WO2023058286A1 - アルカリ乾電池 - Google Patents

アルカリ乾電池 Download PDF

Info

Publication number
WO2023058286A1
WO2023058286A1 PCT/JP2022/027254 JP2022027254W WO2023058286A1 WO 2023058286 A1 WO2023058286 A1 WO 2023058286A1 JP 2022027254 W JP2022027254 W JP 2022027254W WO 2023058286 A1 WO2023058286 A1 WO 2023058286A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
content
mass
negative electrode
less
Prior art date
Application number
PCT/JP2022/027254
Other languages
English (en)
French (fr)
Inventor
聡 藤吉
潤 布目
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280065034.1A priority Critical patent/CN118056296A/zh
Priority to JP2023552698A priority patent/JPWO2023058286A1/ja
Publication of WO2023058286A1 publication Critical patent/WO2023058286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to alkaline dry batteries.
  • Alkaline batteries (alkaline manganese batteries) are widely used because they have a larger capacity than manganese batteries and can draw a large amount of current.
  • Patent Document 1 discloses an alkaline battery comprising a positive electrode containing electrolytic manganese dioxide, a negative electrode containing zinc or a zinc alloy, a separator disposed between the positive electrode and the negative electrode, and an alkaline electrolyte.
  • Patent Document 2 proposes a battery containing, as a positive electrode active material, electrolytic manganese dioxide having an average mesopore diameter of 6.5 nm or more and 10 nm or less and an alkaline potential of 290 mV or more and 350 mV or less.
  • One aspect of the present disclosure includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the positive electrode and the negative electrode each include an electrolyte, and the positive electrode comprises electrolytic dioxide.
  • Manganese, sodium, and zinc are included, the potential of the electrolytic manganese dioxide is 300 mV or more and 340 mV or less with respect to a mercury oxide reference electrode, and the sodium content in the positive electrode is 800 mass ppm or more and 3000 mass ppm or less, and the zinc content in the positive electrode is 2400 mass ppm or more and 4600 mass ppm or less.
  • FIG. 1 is a schematic diagram of an apparatus for measuring the potential of electrolytic manganese dioxide of the positive electrode of an alkaline dry battery in one embodiment of the present disclosure.
  • FIG. 2 is a partially cutaway front view of an alkaline dry battery according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing evaluation results of an alkaline dry battery in one embodiment of the present disclosure.
  • FIG. 4 is a diagram showing evaluation results of an alkaline dry battery in one embodiment of the present disclosure.
  • FIG. 5 is a diagram showing evaluation results of an alkaline dry battery in one embodiment of the present disclosure.
  • FIG. 6 is a diagram showing evaluation results of an alkaline dry battery in one embodiment of the present disclosure.
  • An alkaline dry battery includes a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode.
  • the positive electrode contains electrolytic manganese dioxide (hereinafter also referred to as EMD), sodium (Na), and zinc (Zn).
  • EMD electrolytic manganese dioxide
  • Na sodium
  • Zn zinc
  • the potential of the EMD is 300 mV or more and 340 mV or less with respect to a mercury oxide (Hg/HgO) reference electrode
  • the Na content in the positive electrode is 800 mass ppm or more and 3000 mass ppm or less
  • Zn content is 2400 mass ppm or more and 4600 mass ppm or less.
  • the positive electrode and the negative electrode each contain an electrolytic solution. That is, an alkaline dry battery contains an electrolytic solution in a positive electrode, an electrolytic solution in a negative electrode, and other electrolytic solution (for example, an electrolytic solution impregnated in a separator). However, the electrolytic solution in the positive electrode is the electrolytic solution remaining in the positive electrode from which the electrolytic solution adhering to the surface has been removed. The electrolytic solution adhering to the surface is an electrolytic solution that can be separated from the positive electrode by gravity by the method described later.
  • the potential of EMD means the potential of EMD with respect to a mercury oxide (Hg/HgO) reference electrode in a KOH aqueous solution (KOH content: 40% by mass) at 20 ⁇ 1°C.
  • FIG. 1 is a schematic diagram of an apparatus 101 for measuring the potential of an EMD.
  • the powder sample may be an EMD powder.
  • the sample liquid is centrifuged to precipitate the powder sample 51 at the bottom of the centrifuge tube 102 .
  • the platinum electrode 104 is brought into contact with the precipitate of the powder sample 51, and the reference electrode 103 (Hg/HgO ).
  • a platinum electrode 104 and a reference electrode 103 are connected to the positive side 103a and negative side 103b of the digital voltmeter 103, respectively.
  • the potential difference (voltage) measured at this time is the potential of the EMD with respect to the reference electrode 103 .
  • the Na content (mass ppm) in the positive electrode means the ratio (per million parts) of the mass of Na contained in the positive electrode to the mass of the entire positive electrode.
  • the Zn content (mass ppm) in the positive electrode means the mass ratio (parts per million) of Zn contained in the positive electrode with respect to the mass of the entire positive electrode.
  • the Na content and Zn content in the positive electrode are, respectively, the amount of Na and the amount of Zn contained in the positive electrode of an unused alkaline dry battery after one week or more from the manufacture of the alkaline dry battery.
  • EMD With a high potential of 300 mV or more as the positive electrode active material, high-load discharge performance is improved. However, if the EMD potential exceeds 340 mV, the open circuit voltage (OCV) of the battery may not satisfy the International Electrotechnical Commission (IEC) standard (IEC60086-2 Ed.14 2021).
  • IEC International Electrotechnical Commission
  • the deposition of needle crystals of zinc oxide on the positive electrode during medium load discharge can be prevented by reducing the Na content and the Zn content in the positive electrode within the above ranges, respectively. can be suppressed. It is possible to suppress the occurrence of an internal short circuit due to the precipitation of the needle-like crystals.
  • the EMD potential may be greater than or equal to 320 mV. However, when the potential of EMD exceeds 340 mV, even if the amount of Na and the amount of Zn in the positive electrode are reduced, it may be difficult to suppress the precipitation of needle crystals of zinc oxide.
  • the Na content in the positive electrode is 3000 ppm by mass or less, deposition of ZnO on the positive electrode during discharge is sufficiently suppressed.
  • the Zn content in the positive electrode is 4600 ppm by mass or less, the amount of ZnO deposited on the positive electrode during discharge can be sufficiently reduced.
  • the positive electrode may contain 800 ppm by mass or more of Na from the viewpoint that a predetermined amount of a neutralizing agent containing Na is used in manufacturing an EMD and a gelling agent containing Na is used in manufacturing a negative electrode, which will be described later.
  • a predetermined amount of zinc oxide is added to the electrolyte for the purpose of suppressing dissolution of the negative electrode active material containing Zn.
  • the positive electrode may contain 2400 ppm by mass or more of Zn.
  • Na contained in the positive electrode includes a neutralizing agent containing Na (e.g., sodium hydroxide) used in the neutralization step during EMD production, and a gelling agent containing Na (e.g., polyacrylic acid sodium).
  • the Na content in the positive electrode can be adjusted by changing the concentration and amount of the neutralizing agent used, the amount of the gelling agent containing Na added during the production of the negative electrode, and the like.
  • the Zn contained in the positive electrode is mainly derived from the zinc oxide contained in the electrolytic solution for separator impregnation (for injection into the case) and negative electrode production used in the manufacturing process of alkaline dry batteries.
  • the Zn content in the positive electrode can be adjusted by changing the zinc oxide content in these electrolytes.
  • the Na content in the positive electrode is preferably 2300 mass ppm or more and 2900 mass ppm or less.
  • the Zn content in the positive electrode is preferably 3500 mass ppm or more and 4500 mass ppm or less.
  • the Na content (mass ppm) and Zn content (mass ppm) in the positive electrode can be obtained as follows.
  • (ii) Dissolve the positive electrode with hydrochloric acid to obtain a measurement sample. Specifically, 1 g of the positive electrode is added with 10 mL of hydrochloric acid and heated for 2 hours. After that, the insoluble matter is removed by filtration, and ion-exchanged water is added to adjust the volume to 100 mL to obtain a measurement sample. The amounts of Na and Zn in the measurement sample are measured by inductively coupled plasma (ICP) emission spectrometry. Based on the measured values, the Na content and Zn content in the positive electrode are obtained. At the time of measurement, the measurement sample is diluted 10-fold with ion-exchanged water before use. As an analyzer, an ICP-OES analyzer (manufactured by Thermo Fisher Scientific, device name "iCAP 7400”) can be used.
  • ICP-OES analyzer manufactured by Thermo Fisher Scientific, device name "iCAP 7400
  • the Na content (mass ppm) in the EMD used in the production of the positive electrode can also be obtained in the same manner as in (ii) above.
  • the positive electrode holds the electrolyte.
  • the electrolyte is an aqueous potassium hydroxide (KOH) solution containing zinc oxide.
  • the electrolytic solution held by the positive electrode (the electrolytic solution contained in the positive electrode) is synonymous with the above-described electrolytic solution in the positive electrode.
  • the content of the electrolytic solution in the positive electrode may be 10% by mass or more and 13% by mass or less, or may be 10.7% by mass or more and 12.6% by mass or less. In this case, it is easy to adjust the Na content and the Zn content in the positive electrode within the above ranges while maintaining the excellent discharge performance of the battery.
  • the content (% by mass) of the electrolyte in the positive electrode means the ratio (percentage) of the mass of the electrolyte contained in the positive electrode to the mass of the entire positive electrode.
  • the Na and Zn in the positive electrode are contained in the electrolyte retained by the positive electrode.
  • the Na content and Zn content in the positive electrode may be adjusted by changing the content of the electrolyte in the positive electrode.
  • the content of the electrolytic solution in the positive electrode can be adjusted, for example, by changing the density of the positive electrode, the content of graphite in the positive electrode, and the like.
  • Graphite is usually contained as a conductive agent in the positive electrode and used as a mixture with EMD. The higher the graphite content and the higher the density of the positive electrode, the more difficult it is for the positive electrode to retain the electrolytic solution.
  • the density of the positive electrode means the density of the positive electrode pellet before the electrolytic solution impregnated in the separator permeates the positive electrode pellet that is in close contact with the inner surface of the case.
  • the content of the electrolyte in the positive electrode can be obtained as follows.
  • the content of the electrolyte solution is obtained from the contents of moisture, K, and Zn in the positive electrode.
  • Moisture, K, and Zn in the positive electrode originate from water, KOH, and ZnO in the electrolyte, respectively.
  • a positive electrode from which the electrolyte adhering to the surface has been removed is obtained in the same manner as in (i) above.
  • 10 g of the positive electrode is sampled and held at 140° C. for 15 minutes to remove moisture, and the amount of decrease from 10 g is obtained as moisture content M (g).
  • (M/10) ⁇ 100 is determined as the water content (mass %) in the positive electrode.
  • the K content (% by mass) and the Zn content (% by mass) in the positive electrode are obtained in the same manner as in (ii) above, and the obtained values are used as the KOH content (% by mass) and the ZnO content (by mass). %).
  • the obtained water content, KOH content, and ZnO content are totaled, and this is determined as the content (% by mass) of the electrolytic solution in the positive electrode.
  • FIG. 2 is a front view of the cross section of the horizontal half of the alkaline dry battery in one embodiment of the present disclosure.
  • the alkaline dry battery comprises a hollow cylindrical positive electrode 2, a gelled negative electrode 3 disposed in the hollow portion of the positive electrode 2, a separator 4 disposed therebetween, and an electrolytic solution 10.
  • a power generation element including Electrolyte 10 is an alkaline electrolyte.
  • the power generation element is housed in a bottomed cylindrical metal case 1 that also serves as a positive electrode terminal.
  • a nickel-plated steel plate is used for the case 1 .
  • the positive electrode 2 is arranged in contact with the inner wall of the case 1 .
  • the inner surface of the case 1 is preferably coated with a carbon film.
  • the bottomed cylindrical separator 4 is composed of a cylindrical separator 4a and a bottom paper 4b.
  • the separator 4a is arranged along the inner surface of the hollow portion of the positive electrode 2 to separate the positive electrode 2 and the negative electrode 3 from each other. Therefore, the separator arranged between the positive electrode and the negative electrode means the cylindrical separator 4a.
  • the bottom paper 4b is arranged at the bottom of the hollow portion of the positive electrode 2 and separates the negative electrode 3 and the case 1 from each other.
  • the opening of the case 1 is sealed by a sealing unit 9.
  • the sealing unit 9 includes a resin gasket 5 , a negative terminal plate 7 that also serves as a negative terminal, and a negative current collector 6 .
  • the gasket 5 has an annular thin portion 5a. When the internal pressure of the battery exceeds a predetermined value, the thin portion 5a breaks and gas is released to the outside of the battery.
  • a negative electrode current collector 6 is inserted in the negative electrode 3 .
  • the material of the negative electrode current collector 6 is, for example, an alloy containing copper and zinc, such as brass.
  • the negative electrode current collector 6 may be plated with tin, if necessary.
  • the negative electrode current collector 6 has a nail-like shape having a head portion and a body portion.
  • the head is welded to the central flat portion of the negative terminal plate 7 .
  • the open end of the case 1 is crimped to the peripheral flange of the negative electrode terminal plate 7 via the outer peripheral edge of the gasket 5 .
  • An exterior label 8 is covered on the outer surface of the case 1 .
  • the positive electrode 2 contains EMD, which is a positive electrode active material, and an electrolytic solution.
  • EMD is used in powder form.
  • the average particle size of the EMD is, for example, 30 ⁇ m or more and 60 ⁇ m or less, from the viewpoint of easily ensuring the filling property of the positive electrode and the diffusibility of the electrolytic solution in the positive electrode.
  • the BET specific surface area of the EMD may be, for example, in the range of 20 m 2 /g or more and 50 m 2 /g or less.
  • the average particle diameter is the median diameter (D50) in the volume-based particle size distribution.
  • Average particle size is determined, for example, using a laser diffraction and/or scattering particle size analyzer.
  • the BET specific surface area is obtained by measuring and calculating the surface area using the BET formula, which is a theoretical formula for multi-layer adsorption. The BET specific surface area can be measured, for example, by using a specific surface area measuring device based on the nitrogen adsorption method.
  • the positive electrode 2 may contain a conductive agent in addition to the EMD and the electrolytic solution.
  • conductive agents include carbon black such as acetylene black and conductive carbon materials such as graphite. Natural graphite, artificial graphite, and the like can be used as graphite.
  • the conductive agent may be fibrous or the like, but is preferably powdery.
  • the average particle size of the conductive agent can be selected, for example, from a range of 5 nm or more and 50 ⁇ m or less.
  • the average particle size of the conductive agent is preferably 5 nm or more and 40 nm or less when the conductive agent is carbon black, and preferably 3 ⁇ m or more and 50 ⁇ m or less when the conductive agent is graphite.
  • the content of graphite in the positive electrode mixture may be 3 parts by mass or more and 8 parts by mass or less, preferably 4 parts by mass or more and 7 parts by mass or less per 100 parts by mass in total of EMD and graphite.
  • the graphite content is 7% by mass or less, a sufficient filling amount of EMD is likely to be secured, and good medium-load discharge performance is likely to be obtained.
  • the positive electrode 2 is obtained, for example, by pressing a positive electrode mixture containing a positive electrode active material, a conductive agent, and an alkaline electrolyte into pellets.
  • the positive electrode mixture may be made into flakes or granules, classified if necessary, and then pressure-molded into pellets. After being housed in the case, the pellet may be secondarily pressurized using a predetermined tool so as to adhere to the inner wall of the case.
  • the average density of EMD in the positive electrode pellets is, for example, 2.78 g/cm 3 or more and 3.08 g/cm 3 or less.
  • the density of the positive electrode pellets may be 3.2 g/cm 3 or more and 3.6 g/cm 3 or less.
  • the positive electrode (positive electrode mixture) may further contain other components (for example, polytetrafluoroethylene) as necessary.
  • the negative electrode 3 has a gel form. That is, the negative electrode 3 contains a gelling agent in addition to the negative electrode active material and the electrolytic solution.
  • the negative electrode active material contains zinc or a zinc alloy. From the viewpoint of corrosion resistance, the zinc alloy preferably contains at least one selected from the group consisting of indium, bismuth and aluminum.
  • the electrolytic solution for producing the negative electrode the same electrolytic solution as that for impregnating the separator can be used.
  • the negative electrode active material is usually used in powder form. From the viewpoint of filling properties of the negative electrode and diffusibility of the alkaline electrolyte in the negative electrode, the average particle size of the negative electrode active material powder is, for example, 80 ⁇ m or more and 200 ⁇ m or less, preferably 100 ⁇ m or more and 150 ⁇ m or less.
  • any known gelling agent used in the field of alkaline dry batteries can be used without particular limitation, and for example, a water-absorbing polymer can be used.
  • examples of such gelling agents include polyacrylic acid and sodium polyacrylate.
  • the Na content in the positive electrode may be adjusted by changing the content of the Na-containing gelling agent (for example, sodium polyacrylate) in the negative electrode.
  • the amount of the gelling agent added may be 0.5 parts by mass or more and 2 parts by mass or less per 100 parts by mass of the negative electrode active material.
  • the Na content in the positive electrode may be adjusted by changing the compounding ratio of the polyacrylic acid and the sodium polyacrylate in the amount of the gelling agent added within the above range.
  • a nonwoven fabric or a microporous membrane is used.
  • materials for the separator include cellulose and polyvinyl alcohol.
  • the non-woven fabric for example, those mainly composed of fibers of these materials are used.
  • Cellophane or the like is used as the microporous film.
  • the thickness of the separator may be 150 ⁇ m or more and 300 ⁇ m or less, or may be 180 ⁇ m or more and 300 ⁇ m or less.
  • the separator may be constructed by stacking a plurality of sheets (such as non-woven fabric) so that the thickness falls within the above range.
  • the bottomed cylindrical separator 4 is composed of the cylindrical separator 4a and the bottom paper 4b, but is not limited to this.
  • a bottomed cylindrical integral body may be used, and separators of known shapes used in the field of alkaline dry batteries can be used.
  • the electrolyte contained in the battery is an aqueous potassium hydroxide solution (alkaline electrolyte).
  • the content of potassium hydroxide in the electrolytic solution is, for example, 30% by mass or more and 50% by mass or less.
  • the electrolyte further contains zinc oxide.
  • the content of zinc oxide in the electrolytic solution is, for example, 1% by mass or more and 5% by mass or less.
  • the content (% by mass) of potassium hydroxide and zinc oxide in the electrolyte is the ratio (percentage) of the mass of potassium hydroxide and zinc oxide contained in the electrolyte to the total mass of the electrolyte. means.
  • EMD whose potential and Na content are the values shown in FIGS. 3 to 5 were used as the positive electrode active material.
  • the EMD potential and the Na content in the EMD were determined by the method described above. 3 to 5 indicate the potential of mercury oxide (Hg/HgO) with respect to the reference electrode 103 .
  • the content of graphite in the positive electrode (positive electrode mixture) was the value shown in FIGS.
  • the content of graphite in the positive electrode in FIGS. 3 to 5 indicates the amount (parts by mass) per 100 parts by mass of EMD and graphite in total.
  • a predetermined amount of the granules obtained by pulverizing the flake-like positive electrode mixture into granules and classifying them with a sieve of 10 to 100 mesh is placed in a predetermined hollow cylinder having an inner diameter of 8.9 mm and an outer diameter of 13.65 mm.
  • Two positive electrode pellets were produced by pressing into a shape.
  • a KOH aqueous solution containing ZnO was used as the electrolyte.
  • the KOH content in the electrolytic solution was 33% by mass.
  • the ZnO content in the electrolytic solution was set to the values shown in FIGS. 3 to 5.
  • a mixture of crosslinked branched polyacrylic acid and highly crosslinked chain sodium polyacrylate (Na polyacrylate) was used as the gelling agent.
  • the content of the gelling agent in the negative electrode was the value shown in FIGS. 3 to 5.
  • FIG. The content of the gelling agent in the negative electrode in FIGS. 3 to 5 is the amount (parts by mass) per 100 parts by mass of the negative electrode active material, and the values in parentheses are (Na polyacrylate: polyacrylic acid). shows the mass ratio of
  • Case 1 was prepared in which the inner surface of a bottomed cylindrical case (outer diameter 14.0 mm, height 49.9 mm) made of nickel-plated steel sheet was covered with a carbon film. After two positive electrode pellets were vertically inserted into the case 1, pressure was applied to form the positive electrode 2 in close contact with the inner wall of the case 1. The density of the positive electrode (positive electrode pellet) brought into close contact with the inner surface of the case was the value shown in FIGS.
  • a bottomed cylindrical separator 4 was placed inside the positive electrode 2 , and a predetermined amount of electrolytic solution was injected into the case 1 to be absorbed by the separator 4 .
  • the separator 4 was constructed using a cylindrical separator 4a and a bottom paper 4b.
  • the cylindrical separator 4a has a thickness of 200 ⁇ m and is formed by winding a non-woven fabric sheet with a thickness of 100 ⁇ m twice.
  • the electrolyte for impregnating the separator for pouring into the case
  • the same electrolyte as that for preparing the negative electrode was used. This state was allowed to stand for a predetermined time, and the electrolytic solution was permeated from the separator 4 to the positive electrode 2 . After that, 6.6 g of the gelled negative electrode 3 was filled inside the separator 4 .
  • a sealing unit 9 consisting of a gasket 5 , a negative electrode terminal plate 7 and a negative electrode current collector 6 was installed in the opening of the case 1 .
  • the trunk portion of the negative electrode current collector 6 was inserted into the negative electrode 3 .
  • the open end of the case 1 was crimped onto the peripheral edge of the negative electrode terminal plate 7 via the gasket 5 to seal the opening of the case 1 .
  • the outer surface of the case 1 was covered with the outer label 8 .
  • an alkaline dry battery was produced. 3 to 5
  • A1-A21 are the batteries of Examples 1-21
  • B1-B8 are the batteries of Comparative Examples 1-8.
  • the Na content, Zn content, and electrolyte content in the positive electrode obtained by the method described above were the values shown in FIGS. 3 to 5.
  • the discharge time was measured for each of the 5 batteries, the number of batteries in which abnormal discharge occurred was obtained, and the ratio of the number of batteries in which abnormal discharge occurred among the 5 batteries was obtained as the abnormal discharge occurrence rate.
  • the evaluation results are shown in FIGS. 3 to 5.
  • the Na content and Zn content in the positive electrode are each reduced to 3000 mass. ppm and reduced to 4600 mass ppm or less. Batteries A1 to A4 had an abnormal discharge occurrence rate of 0% during medium load discharge.
  • the content of Na polyacrylate in the negative electrode and/or the ZnO content in the electrolytic solution for impregnating the separator and preparing the negative electrode were appropriately adjusted.
  • the Na content and Zn content in the positive electrode were reduced to 3000 mass ppm or less and 4600 mass ppm or less, respectively.
  • Batteries A5 to A12 had an abnormal discharge occurrence rate of 0% during medium load discharge.
  • the Na content in the EMD was adjusted as appropriate. Furthermore, if necessary, the content of Na polyacrylate in the negative electrode and/or the ZnO content in the electrolytic solution for impregnating the separator and preparing the negative electrode were appropriately adjusted. As a result, the Na content and Zn content in the positive electrode were reduced to 3000 mass ppm or less and 4600 mass ppm or less, respectively. Batteries A13 to A20 had an abnormal discharge occurrence rate of 0% during medium load discharge. In Battery A21, the rate of occurrence of abnormal discharge during medium load discharge was reduced to 20%.
  • the EMD was washed to adjust the Na content in the EMD. Specifically, 300 g of EMD was washed with 1.8 L of a 25° C. washing liquid (aqueous NaOH solution, pure water, or dilute sulfuric acid) for a predetermined time, the washing liquid was removed by filtration, hot air of 100° C. was sent for 20 minutes, dried. In battery B8, an aqueous NaOH solution (concentration: 16.2 mmol/L) was used as the cleaning liquid, and the cleaning time was 1 hour. In the batteries A13 and A14, pure water was used as the cleaning liquid, and the cleaning time was 20 minutes.
  • aqueous NaOH solution concentration: 16.2 mmol/L
  • an aqueous NaOH solution (concentration: 12.2 mmol/L) was used as the cleaning liquid, and the cleaning time was 1 hour.
  • Batteries A17 to A18 and B7 used dilute sulfuric acid (concentration: 50 mmol/L) as the cleaning solution, and the cleaning time was 1 hour.
  • dilute sulfuric acid concentration: 50 mmol/L
  • the cleaning time was 10 minutes.
  • Battery C1 of Comparative Example 9 was produced in the same manner as Battery B1 of Comparative Example 1, except that an EMD with a potential of 280 mV was used.
  • Battery C2 of Comparative Example 9 was produced in the same manner as Battery A1 of Example 1, except that an EMD with a potential of 280 mV was used.
  • the EMD potential was 300 mV or more, and the high-load discharge performance was improved. Incidence increased to 40% or more.
  • the EMD potential was 300 mV or more, and the high-load discharge performance was improved. In Battery A1, the EMD potential is 300 mV or more, but the Na content and Zn content in the positive electrode are 3000 mass ppm or less and 4600 mass ppm or less, respectively. did not occur.
  • the alkaline dry battery according to the present disclosure is suitably used as a power source for portable audio equipment, electronic games, lights, etc., for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アルカリ乾電池は、正極と、負極と、正極と負極との間に配されるセパレータと、を備える。正極および負極は、それぞれ電解液を含む。正極は、電解二酸化マンガンと、ナトリウムと、亜鉛と、を含み、電解二酸化マンガンの電位は、酸化水銀の参照電極に対して、300mV以上、340mV以下である。正極中のナトリウムの含有量は、800質量ppm以上、3000質量ppm以下であり、正極中の亜鉛の含有量は、2400質量ppm以上、4600質量ppm以下である。

Description

アルカリ乾電池
 本開示は、アルカリ乾電池に関する。
 アルカリ乾電池(アルカリマンガン乾電池)は、マンガン乾電池に比べて容量が大きく、大きな電流を取り出すことができるため、広く利用されている。
 特許文献1では、電解二酸化マンガンを含む正極と、亜鉛または亜鉛合金を含む負極と、前記正極と前記負極との間に配されるセパレータと、アルカリ電解液と、を具備するアルカリ電池であって、前記正極は、電解二酸化マンガン100重量部あたり0.1~0.7重量部のナトリウム、および、電解二酸化マンガン100重量部あたり0.005~0.05重量部の珪素を含有する、アルカリ電池が提案されている。
 特許文献2では、メソ細孔の平均径が6.5nm以上10nm以下であり、アルカリ電位が290mV以上350mV以下である電解二酸化マンガンを正極活物質として含む電池が提案されている。
特開2007-287672号公報 国際公開第2020/110951号パンフレット
 高電位の電解二酸化マンガンを正極活物質に用いると、高負荷放電性能が向上するが、中負荷放電時に酸化亜鉛の針状結晶が正極上に析出し、当該針状結晶の成長によりセパレータが損傷し、内部短絡が生じることがある。
 本開示の一側面は、正極と、負極と、前記正極と前記負極との間に配されるセパレータと、を備え、前記正極および前記負極は、それぞれ電解液を含み、前記正極は、電解二酸化マンガンと、ナトリウムと、亜鉛と、を含み、前記電解二酸化マンガンの電位は、酸化水銀の参照電極に対して、300mV以上、340mV以下であり、前記正極中の前記ナトリウムの含有量は、800質量ppm以上、3000質量ppm以下であり、前記正極中の前記亜鉛の含有量は、2400質量ppm以上、4600質量ppm以下である、アルカリ乾電池に関する。
 本開示によれば、アルカリ乾電池について、高負荷放電性能を高めつつ、中負荷放電時の内部短絡の発生を抑制することができる。
図1は、本開示の一実施形態におけるアルカリ乾電池の正極の電解二酸化マンガンの電位を測定する装置の概略図である。 図2は、本開示の一実施形態におけるアルカリ乾電池の一部を断面とする正面図である。 図3は、本開示の一実施形態におけるアルカリ乾電池の評価結果を示す図である。 図4は、本開示の一実施形態におけるアルカリ乾電池の評価結果を示す図である。 図5は、本開示の一実施形態におけるアルカリ乾電池の評価結果を示す図である。 図6は、本開示の一実施形態におけるアルカリ乾電池の評価結果を示す図である。
 本開示の実施形態に係るアルカリ乾電池は、正極と、負極と、正極と負極との間に配されるセパレータと、を備える。正極は、電解二酸化マンガン(以下、EMDとも称する。)と、ナトリウム(Na)と、亜鉛(Zn)とを含む。EMDの電位は、酸化水銀(Hg/HgO)の参照電極に対して、300mV以上、340mV以下であり、正極中のNa含有量は、800質量ppm以上、3000質量ppm以下であり、正極中のZn含有量は、2400質量ppm以上、4600質量ppm以下である。
 正極および負極は、それぞれ電解液を含む。すなわち、アルカリ乾電池は、正極内電解液と、負極内電解液と、それ以外の電解液(例えばセパレータ内に含浸されている電解液)とを含む。ただし、正極内電解液とは、表面に付着する電解液が除去された正極に残存する電解液である。表面に付着する電解液とは、後述の方法で、自然落下により正極と分離できる電解液である。
 なお、EMDの電位は、20±1℃のKOH水溶液(KOH含有量:40質量%)中における、酸化水銀(Hg/HgO)の参照電極に対するEMDの電位を意味する。
 EMDの電位は、例えば、以下のようにして測定することができる。図1は、EMDの電位を測定する装置101の概略図である。
 (1)未使用の電池を分解して、正極を取り出し、乾燥させ、乳鉢等により粉砕し、粉末試料(正極粉末)を得る。粉末試料はEMD粉末でもよい。
 (2)遠沈管102に、2gの粉末試料51(正極粉末もしくはEMD粉末)と、20mlの40質量%KOH水溶液とを投入し、試料液(粉末試料の分散液)を得る。試料液を撹拌し、その後、20℃で24時間静置する。
 (3)その後、試料液を遠心分離し、遠沈管102の底部に粉末試料51を沈殿させる。
 (4)遠心分離後の試料液(20±1℃)において、粉末試料51の沈殿物に白金電極104を接触させ、上澄み液52(40質量%KOH水溶液)中に参照電極103(Hg/HgO)を配置する。白金電極104および参照電極103を、それぞれデジタルボルトメータ103のプラス側103aおよびマイナス側103bに接続する。このとき測定される電位差(電圧)を参照電極103に対するEMDの電位とする。
 また、正極中のNa含有量(質量ppm)は、正極全体の質量に対する、正極中に含まれるNaの質量の比率(百万分率)を意味する。正極中のZn含有量(質量ppm)は、正極全体の質量に対する、正極中に含まれるZnの質量の比率(百万分率)を意味する。正極中のNa含有量およびZn含有量は、それぞれ、アルカリ乾電池の製造から1週間以上経過後の未使用のアルカリ乾電池における正極中に含まれるNa量およびZn量である。
 300mV以上の高電位のEMDを正極活物質に用いることにより、高負荷放電性能が向上する。ただし、EMDの電位が340mVを超えると、電池の開回路電圧(OCV)が国際電気標準会議(International Electrotechnical Commission:IEC)規格(IEC60086-2 Ed.14 2021)を満足しない場合がある。
 300mV以上の高電位のEMDを用いる場合でも、正極中のNa含有量およびZn含有量をそれぞれ上記範囲内に低減することにより、中負荷放電時における正極上での酸化亜鉛の針状結晶の析出を抑制できる。当該針状結晶の析出に起因する内部短絡の発生を抑制できる。EMDの電位は、320mV以上であってもよい。ただし、EMDの電位が340mVを超えると、正極中のNa量およびZn量を減らしても、酸化亜鉛の針状結晶の析出を抑制しにくい場合がある。
 正極中のNa含有量が3000質量ppm以下である場合、放電途中の正極上でのZnOの析出が十分に抑制される。正極中のZn含有量が4600質量ppm以下である場合、放電途中の正極上でのZnOの析出量を十分に減らすことができる。
 正極中のNa含有量が800質量ppm以上である場合、正極のpHが適度に上昇し、ケースなどの電池の構成部材の腐食が抑制される。また、後述するEMD製造時にNaを含む中和剤および負極作製時にNaを含むゲル化剤がそれぞれ所定量用いられる観点から、正極はNaを800質量ppm以上含み得る。
 Znを含む負極活物質の溶解を抑制する目的で、電解液に所定量の酸化亜鉛が添加されている。このような酸化亜鉛を含む電解液が正極中に保持される観点から、正極はZnを2400質量ppm以上含み得る。
 正極中に含まれるNaは、EMD製造時の中和工程で使用されるNaを含む中和剤(例えば、水酸化ナトリウム)、負極作製時に用いられるNaを含むゲル化剤(例えば、ポリアクリル酸ナトリウム)などに由来する。正極中のNa含有量は、中和剤の濃度や使用量、負極作製時のNaを含むゲル化剤の添加量などを変えることにより調節できる。
 正極中に含まれるZnは、主に、アルカリ乾電池の製造過程で用いられるセパレータ含浸用(ケース内注液用)および負極作製用の電解液に含まれる酸化亜鉛などに由来する。正極中のZn含有量は、こられの電解液中の酸化亜鉛の含有量などを変えることにより調節できる。
 正極中のNa含有量は、2300質量ppm以上、2900質量ppm以下であることが好ましい。負極活物質の溶解を抑制し易い観点から、正極中のZn含有量は、3500質量ppm以上、4500質量ppm以下であることが好ましい。
 正極中のNa含有量(質量ppm)およびZn含有量(質量ppm)は、以下のようにして求めることができる。
 (i)アルカリ乾電池(製造から1週間以上経過後の未使用の電池)を分解し、正極を取り出し、正極を紙製のシート(ろ紙)の上に静置し、正極の表面に付着する電解液を5分間自然落下させ、正極の表面に付着する電解液を除去する。このとき自然落下した電解液は、ろ紙に吸収され、正極が保持する電解液(正極内電解液)に含まれない。
 (ii)正極を塩酸で溶解し、測定試料を得る。具体的には、正極1gに塩酸10mLを加えたものを2時間加熱し、その後、不溶分をろ過により除去し、イオン交換水を加えて100mLに定容し、測定試料を得る。誘導結合プラズマ(ICP)発光分光分析法により、測定試料中のNa量およびZn量を測定する。測定値に基づき、正極中のNa含有量およびZn含有量を求める。なお、測定時には、測定試料はイオン交換水で10倍希釈して用いる。分析装置には、ICP-OES分析装置(Thermo Fishier Scientific社製、装置名「iCAP 7400」)を用いることができる。
 正極の作製で用いられるEMD中のNa含有量(質量ppm)も、上記(ii)と同様にして求めることができる。
 正極は電解液を保持している。電解液は、酸化亜鉛を含む水酸化カリウム(KOH)水溶液である。正極が保持している電解液(正極中に含まれる電解液)は、上記の正極内電解液と同義である。正極中の電解液の含有量は、10質量%以上、13質量%以下であってもよく、10.7質量%以上、12.6質量%以下であってもよい。この場合、電池の優れた放電性能を維持しつつ、正極中のNa含有量およびZn含有量を上記範囲内に調節し易い。なお、正極中の電解液の含有量(質量%)は、正極全体の質量に対する、正極中に含まれる電解液の質量の比率(百分率)を意味する。
 正極中のNaおよびZnの殆どは、正極が保持する電解液中に含まれる。正極中のNa含有量およびZn含有量は、正極中の電解液の含有量を変えることにより調節してもよい。正極中の電解液の含有量は、例えば、正極の密度、正極中の黒鉛の含有量などを変えることで調節できる。黒鉛は、通常、正極中に導電剤として含まれ、EMDと混合して用いられる。黒鉛の含有量が多いほど、正極の密度が高いほど、正極は電解液を保持しにくい傾向がある。なお、正極の密度とは、ケース内面に密着する正極ペレットにセパレータに含浸された電解液が浸透する前の正極ペレットの密度を意味する。
 正極中の電解液の含有量は、以下のようにして求めることができる。
 正極中の水分、K、およびZnの含有量より電解液の含有量を求める。正極中の水分、K、およびZnは、それぞれ、電解液中の水、KOH、およびZnOに由来する。具体的には、まず、上記(i)と同様にして、表面に付着する電解液が除去された正極を得る。その後、正極を10g採取し、140℃で15分間保持し、水分を除去し、10gからの減少分を水分量M(g)として求める。(M/10)×100を正極中の水分の含有量(質量%)として求める。別途、上記(ii)と同様にして正極中のK含有量(質量%)およびZn含有量(質量%)を求め、得られた値をそれぞれKOH含有量(質量%)およびZnO含有量(質量%)に換算する。得られた水含有量、KOH含有量、およびZnO含有量を合計し、これを正極中の電解液の含有量(質量%)として求める。
 以下、本実施形態に係るアルカリ乾電池を図面に基づいて詳細に説明する。なお、本開示は、以下の実施形態に限定されるものではない。また、本開示の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図2は、本開示の一実施形態におけるアルカリ乾電池の横半分を断面とする正面図である。
 図2に示すように、アルカリ乾電池は、中空円筒形の正極2と、正極2の中空部内に配されたゲル状の負極3と、これらの間に配されたセパレータ4と、電解液10とを含む発電要素を備える。電解液10はアルカリ電解液である。発電要素は、正極端子を兼ねる有底円筒形の金属製ケース1内に収容されている。ケース1には、例えば、ニッケルめっき鋼板が用いられる。正極2は、ケース1の内壁に接して配されている。正極2とケース1との間の密着性を高めるため、ケース1の内面は炭素被膜で被覆されていることが好ましい。
 有底円筒形のセパレータ4は、円筒型のセパレータ4aと、底紙4bとで構成されている。セパレータ4aは、正極2の中空部の内面に沿って配され、正極2と負極3とを隔離している。よって、正極と負極との間に配されたセパレータとは、円筒型のセパレータ4aを意味する。底紙4bは、正極2の中空部の底部に配され、負極3とケース1とを隔離している。
 ケース1の開口部は、封口ユニット9により封口されている。封口ユニット9は、樹脂製のガスケット5と、負極端子を兼ねる負極端子板7と、負極集電体6とを備える。ガスケット5は、環状の薄肉部5aを有する。電池内圧が所定値を超えると、薄肉部5aが破断して電池外部へガスが放出される。負極3内に負極集電体6が挿入されている。負極集電体6の材質は、例えば、真鍮などの銅および亜鉛を含む合金製である。負極集電体6は、必要により、スズメッキなどのメッキ処理がされていてもよい。負極集電体6は、頭部と胴部とを有する釘状の形態を有しており、胴部はガスケット5の中央筒部に設けられた貫通孔に挿入され、負極集電体6の頭部は負極端子板7の中央部の平坦部に溶接されている。ケース1の開口端部は、ガスケット5の外周端部を介して負極端子板7の周縁部の鍔部にかしめつけられている。ケース1の外表面には外装ラベル8が被覆されている。
 正極2は、正極活物質であるEMDと、電解液とを含む。EMDは粉末の形態で用いられる。正極の充填性および正極内での電解液の拡散性等を確保し易い観点から、EMDの平均粒径は、例えば、30μm以上、60μm以下である。成形性や正極の膨張抑制の観点から、EMDのBET比表面積は、例えば、20m/g以上、50m/g以下の範囲であってもよい。
 なお、本明細書中、平均粒径とは、体積基準の粒度分布におけるメジアン径(D50)である。平均粒径は、例えば、レーザ回折および/または散乱式粒度分布測定装置を用いて求められる。また、BET比表面積とは、多分子層吸着の理論式であるBET式を用いて、表面積を測定および計算したものである。BET比表面積は、例えば、窒素吸着法による比表面積測定装置を用いることにより測定できる。
 正極2は、EMDおよび電解液に加え、導電剤を含み得る。導電剤としては、例えば、アセチレンブラック等のカーボンブラックの他、黒鉛等の導電性炭素材料が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛等が使用できる。導電剤は、繊維状等であってもよいが、粉末状であることが好ましい。導電剤の平均粒径は、例えば、5nm以上、50μm以下の範囲から選択できる。導電剤の平均粒径は、導電剤が、カーボンブラックの場合、5nm以上、40nm以下が好ましく、黒鉛の場合、3μm以上、50μm以下が好ましい。
 正極合剤中の黒鉛の含有量は、EMDおよび黒鉛の合計100質量部あたり、3質量部以上、8質量部以下であってもよく、好ましくは4質量部以上、7質量部以下である。黒鉛の含有量が7質量%以下である場合、EMDの充填量が十分に確保され易く、良好な中負荷放電性能が得られ易い。
 正極2は、例えば、正極活物質、導電剤、およびアルカリ電解液を含む正極合剤をペレット状に加圧成形することにより得られる。正極合剤を、一旦、フレーク状や顆粒状にし、必要により分級した後、ペレット状に加圧成形してもよい。ペレットは、ケース内に収容された後、所定の器具を用いて、ケース内壁に密着するように二次加圧してもよい。正極ペレットにおけるEMDの平均密度は、例えば、2.78g/cm以上、3.08g/cm以下である。正極ペレットの密度は、3.2g/cm以上、3.6g/cm以下であってもよい。正極(正極合剤)は、必要に応じて、さらに他の成分(例えば、ポリテトラフルオロエチレン)を含有してもよい。
 負極3は、ゲル状の形態を有する。すなわち、負極3は、負極活物質および電解液に加えて、ゲル化剤を含む。負極活物質は、亜鉛または亜鉛合金を含む。亜鉛合金は、耐食性の観点から、インジウム、ビスマスおよびアルミニウムからなる群より選択される少なくとも一種を含むことが好ましい。負極作製用の電解液には、セパレータ含浸用の電解液と同じものを用いることができる。
 負極活物質は、通常、粉末状の形態で使用される。負極の充填性および負極内でのアルカリ電解液の拡散性の観点から、負極活物質粉末の平均粒径は、例えば80μm以上、200μm以下、好ましくは100μm以上、150μm以下である。
 ゲル化剤としては、アルカリ乾電池の分野で使用される公知のゲル化剤が特に制限なく使用され、例えば、吸水性ポリマー等が使用できる。このようなゲル化剤としては、例えば、ポリアクリル酸、ポリアクリル酸ナトリウムが挙げられる。負極中のNaを含むゲル化剤(例えばポリアクリル酸ナトリウム)の含有量を変えることで、正極中のNa含有量を調節してもよい。ゲル化剤の添加量は、負極活物質100質量部あたり、0.5質量部以上、2質量部以下であってもよい。上記範囲のゲル化剤の添加量において、ポリアクリル酸およびポリアクリル酸ナトリウムの配合比を変えることで、正極中のNa含有量を調節してもよい。
 セパレータ4には、例えば、不織布や微多孔膜が用いられる。セパレータの材質としては、例えば、セルロース、ポリビニルアルコールなどが例示できる。不織布としては、例えば、これらの材質の繊維を主体とするものが使用される。微多孔膜としては、セロファンなどが利用される。セパレータの厚みは、150μm以上、300μm以下であってもよく、180μm以上、300μm以下であってもよい。セパレータは、厚みが上記範囲となるように複数のシート(不織布など)を重ねて構成してもよい。
 図2では、有底円筒形のセパレータ4は、円筒型のセパレータ4aと底紙4bとで構成されているが、これに限定されない。セパレータとして有底円筒形の一体物を用いてもよく、アルカリ乾電池の分野で使用される公知の形状のセパレータが使用できる。
 電池内(正極、負極、およびセパレータ中)に含まれる電解液は、水酸化カリウム水溶液(アルカリ電解液)である。電解液中の水酸化カリウムの含有量は、例えば、30質量%以上、50質量%以下である。電解液は、さらに酸化亜鉛を含む。電解液中の酸化亜鉛の含有量は、例えば、1質量%以上、5質量%以下である。なお、電解液中の水酸化カリウムおよび酸化亜鉛の含有量(質量%)は、それぞれ、電解液の全体の質量に対する電解液中に含まれる水酸化カリウムおよび酸化亜鉛の質量の比率(百分率)を意味する。
 [実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。図3から図6は、本開示の一実施形態におけるアルカリ乾電池の評価結果を示す。
 《実施例1~21、比較例1~8》
 下記の手順により、図2に示す単3形の円筒形アルカリ乾電池(LR6)を作製した。
 [正極の作製]
 正極活物質粉末(平均粒径35μm)および黒鉛粉末(平均粒径8μm)の合計100質量部に、添加剤としてポリテトラフルオロエチレンを0.2質量部加え、混合物を得た。混合物100.2質量部に電解液2質量部を加え、充分に攪拌した後、フレーク状に圧縮成形して、正極合剤を得た。電解液には、ZnOを含むKOH水溶液を用いた。電解液中のKOH含有量およびZnO含有量は、それぞれ、40質量%および2質量%であった。
 正極活物質には、電位およびNa含有量が図3から図5に示す値であるEMDを用いた。EMDの電位およびEMD中のNa含有量は、既述の方法により求められた。なお、図3から図5中のEMDの電位は、酸化水銀(Hg/HgO)の参照電極103に対する電位を示す。正極(正極合剤)中の黒鉛の含有量は、図3から図5に示す値とした。なお、図3から図5中の正極中の黒鉛の含有量は、EMDおよび黒鉛の合計100質量部あたりの量(質量部)を示す。
 フレーク状の正極合剤を粉砕して顆粒状とし、これを10~100メッシュの篩によって分級して得られた顆粒の所定量を、内径8.9mm、外径13.65mmの所定の中空円筒形に加圧成形して、正極ペレットを2個作製した。
 [負極の作製]
 負極活物質100質量部と、電解液50質量部と、ゲル化剤とを混合し、ゲル状の負極3を得た。負極活物質には、0.02質量%のインジウムと、0.01質量%のビスマスと、0.005質量%のアルミニウムとを含む亜鉛合金粉末(平均粒径130μm)を用いた。
 電解液には、ZnOを含むKOH水溶液を用いた。電解液中のKOH含有量は33質量%とした。電解液中のZnO含有量は図3から図5に示す値とした。
 ゲル化剤には、架橋分岐型ポリアクリル酸および高架橋鎖状型ポリアクリル酸ナトリウム(ポリアクリル酸Na)の混合物を用いた。負極中のゲル化剤の含有量は、図3から図5に示す値とした。なお、図3から図5中の負極中のゲル化剤の含有量は、負極活物質100質量部あたりの量(質量部)であり、括弧内は、(ポリアクリル酸Na:ポリアクリル酸)の質量比を示す。
 [アルカリ乾電池の組立て]
 ニッケルめっき鋼板製の有底円筒形のケース(外径14.0mm、高さ49.9mm)の内面が炭素被膜で覆われたケース1を準備した。ケース1内に正極ペレットを縦に2個挿入した後、加圧して、ケース1の内壁に密着した状態の正極2を形成した。ケース内面に密着させた正極(正極ペレット)の密度は、図3から図5に示す値であった。
 有底円筒形のセパレータ4を正極2の内側に配置し、ケース1内に電解液を所定量注入し、セパレータ4に吸収させた。セパレータ4は、円筒型のセパレータ4aおよび底紙4bを用いて構成した。円筒型のセパレータ4aは、厚みが200μmであり、厚み100μmの不織布シートを2重に巻いて構成した。セパレータ含浸用(ケース内注液用)の電解液には、負極作製用の電解液と同じものを用いた。この状態で所定時間放置し、電解液をセパレータ4から正極2へ浸透させた。その後、6.6gのゲル状負極3を、セパレータ4の内側に充填した。
 ガスケット5、負極端子板7、および負極集電体6からなる封口ユニット9をケース1の開口部に設置した。このとき、負極集電体6の胴部を負極3内に挿入した。ケース1の開口端部を、ガスケット5を介して、負極端子板7の周縁部にかしめつけ、ケース1の開口部を封口した。外装ラベル8でケース1の外表面を被覆した。このようにして、アルカリ乾電池を作製した。図3から図5中、A1~A21は実施例1~21の電池であり、B1~B8は比較例1~8の電池である。
 既述の方法により求められた、正極中のNa含有量、Zn含有量、および電解液の含有量は、図3から図5に示す値であった。
 各実施例および比較例の電池について、以下の評価1を行った。
 [評価1:中負荷放電時の異常放電発生率]
 電池1個と3.9Ωの抵抗とを直列に接続し、20±2℃の環境下、3.9Ωの負荷での1時間放電を1日あたり1回行うステップを繰り返した。このとき、電池の閉路電圧が0.9Vに達するまでの放電時間(1時間の放電の累積時間)を調べた。放電時間が8時間を下回る場合、異常放電であると判定した。なお、この異常放電は、放電途中で正極上でZnOの針状結晶が析出し、それにより内部短絡が起こることで発生する。
 電池5個に対して、それぞれ、放電時間を測定し、異常放電を生じた電池の個数を求め、5個のうち異常放電を生じた電池の個数の割合を、異常放電発生率として求めた。評価結果を図3から図5に示す。
 図3の電池A1~A4では、正極中の黒鉛の含有量、および/または、正極(正極ペレット)の密度を適宜調整することで、正極中のNa含有量およびZn含有量が、それぞれ3000質量ppm以下および4600質量ppm以下に低減された。電池A1~A4では、中負荷放電時の異常放電発生率は0%であった。
 図4の電池A5~A12では、負極中のポリアクリル酸Naの含有量、および/または、セパレータ含浸用および負極作製用の電解液中のZnO含有量を適宜調整した。これにより、正極中のNa含有量およびZn含有量が、それぞれ3000質量ppm以下および4600質量ppm以下に低減された。電池A5~A12では、中負荷放電時の異常放電発生率は0%であった。
 図5の電池A13~A21では、EMD中のNa含有量を適宜調整した。さらに、必要に応じて、負極中のポリアクリル酸Naの含有量、および/または、セパレータ含浸用および負極作製用の電解液中のZnO含有量を適宜調整した。これにより、正極中のNa含有量およびZn含有量が、それぞれ3000質量ppm以下および4600質量ppm以下に低減された。電池A13~A20では、中負荷放電時の異常放電発生率は0%であった。電池A21では、中負荷放電時の異常放電発生率は20%に低減された。
 一方、電池B1~B8では、正極中のNa含有量および/またはZn含有量が多くなり、中負荷放電時の異常放電発生率が40%以上に増大した。
 なお、電池A13~A15、A17~A21、B7~B8では、EMDを洗浄処理してEMD中のNa含有量を調整した。具体的には、EMDの300gを25℃の洗浄液(NaOH水溶液、純水、または希硫酸)の1.8Lで所定時間洗浄し、ろ過により洗浄液を除去し、100℃の熱風を20分間送り、乾燥させた。電池B8では、洗浄液にNaOH水溶液(濃度16.2mmol/L)を用い、洗浄時間は1時間とした。電池A13~A14では、洗浄液に純水を用い、洗浄時間は20分間とした。電池A15では、洗浄液にNaOH水溶液(濃度12.2mmol/L)を用い、洗浄時間は1時間とした。電池A17~A18、B7では、洗浄液に希硫酸(濃度50mmol/L)を用い、洗浄時間は1時間とした。電池A19~A21では、洗浄液に純水を用い、洗浄時間は10分間とした。
 《比較例9》
 電位が280mVであるEMDを用いた以外、比較例1の電池B1と同様にして、比較例9の電池C1を作製した。
 《比較例10》
 電位が280mVであるEMDを用いた以外、実施例1の電池A1と同様にして、比較例9の電池C2を作製した。
 電池C1~C2について、上記の評価1とともに以下の評価2を行った。
 電池A1、B1、B3、B5についても、以下の評価2を行った。
 [評価2:高負荷放電性能]
 20±2℃の環境下、1.5Wで2秒間の放電と、0.65Wで28秒間の放電とを交互に10回繰り返すパルス放電を行った後、55分間休止するステップを繰り返し行った。このとき、電池の閉路電圧が1.05Vに達するまでの放電時間(パルス放電の累積時間)を測定した。
 電池C1~C2の評価結果を電池A1、B1、B3、B5の評価結果とともに図4に示す。なお、図4中の高負荷放電時の放電時間は、比較例9の電池C1の放電時間を100とするときの指数として表した。
 電池C1、C2では、EMDの電位が300mV未満であり、中負荷放電時の異常放電は生じなかったが、高負荷放電性能が低下した。
 電池B1、B3、B5では、EMDの電位が300mV以上であり、高負荷放電性能が向上したが、正極中のNa含有量およびZn含有量の少なくとも一方が多いため、中負荷放電時の異常放電発生率が40%以上と増大した。
 電池A1では、EMDの電位が300mV以上であり、高負荷放電性能が向上した。また、電池A1では、EMDの電位が300mV以上であるが、正極中のNa含有量およびZn含有量が、それぞれ3000質量ppm以下および4600質量ppm以下であるため、中負荷放電時の異常放電は生じなかった。
 本開示に係るアルカリ乾電池は、例えば、ポータブルオーディオ機器、電子ゲーム、ライト等の電源として好適に用いられる。
1  ケース
2  正極
3  負極
4  有底円筒形のセパレータ
4a  円筒型のセパレータ
4b  底紙
5  ガスケット
5a  薄肉部
6  負極集電体
7  負極端子板
8  外装ラベル
9  封口ユニット
10  電解液
104  参照電極

Claims (3)

  1.  正極と、負極と、前記正極と前記負極との間に配されるセパレータと、を備え、
     前記正極および前記負極は、それぞれ電解液を含み、
     前記正極は、電解二酸化マンガンと、ナトリウムと、亜鉛と、を含み、
     前記電解二酸化マンガンの電位は、酸化水銀の参照電極に対して、300mV以上、340mV以下であり、
     前記正極中の前記ナトリウムの含有量は、800質量ppm以上、3000質量ppm以下であり、
     前記正極中の前記亜鉛の含有量は、2400質量ppm以上、4600質量ppm以下である、アルカリ乾電池。
  2.  前記正極中の前記ナトリウムの含有量は、2300質量ppm以上、2900質量ppm以下である、請求項1に記載のアルカリ乾電池。
  3.  前記正極は、前記電解液を、10質量%以上、13質量%以下含む、請求項1または2に記載のアルカリ乾電池。
PCT/JP2022/027254 2021-10-06 2022-07-11 アルカリ乾電池 WO2023058286A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280065034.1A CN118056296A (zh) 2021-10-06 2022-07-11 碱性干电池
JP2023552698A JPWO2023058286A1 (ja) 2021-10-06 2022-07-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-164522 2021-10-06
JP2021164522 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058286A1 true WO2023058286A1 (ja) 2023-04-13

Family

ID=85804118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027254 WO2023058286A1 (ja) 2021-10-06 2022-07-11 アルカリ乾電池

Country Status (3)

Country Link
JP (1) JPWO2023058286A1 (ja)
CN (1) CN118056296A (ja)
WO (1) WO2023058286A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122939A1 (ja) * 2006-03-24 2007-11-01 Matsushita Electric Industrial Co., Ltd. アルカリ電池
JP2008171767A (ja) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2011181373A (ja) * 2010-03-02 2011-09-15 Panasonic Corp アルカリ電池
WO2012046363A1 (ja) * 2010-10-07 2012-04-12 パナソニック株式会社 アルカリ一次電池
WO2018180208A1 (ja) * 2017-03-27 2018-10-04 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
WO2020045279A1 (ja) * 2018-08-29 2020-03-05 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
WO2020110951A1 (ja) * 2018-11-29 2020-06-04 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122939A1 (ja) * 2006-03-24 2007-11-01 Matsushita Electric Industrial Co., Ltd. アルカリ電池
JP2008171767A (ja) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2011181373A (ja) * 2010-03-02 2011-09-15 Panasonic Corp アルカリ電池
WO2012046363A1 (ja) * 2010-10-07 2012-04-12 パナソニック株式会社 アルカリ一次電池
WO2018180208A1 (ja) * 2017-03-27 2018-10-04 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
WO2020045279A1 (ja) * 2018-08-29 2020-03-05 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
WO2020110951A1 (ja) * 2018-11-29 2020-06-04 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途

Also Published As

Publication number Publication date
JPWO2023058286A1 (ja) 2023-04-13
CN118056296A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US6759166B2 (en) Alkaline cell with improved cathode
US6753109B2 (en) Alkaline cell with improved cathode
JP4168402B2 (ja) リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
WO2007083277A1 (en) Alkaline cell with improved anode
CN101521280A (zh) 碱性电池用"碳素锌膏"
JPWO2018163485A1 (ja) アルカリ乾電池
US9337485B2 (en) Alkaline battery
WO2023058286A1 (ja) アルカリ乾電池
US11637278B2 (en) Alkaline dry batteries
JP3908890B2 (ja) 非水系二次電池の負極用黒鉛粒子
EP4068412A1 (en) Alkaline battery positive electrode, alkaline battery, and production method therefor
US11876253B2 (en) Alkali dry battery comprising electrolyte including sulfonyl group-containing anion
WO2020158124A1 (ja) アルカリ乾電池
WO2023157469A1 (ja) アルカリ乾電池
JP4253172B2 (ja) 密閉型ニッケル亜鉛一次電池
CN102064330B (zh) 碱性锌二氧化锰电池及其制备方法
WO2023074560A1 (ja) アルカリ乾電池
WO2019164564A1 (en) Sulfate and sulfonate based surfactants for alkaline battery anode
WO2007122939A1 (ja) アルカリ電池
JP2004164863A (ja) 密閉型ニッケル亜鉛一次電池
JP2004185956A (ja) ニッケル水素蓄電池
EP2738841A1 (en) Negative electrode for alkali storage battery, external container for alkali storage battery and alkali storage battery
CA2455548A1 (en) Alkaline manganese dioxide cell with improved open circuit voltage
JP2001043851A (ja) アルカリ二次電池
JP2005056740A (ja) 円筒形アルカリ乾電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552698

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE