WO2023060678A1 - 飞行器及共轴双旋翼组件 - Google Patents

飞行器及共轴双旋翼组件 Download PDF

Info

Publication number
WO2023060678A1
WO2023060678A1 PCT/CN2021/129532 CN2021129532W WO2023060678A1 WO 2023060678 A1 WO2023060678 A1 WO 2023060678A1 CN 2021129532 W CN2021129532 W CN 2021129532W WO 2023060678 A1 WO2023060678 A1 WO 2023060678A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
rotor assembly
wing
assembly
blade
Prior art date
Application number
PCT/CN2021/129532
Other languages
English (en)
French (fr)
Inventor
王谭
梁毅诚
娄津源
史翊辰
曹雪宇
王伟民
Original Assignee
广东汇天航空航天科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东汇天航空航天科技有限公司 filed Critical 广东汇天航空航天科技有限公司
Publication of WO2023060678A1 publication Critical patent/WO2023060678A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/28Boundary layer controls at propeller or rotor blades

Definitions

  • the invention relates to the technical field of flight equipment, in particular to an aircraft and a coaxial dual-rotor assembly.
  • aircraft can also be used for people's daily travel.
  • Embodiments of the present invention achieve the above object through the following technical solutions.
  • the present invention provides an aircraft, comprising a fuselage, a wing assembly, a tilting rotor assembly and a coaxial dual rotor assembly, the wing assembly is connected to the fuselage; the tilting rotor assembly is rotatably connected to the wing Assembly; the coaxial dual-rotor assembly includes a mounting shaft, a first blade and a second blade, the mounting shaft is connected to the fuselage, and the first blade and the second blade are respectively rotatably connected to opposite ends of the mounting shaft, The rotation direction of the first blade is opposite to the rotation direction of the second blade, which can offset the reaction torque generated by the aircraft, improve the stability of the heading of the aircraft, and ensure the flight safety of the aircraft.
  • the fuselage is provided with a storage cavity and an opening, the opening communicates with the storage cavity, and the coaxial dual-rotor assembly is rotatably arranged in the storage cavity and exposed to the opening, thereby reducing the resistance of the aircraft during flight , which is beneficial to the high-speed level flight of the aircraft.
  • the fuselage further includes a cover plate, which is used to cover the opening, so as to further reduce the resistance encountered by the aircraft during flight.
  • the fuselage further includes a main body, the main body is used for setting the wing assembly, and the cover plate is rotatably arranged on the main body, so that the connection between the cover plate and the main body is simple and the connection stability is good.
  • the wing assembly includes a fixed portion and a turning portion, the fixing portion is arranged on the fuselage, the turning portion is movably connected to the fixing portion, and can be folded relative to the fixing portion, so that the wing assembly can be folded , to reduce the overall size of the aircraft, so that the aircraft can still have the possibility of parking and transition when there is a road transition or a narrow berth, which improves the flexibility of the aircraft during parking and transition.
  • the fixed part extends along a first direction
  • the turning part has a first rotation axis and a second rotation axis
  • the first rotation axis extends along a first direction
  • the second rotation axis extends along a second direction
  • the second rotation axis extends along a second direction.
  • the first blade and the second blade are arranged in sequence along the third direction, and the first direction, the second direction, and the third direction are perpendicular to each other, so as to realize the step-by-step folding of the wing assembly and reduce the time spent on the wing assembly during the folding process. damage caused by.
  • the aircraft further includes a turning mechanism.
  • the turning mechanism is arranged on the fixed part. The turning efficiency of the turning part.
  • the folding mechanism includes a first rotating shaft and a second rotating shaft, the folding part rotates along the first rotating axis through the first rotating shaft, and the folding part rotates along the second rotating axis through the second rotating shaft, so as to realize splitting.
  • the wing assembly is folded in one step to reduce the damage caused by the wing assembly during the folding process.
  • the turning part includes a first turning section and a second turning section, the first turning section is movably connected to the fixing part, and can be turned relative to the fixing part, and the tilt rotor assembly is arranged on In the second turning section, the tilt rotor assembly is arranged at the end of the wing assembly away from the fuselage, so as to prevent the influence of the wing assembly on the tilting of the tilt rotor assembly.
  • the tilt rotor assembly and the second turning section form a power mechanism
  • the center of gravity of the power mechanism is located on the rotation axis of the second turning section, so that the rotation of the tilt rotor assembly will not change the center of gravity of the power mechanism, It can ensure the stability of the center of gravity of the power mechanism and the efficiency of the vertical lifting force.
  • the length of the fixing part is 10%-30% of the length of the wing assembly, which greatly reduces the width of the folded aircraft and facilitates the transition of the aircraft.
  • the aircraft further includes a tilting link, the tilting link is rotatably arranged on the wing assembly, and the tilting rotor assembly is in transmission connection with the tilting link so as to be driven by the tilting link to change Spatial angle to switch between the rotor state and the fixed-wing state of the tilt-rotor assembly.
  • the tilt rotor assembly includes a tilt rotor body and a rotor mount, the rotor mount is in transmission connection with the tilt connector, the tilt rotor body is rotatably arranged on the rotor mount, and the tilt rotor body includes
  • the tilting rotor blades can be bent relative to the rotor mounting seat, which can reduce the length of the aircraft and improve the flexibility of the aircraft during parking and transition.
  • each wing assembly is provided with a tilt rotor assembly, and the two tilt rotor assemblies are about
  • the center of gravity of the aircraft is arranged symmetrically, so that the position of the center of gravity of the aircraft will not be changed during the tilting process of the tilting rotor assembly, which increases the stability of the aircraft during flight.
  • two tilt rotor assemblies and a coaxial dual rotor assembly form a quadrotor module, and the center of gravity of the aircraft is located at the center of the quadrotor module, so that the position of the center of gravity of the aircraft is not affected by the state of the coaxial dual rotor assembly.
  • the stability of the aircraft during flight is enhanced.
  • the distance between the center of the coaxial dual rotor assembly and the center of gravity of the aircraft is greater than the distance between the tilt rotor assembly and the center of gravity of the aircraft, so that the main source of lift for the entire aircraft is concentrated on the tilt rotor assembly.
  • the aircraft further includes an empennage, which is connected to the fuselage so as to avoid wake interference and improve the efficiency of horizontal tail manipulation.
  • the empennage includes a horizontal wing and a vertical wing, the vertical wing is connected between the fuselage and the horizontal wing and extends upward, and the extending direction of the horizontal wing is the same as that of the wing assembly, thereby controlling the flight attitude of the aircraft.
  • the aircraft further includes a wheel set, the wheel set is arranged at the bottom of the fuselage, and the fuselage can move along the ground through the wheel set, so as to meet the transition requirements of the aircraft.
  • the present invention also provides a coaxial dual rotor assembly
  • the coaxial dual rotor assembly includes a mounting shaft, a first blade and a second blade, the first blade and the second blade are respectively rotatably connected to The opposite ends of the shaft are installed, and the rotation direction of the first paddle is opposite to that of the second paddle, so that the counter torque generated by the rotation of the first paddle and the counter torque generated by the rotation of the second paddle can cancel each other.
  • the aircraft and the coaxial dual-rotor assembly provided by the present invention can offset the reaction torque generated by the aircraft through the rotation direction of the first blade of the coaxial dual-rotor assembly and the rotation direction of the second blade. , improving the heading stability of the aircraft and ensuring the flight safety of the aircraft.
  • Fig. 1 is a schematic structural diagram of an aircraft provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the aircraft shown in FIG. 1 in a vertical take-off and landing condition.
  • FIG. 3 is a structural schematic view of the aircraft shown in FIG. 2 from another perspective.
  • Fig. 4 is a structural schematic diagram of the tilting connector and the rotor assembly of the aircraft shown in Fig. 1 .
  • FIG. 5 is a structural schematic diagram of the aircraft shown in FIG. 1 in level flight and cruising conditions.
  • FIG. 6 is a schematic structural view of the aircraft shown in FIG. 1 under ground transition conditions.
  • FIG. 7 is a structural schematic view of the aircraft shown in FIG. 6 from another viewing angle.
  • Fig. 8 is a schematic structural view of a coaxial dual-rotor assembly provided by an embodiment of the present invention.
  • the inventor of the present application has found through research that many companies have developed a variety of urban aircrafts, including urban helicopters, aircrafts using the principle of multi-rotors, aircrafts that adopt the short-distance taxi take-off and landing, and aircrafts that use Multi-rotor aircraft.
  • Joby S4 adopts the six-rotor tilt-rotor scheme, which has a large wingspan and can only take off and land on a fixed dedicated apron, which cannot meet the needs of transition.
  • both take-off and landing need to run, and a certain distance of barrier-free runway is required to take off and land.
  • Klein With the combination of fixed wing and car, both takeoff and landing need to run, and a certain distance of barrier-free runway is required to take off and land.
  • the traditional dual-rotor tilt-rotor aircraft has both the characteristics of a helicopter and a fixed-wing. Compared with fixed-wing aircraft, the tilt-rotor can take off and land vertically without relying on the airport runway; compared with the traditional helicopter, the tilt-rotor has a greater cruising speed and range. When cruising, it flies in the form of a fixed wing. More economical than helicopters.
  • the existing tilt-rotor models include Bell’s V22 and V280, both of which adopt the conventional layout of horizontal double-rotors.
  • the attitude is controlled by the same rotor cycle as the helicopter.
  • the same rudder surface as that of the fixed wing is mainly used to control the attitude.
  • the purpose of the present invention is to address the deficiencies in the existing aircraft technology, to provide an aircraft and a coaxial dual-rotor assembly, which can offset the reaction torque generated by the aircraft, improve the stability of the heading of the aircraft, and ensure the flight safety of the aircraft, and It has the functions of vertical take-off and landing, level flight and transition, and has broad application prospects.
  • the present invention provides an aircraft 1 , including a fuselage 10 , a wing assembly 20 , a tilt rotor assembly 50 and a coaxial dual rotor assembly 60 .
  • the wing assembly 20 is connected to the fuselage 10;
  • the tilt rotor assembly 50 is rotatably connected to the wing assembly 20;
  • the coaxial dual rotor assembly 60 includes a mounting shaft 61, a first blade 63 and a second blade 65, and the installation
  • the shaft 61 is connected to the fuselage 10, and the first paddle 63 and the second paddle 65 are rotatably connected to the opposite ends of the installation shaft 61 respectively. on the contrary.
  • the aircraft 1 may be an aircraft for urban use, that is, an aircraft for supplementary traffic between cities. In other embodiments, the aircraft 1 can also be used in fields such as video shooting, agricultural irrigation and fire rescue.
  • the fuselage 10 defines a receiving chamber 11 and an opening 13 , and the opening 13 communicates with the receiving chamber 11 .
  • the accommodating chamber 11 is roughly disposed at the tail of the fuselage 10 for accommodating the coaxial dual-rotor assembly 60 .
  • the receiving cavity 11 can also be disposed at other positions of the fuselage 10 , for example, disposed at the middle of the fuselage 10 .
  • the opening 13 can be used to expose the coaxial dual rotor assembly 60 , and enable the first blade 63 and the second blade 65 of the coaxial dual rotor assembly 60 to extend out of the fuselage 10 during rotation.
  • the number of openings 13 is two, and the positions of the two openings 13 correspond to each other, and are respectively disposed on opposite sides of the fuselage 10 . In other embodiments, the number of openings 13 may also be one.
  • the fuselage 10 also includes a main body 15 and a cover plate 17, the main body 15 is used to set the wing assembly 20, and the cover plate 17 is used to cover the opening 13, to further Reduce the resistance that the aircraft 1 receives during flight.
  • the cover plate 17 is rotatably arranged on the main body portion 15, so that the connection method between the cover plate 17 and the main body portion 15 is simple and the connection stability is good.
  • the cover plate 17 can also be slidably fitted with the main body 15 to cover the opening 13 by sliding.
  • the main body 15 can be provided with a guide rail, and the cover plate 17 can be provided with a chute matching the guide rail.
  • the cover plate 17 and the main body 15 may also have other cooperation methods, as long as the cover plate 17 can cover the opening 13 .
  • the cross section of the wing assembly 20 is roughly oval, and the wing assembly 20 can be used to bear aerodynamic force.
  • the air flow velocity under the wing assembly 20 is slow and the pressure is strong. Therefore, a pressure difference is formed between the upper and lower surfaces of the wing assembly 20 , which generates lifting force on the fuselage 10 , which is beneficial to the ascent of the aircraft 1 .
  • the wing assembly 20 is in direct contact with the outside, so the material of the wing assembly 20 needs to have high strength, good plasticity, smooth surface, and high corrosion resistance.
  • the extending direction of the wing assembly 20 is perpendicular to the extending direction of the fuselage 10 .
  • the wing assembly 20 includes a fixed portion 21 and a turning portion 23, and the fixing portion 21 and the turning portion 23 are sequentially arranged along the extending direction of the wing assembly 20, wherein the fixing portion 21 is arranged on the fuselage 10,
  • the fixing part 21 can be fixed to the fuselage 10 by means of welding, rivet connection and the like.
  • the turning part 23 is movably connected to the fixing part 21 and can turn relative to the fixing part 21 .
  • the turning part 23 can be turned relative to the fixed part 21, so that the wing assembly 20 can be folded, and the folding of the wing assembly 20 can reduce the overall size of the aircraft 1, especially the width of the aircraft 1, so that the aircraft 1 can turn on a road surface.
  • the fixing portion 21 extends along the first direction, and the wing assembly 20 and the turning portion 23 also extend along the first direction.
  • the length of the fixed portion 21 is approximately 10%-30% of the length of the wing assembly 20, for example, the length of the fixed portion 21 is approximately 15% of the length of the wing assembly 20, that is, the length of the turning portion 23 is approximately 10% of the length of the wing assembly. 85% of the length of 20 greatly reduces the width of the folded aircraft 1, which is beneficial to the transition of the aircraft 1.
  • the fixing portion 21 may also have other lengths, for example, the length of the fixing portion 21 is approximately 25% of the length of the wing assembly 20 .
  • the turning portion 23 has a first rotation axis and a second rotation axis, the first rotation axis extends along a first direction, the second rotation axis extends along a second direction, the first direction is perpendicular to the second direction, In order to realize step-by-step folding of the wing assembly 20, the damage caused by the wing assembly 20 during the folding process is reduced.
  • the turning portion 23 first rotates 90° upward or downward along the second axis of rotation, and then rotates 90° backward along the first axis of rotation.
  • the turning part 23 has a first rotation axis and a third rotation axis, wherein the third rotation axis extends along the third direction, the first direction, the second direction and the third direction are perpendicular to each other, and the turning The part 23 can first rotate 90° along the first axis of rotation, and then rotate back 90° along the third axis of rotation.
  • “up”, “down”, and “backward” are all defined from the perspective of the normal flight of the aircraft 1 .
  • the wing assembly 20 extends along a first direction
  • the fuselage 10 extends along a second direction.
  • first direction as the X direction
  • second direction as the Y direction
  • third direction as the Z direction
  • the three directions are perpendicular to each other.
  • the turning portion 23 includes a first turning section 231 and a second turning section 232 , and the second turning section 232 is rotatable relative to the first turning section 231 .
  • the rotation axis of the second turning section 232 extends along the X direction.
  • the first turning section 231 is movably connected to the fixing part 21 and can turn relative to the fixing part 21 .
  • the first turning section 231 can drive the second turning section 232 to turn.
  • the first turning section 231 is fixedly connected to the fixed part 21.
  • the first turning section 231 can be manually adjusted or electrically controlled to turn relative to the fixed part 21, so as to realize the wing assembly 20. Folding is convenient for the ground transition of the aircraft 1.
  • the aircraft 1 further includes a tilting connector 30 , and the tilting connector 30 can be used to drive the tilting rotor assembly 50 to tilt to change the state of the tilting rotor assembly 50 .
  • the tilting link 30 is rotatably arranged on the first turning section 231, and the second turning section 232 is connected to the tilting link 30, so the tilting link 30 can drive the second turning section 232 to rotate, This makes the second turning section 232 rotate relative to the first turning section 231 .
  • the second turning section 232 is provided with a tilting rotor assembly 50, and the tilting rotor assembly 50 can be fixedly arranged on the second turning section 232, for example, the tilting rotor assembly 50 can be connected with the second turning section 232 by a screw. Fixed connection.
  • the tilting connector 30 arranged on the first turning section 231 rotates relative to the first turning section 231, it will drive the second turning section 232 to rotate, and the rotation of the second turning section 232 can drive the tilting rotor assembly 50 to tilt. change.
  • the tilting link 30 is rotatably arranged on the wing assembly 20 ( FIG. 1 ), and the tilting link 30 can be driven by a motor (not shown) to rotate.
  • the number of the tilting connecting parts 30 is two, and the two tilting connecting parts 30 are respectively disposed on the two first turning sections 231 .
  • the first turning section 231 is provided with a motor, which is in transmission connection with the tilting connector 30, and the rotation of the motor can drive the tilting connector 30 to rotate, thereby driving the tilting rotor assembly 50 to tilt, changing the tilting rotor assembly 50 status.
  • the tilting connecting member 30 may be a hinge structure.
  • the tilting rotor assembly 50 is tiltably connected to the wing assembly 20, and has a rotor state and a fixed wing state, wherein, in the rotor state, the axis of the tilting rotor assembly 50 extends along the Z direction and can generate lift, so that the aircraft 1 It has the capability of vertical take-off and landing; in the fixed-wing state, the axis of the tilt rotor assembly 50 extends along the Y direction, which can generate thrust, so that the aircraft 1 has the capability of high-speed level flight.
  • the flight mode of the aircraft 1 can be controlled, and the wing assembly 20 can be folded, so that the aircraft 1 can park and transition flexibly.
  • the aircraft 1 also has the advantages of good flexibility in vertical take-off and landing, level flight, parking and transition, and can meet the needs of short- and medium-distance manned flight missions in the air, improving the practicability of the aircraft 1 .
  • the tilt rotor assembly 50 is in transmission connection with the tilt connecting member 30 to change the spatial angle driven by the tilt connecting member 30 , so as to switch between the rotor state and the fixed wing state of the tilt rotor assembly 50 .
  • the tilting connector 30 is connected to the second turning section 232 to drive the second turning section 232 to tilt, thereby driving the tilting rotor assembly 50 arranged on the second turning section 232 to tilt, ensuring that the aircraft 1 In VTOL and VTOL-to-level flight conversion conditions, the thrust direction of the tilt rotor assembly 50 can be changed upwards or forwards to meet the purpose of providing lift or thrust.
  • the tilt rotor assembly 50 includes a tilt rotor body 51 and a rotor mount 53, the rotor mount 53 is in transmission connection with the tilt connector 30, and the tilt rotor body 51 is rotatably arranged on the rotor mount.
  • the tilting rotor assembly 50 further includes a connecting column 54 , and the rotor mounting base 53 is in transmission connection with the tilting connecting member 30 through the connecting column 54 .
  • the tilting rotor assembly 50 is arranged on the second turning section 232, that is, the tilting rotor assembly 50 is arranged on the end of the wing assembly 20 away from the fuselage 10, so as to prevent the influence of the wing assembly 20 on the tilting of the tilting rotor assembly 50 .
  • the tilt rotor assembly 50 can be fixedly connected to one end of the second turning section 232 facing the traveling direction of the aircraft 1 through the connecting column 54 .
  • the tilt rotor assembly 50 and the second turning section 232 form a power mechanism, and the center of gravity of the power mechanism is located on the rotation axis of the second turning section 232, so that the rotation of the tilt rotor assembly 50 will not change the center of gravity of the power mechanism, and the power can be guaranteed.
  • the center of gravity of the power mechanism is located at the rotation axis of the second turning section 232, which can also effectively reduce the driving torque of the motor that drives the tilting connector 30 ( Figure 2) to rotate, and reduce the weight of the motor that drives the tilting connector 30 to rotate. Thereby reducing the overall weight of the aircraft 1 .
  • the number of tilt rotor assemblies 50 is two, and each tilt rotor assembly 50 is correspondingly arranged on one turning portion 23, that is, the two tilt rotor assemblies 50 are respectively connected to the corresponding two second The second turning section 232 .
  • the rotation directions of the tilt rotor blades 512 of the two tilt rotor assemblies 50 are opposite, which can make the direction of the counter torsion force generated by the rotation of the two tilt rotor blades 512 opposite, thereby canceling each other out and improving the direction of the aircraft 1. Stability, no course deviation, ensures the flight safety of the aircraft 1 .
  • the two tilting rotor assemblies 50 are arranged symmetrically with respect to the center of gravity of the aircraft 1, so that the tilting rotor assemblies 50 will not change the position of the center of gravity of the aircraft 1 during the tilting process, increasing the speed of the aircraft 1 during flight. stability.
  • the coaxial dual-rotor assembly 60 is rotatably disposed in the receiving chamber 11 and exposed through the opening 13 .
  • the coaxial dual-rotor assembly 60 can extend out of the fuselage 10 during rotation to provide lift, and can also be completely accommodated in the accommodation cavity 11 when the rotation stops, so as to reduce the resistance of the aircraft 1 during flight, which is beneficial to High-speed level flight of aircraft 1.
  • the coaxial dual-rotor assembly 60 is mainly responsible for helping the horizontal rudder surface to control the pitch balance of the whole machine and enhance the stability of the whole machine.
  • the coaxial dual-rotor assembly 60 includes a mounting shaft 61, a first blade 63 and a second blade 65, wherein the mounting shaft 61 is connected to the fuselage 10, for example, the mounting shaft 61 can be connected to the housing 11 through a connecting rod.
  • the fuselage 10 is connected, and the first paddle 63 and the second paddle 65 are respectively rotatably connected to opposite ends of the installation shaft 61 .
  • the first blades 63 and the second blades 65 are arranged in sequence along the third direction, that is, the first blades 63 and the second blades 65 are arranged in sequence along the Z direction to provide lift.
  • the rotation direction of the first blade 63 is opposite to the rotation direction of the second blade 65, so that the reaction torque generated by the rotation of the first blade 63 and the reaction torque generated by the rotation of the second blade 65 can be The mutual cancellation improves the heading stability of the aircraft 1 and ensures the flight safety of the aircraft 1 .
  • the first paddle 63 and the second paddle 65 may be driven by two motors respectively. In other embodiments, the first paddle 63 and the second paddle 65 can also be driven by a motor.
  • the two tilt rotor assemblies 50 and the coaxial dual rotor assembly 60 form a quadrotor module.
  • the center of gravity of the aircraft 1 is located at the center of the quadrotor module, that is, the distance between the center of the coaxial dual rotor assembly 60 and the center of gravity of the aircraft 1 is equal to the distance between the tilt rotor assembly 50 and the center of gravity of the aircraft 1, so that The position of the center of gravity of the aircraft 1 is not affected by the state of the coaxial dual rotor assembly 60 and the state of the tilt rotor assembly 50, which enhances the stability of the aircraft 1 during flight.
  • the state of the coaxial dual rotor assembly 60 includes a working state and a stop state, wherein the working state refers to the rotation of the first blade 63 and the second blade 65 of the coaxial dual rotor assembly 60; the stop state refers to the rotation of the coaxial dual rotor assembly 60; The first blade 63 and the second blade 65 of the rotor assembly 60 are fixed.
  • the state of the tilt rotor assembly 50 includes a rotor state and a fixed wing state.
  • the distance between the center of the coaxial dual-rotor assembly 60 and the center of gravity of the aircraft 1 is greater than the distance between the tilting rotor assembly 50 and the center of gravity of the aircraft 1, that is, the coaxial dual-rotor assembly 60 maintains a longer force with the center of gravity. arm, so that the main lift source of the aircraft 1 is concentrated on the tilt rotor assembly 50 .
  • the aircraft 1 also includes a turning mechanism 70, the turning mechanism 70 is arranged on the fixed part 21, and the turning part 23 can turn relative to the fixing part 21 through the turning mechanism 70, so that the turning part 23 is opposite to the fixed part 21.
  • the folding of the fixed part 21 is smoother, and the folding efficiency of the folding part 23 is improved.
  • the folding mechanism 70 may include a first rotating shaft 71 and a second rotating shaft 73, wherein the folding part 23 rotates along the first rotating axis through the first rotating shaft 71, and the folding part 23 rotates along the second rotating axis through the second rotating shaft 73, In order to realize step-by-step folding of the wing assembly 20, the damage caused by the wing assembly 20 during the folding process is reduced.
  • the turning mechanism 70 can drive the turning part 23 to rotate automatically or manually.
  • both the first rotating shaft 71 and the second rotating shaft 73 can be driven by a motor, or both the first rotating shaft 71 and the second rotating shaft 73 can be driven manually. way of driving.
  • the aircraft 1 further includes an empennage 90 , the empennage 90 is roughly “T” shaped, and the empennage 90 is connected to the fuselage 10 .
  • the setting of the empennage 90 can avoid the wake interference and improve the efficiency of the horizontal tail control.
  • Empennage 90 comprises horizontal wing 92 and vertical wing 94, wherein the extension direction of horizontal wing 92 is the same as the direction of wing assembly 20, that is, horizontal wing 92 extends along X direction, and vertical wing 94 is connected between fuselage 10 and horizontal wing 92 Between and upwards, that is, the vertical wing 94 extends along the Z direction to control the pitch, yaw and tilt of the aircraft 1, thereby controlling the flight attitude of the aircraft 1.
  • the aircraft 1 also includes a wheel set 100, which is arranged at the bottom of the fuselage 10.
  • the fuselage 10 can move along the ground through the wheel set 100, so that the aircraft 1 can run on the ground to meet the transition requirements of the aircraft 1.
  • the wheel set 100 may be driven by a hub motor.
  • the aircraft 1 mainly includes three working states: 1. vertical take-off and landing; 2. level flight cruising; 3. ground transition.
  • the aircraft 1 is located on the road and moves to the takeoff and landing platform through the wheel set 100 .
  • the tilting connector 30 provided on the first turning section 231 drives the second turning section 232 Turn and tilt upward by 90°, thereby driving the tilt rotor assembly 50 to tilt upward by 90°, so that the tilt rotor assembly 50 switches to the rotor state
  • the cover plate 17 opens and exposes the coaxial dual rotor assembly 60, and controls the coaxial dual rotor assembly 60 starts to work, that is, the first blade 63 and the second blade 65 rotate in opposite directions, and the quadrotor module starts to rotate, so that the aircraft 1 rises vertically.
  • the tilting connector 30 drives the tilting rotor assembly 50 to slowly tilt from the horizontal position to the vertical position, and the flaps of the whole machine have a certain angle to improve the aircraft
  • the lift of the wing assembly 20 at this time the cover plate 17 is opened, the coaxial dual rotor assembly 60 starts to work to maintain the pitch balance of the whole machine, and the tilt rotor assembly 50 increases the upward lift while reducing the effective pulling force.
  • the tilt rotor assembly 50 is driven to tilt upward by 90°, the quadrotor module starts to rotate, and the aircraft 1 lands downward.
  • the level flight cruise conditions include:
  • the tilting connector 30 starts to slowly drive the tilting rotor assembly 50 to tilt to the horizontal position, and the coaxial dual rotor assembly 60 continues to work to maintain the pitch balance of the whole machine.
  • the flaps of the whole machine have A certain angle can increase the lift of the wing assembly 20, and the tilt rotor assembly 50 can increase the forward pulling force while providing effective lift.
  • the tilt rotor assembly 50 rotates to the horizontal position. At this time, the aircraft 1 is in the state of level flight cruising, and the coaxial dual rotor assembly 60 stops working.
  • the first blade 63 and the second When the two blades 65 are rotated to a position parallel to the Y direction, they are fixed to reduce the level flight resistance.
  • the cover plate 17 covers the opening 13 to further reduce the level flight resistance. Tilt rotor assembly 50 transitions to wing assembly 20, which now provides only forward pull.
  • ground transition conditions include:
  • the tilt rotor assembly 50 rotates to a horizontal position, and all four rotor modules stop working;
  • the folding of the wing assembly 20 and the bending of the tilt rotor blade 512 include: first, the tilt rotor blade 512 of the tilt rotor assembly 50 is folded backward along the Y direction; The part 23 first rotates 90° upwards or downwards along the second axis of rotation, and then rotates 90° backward along the first axis of rotation;
  • the aircraft 1 provided by the present invention is provided with a coaxial dual rotor assembly 60, and the rotation direction of the first blade 63 of the coaxial dual rotor assembly 60 is opposite to the rotation direction of the second blade 65, so that the first blade
  • the reaction torque generated by the rotation of the blade 63 and the reaction torque generated by the rotation of the second blade 65 can cancel each other, which improves the stability of the heading of the aircraft 1 and ensures the flight safety of the aircraft 1 .
  • the present invention also provides a coaxial dual rotor assembly 60
  • the coaxial dual rotor assembly 60 includes a mounting shaft 61, a first blade 63 and a second blade 65, the first blade 63 and the second blade
  • the blades 65 are respectively rotatably connected to opposite ends of the installation shaft 61 , and the rotation direction of the first paddle 63 is opposite to that of the second paddle 65 .
  • the rotation direction of the first blade 63 is opposite to that of the second blade 65, so that the reaction torque generated by the rotation of the first blade 63 is opposite to that of the second blade 63.
  • the reaction torque generated by the rotation of 65 can cancel each other out, and when the coaxial dual rotor assembly 60 is used in an aircraft, it can improve the stability of the heading of the aircraft and ensure the flight safety of the aircraft.

Abstract

一种飞行器(1),包括机身(10)、机翼组件(20)、倾转旋翼组件(50)和共轴双旋翼组件(60)。机翼组件(20)连接于机身(10);倾转旋翼组件(50)可倾转地连接于机翼组件(20);共轴双旋翼组件(60)包括安装轴(61)、第一桨叶(63)和第二桨叶(65),安装轴(61)连接于机身(10),第一桨叶(63)和第二桨叶(65)分别可转动地连接于安装轴(61)的相对两端,第一桨叶(63)的转动方向与第二桨叶(65)的转动方向相反。本飞行器通过设置共轴双旋翼组件,且共轴双旋翼组件的第一桨叶的转动方向与第二桨叶的转动方向相反,能够抵消飞行器产生的反扭矩,提升了飞行器的航向的稳定性,保证了飞行器的飞行安全。还提供一种共轴双旋翼组件。

Description

飞行器及共轴双旋翼组件
相关申请的交叉引用
本申请要求于2021年10月11日提交的申请号为2021111838972的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
技术领域
本发明涉及飞行设备技术领域,具体而言,涉及一种飞行器及共轴双旋翼组件。
背景技术
随着科技的不断发展,飞行器的应用也越来越广泛,飞行器除了用于视频拍摄、农业浇灌及消防救援外,还可以用于人们的日常出行。
然而,现有的飞行器在飞行过程中会由螺旋桨的旋转而产生反扭矩,导致飞行器出现航向偏移的现象,带来重大的飞行隐患。
发明内容
本发明实施例的目的在于提供一种飞行器及共轴双旋翼组件,以改善上述问题。本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供一种飞行器,包括机身、机翼组件、倾转旋翼组件和共轴双旋翼组件,机翼组件连接于机身;倾转旋翼组件可倾转地连接于机翼组件;共轴双旋翼组件包括安装轴、第一桨叶和第二桨叶,安装轴连接于机身,第一桨叶和第二桨叶分别可转动地连接于安装轴的相对两端,第一桨叶的转动方向与第二桨叶的转动方向相反,能够抵消飞行器产生的反扭矩,提升了飞行器的航向的稳定性,保证了飞行器的飞行安全。
在一种实施方式中,机身开设收容腔和开口,开口与收容腔连通,共轴双旋翼组件可转动地设置于收容腔内,并显露于开口,从而减少飞行器在飞行过程中受到的阻力,利于飞行器的高速平飞。
在一种实施方式中,机身还包括遮盖板,遮盖板用于遮盖开口,进一步减少飞行器在飞行过程中受到的阻力。
在一种实施方式中,机身还包括主体部,主体部用于设置机翼组件,遮盖板可转动地设置于主体部,使得遮盖板与主体部的连接方式简单,连接稳定性好。
在一种实施方式中,机翼组件包括固定部和折转部,固定部设置于机身,折转部可活动地连接于固定部,并且相对固定部可折转,使得机翼组件能够折叠,以减小飞行器的整体尺寸,使得飞行器能够在有路面转场或较狭窄的停泊位停泊时仍然具有停泊、转场的可能性,提高了飞行器在停泊及转场过程中的灵活性。
在一种实施方式中,固定部沿第一方向延伸,折转部具有第一转动轴线和第二转动轴线,第一转动轴线沿第一方向延伸,第二转动轴线沿第二方向延伸,第一桨叶和第二桨叶沿第三方向依次设置,第一方向、第二方向和第三方向之间两两垂直,以实现分步对机翼组件进行折叠,减少机翼组件在折叠过程中造成的损害。
在一种实施方式中,飞行器还包括折转机构,折转机构设置于固定部,折转部通过折转机构相对固定部可折转,使得折转部相对固定部的折转更加顺畅,提升折转部的折转效率。
在一种实施方式中,折转机构包括第一转轴和第二转轴,折转部通过第一转轴沿第一转动轴线转动,折转部通过第二转轴沿第二转动轴线转动,以实现分步对机翼组件进行折叠,减少机翼组件在折叠过程中造成的损害。
在一种实施方式中,折转部包括第一折转段和第二折转段,第一折转段可活动地连接于固定部,并且相对固定部可折转,倾转旋翼组件设置于第二折转段,倾转旋翼组件设置于机翼组件远离机身的一端,避 免机翼组件对倾转旋翼组件的倾转产生影响。
在一种实施方式中,倾转旋翼组件与第二折转段形成动力机构,动力机构的重心位于第二折转段的转动轴线,使得倾转旋翼组件的转动不会改变动力机构的重心,能够保证动力机构的重心的稳定性,以及确保垂起升力的效率性。
在一种实施方式中,固定部的长度为机翼组件的长度的10%-30%,大大减小了折叠后的飞行器的宽度,利于飞行器的转场。
在一种实施方式中,飞行器还包括倾转连接件,倾转连接件可转动地设置于机翼组件,倾转旋翼组件与倾转连接件传动连接,以在倾转连接件的带动下改变空间角度,以实现倾转旋翼组件的旋翼状态和固定翼状态之间的切换。
在一种实施方式中,倾转旋翼组件包括倾转旋翼本体和旋翼安装座,旋翼安装座与倾转连接件传动连接,倾转旋翼本体可转动地设置于旋翼安装座,倾转旋翼本体包括倾转旋翼桨叶,倾转旋翼桨叶相对旋翼安装座可弯折,能够减小飞行器的长度,提高了飞行器在停泊及转场过程中的灵活性。
在一种实施方式中,机翼组件为两个,两个机翼组件分别连接于机身的相对两侧,每个机翼组件均设有一个倾转旋翼组件,两个倾转旋翼组件关于飞行器的重心对称设置,使得倾转旋翼组件在倾转过程中不会改变飞行器的重心的位置,增加了飞行器在飞行过程中的稳定性。
在一种实施方式中,两个倾转旋翼组件与共轴双旋翼组件组成四旋翼模组,飞行器的重心位于四旋翼模组的中心,使得飞行器的重心的位置不受共轴双旋翼组件的状态以及倾转旋翼组件所处的状态的影响,增强飞行器在飞行过程中的稳定性。
在一种实施方式中,共轴双旋翼组件的中心与飞行器的重心的间距大于倾转旋翼组件与飞行器的重心的间距,使得飞行器的整机主要升力来源集中于倾转旋翼组件。
在一种实施方式中,飞行器还包括尾翼,尾翼连接于机身,以避开尾流干扰,提高了平尾操纵效率。
在一种实施方式中,尾翼包括水平翼和垂直翼,垂直翼连接于机身和水平翼之间并且向上延伸,水平翼的延伸方向与机翼组件的方向相同,从而控制飞行器的飞行姿态。
在一种实施方式中,飞行器还包括轮组,轮组设置于机身的底部,机身通过轮组沿地面可移动,从而满足飞行器的转场需求。
第二方面,本发明还提供一种共轴双旋翼组件,共轴双旋翼组件包括安装轴、第一桨叶和第二桨叶,第一桨叶和第二桨叶分别可转动地连接于安装轴的相对两端,第一桨叶的转动方向与第二桨叶的转动方向相反,使得第一桨叶的转动产生的反扭矩与第二桨叶的转动产生的反扭矩能够相互抵消。
相较于现有技术,本发明提供的飞行器及共轴双旋翼组件,通过共轴双旋翼组件的第一桨叶的转动方向与第二桨叶的转动方向相反,能够抵消飞行器产生的反扭矩,提升了飞行器的航向的稳定性,保证了飞行器的飞行安全。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的飞行器的结构示意图。
图2是图1所示的飞行器在垂直起降工况下的结构示意图。
图3是图2所示的飞行器在另一视角下的结构示意图。
图4是图1所示的飞行器的倾转连接件和旋翼组件的结构示意图。
图5是图1所示的飞行器在平飞巡航工况下的结构示意图。
图6是图1所示的飞行器在地面转场工况下的结构示意图。
图7是图6所示的飞行器在另一视角下的结构示意图。
图8是本发明实施例提供的共轴双旋翼组件的结构示意图。
具体实施方式
为了便于理解本发明实施例,下面将参照相关附图对本发明实施例进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
本申请的发明人经过研究发现,目前已有多家公司研制出了多种城市用飞行器,有城市用直升机、有采用多旋翼原理的飞行器、有采用短距滑跑起降的飞行器、有采用多倾转旋翼的飞行器。
然而,现有的飞行器设计方案并不能兼顾道路上行驶、垂直起降、水平飞行及转场功能,大部分不能在道路上行驶或者不能垂直起飞。例如亿航216和
Figure PCTCN2021129532-appb-000001
本身只具有固定式起落架,降落后无法自主移动,乘客需要下机后再采用其他交通方式到达目的地。再例如Joby
Figure PCTCN2021129532-appb-000002
S4,采用六旋翼的倾转旋翼方案,翼展较大,只能在固定的专用停机坪起降,不能满足转场需求。例如
Figure PCTCN2021129532-appb-000003
采用三轮车与旋翼机结合的方式,起飞和降落都需要滑跑,需要一定距离的无障碍跑道才能起飞和降落。又例如Klein
Figure PCTCN2021129532-appb-000004
采用固定翼与汽车结合的方式,起飞和降落都需要滑跑,需要一定距离的无障碍跑道才能起飞和降落。
传统双旋翼的倾转旋翼飞行器兼有直升机和固定翼的特点。与固定翼飞机相比,倾转旋翼可以垂直起降,没有对机场跑道的依赖;与传统直升机相比,倾转旋翼有更大的巡航速度和航程,巡航时,以固定翼的形式飞行,比直升机更经济。
现有的倾转旋翼机型有贝尔公司的V22和V280,其都采用横列式双旋翼常规布局,在垂直飞行及垂直平飞转换阶段都是靠和直升机一样的旋翼周期变距控制姿态,在平飞构型下,主要采用和固定翼一样的舵面控制姿态。
现有双旋翼倾转旋翼机型非常依赖周期变距机构来实现控制,在使用周期变距控制纵向姿态的时候,会引起飞机向前飞行的耦合效应,而且周期变距机构结构复杂,复杂的结构和控制方式极大增加了飞机的研发及制造成本,同时对安全性和可靠性也带来很大的挑战。
现有的飞行器产品都没有完美解决航程长、垂起降落、路面转场的问题,而在未来的城市、城际用飞行器应该同时具备以上功能为市场带来一款安全性高、崭新的,突破性的飞行器以满足市场需求。
本发明的目的是针对现有的飞行器技术上存在的不足,提供一种飞行器及共轴双旋翼组件,能够抵消飞行器产生的反扭矩,提升飞行器的航向的稳定性,保证飞行器的飞行安全,且兼有垂直起降、平飞以及转场的功能,具有广阔的应用前景。
以下结合具体实施方式和说明书附图对本发明提供的飞行器及共轴双旋翼组件进行详细说明。
请参阅图1和图2,本发明提供一种飞行器1,包括机身10、机翼组件20、倾转旋翼组件50和共轴双旋翼组件60。机翼组件20连接于机身10;倾转旋翼组件50可倾转地连接于机翼组件20;共轴双旋翼组件60包括安装轴61、第一桨叶63和第二桨叶65,安装轴61连接于机身10,第一桨叶63和第二桨叶65分别可转动地连接于安装轴61的相对两端,第一桨叶63的转动方向与第二桨叶65的转动方向相反。
在本实施例中,飞行器1可以为城市用飞行器,即,在城市之间进行交通补充的飞行器。在其他实施方式中,飞行器1还可以用于视频拍摄、农业浇灌及消防救援等领域。
机身10开设收容腔11和开口13,开口13与收容腔11连通。在本实施例中,收容腔11大致设于机身10的尾部,用于收容共轴双旋翼组件60。在其他实施方式中,收容腔11还可设置于机身10的其他位置,例如,设置于机身10的中部。开口13可以用于显露共轴双旋翼组件60,并且使得共轴双旋翼组件60的第一桨叶63和第二桨叶65在转动过程中可以伸出机身10外。在本实施例中,开口13的数量为两个,两个开口13的位置对应,并且分别设置于机身10的相对两侧。在其他实施方式中,开口13的数量还可以为一个。
请参阅图2和图3,在一种实施方式中,机身10还包括主体部15和遮盖板17,主体部15用于设置机翼组件20,遮盖板17用于遮盖开口13,以进一步减少飞行器1在飞行过程中受到的阻力。在一些实施方 式中,遮盖板17可转动地设置于主体部15,使得遮盖板17与主体部15的连接方式简单,连接稳定性好,例如,通过铰接等方式安装于主体部15。在另一些实施方式中,遮盖板17还可以与主体部15滑动配合,通过滑动的方式遮盖开口13,例如,主体部15可以设置导轨,遮盖板17上开设与导轨配合的滑槽。在其他的一些实施方式中,遮盖板17与主体部15还可以有其他的配合方式,满足遮盖板17能够遮盖开口13的目的即可。
机翼组件20的横截面大致为椭圆形,机翼组件20可以用于承受空气动力,机翼组件20大致椭圆形的结构使得位于机翼组件20上方的空气流动速度快,压强小,而位于机翼组件20下方的空气流动速度慢,压强大,因此,机翼组件20的上下表面之间形成压力差,对机身10产生托举力,利于飞行器1的上升。机翼组件20与外界直接接触,因此机翼组件20的材料需要具有强度高、塑性好、表面光滑的性能,并且具有较高的抗蚀能力。机翼组件20为两个,两个机翼组件20分别连接于机身10的相对两侧,两个机翼组件20之间也可以连接。机翼组件20的延伸方向与机身10的延伸方向垂直。
请继续参阅图1,机翼组件20包括固定部21和折转部23,固定部21和折转部23沿机翼组件20的延伸方向依次设置,其中,固定部21设置于机身10,例如,固定部21可以通过焊接、铆钉连接等方式固定于机身10。折转部23可活动地连接于固定部21,并且相对固定部21可折转。折转部23相对固定部21可折转,使得机翼组件20能够折叠,机翼组件20的折叠能够减小飞行器1的整体尺寸,尤其是飞行器1的宽度,使得飞行器1能够在有路面转场或较狭窄的停泊位停泊时仍然具有停泊、转场的可能性,提高了飞行器1在停泊及转场过程中的灵活性。
在本实施例中,固定部21沿第一方向延伸,机翼组件20和折转部23也沿第一方向延伸。固定部21的长度大致为机翼组件20长度的10%-30%,例如,固定部21的长度大致为机翼组件20长度的15%,即,折转部23的长度大致为机翼组件20长度的85%,大大减小了折叠后的飞行器1的宽度,利于飞行器1的转场。在其他实施方式中,固定部21还可以是其他长度,例如,固定部21的长度大致为机翼组件20长度的25%。
在本实施例中,折转部23具有第一转动轴线和第二转动轴线,第一转动轴线沿第一方向延伸,第二转动轴线沿第二方向延伸,第一方向与第二方向垂直,以实现分步对机翼组件20进行折叠,减少机翼组件20在折叠过程中造成的损害。在本实施例中,折转部23先沿第二转动轴线向上或者向下转动90°,再沿第一转动轴线向后转动90°。在其他实施方式中,折转部23具有第一转动轴线和第三转动轴线,其中,第三转动轴线沿第三方向延伸,第一方向、第二方向和第三方向两两垂直,折转部23可以先沿第一转动轴线转动90°,再沿第三转动轴线向后转动90°。其中“向上”、“向下”、“向后”均是以飞行器1的正常飞行的视角进行定义的。
在本实施例中,机翼组件20沿第一方向延伸,机身10沿第二方向延伸。为了便于描述,定义第一方向为X方向,第二方向为Y方向,第三方向为Z方向,三个方向相互垂直。
折转部23包括第一折转段231和第二折转段232,第二折转段232相对第一折转段231可转动。当折转部23未相对固定部21折转,即,折转部23沿X方向延伸时,第二折转段232的转动轴线沿X方向延伸。
第一折转段231可活动地连接于固定部21,并且相对固定部21可折转,第一折转段231可以带动第二折转段232折转。在没有转场需求时,第一折转段231与固定部21固定连接,当需要转动时,可以手动调节或电动控制第一折转段231相对固定部21折转,实现机翼组件20的折叠,便于飞行器1的地面转场。
请参阅图1和图4,飞行器1还包括倾转连接件30,倾转连接件30可以用于带动倾转旋翼组件50倾转,以改变倾转旋翼组件50的状态。例如,倾转连接件30可转动地设置于第一折转段231,第二折转段232连接于倾转连接件30,因此,倾转连接件30可以带动第二折转段232转动,使得第二折转段232相对第一折转段231转动。第二折转段232设有倾转旋翼组件50,倾转旋翼组件50可以固定设置于第二折转段232,例如,倾转旋翼组件50可以通过螺钉连接的方式与第二折转段232固定连接。当设置于第一折转段231的倾转连接件30相对第一折转段231转动时会带动第二折转段232转动,第二折转段232的转动可以带动倾转旋翼组件50倾转。
倾转连接件30可转动地设置于机翼组件20(图1),倾转连接件30可以由电机(图未示)驱动而转 动。
在本实施例中,倾转连接件30的数量为两个,两个倾转连接件30分别设置于两个第一折转段231。例如,第一折转段231设有电机,电机与倾转连接件30传动连接,电机的转动可以带动倾转连接件30转动,从而带动倾转旋翼组件50倾转,改变倾转旋翼组件50的状态。在本实施例中,倾转连接件30可以是铰链结构。
倾转旋翼组件50可倾转地连接于机翼组件20,并具有旋翼状态和固定翼状态,其中,旋翼状态时,倾转旋翼组件50的轴线沿Z方向延伸,能够产生升力,使得飞行器1具备垂直起降的能力;固定翼状态时,倾转旋翼组件50的轴线沿Y方向延伸,能够产生推力,使得飞行器1具备高速平飞的能力。通过控制倾转旋翼组件50的状态,可以控制飞行器1的飞行模式,机翼组件20可折叠,使得飞行器1能够灵活地停泊及转场。飞行器1同时具有垂直起降、平飞、停泊及转场过程中灵活性好等优点,能够满足中短途空中载人飞行任务的需求,提高了飞行器1的实用性。
倾转旋翼组件50与倾转连接件30传动连接,以在倾转连接件30的带动下改变空间角度,从而实现倾转旋翼组件50的旋翼状态和固定翼状态之间的切换。例如,倾转连接件30通过与第二折转段232连接,带动第二折转段232倾转,从而带动设置于第二折转段232上的倾转旋翼组件50倾转,保证飞行器1在垂直起降以及垂直起降到平飞转换工况下,倾转旋翼组件50的推力方向可变为向上或向前,以满足提供升力或推力的目的。
请参阅图4和图5,倾转旋翼组件50包括倾转旋翼本体51和旋翼安装座53,旋翼安装座53与倾转连接件30传动连接,倾转旋翼本体51可转动地设置于旋翼安装座53,倾转旋翼本体51包括倾转旋翼桨叶512,倾转旋翼桨叶512相对旋翼安装座53可弯折,能够减小飞行器1的长度,提高了飞行器1在停泊及转场过程中的灵活性。另外,倾转旋翼组件50还包括连接柱54,旋翼安装座53通过连接柱54与倾转连接件30传动连接。
倾转旋翼组件50设置于第二折转段232,即,倾转旋翼组件50设置于机翼组件20远离机身10的一端,避免机翼组件20对倾转旋翼组件50的倾转产生影响。例如,倾转旋翼组件50可以通过连接柱54固定连接于第二折转段232朝向飞行器1的行进方向的一端。当折转部23沿X方向延伸,且第二折转段232未相对第一折转段231转动时,倾转旋翼组件50的转动轴线沿Y方向延伸,此时倾转旋翼组件50处于水平位置;当折转部23沿X方向延伸,且第二折转段232相对第一折转段231转动时,倾转旋翼组件50的转动轴线沿Z方向延伸,此时倾转旋翼组件50处于垂直位置。
倾转旋翼组件50与第二折转段232形成动力机构,动力机构的重心位于第二折转段232的转动轴线,使得倾转旋翼组件50的转动不会改变动力机构的重心,能够保证动力机构的重心的稳定性,以及确保垂起升力的效率性。动力机构的重心位于第二折转段232的转动轴线,还可以有效减小驱动倾转连接件30(图2)转动的电机的驱动扭矩,减轻驱动倾转连接件30转动的电机的重量,从而减轻飞行器1的整体重量。
在本实施例中,倾转旋翼组件50的数量为两个,每个倾转旋翼组件50对应设置于一个折转部23,即,两个倾转旋翼组件50分别连接于对应的两个第二折转段232。两个倾转旋翼组件50的倾转旋翼桨叶512的旋转方向相反,能够使得两个倾转旋翼桨叶512的旋转产生的反扭力的方向相反,从而相互抵消,提升了飞行器1的航向的稳定性,不会发生航向的偏移,保证了飞行器1的飞行安全。
在本实施例中,两个倾转旋翼组件50关于飞行器1的重心对称设置,使得倾转旋翼组件50在倾转过程中不会改变飞行器1的重心的位置,增加了飞行器1在飞行过程中的稳定性。
请继续参阅图1和图2,共轴双旋翼组件60可转动地设置于收容腔11内,并显露于开口13。共轴双旋翼组件60可以在转动的过程中伸出机身10外,以提供升力,还可以在停止转动时完全收容于收容腔11内,以减少飞行器1在飞行过程中受到的阻力,利于飞行器1的高速平飞。共轴双旋翼组件60主要负责帮助水平舵面控制整机俯仰平衡,增强整机稳定性。
共轴双旋翼组件60包括安装轴61、第一桨叶63和第二桨叶65,其中,安装轴61连接于机身10,例如,安装轴61可以通过位于收容腔11内的连接杆与机身10连接,第一桨叶63和第二桨叶65分别可转动地连接于安装轴61的相对两端。
第一桨叶63和第二桨叶65沿第三方向依次设置,即,第一桨叶63和第二桨叶65沿Z方向依次设置,以提供升力。在本实施例中,第一桨叶63的转动方向与第二桨叶65的转动方向相反,使得第一桨叶63的转动产生的反扭矩与第二桨叶65的转动产生的反扭矩能够相互抵消,提升了飞行器1的航向的稳定性,保证了飞行器1的飞行安全。在本实施例中,第一桨叶63和第二桨叶65可以分别由两个电机带动。在其他实施方式中,第一桨叶63和第二桨叶65还可以由一个电机带动。
两个倾转旋翼组件50与共轴双旋翼组件60组成四旋翼模组。在本实施例中,飞行器1的重心位于四旋翼模组的中心,即,共轴双旋翼组件60的中心与飞行器1的重心的间距等于倾转旋翼组件50与飞行器1的重心的间距,使得飞行器1的重心的位置不受共轴双旋翼组件60的状态,以及倾转旋翼组件50所处的状态的影响,增强飞行器1在飞行过程中的稳定性。共轴双旋翼组件60的状态包括工作状态和停止状态,其中,工作状态指的是共轴双旋翼组件60的第一桨叶63和第二桨叶65转动;停止状态指的是共轴双旋翼组件60的第一桨叶63和第二桨叶65固定。倾转旋翼组件50所处的状态包括旋翼状态和固定翼状态。
在一种实施方式中,共轴双旋翼组件60的中心与飞行器1的重心的间距大于倾转旋翼组件50与飞行器1的重心的间距,即,共轴双旋翼组件60与重心保持较长力臂,使得飞行器1的整机主要升力来源集中于倾转旋翼组件50。
请参阅图5和图6,飞行器1还包括折转机构70,折转机构70设置于固定部21,折转部23通过折转机构70相对固定部21可折转,使得折转部23相对固定部21的折转更加顺畅,提升折转部23的折转效率。折转机构70可以包括第一转轴71和第二转轴73,其中,折转部23通过第一转轴71沿第一转动轴线转动,折转部23通过第二转轴73沿第二转动轴线转动,以实现分步对机翼组件20进行折叠,减少机翼组件20在折叠过程中造成的损害。折转机构70可以通过自动或者手动的方式带动折转部23转动,例如,第一转轴71和第二转轴73都可以由电机驱动,或者,第一转轴71和第二转轴73都可以通过手动的方式驱动。
请参阅图6和图7,在本实施例中,飞行器1还包括尾翼90,尾翼90大致呈“T”型,尾翼90连接于机身10。尾翼90的设置,可以避开尾流干扰,提高了平尾操纵效率。
尾翼90包括水平翼92和垂直翼94,其中水平翼92的延伸方向与机翼组件20的方向相同,即,水平翼92沿X方向延伸,垂直翼94连接于机身10和水平翼92之间并且向上延伸,即,垂直翼94沿Z方向延伸,以控制飞行器1的俯仰、偏航和倾斜,从而控制飞行器1的飞行姿态。
飞行器1还包括轮组100,轮组100设置于机身10的底部,机身10可以通过轮组100沿地面可移动,使得飞行器1能够在地面上行驶,满足飞行器1的转场需求。在本实施例中,轮组100可以由轮毂电机带动。
以下对本发明提供的飞行器1的工况进行说明。
飞行器1主要包括三种工作状态:1.垂直起飞及降落;2.平飞巡航;3.地面转场。
请继续参阅图1和图2,其中,垂直起飞工况包括:
1.飞行器1位于路面,通过轮组100移动至起降平台。
2.当飞行器1位于起降平台,通过自动或者手动展开折叠的机翼组件20以及倾转旋翼桨叶512,设置于第一折转段231的倾转连接件30带动第二折转段232转动向上倾转90°,从而带动倾转旋翼组件50向上倾转90°,使得倾转旋翼组件50切换至旋翼状态,遮盖板17打开并露出共轴双旋翼组件60,控制共轴双旋翼组件60开始工作,即,第一桨叶63和第二桨叶65沿相反方向旋转,四旋翼模组开始旋转,使得飞行器1垂直上升。
降落工况包括:
1.当飞行器1接近目的地时,整机平飞速度下降,倾转连接件30带动倾转旋翼组件50由水平位置开始缓慢向垂直位置倾转,整机襟翼带有一定角度以提高机翼组件20的升力,此时遮盖板17打开,共轴双旋翼组件60开始工作以保持整机俯仰平衡,倾转旋翼组件50在减小有效拉力的同时增加向上的升力。
2.当飞行器1位于起降机场上方,带动倾转旋翼组件50向上倾转90°,四旋翼模组开始旋转,飞行器1向下降落。
请参阅图2和图4,平飞巡航工况包括:
1.当飞行器1到达一定高度后,倾转连接件30开始缓慢带动倾转旋翼组件50向水平位置倾转,共轴双旋翼组件60持续工作以保持整机俯仰平衡,整机襟翼带有一定角度能够提高机翼组件20的升力,倾转旋翼组件50在提供有效升力的同时增加向前的拉力。
2.当飞行器1的飞行速度高于平飞速度后,倾转旋翼组件50转动至水平位置,此时飞行器1处于平飞巡航工作状态,共轴双旋翼组件60停止工作,第一桨叶63和第二桨叶65旋转至与Y方向平行的位置时固定,以减小平飞阻力,遮盖板17遮盖开口13,以进一步减小平飞阻力,整机襟翼收回,飞行器1的主要升力来源由倾转旋翼组件50转变为机翼组件20,倾转旋翼组件50此时仅提供向前的拉力。
请参阅图2和图5,地面转场工况包括:
1.当飞行器1接触地面,倾转旋翼组件50转动至水平位置,四旋翼模组均停止工作;
2.自动或者手动完成机翼组件20的折叠及倾转旋翼桨叶512的弯折;
3.当飞行器1离开起降平台后,使用轮组100完成目的地中短距离下的转场需求。
其中,机翼组件20的折叠及倾转旋翼桨叶512的弯折包括:首先,倾转旋翼组件50的倾转旋翼桨叶512沿Y方向向后折叠;然后,折转机构70带动折转部23先沿第二转动轴线向上或者向下转动90°,再沿第一转动轴线向后转动90°;最后,位于机身10尾端的遮盖板17遮盖开口13。
综上,本发明提供的飞行器1,通过设置共轴双旋翼组件60,且共轴双旋翼组件60的第一桨叶63的转动方向与第二桨叶65的转动方向相反,使得第一桨叶63的转动产生的反扭矩与第二桨叶65的转动产生的反扭矩能够相互抵消,提升了飞行器1的航向的稳定性,保证了飞行器1的飞行安全。
请参阅图8,本发明还提供一种共轴双旋翼组件60,共轴双旋翼组件60包括安装轴61、第一桨叶63和第二桨叶65,第一桨叶63和第二桨叶65分别可转动地连接于安装轴61的相对两端,第一桨叶63的转动方向与第二桨叶65的转动方向相反。
综上,本发明提供的共轴双旋翼组件60,第一桨叶63的转动方向与第二桨叶65的转动方向相反,使得第一桨叶63的转动产生的反扭矩与第二桨叶65的转动产生的反扭矩能够相互抵消,当共轴双旋翼组件60用于飞行器时,能够提升飞行器的航向的稳定性,保证飞行器的飞行安全。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种飞行器,其特征在于,包括:
    机身;
    机翼组件,所述机翼组件连接于所述机身;
    倾转旋翼组件,所述倾转旋翼组件可倾转地连接于所述机翼组件;以及
    共轴双旋翼组件,所述共轴双旋翼组件包括安装轴、第一桨叶和第二桨叶,所述安装轴连接于所述机身,所述第一桨叶和所述第二桨叶分别可转动地连接于所述安装轴的相对两端,所述第一桨叶的转动方向与所述第二桨叶的转动方向相反。
  2. 根据权利要求1所述的飞行器,其特征在于,所述机身开设收容腔和开口,所述开口与所述收容腔连通,所述共轴双旋翼组件可转动地设置于所述收容腔内,并显露于所述开口。
  3. 根据权利要求2所述的飞行器,其特征在于,所述机身还包括遮盖板,所述遮盖板用于遮盖所述开口。
  4. 根据权利要求3所述的飞行器,其特征在于,所述机身还包括主体部,所述主体部用于设置所述机翼组件,所述遮盖板可转动地设置于所述主体部。
  5. 根据权利要求1所述的飞行器,其特征在于,所述机翼组件包括固定部和折转部,所述固定部设置于所述机身,所述折转部可活动地连接于所述固定部,并且相对所述固定部可折转。
  6. 根据权利要求5所述的飞行器,其特征在于,所述固定部沿第一方向延伸,所述折转部具有第一转动轴线和第二转动轴线,所述第一转动轴线沿所述第一方向延伸,所述第二转动轴线沿第二方向延伸,所述第一桨叶和所述第二桨叶沿第三方向依次设置,所述第一方向、所述第二方向和所述第三方向之间两两垂直。
  7. 根据权利要求6所述的飞行器,其特征在于,所述飞行器还包括折转机构,所述折转机构设置于所述固定部,所述折转部通过所述折转机构相对所述固定部可折转。
  8. 根据权利要求7所述的飞行器,其特征在于,所述折转机构包括第一转轴和第二转轴,所述折转部通过所述第一转轴沿所述第一转动轴线转动,所述折转部通过所述第二转轴沿所述第二转动轴线转动。
  9. 根据权利要求5所述的飞行器,其特征在于,所述折转部包括第一折转段和第二折转段,所述第一折转段可活动地连接于所述固定部,并且相对所述固定部可折转,所述倾转旋翼组件设置于所述第二折转段。
  10. 根据权利要求9所述的飞行器,其特征在于,所述倾转旋翼组件与所述第二折转段形成动力机构,所述动力机构的重心位于所述第二折转段的转动轴线。
  11. 根据权利要求5所述的飞行器,其特征在于,所述固定部的长度为所述机翼组件的长度的10%-30%。
  12. 根据权利要求1所述的飞行器,其特征在于,所述飞行器还包括倾转连接件,所述倾转连接件可转动地设置于所述机翼组件,所述倾转旋翼组件与所述倾转连接件传动连接,以在所述倾转连接件的带动下改变空间角度。
  13. 根据权利要求12所述的飞行器,其特征在于,所述倾转旋翼组件包括倾转旋翼本体和旋翼安装座,所述旋翼安装座与所述倾转连接件传动连接,所述倾转旋翼本体可转动地设置于所述旋翼安装座,所述倾转旋翼本体包括倾转旋翼桨叶,所述倾转旋翼桨叶相对所述旋翼安装座可弯折。
  14. 根据权利要求1-13任一项所述的飞行器,其特征在于,所述机翼组件为两个,两个所述机翼组件分别连接于所述机身的相对两侧,每个所述机翼组件均设有一个所述倾转旋翼组件,两个所述倾转旋翼组件关于所述飞行器的重心对称设置。
  15. 根据权利要求14所述的飞行器,其特征在于,两个所述倾转旋翼组件与所述共轴双旋翼组件组成四旋翼模组,所述飞行器的重心位于所述四旋翼模组的中心。
  16. 根据权利要求14所述的飞行器,其特征在于,所述共轴双旋翼组件的中心与所述飞行器的重心的间距大于所述倾转旋翼组件与所述飞行器的重心的间距。
  17. 根据权利要求1-16任一项所述的飞行器,其特征在于,所述飞行器还包括尾翼,所述尾翼连接于所述机身。
  18. 根据权利要求17所述的飞行器,其特征在于,所述尾翼包括水平翼和垂直翼,所述垂直翼连接于所述机身和所述水平翼之间并且向上延伸,所述水平翼的延伸方向与所述机翼组件的方向相同。
  19. 根据权利要求1-18任一项所述的飞行器,其特征在于,所述飞行器还包括轮组,所述轮组设置于所述机身的底部,所述机身通过所述轮组沿地面可移动。
  20. 一种共轴双旋翼组件,其特征在于,所述共轴双旋翼组件包括安装轴、第一桨叶和第二桨叶,所述第一桨叶和所述第二桨叶分别可转动地连接于所述安装轴的相对两端,所述第一桨叶的转动方向与所述第二桨叶的转动方向相反。
PCT/CN2021/129532 2021-10-11 2021-11-09 飞行器及共轴双旋翼组件 WO2023060678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111183897.2 2021-10-11
CN202111183897.2A CN113753231A (zh) 2021-10-11 2021-10-11 飞行器及共轴双旋翼组件

Publications (1)

Publication Number Publication Date
WO2023060678A1 true WO2023060678A1 (zh) 2023-04-20

Family

ID=78799122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129532 WO2023060678A1 (zh) 2021-10-11 2021-11-09 飞行器及共轴双旋翼组件

Country Status (2)

Country Link
CN (1) CN113753231A (zh)
WO (1) WO2023060678A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114193989B (zh) * 2021-12-29 2024-02-20 广东汇天航空航天科技有限公司 折叠机构、折叠机翼以及飞行器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013001852A1 (de) * 2013-01-29 2014-07-31 Gerd Beierlein Fluggerät
CN106628163A (zh) * 2017-01-13 2017-05-10 厦门大学 一种可实现大阻力减速和垂直起降的超音速无人战斗机
CN210912855U (zh) * 2019-07-24 2020-07-03 广州极飞科技有限公司 飞行器的机翼组件及飞行器
WO2020247148A2 (en) * 2019-05-08 2020-12-10 Detroit Aircraft Corporation Electrically powered vtol aircraft for providing transportation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1458030A (zh) * 2003-05-26 2003-11-26 韩培洲 前旋翼倾转式水平、垂直起落飞机
CN101875399B (zh) * 2009-10-30 2013-06-19 北京航空航天大学 一种采用并列式共轴双旋翼的倾转旋翼飞机
CN103010463A (zh) * 2012-12-26 2013-04-03 南京航空航天大学 高速共轴倾转双旋翼飞翼机
US9604729B2 (en) * 2013-10-16 2017-03-28 Hamilton Sundstrand Corporation Aircraft control system and method
CN106043684B (zh) * 2016-06-01 2018-09-11 北京航空航天大学 一种旋翼机翼可联结的复合式飞行器
CN212579543U (zh) * 2020-08-26 2021-02-23 中电科芜湖通用航空产业技术研究院有限公司 一种城市空中飞行汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013001852A1 (de) * 2013-01-29 2014-07-31 Gerd Beierlein Fluggerät
CN106628163A (zh) * 2017-01-13 2017-05-10 厦门大学 一种可实现大阻力减速和垂直起降的超音速无人战斗机
WO2020247148A2 (en) * 2019-05-08 2020-12-10 Detroit Aircraft Corporation Electrically powered vtol aircraft for providing transportation
CN210912855U (zh) * 2019-07-24 2020-07-03 广州极飞科技有限公司 飞行器的机翼组件及飞行器

Also Published As

Publication number Publication date
CN113753231A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN105539833B (zh) 固定翼多轴飞行器
WO2023060679A1 (zh) 飞行器、机翼组件及飞行汽车
US8393564B2 (en) Personal aircraft
CN205916329U (zh) 一种共轴双桨无人飞行器
CN103979104B (zh) 一种可变体x型机翼垂直起降微型飞行器
WO2023000571A1 (zh) 飞行汽车
CN108045575B (zh) 一种短距起飞垂直着陆飞行器
CN106184736A (zh) 一种固定翼与多旋翼组成的复合型飞行器
CN108128448A (zh) 双尾撑式共轴倾转旋翼无人机及其控制方法
CN112224400B (zh) 一种新型倾转旋翼飞行器及其工作方法
WO2023060678A1 (zh) 飞行器及共轴双旋翼组件
CN114852327A (zh) 一种垂直起降飞行器和垂直起降飞行器的控制方法
CN105346725A (zh) 一种垂直起降无人机
CN110217391B (zh) 一种油电混合动力垂直起降前掠固定翼无人机
CN209176908U (zh) 一种复合驱动的旋翼固定翼无人机
CN207725616U (zh) 双尾撑式共轴倾转旋翼无人机
CN103909796A (zh) 垂直升降飞行汽车
CN205469816U (zh) 固定翼多轴飞行器
CA3228095A1 (en) Vertical take-off and landing craft systems and methods
CN114771819A (zh) 一种垂直起降的变形翼无人机
CN108583869B (zh) 一种x形后掠翼无人机
CN111762315A (zh) 一种可倾转旋翼无人机及其使用方法
CN216332751U (zh) 一种倾转旋翼飞行器
CN114212252B (zh) 一种串列式倾转机翼飞行器及控制方法
CN216994843U (zh) 一种垂直起降飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960405

Country of ref document: EP

Kind code of ref document: A1