is the back surface of the first surface, and the second surface and the inside.
  • a plate-like member having a chuck electrode; and a base member having a cooling function disposed on the second surface side of the plate-like member, wherein the first surface of the plate-like member is , formed from the alumina sintered body according to claims 1 to 5.
  • the electrostatic chuck of this aspect since the first surface of the plate-like portion is formed of an alumina sintered body with few pores and high withstand voltage, it is possible to provide an electrostatic chuck to which high power can be applied. can be done.
  • the plate-like member has a gas flow path that is open on the first surface and into which a gas is introduced from the second surface side; and a seal band portion formed continuously along the outer edge of the plate-like member, and the opening of the gas flow path may be formed inside the seal band portion.
  • the gas for example, helium (He) gas
  • He helium
  • an alumina sintered body containing alumina (Al 2 O 3 ) as a main component.
  • the amount of pores present is 0.050/ ⁇ m 2 or less.
  • the ratio of the abundance of the second vacancies to the abundance of the vacancies may be 20% or more. Also in this way, the number of pores can be reduced, and the withstand voltage can be improved.
  • the present invention can be implemented in various aspects, including, for example, parts for semiconductor manufacturing equipment, semiconductor manufacturing equipment, holding devices, electrostatic chucks, equipment provided with these, and parts for semiconductor manufacturing equipment. It can be realized in the form of a manufacturing method or the like.
  • FIG. 1 is a schematic cross-sectional view of a holding device;
  • FIG. 4 is a schematic top view of the holding device;
  • FIG. 6 is an enlarged schematic view of the AA cross section in FIG. 5;
  • the alumina sintered body as the first embodiment of the present invention contains alumina (Al 2 O 3 ) as a main component, and the content of magnesia (MgO) with respect to the content of alumina is 0.00 mol % ⁇ MgO ⁇ 0.
  • the "main component” means the component with the highest content ratio.
  • the content of magnesia can be obtained as follows.
  • the alumina sintered body is subjected to elemental analysis by XRF (X-ray Fluorescence: X-ray fluorescence analysis) to quantify the amount of magnesium (Mg).
  • the content of magnesia is determined by converting the amount of magnesium in the analysis result into oxide.
  • the content of alumina is obtained by quantifying the amount of aluminum (Al) and converting it into oxide. Then, the ratio of the amount (mol) of magnesia to the amount (mol) of alumina is calculated.
  • magnesia By adding magnesia to the alumina sintered body, abnormal grain growth of alumina crystal grains can be suppressed.
  • the density of the alumina sintered body can be measured by the Archimedes method (JIS R 1634).
  • the grain size of the alumina crystal grains of the alumina sintered body can be measured by the intercept method. Specifically, the fracture surface of the alumina sintered body was observed with a SEM (Scanning Electron Microscope), and when a straight line of length L was drawn on the secondary electron image obtained, , measures the number n of particles traversed by the straight line. Particles having both ends of the straight line inside are counted as 0.5 particles. After that, the average particle diameter D ( ⁇ m) is calculated by the following formula (1).
  • the amount of pores present is preferably 0.050/ ⁇ m 2 or less.
  • the withstand voltage can be improved.
  • the number of pores is small, starting points of plasma erosion are reduced, and plasma resistance can be improved.
  • the abundance of pores can be visually counted using a cross-sectional STEM (Scanning Transmission Electron Microscope) image. Note that the presence of pores can be confirmed using a fracture surface SEM image. Although the fracture surface SEM image shows the number of pores at the grain boundaries, the number of pores present in the crystal grains is unknown. become more. Therefore, when the number of pores is small in the fractured surface SEM image, it is preferable to confirm the amount of pores using the cross-sectional STEM image.
  • the pores are divided into first pores that are pores existing at the grain boundaries and second pores that are pores existing within the grains.
  • the ratio of the abundance of the second vacancies to the abundance of the vacancies is preferably 20% or more.
  • Pores existing at grain boundaries are considered to be paths for leakage current when an electric field is applied, and are considered to be starting points of dielectric breakdown. Therefore, by using an alumina sintered body in which the amount of vacancies present at the grain boundaries is reduced, the leak current flowing through the grain boundaries can be suppressed, and the withstand voltage can be further improved.
  • the abundance of vacancies can be counted using a cross-sectional STEM image, as described above.
  • the dielectric breakdown voltage of the alumina sintered body of the present embodiment is preferably 200 kV/mm or more. By doing so, a high withstand voltage can be obtained, so that it can be used for, for example, an electrostatic chuck to which high power can be applied.
  • the dielectric breakdown voltage the voltage at which dielectric breakdown occurs is measured according to JIS C2110.
  • the surface roughness Sa of the surface irradiated with plasma for 40 minutes may be 50 nm or less. By doing so, an alumina sintered body having high plasma resistance can be obtained.
  • an alumina sintered body with high plasma resistance in, for example, an electrostatic chuck, it is possible to suppress deterioration in the gas sealability and chucking force of the wafer mounting surface.
  • FIG. 1 is a process diagram showing a method for producing an alumina sintered body.
  • a powder preparation step is performed in which pre-measured amounts of Al 2 O 3 raw material and MgO raw material are mixed in ethanol in a ball mill and dried (step P1 ).
  • the amount of the MgO raw material added is 0.00 mol % ⁇ MgO ⁇ 0.20 mol % with respect to the Al 2 O 3 raw material.
  • the mixed powder obtained in the powder preparation step (step P1) is molded by a hot press device and fired at a firing temperature of 1500 ° C. or higher and 1700 ° C. or lower (step P2).
  • a sintered body is produced.
  • the press pressure of hot press can be set arbitrarily. If the pressing pressure is as low as less than 10 MPa, the particles are less likely to be crushed during hot pressing and densification cannot be promoted, and there is a high possibility that air will remain as pores at the grain boundaries. 40 MPa or less is preferable.
  • the content of MgO in the alumina sintered body can be examined by XRF or ICP emission analysis. By applying pressure during sintering, hot pressing can sinter while crushing the particles compared to air sintering, so that densification can be promoted and pores at grain boundaries can be easily reduced. Moreover, since the contact area between the particles is also increased, the sintering process itself can be completed in a shorter time than the air firing.
  • the manufacturing method of the present embodiment it is possible to obtain an alumina sintered body with less impurities and a higher withstand voltage than when the alumina sintered body is manufactured by the gel casting method.
  • the alumina sintered body of the present embodiment can be used for parts for semiconductor manufacturing equipment, semiconductor manufacturing equipment, holding equipment, electrostatic chucks, and equipment equipped with these.
  • samples 1 to 9 of the alumina sintered body withstand voltage and plasma resistance were evaluated.
  • Samples 1 to 5 and 8 are examples of the alumina sintered bodies of the above embodiment, and samples 6, 7 and 9 are alumina sintered bodies of comparative examples.
  • Table 1 shows the specifications and evaluation results of samples 1 to 9. The evaluation method will be described later.
  • Samples 1 to 5 and 8 are manufactured by the manufacturing method of the above embodiment.
  • Sample 6 is manufactured in the same manner as the manufacturing method of the above-described embodiment, except that hot pressing is not performed and sintering is performed at normal pressure.
  • Sample 7 is manufactured in the same manner as the manufacturing method of the above embodiment except that hot pressing is performed at a temperature exceeding 1700°C.
  • Sample 8 is obtained by HIP (Hot Isostatic Pressing) the sample 6 which has been sintered under normal pressure at a pressure of 200 MPa or less. HIP treatment can also reduce pores, particularly grain boundary pores, and improve the withstand voltage.
  • alumina raw materials with a purity of 99.9% or more are used.
  • the magnesia raw material is added at the ratio shown in Table 1 with respect to the alumina raw material. Specifically, 0.10 mol % is added to samples 1 to 3, 5 and 7, 0.20 mol % to sample 4, 0.13 mol % to samples 6 and 8, and 0.3 mol to sample 9.
  • Magnesia can suppress abnormal grain growth of alumina crystal grains, as will be described later.
  • yttria yttrium oxide: Y 2 O 3
  • Yttria yttrium oxide: Y 2 O 3
  • the amount of yttria added is preferably 0 to 0.05 mol %.
  • No yttria was added to samples 6, 8 and 9. Yttria is added as a sintering aid.
  • the amount of sintering aid added is very small at 0 to 0.05 mol%, and the amount of magnesia added approximately matches the magnesia content in the alumina sintered body.
  • the density and grain size of the alumina sintered body can be changed.
  • the standard deviation of the diameter, the number of pores (vacancies), and the proportion of pores (vacancies) present at the grain boundaries are different among samples 1-9.
  • Samples 1 to 9 do not contain impurities other than magnesia and yttria.
  • does not contain impurities means that process impurities such as Si, Ca, and Fe are 10 ppm or less.
  • the density of the alumina sintered body was measured by the Archimedes method (JIS R 1634).
  • the standard deviation of the particle size of the alumina crystal particles of the alumina sintered body was calculated using each particle size measured by the intercept method as described above.
  • the number of pores and the existence ratio of pores were determined using a cross-sectional STEM image (magnification: 5000 times) as described above. Specifically, three or more visual fields were photographed in a visual field containing four or more pores, and the average of the images was taken as the abundance of pores. As for sample 4, confirmation using a cross-sectional STEM image was not performed, so the number of pores obtained using a fracture surface SEM is described as a reference.
  • the ratio of existence of pores in Table 1 is the number of pores present in the grain with respect to the total number of pores, which is the sum of the number of pores present in the grain boundary and the number of pores present in the grain.
  • FIG. 2 and 3 are diagrams showing examples of cross-sectional STEM images of the alumina sintered bodies 10 of samples 1 to 3.
  • 2A shows an STEM image (magnification: 5000 times) of sample 1
  • FIG. 2B shows sample 2
  • FIG. 2C shows sample 3
  • FIG. 3D shows sample 8.
  • FIG. 2 among the pores (pores 10P) existing in the alumina sintered body 10, the pores (first pores 11) existing at the grain boundaries are surrounded by solid lines, and the pores (first pores 11) existing in the crystal grains 2 vacancies 12) are shown surrounded by dashed lines.
  • the alumina sintered bodies of Samples 1 to 5 and 8 satisfy all of the following requirements [1] to [5].
  • the content of magnesia (MgO) is 0.00 mol % ⁇ MgO ⁇ 0.20 mol %.
  • Density is 3.96 g/cm 3 or more.
  • the standard deviation of the grain size of alumina crystal grains is less than 4.0 ⁇ m.
  • the amount of pores present is 0.050/ ⁇ m 2 or less.
  • vacancies are divided into first vacancies, which are vacancies existing at grain boundaries, and second vacancies, which are vacancies existing within crystal grains, The ratio of the abundance of 2 vacancies is 20% or more.
  • sample 6 (comparative example) satisfies the requirements of [1] and [3] above, but does not satisfy the requirements of [2], [4] and [5] above. That is, sample 6 (comparative example) has a lower density, a larger number of pores, and a higher proportion of pores existing at grain boundaries than those of the examples.
  • Sample 7 (comparative example) satisfies the above requirements [1] and [2], but does not satisfy the above requirement [3].
  • Sample 7 (comparative example) has a density equivalent to that of the example, but the standard deviation of the alumina crystal grains is larger than that of the example, so the variation in grain size is large, and the existence ratio of abnormal grains of alumina is large.
  • sample 9 (comparative example) satisfies the above requirements [2] to [4], but does not satisfy the above requirement [1]. That is, sample 9 (comparative example) has a higher content of magnesia (MgO) than the example.
  • MgO magnesia
  • the alumina sintered bodies of samples 1 to 5 and 8 have higher at least one of withstand voltage and plasma resistance than samples 6, 7 and 9 (comparative examples).
  • the alumina sintered bodies of the examples have a reduced number of pores, are highly dense, and have a reduced ratio of pores existing at the grain boundaries, so that leakage current flowing through the grain boundaries is suppressed. It was possible to improve the withstand voltage.
  • the number of pores in the example was smaller than that in the comparative example, the number of starting points of plasma erosion was smaller, and the surface roughness after plasma irradiation was lower.
  • Sample 2 has a significantly reduced number of pores compared to Sample 1. As a result, the sample 2 was able to improve the withstand voltage compared to the sample 1.
  • sample 3 Compared to sample 2, sample 3 has a significantly reduced ratio of pores existing at grain boundaries. As a result, the sample 3 was able to improve the withstand voltage more than the sample 1.
  • Sample 4 was produced under the same firing conditions as Sample 2, although more magnesia was added than Sample 2.
  • Sample 4 has more pores than sample 2 and has a lower withstand voltage. This is because secondary phases such as MgAl 2 O 4 tend to occur as the amount of magnesia added increases.
  • Sample 4 has a withstand voltage lower than that of sample 2, but a withstand voltage equivalent to that of sample 1 can be obtained.
  • Sample 9 (comparative example) has a large amount of magnesia added, 0.3 mol %, compared to the examples, and has a low withstand voltage. Therefore, the appropriate content of magnesia (MgO) is 0.00 mol % ⁇ MgO ⁇ 0.20 mol %.
  • Sample 5 has a large standard deviation of grain size compared to other examples, but has a small number of pores and almost no pores existing at the crystal grain boundary, so that high withstand voltage and high plasma resistance can be obtained.
  • Sample 7 comparative example
  • Sample 7 has a standard deviation of grain size of 4.0 ⁇ m and a low withstand voltage. .
  • sample 8 has a larger number of pores than sample 2, the presence ratio of pores is larger than that of sample 2, and the same degree of withstand voltage and plasma resistance as sample 2 could be obtained. From this result, it can be said that the existence ratio of pores has a large effect on the withstand voltage. When a voltage is applied, grain boundaries are more likely to act as current paths than grain interiors. It is considered that the withstand voltage can be improved by reducing
  • FIG. 4 is a schematic cross-sectional view of a holding device 100 using the alumina sintered body 10 of the first embodiment.
  • the holding device 100 is a part of semiconductor manufacturing equipment that performs plasma etching, ion implantation, electron beam exposure, and the like.
  • the holding device 100 is used as an electrostatic chuck for fixing, flatness correction, transporting, etc. of a semiconductor wafer W (hereinafter also simply referred to as “wafer W”) and for cooling the wafer W.
  • wafer W semiconductor wafer W
  • XYZ axes orthogonal to each other are shown in FIG. 4 to specify the directions. In this specification, the Z-axis positive direction is referred to as the stacking direction for convenience.
  • the wafer W held by the holding device 100 is illustrated by broken lines.
  • the holding device 100 has a plate-like member 20 that holds a wafer W, which is an object, and a base member 30 that is joined to the plate-like member 20 and has a cooling function.
  • the plate-like member 20 has a first surface 23 on which the wafer W is held, a second surface 24 that is the rear surface of the first surface 23 , and a chuck electrode 21 formed inside the plate-like member 20 . have.
  • the base member 30 is bonded to the second surface 24 of the plate member 20 via a bonding layer 40 as shown.
  • the first surface 23 of the plate member 20 holding the wafer W is shown in a simplified manner in FIG. 4, it has a seal band portion 26 and a plurality of embossments 27, which will be described later.
  • the plate member 20 is an alumina sintered body containing alumina (Al 2 O 3 ) as a main component, and satisfies at least requirements [1] to [3] shown in the first embodiment.
  • a plurality of chuck electrodes 21 as conductors are embedded inside the plate member 20 . When a voltage is applied to the chuck electrode 21 while the wafer W is placed on the first surface 23 , an electrostatic force is generated and the wafer W is fixed to the first surface 23 .
  • a gas flow path 22 which is a through-hole, is provided that penetrates the second surface 24 and the first surface 23 of the plate-like member 20 in the stacking direction.
  • the gas flow path 22 supplies an inert gas (for example, helium gas) for cooling the wafer W from a gas supply hole 32 of the base member 30 (to be described later) onto the first surface 23 .
  • the gas channel 22 opens onto the first surface 23 .
  • the base member 30 is made of metal such as aluminum or stainless steel.
  • a gas supply hole 32 is formed inside the base member 30 so as to penetrate in the stacking direction.
  • An inert gas supplied by a device such as a pump is supplied to the gas flow path 22 of the plate member 20 through the gas supply holes 32 .
  • FIG. 5 is a schematic top view of the holding device 100.
  • FIG. FIG. 6 is an enlarged schematic view of the AA cross section in FIG.
  • the shape of the plate member 20 and the base member 30 is substantially disc-shaped with the center O as the center.
  • the first surface 23 of the plate-like member 20 is formed with outlets (openings) of a plurality of gas flow paths 22 .
  • the first surface 23 includes a flat surface 25, a convex seal band portion 26 formed continuously along the outer edge of the flat surface 25, and the seal band portion 26. It has a plurality of cylindrical embossments 27 protruding from the plane 25 on the inside. When the wafer W is held by the plate-like member 20 , the surfaces of the seal band portion 26 and the embossments 27 are adsorbed.
  • the mixed powder which is the raw material of the alumina sintered body 10
  • the pre-pressed mixed powder is placed between the pressed bodies and fired by hot pressing.
  • the plate-like member 20 is processed by grinding to manufacture the plate-like member 20 in which the seal band portion 26 and the embossments 27 are formed. That is, the surfaces of the seal band portion 26 and the embossments 27 are formed of the alumina sintered body 10 .
  • the holding device 100 includes the plate-like member 20 and the base member 30 joined to the plate-like member 20 .
  • the plate member 20 has a chuck electrode 21 formed inside and a seal band portion 26 formed continuously along the outer edge of the first surface 23 .
  • the surface of the first surface 23 that holds the wafer W is mainly composed of alumina (Al 2 O 3 ), and the content of magnesia (MgO) with respect to the content of alumina is 0.00 mol % ⁇ MgO ⁇ 0.20 mol %. is formed on the surface of an alumina sintered body having a density of 3.96 g/cm 3 or more and a standard deviation of the grain size of alumina crystal grains of less than 4.0 ⁇ m ing.
  • the surface of the first surface 23 for holding the wafer W is formed of an alumina sintered body with few pores and high withstand voltage, high power can be applied. Therefore, by using the holding device 100 of the present embodiment, the wafer W can be etched deeply.
  • the plate-like member 20 has the gas channel 22 and the seal band portion 26, and the opening of the gas channel 22 is formed inside the seal band portion 26, so that the gas channel 22 , and the sealing performance of the gas (for example, helium (He) gas) released between the first surface 23 of the plate member 20 and the wafer W can be improved.
  • the gas for example, helium (He) gas
  • the method for producing the alumina sintered body is not limited to the above embodiment.
  • the content of magnesia (MgO) with respect to the content of alumina can be reduced to 0. .00mol% ⁇ MgO ⁇ 0.20mol%, a density of 3.96 g/cm 3 or more, and a standard deviation of the grain size of alumina crystal grains of less than 4.0 ⁇ m to produce an alumina sintered body. be able to.
  • the alumina sintered body containing no impurities other than magnesia and yttria was exemplified, but other impurities may be contained. However, it is preferable not to contain other impurities because the withstand voltage can be further improved.
  • the content of magnesia (MgO) relative to the content of alumina is 0.00 mol% ⁇ MgO ⁇ 0.20 mol%, the density is 3.96 g/cm 3 or more, and the alumina crystal particles
  • the alumina sintered body with the standard deviation of the grain size of less than 4.0 ⁇ m is exemplified, the content of magnesia, the density, and the standard deviation of the grain size of the alumina crystal grains are not limited to the above embodiment. For example, it may not contain magnesia.
  • the alumina sintered body containing alumina (Al 2 O 3 ) as a main component has an amount of vacancies of 0.050/ ⁇ m 2 or less, and the vacancies are vacancies existing at grain boundaries. When divided into certain first vacancies and second vacancies that are vacancies existing in the crystal grain, even if the ratio of the existing amount of the second vacancies to the existing amount of vacancies is 20% or more good. When a voltage is applied, grain boundaries are more likely to act as current paths than grain interiors. Since the withstand voltage can be improved by reducing , the withstand voltage can also be improved in this way.
  • the plate member 20 of the holding device 100 has the gas flow path 22, the seal band portion 26, and the embossment 27, but the holding device does not have at least one of them. good too.
  • the alumina sintered body 10 is used for all of the plate members 20, but at least the surface of the first surface 23 for holding the wafer W is applied with the alumina sintered body 10.
  • the surface of the first surface 23 may be formed of the alumina sintered body 10 and the second surface 24 may be formed of an alumina sintered body different from the alumina sintered body 10 .
  • a different member for example, another alumina sintered body different from the alumina sintered body 10) may be arranged or bonded between the plate-shaped member 20 and the base member 30 .
  • an electrostatic chuck was exemplified as a holding device, but the holding device is not limited to an electrostatic chuck, and CVD (chemical vapor deposition), PVD (physical vapor deposition), PLD (Pulsed Laser Deposition), etc. It can be configured as various holding devices such as a heater device for a vacuum device, a susceptor, and a mounting table.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PLD Pulsed Laser Deposition

Abstract

アルミナ(Al23)を主成分とし、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%である、アルミナ質焼結体は、密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さい。

Description

アルミナ質焼結体、および静電チャック
 本発明は、アルミナ質焼結体、および静電チャックに関する。
 半導体装置、特にフラッシュメモリー分野において、近年、アスペクト比が大きい半導体デバイス(例えば、3D-NANDなど)が求められてきている。アスペクト比が大きい半導体デバイスを製造するためには、シリコンウェハーを深くエッチングする必要があり、そのために必要な技術としてハイパワーを印加可能な静電チャックが望まれている。ハイパワー用途向けの静電チャック用部材には、できるだけポア(空孔)が少ない緻密な組織と高い電界に耐えられる耐電圧が求められる。
 一般的にアルミナ(Al23)を主成分とするセラミックスは、焼成時に異常粒成長を起こしやすく、異常粒成長した結晶粒の付近にポア(空孔)が生成しやすい。これに対し、粒成長抑制剤としてマグネシア(MgO)を添加することにより耐電圧を向上させる技術が提案されている(例えば、特許文献1参照)。また、アルミナ質焼結体において、アルミナ(Al23)以外の成分の含有量を調整することにより、アルミナ質焼結体の密度を向上させる技術が提案されている(例えば、特許文献2参照)。
特許第6373212号公報 特開2019-69889号公報
 しかしながら、特許文献1に記載のアルミナ質焼結体でも、ハイパワー用途としては耐電圧が十分でない場合がある。そのため、アルミナ質焼結体のさらなる高耐電圧化が望まれている。また、特許文献2にはアルミナ質焼結体の密度についての記載があるものの、ポアの数や位置については言及されていない。なお、このような課題は、静電チャック用部材に限定されず、種々の半導体製造装置用部材に用いられるアルミナ質焼結体に共通する課題である。
 本発明は、上述した課題を解決するためになされたものであり、アルミナ質焼結体の耐電圧を向上させる技術を提供すること、アルミナ質焼結体におけるポア(空孔)を低減する技術を提供することを目的とする。
 本発明は、上述の課題の少なくとも一つを解決するためになされたものであり、以下の形態として実現できる。
(1)本発明の一形態によれば、アルミナ(Al23)を主成分とし、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%である、アルミナ質焼結体が提供される。このアルミナ質焼結体は、密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さい。
 この形態のアルミナ質焼結体によれば、アルミナ結晶粒子の粒径の標準偏差が4.0μmより小さいため粒径のバラつきが小さく、アルミナの異常粒の存在比率が小さい。そのため、同じ密度のアルミナ質焼結体において、アルミナ結晶粒の粒径の標準偏差が4.0μm以上のものと比較して、空孔(ポア)の数を低減することができる。すなわち、この形態のアルミナ質焼結体は密度が大きく、ポアが少ないため、緻密性を向上させることができる。また、ポアを低減させることにより、耐電圧を向上させることができる。
(2)上記形態のアルミナ質焼結体において、空孔の存在量が、0.050個/μm2以下であってもよい。このようにすると、耐電圧が高いアルミナ質焼結体を得ることができる。
(3)上記形態のアルミナ質焼結体において、前記空孔を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、前記空孔の存在量に対する前記第2空孔の存在量の比率が20%以上であってもよい。このように結晶粒界に存在する空孔の存在量が低減されたアルミナ質焼結体を用いると、電界を印加した際に結晶粒界を流れるリーク電流を抑制することができるため、耐電圧を向上させることができる。
(4)上記形態のアルミナ質焼結体において、絶縁破壊電圧が200kV/mm以上であってもよい。このようにすると、高い耐電圧を得ることができるため、例えば、ハイパワーを印加可能な静電チャック等に用いることができる。
(5)上記形態のアルミナ質焼結体において、プラズマを40分間照射した面の表面粗さSaが50nm以下であってもよい。このようにすると、耐プラズマ性が高いアルミナ質焼結体を得ることができる。耐プラズマ性が高いアルミナ質焼結体を、例えば、静電チャックに用いることにより、ウェハー載置面のガスシール性およびチャック力の低下を抑制することができる。
(6)本発明の他の形態によれば、対象物が保持される静電チャックが提供される。この静電チャックは、前記対象物が保持される第1の面と、前記第1の面の裏面である第2の面と、前記第2の面と内部とのいずれか一方に形成されたチャック電極と、を有する板状部材と、前記板状部材の前記第2の面側に配置される、冷却機能を有するベース部材と、を有し、前記板状部材の前記第1の面は、請求項1から請求項5に記載のアルミナ質焼結体から形成される。
 この形態の静電チャックによれば、板状部の第1の面がポアが少なく耐電圧が高いアルミナ質焼結体から形成されるため、ハイパワーを印加可能な静電チャックを提供することができる。
(7)上記形態の静電チャックにおいて、前記板状部材は、前記第1の面に開口し、前記第2の面側からガスが導入されるガス流路と、前記第1の面に前記板状部材の外縁に沿って連続して形成されたシールバンド部と、を有し、前記ガス流路の開口は前記シールバンド部より内側に形成されてもよい。このようにすると、ガス流路を流通し、板状部材の第1の面と前記対象物との間に放出されるガス(例えば、ヘリウム(He)ガス)のシール性を向上させることができる。
(8)本発明の他の形態によれば、アルミナ(Al23)を主成分とするアルミナ質焼結体が提供される。このアルミナ質焼結体は、空孔の存在量が、0.050個/μm2以下であり、前記空孔を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、前記空孔の存在量に対する前記第2空孔の存在量の比率が20%以上であってもよい。このようにしても、空孔(ポア)の数を低減することができ、耐電圧を向上させることができる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、半導体製造装置用部品、半導体製造装置、保持装置、静電チャック、およびこれらを備える装置、および半導体製造装置用部品の製造方法等の形態で実現することができる。
アルミナ質焼結体の製造方法を示す工程図である。 サンプルの断面STEM像の一例を示す図である。 サンプルの断面STEM像の一例を示す図である。 保持装置の概略断面図である。 保持装置の概略上面図である。 図5におけるA-A断面の拡大概略図である。
<第1実施形態>
 本発明の第1実施形態としてのアルミナ質焼結体は、アルミナ(Al23)を主成分とし、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%である、アルミナ質焼結体であって、密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さい。ここで、「主成分」とは含有割合の最も多い成分を意味する。
 マグネシアの含有量は、以下のように求めることができる。アルミナ質焼結体に対して、XRF(X‐ray Fluorescence:蛍光X線分析)による元素分析を行い、マグネシウム(Mg)の量を定量する。分析結果のマグネシウム量を酸化物換算して、マグネシアの含有量を求める。同様に、アルミニウム(Al)の量を定量し、酸化物換算することにより、アルミナの含有量を求める。そして、アルミナの量(mol)に対するマグネシアの量(mol)の割合を算出する。
 アルミナ質焼結体において、マグネシアを添加することにより、アルミナ結晶粒の異常粒成長を抑制することができる。
 アルミナ質焼結体の密度は、アルキメデス法(JIS R 1634)により測定することができる。
 アルミナ質焼結体のアルミナ結晶粒子の粒径は、インターセプト法により測定することができる。具体的には、アルミナ質焼結体の破断面をSEM(Scanning Electron Microscope:走査電子顕微鏡)により観察し、得られた二次電子像の画像上に長さLの直線が引かれた際に、直線が横切る粒子の数nを測定する。なお、直線の両端が内部にある粒子は0.5個として数える。その後に、下記式(1)によって平均粒径D(μm)を算出する。
   D=1.5×L/n・・・(1)
 本実施形態では、粒子の数nが100個以上と交わる任意の本数を平行に引いて、複数の平均粒径Dを求め、求めた複数の平均粒子径を用いて、標準偏差を算出する。
 本実施形態のアルミナ質焼結体は、空孔(ポア)の存在量が、0.050個/μm2以下であることが好ましい。ポアの数を低減することにより、耐電圧を向上させることができる。また、ポアの数が少ないため、プラズマ侵食の起点が少なくなり、耐プラズマ性を向上させることができる。
 空孔(ポア)の存在量は、断面STEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)像を用いて目視により数えることができる。なお、破断面SEM像を用いて、ポアの存在を確認することができる。破断面SEM像では、結晶粒界にあるポアの数はわかるものの、結晶粒内に存在するポアの数がわからないため、破断面SEM像を用いて求めたポアの存在量より、ポアの総数は多くなる。そのため、破断面SEM像において、ポアの数が少ない場合に、断面STEM像を用いて、ポアの存在量を確認するのが好ましい。
 本実施形態のアルミナ質焼結体において、空孔(ポア)を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、空孔の存在量に対する第2空孔の存在量の比率が20%以上であるのが好ましい。結晶粒界に存在するポアは電界を印加した際のリーク電流の通り道になると考えられ、絶縁破壊の起点となると考えられる。そのため、結晶粒界に存在する空孔の存在量が低減されたアルミナ質焼結体を用いると、結晶粒界を流れるリーク電流を抑制することができ、耐電圧をさらに向上させることができる。空孔の存在量は、上述の通り、断面STEM像を用いて数えることができる。
 本実施形態のアルミナ質焼結体において、絶縁破壊電圧が200kV/mm以上であるのが好ましい。このようにすると、高い耐電圧を得ることができるため、例えば、ハイパワーを印加可能な静電チャック等に用いることができる。絶縁破壊電圧として、JIS C2110に従い、絶縁破壊が生じたときの電圧を測定する。
 本実施形態のアルミナ質焼結体において、プラズマを40分間照射した面の表面粗さSaが50nm以下であってもよい。このようにすると、耐プラズマ性が高いアルミナ質焼結体を得ることができる。耐プラズマ性が高いアルミナ質焼結体を、例えば、静電チャックに用いることにより、ウェハー載置面のガスシール性およびチャック力の低下を抑制することができる。
 図1は、アルミナ質焼結体の製造方法を示す工程図である。本実施形態のアルミナ質焼結体の製造方法では、まず、予め測定した量のAl23原料と、MgO原料とをエタノール中でボールミル混合して乾燥させる粉末作製工程が行われる(工程P1)。MgO原料の添加量は、Al23原料に対して0.00mol%<MgO≦0.20mol%である。次に、粉末作製工程(工程P1)によって得られた混合粉末が、ホットプレス装置により成形されて1500℃以上1700℃以下の焼成温度で焼成される焼成工程が行われ(工程P2)、アルミナ質焼結体が製造される。焼成温度が1700℃を超えるような高温である場合、粒子の異常粒成長が生じる可能性が高くなり、耐電圧の低下が起こる可能性が増加するため、焼成温度は1500℃以上1700℃以下が良い。ホットプレスのプレス圧は、任意に設定することができる。プレス圧が10MPaを下回るような低圧である場合、ホットプレスの際に粒子が潰れにくくなり緻密化を促進できず、粒界にポアとして空気が残存する可能性が高くなるため、プレス圧は10MPa以上40MPa以下が良い。なお、アルミナ質焼結体におけるMgOの含有量は、XRFやICP発光分析で調べることができる。ホットプレスは、焼成中に圧力をかけることにより、大気焼成と比較して、粒子を潰しながら焼成できるため、緻密化を促進でき、粒界のポアが低減しやすい。また粒子間の接触面積も大きくなるため、焼結工程自体が大気焼成と比較して短い時間で終えることができる。
 本実施形態の製造方法によれば、ゲルキャスト法によってアルミナ質焼結体を製造する場合と比較して、不純物が少なく、耐電圧が高いアルミナ質焼結体を得ることができる。
 本実施形態のアルミナ質焼結体を、半導体製造装置用部品、半導体製造装置、保持装置、静電チャック、およびこれらを備える装置等に用いることができる。
 実施例により本発明を更に具体的に説明する。
 アルミナ質焼結体のサンプル1~9を用いて、耐電圧および耐プラズマ性を評価した。サンプル1~5、8が上記実施形態のアルミナ質焼結体の実施例であり、サンプル6、7、9が比較例のアルミナ質焼結体である。
 表1は、サンプル1~9の諸元、および評価結果を示す表である。評価方法は後述する。
Figure JPOXMLDOC01-appb-T000001
1.サンプルの製造
 サンプル1~5、8は、上記実施形態の製造方法により製造される。サンプル6は、ホットプレスを行わず常圧にて焼成する以外は、上記実施形態の製造方法と同様に製造される。サンプル7は、1700℃を超える温度でホットプレスを行ったこと以外は、上記実施形態の製造方法と同様に製造される。サンプル8は、常圧焼成したサンプル6を200MPa以下の圧力でHIP(Hot Isostatic Pressing)処理をしたものである。HIP処理することでもポア、特に粒界ポアを減少させ、耐電圧を向上させることができる。
 サンプル1~9において、アルミナ原料として純度99.9%以上のものが用いられている。
 マグネシア原料は、アルミナ原料に対して、表1に記載された割合で添加される。具体的には、サンプル1~3,5,7では0.10mol%、サンプル4では0.20mol%、サンプル6、8では0.13mol%、サンプル9では0.3mol添加される。マグネシアは、後述するように、アルミナ結晶粒の異常粒成長を抑制することができる。
 サンプル1~5,7では、イットリア(酸化イットリウム:Y23)が、アルミナ原料に対して所定の割合(0~0.05mol%)で添加されている。イットリアの添加量が0.05mol%を超えるとイットリアが二次相として偏析しやすくなる。二次相の偏析が生じると耐電圧の低下を引き起こす可能性が高くなるため、イットリアの添加量は0~0.05mol%が好適である。サンプル6、8、9ではイットリアは添加されていない。イットリアは焼結助剤として添加されている。
 これらのサンプルにおいて、焼結助剤の添加量は、0~0.05mol%と微量であり、マグネシアの添加量は、アルミナ質焼結体におけるマグネシアの含有量と略一致する。
 マグネシアの添加量、イットリアの添加量、焼成方法(ホットプレス、常圧)、焼成雰囲気(アルゴン(Ar)、大気、真空)、焼成温度を、違えることにより、アルミナ質焼結体の密度、粒径の標準偏差、ポア(空孔)の数、結晶粒界に存在するポア(空孔)の割合を、サンプル1~9において互いに違えている。サンプル1~9は、マグネシア、イットリア以外の不純物を含まない。ここで、「不純物を含まない」とは「Si,Ca,Feなどの工程不純物が10ppm以下であることを示す。
 アルミナ質焼結体の密度は、アルキメデス法(JIS R 1634)により測定した。
 アルミナ質焼結体のアルミナ結晶粒子の粒径の標準偏差は、上述の通りインターセプト法により測定された各粒子径を用いて算出した。
 ポアの数、およびポアの存在割合は、上述の通り、断面STEM像(倍率:5000倍)を用いて求めた。具体的には、ポアを4つ以上含む視野にて、かつ3つ以上の視野を撮影し、その平均を、ポアの存在量とした。サンプル4については、断面STEM像を用いた確認は行っていないため、参考として破断面SEMを用いて求めたポアの数を記載した。なお、表1におけるポアの存在割合は、結晶粒界に存在するポアの数と結晶粒内に存在するポアの数を合わせたポアの総数に対する結晶粒内に存在するポアの数である。
 図2、図3は、サンプル1~3のアルミナ質焼結体10の断面STEM像の一例を示す図である。図2(A)がサンプル1、図2(B)がサンプル2、図2(C)がサンプル3、図3(D)がサンプル8のSTEM像(倍率:5000倍)を、それぞれ示す。図2では、アルミナ質焼結体10に存在するポア(空孔10P)のうち、結晶粒界に存在するポア(第1空孔11)を実線で囲み、結晶粒内に存在するポア(第2空孔12)を破線で囲んで示している。
2.評価方法
(1)耐電圧
 耐電圧は、絶縁破壊電圧を用いて評価した。絶縁破壊電圧が高い程、耐電圧が高い。絶縁破壊電圧は、以下のように求めた。サンプル1~9から、一辺が20mmの長方形板で、厚さが0.15mmの試験片を形成し、JIS C2110に従い、絶縁破壊が生じたときの電圧を測定した。表1に示す値は、4回測定した平均値である。
(2)耐プラズマ性
 各サンプルに、それぞれ、プラズマを照射し、プラズマが照射された面の表面粗さSaを測定した。表面粗さSaは、ISO25178規格に準拠した装置で測定されている。当該装置は、垂直走査型低コヒーレンス干渉法を用いて、表面粗さSaを測定する。
 プラズマ耐久性評価条件は、下記の通りである。
  装置:NLD(Neutral Loop Discharge:磁気中性線放電)プラズマ装置
  ・アンテナRFパワー:1kW
  ・バイアス:0.3kW
  ・CF4=90sccm、O2=10sccm
  ・暴露時間40分
3.評価結果
 サンプル1~5、8(実施例)のアルミナ質焼結体は、下記〔1〕~〔5〕の全ての要件を満たしている。
〔1〕マグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%である。
〔2〕密度が3.96g/cm3以上である。
〔3〕アルミナ結晶粒子の粒径の標準偏差が4.0μmより小さい。
〔4〕空孔の存在量が、0.050個/μm2以下である。
〔5〕空孔を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、空孔の存在量に対する第2空孔の存在量の比率が20%以上である。
 これに対して、サンプル6(比較例)は、上記〔1〕、〔3〕の要件を満たすものの、上記〔2〕、〔4〕、〔5〕の要件を満たさない。すなわち、サンプル6(比較例)は、実施例と比較して密度が低く、ポアの数が多く、かつ結晶粒界に存在するポアの割合が高い。また、サンプル7(比較例)は、上記〔1〕、〔2〕の要件を満たすものの、上記〔3〕の要件を満たさない。サンプル7(比較例)は、密度は実施例と同等であるものの、実施例と比較してアルミナ結晶粒の標準偏差が大きいため、粒径のバラつきが大きく、アルミナの異常粒の存在比率が大きく、ポアの数が多いと考えられる。サンプル9(比較例)は、上記〔2〕~〔4〕の要件を満たすものの、上記〔1〕の要件を満たさない。すなわち、サンプル9(比較例)は、実施例と比較してマグネシア(MgO)の含有量が高い。
 サンプル1~5、8(実施例)のアルミナ質焼結体は、サンプル6、7、9(比較例)と比較して、耐電圧、および耐プラズマ性の少なくともいずれか一方が高い。実施例のアルミナ質焼結体は、ポアの数が低減されており、緻密性が高く、かつ結晶粒界に存在するポアの割合が低減されているため、結晶粒界を流れるリーク電流を抑制することができ、耐電圧を向上させることができた。また、実施例は比較例に対してポアの数が少ないためプラズマ侵食の起点が少なくなり、プラズマ照射後の表面粗さが低くなった。
 実施例のサンプル1~5、8を比較してさらに詳細に説明する。
 サンプル2は、サンプル1と比較するとポアの数が著しく低減されている。これにより、サンプル2はサンプル1より耐電圧を向上させることができた。
 サンプル3は、サンプル2と比較すると結晶粒界に存在するポアの割合が著しく低減されている。これにより、サンプル3はサンプル1よりさらに耐電圧を向上させることができた。
 サンプル4は、サンプル2より多くマグネシアを添加しているものの、サンプル2と同じ焼成条件にて作成されている。サンプル4はサンプル2と比較してポアの数が増え、耐電圧が低下している。これは、マグネシアの添加量が増えると、例えばMgAl24等の二次相が生じやすくなるためである。サンプル4は、サンプル2よりも耐電圧が低下しているものの、サンプル1と同等の耐電圧を得ることができる。サンプル9(比較例)はマグネシアの添加量が実施例と比較して多く0.3mol%であり、耐電圧が低い。そのため、マグネシア(MgO)の含有量は、0.00mol%<MgO≦0.20mol%が適当である。
 サンプル5は、他の実施例と比較して粒径の標準偏差が大きいものの、ポアの数が少なく、かつ結晶粒界に存在するポアがほぼなく、高い耐電圧と高い耐プラズマ性を得ることができた。サンプル7(比較例)では、粒径の標準偏差が4.0μmであり、耐電圧が低いため、粒径の標準偏差は4.0μmより小さくすることにより、高い耐プラズマ性を得ることができる。
 サンプル8は、ポアの数がサンプル2と比較して多いものの、ポアの存在割合がサンプル2と比較して多く、サンプル2と同程度の耐電圧、耐プラズマ性を得ることができた。この結果から、ポアの存在割合が耐電圧に及ぼす影響が大きいといえる。電圧が印加された際、粒内よりも粒界の方が電流のパスになりやすく、電流パス上に存在する粒界ポアは粒内ポアよりも絶縁破壊の起点になりやすいため、粒界ポアを減らすことで耐電圧を向上させることができると考えられる。
<第2実施形態>
 図4は、第1実施形態のアルミナ質焼結体10を使用した保持装置100の概略断面図である。保持装置100は、プラズマエッチングやイオン注入、電子ビーム露光等を行う半導体製造装置の一部である。保持装置100は、半導体ウェハーW(以下、単に「ウェハーW」とも呼ぶ)の固定・平面度矯正・搬送等を行い、かつ、ウェハーWを冷却するための静電チャックとして利用される。図4には、方向を特定するために、互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を積層方向という。
 図4では、保持装置100によって保持されるウェハーWを破線で図示している。図4に示すように、保持装置100は、対象物であるウェハーWが保持される板状部材20と、板状部材20に接合され、冷却機能を有するベース部材30と、を有する。板状部材20は、ウェハーWが保持される第1の面23と、第1の面23の裏面である第2の面24と、板状部材20内部に形成されたチャック電極21と、を有する。ベース部材30は、図示するように、板状部材20の第2の面24に接合層40を介して接合されている。なお、ウェハーWを保持する板状部材20の第1の面23は、図4では簡略化して示されているが、後述するシールバンド部26や複数のエンボス27が形成されている。
 板状部材20は、アルミナ(Al23)を主成分とするアルミナ質焼結体であり、第1実施形態に示した要件〔1〕~〔3〕を少なくとも満たす。板状部材20の内部には、導電体としての複数のチャック電極21が埋設されている。ウェハーWが第1の面23に載置された状態で、チャック電極21に電圧が印加されると静電力が発生し、ウェハーWは第1の面23に固定される。
 板状部材20の内部には、板状部材20の第2の面24と第1の面23とを積層方向に貫通する貫通孔であるガス流路22が設けられている。ガス流路22は、後述するベース部材30のガス供給孔32から供給される、ウェハーWを冷却するための不活性ガス(例えば、ヘリウムガス)を第1の面23上に供給する。図4に示すように、ガス流路22は、第1の面23上に開口している。
 ベース部材30は、例えばアルミニウム、ステンレスといった金属によって形成されている。ベース部材30の内部には、積層方向に貫通するようにガス供給孔32が形成されている。ポンプ等の機器により供給される不活性ガスは、ガス供給孔32を介して、板状部材20のガス流路22へと供給される。
 図5は、保持装置100の概略上面図である。図6は、図5におけるA-A断面の拡大概略図である。図5に示すように、板状部材20およびベース部材30の形状は、中心Oを中心とする略円盤状である。板状部材20の第1の面23には、複数のガス流路22の出口(開口)が形成されている。また、図5および図6に示すように、第1の面23は、平面25と、平面25の外縁に沿って連続して形成された凸状のシールバンド部26と、シールバンド部26の内側において平面25から突出している複数の円柱状のエンボス27とを備えている。ウェハーWは、板状部材20に保持されると、シールバンド部26およびエンボス27の表面に吸着される。
 アルミナ質焼結体10が板状部材20に使用される場合には、アルミナ質焼結体10の原料である混合粉末が事前に予備プレスによって成形される。板状部材20のチャック電極21用の金属メッシュまたは金属箔が配置された状態で、プレス成形体の間に予備プレスされた混合粉末が配置されて、ホットプレスによって焼成される。焼成後に、研削加工によって加工されて、シールバンド部26およびエンボス27が形成された板状部材20が製造される。すなわち、シールバンド部26およびエンボス27の表面は、アルミナ質焼結体10によって形成されている。
 以上説明したように、保持装置100は、板状部材20と、板状部材20に接合されたベース部材30とを備えている。板状部材20は、内部に形成されたチャック電極21と、第1の面23の外縁に沿って連続して形成されたシールバンド部26とを有している。ウェハーWを保持する第1の面23の表面は、アルミナ(Al23)を主成分とし、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%である、アルミナ質焼結体であって、密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さいアルミナ質焼結体の表面で形成されている。すなわち、ウェハーWを保持する第1の面23の表面がポアが少なく耐電圧が高いアルミナ質焼結体から形成されるため、ハイパワーを印加することができる。そのため、本実施形態の保持装置100を用いれば、ウェハーWを深くエッチングすることができる。
 また、保持装置100において、板状部材20はガス流路22とシールバンド部26とを有し、ガス流路22の開口はシールバンド部26より内側に形成されているため、ガス流路22を流通し、板状部材20の第1の面23とウェハーWとの間に放出されるガス(例えば、ヘリウム(He)ガス)のシール性を向上させることができる。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・アルミナ質焼結体の製造方法は、上記実施形態に限定されない。焼結助剤の種類、焼結助剤の添加量、焼成方法、焼成雰囲気、焼成温度、ホットプレス圧等を、適宜変更することにより、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%であり、密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さい、アルミナ質焼結体を製造することができる。また、ゲルキャスト法等、他の公知の方法により製造してもよい。
・上記実施形態において、マグネシアとイットリア以外の不純物を含有しないアルミナ質焼結体を例示したが、他の不純物を含んでもよい。但し、他の不純物を含まない方が、耐電圧をより向上させることができるため、好ましい。
・上記実施形態において、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%であって、密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さいアルミナ質焼結体を例示したが、マグネシアの含有量、密度、およびアルミナ結晶粒子の粒径の標準偏差は上記実施形態に限定されない。例えば、マグネシアを含有しなくてもよい。アルミナ(Al23)を主成分とするアルミナ質焼結体は、空孔の存在量が、0.050個/μm2以下であり、空孔を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、空孔の存在量に対する第2空孔の存在量の比率が20%以上であってもよい。電圧が印加された際、粒内よりも粒界の方が電流のパスになりやすく、電流パス上に存在する粒界ポアは粒内ポアよりも絶縁破壊の起点になりやすいため、粒界ポアを減らすことで耐電圧を向上させることができるため、このようにしても、耐電圧を向上させることができる。
・上記第2実施形態において、保持装置100の板状部材20がガス流路22とシールバンド部26と、エンボス27を有する例を示したが、保持装置はそれらの少なくとも1つを備えなくてもよい。
・上記第2実施形態において、板状部材20の全てをアルミナ質焼結体10としたが、ウェハーWを保持する第1の面23の表面が少なくともアルミナ質焼結体10が適用されていればよい。例えば、第1の面23の表面はアルミナ質焼結体10で形成し、第2の面24はアルミナ質焼結体10とは異なる別のアルミナ質焼結体で形成してもよい。また、板状部材20とベース部材30との間に異なる部材(例えばアルミナ質焼結体10とは異なる別のアルミナ質焼結体)を配置または接合してもよい。
・上記実施形態において、保持装置として静電チャックを例示したが、保持装置は静電チャックに限定されず、CVD(chemical vapor deposition)、PVD(physical vapor deposition)、PLD(Pulsed Laser Deposition)等の真空装置用ヒータ装置、サセプタ、載置台等種々の保持装置として構成することができる。
 以上、実施形態、実施例、変形例に基づき本発明について説明してきたが、上記した態様の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  10…アルミナ質焼結体
  10P…空孔
  11…第1空孔
  12…第2空孔
  20…板状部材
  21…チャック電極
  22…ガス流路
  23…第1の面
  24…第2の面
  25…平面
  26…シールバンド部
  27…エンボス
  30…ベース部材
  32…ガス供給孔
  40…接合層
  100…保持装置
  W…ウェハー

Claims (8)

  1.  アルミナ(Al23)を主成分とし、アルミナの含有量に対するマグネシア(MgO)の含有量が0.00mol%<MgO≦0.20mol%である、アルミナ質焼結体であって、
     密度が3.96g/cm3以上であり、かつアルミナ結晶粒子の粒径の標準偏差が4.0μmより小さいことを特徴とする、
     アルミナ質焼結体。
  2.  請求項1に記載のアルミナ質焼結体であって、
     空孔の存在量が、0.050個/μm2以下であることを特徴とする、
     アルミナ質焼結体。
  3.  請求項2に記載のアルミナ質焼結体であって、
     前記空孔を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、前記空孔の存在量に対する前記第2空孔の存在量の比率が20%以上であることを特徴とする、
     アルミナ質焼結体。
  4.  請求項1から請求項3に記載のアルミナ質焼結体であって、
     絶縁破壊電圧が200kV/mm以上であることを特徴とする、
     アルミナ質焼結体。
  5.  請求項1から請求項4に記載のアルミナ質焼結体であって、
     プラズマを40分間照射した面の表面粗さSaが50nm以下であることを特徴とする、
     アルミナ質焼結体。
  6.  対象物が保持される静電チャックであって、
     前記対象物が保持される第1の面と、前記第1の面の裏面である第2の面と、前記第2の面と内部とのいずれか一方に形成されたチャック電極と、を有する板状部材と、
     前記板状部材の前記第2の面側に配置される、冷却機能を有するベース部材と、を有し、
     前記板状部材の前記第1の面は、請求項1から請求項5に記載のアルミナ質焼結体から形成されることを特徴とする、
     静電チャック。
  7.  請求項6に記載の静電チャックであって、
     前記板状部材は、
      前記第1の面に開口し、前記第2の面側からガスが導入されるガス流路と、
      前記第1の面に前記板状部材の外縁に沿って連続して形成されたシールバンド部と、を有し、
      前記ガス流路の開口は前記シールバンド部より内側に形成されることを特徴とする、 静電チャック。
  8.  アルミナ(Al23)を主成分とするアルミナ質焼結体であって、
     空孔の存在量が、0.050個/μm2以下であり、
     前記空孔を、結晶粒界に存在する空孔である第1空孔と、結晶粒内に存在する空孔である第2空孔とに分けたとき、
     前記空孔の存在量に対する前記第2空孔の存在量の比率が20%以上であることを特徴とする、アルミナ質焼結体。
PCT/JP2022/038222 2021-10-18 2022-10-13 アルミナ質焼結体、および静電チャック WO2023068159A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247011208A KR20240054354A (ko) 2021-10-18 2022-10-13 알루미나질 소결체, 및 정전 척
TW111139215A TW202325681A (zh) 2021-10-18 2022-10-17 氧化鋁質燒結體、及靜電吸盤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021170196 2021-10-18
JP2021-170196 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023068159A1 true WO2023068159A1 (ja) 2023-04-27

Family

ID=86059100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038222 WO2023068159A1 (ja) 2021-10-18 2022-10-13 アルミナ質焼結体、および静電チャック

Country Status (3)

Country Link
KR (1) KR20240054354A (ja)
TW (1) TW202325681A (ja)
WO (1) WO2023068159A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247728A (ja) * 1999-03-04 2000-09-12 Sumikin Ceramics Kk 耐食性に優れたアルミナセラミックス焼結体
WO2017131159A1 (ja) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 セラミックス材料、静電チャック装置
WO2019188148A1 (ja) * 2018-03-28 2019-10-03 日本碍子株式会社 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
JP2020129632A (ja) * 2019-02-12 2020-08-27 日本特殊陶業株式会社 保持装置の製造方法
JP2021093488A (ja) * 2019-12-12 2021-06-17 日本特殊陶業株式会社 半導体製造装置用部品、保持装置、および半導体製造装置用部品の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247728A (ja) * 1999-03-04 2000-09-12 Sumikin Ceramics Kk 耐食性に優れたアルミナセラミックス焼結体
WO2017131159A1 (ja) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 セラミックス材料、静電チャック装置
WO2019188148A1 (ja) * 2018-03-28 2019-10-03 日本碍子株式会社 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
JP2020129632A (ja) * 2019-02-12 2020-08-27 日本特殊陶業株式会社 保持装置の製造方法
JP2021093488A (ja) * 2019-12-12 2021-06-17 日本特殊陶業株式会社 半導体製造装置用部品、保持装置、および半導体製造装置用部品の製造方法

Also Published As

Publication number Publication date
TW202325681A (zh) 2023-07-01
KR20240054354A (ko) 2024-04-25

Similar Documents

Publication Publication Date Title
CN108495829B (zh) 陶瓷材料及静电卡盘装置
JP5604888B2 (ja) 静電チャックの製造方法
US10322934B2 (en) Silicon nitride substrate and silicon nitride circuit board using the same
US9136031B2 (en) Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
US8236722B2 (en) Aluminum oxide sintered product and method for producing the same
JP2004260039A (ja) 半導体あるいは液晶製造装置用保持体およびそれを搭載した半導体あるいは液晶製造装置
WO2018221504A1 (ja) 窒化アルミニウム質焼結体、および半導体保持装置
US11845697B2 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
JP7106545B2 (ja) 部品および半導体製造装置
CN116096515A (zh) 具有大尺寸的烧结陶瓷体及其制造方法
WO2019189600A1 (ja) セラミックス基体およびサセプタ
JPWO2006135016A1 (ja) 窒化アルミニウム焼結体、スラリー、グリーン体、および脱脂体
JP2002068838A (ja) 耐プラズマ性部材およびその製造方法
WO2023068159A1 (ja) アルミナ質焼結体、および静電チャック
US20200350196A1 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
CN118043292A (en) Alumina sintered body and electrostatic chuck
JP4623794B2 (ja) アルミナ質耐食部材及びプラズマ装置
KR20100088479A (ko) 질화알루미늄 소재 및 그 제조방법
CN112889135A (zh) 多孔质陶瓷、半导体制造装置用构件、簇射板和插塞
US11548827B2 (en) Member for plasma processing apparatus and plasma processing apparatus with the same
JP2008227190A (ja) 静電チャック、静電チャックの製造方法および基板処理装置
CN116134003A (zh) 大尺寸的烧结氧化钇体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023554621

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20247011208

Country of ref document: KR

Kind code of ref document: A