WO2023053782A1 - Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminated board, and printed wiring board - Google Patents

Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminated board, and printed wiring board Download PDF

Info

Publication number
WO2023053782A1
WO2023053782A1 PCT/JP2022/031755 JP2022031755W WO2023053782A1 WO 2023053782 A1 WO2023053782 A1 WO 2023053782A1 JP 2022031755 W JP2022031755 W JP 2022031755W WO 2023053782 A1 WO2023053782 A1 WO 2023053782A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
halogen
curable resin
retardant
compound
Prior art date
Application number
PCT/JP2022/031755
Other languages
French (fr)
Japanese (ja)
Inventor
次俊 和佐野
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202280063464.XA priority Critical patent/CN117999319A/en
Publication of WO2023053782A1 publication Critical patent/WO2023053782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a halogen-free flame-retardant curable resin composition, a prepreg, a metal-clad laminate, and a printed wiring board comprising a curable resin composition and a base material, which are excellent in dielectric properties, adhesiveness, and flame retardancy.
  • resin materials Due to their excellent mechanical properties and moldability, resin materials are used in a wide range of applications, from building materials to electrical and electronic equipment. However, since most resin materials are flammable, they are required to be made flame-retardant for safety against heat generation, ignition, and fire in applications such as electrical/electronic products, OA equipment, and communication equipment.
  • halogen-based flame retardants mainly brominated
  • Inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide have a flame retardant effect by absorbing heat, but they must be added in large amounts to achieve sufficient flame retardancy. This causes deterioration of various characteristics.
  • Patent Document 1 discloses a resin composition containing a rubber-modified styrenic resin, an alkoxyimino (NOR) type hindered amine compound, and a phosphorus-based flame retardant, and successfully imparts flame retardancy with the addition of a small amount. are doing.
  • NOR alkoxyimino
  • Patent Document 2 discloses a resin composition containing a soluble polyfunctional vinyl aromatic copolymer, a modified polyphenylene ether, and a specific phosphorus-containing flame retardant.
  • Patent Document 3 discloses a curable resin composition containing a radically polymerizable resin, a phosphorus-containing vinylbenzyl compound, and an initiator. However, it still does not fully satisfy the required properties.
  • the problem to be solved by the present invention is a halogen-free flame-retardant curable resin composition, a prepreg comprising a curable resin composition and a substrate, a metal-clad laminate, and a To provide a printed wiring board.
  • the present inventors have made intensive studies on a resin composition for laminates that is excellent in dielectric properties, adhesiveness, and halogen-free flame retardancy.
  • the inventors have found that a resin composition containing a volatile vinyl resin is excellent in dielectric properties, adhesiveness, and halogen-free flame retardancy, and completed the present invention.
  • the present invention includes the following aspects.
  • a component is a polyphenylene ether compound modified with a compound containing a carbon-carbon unsaturated double bond at the molecular end or / and a soluble having a molecular weight of 300 to 100000 containing a structural unit represented by the following structural formula (1)
  • a halogen-free flame-retardant curable resin composition comprising a polymer.
  • R1 to R3 each represent a hydrogen atom or a C1 to C5 alkyl group, and R4 represents a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • Component B is a halogen-free flame-retardant curable resin composition characterized in that it is a reactive phosphorus compound having a radically polymerizable carbon-carbon unsaturated double bond copolymerizable with component A in the molecule. .
  • a prepreg characterized by using the halogen-free flame-retardant curable resin composition A metal-clad laminate obtained by curing the halogen-free flame-retardant curable resin composition. A laminate using the halogen-free flame-retardant curable resin composition.
  • the halogen-free flame-retardant curable resin composition of the present invention exhibits a low dielectric constant/dielectric loss tangent and excellent halogen-free flame retardancy, further improves adhesion to copper foil, and is useful for increasing the amount of information processing in electronic equipment. It is very useful as a curable resin composition that reduces transmission loss at higher frequencies.
  • the halogen-free flame-retardant resin composition of the present invention comprises (A) a radically polymerizable compound having a carbon-carbon unsaturated double bond in the molecule, (B) a phosphorus-based flame retardant, and (C) a NOR-type hindered amine compound. and (D) a radical polymerization initiator.
  • Component (A) is a radically polymerizable compound having a carbon-carbon unsaturated double bond in its molecule.
  • the vinyl equivalent is preferably 150-2000 g/eq, more preferably 200-1000 g/eq.
  • Component (A) is not particularly limited as long as it is a compound having a functional group that polymerizes by radicals.
  • Vinyl compounds having two or more vinyl groups (polyfunctional vinyl compounds), vinyl ester resins such as reaction products of unsaturated fatty acids such as acrylic acid and methacrylic acid with epoxy resins, unsaturated polyester resins, maleimide resins, triallyl isocyanate Examples include allyl compounds such as nurate.
  • these may be used independently and may be used in combination of 2 or more type.
  • R4 is phenylene.
  • R1 to R3 represent a hydrogen atom or a C1 to C5 alkyl group.
  • Examples of the compound having the structure of formula (1) include a polyfunctional copolymer obtained by copolymerizing a divinyl aromatic compound and a monovinyl aromatic compound.
  • This polyfunctional copolymer contains a repeating unit (a) derived from a divinyl aromatic compound and a repeating unit (b) derived from a monovinyl aromatic compound, and further comprises one repeating unit derived from a divinyl aromatic compound. It contains the repeating unit (a1) represented by the general formula (1) as a part.
  • the repeating unit (a) When the total of the repeating unit (a) and the repeating unit (b) is 100 mol%, the repeating unit (a) is 2 mol% or more and less than 95 mol%, and the repeating unit (b) is 5 mol% or more, Contains less than 98 mol %. When the total of repeating units (a) and (b) is 100 mol %, the repeating unit (a1) is contained in an amount of 2 to 80 mol %.
  • polyfunctional copolymer examples include, but are not limited to, a repeating unit (a) derived from a divinyl aromatic compound represented by the following formula (3) and a repeating unit (b) derived from a monovinyl aromatic compound ) and copolymers containing structural units derived from. These structural units may be arranged regularly or randomly.
  • R5 is an aromatic hydrocarbon group having 6 to 30 carbon atoms derived from a monovinyl aromatic compound and may be different
  • R4 is a divalent divalent group having 6 to 30 carbon atoms derived from a divinyl aromatic compound.
  • h to k are each independently an integer of 0 to 200, provided that the total is 2 to 20,000.
  • the vinyl groups present in the above formulas (1) to (3) which are structural units derived from divinyl aromatic compounds, act as cross-linking components and contribute to developing the heat resistance of the composition.
  • the structural unit (b) derived from the monovinyl aromatic compound does not have a vinyl group after copolymerization with the divinyl aromatic compound. That is, in a radically polymerizable resin that is a copolymer of a divinyl aromatic compound and a monovinyl compound, the structural unit (b) derived from the monovinyl aromatic compound does not act as a cross-linking component, but does not act as a cross-linking component. contribute.
  • Preferred monovinylaromatic compounds include styrene or ethylvinylbenzene, although other monovinylaromatic compounds can also be used.
  • Ethylvinylbenzene has o-, m-, p-, or isomer mixtures thereof.
  • only one of styrene and ethylvinylbenzene may be used, by using both, preferably 1 mol% or more of the other, more preferably 2 mol% or more, it is possible to improve resistance to heat oxidation deterioration and molding. can enhance sexuality.
  • one of styrene and ethylvinylbenzene may be used, and the other monovinyl aromatic compound may be used in an amount of 1 mol % or more, preferably 2 mol % or more.
  • Examples of other monovinyl aromatic compounds mentioned above include vinyl aromatic compounds such as vinyl naphthalene and vinyl biphenyl; vinyl aromatic compounds; and the like. Ethyl vinyl biphenyl (respective positional isomers or (including mixtures thereof), or ethyl vinyl naphthalene (including each positional isomer or mixtures thereof).
  • the number average molecular weight of this polyfunctional copolymer is preferably 300 to 100,000, more preferably 1000 to 50,000, more preferably 2000 to 10,000.
  • Mn is less than 300, the amount of monofunctional copolymer components contained in the polyfunctional copolymer increases, so the heat resistance of the cured product tends to decrease, and Mn exceeds 100,000. As a result, gel tends to be generated and the viscosity increases, so that the moldability tends to decrease.
  • the value of the molecular weight distribution (Mw/Mn) represented by the ratio of the weight average molecular weight (standard polystyrene equivalent weight average molecular weight measured using GPC) to Mn is 100.0 or less, preferably 50. 0.0 or less, more preferably 1.5 to 30.0, and most preferably 2.0 to 20.0. If the Mw/Mn exceeds 100.0, the processability tends to deteriorate and gels tend to occur.
  • the divinyl aromatic compound plays a role of forming a branched structure and making it polyfunctional, and also plays a role of a cross-linking component for developing heat resistance when the resulting polyfunctional copolymer is thermally cured.
  • the divinyl aromatic compound are not limited as long as they are aromatic having two vinyl groups, but divinylbenzene (including each positional isomer or a mixture thereof), divinylnaphthalene (each positional isomer or a mixture thereof) ), divinylbiphenyl (including positional isomers or mixtures thereof) are preferably used. Moreover, these can be used individually or in combination of 2 or more types. Divinylbenzene (m-isomer, p-isomer, or a mixture of positional isomers thereof) is more preferable from the viewpoint of moldability.
  • monovinyl aromatic compounds examples include styrene and monovinyl aromatic compounds other than styrene.
  • styrene is essential, and it is desirable to use a monovinyl aromatic compound other than styrene together.
  • Examples of monovinyl aromatic compounds other than styrene are not limited as long as they are aromatics other than styrene having one vinyl group, vinyl aromatic compounds such as vinylnaphthalene and vinylbiphenyl; o-methylstyrene, m-methyl nuclear alkyl-substituted vinyl aromatic compounds such as styrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylvinylbenzene, m-ethylvinylbenzene and p-ethylvinylbenzene; Ethylvinylbenzene (including positional isomers or mixtures thereof) and ethylvinylbiphenyl are preferred because they prevent gelation, are highly effective in improving solvent solubility and processability, are low in cost, and are readily available.
  • Ethylvinylbenzene (m-isomer, p-isomer, or a mixture of positional isomers thereof) is more preferable from the viewpoint of dielectric properties and cost.
  • the divinyl aromatic compound and the monovinyl aromatic compound In addition to the divinyl aromatic compound and the monovinyl aromatic compound, other monomer components such as a trivinyl aromatic compound, a trivinyl aliphatic compound, a divinyl aliphatic compound, and a monovinyl aliphatic compound are added to the extent that the effects of the present invention are not impaired. One or two or more of them can be used, and the structural unit (c) derived from these can be introduced into the soluble polyfunctional vinyl aromatic copolymer that is the radically polymerizable resin (A).
  • Examples of the above other monomer components include 1,3,5-trivinylbenzene, 1,3,5-trivinylnaphthalene, 1,2,4-trivinylcyclohexane, ethylene glycol diacrylate, butadiene, 1 ,4-butanediol divinyl ether, cyclohexanedimethanol divinyl ether, diethylene glycol divinyl ether, triallyl isocyanurate and the like. These can be used alone or in combination of two or more.
  • the other monomer components preferably have a mole fraction of less than 30 mol% with respect to the total sum of all monomer components. That is, the repeating unit (c) derived from other monomer components has a molar fraction with respect to the total sum of structural units (a), (b), and (c) derived from all monomer components constituting the copolymer. It is preferably less than 30 mol %.
  • the polyfunctional copolymer used as component (A) is obtained by polymerizing monomers containing a divinyl aromatic compound and a monovinyl aromatic compound in the presence of a Lewis acid catalyst.
  • the Lewis acid catalyst used in the polymerization is not particularly limited as long as it is a compound composed of a metal ion (acid) and a ligand (base) and capable of accepting an electron pair.
  • metal fluorides or complexes thereof are preferable from the viewpoint of thermal decomposition resistance of the resulting copolymer, particularly B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, Ti. , W, Zn, Fe and V, and the like, or complexes thereof.
  • An ether complex of boron trifluoride is most preferably used from the viewpoint of control of the molecular weight and molecular weight distribution of the obtained copolymer and polymerization activity.
  • the ether of the ether complex includes diethyl ether, dimethyl ether and the like.
  • a known chain transfer agent (CTR) may be added during polymerization for the purpose of controlling the molecular weight. At this time, the chain transfer agent caps the terminal of the growing polymer chain to stop the growth of the copolymer and suppress the increase of the molecular weight, thereby making it possible to control the molecular weight.
  • the chain transfer agent chemically modifies the terminal of the copolymer, it also becomes a compound that plays a role of introducing a terminal group that enables imparting of functions such as toughness, low dielectric property and adhesion.
  • examples of such compounds having a function as a chain transfer agent include alcohol compounds, mercaptan compounds, carboxylic acid compounds, carboxylic acid anhydride compounds, ether compounds, thioether compounds, ester compounds, thioester compounds, and the like.
  • monomers with low homopolymerizability can also be used as molecular weight modifiers.
  • a cycloolefin compound can be mentioned as such a monomer with low homopolymerizability.
  • cycloolefin compounds include monocyclic cyclic olefins such as cyclobutene, cyclopentene, and cyclooctene, compounds having a norbornene ring structure such as norbornene and dicyclopentadiene (hereinafter referred to as norbornene compounds), and indene. , Acenaphthylene and other cycloolefin compounds in which aromatic rings are condensed, but not limited to these compounds. These chain transfer agents and molecular weight modifiers are calculated as monomer components, and structural units produced therefrom are calculated as structural units of the copolymer. These are then calculated as the above other monomer components.
  • Modified polyphenylene ethers whose terminals are modified with (meth)acrylic groups or styryl groups, which can be used as component (A), are not particularly limited, but examples include polyphenylene ethers represented by the following formula (4). be done.
  • R6 to R9 are hydrogen atoms or monovalent substituents.
  • the substituent may be an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkynyl group having 2 to 8 carbon atoms, or an aryl group having 6 to 10 carbon atoms. be.
  • a hydrogen atom, a methyl group, an ethyl group, or a phenyl group which may have a substituent is preferred.
  • l and m are each independently an integer from 0 to 200, provided that the sum is 2 to 200;
  • R10 to R13 are the same as R in formula (4) above.
  • Z2 is -O-, -N(R14)-, -CO-, -CS-, -SO-, -SO2- or -C(R15R16)-.
  • R14 to R16 are hydrogen atoms or alkyl groups having 1 to 8 carbon atoms.
  • Y1 and Y2 each independently represent a carbonyl group, a substituent containing an allyl group, or a single bond.
  • Preferred is a substituent having a single bond or an allyl group represented by the following structural formula (6).
  • R17 is -O-, -SO2-, -C(CH3)2-, or a single bond.
  • Each of R18 and R19 is independently hydrogen or an allyl group, and one of them is always an allyl group.
  • R20 is a group represented by any one of formula (7).
  • n is an integer of 1-19, preferably an integer of 1-3.
  • A1 and A2 in formula (4) each represent a substituent represented by any structure of formula (8).
  • the phosphorus-based flame retardant as the component (B) will be described.
  • the content of the phosphorus-based flame retardant is 1.0 to 5.0% by mass, preferably 1.5 to 4.0% by mass, based on the total amount of components (A) and (B). Yes, more preferably 1.8 to 3.5% by mass. If it is less than 1.0% by mass, the effect of phosphorus is weak, and even if there is a synergistic effect with the component (C), sufficient flame retardancy cannot be obtained. It is not preferable because it worsens
  • the phosphorus-based flame retardant of the component can be obtained by a conventionally known method or a commercially available product.
  • Phosphate ester compounds, phosphazene compounds, phosphonate ester compounds, phosphinate ester compounds, phosphinate ester compounds and phosphine oxide compounds are preferred, and these may be used alone or in combination of two or more. .
  • These phosphorus-based flame retardants may or may not have reactive groups in their structures. Reactive groups refer to substituents that react alone or in combination with other functional groups, such as glycidyl ether groups, hydroxyl groups, amino groups, methacryloyl groups, and vinylbenzyl ether groups.
  • a reactive phosphorus compound having a radically polymerizable carbon-carbon unsaturated double bond (vinyl bond) copolymerizable with component A in the molecule is preferred.
  • the vinyl equivalent is preferably 150-2000 g/eq, more preferably 200-1000 g/eq.
  • a flame retardant having no reactive group is referred to as an additive flame retardant, and a flame retardant having a reactive group is referred to as a reactive flame retardant.
  • Phosphate ester compounds include, for example, trimethyl phosphate (TMP), triethyl phosphate (TEP), triphenyl phosphate (TPP), tricresyl phosphate (TCP), trixylenyl phosphate (TXP), cresyl diphenyl phosphate (CDP ), monomeric phosphoric ester compounds such as tris(2-ethylhexyl) phosphate, resorcinol bis-diphenyl phosphate, bisphenol A bis-diphenyl phosphate (BADP), biphenol bis-diphenyl phosphate, bisphenol A bis-dicresyl phosphate, resorcinol Phosphorus oxychloride, dihydric phenolic compound and phenol (or alkylphenol) such as bis-dixylenyl phosphate, biphenol bis-dixylenyl phosphate, resorcinol bis-xylenyl phosphate
  • An aromatic condensed phosphoric acid ester compound which is a reaction product with, and the like can be mentioned as the additive type flame retardant.
  • TCP tricresyl phosphate
  • TXP trixylenyl phosphate
  • bisphenol A bis-dicresyl phosphate bisphenol A bis-dicresyl phosphate
  • resorcinol bis-dixylenyl phosphate biphenol bis- Dixylenyl phosphate
  • resorcinol bis-xylenyl phosphate bisphenol A bis-dixylenyl phosphate
  • resorcinol bis-dixylenyl phosphate biphenol bis-dixylenyl phosphate
  • resorcinol bis-xylenyl phosphate bisphenol A Bis-dixylenyl phosphate is more preferred.
  • phosphate ester compounds include reactive flame retardants represented by the following general formula (9).
  • R21, R22, R23, R24 and R25 are each independently a linear or branched alkyl group having 1 to 5 carbon atoms.
  • p1, p2, p3, p4 and p5 represent the number of substitutions, each independently an integer of 0-4. However, p1+p2+p3+p4 ⁇ 4.
  • the plurality of R21, R22, R23, R24 or R25 may be the same or different.
  • Each Y is independently a hydroxyl group, a (meth)acryloyloxy group, or a vinylbenzyl ether group.
  • alkyl groups represented by R21, R22, R23, R24 or R25 include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl and the like. .
  • a methyl group is particularly preferable from the viewpoint of availability.
  • the substitution position on the aromatic ring of R21, R22, R23, R24 or R25 is not particularly limited.
  • each R21, R22, R23, R24 or R25 substituent is independently in the ortho or meta position relative to the phosphate ester linkage.
  • the substituents of R21, R22, R23, R24 or R25 are each independently in the ortho or meta position relative to the phosphate ester bond and R21, R22, R23, R24 or R25 is in the ortho position.
  • the presence of one or more alkyl groups ortho to the phosphate ester bond can hydrophobically shield the phosphate ester moiety and inhibit hydrolysis.
  • each Y is independently a phenolic hydroxyl group, a (meth)acryloyloxy group or a vinylbenzyl ether group.
  • q1, q2, q3 and q4 represent the number of substitutions of phenolic hydroxyl groups, (meth)acryloyloxy groups or vinylbenzyl ether groups bonded to each benzene ring.
  • q1, q2, q3 and q4 are each independently an integer of 0 or more and 2 or less.
  • at least one of q1, q2, q3 or q4 is 1 or more and has at least one or more, preferably two or more (meth)acryloyloxy groups or vinylbenzyl ether groups in the molecule.
  • the substitution position of Y on the aromatic ring is not particularly limited, but from the viewpoint of reactivity, it is preferably bonded at the para position with respect to the phosphate ester bond.
  • Examples of the phosphazene compound include cyclic phosphazene compounds represented by the following general formula (10).
  • R26 and R27 each independently represent an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R26 and R27 may form a cyclic structure.
  • t represents an integer of 3-20.
  • aromatic hydrocarbon groups having 6 to 20 carbon atoms include phenyl group, naphthyl group, biphenyl group and anthranyl group.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms may or may not have a substituent.
  • the substituent include a carboxy group, a halogen atom, an aliphatic hydrocarbon group, an acyl group, an alkoxy group, a cyano group, a hydroxyl group, a methacryloyloxy group, a vinylbenzyl ether group, a group in which these substituents are linked, and the like.
  • the aromatic hydrocarbon group has a substituent, the carbon number of the substituent is not included in the number of carbon atoms.
  • Phosphonate esters include, for example, dimethyl phosphonate, diethyl phosphonate, bis(2-ethylhexyl) phosphonate, dioctyl phosphonate, dilauryl phosphonate, dioleyl phosphonate, diphenyl phosphonate, dibenzyl phosphonate, dimethyl methylphosphonate, and methylphosphonate.
  • diphenyl acid dioctyl methylphosphonate, diethyl ethylphosphonate, dioctyl ethylphosphonate, diethyl benzylphosphonate, dimethyl phenylphosphonate, diethyl phenylphosphonate, dipropyl phenylphosphonate, dioctyl phenylphosphonate, diethyl (methoxymethyl)phosphonate, (Methoxymethyl) dioctyl phosphonate, diethyl vinyl phosphonate, diethyl vinyl phosphonate, diethyl hydroxymethyl phosphonate, diethyl hydroxymethyl phosphonate, (2-hydroxyethyl) dimethyl phosphonate, (methoxymethyl) dioctyl phosphonate, p-methylbenzyl diethyl phosphonate, dioctyl p-methylbenzylphosphonate, diethylphosphonoacetic
  • R28 to R32 are the same or different and represent a hydrogen atom or a hydrocarbon group which may have a substituent.
  • R33 has 1 to 18 carbon atoms and is an alkylene group, an arylene group, an alkylarylene group, a cycloalkylene group, a heteroalkylene group, a heterocycloalkylene group or a heteroarylene group, having a substituent Show what is good.
  • R34 and R35 are the same or different and represented by the following general formula (14).
  • R36 is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • Ar is a phenyl group, naphthyl group or anthryl group which may have a substituent, and in AL to any carbon atom of u represents an integer of 1 to 3;
  • phosphinate compounds include methyl dimethylphosphinate, ethyl dimethylphosphinate, n-butyl dimethylphosphinate, cyclohexyl dimethylphosphinate, vinyl dimethylphosphinate, phenyl dimethylphosphinate, methyl ethylmethylphosphinate, and ethylmethylphosphine.
  • Phosphine oxide compounds include triphenylphosphine oxide, tris(2-cyanoethyl)phosphine oxide, and diphenylvinylphosphine oxide.
  • alkoxyimino (NOR) type hindered amine compound as the component (C) will be described, but it is not particularly limited as long as it has an N-alkoxyl group (>N-OR) structure.
  • Including component (C) improves flame retardancy and adhesiveness. By containing the component (C), a radical trapping effect is exhibited in the gas phase during combustion, and flame retardancy is improved.
  • component (C) improves the adhesiveness in the metal-clad laminate, it causes a delay in the curing reaction by trapping radicals in the solid phase during curing of the resin composition, resulting in a minimum This is probably because the decrease in melt viscosity improves compatibility between the prepregs and makes it easier to obtain an anchor effect with the copper foil.
  • the content of the NOR-type hindered amine compound of component (C) is 0.2 to 5.0 parts by mass when the total of the radically polymerizable compound of component (A) and the phosphorus-based flame retardant of component (B) is 100 parts by mass. It is 0% by mass, preferably 0.3 to 4.0% by mass, more preferably 0.4 to 3.0% by mass, still more preferably 0.5 to 2.0% by mass. If it is 0.2% by mass or less, a synergistic effect with phosphorus cannot be obtained, flame retardancy is not improved, and adhesion is not improved.
  • radicals generated from NOR-type hindered amines improve flame retardancy by trapping radicals in the gas phase, they also have the property of decomposing polymer chains at the same time. Deterioration of flame retardancy due to decomposition exceeds the deterioration of flame retardancy.
  • NOR-type hindered amine compounds include the following compounds: 1-cyclohexyloxy-2,2,6,6-tetramethyl-4-octadecylaminopiperidine; bis(1-octyloxy-2,2 ,6,6-tetramethylpiperidin-4-yl) sebacate; 2,4-bis[(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-6-( 2-hydroxyethylamino)-s-triazine; bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)adipate; 4,4′-hexamethylenebis(amino-2,2 ,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(1-octyloxy-2, Oligomeric compounds which are condensation products with 2,6,6-tetramethylpiperidin-4-yl)buty
  • Examples of commercially available products include BASF's Flamestab NOR116FF, TINUVIN NOR371, TINUVIN XT850FF, TINUVIN XT855FF, TINUVIN PA123, and LA-81 manufactured by ADEKA Corporation.
  • the NOR-type hindered amine compounds may be used singly or in combination of two or more.
  • radical polymerization initiators include radical polymerization initiators that generate radicals with light or heat. Photopolymerization initiators or thermal polymerization initiators may be used alone or in combination.
  • photopolymerization initiators include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; 2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1-[4-( acetophenones such as methylthio)phenyl]-2-morpholinopropan-1-one; anthraquinones such as 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-chloroanthraquinone, and 2-amylanthraquinone; 2,4-diethylthioxanthone , 2-isopropylthioxanthone, 2-chlorothioxanthone, and other thi
  • Thermal radical initiators include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy) Hexyne-3, di-t-butyl peroxide, t-butyl cumyl peroxide, 1,3-bis(butylperoxyisopropyl)benzene, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene , 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzo
  • the halogen-free flame-retardant curable resin composition of the present invention has a phosphorus content of 1.0 to 5.0% by mass with respect to the total of components (A) and (B), and contains component (C). The amount is 0.2 to 5.0% by mass with respect to the total of 100 parts by mass of components (A) and (B).
  • the phosphorus-based flame retardant and the NOR-type hindered amine compound act synergistically to develop flame retardancy and adhesiveness in a well-balanced manner.
  • the amount of the radical polymerization initiator of component (D) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of the total amount of components (A) and (B). 5 parts by weight. If it is less than this range, the polymerization reaction will not proceed sufficiently, and if it is more than this range, the mechanical properties will be lowered, which is not preferable.
  • the halogen-free flame-retardant curable resin composition of the present invention contains thermosetting resins, thermoplastic resins, organic fillers, inorganic fillers, organic solvents, thickeners, An antifoaming agent, an adhesion imparting agent, a coloring agent, an additive and the like can be blended as appropriate.
  • curable reactive resins examples include epoxy resins, polycyanate resins, and phenol resins.
  • the curable reactive resin is an epoxy resin
  • it is preferably one or more epoxy resins selected from epoxy resins having two or more epoxy groups in one molecule.
  • epoxy resins include cresol novolak type epoxy resins, triphenylmethane type epoxy resins, biphenyl epoxy resins, naphthalene type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins. These may be used alone or in combination of two or more.
  • thermoplastic resins include polystyrene, polyphenylene ether resins, polyetherimide resins, polyether sulfone resins, PPS resins, polycyclopentadiene resins, polycycloolefin resins, and known thermoplastic elastomers such as styrene- Ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene-isoprene copolymer, etc.
  • rubbers such as polybutadiene and polyisoprene may be mentioned.
  • Preferable examples include polyphenylene ether resin (unmodified) and hydrogenated styrene-butadiene copolymer.
  • a filler can be added to the halogen-free flame-retardant curable resin composition of the present invention.
  • fillers include those added to improve the heat resistance and flame retardancy of the cured product of the curable resin composition, and known fillers can be used, but are not particularly limited.
  • heat resistance, dimensional stability, flame retardancy, etc. can be further improved by incorporating a filler.
  • silica such as spherical silica, metal oxides such as alumina, titanium oxide and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, barium sulfate, and calcium carbonate etc.
  • a metal hydroxide such as aluminum hydroxide or magnesium hydroxide
  • it acts as a flame retardant aid and can ensure flame retardancy even if the phosphorus content is low.
  • silica, mica, and talc are preferred, and spherical silica is more preferred.
  • these 1 type may be used independently and may be used in combination of 2 or more type.
  • the filler may be used as it is, or may be surface-treated with a silane coupling agent such as epoxysilane type or aminosilane type.
  • a silane coupling agent such as epoxysilane type or aminosilane type.
  • vinylsilane-type, methacryloxysilane-type, acryloxysilane-type, and styrylsilane-type silane coupling agents are preferable as the silane coupling agent.
  • the silane coupling agent may be added by an integral blend method instead of the method of surface-treating the filler in advance.
  • the content of the filler is preferably 10 to 200 parts by mass with respect to a total of 100 parts by mass of the solid content excluding the filler (including organic components such as monomers and flame retardants, excluding solvents). It is preferably 30 to 150 parts by mass.
  • the halogen-free flame-retardant curable resin composition of the present invention may further contain additives other than the above.
  • additives include antifoaming agents such as silicone antifoaming agents and acrylic acid ester antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, dispersants such as wetting and dispersing agents. agents and the like.
  • the cured product obtained by curing the halogen-free flame-retardant curable resin composition of the present invention can be used as moldings, laminates, castings, adhesives, coatings, and films.
  • a cured product of a semiconductor encapsulating material is a cast or molded product, and methods for obtaining a cured product for such applications include casting a curable resin composition, or using a transfer molding machine, an injection molding machine, or the like.
  • a cured product can be obtained by molding using the resin and heating at 80 to 230° C. for 0.5 to 10 hours.
  • the halogen-free flame-retardant curable resin composition of the present invention can also be used as a prepreg.
  • a prepreg When producing a prepreg, it is prepared in the form of a varnish for the purpose of impregnating a base material (fibrous base material) for forming a prepreg, or for the purpose of being used as a circuit board material for forming a circuit board, and then mixed with a resin varnish. can do.
  • This resin varnish is suitable for circuit boards and can be used as a varnish for circuit board materials.
  • the use of the circuit board material here specifically includes a printed wiring board, a printed circuit board, a flexible printed wiring board, a build-up wiring board, and the like.
  • the above resin varnish is prepared, for example, as follows. First, each component that can be dissolved in an organic solvent, such as a resin, is put into an organic solvent and dissolved. At this time, it may be heated, if necessary. After that, if necessary, a component that does not dissolve in an organic solvent such as an inorganic filler is added and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like to obtain a varnish-like curable resin composition. is prepared.
  • the organic solvent used here is not particularly limited as long as it dissolves the resin component and does not inhibit the curing reaction.
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate, propyl acetate and butyl acetate; polar solvents such as dimethylacetamide and dimethylformamide; aromatic hydrocarbon solvents such as toluene and xylene. It is also possible to use these alone or in combination of two or more. From the viewpoint of dielectric properties, aromatic hydrocarbons such as benzene, toluene and xylene are preferred.
  • the amount of the organic solvent used is preferably 5 to 900% by weight, more preferably 10 to 700% by weight, and particularly preferably 100% by weight of the curable resin composition of the present invention. is 20 to 500% by weight.
  • the curable resin composition of the present invention is an organic solvent solution such as resin varnish, the amount of the organic solvent is not included in the calculation of the composition.
  • base materials such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. Used in conjunction with more than one species.
  • a coupling agent can be used for these base materials for the purpose of improving the adhesiveness at the interface between the resin and the base material, if necessary.
  • Common coupling agents such as silane coupling agents, titanate coupling agents, aluminum coupling agents and zircoaluminate coupling agents can be used as the coupling agent.
  • a method of obtaining the prepreg of the present invention includes a method of impregnating a base material with the above resin varnish and then drying it. Impregnation is performed by immersion (dipping), coating, or the like. The impregnation can be repeated multiple times as necessary, and at this time, the impregnation can be repeated using a plurality of solutions with different compositions and concentrations to finally adjust the desired resin composition and resin amount. It is possible. After impregnation, a prepreg can be obtained by drying by heating at 100 to 180° C. for 1 to 30 minutes.
  • the resin content in the prepreg is preferably 30 to 80% by weight.
  • the halogen-free flame-retardant curable resin composition of the present invention can also be used as a laminate.
  • a laminate When forming a laminate using prepreg, one or more prepregs are laminated, metal foil is placed on one side or both sides to form a laminate, and this laminate is heated and pressed to be laminated and integrated.
  • the metal foil copper, aluminum, brass, nickel, or the like can be used alone, as an alloy, or as a composite metal foil.
  • the conditions for heating and pressurizing the laminate may be appropriately adjusted so as to cure the curable resin composition, but if the pressure is too low, air bubbles may form inside the resulting laminate. Since it may remain and the electrical characteristics may deteriorate, it is preferable to apply pressure under conditions that satisfy moldability.
  • the temperature can be set to 180 to 230° C., the pressure to 49.0 to 490.3 N/cm 2 (5 to 50 kgf/cm 2 ), and the heating/pressurizing time to 40 to 240 minutes.
  • a multi-layer board can be produced by using the single-layer laminate board thus obtained as an inner layer material.
  • a circuit is formed on the laminate by an additive method, a subtractive method, or the like, and the surface of the formed circuit is treated with an acid solution for blackening to obtain an inner layer material.
  • An insulating layer is formed on one or both sides of the inner layer material with a resin sheet, a resin-coated metal foil, or a prepreg, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board. It is.
  • the halogen-free flame-retardant curable composition of the present invention can also be used for build-up films.
  • a method for producing a build-up film from the resin composition of the present invention includes, for example, a method of applying the above resin varnish onto a support film and drying to form a film-like insulating layer.
  • the film-like insulating layer thus formed can be used as a build-up film for multilayer printed wiring boards.
  • Phosphorus content Sulfuric acid, hydrochloric acid, and perchloric acid were added to the sample, which was heated and wet-ashed to convert all phosphorus atoms to orthophosphoric acid. Metavanadate and molybdate are reacted in an acidic solution of sulfuric acid, the absorbance at 420 nm of the resulting phosphorvanad molybdate complex is measured, and the phosphorus atom obtained is determined by a calibration curve prepared in advance using potassium dihydrogen phosphate. The content is expressed in %.
  • Vinyl equivalent Measured according to JIS K 0070 standard.
  • Wiiss solution iodine monochloride solution
  • Wiiss solution iodine monochloride solution
  • excess iodine chloride is reduced to iodine
  • the iodine content is titrated with sodium thiosulfate to determine the iodine value.
  • Iodine values were converted to vinyl equivalents.
  • Relative permittivity and dielectric loss tangent According to the IPC-TM-6502.5.5.9 standard, a material analyzer (manufactured by AGILENT Technologies) was used to determine the relative permittivity (Dk) and dielectric constant at a frequency of 1 GHz by the capacitance method. The tangent (Df) was determined.
  • Adhesion (copper foil peel strength) A test piece with a width of 20 mm and a length of 100 mm was cut out, and a parallel cut of 10 mm width was made on the surface of the copper foil. The stress at that time was measured with a tensile tester, and the lowest value of the stress was recorded as the copper foil peeling strength (peel strength). (Compliant with JISC 6481). The unit is kN/m.
  • Adhesiveness As with the copper foil peel strength, cut out a test piece with a width of 20 mm and a length of 100 mm, make a parallel cut with a width of 10 mm in the surface layer, and then cut it at a speed of 50 mm / min in a direction of 90 ° to the surface. The glass cloth of the surface layer was continuously peeled off, the stress at that time was measured with a tensile tester, and the minimum value of the stress was recorded as the copper foil peel strength (peel strength). (Compliant with JISC 6481). The unit is kN/m. (10) Flame retardancy: Evaluated by vertical method according to UL94. The evaluation was given by the total burning time of 5 tubes and the classes of V-0, V-1, V-2 and NC (Non Classified).
  • the obtained copolymer (A-1) had Mn of 2060, Mw of 30700 and Mw/Mn of 14.9.
  • Copolymer A was observed to have resonance lines derived from each monomer unit. Based on the NMR measurement results and the GC analysis results, the constituent units of the copolymer (A-1) were calculated as follows.
  • Structural unit (b2) derived from ethylvinylbenzene: 9.1 mol% (10.7 wt%)
  • the vinyl equivalent of copolymer (A-1) was 286 g/eq.
  • Copolymer (A-1) is a radically polymerizable resin because it contains a structural unit that also has a residual vinyl group.
  • Synthesis Example 2 Synthesis of Phosphazene Compound Containing Vinyl Benzyl Ether Group
  • 100 parts of hydroxyl group-containing cyclophosphazene having a hydroxyl equivalent of 270 g/eq obtained by the method described in Japanese Patent No. 6095150 and toluene were added.
  • 67 parts, 59 parts of CMS-P (chloromethyl styrene manufactured by AGC Seichemical), 4.8 parts of tetrabutylammonium bromide and 57 parts of 50% potassium carbonate aqueous solution were charged and reacted at 70° C. for 7 hours.
  • the phosphorus-containing vinylbenzyl resin (B-2) had a vinyl equivalent of 375 g/eq and a phosphorus content of 8.7%.
  • v represents an integer of 1 to 10
  • the mixture was heated to 65° C. and stirred for 5 hours to obtain a reaction product.
  • the obtained reaction product After washing the obtained reaction product with dilute hydrochloric acid and water, it is heated to a temperature of 150° C., and the pressure is reduced to 2 kPa to distill off water, toluene and low-boiling components. 330 g of compound are obtained.
  • the compound as the obtained substance mixture had a phosphorus content of 6.5% and a hydroxyl equivalent of 272 g/eq.
  • 200 g of the phosphorus-containing phenol compound obtained above, 133.2 g of tetrahydrofuran, and 19.5 g of triethylamine were charged, dissolved, and then cooled to 5° C.
  • the obtained 8 sheets of prepreg and copper foil (3EC-III, thickness 35 ⁇ m, Mitsui Kinzoku Kogyo Co., Ltd.) are stacked on top and bottom, and vacuum pressed at 2 MPa under temperature conditions of 130° C. ⁇ 15 minutes+190° C. ⁇ 80 minutes.
  • a laminate with a thickness of 6 mm was obtained.
  • Tables 1 and 2 show the results of a flame retardancy test and an adhesion test using this laminate.
  • the obtained prepreg was loosened and passed through a sieve to obtain powdery prepreg powder of 100 mesh pass.
  • This prepreg powder was placed in a fluororesin mold and vacuum pressed at 2 MPa under temperature conditions of 130° C. ⁇ 15 minutes+190° C. ⁇ 80 minutes to obtain a test piece of 50 mm square ⁇ 2 mm thickness.
  • Tables 1 and 2 show the dielectric constant (Dk) and dielectric loss tangent (Df) results of this test piece.
  • A-1 Compound A-1 obtained in Synthesis Example 1
  • A-2 OPE-2St 1200 manufactured by Mitsubishi Gas Chemical Co., Ltd., polyphenylene ether oligomer having aromatic vinyl groups at both ends (modified polyphenylene ether obtained by modifying both terminal hydroxyl groups of polyphenylene ether with vinylbenzyl groups), number average molecular weight: 1187, vinyl equivalent: 590 g/eq
  • B-1 Aromatic condensed phosphate ester manufactured by Daihachi Chemical Industry Co., Ltd.
  • B-2 Compound B-2 obtained in Synthesis Example 2
  • B-3 Compound B-3 obtained in Synthesis Example 3
  • B-4 Compound B-4 obtained in Synthesis Example 4
  • C-1 NOR-type hindered amine compound manufactured by BASF (trade name: Flamestab NOR116FF)
  • C-2 NOR-type hindered amine compound manufactured by ADEKA Corporation (trade name: LA-81)
  • D-1 1,3-bis(butylperoxyisopropyl)benzene manufactured by NOF Corporation (trade name: Perbutyl P)
  • the halogen-free flame-retardant curable resin composition of the present invention is used as a curable resin composition that reduces transmission loss at high frequencies accompanying an increase in the amount of information processing in electronic equipment, such as electric/electronic products, OA equipment, and communication equipment. Very useful.

Abstract

The purpose of the present invention is to provide: a halogen-free flame-retardant curable resin composition having excellent dielectric properties, adhesion properties and flame retardancy; a prepreg comprising a curable resin composition and a base material; a metal-clad laminated board; and a printed wiring board. The halogen-free flame-retardant curable resin composition comprises (A) a radical-polymerizable compound having a carbon-carbon unsaturated double bond in the molecule thereof, (B) a phosphorus-based flame-retardant agent, (C) an alkoxyimino (NOR)-type hindered amine compound and (D) a radical polymerization initiator, the resin composition being characterized in that the content of phosphorus is 1.0 to 5.0% by mass relative to the total amount of the components (A) and (B) and the content of the component (C) is 0.2 to 5.0 parts by mass relative to the total amount, i.e., 100 parts by mass, of the components (A) and (B).

Description

ハロゲンフリー難燃硬化性樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminate, and printed wiring board
 本発明は、誘電特性、接着性、難燃性に優れる、ハロゲンフリー難燃硬化性樹脂組成物、硬化性樹脂組成物と基材からなるプリプレグ、金属張積層板、及びプリント配線板に関する。 The present invention relates to a halogen-free flame-retardant curable resin composition, a prepreg, a metal-clad laminate, and a printed wiring board comprising a curable resin composition and a base material, which are excellent in dielectric properties, adhesiveness, and flame retardancy.
 樹脂材料は、優れた機械的特性、成形加工性から、建材や電気電子機器まで幅広い用途に使用されている。しかしながら、大抵の樹脂材料は、燃えやすいため、使用される用途、例えば電気・電子製品やOA機器、通信機器等では、発熱発火、火災に対する安全性のため難燃化が必須となっている。 Due to their excellent mechanical properties and moldability, resin materials are used in a wide range of applications, from building materials to electrical and electronic equipment. However, since most resin materials are flammable, they are required to be made flame-retardant for safety against heat generation, ignition, and fire in applications such as electrical/electronic products, OA equipment, and communication equipment.
 樹脂材料の難燃化技術としては、ハロゲン系難燃剤、無機系難燃剤、リン系難燃剤等の添加型難燃剤の添加が樹脂種、用途に限らず一般的となっている。しかしながら、これらの中で臭素系を主とするハロゲン系難燃剤は、発がん性の高いダイオキシンの発生源となる可能性が指摘されており、昨今の環境負荷物質低減の動きに対応して使用を制限する方向に進んでいる。また、水酸化マグネシウム、水酸化アルミニウム等の無機系難燃剤は、吸熱による難燃化効果があるものの、十分な難燃化を達成するためには大量に添加する必要があり、樹脂成形品の各種特性を低下させる原因となっている。そのため、有害物質を発生させず、比較的少量の添加で難燃化が可能なリン系難燃剤が多く使用されているが、それでも樹脂特性への悪影響を抑えることは難しい。そこで、難燃剤の添加量削減を目的に、複数の難燃剤の相乗効果を活かした組成物の検討が行われている。特許文献1には、ゴム変性スチレン系樹脂、アルコキシイミノ(NOR)型ヒンダードアミン系化合物、リン系難燃剤を含む樹脂組成物が開示されており、少量の添加で難燃性を付与することに成功している。この例の様に、熱可塑性樹脂においてはリン系難燃剤の相乗効果が種々検討されているが、電子・電気分野における硬化性樹脂材料に関しては難燃剤の相乗効果の検討が十分では無い。 As a flame retardant technology for resin materials, the addition of additive-type flame retardants such as halogen-based flame retardants, inorganic flame retardants, and phosphorus-based flame retardants is common regardless of resin type or application. However, among these, halogen-based flame retardants, mainly brominated, have been pointed out as a possible source of highly carcinogenic dioxins, and their use is being discouraged in response to the recent movement to reduce environmentally hazardous substances. moving toward restriction. Inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide have a flame retardant effect by absorbing heat, but they must be added in large amounts to achieve sufficient flame retardancy. This causes deterioration of various characteristics. Therefore, phosphorus-based flame retardants that do not generate harmful substances and can be flame retarded with a relatively small addition are often used, but it is still difficult to suppress adverse effects on resin properties. Therefore, with the aim of reducing the amount of flame retardants added, studies have been made on compositions that take advantage of the synergistic effect of a plurality of flame retardants. Patent Document 1 discloses a resin composition containing a rubber-modified styrenic resin, an alkoxyimino (NOR) type hindered amine compound, and a phosphorus-based flame retardant, and successfully imparts flame retardancy with the addition of a small amount. are doing. As in this example, the synergistic effect of phosphorus-based flame retardants in thermoplastic resins has been studied in various ways, but the synergistic effect of flame retardants has not been sufficiently studied in the field of electronic and electrical curable resin materials.
 特に、情報・通信分野では、情報処理量の増大に伴い信号の高周波化が進行、積層板に使用される樹脂材料には、ハロゲンフリー難燃化と共に伝送損失低減のため低誘電率、低誘電正接が強く求められており、従来使用されていたエポキシ樹脂から変性ポリフェニレンエーテルに代表される硬化性ビニル樹脂への移行が進んでいるが、硬化性ビニル樹脂は燃焼し易いため難燃性の要求がより厳しくなっている。特許文献2には、可溶性多官能ビニル芳香族共重合体、変性ポリフェニレンエーテル、特定のリン含有難燃剤を含む樹脂組成物が開示されている。特許文献3には、ラジカル重合性樹脂、リン含有ビニルベンジル化合物、開始剤を含有する硬化性樹脂組成物が開示されている。しかし、要求特性を未だ十分に満たすものではない。 In particular, in the field of information and communication, as the amount of information processed increases, signal frequencies are becoming higher. Resin materials used in laminates are required to be halogen-free and flame-retardant, and to reduce transmission loss. There is a strong demand for tangent properties, and there is a shift from conventional epoxy resins to curable vinyl resins such as modified polyphenylene ether. is becoming more stringent. Patent Document 2 discloses a resin composition containing a soluble polyfunctional vinyl aromatic copolymer, a modified polyphenylene ether, and a specific phosphorus-containing flame retardant. Patent Document 3 discloses a curable resin composition containing a radically polymerizable resin, a phosphorus-containing vinylbenzyl compound, and an initiator. However, it still does not fully satisfy the required properties.
特開2019-183084号公報JP 2019-183084 A 特開2020-105352号公報JP 2020-105352 A 特開2019-178233号公報JP 2019-178233 A
 本発明が解決しようとする課題は、誘電特性、接着性、難燃性に優れる、ハロゲンフリー難燃硬化性樹脂組成物、硬化性樹脂組成物と基材からなるプリプレグ、金属張積層板、及びプリント配線板を提供することにある。 The problem to be solved by the present invention is a halogen-free flame-retardant curable resin composition, a prepreg comprising a curable resin composition and a substrate, a metal-clad laminate, and a To provide a printed wiring board.
 上記の課題を解決するために、本発明者らは、誘電特性、接着性、ハロゲンフリー難燃性に優れる積層板用樹脂組成物について、鋭意検討した結果、リン化合物、NOR型ヒンダードアミン化合物、硬化性ビニル樹脂を含む樹脂組成物において誘電特性、接着性、ハロゲンフリー難燃性が優れることを見出し、本発明を完成した。 In order to solve the above problems, the present inventors have made intensive studies on a resin composition for laminates that is excellent in dielectric properties, adhesiveness, and halogen-free flame retardancy. The inventors have found that a resin composition containing a volatile vinyl resin is excellent in dielectric properties, adhesiveness, and halogen-free flame retardancy, and completed the present invention.
 すなわち、本発明は、以下の態様を含むものである。
(A)炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物と、(B)リン系難燃剤と、(C)アルコキシイミノ(NOR)型ヒンダードアミン化合物と、(D)ラジカル重合開始剤を含む樹脂組成物であって、リン含有率が(A)成分と(B)成分の合計に対して1.0~5.0質量%であり、(C)成分の含有量が(A)成分と(B)成分の合計100質量部に対して0.2~5.0質量部であることを特徴とするハロゲンフリー難燃硬化性樹脂組成物である。
That is, the present invention includes the following aspects.
(A) a radically polymerizable compound having a carbon-carbon unsaturated double bond in the molecule, (B) a phosphorus-based flame retardant, (C) an alkoxyimino (NOR) type hindered amine compound, and (D) radical polymerization initiation agent, wherein the phosphorus content is 1.0 to 5.0% by mass with respect to the total of components (A) and (B), and the content of component (C) is (A ) and (B) in an amount of 0.2 to 5.0 parts by mass per 100 parts by mass in total of component (B).
 A成分が、分子末端を炭素-炭素不飽和二重結合を含む化合物で変性されたポリフェニレンエーテル化合物又は/および下記構造式(1)で表される構造単位を含む分子量が300~100000である可溶性重合体を含むことを特徴とするハロゲンフリー難燃硬化性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
 R1~R3は水素原子又はC1~C5のアルキル基、R4は炭素数6~30の2価の芳香族炭化水素基を表す。
A component is a polyphenylene ether compound modified with a compound containing a carbon-carbon unsaturated double bond at the molecular end or / and a soluble having a molecular weight of 300 to 100000 containing a structural unit represented by the following structural formula (1) A halogen-free flame-retardant curable resin composition comprising a polymer.
Figure JPOXMLDOC01-appb-C000002
R1 to R3 each represent a hydrogen atom or a C1 to C5 alkyl group, and R4 represents a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
 B成分が、リン酸エステル化合物、ホスファゼン化合物、ホスホン酸エステル化合物またはホスファフェナントレン化合物からなる群から選ばれる少なくとも1つであるハロゲンフリー難燃硬化性樹脂組成物である。
 B成分が、分子中に成分Aと共重合可能なラジカル重合性の炭素-炭素不飽和二重結合を有する反応性リン化合物である事を特徴とするハロゲンフリー難燃硬化性樹脂組成物である。
A halogen-free flame-retardant curable resin composition in which component B is at least one selected from the group consisting of a phosphate ester compound, a phosphazene compound, a phosphonate ester compound and a phosphaphenanthrene compound.
Component B is a halogen-free flame-retardant curable resin composition characterized in that it is a reactive phosphorus compound having a radically polymerizable carbon-carbon unsaturated double bond copolymerizable with component A in the molecule. .
 前記ハロゲンフリー難燃硬化性樹脂組成物を用いることを特徴とするプリプレグである。
 前記ハロゲンフリー難燃硬化性樹脂組成物を硬化させた金属張積層板である。
 前記ハロゲンフリー難燃硬化性樹脂組成物を用いることを特徴とする積層板である。
A prepreg characterized by using the halogen-free flame-retardant curable resin composition.
A metal-clad laminate obtained by curing the halogen-free flame-retardant curable resin composition.
A laminate using the halogen-free flame-retardant curable resin composition.
 本発明のハロゲンフリー難燃硬化性樹脂組成物は、低い誘電率・誘電正接と優れたハロゲンフリー難燃性を示し、更に銅箔への接着性を向上し、電子機器の情報処理量増大に伴う高周波化における伝送損失を低減する硬化性樹脂組成物として非常に有用である。 The halogen-free flame-retardant curable resin composition of the present invention exhibits a low dielectric constant/dielectric loss tangent and excellent halogen-free flame retardancy, further improves adhesion to copper foil, and is useful for increasing the amount of information processing in electronic equipment. It is very useful as a curable resin composition that reduces transmission loss at higher frequencies.
 以下、本発明について詳細に説明する。本発明のハロゲンフリー難燃樹脂組成物は、(A)炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物と、(B)リン系難燃剤と、(C)NOR型ヒンダードアミン化合物と、(D)ラジカル重合開始剤を含むことを特徴とするプリント配線板用硬化性樹脂組成物である。 The present invention will be described in detail below. The halogen-free flame-retardant resin composition of the present invention comprises (A) a radically polymerizable compound having a carbon-carbon unsaturated double bond in the molecule, (B) a phosphorus-based flame retardant, and (C) a NOR-type hindered amine compound. and (D) a radical polymerization initiator.
 成分(A)は、炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物である。成分(A)のラジカル重合性樹脂を使用することで、本発明の樹脂組成物から調製される硬化物の誘電正接を低下させることができる。ビニル当量は、好ましくは150~2000g/eq、より好ましくは200~1000g/eqである。 Component (A) is a radically polymerizable compound having a carbon-carbon unsaturated double bond in its molecule. By using the radically polymerizable resin of component (A), the dielectric loss tangent of the cured product prepared from the resin composition of the present invention can be lowered. The vinyl equivalent is preferably 150-2000 g/eq, more preferably 200-1000 g/eq.
 成分(A)としては、ラジカルにより重合する官能基を有する化合物であれば特に限定されないが、例えば、上記式(1)で表される構造を分子中に有するビニル化合物、末端が(メタ)アクリル基やスチリル基で変性された変性ポリフェニレンエーテル、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、アクリル酸及びメタクリル酸等の不飽和脂肪酸とエポキシ樹脂との反応物等のビニルエステル樹脂、不飽和ポリエステル樹脂、マレイミド樹脂、トリアリルイソシアヌレート等のアリル化合物等が挙げられる。また、これらを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。この中でも、式(1)で表される構造を分子中に有するビニル化合物、末端が(メタ)アクリル基やスチリル基で変性された変性ポリフェニレンエーテルを含むことが好ましく、中でも下記式(2)で表され、式(1)のR4がフェニレンである化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
 R1~R3は水素原子又はC1~C5のアルキル基を示す。
Component (A) is not particularly limited as long as it is a compound having a functional group that polymerizes by radicals. Modified polyphenylene ether modified with groups or styryl groups, polyfunctional methacrylate compounds having two or more methacrylic groups in the molecule, polyfunctional acrylate compounds having two or more acrylic groups in the molecule, polybutadiene, etc. Vinyl compounds having two or more vinyl groups (polyfunctional vinyl compounds), vinyl ester resins such as reaction products of unsaturated fatty acids such as acrylic acid and methacrylic acid with epoxy resins, unsaturated polyester resins, maleimide resins, triallyl isocyanate Examples include allyl compounds such as nurate. Moreover, these may be used independently and may be used in combination of 2 or more type. Among these, it is preferable to include a vinyl compound having a structure represented by formula (1) in the molecule, and a modified polyphenylene ether whose terminal is modified with a (meth)acrylic group or a styryl group. Further preferred are compounds of the formula (1) in which R4 is phenylene.
Figure JPOXMLDOC01-appb-C000003
R1 to R3 represent a hydrogen atom or a C1 to C5 alkyl group.
 式(1)の構造を有する化合物としては、例えば、ジビニル芳香族化合物とモノビニル芳香族化合物を共重合させて得られる多官能共重合体があげられる。この多官能共重合体は、ジビニル芳香族化合物に由来する繰り返し単位(a)と、モノビニル芳香族化合物に由来する繰り返し単位(b)を含有し、更にジビニル芳香族化合物に由来する繰り返し単位の一部として一般式(1)で表される繰り返し単位(a1)を含有する。繰り返し単位(a)と繰り返し単位(b)の合計を100モル%としたとき、繰り返し単位(a)を2モル%以上、95モル%未満含有し、繰り返し単位(b)を5モル%以上、98モル%未満含有する。そして、繰り返し単位(a)及び(b)の合計を100モル%としたとき、繰り返し単位(a1)を2~80モル%含有する。 Examples of the compound having the structure of formula (1) include a polyfunctional copolymer obtained by copolymerizing a divinyl aromatic compound and a monovinyl aromatic compound. This polyfunctional copolymer contains a repeating unit (a) derived from a divinyl aromatic compound and a repeating unit (b) derived from a monovinyl aromatic compound, and further comprises one repeating unit derived from a divinyl aromatic compound. It contains the repeating unit (a1) represented by the general formula (1) as a part. When the total of the repeating unit (a) and the repeating unit (b) is 100 mol%, the repeating unit (a) is 2 mol% or more and less than 95 mol%, and the repeating unit (b) is 5 mol% or more, Contains less than 98 mol %. When the total of repeating units (a) and (b) is 100 mol %, the repeating unit (a1) is contained in an amount of 2 to 80 mol %.
 上記多官能共重合体としては、限定されるものではないが、例えば下記式(3)で示されるジビニル芳香族化合物に由来する繰り返し単位(a)とモノビニル芳香族化合物に由来する繰り返し単位(b)に由来する構造単位を含有する共重合体などが挙げられる。これらの構造単位は規則的に配列してもよく、ランダムに配列してもよい。
Figure JPOXMLDOC01-appb-C000004
 式中、R5はモノビニル芳香族化合物に由来する炭素数6~30の芳香族炭化水素基でありそれぞれ異なっていても構わない、R4はジビニル芳香族化合物に由来する炭素数6~30の2価の芳香族炭化水素基であり、h~kは、その合計が2~20,000であることを条件に、それぞれ独立に0~200の整数である。
Examples of the polyfunctional copolymer include, but are not limited to, a repeating unit (a) derived from a divinyl aromatic compound represented by the following formula (3) and a repeating unit (b) derived from a monovinyl aromatic compound ) and copolymers containing structural units derived from. These structural units may be arranged regularly or randomly.
Figure JPOXMLDOC01-appb-C000004
In the formula, R5 is an aromatic hydrocarbon group having 6 to 30 carbon atoms derived from a monovinyl aromatic compound and may be different, and R4 is a divalent divalent group having 6 to 30 carbon atoms derived from a divinyl aromatic compound. and h to k are each independently an integer of 0 to 200, provided that the total is 2 to 20,000.
 ジビニル芳香族化合物に由来する構造単位である上記式(1)~(3)に存在するビニル基は、架橋成分として作用し、組成物の耐熱性を発現させるのに寄与する。一方、モノビニル芳香族化合物に由来する構造単位(b)は、ジビニル芳香族化合物との共重合後において、ビニル基を有さない。つまり、ジビニル芳香族化合物とモノビニル化合物との共重合体であるラジカル重合性樹脂において、モノビニル芳香族化合物に由来する構造単位(b)は、架橋成分として作用しない一方、成形性を発現させるのに寄与する。 The vinyl groups present in the above formulas (1) to (3), which are structural units derived from divinyl aromatic compounds, act as cross-linking components and contribute to developing the heat resistance of the composition. On the other hand, the structural unit (b) derived from the monovinyl aromatic compound does not have a vinyl group after copolymerization with the divinyl aromatic compound. That is, in a radically polymerizable resin that is a copolymer of a divinyl aromatic compound and a monovinyl compound, the structural unit (b) derived from the monovinyl aromatic compound does not act as a cross-linking component, but does not act as a cross-linking component. contribute.
 モノビニル芳香族化合物としては、スチレン又はエチルビニルベンゼンが好ましく挙げられるが、他のモノビニル芳香族化合物を使用することもできる。エチルビニルベンゼンには、o-体、m-体、p-体又はこれらの異性体混合物がある。
 スチレン又はエチルビニルベンゼンの一方のみを使用してもよいが、両者を使用することにより、好ましくは他方を1モル%以上、より好ましくは2モル%以上使用することにより、耐熱酸化劣化性と成形性を高めることができる。また、スチレン又はエチルビニルベンゼンの一方を使用し、上記他のモノビニル芳香族化合物を1モル%以上、好ましくは2モル%以上使用してもよい。
Preferred monovinylaromatic compounds include styrene or ethylvinylbenzene, although other monovinylaromatic compounds can also be used. Ethylvinylbenzene has o-, m-, p-, or isomer mixtures thereof.
Although only one of styrene and ethylvinylbenzene may be used, by using both, preferably 1 mol% or more of the other, more preferably 2 mol% or more, it is possible to improve resistance to heat oxidation deterioration and molding. can enhance sexuality. Alternatively, one of styrene and ethylvinylbenzene may be used, and the other monovinyl aromatic compound may be used in an amount of 1 mol % or more, preferably 2 mol % or more.
 上記他のモノビニル芳香族化合物の例としては、ビニルナフタレン、ビニルビフェニルなどのビニル芳香族化合物;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレンなどの核アルキル置換ビニル芳香族化合物;などが挙げられる。好ましくは、可溶性多官能ビニル芳香族共重合体のゲル化を防ぎ、溶剤可溶性、加工性の向上効果が高く、コストが低く、入手が容易であることから、エチルビニルビフェニル(各位置異性体又はこれらの混合物を含む)、又はエチルビニルナフタレン(各位置異性体又はこれらの混合物を含む)である。 Examples of other monovinyl aromatic compounds mentioned above include vinyl aromatic compounds such as vinyl naphthalene and vinyl biphenyl; vinyl aromatic compounds; and the like. Ethyl vinyl biphenyl (respective positional isomers or (including mixtures thereof), or ethyl vinyl naphthalene (including each positional isomer or mixtures thereof).
 この多官能共重合体の数平均分子量(GPCを用いて測定される標準ポリスチレン換算の数平均分子量)は、好ましくは300~100,000、より好ましくは1000~50,000、更に好ましくは2000~10,000である。Mnが300未満であると多官能共重合体中に含まれる単官能の共重合体成分の量が増えるため、硬化物の耐熱性が低下する傾向にあり、また、Mnが100,000を超えると、ゲルが生成しやすくなり、また、粘度が高くなるため、成形加工性が低下する傾向にある。
 また、重量平均分子量(GPCを用いて測定される標準ポリスチレン換算の重量平均分子量)とMnの比で表される分子量分布(Mw/Mn)の値は、100.0以下であり、好ましくは50.0以下、より好ましくは1.5~30.0、最も好ましくは2.0~20.0である。Mw/Mnが100.0を超えると、加工特性が悪化する傾向にあり、ゲルが発生する傾向にある。
The number average molecular weight of this polyfunctional copolymer (standard polystyrene equivalent number average molecular weight measured using GPC) is preferably 300 to 100,000, more preferably 1000 to 50,000, more preferably 2000 to 10,000. When Mn is less than 300, the amount of monofunctional copolymer components contained in the polyfunctional copolymer increases, so the heat resistance of the cured product tends to decrease, and Mn exceeds 100,000. As a result, gel tends to be generated and the viscosity increases, so that the moldability tends to decrease.
In addition, the value of the molecular weight distribution (Mw/Mn) represented by the ratio of the weight average molecular weight (standard polystyrene equivalent weight average molecular weight measured using GPC) to Mn is 100.0 or less, preferably 50. 0.0 or less, more preferably 1.5 to 30.0, and most preferably 2.0 to 20.0. If the Mw/Mn exceeds 100.0, the processability tends to deteriorate and gels tend to occur.
 ジビニル芳香族化合物は、分岐構造を形成し多官能とする役割を果たすと共に、得られた多官能共重合体を熱硬化する際に、耐熱性を発現させるための架橋成分としての役割を果たす。
 ジビニル芳香族化合物の例としては、ビニル基を二つ有する芳香族であれば限定されないが、ジビニルベンゼン(各位置異性体又はこれらの混合物を含む)、ジビニルナフタレン(各位置異性体又はこれらの混合物を含む)、ジビニルビフェニル(各位置異性体又はこれらの混合物を含む)が好ましく使用される。また、これらは単独又は2種以上を組み合わせて用いることができる。成形加工性の観点から、より好ましくはジビニルベンゼン(m-体、p-体又はこれらの位置異性体混合物)である。
The divinyl aromatic compound plays a role of forming a branched structure and making it polyfunctional, and also plays a role of a cross-linking component for developing heat resistance when the resulting polyfunctional copolymer is thermally cured.
Examples of the divinyl aromatic compound are not limited as long as they are aromatic having two vinyl groups, but divinylbenzene (including each positional isomer or a mixture thereof), divinylnaphthalene (each positional isomer or a mixture thereof) ), divinylbiphenyl (including positional isomers or mixtures thereof) are preferably used. Moreover, these can be used individually or in combination of 2 or more types. Divinylbenzene (m-isomer, p-isomer, or a mixture of positional isomers thereof) is more preferable from the viewpoint of moldability.
 モノビニル芳香族化合物の例としては、スチレン及びスチレン以外のモノビニル芳香族化合物がある。しかし、スチレンを必須とし、スチレン以外のモノビニル芳香族化合物を併用することが望ましい。 Examples of monovinyl aromatic compounds include styrene and monovinyl aromatic compounds other than styrene. However, styrene is essential, and it is desirable to use a monovinyl aromatic compound other than styrene together.
 スチレン以外のモノビニル芳香族化合物の例としては、ビニル基を一つ有するスチレン以外の芳香族であれば限定されないが、ビニルナフタレン、ビニルビフェニルなどのビニル芳香族化合物;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルビニルベンゼン、m-エチルビニルベンゼン、p-エチルビニルベンゼンなどの核アルキル置換ビニル芳香族化合物;などが挙げられる。好ましくは、ゲル化を防ぎ、溶剤可溶性、加工性の向上効果が高く、コストが低く、入手が容易であることから、エチルビニルベンゼン(各位置異性体又はこれらの混合物を含む)、エチルビニルビフェニル(各位置異性体又はこれらの混合物を含む)、又はエチルビニルナフタレン(各位置異性体又はこれらの混合物を含む)である。より好ましくは、誘電特性とコストの観点から、エチルビニルベンゼン(m-体、p-体又はこれらの位置異性体混合物)である。 Examples of monovinyl aromatic compounds other than styrene are not limited as long as they are aromatics other than styrene having one vinyl group, vinyl aromatic compounds such as vinylnaphthalene and vinylbiphenyl; o-methylstyrene, m-methyl nuclear alkyl-substituted vinyl aromatic compounds such as styrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylvinylbenzene, m-ethylvinylbenzene and p-ethylvinylbenzene; Ethylvinylbenzene (including positional isomers or mixtures thereof) and ethylvinylbiphenyl are preferred because they prevent gelation, are highly effective in improving solvent solubility and processability, are low in cost, and are readily available. (including each positional isomer or mixtures thereof), or ethyl vinyl naphthalene (including each positional isomer or mixtures thereof). Ethylvinylbenzene (m-isomer, p-isomer, or a mixture of positional isomers thereof) is more preferable from the viewpoint of dielectric properties and cost.
 本発明の効果を損なわない範囲で、ジビニル芳香族化合物、及びモノビニル芳香族化合物の他に、トリビニル芳香族化合物、トリビニル脂肪族化合物、ジビニル脂肪族化合物、モノビニル脂肪族化合物等の他のモノマー成分を1種又は2種以上使用し、これらに由来する構造単位(c)を、ラジカル重合性樹脂(A)である可溶性多官能ビニル芳香族共重合体中に導入することができる。 In addition to the divinyl aromatic compound and the monovinyl aromatic compound, other monomer components such as a trivinyl aromatic compound, a trivinyl aliphatic compound, a divinyl aliphatic compound, and a monovinyl aliphatic compound are added to the extent that the effects of the present invention are not impaired. One or two or more of them can be used, and the structural unit (c) derived from these can be introduced into the soluble polyfunctional vinyl aromatic copolymer that is the radically polymerizable resin (A).
 上記他のモノマー成分としては、例えば、1,3,5-トリビニルベンゼン、1,3,5-トリビニルナフタレン、1,2,4-トリビニルシクロへキサン、エチレングリコールジアクリレート、ブタジエン、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリアリルイソシアヌレート等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。 Examples of the above other monomer components include 1,3,5-trivinylbenzene, 1,3,5-trivinylnaphthalene, 1,2,4-trivinylcyclohexane, ethylene glycol diacrylate, butadiene, 1 ,4-butanediol divinyl ether, cyclohexanedimethanol divinyl ether, diethylene glycol divinyl ether, triallyl isocyanurate and the like. These can be used alone or in combination of two or more.
 他のモノマー成分は、全モノマー成分の総和に対するモル分率が30モル%未満であることが好ましい。つまり、他のモノマー成分に由来する繰り返し単位(c)は、上記共重合体を構成する全モノマー成分に由来する構造単位(a)、(b)、及び(c)の総和に対するモル分率が30モル%未満であることが好ましい。 The other monomer components preferably have a mole fraction of less than 30 mol% with respect to the total sum of all monomer components. That is, the repeating unit (c) derived from other monomer components has a molar fraction with respect to the total sum of structural units (a), (b), and (c) derived from all monomer components constituting the copolymer. It is preferably less than 30 mol %.
 (A)成分として使用される上記多官能共重合体は、ジビニル芳香族化合物とモノビニル芳香族化合物を含むモノマーを、ルイス酸触媒の存在下に重合することにより得られる。
 重合の際、使用されるルイス酸触媒としては、金属イオン(酸)と配位子(塩基)からなる化合物であって、電子対を受け取ることのできるものであれば特に制限なく使用できる。ルイス酸触媒の中でも、得られる共重合体の耐熱分解性の観点から、金属フッ化物又はその錯体が好ましく、特にB、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi、Ti、W、Zn、Fe及びV等の2~6価の金属フッ化物又はその錯体が好ましい。これらの触媒は、単独又は2種以上を組み合わせて用いることができる。得られる共重合体の分子量及び分子量分布の制御及び重合活性の観点から、三フッ化ホウ素のエーテル錯体が最も好ましく使用される。ここで、エーテル錯体のエーテルとしては、ジエチルエーテル、ジメチルエーテル等がある。さらに、重合時に、分子量をコントロールする目的で、公知の連鎖移動剤(CTR)を添加することもできる。この際、連鎖移動剤は、成長ポリマー鎖の末端をキャッピングすることによって、共重合体の成長を止めて、分子量の増大を抑えることで、分子量制御を可能にする。
The polyfunctional copolymer used as component (A) is obtained by polymerizing monomers containing a divinyl aromatic compound and a monovinyl aromatic compound in the presence of a Lewis acid catalyst.
The Lewis acid catalyst used in the polymerization is not particularly limited as long as it is a compound composed of a metal ion (acid) and a ligand (base) and capable of accepting an electron pair. Among the Lewis acid catalysts, metal fluorides or complexes thereof are preferable from the viewpoint of thermal decomposition resistance of the resulting copolymer, particularly B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, Ti. , W, Zn, Fe and V, and the like, or complexes thereof. These catalysts can be used singly or in combination of two or more. An ether complex of boron trifluoride is most preferably used from the viewpoint of control of the molecular weight and molecular weight distribution of the obtained copolymer and polymerization activity. Here, the ether of the ether complex includes diethyl ether, dimethyl ether and the like. Furthermore, a known chain transfer agent (CTR) may be added during polymerization for the purpose of controlling the molecular weight. At this time, the chain transfer agent caps the terminal of the growing polymer chain to stop the growth of the copolymer and suppress the increase of the molecular weight, thereby making it possible to control the molecular weight.
 連鎖移動剤は共重合体の末端を化学変性することになるので、靱性、低誘電性、密着性等の機能付与を可能にする末端基を導入する役割を果たす化合物にもなる。このような、連鎖移動剤としての機能を有する化合物としては、アルコール化合物、メルカプタン化合物、カルボン酸化合物、カルボン酸無水物化合物、エーテル化合物、チオエーテル化合物、エステル化合物、及びチオエステル化合物などを挙げることができる。
 また、上記の化合物の他に、単独重合性の低いモノマーを分子量調節剤として使用することもできる。このような単独重合性の低いモノマーとしては、シクロオレフィン化合物を挙げることができる。シクロオレフィン化合物の具体例を挙げると、シクロブテン、シクロペンテン、シクロオクテンなどの単環の環状オレフィンの他、ノルボルネン、ジシクロペンタジエンなどのノルボルネン環構造を有する化合物(以下、ノルボルネン化合物と言う。)、インデン、アセナフチレンなどの芳香族環が縮合したシクロオレフィン化合物などを挙げることができるが、これらの化合物に限定されない。
 これらの連鎖移動剤、分子量調節剤は、モノマー成分として計算され、これから生じる構造単位は、共重合体の構造単位として計算される。そして、これらは上記他のモノマー成分として計算される。
Since the chain transfer agent chemically modifies the terminal of the copolymer, it also becomes a compound that plays a role of introducing a terminal group that enables imparting of functions such as toughness, low dielectric property and adhesion. Examples of such compounds having a function as a chain transfer agent include alcohol compounds, mercaptan compounds, carboxylic acid compounds, carboxylic acid anhydride compounds, ether compounds, thioether compounds, ester compounds, thioester compounds, and the like. .
In addition to the above compounds, monomers with low homopolymerizability can also be used as molecular weight modifiers. A cycloolefin compound can be mentioned as such a monomer with low homopolymerizability. Specific examples of cycloolefin compounds include monocyclic cyclic olefins such as cyclobutene, cyclopentene, and cyclooctene, compounds having a norbornene ring structure such as norbornene and dicyclopentadiene (hereinafter referred to as norbornene compounds), and indene. , Acenaphthylene and other cycloolefin compounds in which aromatic rings are condensed, but not limited to these compounds.
These chain transfer agents and molecular weight modifiers are calculated as monomer components, and structural units produced therefrom are calculated as structural units of the copolymer. These are then calculated as the above other monomer components.
 成分(A)として用いることができる、末端が(メタ)アクリル基やスチリル基で変性された変性ポリフェニレンエーテルは、特に限定されないが、例えば下記の式(4)で表されるポリフェニレンエーテルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式中、R6~R9は、Rは水素原子、又は1価の置換基である。置換基としては、炭素数が1~8個のアルキル基、炭素数が2~8個のアルケニル基、炭素数が2~8個のアルキニル基、又は炭素数が6~10個のアリール基である。好ましくは、水素原子、メチル基、エチル基、又は置換基を有していてもよいフェニル基である。
 lとmは、その合計が2~200であることを条件に、それぞれ独立に0~200の整数である。
Modified polyphenylene ethers whose terminals are modified with (meth)acrylic groups or styryl groups, which can be used as component (A), are not particularly limited, but examples include polyphenylene ethers represented by the following formula (4). be done.
Figure JPOXMLDOC01-appb-C000005
In the formula, R6 to R9 are hydrogen atoms or monovalent substituents. The substituent may be an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkynyl group having 2 to 8 carbon atoms, or an aryl group having 6 to 10 carbon atoms. be. A hydrogen atom, a methyl group, an ethyl group, or a phenyl group which may have a substituent is preferred.
l and m are each independently an integer from 0 to 200, provided that the sum is 2 to 200;
 好ましくは、下記式(5)で表される連結基を有する。
Figure JPOXMLDOC01-appb-C000006
 R10~R13は、上記式(4)のRと同意である。Z2は-O-、-N(R14)-、-CO-、-CS-、-SO-、-SO2-又は-C(R15R16)-である。ここで、R14~R16は、水素原子、又は炭素数が1~8個のアルキル基である。
Preferably, it has a linking group represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000006
R10 to R13 are the same as R in formula (4) above. Z2 is -O-, -N(R14)-, -CO-, -CS-, -SO-, -SO2- or -C(R15R16)-. Here, R14 to R16 are hydrogen atoms or alkyl groups having 1 to 8 carbon atoms.
 Y1,Y2はそれぞれ独立に、カルボニル基、アリル基を含む置換基、又は単結合を表す。好ましくは、単結合又は下記構造式(6)で示されるアリル基を有する置換基である。
Figure JPOXMLDOC01-appb-C000007
 ここで、R17は-O-、-SO2-、-C(CH3)2-、又は単結合である。R18、R19はそれぞれ独立に水素、又はアリル基であり、どちらかは必ずアリル基である。R20は式(7)のいずれかで示される基である。nは1~19の整数であり、望ましくは1~3の整数である。
Figure JPOXMLDOC01-appb-C000008
Y1 and Y2 each independently represent a carbonyl group, a substituent containing an allyl group, or a single bond. Preferred is a substituent having a single bond or an allyl group represented by the following structural formula (6).
Figure JPOXMLDOC01-appb-C000007
where R17 is -O-, -SO2-, -C(CH3)2-, or a single bond. Each of R18 and R19 is independently hydrogen or an allyl group, and one of them is always an allyl group. R20 is a group represented by any one of formula (7). n is an integer of 1-19, preferably an integer of 1-3.
Figure JPOXMLDOC01-appb-C000008
 式(4)中のA1、A2は、式(8)のいずれかの構造で示される置換基を表す。
Figure JPOXMLDOC01-appb-C000009
A1 and A2 in formula (4) each represent a substituent represented by any structure of formula (8).
Figure JPOXMLDOC01-appb-C000009
(B)成分としてのリン系難燃剤について説明する。
 リン系難燃剤の含有量は、(A)成分と(B)成分の合計量に対するリン含有率が1.0~5.0質量%であり、好ましくは1.5~4.0質量%であり、さらに好ましくは1.8~3.5質量%である。1.0質量%より少ないとリンの効果が弱く(C)成分との相乗効果があっても十分な難燃性が発現せず、5.0質量%ではブリードアウトが生じやすく、また誘電特性が悪化するので好ましくない。
The phosphorus-based flame retardant as the component (B) will be described.
The content of the phosphorus-based flame retardant is 1.0 to 5.0% by mass, preferably 1.5 to 4.0% by mass, based on the total amount of components (A) and (B). Yes, more preferably 1.8 to 3.5% by mass. If it is less than 1.0% by mass, the effect of phosphorus is weak, and even if there is a synergistic effect with the component (C), sufficient flame retardancy cannot be obtained. It is not preferable because it worsens
(B)成分のリン系難燃剤は、従来公知の方法によって得られるもの、又は市販品を用いることができる。好ましくは、リン酸エステル化合物、ホスファゼン化合物、ホスホン酸エステル化合物、ホスフィン酸エステル化合物、ホスフィン酸エステル化合物およびホスフィンオキシド化合物であり、これらは1種単独で、又は2種以上を組み合わせて用いてもよい。これらのリン系難燃剤は、その構造中に反応性基を有しても良く、有しなくても良い。反応性基とは、グリシジルエーテル基、水酸基、アミノ基、メタクリロイル基、及びビニルベンジルエーテル基など、単独で、又は他の官能基と組み合わせることで反応する置換基を指す。反応性基を有することで、難燃剤のブリードアウトの防止、熱特性の低下を防ぐことが可能である。分子中に成分Aと共重合可能なラジカル重合性の炭素-炭素不飽和二重結合(ビニル結合)を有する反応性リン化合物であることが好ましい。この場合、ビニル当量は、好ましくは150~2000g/eq、より好ましくは200~1000g/eqである。
 以下、反応性基を有しない難燃剤を添加型難燃剤、反応性基を有するものを反応型難燃剤と呼ぶ。
(B) The phosphorus-based flame retardant of the component can be obtained by a conventionally known method or a commercially available product. Phosphate ester compounds, phosphazene compounds, phosphonate ester compounds, phosphinate ester compounds, phosphinate ester compounds and phosphine oxide compounds are preferred, and these may be used alone or in combination of two or more. . These phosphorus-based flame retardants may or may not have reactive groups in their structures. Reactive groups refer to substituents that react alone or in combination with other functional groups, such as glycidyl ether groups, hydroxyl groups, amino groups, methacryloyl groups, and vinylbenzyl ether groups. By having a reactive group, it is possible to prevent bleeding out of the flame retardant and deterioration of thermal properties. A reactive phosphorus compound having a radically polymerizable carbon-carbon unsaturated double bond (vinyl bond) copolymerizable with component A in the molecule is preferred. In this case, the vinyl equivalent is preferably 150-2000 g/eq, more preferably 200-1000 g/eq.
Hereinafter, a flame retardant having no reactive group is referred to as an additive flame retardant, and a flame retardant having a reactive group is referred to as a reactive flame retardant.
 リン酸エステル化合物としては、例えば、トリメチルホスフェート(TMP)、トリエチルホスフェート(TEP)、トリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート(TXP)、クレジルジフェニルホスフェート(CDP)、トリス(2-エチルヘキシル)ホスフェート等のモノマー型リン酸エステル系化合物、レゾルシノールビス-ジフェニルホスフェート、ビスフェノールAビス-ジフェニルホスフェート(BADP)、ビフェノールビス-ジフェニルホスフェート、ビスフェノールAビス-ジクレジルホスフェート、レゾルシノールビス-ジキシレニルホスフェート、ビフェノールビス-ジキシレニルホスフェート、レゾルシノールビス-キシレニルホスフェート、ビスフェノールAビス-ジキシレニルホスフェート等の、オキシ塩化リンと二価のフェノール系化合物とフェノール(又はアルキルフェノール)との反応生成物である芳香族縮合リン酸エステル系化合物等が添加型難燃剤として挙げられる。
 これらの中でも誘電特性と難燃性を両立させる点から、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート(TXP)、ビスフェノールAビス-ジクレジルホスフェート、レゾルシノールビス-ジキシレニルホスフェート、ビフェノールビス-ジキシレニルホスフェート、レゾルシノールビス-キシレニルホスフェート、ビスフェノールAビス-ジキシレニルホスフェートが好ましく、レゾルシノールビス-ジキシレニルホスフェート、ビフェノールビス-ジキシレニルホスフェート、レゾルシノールビス-キシレニルホスフェート、ビスフェノールAビス-ジキシレニルホスフェートがより好ましい。
Phosphate ester compounds include, for example, trimethyl phosphate (TMP), triethyl phosphate (TEP), triphenyl phosphate (TPP), tricresyl phosphate (TCP), trixylenyl phosphate (TXP), cresyl diphenyl phosphate (CDP ), monomeric phosphoric ester compounds such as tris(2-ethylhexyl) phosphate, resorcinol bis-diphenyl phosphate, bisphenol A bis-diphenyl phosphate (BADP), biphenol bis-diphenyl phosphate, bisphenol A bis-dicresyl phosphate, resorcinol Phosphorus oxychloride, dihydric phenolic compound and phenol (or alkylphenol) such as bis-dixylenyl phosphate, biphenol bis-dixylenyl phosphate, resorcinol bis-xylenyl phosphate, bisphenol A bis-dixylenyl phosphate, etc. An aromatic condensed phosphoric acid ester compound, which is a reaction product with, and the like can be mentioned as the additive type flame retardant.
Among these, tricresyl phosphate (TCP), trixylenyl phosphate (TXP), bisphenol A bis-dicresyl phosphate, resorcinol bis-dixylenyl phosphate, biphenol bis- Dixylenyl phosphate, resorcinol bis-xylenyl phosphate, bisphenol A bis-dixylenyl phosphate are preferred, resorcinol bis-dixylenyl phosphate, biphenol bis-dixylenyl phosphate, resorcinol bis-xylenyl phosphate, bisphenol A Bis-dixylenyl phosphate is more preferred.
 リン酸エステル化合物としては、下記一般式(9)で表される反応型難燃剤も挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 一般式(9)において、R21、R22、R23、R24及びR25は、それぞれ独立して直鎖又は分岐鎖の炭素数1~5のアルキル基である。p1、p2、p3、p4及びp5は、置換数を表し、それぞれ独立して0~4の整数である。但し、p1+p2+p3+p4≧4である。R21、R22、R23、R24又はR25が複数存在する場合、複数のR21、R22、R23、R24又はR25は同一であってもよく異なっていてもよい。
 Yは、それぞれ独立して水酸基、(メタ)アクリロイルオキシ基、又はビニルベンジルエーテル基である。
Examples of phosphate ester compounds include reactive flame retardants represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000010
In formula (9), R21, R22, R23, R24 and R25 are each independently a linear or branched alkyl group having 1 to 5 carbon atoms. p1, p2, p3, p4 and p5 represent the number of substitutions, each independently an integer of 0-4. However, p1+p2+p3+p4≧4. When a plurality of R21, R22, R23, R24 or R25 are present, the plurality of R21, R22, R23, R24 or R25 may be the same or different.
Each Y is independently a hydroxyl group, a (meth)acryloyloxy group, or a vinylbenzyl ether group.
 R21、R22、R23、R24又はR25が表すアルキル基の具体例としては、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチルなどが挙げられる。これらの中でも、入手のし易さの観点から、メチル基が特に好ましい。R21、R22、R23、R24又はR25の芳香環上での置換位置は、特に限定されない。好ましくは、R21、R22、R23、R24又はR25の置換基が、それぞれ独立して、リン酸エステル結合に対して、オルト位またはメタ位に存在する。より好ましくは、R21、R22、R23、R24又はR25の置換基が、それぞれ独立して、リン酸エステル結合に対して、オルト位またはメタ位に存在し、なおかつR21、R22、R23、R24又はR25の少なくとも1つの置換基がオルト位に存在する。1つ以上のアルキル基がリン酸エステル結合に対してオルト位に存在することで、リン酸エステル部位が疎水的に遮蔽され、加水分解も抑制することが可能となる。 Specific examples of alkyl groups represented by R21, R22, R23, R24 or R25 include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl and the like. . Among these, a methyl group is particularly preferable from the viewpoint of availability. The substitution position on the aromatic ring of R21, R22, R23, R24 or R25 is not particularly limited. Preferably, each R21, R22, R23, R24 or R25 substituent is independently in the ortho or meta position relative to the phosphate ester linkage. More preferably, the substituents of R21, R22, R23, R24 or R25 are each independently in the ortho or meta position relative to the phosphate ester bond and R21, R22, R23, R24 or R25 is in the ortho position. The presence of one or more alkyl groups ortho to the phosphate ester bond can hydrophobically shield the phosphate ester moiety and inhibit hydrolysis.
 式(9)中、Yは、それぞれ独立してフェノール性水酸基、(メタ)アクリロイルオキシ基またはビニルベンジルエーテル基である。 式(9)中、q1、q2、q3およびq4は、各ベンゼン環に結合しているフェノール性水酸基、(メタ)アクリロイルオキシ基またはビニルベンジルエーテル基の置換数を表す。ここで、q1、q2、q3およびq4はそれぞれ独立して0以上2以下の整数である。ただし、少なくとも1つのq1、q2、q3またはq4が1以上であり、かつ、分子中に少なくとも一つ以上、好ましくは2つ以上の(メタ)アクリロイルオキシ基、またはビニルベンジルエーテル基を有する。1つ以上の(メタ)アクリロイルオキシ基またはビニルベンジルエーテル基を有することで、硬化物中に難燃成分成分(A)と反応することで固定化され、ブリードアウトすることがなく、耐熱性の低下も抑制することが可能となる。
 リン含有フェノール中、Yの芳香環上での置換位置は、特に限定されないが、反応性の観点から、リン酸エステル結合に対して、パラ位に結合していることが好ましい。
In formula (9), each Y is independently a phenolic hydroxyl group, a (meth)acryloyloxy group or a vinylbenzyl ether group. In formula (9), q1, q2, q3 and q4 represent the number of substitutions of phenolic hydroxyl groups, (meth)acryloyloxy groups or vinylbenzyl ether groups bonded to each benzene ring. Here, q1, q2, q3 and q4 are each independently an integer of 0 or more and 2 or less. However, at least one of q1, q2, q3 or q4 is 1 or more and has at least one or more, preferably two or more (meth)acryloyloxy groups or vinylbenzyl ether groups in the molecule. By having one or more (meth)acryloyloxy groups or vinylbenzyl ether groups, it is fixed by reacting with the flame retardant component (A) in the cured product, and is heat resistant without bleeding out. It is also possible to suppress the decrease.
In the phosphorus-containing phenol, the substitution position of Y on the aromatic ring is not particularly limited, but from the viewpoint of reactivity, it is preferably bonded at the para position with respect to the phosphate ester bond.
 ホスファゼン化合物としては、下記の一般式(10)で表される環状ホスファゼン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 式(10)中、R26及びR27は、各々独立に炭素数6~20の芳香族炭化水素基を示し、R26とR27は環状構造を形成しても良い。tは、3~20の整数を示す。
Examples of the phosphazene compound include cyclic phosphazene compounds represented by the following general formula (10).
Figure JPOXMLDOC01-appb-C000011
In formula (10), R26 and R27 each independently represent an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R26 and R27 may form a cyclic structure. t represents an integer of 3-20.
 炭素数6~20の芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基等が挙げられる。
 炭素数6~20の芳香族炭化水素基は置換基を有していてもよく、置換基を有していなくてもよい。該置換基としては、カルボキシ基、ハロゲン原子、脂肪族炭化水素基、アシル基、アルコキシ基、シアノ基、水酸基、メタクリロイルオキシ基、ビニルベンジルエーテル基、これらの置換基が連結した基等が挙げられる。芳香族炭化水素基が置換基を有する場合、上記炭素数には置換基の炭素数は含まれない。
Examples of aromatic hydrocarbon groups having 6 to 20 carbon atoms include phenyl group, naphthyl group, biphenyl group and anthranyl group.
The aromatic hydrocarbon group having 6 to 20 carbon atoms may or may not have a substituent. Examples of the substituent include a carboxy group, a halogen atom, an aliphatic hydrocarbon group, an acyl group, an alkoxy group, a cyano group, a hydroxyl group, a methacryloyloxy group, a vinylbenzyl ether group, a group in which these substituents are linked, and the like. . When the aromatic hydrocarbon group has a substituent, the carbon number of the substituent is not included in the number of carbon atoms.
 ホスホン酸エステルとしては、例えば、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2-エチルヘキシル)、ホスホン酸ジオクチル、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、メチルホスホン酸ジオクチル、エチルホスホン酸ジエチル、エチルホスホン酸ジオクチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、フェニルホスホン酸ジオクチル、(メトキシメチル)ホスホン酸ジエチル、(メトキシメチル)ホスホン酸ジオクチル、ビニルホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2-ヒドロキシエチル)ホスホン酸ジメチル、(メトキシメチル)ホスホン酸ジオクチル、p-メチルベンジルホスホン酸ジエチル、p-メチルベンジルホスホン酸ジオクチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert-ブチル、ジエチルホスホン酸ジオクチル、(4-クロロベンジル)ホスホン酸ジエチル、(4-クロロベンジル)ホスホン酸ジオクチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、シアノホスホン酸ジオクチル、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジオクチル、(メチルチオメチル)ホスホン酸ジエチル、下記式(11)、(12)および(13)で表される化合物を挙げることができ、反応型難燃剤としてはジメチルビニルホスホナート、ジエチルビニルホスホナート、ジフェニルビニルホスホナート、およびそれらの誘導体化合物を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
 式中、R28~R32は、互いに同一又は異なって、水素原子又は置換基を有していても良い炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000013
 式中、R33は、炭素数が1~18であり、アルキレン基、アリーレン基、アルキルアリーレン基、シクロアルキレン基、ヘテロアルキレン基、ヘテロシクロアルキレン基又はヘテロアリーレン基であって、置換基を有していても良いものを示す。
Figure JPOXMLDOC01-appb-C000014
 式中、R34及びR35は同一又は異なるものであり、下記一般式(14)で表される。
Figure JPOXMLDOC01-appb-C000015
 式中、R36は炭素数1~5の分岐状又は直鎖状の脂肪族炭化水素基であり、Arは、置換基を有してもよいフェニル基、ナフチル基又はアントリル基であり、AL中の任意の炭素原子に結合する。uは1~3の整数を示す。
Phosphonate esters include, for example, dimethyl phosphonate, diethyl phosphonate, bis(2-ethylhexyl) phosphonate, dioctyl phosphonate, dilauryl phosphonate, dioleyl phosphonate, diphenyl phosphonate, dibenzyl phosphonate, dimethyl methylphosphonate, and methylphosphonate. diphenyl acid, dioctyl methylphosphonate, diethyl ethylphosphonate, dioctyl ethylphosphonate, diethyl benzylphosphonate, dimethyl phenylphosphonate, diethyl phenylphosphonate, dipropyl phenylphosphonate, dioctyl phenylphosphonate, diethyl (methoxymethyl)phosphonate, (Methoxymethyl) dioctyl phosphonate, diethyl vinyl phosphonate, diethyl vinyl phosphonate, diethyl hydroxymethyl phosphonate, diethyl hydroxymethyl phosphonate, (2-hydroxyethyl) dimethyl phosphonate, (methoxymethyl) dioctyl phosphonate, p-methylbenzyl diethyl phosphonate, dioctyl p-methylbenzylphosphonate, diethylphosphonoacetic acid, ethyl diethylphosphonoacetate, tert-butyl diethylphosphonoacetate, dioctyl diethylphosphonate, (4-chlorobenzyl)diethylphosphonate, (4-chloro benzyl)dioctylphosphonate, diethyl cyanophosphonate, diethyl cyanomethylphosphonate, dioctyl cyanophosphonate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl 3,5-di-tert-butyl-4 -dioctyl hydroxybenzylphosphonate, diethyl (methylthiomethyl)phosphonate, and compounds represented by the following formulas (11), (12) and (13), and reactive flame retardants include dimethylvinylphosphonate, Non-limiting examples include diethyl vinyl phosphonate, diphenyl vinyl phosphonate, and derivative compounds thereof.
Figure JPOXMLDOC01-appb-C000012
In the formula, R28 to R32 are the same or different and represent a hydrogen atom or a hydrocarbon group which may have a substituent.
Figure JPOXMLDOC01-appb-C000013
In the formula, R33 has 1 to 18 carbon atoms and is an alkylene group, an arylene group, an alkylarylene group, a cycloalkylene group, a heteroalkylene group, a heterocycloalkylene group or a heteroarylene group, having a substituent Show what is good.
Figure JPOXMLDOC01-appb-C000014
In the formula, R34 and R35 are the same or different and represented by the following general formula (14).
Figure JPOXMLDOC01-appb-C000015
In the formula, R36 is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, Ar is a phenyl group, naphthyl group or anthryl group which may have a substituent, and in AL to any carbon atom of u represents an integer of 1 to 3;
 ホスフィン酸エステル化合物としては、例えば、ジメチルホスフィン酸メチル、ジメチルホスフィン酸エチル、ジメチルホスフィン酸n-ブチル、ジメチルホスフィン酸シクロヘキシル、ジメチルホスフィン酸ビニル、ジメチルホスフィン酸フェニル、エチルメチルホスフィン酸メチル、エチルメチルホスフィン酸エチル、エチルメチルホスフィン酸n-ブチル、エチルメチルホスフィン酸シクロヘキシル、エチルメチルホスフィン酸ビニル、エチルメチルホスフィン酸フェニル、ジエチルホスフィン酸メチル、ジエチルホスフィン酸エチル、ジエチルホスフィン酸n-ブチル、ジエチルホスフィン酸シクロヘキシル、ジエチルホスフィン酸ビニル、ジエチルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸エチル、ジフェニルホスフィン酸n-ブチル、ジフェニルホスフィン酸シクロヘキシル、ジフェニルホスフィン酸ビニル、ジフェニルホスフィン酸フェニル、メチル-n-プロピルホスフィン酸メチル、メチル-n-プロピルホスフィン酸エチル、メチル-n-プロピルホスフィン酸n-ブチル、メチル-n-プロピルホスフィン酸シクロヘキシル、メチル-n-プロピルホスフィン酸ビニル、メチル-n-プロピルホスフィン酸フェニル、ジオレイルホスフィン酸メチル、ジオレイルホスフィン酸エチル、ジオレイルホスフィン酸n-ブチル、ジオレイルホスフィン酸シクロヘキシル、ジオレイルホスフィン酸ビニル、ジオレイルホスフィン酸フェニル、下記一般式(15)で表される構造を含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 R37、R38、R39、R40は、それぞれ独立的に、水素原子、炭素原子数1~4のアルキル基、フェニル基、アラルキル基を表す。
Examples of phosphinate compounds include methyl dimethylphosphinate, ethyl dimethylphosphinate, n-butyl dimethylphosphinate, cyclohexyl dimethylphosphinate, vinyl dimethylphosphinate, phenyl dimethylphosphinate, methyl ethylmethylphosphinate, and ethylmethylphosphine. ethyl acetate, n-butyl ethylmethylphosphinate, cyclohexyl ethylmethylphosphinate, vinyl ethylmethylphosphinate, phenyl ethylmethylphosphinate, methyl diethylphosphinate, ethyl diethylphosphinate, n-butyl diethylphosphinate, cyclohexyl diethylphosphinate , vinyl diethylphosphinate, phenyl diethylphosphinate, methyl diphenylphosphinate, ethyl diphenylphosphinate, n-butyl diphenylphosphinate, cyclohexyl diphenylphosphinate, vinyl diphenylphosphinate, phenyl diphenylphosphinate, methyl-n-propylphosphinate methyl, ethyl methyl-n-propylphosphinate, n-butyl methyl-n-propylphosphinate, cyclohexyl methyl-n-propylphosphinate, vinyl methyl-n-propylphosphinate, phenyl methyl-n-propylphosphinate, di Methyl dioleylphosphinate, ethyl dioleylphosphinate, n-butyl dioleylphosphinate, cyclohexyl dioleylphosphinate, vinyl dioleylphosphinate, phenyl dioleylphosphinate, and structures represented by the following general formula (15) compound.
Figure JPOXMLDOC01-appb-C000016
R37, R38, R39 and R40 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group or an aralkyl group.
 ホスフィンオキシド化合物としては、トリフェニルホスフィンオキシド及びトリス(2-シアノエチル)ホスフィンオキシド、ジフェニルビニルホスフィンオキシド等が挙げられる。 Phosphine oxide compounds include triphenylphosphine oxide, tris(2-cyanoethyl)phosphine oxide, and diphenylvinylphosphine oxide.
 次に、(C)成分としてのアルコキシイミノ(NOR)型ヒンダードアミン化合物について説明するが、N-アルコキシル基(>N-OR)の構造を有するものであれば特に限定されない。
 (C)成分を含むことで、難燃性と接着性が向上する。(C)成分を含むことで燃焼時に気相でのラジカルトラップ効果を発揮し、難燃性が向上する。更に(C)成分を含むことで金属張積層板において接着性を上げる理由としては定かではないが、樹脂組成物の硬化時に固相においてラジカルをトラップすることで、硬化反応の遅延を引き起こし、最低溶融粘度が低下することで、プリプレグ間の馴染みが良くなり、銅箔とのアンカー効果も得られやすくなるためと考えられる。
Next, the alkoxyimino (NOR) type hindered amine compound as the component (C) will be described, but it is not particularly limited as long as it has an N-alkoxyl group (>N-OR) structure.
Including component (C) improves flame retardancy and adhesiveness. By containing the component (C), a radical trapping effect is exhibited in the gas phase during combustion, and flame retardancy is improved. Furthermore, although it is not clear why the addition of the component (C) improves the adhesiveness in the metal-clad laminate, it causes a delay in the curing reaction by trapping radicals in the solid phase during curing of the resin composition, resulting in a minimum This is probably because the decrease in melt viscosity improves compatibility between the prepregs and makes it easier to obtain an anchor effect with the copper foil.
 (C)成分のNOR型ヒンダードアミン化合物の含有量は、(A)成分のラジカル重合性化合物と(B)成分のリン系難燃剤の合計を100質量部としたときに、0.2~5.0質量%であり、好ましくは0.3~4.0質量%であり、より好ましくは0.4~3.0質量%であり、さらに好ましくは0.5~2.0質量%である。0.2質量%以下では、リンとの相乗効果が得られず難燃性が向上せず、さらに接着性の向上も見られない。また、NOR型ヒンダードアミンから生じるラジカルは、気相でのラジカルトラップにより難燃性を向上させるものの、同時にポリマー鎖を分解する性質も有するため、5.0%より多く過剰に含まれると、トラップ効果を分解での難燃性悪化が上回り難燃性が悪化する。 The content of the NOR-type hindered amine compound of component (C) is 0.2 to 5.0 parts by mass when the total of the radically polymerizable compound of component (A) and the phosphorus-based flame retardant of component (B) is 100 parts by mass. It is 0% by mass, preferably 0.3 to 4.0% by mass, more preferably 0.4 to 3.0% by mass, still more preferably 0.5 to 2.0% by mass. If it is 0.2% by mass or less, a synergistic effect with phosphorus cannot be obtained, flame retardancy is not improved, and adhesion is not improved. In addition, although radicals generated from NOR-type hindered amines improve flame retardancy by trapping radicals in the gas phase, they also have the property of decomposing polymer chains at the same time. Deterioration of flame retardancy due to decomposition exceeds the deterioration of flame retardancy.
 NOR型ヒンダードアミン系化合物の具体例としては、以下の化合物が挙げられる:1-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-オクタデシルアミノピペリジン;ビス(1-オクチルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)セバケート;2,4-ビス[(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)ブチルアミノ]-6-(2-ヒドロキシエチルアミノ)-s-トリアジン;ビス(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)アジペート;4,4’-ヘキサメチレンビス(アミノ-2,2,6,6-テトラメチルピペリジン)と、2-クロロ-4,6-ビス(ジブチルアミノ)-s-トリアジンで末端キャップされた2,4-ジクロロ-6-[(1-オクチルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)ブチルアミノ]-s-トリアジンとの縮合生成物であるオリゴマー性化合物;4,4’-ヘキサメチレンビス(アミノ-2,2,6,6-テトラメチルピペリジン)と、2-クロロ-4,6-ビス(ジブチルアミノ)-s-トリアジンで末端キャップされた2,4-ジクロロ-6-[(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)ブチルアミノ]-s-トリアジンとの縮合性生成物であるオリゴマー性化合物;2,4-ビス[(1-シクロヘキシルオキシ-2,2,6,6-ピペリジン-4-イル)-6-クロロ-s-トリアジン;過酸化処理した4-ブチルアミノ-2,2,6,6-テトラメチルピペリジンと、2,4,6-トリクロロ-s-トリアジンと、シクロヘキサンと、N,N’-エタン-1,2-ジイルビス(1,3-プロパンジアミン)との反応生成物(N,N’,N’’’-トリス{2,4-ビス[(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6-イル}-3,3’-エチレンジイミノジプロピルアミン);ビス(1-ウンデカノキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート;1-ウンデシルオキシ-2,2,6,6-テトラメチルピペリジン-4-オン;ビス(1-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート。 Specific examples of NOR-type hindered amine compounds include the following compounds: 1-cyclohexyloxy-2,2,6,6-tetramethyl-4-octadecylaminopiperidine; bis(1-octyloxy-2,2 ,6,6-tetramethylpiperidin-4-yl) sebacate; 2,4-bis[(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-6-( 2-hydroxyethylamino)-s-triazine; bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)adipate; 4,4′-hexamethylenebis(amino-2,2 ,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(1-octyloxy-2, Oligomeric compounds which are condensation products with 2,6,6-tetramethylpiperidin-4-yl)butylamino]-s-triazine; 4,4′-hexamethylenebis(amino-2,2,6,6 -tetramethylpiperidine) and 2,4-dichloro-6-[(1-cyclohexyloxy-2,2,6, Oligomeric compounds which are condensation products with 6-tetramethylpiperidin-4-yl)butylamino]-s-triazine; 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidine -4-yl)-6-chloro-s-triazine; peroxide-treated 4-butylamino-2,2,6,6-tetramethylpiperidine, 2,4,6-trichloro-s-triazine, and cyclohexane and the reaction product of N,N′-ethane-1,2-diylbis(1,3-propanediamine) (N,N′,N′″-tris{2,4-bis[(1-cyclohexyl oxy-2,2,6,6-tetramethylpiperidin-4-yl)n-butylamino]-s-triazin-6-yl}-3,3′-ethylenediiminodipropylamine); bis(1- Undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate; 1-undecyloxy-2,2,6,6-tetramethylpiperidin-4-one; bis(1-stearyloxy-2 , 2,6,6-tetramethylpiperidin-4-yl)carbonate.
 市販品としては、BASF社製FlamestabNOR116FF、TINUVIN NOR371、TINUVIN XT850FF、TINUVIN XT855FF、TINUVIN PA123、株式会社ADEKA製LA-81等を例示することができる。NOR型ヒンダードアミン系化合物は1種を単独で、又は2種以上を組み合わせて用いてもよい。 Examples of commercially available products include BASF's Flamestab NOR116FF, TINUVIN NOR371, TINUVIN XT850FF, TINUVIN XT855FF, TINUVIN PA123, and LA-81 manufactured by ADEKA Corporation. The NOR-type hindered amine compounds may be used singly or in combination of two or more.
 次に(D)成分のラジカル重合開始剤について説明する。ラジカル重合開始剤としては、光または熱でラジカルを生じるラジカル重合開始剤が挙げられるが、光重合開始剤または熱重合開始剤を単独で使用しても良く、また併用しても良い。
 光重合開始剤としては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のべンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オンなどのアセトフェノン類;2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフエノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノンなどのべンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類等が挙げられる。
 熱ラジカル開始剤としては、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物があるがこれらに限定されない。また過酸化物ではないが、2,3-ジメチル-2,3-ジフェニルブタンも、ラジカル重合開始剤として使用できる。しかし、これらの例に限定されるものではなく、ラジカル開始剤2種以上を組み合わせて用いてもよい。
Next, the radical polymerization initiator of component (D) will be described. Examples of radical polymerization initiators include radical polymerization initiators that generate radicals with light or heat. Photopolymerization initiators or thermal polymerization initiators may be used alone or in combination.
Examples of photopolymerization initiators include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; 2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1-[4-( acetophenones such as methylthio)phenyl]-2-morpholinopropan-1-one; anthraquinones such as 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-chloroanthraquinone, and 2-amylanthraquinone; 2,4-diethylthioxanthone , 2-isopropylthioxanthone, 2-chlorothioxanthone, and other thioxanthones; acetophenone dimethyl ketal, benzyl dimethyl ketal, and other ketals; benzophenone, 4-benzoyl-4'-methyldiphenylsulfide, 4,4'-bismethylaminobenzophenone, etc. and phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
Thermal radical initiators include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy) Hexyne-3, di-t-butyl peroxide, t-butyl cumyl peroxide, 1,3-bis(butylperoxyisopropyl)benzene, α,α'-bis(t-butylperoxy-m-isopropyl)benzene , 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis(t -butylperoxy)butane, 2,2-bis(t-butylperoxy)octane, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, di(trimethylsilyl)peroxide, trimethylsilyltriphenylsilyl Peroxides include, but are not limited to, peroxides. Although not a peroxide, 2,3-dimethyl-2,3-diphenylbutane can also be used as a radical polymerization initiator. However, it is not limited to these examples, and two or more radical initiators may be used in combination.
 本発明のハロゲンフリー難燃硬化性樹脂組成物は、リン含有率が(A)成分と(B)成分の合計に対して1.0~5.0質量%であり、(C)成分の含有量が(A)成分と(B)成分の合計100質量部に対して0.2~5.0質量%である。この範囲とすることでリン系難燃剤とNOR型ヒンダードアミン化合物が相乗的に作用し、難燃性と接着性がバランス良く発現する。 The halogen-free flame-retardant curable resin composition of the present invention has a phosphorus content of 1.0 to 5.0% by mass with respect to the total of components (A) and (B), and contains component (C). The amount is 0.2 to 5.0% by mass with respect to the total of 100 parts by mass of components (A) and (B). Within this range, the phosphorus-based flame retardant and the NOR-type hindered amine compound act synergistically to develop flame retardancy and adhesiveness in a well-balanced manner.
 (D)成分のラジカル重合開始剤の配合量は、(A)成分と(B)成分の合計量100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部である。この範囲より少ないと重合反応が十分進行せず、多いと機械物性が低下するため好ましくない。 The amount of the radical polymerization initiator of component (D) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of the total amount of components (A) and (B). 5 parts by weight. If it is less than this range, the polymerization reaction will not proceed sufficiently, and if it is more than this range, the mechanical properties will be lowered, which is not preferable.
 本発明のハロゲンフリー難燃硬化性樹脂組成物には、上述した成分の他、その他の成分として、熱硬化性樹脂、熱可塑性樹脂、有機充填剤、無機充填剤、有機溶媒、増粘剤、消泡剤、密着性付与剤、着色剤、添加剤などを適宜配合することができる。 In addition to the components described above, the halogen-free flame-retardant curable resin composition of the present invention contains thermosetting resins, thermoplastic resins, organic fillers, inorganic fillers, organic solvents, thickeners, An antifoaming agent, an adhesion imparting agent, a coloring agent, an additive and the like can be blended as appropriate.
 硬化性反応型樹脂としては、エポキシ樹脂、ポリシアナート樹脂、フェノール樹脂等を挙げることができる。 Examples of curable reactive resins include epoxy resins, polycyanate resins, and phenol resins.
 硬化性反応型樹脂がエポキシ樹脂である場合、1分子中に2以上のエポキシ基を有するエポキシ樹脂から選ばれる1種以上のエポキシ樹脂であることが好ましい。かかるエポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビフェニルエポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。このようなエポキシ樹脂を用いることによって、本発明の硬化性樹脂組成物の有する、優れた誘電特性と流動性への影響を最小限に留め、硬化物の耐熱性と密着性を充分に高められると考えられる。 When the curable reactive resin is an epoxy resin, it is preferably one or more epoxy resins selected from epoxy resins having two or more epoxy groups in one molecule. Examples of such epoxy resins include cresol novolak type epoxy resins, triphenylmethane type epoxy resins, biphenyl epoxy resins, naphthalene type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins. These may be used alone or in combination of two or more. By using such an epoxy resin, the influence on the excellent dielectric properties and fluidity of the curable resin composition of the present invention can be minimized, and the heat resistance and adhesion of the cured product can be sufficiently improved. it is conceivable that.
 熱可塑性樹脂としては、例えば、ポリスチレン、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、PPS樹脂、ポリシクロペンタジエン樹脂、ポリシクロオレフィン樹脂等や、既知の熱可塑性エラストマー、例えば、スチレン-エチレン-プロピレン共重合体、スチレン-エチレン-ブチレン共重合体、スチレン-ブタジエン共重合体、スチレン‐イソプレン共重合体、水添スチレン-ブタジエン共重合体、水添スチレン-イソプレン共重合体等や、あるいはゴム類、例えばポリブタジエン、ポリイソプレンを挙げることができる。好ましくは、ポリフェニレンエーテル樹脂(未変性)、水添スチレン-ブタジエン共重合体を挙げることができる。 Examples of thermoplastic resins include polystyrene, polyphenylene ether resins, polyetherimide resins, polyether sulfone resins, PPS resins, polycyclopentadiene resins, polycycloolefin resins, and known thermoplastic elastomers such as styrene- Ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene-isoprene copolymer, etc. Alternatively, rubbers such as polybutadiene and polyisoprene may be mentioned. Preferable examples include polyphenylene ether resin (unmodified) and hydrogenated styrene-butadiene copolymer.
 本発明のハロゲンフリー難燃硬化性樹脂組成物には、充填剤を配合することができる。充填剤としては、硬化性樹脂組成物の硬化物の、耐熱性や難燃性を高めるために添加するもの等が挙げられ、公知の充填剤を使用することができるが、特に限定されない。また、充填剤を含有させることによって、耐熱性、寸法安定性や難燃性等をさらに高めることができる。具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物を用いた場合、難燃助剤として作用し、リン含有率が少なくても難燃性を確保することが出来る。この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、これらの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 A filler can be added to the halogen-free flame-retardant curable resin composition of the present invention. Examples of fillers include those added to improve the heat resistance and flame retardancy of the cured product of the curable resin composition, and known fillers can be used, but are not particularly limited. Moreover, heat resistance, dimensional stability, flame retardancy, etc. can be further improved by incorporating a filler. Specifically, silica such as spherical silica, metal oxides such as alumina, titanium oxide and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, barium sulfate, and calcium carbonate etc. When a metal hydroxide such as aluminum hydroxide or magnesium hydroxide is used, it acts as a flame retardant aid and can ensure flame retardancy even if the phosphorus content is low. Among these, silica, mica, and talc are preferred, and spherical silica is more preferred. Moreover, these 1 type may be used independently and may be used in combination of 2 or more type.
 充填剤は、そのまま用いてもよいが、エポキシシランタイプ、又はアミノシランタイプ等のシランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、ラジカル重合開始剤との反応性との観点から、ビニルシランタイプ、メタクリロキシシランタイプ、アクリロキシシランタイプ、及びスチリルシランタイプのシランカップリング剤が好ましい。これにより、金属箔との接着強度や樹脂同士の層間接着強度が高まる。また、充填剤に予め表面処理する方法でなく、上記シランカップリング剤をインテグラルブレンド法で添加して用いてもよい。 The filler may be used as it is, or may be surface-treated with a silane coupling agent such as epoxysilane type or aminosilane type. From the viewpoint of reactivity with the radical polymerization initiator, vinylsilane-type, methacryloxysilane-type, acryloxysilane-type, and styrylsilane-type silane coupling agents are preferable as the silane coupling agent. As a result, the adhesive strength with the metal foil and the interlayer adhesive strength between resins are increased. Moreover, the silane coupling agent may be added by an integral blend method instead of the method of surface-treating the filler in advance.
 充填剤の含有量は、充填剤を除く固形分(モノマー等の有機成分と難燃剤を含み、溶剤を除く。)の合計100質量部に対して、10~200質量部であることが好ましく、30~150質量部であることが好ましい。 The content of the filler is preferably 10 to 200 parts by mass with respect to a total of 100 parts by mass of the solid content excluding the filler (including organic components such as monomers and flame retardants, excluding solvents). It is preferably 30 to 150 parts by mass.
 本発明のハロゲンフリー難燃硬化性樹脂組成物には、上記以外の添加剤をさらに含有してもよい。添加剤としては、例えば、シリコーン系消泡剤及びアクリル酸エステル系消泡剤等の消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、湿潤分散剤等の分散剤等が挙げられる。 The halogen-free flame-retardant curable resin composition of the present invention may further contain additives other than the above. Examples of additives include antifoaming agents such as silicone antifoaming agents and acrylic acid ester antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, dispersants such as wetting and dispersing agents. agents and the like.
 本発明のハロゲンフリー難燃硬化性樹脂組成物を硬化させて得られる硬化物は、成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、硬化性樹脂組成物を注型、或いはトランスファ-成形機、射出成形機などを用いて成形し、さらに80~230℃で0.5~10時間に加熱することにより硬化物を得ることができる。 The cured product obtained by curing the halogen-free flame-retardant curable resin composition of the present invention can be used as moldings, laminates, castings, adhesives, coatings, and films. For example, a cured product of a semiconductor encapsulating material is a cast or molded product, and methods for obtaining a cured product for such applications include casting a curable resin composition, or using a transfer molding machine, an injection molding machine, or the like. A cured product can be obtained by molding using the resin and heating at 80 to 230° C. for 0.5 to 10 hours.
 本発明のハロゲンフリー難燃硬化性樹脂組成物は、プリプレグとして使用することもできる。プリプレグを製造する際には、プリプレグを形成するための基材(繊維質基材)に含浸する目的、あるいは回路基板を形成する回路基板材料とする目的でワニス状に調製して、樹脂ワニスとすることができる。
 この樹脂ワニスは、回路基板用に適し、回路基板材料用ワニスとして使用できる。なお、ここでいう回路基板材料の用途は、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。
The halogen-free flame-retardant curable resin composition of the present invention can also be used as a prepreg. When producing a prepreg, it is prepared in the form of a varnish for the purpose of impregnating a base material (fibrous base material) for forming a prepreg, or for the purpose of being used as a circuit board material for forming a circuit board, and then mixed with a resin varnish. can do.
This resin varnish is suitable for circuit boards and can be used as a varnish for circuit board materials. It should be noted that the use of the circuit board material here specifically includes a printed wiring board, a printed circuit board, a flexible printed wiring board, a build-up wiring board, and the like.
 上記の樹脂ワニスは、例えば、以下のようにして調製される。 
 まず、樹脂等の有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて、無機充填材等の有機溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、分散させることにより、ワニス状の硬化性樹脂組成物が調製される。ここで用いられる有機溶媒としては、樹脂成分を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルアセトアミド、ジメチルホルムアミド等の極性溶剤類;トルエン、キシレン等の芳香族炭化水素溶剤類等が挙げられ、これらを1種または2種以上を混合して使用することも可能である。誘電特性の観点から、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類が好ましい。
The above resin varnish is prepared, for example, as follows.
First, each component that can be dissolved in an organic solvent, such as a resin, is put into an organic solvent and dissolved. At this time, it may be heated, if necessary. After that, if necessary, a component that does not dissolve in an organic solvent such as an inorganic filler is added and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like to obtain a varnish-like curable resin composition. is prepared. The organic solvent used here is not particularly limited as long as it dissolves the resin component and does not inhibit the curing reaction. For example, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate, propyl acetate and butyl acetate; polar solvents such as dimethylacetamide and dimethylformamide; aromatic hydrocarbon solvents such as toluene and xylene. It is also possible to use these alone or in combination of two or more. From the viewpoint of dielectric properties, aromatic hydrocarbons such as benzene, toluene and xylene are preferred.
 樹脂ワニスを作成する際に、使用する有機溶剤の量は、本発明の硬化性樹脂組成物100重量%に対して、好ましくは5~900重量%、より好ましくは10~700重量%、特に好ましくは20~500重量%である。なお、本発明の硬化性樹脂組成物が樹脂ワニス等の有機溶剤溶液である場合、その有機溶剤の量は組成物の計算には含めない。 When preparing the resin varnish, the amount of the organic solvent used is preferably 5 to 900% by weight, more preferably 10 to 700% by weight, and particularly preferably 100% by weight of the curable resin composition of the present invention. is 20 to 500% by weight. When the curable resin composition of the present invention is an organic solvent solution such as resin varnish, the amount of the organic solvent is not included in the calculation of the composition.
 プリプレグを作成するのに用いられる基材としては、公知の材料が用いられるが、例えば、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材がそれぞれ単独で、あるいは2種以上併せて用いられる。これら基材には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤など一般のものが使用できる。 Known materials are used as the base material used to prepare the prepreg. For example, base materials such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. Used in conjunction with more than one species. A coupling agent can be used for these base materials for the purpose of improving the adhesiveness at the interface between the resin and the base material, if necessary. Common coupling agents such as silane coupling agents, titanate coupling agents, aluminum coupling agents and zircoaluminate coupling agents can be used as the coupling agent.
 本発明のプリプレグを得る方法としては、上記樹脂ワニスを基材に含浸させた後、乾燥する方法が挙げられる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。含浸後に、100~180℃で1~30分加熱乾燥することでプリプレグを得ることができる。ここで、プリプレグ中の樹脂量は、樹脂分30~80重量%とすることが好ましい。 A method of obtaining the prepreg of the present invention includes a method of impregnating a base material with the above resin varnish and then drying it. Impregnation is performed by immersion (dipping), coating, or the like. The impregnation can be repeated multiple times as necessary, and at this time, the impregnation can be repeated using a plurality of solutions with different compositions and concentrations to finally adjust the desired resin composition and resin amount. It is possible. After impregnation, a prepreg can be obtained by drying by heating at 100 to 180° C. for 1 to 30 minutes. Here, the resin content in the prepreg is preferably 30 to 80% by weight.
 本発明のハロゲンフリー難燃硬化性樹脂組成物は、積層板としても使用することもできる。プリプレグを用いて積層板を形成する場合は、プリプレグを一又は複数枚積層し、片側又は両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。積層物を加熱加圧する条件としては、硬化性樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧力があまり低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成形性を満足する条件で加圧することが好ましい。例えば温度を180~230℃、圧力を49.0~490.3N/cm2(5~50kgf/cm2)、加熱加圧時間を40~240分間にそれぞれ設定することができる。更にこのようにして得られた単層の積層板を内層材として、多層板を作製することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の、片側又は両側の回路形成面に、樹脂シート、樹脂付き金属箔、又はプリプレグにて絶縁層を形成すると共に、絶縁層の表面に導体層を形成して、多層板を形成するものである。 The halogen-free flame-retardant curable resin composition of the present invention can also be used as a laminate. When forming a laminate using prepreg, one or more prepregs are laminated, metal foil is placed on one side or both sides to form a laminate, and this laminate is heated and pressed to be laminated and integrated. . Here, as the metal foil, copper, aluminum, brass, nickel, or the like can be used alone, as an alloy, or as a composite metal foil. The conditions for heating and pressurizing the laminate may be appropriately adjusted so as to cure the curable resin composition, but if the pressure is too low, air bubbles may form inside the resulting laminate. Since it may remain and the electrical characteristics may deteriorate, it is preferable to apply pressure under conditions that satisfy moldability. For example, the temperature can be set to 180 to 230° C., the pressure to 49.0 to 490.3 N/cm 2 (5 to 50 kgf/cm 2 ), and the heating/pressurizing time to 40 to 240 minutes. Further, a multi-layer board can be produced by using the single-layer laminate board thus obtained as an inner layer material. In this case, first, a circuit is formed on the laminate by an additive method, a subtractive method, or the like, and the surface of the formed circuit is treated with an acid solution for blackening to obtain an inner layer material. An insulating layer is formed on one or both sides of the inner layer material with a resin sheet, a resin-coated metal foil, or a prepreg, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board. It is.
 本発明のハロゲンフリー難燃硬化性組成物をビルドアップフィルムに使用することもできる。本発明の樹脂組成物からビルドアップフィルムを製造する方法は、例えば、上記樹脂ワニスを、支持フィルム上に塗布、乾燥させてフィルム状の絶縁層を形成する方法が挙げられる。このようにして形成させたフィルム状の絶縁層は、多層プリント配線板用のビルドアップフィルムとして使用できる。 The halogen-free flame-retardant curable composition of the present invention can also be used for build-up films. A method for producing a build-up film from the resin composition of the present invention includes, for example, a method of applying the above resin varnish onto a support film and drying to form a film-like insulating layer. The film-like insulating layer thus formed can be used as a build-up film for multilayer printed wiring boards.
 次に、実施例により本発明を説明するが、本発明はこれらにより限定されるものではない。各例中の部はいずれも重量部である。
(1)ポリマーの分子量及び分子量分布
 多官能ビニル芳香族共重合体の分子量及び分子量分布測定はGPC(東ソー製、HLC-8120GPC)を使用し、溶媒にテトラヒドロフラン、流量1.0ml/min、カラム温度38℃、単分散ポリスチレンによる検量線を用いて行った。
(2)ポリマーの構造:ポリマーの構造は、日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及び1H-NMR分析により測定した。溶媒としてクロロホルム-d1を使用し、テトラメチルシランの共鳴線を内部標準として使用した。さらに、13C-NMR及び1H-NMR測定結果に加えて、GC分析より得られる共重合体中に導入された各構造単位の総量に関するデータより、特定の構造単位の導入量を算出し、この末端に導入された特定の構造単位の導入量と上記のGPC測定より得られる数平均分子量とから、多官能ビニル芳香族共重合体中に含まれるペンダントビニル基単位の量を算出した。
(3)水酸基当量:JIS K 0070規格に準拠して測定した。具体的には、電位差滴定装置を用い、1、4-ジオキサンを溶剤に用い、1.5mol/L塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解して0.5mol/L-水酸化カリウムを使用して滴定した。
(4)電界脱離質量分析(FD-MS):日本電子製JMS-T100GCVにて分子量の測定を行った。
(5)リン含有率:試料に硫酸、塩酸、過塩素酸を加え、加熱して湿式灰化し、全てのリン原子をオルトリン酸とした。硫酸酸性溶液中でメタバナジン酸塩及びモリブデン酸塩を反応させ、生じたリンバナードモリブデン酸錯体の420nmにおける吸光度を測定し、予めリン酸二水素カリウムを用いて作成した検量線により、求めたリン原子含有率を%で表した。
(6)ビニル当量:JIS K 0070規格に準拠して測定した。具体的には、試料にウィイス液(一塩化ヨウ素溶液)を反応させ、暗所に放置し、その後、過剰の塩化ヨウ素をヨウ素に還元し、ヨウ素分をチオ硫酸ナトリウムで滴定してヨウ素価を算出した。ヨウ素価をビニル当量に換算した。
(7)比誘電率及び誘電正接:IPC-TM-6502.5.5.9規格に準じてマテリアルアナライザー(AGILENT Technologies社製)を用い、容量法により周波数1GHzにおける比誘電率(Dk)及び誘電正接(Df)を求めた。
(8)接着性(銅箔引き剥し強さ)
 幅20mm、長さ100mmの試験片を切り出し、銅箔面に幅10mmの平行な切り込みを入れた後、面に対して90°の方向に50mm/分の速さで連続的に銅箔を引き剥し、その時の応力を引張り試験機にて測定し、その応力の最低値を銅箔引き剥し強さ(ピール強度)として記録した。(JISC 6481に準拠)。単位はkN/mである。
(9)接着性(層間引き剥し強さ)
 銅箔引き剥がし強さと同様に、幅20mm、長さ100mmの試験片を切り出し、幅10mmの平行な切り込みを表層に入れた後、面に対して90°の方向に50mm/分の速さで連続的に表層のガラスクロスを引き剥し、その時の応力を引張り試験機にて測定し、その応力の最低値を銅箔引き剥し強さ(ピール強度)として記録した。(JISC 6481に準拠)。単位はkN/mである。
(10)難燃性:UL94に準じ、垂直法により評価した。評価は、5本の合計燃焼時間およびV-0、V-1、V-2、N.C(Non Classified)のクラスで記した。
EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to these. All parts in each example are parts by weight.
(1) Molecular weight and molecular weight distribution of polymer GPC (manufactured by Tosoh, HLC-8120GPC) was used to measure the molecular weight and molecular weight distribution of the polyfunctional vinyl aromatic copolymer, with tetrahydrofuran as the solvent, flow rate of 1.0 ml/min, and column temperature. Measurement was performed at 38° C. using a calibration curve with monodisperse polystyrene.
(2) Polymer structure: The polymer structure was measured by 13C-NMR and 1H-NMR analysis using a JNM-LA600 type nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d1 was used as solvent and the resonance line of tetramethylsilane was used as internal standard. Furthermore, in addition to the 13C-NMR and 1H-NMR measurement results, from the data on the total amount of each structural unit introduced into the copolymer obtained by GC analysis, the amount of specific structural units introduced was calculated, and this terminal The amount of pendant vinyl group units contained in the polyfunctional vinyl aromatic copolymer was calculated from the introduction amount of the specific structural unit introduced into the polyfunctional vinyl aromatic copolymer and the number average molecular weight obtained from the GPC measurement.
(3) Hydroxyl equivalent: Measured according to JIS K 0070 standard. Specifically, using a potentiometric titrator, 1,4-dioxane is used as a solvent, acetylation is performed with 1.5 mol/L acetyl chloride, and excess acetyl chloride is decomposed with water to obtain 0.5 mol/L- It was titrated using potassium hydroxide.
(4) Field desorption mass spectrometry (FD-MS): The molecular weight was measured with a JEOL JMS-T100GCV.
(5) Phosphorus content: Sulfuric acid, hydrochloric acid, and perchloric acid were added to the sample, which was heated and wet-ashed to convert all phosphorus atoms to orthophosphoric acid. Metavanadate and molybdate are reacted in an acidic solution of sulfuric acid, the absorbance at 420 nm of the resulting phosphorvanad molybdate complex is measured, and the phosphorus atom obtained is determined by a calibration curve prepared in advance using potassium dihydrogen phosphate. The content is expressed in %.
(6) Vinyl equivalent: Measured according to JIS K 0070 standard. Specifically, Wiiss solution (iodine monochloride solution) is reacted with the sample and left in a dark place, then excess iodine chloride is reduced to iodine, and the iodine content is titrated with sodium thiosulfate to determine the iodine value. Calculated. Iodine values were converted to vinyl equivalents.
(7) Relative permittivity and dielectric loss tangent: According to the IPC-TM-6502.5.5.9 standard, a material analyzer (manufactured by AGILENT Technologies) was used to determine the relative permittivity (Dk) and dielectric constant at a frequency of 1 GHz by the capacitance method. The tangent (Df) was determined.
(8) Adhesion (copper foil peel strength)
A test piece with a width of 20 mm and a length of 100 mm was cut out, and a parallel cut of 10 mm width was made on the surface of the copper foil. The stress at that time was measured with a tensile tester, and the lowest value of the stress was recorded as the copper foil peeling strength (peel strength). (Compliant with JISC 6481). The unit is kN/m.
(9) Adhesiveness (interlayer peeling strength)
As with the copper foil peel strength, cut out a test piece with a width of 20 mm and a length of 100 mm, make a parallel cut with a width of 10 mm in the surface layer, and then cut it at a speed of 50 mm / min in a direction of 90 ° to the surface. The glass cloth of the surface layer was continuously peeled off, the stress at that time was measured with a tensile tester, and the minimum value of the stress was recorded as the copper foil peel strength (peel strength). (Compliant with JISC 6481). The unit is kN/m.
(10) Flame retardancy: Evaluated by vertical method according to UL94. The evaluation was given by the total burning time of 5 tubes and the classes of V-0, V-1, V-2 and NC (Non Classified).
(合成例1)
 ジビニルベンゼン 2.25モル(292.9g)、エチルビニルベンゼン 1.32モル(172.0g)、スチレン 11.43モル(1190.3g)、酢酸n-プロピル 15.0モル(1532.0g)を5.0Lの反応器内に投入し、70℃で600ミリモルの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、60℃で減圧脱揮し、共重合体を回収した。得られた共重合体を秤量して、共重合体(A‐1)860.8gが得られたことを確認した。
(Synthesis example 1)
Divinylbenzene 2.25 mol (292.9 g), ethylvinylbenzene 1.32 mol (172.0 g), styrene 11.43 mol (1190.3 g), n-propyl acetate 15.0 mol (1532.0 g) It was put into a 5.0 L reactor, 600 millimoles of a diethyl ether complex of boron trifluoride was added at 70° C., and the reaction was allowed to proceed for 4 hours. After quenching the polymerization solution with an aqueous sodium hydrogencarbonate solution, the oil layer was washed with pure water three times and devolatilized under reduced pressure at 60° C. to recover the copolymer. The obtained copolymer was weighed to confirm that 860.8 g of copolymer (A-1) was obtained.
 得られた共重合体(A‐1)のMnは2060、Mwは30700、Mw/Mnは14.9であった。13C‐NMR及び1H‐NMR分析を行うことにより、共重合体Aには、各単量体単位に由来する共鳴線が観察された。NMR測定結果、及び、GC分析結果に基づき、共重合体(A‐1)の構成単位は以下のように算出された。ジビニルベンゼン由来の構造単位(a):20.9モル%(24.3wt%)、エチルビニルベンゼン由来の構造単位(b2):9.1モル%(10.7wt%)、スチレンに由来する構造単位(b1):70.0モル%(65.0wt%)、ジビニルベンゼン由来の残存ビニル基をもつ構造単位(a1):16.7モル%(18.5wt%)
共重合体(A‐1)のビニル当量は、286g/eqであった。
 共重合体(A‐1)は、残存ビニル基ももつ構造単位を含むことから、ラジカル重合性樹脂である。
The obtained copolymer (A-1) had Mn of 2060, Mw of 30700 and Mw/Mn of 14.9. By performing 13C-NMR and 1H-NMR analysis, Copolymer A was observed to have resonance lines derived from each monomer unit. Based on the NMR measurement results and the GC analysis results, the constituent units of the copolymer (A-1) were calculated as follows. Structural unit (a) derived from divinylbenzene: 20.9 mol% (24.3 wt%) Structural unit (b2) derived from ethylvinylbenzene: 9.1 mol% (10.7 wt%) Structure derived from styrene Unit (b1): 70.0 mol% (65.0 wt%) Structural unit (a1) having a residual vinyl group derived from divinylbenzene: 16.7 mol% (18.5 wt%)
The vinyl equivalent of copolymer (A-1) was 286 g/eq.
Copolymer (A-1) is a radically polymerizable resin because it contains a structural unit that also has a residual vinyl group.
(合成例2)ビニルベンジルエーテル基を含むホスファゼン化合物の合成
 合成例1と同様な装置に、特許第6095150号に記載の方法で得た水酸基当量270g/eqのヒドロキシ基含有シクロホスファゼン100部、トルエン67部、CMS-P(AGCセイケミカル製クロロメチルスチレン)を59部、テトラブチルアンモニウムブロマイド4.8部、50%炭酸カリウム水溶液57部を仕込み70℃で7時間反応を行った。ガスクロマトグラフィーにて残存するクロロメチルスチレンの量を追跡し、十分反応したことを確認して反応を終了した。トルエン270部を加え、35%塩酸で、pHが5~6になるまで中和し、下層水層を分離除去した。燐酸2水素ナトリウム水溶液でpHが7~6になる様にしながら、水洗洗浄、水層分離除去を3~5回繰り返した。還流脱水を行い、下記式で表されるビニルベンジルエーテル基を含むホスファゼン化合物であるリン含有ビニルベンジル樹脂(B‐2)のトルエンワニスを得た。リン含有ビニルベンジル樹脂(B‐2)のビニル当量は375g/eqで、リン含有量は8.7%であった。
Figure JPOXMLDOC01-appb-C000017
 式中、vは1~10の整数を表し、-P=N-結合は繰り返し環構造を形成する。
(Synthesis Example 2) Synthesis of Phosphazene Compound Containing Vinyl Benzyl Ether Group In the same apparatus as in Synthesis Example 1, 100 parts of hydroxyl group-containing cyclophosphazene having a hydroxyl equivalent of 270 g/eq obtained by the method described in Japanese Patent No. 6095150 and toluene were added. 67 parts, 59 parts of CMS-P (chloromethyl styrene manufactured by AGC Seichemical), 4.8 parts of tetrabutylammonium bromide and 57 parts of 50% potassium carbonate aqueous solution were charged and reacted at 70° C. for 7 hours. The amount of remaining chloromethylstyrene was tracked by gas chromatography, and the reaction was terminated after confirming that the reaction was sufficient. 270 parts of toluene was added, neutralized with 35% hydrochloric acid until the pH reached 5 to 6, and the lower aqueous layer was separated and removed. While adjusting the pH to 7-6 with an aqueous solution of sodium dihydrogen phosphate, washing with water and separation and removal of the aqueous layer were repeated 3-5 times. Dehydration was carried out under reflux to obtain a toluene varnish of a phosphorus-containing vinylbenzyl resin (B-2), which is a phosphazene compound containing a vinylbenzyl ether group represented by the following formula. The phosphorus-containing vinylbenzyl resin (B-2) had a vinyl equivalent of 375 g/eq and a phosphorus content of 8.7%.
Figure JPOXMLDOC01-appb-C000017
In the formula, v represents an integer of 1 to 10, and -P=N- bonds form a repeating ring structure.
(合成例3)メタクリロイルオキシ基を含むリン酸エステル化合物の合成
 撹拌機、温度計、滴下ロートおよびコンデンサーを備えた容量2リットルの4つ口フラスコに、オキシ塩化リン1500g、2,6-ジメチルフェノール611g、触媒としての塩化マグネシウム1.2g充填した。
 得られた混合溶液を撹拌しながら約3時間かけて温度110℃まで徐々に加熱昇温して反応させ、発生する塩化水素(塩酸ガス)を水スクラバーで回収した。その後、120℃でフラスコ内の圧力を徐々に12kPaまで減圧し、未反応のオキシ塩化リンおよびフェノール、副生する塩化水素を除去し、モノ2,6-ジメチルフェニルホスホロジクロリデート1200gを得た。
 次いで、2,3,5-トリメチルハイドロキノン320g、塩化水素捕捉剤としてピリジン135g、溶剤としてトルエン200gを充填した。また、滴下ロートに上記モノ2,6-ジメチルフェニルホスホロジクロリデート203gを充填した。
 混合溶液を撹拌しながら温度20℃まで加熱し、同温度(20℃)で維持しながら、モノ2,6-ジメチルフェニルホスホロジクロリデートを2時間かけて滴下した。滴下終了後、65℃まで加熱し、5時間撹拌し反応生成物を得た。得られた反応生成物を希塩酸および水で洗浄後、温度150℃まで加熱し、2kPaまで減圧して水、トルエン、低沸分を留去し、常温まで冷却することで黒褐色固体のリン含有フェノール化合物330gを得た。得られた物質混合物としての化合物のリン含有率は6.5%、水酸基当量は272g/eqであった。
 次いで、上記で得たリン含有フェノール化合物200g、テトラヒドロフラン133.2g、トリエチルアミン19.5g、を仕込み、溶解後に5℃以下に氷浴で冷却した。窒素雰囲気化で塩化メタクリロイル78.0gを1時間かけて滴下し、更に2時間反応を継続した。
 続いて、反応液を濃縮し、トルエン601.6gに溶解後、塩酸、炭酸ナトリウム水溶液、水の順で洗浄した。水による洗浄後、脱水して、ろ過、更に溶媒を濃縮することで、リン含有メタクリロイル化合物(B-3)のトルエン溶液227.6gを得た。得られたリン含有メタクリロイル化合物(B-3)は、FD-MSにて分析を行い、下記構造においてw=0、1、2である分子量606、924、1242を確認した。また、リン含有率は、5.2%であった。
Figure JPOXMLDOC01-appb-C000018
(Synthesis Example 3) Synthesis of Phosphate Ester Compound Containing Methacryloyloxy Group In a 2-liter four-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser, 1500 g of phosphorus oxychloride and 2,6-dimethylphenol were added. 611 g and 1.2 g of magnesium chloride as a catalyst were charged.
The resulting mixed solution was gradually heated to 110° C. over a period of about 3 hours for reaction, and the generated hydrogen chloride (hydrochloric acid gas) was recovered with a water scrubber. Thereafter, the pressure in the flask was gradually reduced to 12 kPa at 120° C. to remove unreacted phosphorus oxychloride, phenol, and by-product hydrogen chloride to obtain 1200 g of mono-2,6-dimethylphenylphosphorodichloridate. .
Then, 320 g of 2,3,5-trimethylhydroquinone, 135 g of pyridine as a hydrogen chloride scavenger, and 200 g of toluene as a solvent were charged. Also, the dropping funnel was charged with 203 g of the above mono 2,6-dimethylphenylphosphorodichloridate.
The mixed solution was heated to a temperature of 20° C. with stirring, and mono-2,6-dimethylphenylphosphorodichloridate was added dropwise over 2 hours while maintaining the same temperature (20° C.). After completion of dropping, the mixture was heated to 65° C. and stirred for 5 hours to obtain a reaction product. After washing the obtained reaction product with dilute hydrochloric acid and water, it is heated to a temperature of 150° C., and the pressure is reduced to 2 kPa to distill off water, toluene and low-boiling components. 330 g of compound are obtained. The compound as the obtained substance mixture had a phosphorus content of 6.5% and a hydroxyl equivalent of 272 g/eq.
Next, 200 g of the phosphorus-containing phenol compound obtained above, 133.2 g of tetrahydrofuran, and 19.5 g of triethylamine were charged, dissolved, and then cooled to 5° C. or lower in an ice bath. Under a nitrogen atmosphere, 78.0 g of methacryloyl chloride was added dropwise over 1 hour, and the reaction was continued for 2 hours.
Subsequently, the reaction solution was concentrated, dissolved in 601.6 g of toluene, and then washed with hydrochloric acid, an aqueous sodium carbonate solution, and water in that order. After washing with water, dehydration, filtration, and concentration of the solvent gave 227.6 g of a toluene solution of the phosphorus-containing methacryloyl compound (B-3). The obtained phosphorus-containing methacryloyl compound (B-3) was analyzed by FD-MS, and molecular weights of 606, 924 and 1242 where w=0, 1 and 2 in the structure below were confirmed. Also, the phosphorus content was 5.2%.
Figure JPOXMLDOC01-appb-C000018
(合成例4)メタクリロイルオキシ基を含むホスフィン酸エステル化合物の合成
 合成例1と同様な装置に9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド340部、トルエン660部を仕込み80℃で溶解した。1,4-ナフトキノン245部を反応発熱に注意しながら、分割投入した。反応を続け、温度を110℃に上げて更に反応を行った。3時間後暗褐色結晶が析出したスラリー溶液を得た。濾過により結晶を分離し、メタノール500部に結晶を分散した。この操作を3回行った後熱風循環オーブンにて乾燥を行った。得られた淡黄色粉末のリン含有フェノール化合物10-(2,5-ジヒドロキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイドを100部、テトラヒドロフラン233部、トリエチルアミン72部を仕込み、攪拌しながら氷浴中で塩化メタクリロイル62部を滴下した。反応を6時間行い、テトラヒドロフラン、トリエチルアミンを60℃で減圧脱揮し、トルエン320部に溶解した。10%炭酸カリウムで1回、純水で5回洗浄を行った後、減圧脱揮を行い白色粉末の下記構造で表されるメタクリロイルオキシ基を含むホスフィン酸エステル化合物(B-4)を得た。リン含有率を測定した結果、6.0%であった。
Figure JPOXMLDOC01-appb-C000019
(Synthesis Example 4) Synthesis of Phosphinate Ester Compound Containing Methacryloyloxy Group In the same apparatus as in Synthesis Example 1, 340 parts of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 660 parts of toluene were added. The charge was dissolved at 80°C. 245 parts of 1,4-naphthoquinone was added in portions while paying attention to the heat generated by the reaction. The reaction was continued and the temperature was raised to 110° C. for further reaction. After 3 hours, a slurry solution was obtained in which dark brown crystals were precipitated. Crystals were separated by filtration and dispersed in 500 parts of methanol. After performing this operation three times, drying was performed in a hot air circulation oven. 100 parts of the pale yellow powdery phosphorus-containing phenol compound 10-(2,5-dihydroxynaphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 233 parts of tetrahydrofuran and 72 parts of triethylamine were charged. 62 parts of methacryloyl chloride was added dropwise in an ice bath while stirring. After the reaction was carried out for 6 hours, tetrahydrofuran and triethylamine were devolatilized under reduced pressure at 60° C. and dissolved in 320 parts of toluene. After washing once with 10% potassium carbonate and five times with pure water, devolatilization under reduced pressure was performed to obtain a phosphinate ester compound (B-4) containing a methacryloyloxy group represented by the following structure as a white powder. . As a result of measuring the phosphorus content, it was 6.0%.
Figure JPOXMLDOC01-appb-C000019
実施例1~11、比較例1~9
 実施例1~11、並びに比較例1~9について、表1および表2に示す樹脂組成で、溶剤としてトルエンを使用し固形分濃度50wt%のワニスを調製した。開始剤を除いて、配合量は重量%である。
 この樹脂ワニスをガラスクロス(日東紡績7628タイプ)に含浸させた後、130℃で5分間加熱することにより乾燥し、プリプレグを得た。
 得られたプリプレグ8枚と、上下に銅箔(三井金属鉱業、3EC-III、厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、1.6mm厚の積層板を得た。この積層板を使用し、難燃試験、接着性の試験を行った結果を表1および表2に示した。
 また、得られたプリプレグをほぐし、篩で100メッシュパスの粉状のプリプレグパウダーとした。このプリプレグパウダーをフッ素樹脂製の型に入れて、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、50mm角×2mm厚の試験片を得た。この試験片の比誘電率(Dk)及び誘電正接(Df)の結果を表1および表2に示した。
Examples 1-11, Comparative Examples 1-9
For Examples 1 to 11 and Comparative Examples 1 to 9, varnishes having the resin compositions shown in Tables 1 and 2 were prepared using toluene as a solvent and having a solid concentration of 50 wt %. The amounts are in weight %, except for the initiator.
After impregnating a glass cloth (Nitto Boseki 7628 type) with this resin varnish, it was dried by heating at 130° C. for 5 minutes to obtain a prepreg.
The obtained 8 sheets of prepreg and copper foil (3EC-III, thickness 35 μm, Mitsui Kinzoku Kogyo Co., Ltd.) are stacked on top and bottom, and vacuum pressed at 2 MPa under temperature conditions of 130° C.×15 minutes+190° C.×80 minutes. A laminate with a thickness of 6 mm was obtained. Tables 1 and 2 show the results of a flame retardancy test and an adhesion test using this laminate.
In addition, the obtained prepreg was loosened and passed through a sieve to obtain powdery prepreg powder of 100 mesh pass. This prepreg powder was placed in a fluororesin mold and vacuum pressed at 2 MPa under temperature conditions of 130° C.×15 minutes+190° C.×80 minutes to obtain a test piece of 50 mm square×2 mm thickness. Tables 1 and 2 show the dielectric constant (Dk) and dielectric loss tangent (Df) results of this test piece.
 表1中の各成分は、以下の通りである。
A-1:合成例1で得られた化合物A-1
A-2:三菱ガス化学社製のOPE-2St 1200、両末端に芳香族ビニル基を有するポリフェニレンエーテルオリゴマー(ポリフェニレンエーテルの両末端水酸基をビニルベンジル基で変性した変性ポリフェニレンエーテル)、数平均分子量:1187、ビニル基当量:590g/eq
B-1:大八化学工業社製の芳香族縮合リン酸エステル(下記構造式、商品名:PX-200、リン濃度9%)
Figure JPOXMLDOC01-appb-C000020
B-2:合成例2で得られた化合物B-2
B-3:合成例3で得られた化合物B-3
B-4:合成例4で得られた化合物B-4
C-1:BASF社製のNOR型ヒンダードアミン化合物(商品名:FlamestabNOR116FF)
C-2:株式会社ADEKA製NOR型ヒンダードアミン化合物(商品名:LA-81)
D-1:日油社製の1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン(商品名:パーブチルP)
Each component in Table 1 is as follows.
A-1: Compound A-1 obtained in Synthesis Example 1
A-2: OPE-2St 1200 manufactured by Mitsubishi Gas Chemical Co., Ltd., polyphenylene ether oligomer having aromatic vinyl groups at both ends (modified polyphenylene ether obtained by modifying both terminal hydroxyl groups of polyphenylene ether with vinylbenzyl groups), number average molecular weight: 1187, vinyl equivalent: 590 g/eq
B-1: Aromatic condensed phosphate ester manufactured by Daihachi Chemical Industry Co., Ltd. (structural formula below, trade name: PX-200, phosphorus concentration 9%)
Figure JPOXMLDOC01-appb-C000020
B-2: Compound B-2 obtained in Synthesis Example 2
B-3: Compound B-3 obtained in Synthesis Example 3
B-4: Compound B-4 obtained in Synthesis Example 4
C-1: NOR-type hindered amine compound manufactured by BASF (trade name: Flamestab NOR116FF)
C-2: NOR-type hindered amine compound manufactured by ADEKA Corporation (trade name: LA-81)
D-1: 1,3-bis(butylperoxyisopropyl)benzene manufactured by NOF Corporation (trade name: Perbutyl P)
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 本発明のハロゲンフリー難燃硬化性樹脂組成物は、電気・電子製品やOA機器、通信機器等、特に電子機器の情報処理量増大に伴う高周波化における伝送損失を低減する硬化性樹脂組成物として非常に有用である。
 
 
The halogen-free flame-retardant curable resin composition of the present invention is used as a curable resin composition that reduces transmission loss at high frequencies accompanying an increase in the amount of information processing in electronic equipment, such as electric/electronic products, OA equipment, and communication equipment. Very useful.

Claims (7)

  1. (A)炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物と、
    (B)リン系難燃剤と、
    (C)アルコキシイミノ(NOR)型ヒンダードアミン化合物と、
    (D)ラジカル重合開始剤とを含む樹脂組成物であって、
     リン含有率が(A)成分と(B)成分の合計に対して1.0~5.0質量%であり、(C)成分の含有量が(A)成分と(B)成分の合計100質量部に対して0.2~5.0質量部であることを特徴とするハロゲンフリー難燃硬化性樹脂組成物。
    (A) a radically polymerizable compound having a carbon-carbon unsaturated double bond in the molecule;
    (B) a phosphorus-based flame retardant;
    (C) an alkoxyimino (NOR) type hindered amine compound;
    (D) a resin composition containing a radical polymerization initiator,
    The phosphorus content is 1.0 to 5.0% by mass with respect to the total of components (A) and (B), and the content of component (C) is 100% in total of components (A) and (B). A halogen-free flame-retardant curable resin composition characterized by being 0.2 to 5.0 parts by mass based on parts by mass.
  2.  (A)ラジカル重合性化合物が、分子末端を炭素-炭素不飽和二重結合を含む化合物で変性されたポリフェニレンエーテル化合物および/又は下記式(1)で表される構造単位を含む分子量が300~100000である可溶性重合体を含むことを特徴とする請求項1に記載のハロゲンフリー難燃樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     R1~R3は水素原子又はC1~C5のアルキル基、R4は炭素数6~30の2価の芳香族炭化水素基を表す。
    (A) the radically polymerizable compound is a polyphenylene ether compound modified with a compound containing a carbon-carbon unsaturated double bond at the molecular end and/or a structural unit represented by the following formula (1) having a molecular weight of 300 to 10. The halogen-free flame retardant resin composition of claim 1, comprising a soluble polymer of 100,000.
    Figure JPOXMLDOC01-appb-C000001
    R1 to R3 each represent a hydrogen atom or a C1 to C5 alkyl group, and R4 represents a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  3.  (B)リン系難燃剤が、リン酸エステル化合物、ホスファゼン化合物、ホスホン酸エステル化合物またはホスファフェナントレン化合物からなる群から選ばれる少なくとも1つである請求項1に記載のハロゲンフリー難燃硬化性樹脂組成物。 2. The halogen-free flame-retardant curable resin according to claim 1, wherein (B) the phosphorus-based flame retardant is at least one selected from the group consisting of phosphate ester compounds, phosphazene compounds, phosphonate ester compounds and phosphaphenanthrene compounds. Composition.
  4.  (B)リン系難燃剤が、分子中に成分(A)と共重合可能なラジカル重合性の炭素-炭素不飽和二重結合を有する反応性リン化合物である請求項1に記載のハロゲンフリー難燃硬化性樹脂組成物。 2. The halogen-free flame retardant according to claim 1, wherein (B) the phosphorus flame retardant is a reactive phosphorus compound having a radically polymerizable carbon-carbon unsaturated double bond copolymerizable with component (A) in the molecule. A flame-curable resin composition.
  5.  請求項1~4のいずれか1項に記載のハロゲンフリー難燃硬化性樹脂組成物を用いることを特徴とするプリプレグ。 A prepreg characterized by using the halogen-free flame-retardant curable resin composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載のハロゲンフリー難燃硬化性樹脂組成物を硬化させたことを特徴とする金属張積層板。 A metal-clad laminate obtained by curing the halogen-free flame-retardant curable resin composition according to any one of claims 1 to 4.
  7.  請求項1~4のいずれか1項に記載のハロゲンフリー難燃硬化性樹脂組成物を用いることを特徴とするプリント配線板。
     
    A printed wiring board using the halogen-free flame-retardant curable resin composition according to any one of claims 1 to 4.
PCT/JP2022/031755 2021-09-30 2022-08-23 Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminated board, and printed wiring board WO2023053782A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063464.XA CN117999319A (en) 2021-09-30 2022-08-23 Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160939 2021-09-30
JP2021160939 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053782A1 true WO2023053782A1 (en) 2023-04-06

Family

ID=85782334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031755 WO2023053782A1 (en) 2021-09-30 2022-08-23 Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminated board, and printed wiring board

Country Status (3)

Country Link
CN (1) CN117999319A (en)
TW (1) TW202323324A (en)
WO (1) WO2023053782A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067797A (en) * 2013-09-30 2015-04-13 新日鉄住金化学株式会社 Curable resin composition, hardened product of the same, electrical and electronic parts and circuit board
JP2019189682A (en) * 2018-04-19 2019-10-31 Psジャパン株式会社 Fire retardant styrene resin composition and molded article
WO2020262253A1 (en) * 2019-06-26 2020-12-30 パナソニックIpマネジメント株式会社 Resin composition, prepreg, method for producing prepreg, layered board, and printed circuit board
WO2021060178A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP2022052593A (en) * 2020-09-23 2022-04-04 株式会社タムラ製作所 Photosensitive resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067797A (en) * 2013-09-30 2015-04-13 新日鉄住金化学株式会社 Curable resin composition, hardened product of the same, electrical and electronic parts and circuit board
JP2019189682A (en) * 2018-04-19 2019-10-31 Psジャパン株式会社 Fire retardant styrene resin composition and molded article
WO2020262253A1 (en) * 2019-06-26 2020-12-30 パナソニックIpマネジメント株式会社 Resin composition, prepreg, method for producing prepreg, layered board, and printed circuit board
WO2021060178A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP2022052593A (en) * 2020-09-23 2022-04-04 株式会社タムラ製作所 Photosensitive resin composition

Also Published As

Publication number Publication date
CN117999319A (en) 2024-05-07
TW202323324A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
CN110461891B (en) Soluble polyfunctional vinyl aromatic copolymer, process for producing the same, curable resin composition and use thereof
JP7051333B2 (en) Curable resin composition, its cured product, curable composite material, metal leaf with resin, and varnish for circuit board material
JP2019023263A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP2015086330A (en) Resin composition, prepreg, metal-clad laminate, and printed wiring board
JP2008248001A (en) Curable resin composition
JPWO2018074278A1 (en) Resin composition, method for producing resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP6635415B2 (en) Curable composition, prepreg, metal foil with composition, metal-clad laminate, and wiring board
WO2020096036A1 (en) Resin composition, prepreg, laminate, resin film, multilayer printed wiring board, and multilayer printed wiring board for millimeter wave radar
JP2020105352A (en) Curable resin composition, prepreg, metal-clad laminate, printed wiring board
WO2019130735A1 (en) Polyphenylene ether resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminate and wiring board
JP6662098B2 (en) Thermosetting resin composition, prepreg, copper-clad laminate and printed wiring board
WO2019044154A1 (en) Poly(phenylene ether) resin composition, and prepreg, metal-clad laminate, and wiring board each obtained using same
TW201942237A (en) Curable resin composition, prepreg, cured product, laminate and build-up film exhibiting halogen-free flame retardancy while having high heat resistance and low dielectric loss tangent
WO2023053782A1 (en) Halogen-free flame-retardant curable resin composition, prepreg, metal-clad laminated board, and printed wiring board
WO2021166649A1 (en) Curable resin composition, prepreg, metal-clad laminate, and printed wiring board
CN113121981B (en) Resin composition, prepreg and insulating plate using same
CN115710424A (en) Resin composition and product thereof
CN116410594A (en) Resin composition, prepreg and metal foil-clad laminate
WO2023167148A1 (en) Phosphorus-containing (meth)acryloyl compound, production method therefor, flame-retardant resin composition containing phosphorus-containing (meth)acryloyl compound, cured product, and laminated board for electronic circuit board
WO2023167019A1 (en) Phosphorus-containing (meth)acryloyl compound, method for producing same, and flame-retardant composition and laminated board for electronic circuit board containing same
JP2022016423A (en) Phosphorus-containing vinylbenzyl ether compound, method for producing the same, flame-retardant resin composition containing the same, and laminate for electronic circuit board
JP2022016422A (en) Phosphorus-containing (meth)acryloyl compound, method for producing the same, flame-retardant resin composition containing the same, and laminate for electronic circuit board
CN116410596A (en) Resin composition and application thereof
CN113980051A (en) Flame-retardant compound, method for producing same, resin composition, and article thereof
CN117143445A (en) Resin composition and product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550459

Country of ref document: JP