WO2023051226A1 - 一种智能反射面相移控制方法、***、设备及存储介质 - Google Patents

一种智能反射面相移控制方法、***、设备及存储介质 Download PDF

Info

Publication number
WO2023051226A1
WO2023051226A1 PCT/CN2022/118379 CN2022118379W WO2023051226A1 WO 2023051226 A1 WO2023051226 A1 WO 2023051226A1 CN 2022118379 W CN2022118379 W CN 2022118379W WO 2023051226 A1 WO2023051226 A1 WO 2023051226A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
received signal
signal quality
quality information
processor
Prior art date
Application number
PCT/CN2022/118379
Other languages
English (en)
French (fr)
Inventor
罗智泉
沈闓明
张耀文
任书仪
李鑫
王明敏
陈昕
张楠
Original Assignee
深圳市大数据研究院
香港中文大学(深圳)
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大数据研究院, 香港中文大学(深圳), 华为技术有限公司 filed Critical 深圳市大数据研究院
Publication of WO2023051226A1 publication Critical patent/WO2023051226A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution

Definitions

  • the present application relates to the field of communication technology, and in particular to a method, system, device and storage medium for phase shift control of an intelligent reflective surface.
  • Intelligent reflective surface is a new wireless communication technology, which can intelligently reconfigure the wireless propagation environment by integrating a large number of low-cost passive reflective elements on the plane, thereby significantly improving the performance of wireless communication networks. performance.
  • Embodiments of the present application provide an intelligent reflection surface phase shift control method, control system and equipment thereof, which are used to enhance or weaken the signal quality of a user terminal.
  • the first aspect of the present application provides a method for controlling the phase shift of an intelligent reflective surface, including:
  • the phase shift processor acquires first received signal quality information, where the first received signal quality information indicates the quality of the first received signal received by the receiving end;
  • phase shift processor generates a first conditional sample statistic value according to the first received signal quality information
  • the phase shift processor determines the optimal phase shift array according to the statistical value of the first condition sample, and the optimal phase shift array is used to set the phase shift value of each reflective unit of the intelligent reflective surface;
  • the phase shift processor sends the optimal phase shift array to the phase shift controller.
  • the acquiring the first received signal quality information by the phase shift processor includes:
  • the phase shift processor receives a plurality of first received signal quality information sent by the signal detector, the plurality of first received signal quality information is obtained by the signal detector from measuring the first received signal, and the phases corresponding to the plurality of first received signals
  • the shift array is different;
  • the phase shift processor generating the first conditional sample statistics according to the first received signal quality information includes:
  • the phase shift processor performs calculations according to the plurality of first received signal quality information and phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistical values.
  • determining the optimal phase shift array according to a plurality of first conditional sample statistics includes:
  • phase shift array corresponding to the maximum value among the plurality of first conditional sample statistics values is used as the optimal phase shift array.
  • determining the optimal phase shift array according to a plurality of first conditional sample statistics includes:
  • phase shift array corresponding to the minimum value among the plurality of first conditional sample statistic values is used as the optimal phase shift array.
  • the first received signal quality information is multi-dimensional signal quality information
  • the phase shift processor performs calculations according to the multiple first received signal quality information and phase shift arrays corresponding to the multiple first received signal quality information to obtain multiple first received signal quality information
  • a conditional sample statistic includes:
  • the calculation is performed according to multiple multi-dimensional signal quality information and phase shift arrays corresponding to the multiple multi-dimensional signal quality information to obtain multiple first conditional sample statistical values, and the multi-dimensional signal quality information is used to represent the signal quality of multi-antenna transmission.
  • obtaining the first received signal quality information includes:
  • the first received signal quality information is determined according to received signal quality information of multiple receiving ends.
  • the method also includes:
  • the phase shift processor acquires second received signal quality information, where the second received signal quality information indicates the quality of the second received signal received by the receiving end;
  • phase shift processor generating a second conditional sample statistic based on the second received signal quality information by the phase shift processor
  • phase shift processor determines a second phase shift array based on the second conditional sample statistics
  • the phase shift processor sends the second phase shift array to the phase shift controller, and the second phase shift array is used to set the phase shift value of the second reflection unit, and the second reflection unit belongs to the intelligent reflection surface.
  • the phase shift processor acquires a phase shift array corresponding to the first received signal quality information.
  • phase shift processor and the phase shift controller store a phase shift array codebook, and the phase shift processor acquires the phase shift array corresponding to the first received signal quality information including:
  • the phase shift processor determines a plurality of phase shift arrays corresponding to the first received signal quality information according to the phase shift array codebook.
  • the phase shift processor obtaining the phase shift array corresponding to the first received signal quality information includes:
  • the phase shift processor generates a phase shift array corresponding to the first received signal quality information.
  • the phase shift processor obtaining the phase shift array corresponding to the first received signal quality information includes:
  • the phase shift processor receives the phase shift array corresponding to the first received signal quality information sent by the phase shift controller.
  • the second aspect of the present application provides an intelligent reflective surface phase shift control device, including:
  • an acquiring unit configured to acquire first received signal quality information, where the first received signal quality information indicates the quality of the first received signal received by the receiving end;
  • a calculation unit configured to generate a first conditional sample statistical value according to the first received signal quality information
  • the calculation unit is also used to determine the optimal phase shift array according to the statistical value of the first condition sample, and the optimal phase shift array is used to set the phase shift value of each reflective unit of the smart reflective surface;
  • the sending unit is used to send the optimal phase shift array to the phase shift controller.
  • the acquiring unit is specifically configured to receive a plurality of first received signal quality information sent by the signal detector, the plurality of first received signal quality information is obtained by the signal detector from measuring the first received signal, and the plurality of first received signal quality information
  • the phase shift array corresponding to the received signal is different;
  • the calculation unit is specifically configured to perform calculations according to the plurality of first received signal quality information and phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistics values.
  • the calculation unit is specifically configured to use the phase shift array corresponding to the maximum value among the plurality of first conditional sample statistics values as the optimal phase shift array.
  • the calculation unit is specifically configured to use the phase shift array corresponding to the minimum value among the plurality of first conditional sample statistics values as the optimal phase shift array.
  • the first received signal quality information is multi-dimensional signal quality information
  • the calculation unit is specifically configured to perform calculations based on multiple multi-dimensional signal quality information and phase shift arrays corresponding to multiple multi-dimensional signal quality information, to obtain multiple first conditional samples
  • multi-dimensional signal quality information is used to represent the signal quality of multi-antenna transmission.
  • the obtaining unit is also used to obtain received signal quality information of multiple receiving ends;
  • the computing unit is further configured to determine first received signal quality information according to received signal quality information of multiple receiving ends.
  • the acquiring unit is further configured to acquire second received signal quality information, where the second received signal quality information indicates the quality of the second received signal received by the receiving end;
  • the calculation unit is further configured to generate a second conditional sample statistical value according to the second received signal quality information
  • the calculation unit is also used to determine the second phase shift array according to the second conditional sample statistics
  • the sending unit is also used to send the second phase shift array to the phase shift controller, and the second phase shift array is used to set the phase shift value of the second reflective unit, which belongs to the smart reflective surface.
  • the obtaining unit is further configured to obtain a phase shift array corresponding to the first received signal quality information.
  • phase shift processor and the phase shift controller store a phase shift array codebook
  • the calculation unit is further configured to determine a plurality of phase shift arrays corresponding to the first received signal quality information according to the phase shift array codebook.
  • the acquiring unit is further configured to generate a phase shift array corresponding to the first received signal quality information.
  • the acquiring unit is further configured to receive the phase shift array corresponding to the first received signal quality information sent by the phase shift controller.
  • the method performed by the intelligent reflective surface phase shift control device in the second aspect of the present application is similar to the method performed by the phase shift processor in the first aspect of the present application, and details are not repeated here.
  • the third aspect of the present application provides an intelligent reflective surface phase shift control system, including:
  • An intelligent reflective surface the intelligent reflective surface includes a first reflective unit, and the first reflective unit is used to reflect signals;
  • the signal detector is used to measure the first received signal to obtain first received signal quality information, and the first received signal quality information indicates the quality of the first received signal received by the receiving end;
  • phase shift processor connected to the signal detector, for acquiring first received signal quality information
  • the phase shift processor is further configured to generate a first conditional sample statistic value according to the first received signal quality information
  • the phase shift processor is also used to determine the optimal phase shift array according to the first conditional sample statistics
  • the phase shift controller is connected with the intelligent reflective surface, and is used for receiving the optimal phase shift array sent by the phase shift processor, and setting the phase shift value of the first reflective unit in the intelligent reflective surface according to the optimal phase shift array.
  • the fourth aspect of the present application provides a computer storage medium, and instructions are stored in the computer storage medium, and when the instructions are executed on the computer, the computer executes the method according to the embodiment of the first aspect of the application.
  • the fifth aspect of the present application provides a computer program product.
  • the computer program product When the computer program product is executed on a computer, the computer executes the method according to the implementation manner of the first aspect of the present application.
  • the optimal phase shift array is used to set the phase of each reflective unit of the smart reflective surface
  • the value shift enables the smart reflector to enhance or weaken the quality of the received signal at the receiving end by adjusting the phase shift array, and in the process, it is not necessary to obtain channel information of the wireless propagation environment, which reduces the deployment cost of the smart reflector.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another architecture of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a phase shift control method for an intelligent reflective surface provided in an embodiment of the present application
  • FIG. 4 is another schematic flow diagram of a phase shift control method for an intelligent reflective surface provided by an embodiment of the present application
  • FIG. 5 is another schematic flow diagram of a phase shift control method for an intelligent reflective surface provided in an embodiment of the present application.
  • FIG. 6 is another schematic flow diagram of a phase shift control method for an intelligent reflective surface provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an intelligent reflective surface phase shift control device provided in an embodiment of the present application.
  • FIG. 8 is another structural schematic diagram of the intelligent reflective surface phase shift control device provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of an architecture of a phase shift control system for an intelligent reflective surface provided by an embodiment of the present application.
  • the embodiment of the present application provides an intelligent reflective surface phase shift control method, control system and equipment thereof, which are used to improve the signal quality of wireless communication, by measuring the first received signal quality information at the receiving end, and then generating the first conditional sample statistics value, and then determine the optimal phase shift array.
  • the intelligent reflective surface adjusts the phase shift value of each reflective unit according to the optimal phase shift array, thereby improving the quality of the received signal at the receiving end.
  • the base station does not need to participate in any information interaction work, nor does it need to estimate the channel information of the wireless propagation environment, so the current network communication protocol can not be changed, and the deployment cost of the smart reflector can be reduced.
  • FIG. 1 is a structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a sending end 101 , a receiving end 102 and an intelligent reflection surface 103 . It should be noted that the numbers and shapes corresponding to the sending end 101, the receiving end 102, and the smart reflecting surface 103 shown in FIG. , it can also be that one receiving end 102 corresponds to multiple smart reflecting surfaces 103 .
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • the third generation (3th generation, 3G) mobile communication system the fourth generation (4th generation, 4G) mobile communication system, the fifth generation (5th generation, 5G) mobile communication system, 5G NR system, or other future new types mobile communication systems, etc.
  • the communication system may also be a communication system supporting multiple wireless technologies at the same time, for example, a communication system supporting both LTE and NR; or, the communication system may also be a communication system supporting short-distance communication, for example, supporting sidelink ( sidelink (SL) technology communication system, wireless fidelity (wireless fidelity, WiFi) technology communication system, etc.
  • SL sidelink
  • wireless fidelity wireless fidelity
  • WiFi wireless fidelity
  • the receiving end 102 in the embodiment of the present application is an entity for receiving or sending signals, such as a mobile phone.
  • the receiving end 102 may also be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • the sending end 101 and the receiving end 102 can also be a car with a communication function, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) Terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the surface of the smart reflective surface 103 is a plane composed of a large number of low-cost passive emission elements.
  • the intelligent reflective surface 103 can improve the quality of the signal received by the receiving end through proper coding. It is also possible to reduce or cancel the interfering signal through appropriate encoding, thereby improving the communication experience of the receiving end 102 . It is also possible to increase wireless channel multipath and reduce channel correlation through the surface of the intelligent reflective surface, thereby improving the rank of the wireless channel, realizing more stream transmission, and improving the communication experience of the receiving end 102 .
  • TDD time division duplex
  • the transmitter 101 sends out signals, some signals are directly transmitted to the receiver 102, and some signals are reflected by other objects and then received by the receiver 102, for example Reflection from the wall, and other signals will be reflected by the smart reflective surface 103 and then received by the receiving end 102 .
  • multiple intelligent reflective surfaces can cooperate to make the signal more stable during transmission.
  • a single intelligent reflective surface can also be divided into multiple areas, and different areas undertake different tasks, such as optimizing the communication experience of different users, and performing collaborative optimization for different communication requirements.
  • the smart reflective surface may be a two-dimensional planar structure or a three-dimensional three-dimensional structure, which is not specifically limited here. When the smart reflective surface is a three-dimensional structure, it can significantly enhance the rank of the channel matrix in the MIMO scene.
  • FIG. 2 is an architecture diagram of another communication system provided by an embodiment of the present application.
  • a network device 201 In the phase-shift control communication system of an intelligent reflective surface shown in FIG. 2 , a network device 201 , an intelligent reflective surface 203 and a receiving end 202 are included.
  • the number and form corresponding to the network device 201, the intelligent reflection surface 203, and the receiving end 202 are only for example, and do not constitute a limitation to the embodiment of the application.
  • the plane 203 corresponds to one network device 201, which is not limited here.
  • the network device 201 sends wireless signals, some wireless signals are directly received by the receiving end 202 , and some wireless signals are reflected by the smart reflective surface 203 and then received by the receiving end 202 .
  • multiple smart reflective surfaces 203 can cooperate to make the signal more stable during transmission.
  • a single intelligent reflective surface can also be divided into multiple areas, and different areas undertake different tasks, such as optimizing the communication experience of different users, and performing collaborative optimization for different communication requirements.
  • smart reflectors can be placed in every corner or dead corner of the room to enhance the quality of received signals at the receiving end, reduce the dead spots of wireless signals, and increase the number of bytes transmitted by wireless communication.
  • the multi-antenna communication scenario It can also significantly increase multipath and reduce channel correlation, thereby improving the rank of the channel matrix of multiple input and multiple output, thereby improving the wireless communication experience of indoor users and devices.
  • the method for controlling the phase shift of the intelligent reflective surface in the embodiment of the present application will be described in detail below.
  • the intelligent reflective surface phase shift control method in the embodiment of the present application can be applied to different scenarios, and the corresponding implementation steps of each scenario are slightly different, which will be described separately below.
  • the sending end is used as the base station for description.
  • the sending end can also be other devices with the function of sending radio frequency signals, such as wireless routers, etc. There is no limit here.
  • FIG. 3 is a schematic flow chart of a method for controlling phase shift of an intelligent reflective surface provided by an embodiment of the present application.
  • a phase shift processor acquires a plurality of first pieces of received signal quality information.
  • the phase shift processor acquires a plurality of first received signal quality information, and the first received signal quality information indicates the quality of the first received signal received by the receiving end.
  • the base station sends radio frequency signals, some radio frequency signals directly reach the receiving end, some radio frequency signals will reach the receiving end through the reflection of the intelligent reflective surface, and some radio frequency signals may reach the receiving end through the reflection of other objects
  • the receiving end after receiving these first received signals mixed together, the receiving end will send the first received signal to the signal detector, and the signal detector will measure the first received signal to obtain the first received signal quality information.
  • the phase shift processor generates multiple phase shift arrays online, and each item in the phase shift array provides a phase shift value of a corresponding reflection unit.
  • the generated phase shift array can be expressed as
  • T is the number of generated random phase shift arrays.
  • the phase shift processor sends the generated multiple phase shift arrays to the phase shift controller. It can be understood that the smart reflective surface can send all the phase shift arrays at one time, or send them one by one separately, which is not specifically limited here.
  • the phase shift controller sequentially sends the phase shift array to the smart reflective surface. Whenever the phase shift controller issues a phase shift array, the receiving end will correspondingly receive the first received signal. Therefore, when the intelligent reflective surface sequentially adopts multiple phase shift arrays, the receiving end will receive multiple first received signals.
  • the signal detector sequentially measures first received signal quality information of the plurality of first received signals.
  • the first received signal quality information may be the signal strength of the first received signal, or the signal-to-interference-noise ratio of the first received signal. It can be understood that the first received signal quality information may also be expressed as a reference
  • the signal receiving power value (reference signal receiving power, RSRP) can also be other parameters used to determine the signal quality, such as spectrum efficiency, which is not limited here.
  • the clock of the phase shift controller is synchronized with the clock of the phase shift processor, and during the entire process of measuring the first received signal, the smart reflector does not Any information interaction with the base station is required, and the receiving end does not need to perform any channel estimation work.
  • step 302 the phase shift processor performs calculations according to the plurality of first received signal quality information and phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistical values.
  • the phase shift processor After the phase shift processor acquires the plurality of first received signal quality information, the phase shift processor performs calculations according to the plurality of first received signal quality information and the phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of The first conditional sample statistic.
  • phase shift processor and the phase shift controller are preset with a phase shift array codebook, wherein the phase shift array The codebook contains multiple phase shift arrays.
  • the phase shift controller sequentially selects the phase shift array from the phase shift array codebook and sends it to the smart reflector, while the phase shift processor sequentially reads the phase shift from the phase shift array codebook The array is used to pair with the first received signal quality information.
  • the phase shift processor and the phase shift controller do not need to preset the phase shift array codebook, and the phase shift processor generates a plurality of phase shift arrays corresponding to the first received signal quality information online, and then sends to the phase shift controller.
  • the phase shift controller may generate a plurality of phase shift arrays corresponding to the first received signal quality information and send them to the phase shift processor.
  • a specific method for the phase shift processor to obtain multiple phase shift arrays corresponding to the first received signal quality information is not limited here.
  • phase shift state ⁇ n of each reflective unit comes from a discrete set, which can be expressed by the following equation:
  • K is the number of phase shift values that can be selected for each reflection unit.
  • the first conditional sample statistic value represents the average value of the first received signal quality estimated based on random samples when the phase shift value of a reflective unit is fixed and the phase shift values of other reflective units are randomly selected.
  • y( ⁇ ) represents the first received signal quality information of the first received signal received by the receiving end, that is, it can be obtained by measuring the first received signal
  • J k,k represents the first condition of the nth reflection unit Sample statistics.
  • the phase shift processor can perform calculations according to the multiple first received signal quality information and the phase shift arrays corresponding to the corresponding multiple first received signal quality information, to obtain A plurality of first conditional sample statistics.
  • phase shift processor when there are N reflective units in the smart reflective surface, and the phase shift processor generates K samples, then the phase shift processor will calculate NK first conditional sample statistics.
  • step 303 the phase shift processor determines an optimal phase shift array from a plurality of first conditional sample statistics.
  • the phase shift processor After the phase shift processor acquires the plurality of first conditional sample statistical values, the phase shift processor determines the optimal phase shift array according to the plurality of first conditional sample statistical values.
  • the phase shift processor can calculate the phase shift value of the nth reflection unit by the following formula:
  • the phase shift array corresponding to the minimum value among the plurality of first conditional sample statistical values is used as the optimal phase shift array. For example, it can be calculated by the following formula:
  • the reflection unit in selects the corresponding phase shift value to satisfy:
  • the optimal phase shift array can be determined in the above manner.
  • step 304 the phase shift processor sends the optimal phase shift array to the phase shift controller.
  • the phase shift processor After determining the optimal phase shift array, the phase shift processor sends the optimal phase shift array to the phase shift controller.
  • the phase shift processor can send the optimal phase shift array including an optimal phase shift to the phase shift controller after determining the optimal phase shift of a reflective unit
  • the optimal phase shift arrays of multiple or even all reflective units may also be determined, and then sent to the phase shift controller, which is not limited here.
  • step 305 the phase shift controller sets the phase shift value of the first reflective unit according to the optimal phase shift array.
  • the phase shift controller After the phase shift controller receives the optimal phase shift array, the phase shift controller needs to set the phase shift value of each reflective unit of the intelligent reflective surface according to the optimal phase shift array.
  • the intelligent reflective surface includes one or more first The reflective unit, that is, the phase shift controller sets the phase shift value of the first reflective unit according to the optimal phase shift array.
  • the phase shift controller sends the optimal phase shift array to the intelligent reflective surface, instructing the intelligent reflective surface to set the current phase shift value of the first reflective unit to Optimal Phase Shift Array.
  • the phase shift controller sends the optimal phase shift array to the intelligent reflective surface, instructing the intelligent reflective surface to set the current phase shift value of the first reflective unit to Optimal Phase Shift Array.
  • step 306 the phase shift processor acquires second received signal quality information.
  • step 303 the phase shift controller will generate corresponding random samples for the remaining reflective units that have not yet determined the optimal phase shift arrays, and These random samples are sent to the smart reflector, so that the smart reflector sets the phase shift value of the second reflective unit that has not yet determined the optimal phase shift array as these random samples.
  • the second reflective unit is different from the first reflective unit. .
  • the method for the phase-shift controller to generate random samples and the phase-shift processor to obtain the second received signal quality information is similar to the method for generating random samples in step 301 and the phase-shift processor to obtain the first received signal quality information, specifically here No longer.
  • step 307 the processor generates a second conditional sample statistic value according to the second received signal quality information and the phase shift array corresponding to the second received signal quality information.
  • the phase shift processor After the phase shift processor obtains the second received signal quality information, the phase shift processor generates a second conditional sample statistical value according to the second received signal quality information and the phase shift array corresponding to the second received signal quality information.
  • the method for the phase shift processor to generate the second conditional sample statistic value according to the second received signal quality information is similar to the method for generating the first conditional sample statistic value in step 302, and details are not repeated here.
  • step 308 the phase shift processor determines a second array of phase shifts from a second plurality of conditional sample statistics.
  • the method for determining the second phase shift array is similar to the method for determining the optimal phase shift array in step 303, and details are not repeated here.
  • step 309 the phase shift processor sends the second phase shift array to the phase shift controller.
  • the phase shift processor After determining the second phase shift array, the phase shift processor sends the second phase shift array to the phase shift controller.
  • the method for sending the second phase shift array is similar to the method for sending the optimal phase shift array in step 304, and details are not repeated here.
  • the phase shift controller After the phase shift controller receives the second phase shift array, the phase shift controller sets the phase shift value of the corresponding reflection unit according to the second phase shift array.
  • steps 306 to 309 need to be executed repeatedly to determine the optimal phase shift arrays of the reflective units in all smart reflective surfaces. Move the array. It is also possible to perform steps 306 to 309 only once to determine the optimal phase shift arrays of all the remaining reflection units in the smart reflection surface, which is specifically determined according to actual needs and is not limited here.
  • the specific way for the phase shift controller to set the phase shift value of the reflection unit is: the phase shift controller receives multiple phase shift arrays sent by the phase shift processor in the loop, and according to These phase shift arrays update the phase shift values of the reflective elements.
  • steps 306 to 309 are optional steps, and if in step 303 the optimal phase shift arrays of the reflection units of all smart reflection surfaces are determined, steps 306 to 309 do not need to be performed.
  • the example of the present application provides an intelligent reflective surface phase shift control method, control system and equipment thereof, which are used to improve the signal quality of wireless communication. It calculates the first conditional sample statistical value by measuring the first received signal quality information at the receiving end, and then determines the optimal phase shift array. The intelligent reflector sets the phase shift value of each reflector unit according to the optimal phase shift array to regulate the received signal quality at the receiving end. In this process, there is no need to obtain channel information of the wireless propagation environment, which reduces the deployment cost of the smart reflector.
  • FIG. 4 is another schematic flowchart of the method for controlling the phase shift of the intelligent reflective surface provided by the embodiment of the present application.
  • a phase shift processor acquires a plurality of first pieces of received signal quality information.
  • the phase shift processor acquires a plurality of first received signal quality information, and the first received signal quality information indicates the quality of the first received signal received by the receiving end.
  • the first received signal quality information is multi-dimensional signal quality information.
  • the multi-dimensional signal quality information characterizes the communication quality of the receiving end in a multi-antenna scenario.
  • the multi-dimensional signal quality information may be taken as the spectrum efficiency of the receiving end, or may be taken as the transmission rate of the receiving end, which is not specifically limited here.
  • part of the radio frequency signal can directly reach the receiving end, part of the signal can reach the receiving end after being reflected by the smart reflective surface, and some signals may reach the receiving end after being reflected by other objects.
  • the receiving end After receiving the radio frequency signal (the first received signal), the receiving end transmits the received first received signal to the signal detector.
  • the signal detector obtains the first received signal quality information (multi-dimensional signal quality information) through measurement.
  • the phase shift processor generates multiple arrays of random phase shifts.
  • the phase shift value in the phase shift array corresponds to the reflective unit in the smart reflective surface one by one:
  • T is the number of generated random phase shift arrays.
  • phase shift processor After generating a plurality of random phase shift arrays, the phase shift processor sends these random phase shift arrays to the phase shift controller.
  • a phase shift controller sets the phase shift of each smart reflective element based on these random phase shift arrays.
  • the intelligent reflective surface at the receiving end can send multiple random samples at one time, or send them separately, which is not limited here.
  • the receiving end After receiving the first received signal, the receiving end transmits the first received signal to the signal detector.
  • the signal detector measures the multiple first received signals to obtain multiple first received signal quality information.
  • the first received signal quality information is multi-dimensional signal quality information.
  • the clock of the smart reflector is synchronized with the clock of the receiving end, and the smart reflector does not need to acquire wireless Channel information about the dissemination environment.
  • step 402 the phase shift processor performs calculations according to the plurality of first received signal quality information and phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistical values.
  • step 403 the phase shift processor determines an optimal phase shift array from a plurality of first conditional sample statistics.
  • step 404 the phase shift processor sends the optimal phase shift array to the phase shift controller.
  • step 405 the phase shift processor sets the phase shift value of the first reflective unit according to the optimal phase shift array.
  • step 406 the phase shift processor acquires second received signal quality information.
  • step 407 the processor generates a second conditional sample statistic value according to the second received signal quality information and the phase shift array corresponding to the second received signal quality information.
  • step 408 the phase shift processor determines a second array of phase shifts from a second plurality of conditional sample statistics.
  • step 409 the phase shift processor sends the second phase shift array to the phase shift controller.
  • steps 402 to 409 are similar to the methods performed in steps 302 to 309 in the embodiment shown in FIG. 3 , and details are not repeated here.
  • steps 406 to 409 need to be executed repeatedly to determine the optimal phase shift arrays of the reflective units in all smart reflective surfaces. Move the array. It is also possible to perform steps 406 to 409 only once to determine the optimal phase shift arrays of all the remaining reflecting units in the smart reflecting surface, which is specifically determined according to actual needs and is not limited here.
  • the specific way for the phase shift controller to set the phase shift value of the reflection unit is: the phase shift controller receives multiple phase shift arrays sent by the phase shift processor in the loop, and according to These phase shift arrays update the phase shift values of the reflective elements.
  • steps 406 to 409 are optional steps, and if in step 403 the optimal phase shift arrays of the reflection units of all smart reflection surfaces are determined, steps 406 to 409 do not need to be performed.
  • the example of the present application provides an intelligent reflective surface phase shift control method, control system and equipment thereof, which are used to improve the signal quality of wireless communication. It calculates the first conditional sample statistical value by measuring the first received signal quality information at the receiving end, and then determines the optimal phase shift array. The intelligent reflector sets the phase shift value of each reflector unit according to the optimal phase shift array to regulate the received signal quality at the receiving end. In this process, there is no need to obtain channel information of the wireless propagation environment, which reduces the deployment cost of the smart reflector.
  • FIG. 5 is another schematic flowchart of the method for controlling the phase shift of the intelligent reflective surface provided by the embodiment of the present application.
  • step 501 the phase shift processor acquires received signal quality information of multiple receiving ends.
  • the phase shift processor acquires first received signal quality information of multiple receiving ends, where the first received signal quality information is used to characterize the communication quality of the receiving ends.
  • the first received signal quality may be taken as the signal strength of the first received signal at the receiving end, or the signal-to-interference-noise ratio of the first received signal, or other parameters used to characterize the signal quality, specifically There is no limit here.
  • part of the radio frequency signal can directly reach the receiving end, part of the signal can reach the receiving end after being reflected by the smart reflective surface, and some signals may reach the receiving end after being reflected by other objects.
  • the receiving end After receiving the radio frequency signal (first received signal) of the base station, the receiving end transmits the received first received signal to the signal detector.
  • the signal detector measures the quality information of the first received signal.
  • the phase shift processor generates multiple arrays of random phase shifts.
  • the phase shift value in the phase shift array corresponds to the reflective unit in the smart reflective surface one by one:
  • T is the number of generated random phase shift arrays.
  • the phase shift processor After generating a plurality of random phase shift arrays, the phase shift processor sends these random phase shift arrays to the phase shift controller.
  • a phase shift controller sets the phase shift of each smart reflective element based on these random phase shift arrays.
  • the intelligent reflective surface at the receiving end can send multiple random samples at one time, or send them separately, which is not limited here.
  • the clock of the smart reflector is synchronized with the clock of the receiving end, and during the whole process of measuring the first received signal, the smart reflector does not need to acquire wireless propagation Environment channel information.
  • step 502 the phase shift processor determines first received signal quality information according to received signal quality information of multiple receiving ends.
  • the first received signal is selected from the received signals of multiple receiving ends to satisfy:
  • t represents the t-th measurement
  • U represents the number of receivers.
  • the worst (or poorer) quality may be selected from the received signals received by multiple receiving ends as the first received signal quality.
  • step 503 the phase shift processor performs calculations according to the plurality of first received signal quality information and the phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistics.
  • step 504 the phase shift processor determines an optimal phase shift array from a first plurality of conditional sample statistics.
  • step 505 the phase shift processor sends the optimal phase shift array to the phase shift controller.
  • step 506 the phase shift controller sets the phase shift value of the first reflective unit according to the optimal phase shift array.
  • step 507 the phase shift processor acquires second received signal quality information.
  • step 508 the processor generates a second conditional sample statistical value according to the second received signal quality information and the phase shift array corresponding to the second received signal quality information.
  • step 509 the phase shift processor determines a second phase shift array from the plurality of second conditional sample statistics.
  • step 510 the phase shift processor sends the second phase shift array to the phase shift controller.
  • steps 503 to 510 are similar to the methods performed in steps 302 to 309 in the embodiment shown in FIG. 3 , and details are not repeated here.
  • steps 507 to 510 need to be executed repeatedly to determine the optimal phase shift arrays of the reflective units in all smart reflective surfaces. Move the array. It is also possible to perform steps 507 to 510 only once to determine the optimal phase shift arrays of all the remaining reflection units in the smart reflection surface, which is specifically determined according to actual needs and is not limited here.
  • the specific way for the phase shift controller to set the phase shift value of the reflection unit is: the phase shift controller receives multiple phase shift arrays sent by the phase shift processor in the loop, and according to These phase shift arrays update the phase shift values of the reflective elements.
  • steps 507 to 510 are optional steps, and if in step 504 the optimal phase shift arrays of the reflection units of all smart reflection surfaces are determined, then steps 507 to 510 do not need to be performed.
  • the example of the present application provides an intelligent reflective surface phase shift control method, control system and equipment thereof, which are used to improve the signal quality of wireless communication. It calculates the first conditional sample statistical value by measuring the first received signal quality information at the receiving end, and then determines the optimal phase shift array. The intelligent reflector sets the phase shift value of each reflector unit according to the optimal phase shift array to regulate the received signal quality at the receiving end. In this process, there is no need to obtain channel information of the wireless propagation environment, which reduces the deployment cost of the smart reflector.
  • FIG. 6 is another schematic flowchart of the phase shift control method for the intelligent reflective surface provided by the embodiment of the present application.
  • step 601 the phase shift processor acquires received signal quality information of multiple receiving ends.
  • the phase shift processor acquires first received signal quality information of multiple receiving ends, where the first received signal quality information is used to characterize the communication quality of the receiving ends.
  • the first received signal quality information is multi-dimensional signal quality information.
  • the multi-dimensional signal quality information characterizes the communication quality of the receiving end in a multi-antenna scenario.
  • the multi-dimensional signal quality information may be taken as the spectrum efficiency of the receiving end, or may be taken as the transmission rate of the receiving end, which is not specifically limited here.
  • part of the radio frequency signal can directly reach the receiving end, part of the signal can reach the receiving end after being reflected by the smart reflective surface, and some signals may reach the receiving end after being reflected by other objects.
  • the receiving end After receiving the radio frequency signal (first received signal) of the base station, the receiving end transmits the received first received signal to the signal detector.
  • the signal detector measures the quality information of the first received signal.
  • the phase shift processor generates multiple arrays of random phase shifts.
  • the phase shift value in the phase shift array corresponds to the reflective unit in the smart reflective surface one by one:
  • T is the number of generated random phase shift arrays.
  • the phase shift processor After generating a plurality of random phase shift arrays, the phase shift processor sends these random phase shift arrays to the phase shift controller.
  • a phase shift controller sets the phase shift of each smart reflective element based on these random phase shift arrays.
  • the intelligent reflective surface at the receiving end can send multiple random samples at one time, or send them separately, which is not limited here.
  • the clock of the smart reflector is synchronized with the clock of the receiving end, and during the whole process of measuring the first received signal, the smart reflector does not need to acquire wireless propagation Environment channel information.
  • step 602 the phase shift processor determines first received signal quality information according to received signal quality information of multiple receiving ends.
  • step 603 the phase shift processor performs calculations according to the plurality of first received signal quality information and phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistical values.
  • step 604 the phase shift processor determines an optimal phase shift array from a first plurality of conditional sample statistics.
  • step 605 the phase shift processor sends the optimal phase shift array to the phase shift controller.
  • step 606 the phase shift controller sets the phase shift value of the first reflective unit according to the optimal phase shift array.
  • step 607 the phase shift processor acquires second received signal quality information.
  • step 608 the processor generates a second conditional sample statistic value according to the second received signal quality information and the phase shift array corresponding to the second received signal quality information.
  • step 609 the phase shift processor determines a second phase shift array from the plurality of second conditional sample statistics.
  • step 610 the phase shift processor sends the second phase shift array to the phase shift controller.
  • steps 602 to 610 are similar to the methods performed in steps 502 to 510 in the embodiment shown in FIG. 5 , and details are not repeated here.
  • steps 607 to 610 need to be executed repeatedly to determine the optimal phase shift arrays of the reflective units in all smart reflective surfaces. Move the array. It is also possible to perform steps 607 to 610 only once to determine the optimal phase shift arrays of all the remaining reflecting units in the smart reflecting surface, which is specifically determined according to actual needs, and is not limited here.
  • the specific way for the phase shift controller to set the phase shift value of the reflection unit is: the phase shift controller receives multiple phase shift arrays sent by the phase shift processor in the loop, and according to These phase shift arrays update the phase shift values of the reflective elements.
  • steps 607 to 610 are optional steps, and if in step 604 the optimal phase shift arrays of the reflection units of all smart reflection surfaces are determined, steps 607 to 610 do not need to be performed.
  • the example of the present application provides an intelligent reflective surface phase shift control method, control system and equipment thereof, which are used to improve the signal quality of wireless communication. It calculates the first conditional sample statistical value by measuring the first received signal quality information at the receiving end, and then determines the optimal phase shift array. The intelligent reflector sets the phase shift value of each reflector unit according to the optimal phase shift array to regulate the received signal quality at the receiving end. In this process, there is no need to obtain channel information of the wireless propagation environment, which reduces the deployment cost of the smart reflector.
  • FIG. 7 is a schematic structural diagram of an intelligent reflective surface phase shift control device provided in the embodiment of the present application.
  • the intelligent reflective surface phase shift control device includes:
  • the acquiring unit 701 is configured to acquire first received signal quality information, where the first received signal quality information indicates the quality of the first received signal received by the receiving end;
  • a calculation unit 702 configured to generate a first conditional sample statistical value according to the first received signal quality information
  • the calculation unit 702 is also used to determine the optimal phase shift array according to the first condition sample statistical value, and the optimal phase shift array is used to set the phase shift value of each reflective unit of the smart reflective surface;
  • the sending unit 703 is configured to send the optimal phase shift array to the phase shift controller.
  • the obtaining unit 701 is specifically configured to receive a plurality of first received signal quality information sent by the signal detector, the plurality of first received signal quality information is obtained by the signal detector from measuring the first received signal, and the plurality of first received signal quality information -
  • the phase shift arrays corresponding to the received signals are different;
  • the calculation unit 702 is specifically configured to perform calculations according to the plurality of first received signal quality information and phase shift arrays corresponding to the plurality of first received signal quality information, to obtain a plurality of first conditional sample statistical values.
  • the calculation unit 702 is specifically configured to use the phase shift array corresponding to the maximum value among the plurality of first conditional sample statistics values as the optimal phase shift array.
  • the calculation unit 702 is specifically configured to use the phase shift array corresponding to the minimum value among the plurality of first conditional sample statistical values as the optimal phase shift array.
  • the first received signal quality information is multi-dimensional signal quality information
  • the calculation unit is specifically configured to perform calculations based on multiple multi-dimensional signal quality information and phase shift arrays corresponding to multiple multi-dimensional signal quality information, to obtain multiple first conditional samples
  • multi-dimensional signal quality information is used to represent the signal quality of multi-antenna transmission.
  • the acquiring unit 701 is also configured to acquire received signal quality information of multiple receiving ends;
  • the calculation unit 702 is further configured to determine first received signal quality information according to received signal quality information of multiple receiving ends.
  • the acquiring unit 701 is further configured to acquire second received signal quality information, where the second received signal quality information indicates the quality of the second received signal received by the receiving end;
  • the calculation unit 702 is further configured to generate a second conditional sample statistical value according to the second received signal quality information
  • the calculating unit 702 is further configured to determine a second phase shift array according to the second conditional sample statistics
  • the sending unit 703 is further configured to send the second phase shift array to the phase shift controller, the second phase shift array is used to set the phase shift value of the second reflection unit, and the second reflection unit belongs to the smart reflection surface.
  • the obtaining unit 701 is further configured to obtain a phase shift array corresponding to the first received signal quality information.
  • phase shift processor and the phase shift controller store a phase shift array codebook
  • the calculation unit 702 is further configured to determine a plurality of phase shift arrays corresponding to the first received signal quality information according to the phase shift array codebook.
  • the obtaining unit 701 is further configured to generate a phase shift array corresponding to the first received signal quality information.
  • the acquiring unit 701 is further configured to receive a phase shift array corresponding to the first received signal quality information sent by the phase shift controller.
  • FIG. 8 is another structural schematic diagram of the intelligent reflective surface phase shift control device provided by the embodiment of the present application.
  • the intelligent reflective surface phase shift control device includes:
  • Processor 801, memory 802, bus 805, interface 804, processor 801 is connected to memory 802, interface 804, bus 805 is respectively connected to processor 801, memory 802 and interface 804, interface 804 is used to receive or send data
  • processor 801 is a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the invention.
  • the memory 802 may be a random access memory (random access memory, RAM), and may also be a non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • the memory 802 is used to store computer-executable instructions. Specifically, the computer execution instructions may include the program 803 .
  • the processor 801 in FIG. 8 can be made to perform the operations performed by the phase shift processor in the embodiment shown in the aforementioned FIG. 3 , FIG. 4 , FIG. 5 or FIG. 6 , The details will not be repeated here.
  • FIG. 9 is a structural diagram of the intelligent reflective surface phase shift control system provided by the embodiment of the present application.
  • the intelligent reflective surface phase shift control system includes:
  • An intelligent reflective surface the intelligent reflective surface includes a first reflective unit, and the first reflective unit is used to reflect the signal sent by the transmitting end;
  • the signal detector is used to measure the first received signal to obtain first received signal quality information, and the first received signal quality information indicates the quality of the first received signal received by the receiving end;
  • phase shift processor connected to the signal detector, for acquiring first received signal quality information
  • the phase shift processor is further configured to generate a first conditional sample statistic value according to the first received signal quality information
  • the phase shift processor is also used to determine the optimal phase shift array according to the first conditional sample statistics
  • the phase shift controller is connected with the intelligent reflective surface, and is used for receiving the optimal phase shift array sent by the phase shift processor, and setting the phase shift value of the first reflective unit in the intelligent reflective surface according to the optimal phase shift array.
  • the receiving end and the signal detector can be a device, for example, the signal detector is integrated in the receiving end, or can be a separate device, for example, after the receiving end receives the signal, it will The signal is forwarded to a signal detector, which measures the received signal.
  • the receiving end, the signal detector and the phase shift processor can also be the same device, or they can be separate different devices, and the specific combination form of the receiving end, the signal detector and the phase shift processor is not limited in the embodiment of this application .
  • the intelligent reflective surface and the phase shift controller may be one device, or may be separate devices, which are not specifically limited here.
  • the methods specifically executed by the phase shift processor and the phase shift controller are similar to the methods executed by the phase shift processor and the phase shift controller in Fig. 3, Fig. 4, Fig. 5 and Fig. 6, specifically here No longer.
  • the processor mentioned in the phase shift controller and the phase shift processor in the above embodiments of the present application may be a central processing unit (central processing unit, CPU), It can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application-specific integrated circuits (application-specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • phase shift controllers and phase shift processors in the above embodiments of the present application can be one or more, and can be adjusted according to actual application scenarios, and this is only an example description, not limitation.
  • the number of memories in the embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios. This is only an illustration and not a limitation.
  • phase shift controller and the phase shift processor include a processor (or processing unit) and a memory
  • the processor in this application may be integrated with the memory, or may be a combination of the processor and the memory
  • the connection through the interface can be adjusted according to the actual application scenario and is not limited.
  • the present application provides a chip system, which includes a processor, used to support the phase shift controller and the phase shift processor to implement the functions of the controller involved in the above method, such as processing the data and data involved in the above method and/or information.
  • the system-on-a-chip also includes a memory for storing necessary program instructions and data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the chip when the system-on-a-chip is a chip in user equipment or an access network, the chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/ Output interface, pin or circuit, etc.
  • the processing unit can execute the computer-executed instructions stored in the storage unit, so that the chips in the phase shift controller and the phase shift processor etc. execute the phase shift controller and the Steps performed by the phase shift processor.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in a phase shift controller and a phase shift processor, such as a read-only memory (read-only memory). only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, it realizes the phase-shift controller and the controller of the phase-shift processor in any of the above-mentioned method embodiments. Executed method flow.
  • the computer may be the above-mentioned phase shift controller and phase shift processor.
  • controller or processor mentioned in the above embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processor, DSP) ), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. or Various combinations.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • phase shift controllers and phase shift processors or processors or controllers in the above embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios , here is only an illustration, not a limitation.
  • the number of memories in the embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios. This is only an illustration and not a limitation.
  • the memory or readable storage medium mentioned in the phase shift controller and phase shift processor in the above embodiments of the present application may be a volatile memory or a nonvolatile memory, or Both volatile and non-volatile memory can be included.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • phase shift controller and the phase shift processor or the steps performed by the processor can be implemented by hardware or programs to instruct related hardware to implement the above embodiments.
  • the program can be stored in a computer-readable storage medium, and the above-mentioned storage medium can be a read-only memory, a random access memory, and the like.
  • the above-mentioned processing unit or processor can be a central processing unit, a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , transistor logic devices, hardware components, or any combination thereof.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a computer program product includes one or more computer instructions.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • a computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be transmitted from a website site, computer, server or data center by wire (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media.
  • Usable media may be magnetic media, (eg, floppy disk, hard disk, magnetic tape), optical media (eg, BD), or semiconductor media, among others.
  • the words “if” or “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” could be interpreted as “when determined” or “in response to the determination” or “when detected (the stated condition or event) )” or “in response to detection of (a stated condition or event)”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种智能反射面相移控制方法、***、设备及存储介质,用于通信领域。首先对智能反射面的各个反射单元设置不同的相移值,智能反射面在不同的相移值组合下对射频信号进行反射,在接收端收到信号后由相移处理器根据接收信号的统计特性确定智能反射面的最佳相移阵列,最后由相移控制器根据最佳相移阵列来对智能反射面的各个反射单元设置相移值。本申请实施例操作简单、计算复杂度低,在无需改变现有通信***架构及通信协议的条件下能够对接收端的信号质量进行增强或削弱,有效解决了传统智能反射面板相移控制方法依赖信道估计和复杂波束赋形计算的技术瓶颈问题。

Description

一种智能反射面相移控制方法、***、设备及存储介质
本申请要求于2021年09月30日提交中国专利局、申请号为202111166681.5、申请名称为“一种智能反射面相移控制方法、***、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种智能反射面相移控制方法、***、设备及存储介质。
背景技术
智能反射面(intelligent reflecting surface,IRS)是一种全新的无线通信技术,它可以通过在平面上集成大量低成本的无源反射元件,智能地重新配置无线传播环境,从而显著提高无线通信网络的性能。
当前主流技术中,需要获取无线传播环境的信道信息,通过设置智能反射面的相移阵列来提高接收端的接收信号的质量。
然而在实际应用过程中,如果需要获取无线传播环境的信道信息,则需要对现有通信协议进行修改,大大增加了智能反射面部署的技术难度,同时增加智能反射面的部署成本。
发明内容
本申请实施例提供了一种智能反射面相移控制方法、控制***及其设备,用于增强或减弱用户端的信号质量。
本申请第一方面提供了一种智能反射面相移控制方法,包括:
相移处理器获取第一接收信号质量信息,第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
相移处理器根据第一接收信号质量信息生成第一条件样本统计值;
相移处理器根据第一条件样本统计值确定最佳相移阵列,最佳相移阵列用于设置智能反射面的各个反射单元的相移值;
相移处理器向相移控制器发送最佳相移阵列。
可选的,相移处理器获取第一接收信号质量信息包括:
相移处理器接收信号检测器发送的多个第一接收信号质量信息,多个第一接收信号质量信息为信号检测器对第一接收信号进行测量得到的,多个第一接收信号对应的相移阵列不同;
相移处理器根据第一接收信号质量信息生成第一条件样本统计值包括:
相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
可选的,根据多个第一条件样本统计值确定最佳相移阵列包括:
将多个第一条件样本统计值中的最大值所对应的相移阵列作为最佳相移阵列。
可选的,根据多个第一条件样本统计值确定最佳相移阵列包括:
将多个第一条件样本统计值中的最小值所对应的相移阵列作为最佳相移阵列。
可选的,第一接收信号质量信息为多维信号质量信息,相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值包括:
根据多个多维信号质量信息和多个多维信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值,多维信号质量信息用于表示多天线传输的信号质量。
可选的,获取第一接收信号质量信息包括:
获取多个接收端的接收信号质量信息;
根据多个接收端的接收信号质量信息确定第一接收信号质量信息。
可选的,方法还包括:
相移处理器获取第二接收信号质量信息,第二接收信号质量信息表示接收端接收到的第二接收信号的质量;
相移处理器根据第二接收信号质量信息生成第二条件样本统计值;
相移处理器根据第二条件样本统计值确定第二相移阵列;
相移处理器向相移控制器发送第二相移阵列,第二相移阵列用于设置第二反射单元的相移值,第二反射单元属于智能反射面。
可选的,相移处理器获取第一接收信号质量信息对应的相移阵列。
可选的,相移处理器和相移控制器存储有相移阵列码本,相移处理器获取第一接收信号质量信息对应的相移阵列包括:
相移处理器根据相移阵列码本确定多个第一接收信号质量信息对应的相移阵列。
可选的,相移处理器获取第一接收信号质量信息对应的相移阵列包括:
相移处理器生成第一接收信号质量信息对应的相移阵列。
可选的,相移处理器获取第一接收信号质量信息对应的相移阵列包括:
相移处理器接收相移控制器发送的第一接收信号质量信息对应的相移阵列。
本申请第二方面提供了一种智能反射面相移控制设备,包括:
获取单元,获取第一接收信号质量信息,第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
计算单元,用于根据第一接收信号质量信息生成第一条件样本统计值;
计算单元还用于根据第一条件样本统计值确定最佳相移阵列,最佳相移阵列用于设置智能反射面的各个反射单元的相移值;
发送单元,用于向相移控制器发送最佳相移阵列。
可选的,获取单元具体用于接收信号检测器发送的多个第一接收信号质量信息,多个第一接收信号质量信息为信号检测器对第一接收信号进行测量得到的,多个第一接收信号对应的相移阵列不同;
计算单元具体用于根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
可选的,计算单元具体用于将多个第一条件样本统计值中的最大值所对应的相移阵列作为最佳相移阵列。
可选的,计算单元具体用于将多个第一条件样本统计值中的最小值所对应的相移阵列作为最佳相移阵列。
可选的,第一接收信号质量信息为多维信号质量信息,计算单元具体用于根据多个多维信号质量信息和多个多维信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值,多维信号质量信息用于表示多天线传输的信号质量。
可选的,获取单元还用于获取多个接收端的接收信号质量信息;
计算单元还用于根据多个接收端的接收信号质量信息确定第一接收信号质量信息。
可选的,获取单元还用于获取第二接收信号质量信息,第二接收信号质量信息表示接收端接收到的第二接收信号的质量;
计算单元还用于根据第二接收信号质量信息生成第二条件样本统计值;
计算单元还用于根据第二条件样本统计值确定第二相移阵列;
发送单元还用于向相移控制器发送第二相移阵列,第二相移阵列用于设置第二反射单元的相移值,第二反射单元属于智能反射面。
可选的,获取单元还用于获取第一接收信号质量信息对应的相移阵列。
可选的,相移处理器和相移控制器存储有相移阵列码本,计算单元还用于根据相移阵列码本确定多个第一接收信号质量信息对应的相移阵列。
可选的,获取单元还用于生成第一接收信号质量信息对应的相移阵列。
可选的,获取单元还用于接收相移控制器发送的第一接收信号质量信息对应的相移阵列。
本申请第二方面中智能反射面相移控制设备所执行的方法和本申请第一方面中相移处理器所执行的方法类似,具体此处不再赘述。
本申请第三方面提供了一种智能反射面相移控制***,包括:
智能反射面,智能反射面包括第一反射单元,第一反射单元用于对信号进行反射;
信号检测器用于测量第一接收信号,得到第一接收信号质量信息,第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
相移处理器,与信号检测器连接,用于获取第一接收信号质量信息;
相移处理器还用于根据第一接收信号质量信息生成第一条件样本统计值;
相移处理器还用于根据第一条件样本统计值确定最佳相移阵列;
相移控制器,与智能反射面连接,用于接收相移处理器发送的最佳相移阵列,并根据最佳相移阵列设置智能反射面中第一反射单元的相移值。
本申请第四方面提供了一种计算机存储介质,计算机存储介质中存储有指令,指令在计算机上执行时,使得计算机执行如本申请第一方面实施方式的方法。
本申请第五方面提供了一种计算机程序产品,计算机程序产品在计算机上执行时,使得计算机执行如本申请第一方面实施方式的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
通过获取第一接收信号质量信息,生成第一条件样本统计值,并根据第一条件样本统计值确定最佳相移阵列,该最佳相移阵列用于设置智能反射面的各个反射单元的相移值,使得智能反射面可以通过调整相移阵列,增强或削弱接收端接收信号的质量,且在此过程中,不需要获取无线传播环境的信道信息,降低了智能反射面的部署成本。
附图说明
图1为本申请实施例提供的通信***的一个架构示意图;
图2为本申请实施例提供的通信***的另一架构示意图;
图3为本申请实施例提供的智能反射面相移控制方法一个流程示意图;
图4为本申请实施例提供的智能反射面相移控制方法另一流程示意图;
图5为本申请实施例提供的智能反射面相移控制方法另一流程示意图;
图6为本申请实施例提供的智能反射面相移控制方法另一流程示意图;
图7为本申请实施例提供的智能反射面相移控制设备一个结构示意图;
图8为本申请实施例提供的智能反射面相移控制设备另一结构示意图;
图9为本申请实施例提供的智能反射面相移控制***一个架构示意图。
具体实施方式
本申请实施例提供了一种智能反射面相移控制方法、控制***及其设备,用于提升无线通信的信号质量,其通过在接收端测量第一接收信号质量信息,然后生成第一条件样本统计值,进而确定最佳相移阵列。智能反射面则根据最佳相移阵列来调整各个反射单元的相移值,从而提高接收端接收信号的质量。在此流程中,基站不需要参与任何信息交互工作,也不需要对无线传播环境的信道信息进行估计,因此能不改变当前网络通信协议,同时能减少智能反射面的部署成本。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,为本申请实施例提供的通信***的一个架构图。
该通信***包括发送端101、接收端102以及智能反射面103。需要说明的是,图1所示的发送端101、接收端102以及智能反射面103分别对应的数量和形态仅用于举例,并不构成对本申请实施例的限定,例如,在实际应用过程中,还可以是一个接收端102对应多个智能反射面103。
本申请实施例的技术方案可以应用于各种通信***。例如:第三代(3th generation,3G)移动通信***、***(4th generation,4G)移动通信***、第五代(5th generation,5G)移动通信***、5G NR***,或者其他未来的新型移动通信***等。该通信***还可以是同时支持多种无线技术的通信***,例如同时支持LTE和NR的通信***;或者,该通信***还可以是支持近距离通信的通信***,例如,支持侧行链路(sidelink,SL)技术的通信***,支持无线保真(wireless fidelity,WiFi)技术的通信***等等。
其中,本申请实施例中的接收端102是一种用于接收或者发送信号的实体,例如手机等。接收端102也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。发送端101和接收端102还可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请实施例中对接收端102所采用的具体技术和具体设备形态不做限定。
本申请实施例中,智能反射面103的表面是一种由大量低成本的被动无源发射元件组成的平面。该智能反射面103通过适当编码能够提升接收端接收信号的质量。还可以通过适当编码从而降低或者抵消干扰的信号,从而提升接收端102的通信体验。还可以通过智能反射面的表面增加无线信道多径,降低信道相关性,从而提升无线信道的秩,实现更多流传输,提升了接收端102的通信体验。对于时分双工(time division duplex,TDD)技术中,通过设置智能反射面中的相移阵列,可以实现上行和下行一起优化,即优化好下行信道质量的同时,也实现对上行信道质量的优化。
如图1所示,在室外应用场景中,发送端101将信号发送出来,有的信号直接传输至接收端102中,而有的信号则会经过其他物体的反射再被接收端102接收,例如墙面的反射,还有的信号则会通过智能反射面103反射之后被接收端102接收。具体的,在实际应用过程中,多块智能反射面可以进行协作,使得信号在传输的过程中更加的稳定。单块的智能反射面还可以分成多个区域,不同的区域承担不同的工作任务,例如优化不同用户的通信体验,针对不同的通信要求进行协作优化等。需要说明的是,本申请实施例中,智能反射面可以是二维的平面结构,也可以是三维的立体结构,具体此处不做限定。当智能反射面是三维的立体结构时,可以显著的增强多输入多输出场景中信道矩阵的秩。
本申请实施例中的方法不仅可以应用在室外场景中,还可以应用在室内场景中。如图2所示,图2为本申请实施例提供的另一通信***架构图。在图2所示的智能反射面相移控制通信***中,包括了网络设备201、智能反射面203以及接收端202。其中,网络设备201、智能反射面203以及接收端202分别对应的数量和形态仅用于举例,并不构成对本申请实施例的限定,例如,在实际应用过程中,还可以是多个智能反射面203对应一个网络设备201,具体此处不做限定。
网络设备201发送无线信号,有的无线信号被接收端202直接接收,有的无线信号通过智能反射面203反射之后被接收端202接收。具体的,在实际应用过程中,多块智能反射面203可以进行协作,使得信号在传输的过程中更加的稳定。单块的智能反射面还可以分成多个区域,不同的区域承担不同的工作任务,例如优化不同用户的通信体验,针对不同的通信要求进行协作优化等。
在室内应用场景中,可以将智能反射面放置于室内的各个转角或者死角,以增强接收端接收信号的质量,减少无线信号的死角,提高无线通信传输的字节数,在多天线通信的场景下还可以显著的增加多径,降低信道相关性,从而提升多输入多输出的信道矩阵的秩,进而提升室内用户和设备的无线通信体验。
基于上述图1和图2的通信***架构,下面将对本申请实施例中的智能反射面相移控制方法进行详细描述。本申请实施例中的智能反射面相移控制方法可以应用于不同的场景,且每个场景的对应的实施步骤略有不同,下面将分别进行描述。
在图3、图4、图5以及图6的描述中,以发送端为基站进行描述,在实际应用过程中,发送端还可以是其他具有发送射频信号功能的设备,例如无线路由器等,具体此处不做限定。
一、对于单输入单输出***下的单用户场景。
请参阅图3,为本申请实施例提供的智能反射面相移控制方法一个流程示意图。
在步骤301中,相移处理器获取多个第一接收信号质量信息。
相移处理器获取多个第一接收信号质量信息,该第一接收信号质量信息表示接收端接收到的第一接收信号的质量。
具体的,基站发送射频信号,有的射频信号直接到达接收端处,有的射频信号则会通过 智能反射面的反射,到达接收端处,还有的射频信号可能会通过其他物体的反射到达接收端处,接收端在接收到这些混合在一起的第一接收信号之后,就会将第一接收信号发送给信号检测器,信号检测器则会对第一接收信号进行测量,得到第一接收信号质量信息。
在一种可能的实现方式中,相移处理器会在线生成多个相移阵列,相移阵列中的每一项给出对应反射单元的相移值。例如对于第t个相移阵列,生成的相移阵列可以表示
Figure PCTCN2022118379-appb-000001
其中,
Figure PCTCN2022118379-appb-000002
表示第t个相移阵列中第n个反射单元设置的相移状态,T为生成的随机相移阵列的数量。
相移处理器把生成的多个相移阵列发送给相移控制器。可以理解的是,智能反射面可以一次性发送所有的相移阵列,也可以一一分别进行发送,具体此处不做限定。
相移控制器依次把相移阵列下发给智能反射面。每当相移控制器下发一个相移阵列,接收端会相应地接收到第一接收信号。因此,当智能反射面依次采用多个相移阵列,接收端会接收到多个第一接收信号。
信号检测器对多个第一接收信号依次测量它们的第一接收信号质量信息。需要说明的是,第一接收信号质量信息可以是第一接收信号的信号强度,还可以是第一接收信号的信干噪比,可以理解的是,第一接收信号质量信息还可以表示为参考信号接收功率值(reference signal receiving power,RSRP),还可以是其他用来判定信号质量的参数,例如频谱效率,具体此处不做限定。
在一种可能的实现方式中,在测量第一接收信号的期间,相移控制器的时钟与相移处理器的时钟保持同步,且在整个测量第一接收信号的过程中,智能反射面不需要和基站进行任何信息交互,接收端也不需要进行任何信道估计工作。
在步骤302中,相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
相移处理器在获取到多个第一接收信号质量信息之后,相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
获取第一接收信号质量信息对应的相移阵列有多种方法,在一种可能的实现方式中,相移处理器和相移控制器中都预置有相移阵列码本,其中相移阵列码本包含了多个相移阵列。在保持时钟同步的前提下,相移控制器依次从相移阵列码本中选取相移阵列并下发给智能反射面,而相移处理器同步依次从相移阵列码本中读取相移阵列用于和第一接收信号质量信息配对。
在一种可能的实现方式中,相移处理器和相移控制器不需要预置相移阵列码本,相移处理器在线生成多个第一接收信号质量信息对应的相移阵列,然后发送给相移控制器。或者,还可以是相移控制器生成多个第一接收信号质量信息对应的相移阵列,发送给相移处理器。具体相移处理器获取多个第一接收信号质量信息对应的相移阵列的方法此处不做限定。
在一种可能的实现方式中,对于N个独立的反射单元组成的智能反射面来说,每个反射单元的相移状态θ n来自于离散集合,该离散集合可以通过以下等式表示:
Figure PCTCN2022118379-appb-000003
其中,K为可供每个反射单元选择的相移值的数量。
第一条件样本统计值表示当某个反射单元的相移值固定后,而其它反射单元的相移值随 机选取时,根据随机样本所估计的第一接收信号质量的平均值。
Figure PCTCN2022118379-appb-000004
这里
Figure PCTCN2022118379-appb-000005
表示所有采样中满足条件
Figure PCTCN2022118379-appb-000006
的采样形成的集合。
其中,y(θ)表示接收端接收到的第一接收信号的第一接收信号质量信息,即可以通过对第一接收信号进行测量得到,J k,k表示第n个反射单元的第一条件样本统计值。
以此类推,相移处理器在获取多个第一接收信号质量信息后,可以根据多个第一接收信号质量信息和对应的多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
可以理解的是,当智能反射面中有N个反射单元时,且相移处理器生成了K个样本,那么相移处理器就会计算得到NK个第一条件样本统计值。
在步骤303中,相移处理器从多个第一条件样本统计值确定最佳相移阵列。
相移处理器在获取到多个第一条件样本统计值后,相移处理器根据多个第一条件样本统计值确定最佳相移阵列。
具体的,在一种可能的实现方式中,当需要提升第一接收信号的信号质量时,将多个第一条件样本统计值中的最大值对应的相移阵列作为最佳相移阵列。例如相移处理器可以通过如下公式对第n个反射单元的相移值进行计算:
Figure PCTCN2022118379-appb-000007
Figure PCTCN2022118379-appb-000008
若需要减弱接收端的信号,在一种可能的实现方式中,将多个第一条件样本统计值中的最小值对应的相移阵列作为最佳相移阵列。例如,可以通过如下公式进行计算:
Figure PCTCN2022118379-appb-000009
Figure PCTCN2022118379-appb-000010
或者在一种可能的实现方式中需要确定减弱信号需要用到的反射单元形成的集合
Figure PCTCN2022118379-appb-000011
不属于集合
Figure PCTCN2022118379-appb-000012
的反射单元在该场景下处于关闭状态。
对于集合
Figure PCTCN2022118379-appb-000013
中的反射单元选取对应的相移值满足:
Figure PCTCN2022118379-appb-000014
Figure PCTCN2022118379-appb-000015
通过上述方式可以确定最佳相移阵列。
在步骤304中,相移处理器向相移控制器发送最佳相移阵列。
在确定了最佳相移阵列之后,相移处理器向相移控制器发送最佳相移阵列。
可以理解的是,在实际应用过程中,相移处理器可以在确定了一个反射单元的最佳相移之后,就将该包括了一个最佳相移的最佳相移阵列发送给相移控制器,也可以确定了多个甚至所有反射单元的最佳相移阵列之后,再发送给相移控制器,具体此处不做限定。
在步骤305中,相移控制器根据最佳相移阵列设置第一反射单元的相移值。
相移控制器在接收到最佳相移阵列之后,相移控制器需要根据该最佳相移阵列设置智能反射面的各个反射单元的相移值,该智能反射面包括一个或多个第一反射单元,即相移控制器根据最佳相移阵列设置第一反射单元的相移值。
具体的,相移控制器在接收到最佳相移阵列之后,相移控制器向智能反射面发送该最佳相移阵列,指示智能反射面将当前的第一反射单元的相移值设置为最佳相移阵列。在实际应 用过程中,若只获得了部分第一反射单元的最佳相移阵列,则只设置部分第一反射单元对应的部分最佳相移阵列。
在步骤306中,相移处理器获取第二接收信号质量信息。
若在步骤303中,只确定了智能反射面中部分反射单元的最佳相移阵列,则相移控制器会针对剩余还没有确定最佳相移阵列的反射单元生成对应的随机样本,并将这些随机样本下发至智能反射面,让智能反射面将还没确定最佳相移阵列的第二反射单元的相移值对应的设置为这些随机样本,第二反射单元和第一反射单元不同。
具体的,相移控制器生成随机样本以及相移处理器获取第二接收信号质量信息的方法和步骤301中生成随机样本以及相移处理器获取第一接收信号质量信息的方法类似,具体此处不再赘述。
在步骤307中,处理器根据第二接收信号质量信息和第二接收信号质量信息对应的相移阵列生成第二条件样本统计值。
相移处理器在获得了第二接收信号质量信息之后,相移处理器根据第二接收信号质量信息和第二接收信号质量信息对应的相移阵列生成第二条件样本统计值。
具体的,相移处理器根据第二接收信号质量信息生成第二条件样本统计值的方法和步骤302中生成第一条件样本统计值的方法类似,具体此处不再赘述。
在步骤308中,相移处理器从多个第二条件样本统计值确定第二相移阵列。
具体的,确定第二相移阵列的方法和步骤303确定最佳相移阵列的方法类似,具体此处不再赘述。
在步骤309中,相移处理器向相移控制器发送第二相移阵列。
在确定了第二相移阵列之后,相移处理器向相移控制器发送第二相移阵列。
具体的,发送第二相移阵列的方法和步骤304中发送最佳相移阵列的方法类似,具体此处不再赘述。
相移控制器在接收到第二相移阵列之后,相移控制器根据第二相移阵列设置对应的反射单元的相移值。
需要说明的是,在实际应用过程中,可以每次只确定部分反射单元的最优相移阵列,即需要多次循环执行步骤306至309,以确定所有智能反射面中反射单元的最优相移阵列。还可以是只执行一次步骤306至309,就确定智能反射面中剩余所有反射单元的最优相移阵列,具体根据实际需要进行确定,此处不做限定。
如果需要多次循环执行步骤306至309,相移控制器设置反射单元的相移值的具体方式为:相移控制器在循环中接收到相移处理器发送的多个相移阵列,并根据这些相移阵列更新反射单元的相移值。
可以理解的是,步骤306至309,为可选步骤,若在步骤303中,确定了所有智能反射面的反射单元的最佳相移阵列之后,则不需要执行步骤306至309。
本申请实例提供了一种智能反射面相移控制方法、控制***及其设备,用于提升无线通信的信号质量。其通过在接收端测量第一接收信号质量信息来计算第一条件样本统计值,进而确定最佳相移阵列。智能反射面则根据最佳相移阵列来设置各个反射单元的相移值进而调控接收端的接收信号质量。此过程中,不需要获取无线传播环境的信道信息,降低了智能反射面的部署成本。
二.多输入多输出***下的单用户场景
请参阅图4,为本申请实施例提供的智能反射面相移控制方法另一流程示意图。
在步骤401中,相移处理器获取多个第一接收信号质量信息。
相移处理器获取多个第一接收信号质量信息,该第一接收信号质量信息表示接收端接收到的第一接收信号的质量。
其中,在本实施例中,第一接收信号质量信息为多维信号质量信息。多维信号质量信息表征了多天线场景下接收端的通信质量。在一种优选的方式中,多维信号质量信息可以取为接收端的频谱效率,亦可取为接收端的传输速率,具体此处不做限定。
具体的,射频信号的部分信号可以直接抵达接收端,部分信号被智能反射面反射后抵达接收端,还有部分信号可能通过其他物体的反射之后抵达接收端。接收端接收到射频信号(第一接收信号)之后,将接收到的第一接收信号传递给信号检测器。信号检测器测量得到第一接收信号质量信息(多维信号质量信息)。
在一种可能的实现方式中,相移处理器会生成多个随机相移阵列。相移阵列中的相移值与智能反射面中的反射单元一一对应:
Figure PCTCN2022118379-appb-000016
其中,
Figure PCTCN2022118379-appb-000017
表示第t个相移阵列中第n个反射单元设置的相移状态,T为生成的随机相移阵列的数量。
相移处理器在生成了多个随机相移阵列之后,将这些随机相移阵列发送给相移控制器。相移控制器根据这些随机相移阵列设定每个智能反射单元的相移。接收端每次接收到的第一接收信号与相移阵列一一对应。可以理解的是,接收端智能反射面可以一次性发送多个随机样本,也可以分别进行发送,具体此处不做限定。
接收端在接收到第一接收信号之后,将第一接收信号传递给信号检测器。信号检测器测量多个第一接收信号得到多个第一接收信号质量信息。在此示例中第一接收信号质量信息为多维信号质量信息。在一种可能的实现方式中,在测量第一接收信号的期间,智能反射面的时钟与接收端的时钟保持同步,且在整个测量第一接收信号的过程中,智能反射面也不需要获取无线传播环境的信道信息。
在步骤402中,相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
在步骤403中,相移处理器从多个第一条件样本统计值确定最佳相移阵列。
在步骤404中,相移处理器向相移控制器发送最佳相移阵列。
在步骤405中,相移处理器根据最佳相移阵列设置第一反射单元的相移值。
在步骤406中,相移处理器获取第二接收信号质量信息。
在步骤407中,处理器根据第二接收信号质量信息和第二接收信号质量信息对应的相移阵列生成第二条件样本统计值。
在步骤408中,相移处理器从多个第二条件样本统计值确定第二相移阵列。
在步骤409中,相移处理器向相移控制器发送第二相移阵列。
本实施例中,步骤402至步骤409所执行的方法和图3所示实施例中步骤302至步骤309所执行的方法类似,具体此处不再赘述。
需要说明的是,在实际应用过程中,可以每次只确定部分反射单元的最优相移阵列,即需要多次循环执行步骤406至409,以确定所有智能反射面中反射单元的最优相移阵列。还可以是只执行一次步骤406至409,就确定智能反射面中剩余所有反射单元的最优相移阵列,具体根据实际需要进行确定,此处不做限定。
如果需要多次循环执行步骤406至409,相移控制器设置反射单元的相移值的具体方式 为:相移控制器在循环中接收到相移处理器发送的多个相移阵列,并根据这些相移阵列更新反射单元的相移值。
可以理解的是,步骤406至409,为可选步骤,若在步骤403中,确定了所有智能反射面的反射单元的最佳相移阵列之后,则不需要执行步骤406至409。
本申请实例提供了一种智能反射面相移控制方法、控制***及其设备,用于提升无线通信的信号质量。其通过在接收端测量第一接收信号质量信息来计算第一条件样本统计值,进而确定最佳相移阵列。智能反射面则根据最佳相移阵列来设置各个反射单元的相移值进而调控接收端的接收信号质量。此过程中,不需要获取无线传播环境的信道信息,降低了智能反射面的部署成本。
三.单输入单输出***下的多用户目标场景
请参阅图5,为本申请实施例提供的智能反射面相移控制方法另一流程示意图。
在步骤501中,相移处理器获取多个接收端的接收信号质量信息。
相移处理器获取多个接收端的第一接收信号质量信息,该第一接收信号质量信息用来表征接收端的通信质量。在本实施例中,第一接收信号质量可以取为接收端的第一接收信号的信号强度,还可以是第一接收信号的信干噪比,还可以是其他用来表征信号质量的参数,具体此处不做限定。
具体的,射频信号的部分信号可以直接抵达接收端,部分信号被智能反射面反射后抵达接收端,还有部分信号可能通过其他物体的反射之后抵达接收端。接收端接收到基站的射频信号(第一接收信号)之后,将接收到的第一接收信号传递给信号检测器。信号检测器测量得到第一接收信号的质量信息。
在一种可能的实现方式中,相移处理器会生成多个随机相移阵列。相移阵列中的相移值与智能反射面中的反射单元一一对应:
Figure PCTCN2022118379-appb-000018
其中,
Figure PCTCN2022118379-appb-000019
表示第t个相移阵列中第n个反射单元设置的相移状态,T为生成的随机相移阵列的数量。
相移处理器在生成了多个随机相移阵列之后,将这些随机相移阵列发送给相移控制器。相移控制器根据这些随机相移阵列设定每个智能反射单元的相移。接收端每次接收到的第一接收信号与相移阵列一一对应。可以理解的是,接收端智能反射面可以一次性发送多个随机样本,也可以分别进行发送,具体此处不做限定。在一种可能的实现方式中,在测量目标接收信号的期间,智能反射面的时钟与接收端的时钟保持同步,且在整个测量第一接收信号的过程中,智能反射面也不需要获取无线传播环境的信道信息。
在步骤502中,相移处理器根据多个接收端的接收信号质量信息确定第一接收信号质量信息。
在多用户场景下,会有多个接收端,对应多个接收信号质量信息。在多用户的场景下,可能需要对所有接收端中接收到的接收信号最差或者较差的接收端进行通信信号增强的优化。在以增强通信信号为目标的优化场景下,从多个接收端的接收信号中选取第一接收信号满足:
Figure PCTCN2022118379-appb-000020
其中t代表第t次测量,U代表接收端的数量。
即在一种可能实现的方式中,若需要加强多个接收端的通信质量,可以从多个接收端接收到的接收信号中选出质量最差(或者较差)的作为第一接收信号质量。
在步骤503中,相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信 息对应的相移阵列进行计算,得到多个第一条件样本统计值。
在步骤504中,相移处理器从多个第一条件样本统计值确定最佳相移阵列。
在步骤505中,相移处理器向相移控制器发送最佳相移阵列。
在步骤506中,相移控制器根据最佳相移阵列设置第一反射单元的相移值。
在步骤507中,相移处理器获取第二接收信号质量信息。
在步骤508中,处理器根据第二接收信号质量信息和第二接收信号质量信息对应的相移阵列生成第二条件样本统计值。
在步骤509中,相移处理器从多个第二条件样本统计值确定第二相移阵列。
在步骤510中,相移处理器向相移控制器发送第二相移阵列。
本实施例中,步骤503至步骤510所执行的方法和图3所示实施例中步骤302至步骤309所执行的方法类似,具体此处不再赘述。
需要说明的是,在实际应用过程中,可以每次只确定部分反射单元的最优相移阵列,即需要多次循环执行步骤507至510,以确定所有智能反射面中反射单元的最优相移阵列。还可以是只执行一次步骤507至510,就确定智能反射面中剩余所有反射单元的最优相移阵列,具体根据实际需要进行确定,此处不做限定。
如果需要多次循环执行步骤507至510,相移控制器设置反射单元的相移值的具体方式为:相移控制器在循环中接收到相移处理器发送的多个相移阵列,并根据这些相移阵列更新反射单元的相移值。
可以理解的是,步骤507至510,为可选步骤,若在步骤504中,确定了所有智能反射面的反射单元的最佳相移阵列之后,则不需要执行步骤507至510。
本申请实例提供了一种智能反射面相移控制方法、控制***及其设备,用于提升无线通信的信号质量。其通过在接收端测量第一接收信号质量信息来计算第一条件样本统计值,进而确定最佳相移阵列。智能反射面则根据最佳相移阵列来设置各个反射单元的相移值进而调控接收端的接收信号质量。此过程中,不需要获取无线传播环境的信道信息,降低了智能反射面的部署成本。
四、多输入多输出***下的多用户目标场景
请参阅图6,为本申请实施例提供的智能反射面相移控制方法另一流程示意图。
在步骤601中,相移处理器获取多个接收端的接收信号质量信息。
相移处理器获取多个接收端的第一接收信号质量信息,该第一接收信号质量信息用来表征接收端的通信质量。
其中,在本实施例中,第一接收信号质量信息为多维信号质量信息。多维信号质量信息表征了多天线场景下接收端的通信质量。在一种优选的方式中,多维信号质量信息可以取为接收端的频谱效率,亦可取为接收端的传输速率,具体此处不做限定。
具体的,射频信号的部分信号可以直接抵达接收端,部分信号被智能反射面反射后抵达接收端,还有部分信号可能通过其他物体的反射之后抵达接收端。接收端接收到基站的射频信号(第一接收信号)之后,将接收到的第一接收信号传递给信号检测器。信号检测器测量得到第一接收信号的质量信息。
在一种可能的实现方式中,相移处理器会生成多个随机相移阵列。相移阵列中的相移值与智能反射面中的反射单元一一对应:
Figure PCTCN2022118379-appb-000021
其中,
Figure PCTCN2022118379-appb-000022
表示第t个相移阵列中第n个反射单元设置的相移状态,T为生成的随机相移阵 列的数量。
相移处理器在生成了多个随机相移阵列之后,将这些随机相移阵列发送给相移控制器。相移控制器根据这些随机相移阵列设定每个智能反射单元的相移。接收端每次接收到的第一接收信号与相移阵列一一对应。可以理解的是,接收端智能反射面可以一次性发送多个随机样本,也可以分别进行发送,具体此处不做限定。在一种可能的实现方式中,在测量目标接收信号的期间,智能反射面的时钟与接收端的时钟保持同步,且在整个测量第一接收信号的过程中,智能反射面也不需要获取无线传播环境的信道信息。
在步骤602中,相移处理器根据多个接收端的接收信号质量信息确定第一接收信号质量信息。
在步骤603中,相移处理器根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
在步骤604中,相移处理器从多个第一条件样本统计值确定最佳相移阵列。
在步骤605中,相移处理器向相移控制器发送最佳相移阵列。
在步骤606中,相移控制器根据最佳相移阵列设置第一反射单元的相移值。
在步骤607中,相移处理器获取第二接收信号质量信息。
在步骤608中,处理器根据第二接收信号质量信息和第二接收信号质量信息对应的相移阵列生成第二条件样本统计值。
在步骤609中,相移处理器从多个第二条件样本统计值确定第二相移阵列。
在步骤610中,相移处理器向相移控制器发送第二相移阵列。
本实施例中,步骤602至步骤610所执行的方法和图5所示实施例中步骤502至步骤510所执行的方法类似,具体此处不再赘述。
需要说明的是,在实际应用过程中,可以每次只确定部分反射单元的最优相移阵列,即需要多次循环执行步骤607至610,以确定所有智能反射面中反射单元的最优相移阵列。还可以是只执行一次步骤607至610,就确定智能反射面中剩余所有反射单元的最优相移阵列,具体根据实际需要进行确定,此处不做限定。
如果需要多次循环执行步骤607至610,相移控制器设置反射单元的相移值的具体方式为:相移控制器在循环中接收到相移处理器发送的多个相移阵列,并根据这些相移阵列更新反射单元的相移值。
可以理解的是,步骤607至610,为可选步骤,若在步骤604中,确定了所有智能反射面的反射单元的最佳相移阵列之后,则不需要执行步骤607至610。
本申请实例提供了一种智能反射面相移控制方法、控制***及其设备,用于提升无线通信的信号质量。其通过在接收端测量第一接收信号质量信息来计算第一条件样本统计值,进而确定最佳相移阵列。智能反射面则根据最佳相移阵列来设置各个反射单元的相移值进而调控接收端的接收信号质量。此过程中,不需要获取无线传播环境的信道信息,降低了智能反射面的部署成本。
以上对本申请实施例中的智能反射面相移控制方法进行了描述,下面对本申请实施例中的智能反射面相移控制设备进行描述。
请参阅图7,为本申请实施例提供的智能反射面相移控制设备一个结构示意图,该智能反射面相移控制设备,包括:
获取单元701,获取第一接收信号质量信息,第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
计算单元702,用于根据第一接收信号质量信息生成第一条件样本统计值;
计算单元702还用于根据第一条件样本统计值确定最佳相移阵列,最佳相移阵列用于设置智能反射面的各个反射单元的相移值;
发送单元703,用于向相移控制器发送最佳相移阵列。
可选的,获取单元701具体用于接收信号检测器发送的多个第一接收信号质量信息,多个第一接收信号质量信息为信号检测器对第一接收信号进行测量得到的,多个第一接收信号对应的相移阵列不同;
计算单元702具体用于根据多个第一接收信号质量信息和多个第一接收信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值。
可选的,计算单元702具体用于将多个第一条件样本统计值中的最大值所对应的相移阵列作为最佳相移阵列。
可选的,计算单元702具体用于将多个第一条件样本统计值中的最小值所对应的相移阵列作为最佳相移阵列。
可选的,第一接收信号质量信息为多维信号质量信息,计算单元具体用于根据多个多维信号质量信息和多个多维信号质量信息对应的相移阵列进行计算,得到多个第一条件样本统计值,多维信号质量信息用于表示多天线传输的信号质量。
可选的,获取单元701还用于获取多个接收端的接收信号质量信息;
计算单元702还用于根据多个接收端的接收信号质量信息确定第一接收信号质量信息。
可选的,获取单元701还用于获取第二接收信号质量信息,第二接收信号质量信息表示接收端接收到的第二接收信号的质量;
计算单元702还用于根据第二接收信号质量信息生成第二条件样本统计值;
计算单元702还用于根据第二条件样本统计值确定第二相移阵列;
发送单元703还用于向相移控制器发送第二相移阵列,第二相移阵列用于设置第二反射单元的相移值,第二反射单元属于智能反射面。
可选的,获取单元701还用于获取第一接收信号质量信息对应的相移阵列。
可选的,相移处理器和相移控制器存储有相移阵列码本,计算单元702还用于根据相移阵列码本确定多个第一接收信号质量信息对应的相移阵列。
可选的,获取单元701还用于生成第一接收信号质量信息对应的相移阵列。
可选的,获取单元701还用于接收相移控制器发送的第一接收信号质量信息对应的相移阵列。
本申请实施例中智能反射面相移控制设备中各单元所执行的步骤和前述图3、图4、图5以及图6中相移处理器所执行的步骤类似,具体此处不再赘述。
请参阅图8,为本申请实施例提供的智能反射面相移控制设备另一结构示意图,该智能反射面相移控制设备包括:
处理器801、存储器802、总线805、接口804,处理器801与存储器802、接口804相连,总线805分别连接处理器801、存储器802以及接口804,接口804用于接收或者发送数据,处理器801是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。存储器802可以为随机存取存储器(random access memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至少一个硬盘存储器。存储器802用于存储计算机执行指令。具体的,计算机执行指令中可以包括程序803。
本实施例中,该处理器801调用程序803时,可以使图8中的处理器801执行前述图3、 图4、图5或图6所示实施例中相移处理器所执行的操作,具体此处不再赘述。
请参阅图9,为本申请实施例提供的智能反射面相移控制***架构图,该智能反射面相移控制***,包括:
智能反射面,智能反射面包括第一反射单元,第一反射单元用于对发送端发送的信号进行反射;
信号检测器用于测量第一接收信号,得到第一接收信号质量信息,第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
相移处理器,与信号检测器连接,用于获取第一接收信号质量信息;
相移处理器还用于根据第一接收信号质量信息生成第一条件样本统计值;
相移处理器还用于根据第一条件样本统计值确定最佳相移阵列;
相移控制器,与智能反射面连接,用于接收相移处理器发送的最佳相移阵列,并根据最佳相移阵列设置智能反射面中第一反射单元的相移值。
需要说明的是,在实际应用过程中,接收端、信号检测器可以是一个设备,例如信号检测器集成在接收端内,也可以是分开单独的设备,例如接收端接收到信号之后,再将信号转发给信号检测器,通过信号检测器来测量接收的信号。或者,接收端、信号检测器以及相移处理器也可以是同一个设备,也可以是分开不同的设备,具体接收端、信号检测器以及相移处理器的组合形态本申请实施例不做限定。
需要说明的是,在实际应用过程中,智能反射面和相移控制器可以是一个设备,也可以是分开单独的设备,具体此处不做限定。
本申请实施例中,相移处理器和相移控制器具体执行的方法和图3、图4、图5以及图6中相移处理器和相移控制器所执行的方法类似,具体此处不再赘述。
应理解,本申请以上实施例中的相移控制器以及相移处理器中提及的处理器,或者本申请上述实施例提供的处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的相移控制器以及相移处理器中的处理器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
还需要说明的是,当相移控制器以及相移处理器包括处理器(或处理单元)与存储器时,本申请中的处理器可以是与存储器集成在一起的,也可以是处理器与存储器通过接口连接,可以根据实际应用场景调整,并不作限定。
本申请提供了一种芯片***,该芯片***包括处理器,用于支持相移控制器以及相移处理器实现上述方法中所涉及的控制器的功能,例如处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,芯片***还包括存储器,存储器,用于保存必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
在另一种可能的设计中,当该芯片***为用户设备或接入网等内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该相移控制器以及相 移处理器等内的芯片执行上述图3、图4、图5以及图6实施例中相移控制器以及相移处理器执行的步骤。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是相移控制器以及相移处理器等内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与相移控制器以及相移处理器的控制器执行的方法流程。对应的,该计算机可以为上述相移控制器以及相移处理器。
应理解,本申请以上实施例中的提及的控制器或处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等中的一种或多种的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的相移控制器以及相移处理器或芯片***等中的处理器或控制器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
还应理解,本申请实施例中以上实施例中的相移控制器以及相移处理器等中提及的存储器或可读存储介质等,可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域普通技术人员可以理解实现上述实施例的全部或部分由相移控制器以及相移处理器或者处理器执行的步骤可以通过硬件或程序来指令相关的硬件完成。程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,随机接入存储器等。具体地,例如:上述处理单元或处理器可以是中央处理器,通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。上述的这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,上述实施例描述的方法步骤可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专 用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,BD)、或者半导体介质等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、***、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种智能反射面相移控制方法,其特征在于,包括:
    相移处理器获取第一接收信号质量信息,所述第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
    所述相移处理器根据所述第一接收信号质量信息生成第一条件样本统计值,所述第一条件样本统计值表示当某个反射单元的相移值固定后,而其它反射单元的相移值随机选取时,根据随机样本所估计的第一接收信号质量的平均值;
    所述相移处理器根据所述第一条件样本统计值确定最佳相移阵列,所述最佳相移阵列用于设置智能反射面的各个反射单元的相移值;
    所述相移处理器向相移控制器发送所述最佳相移阵列。
  2. 根据权利要求1所述的方法,其特征在于,所述相移处理器获取第一接收信号质量信息包括:
    所述相移处理器接收信号检测器发送的多个第一接收信号质量信息,多个所述第一接收信号质量信息为所述信号检测器对所述第一接收信号进行测量得到的,多个所述第一接收信号对应的相移阵列不同;
    所述相移处理器根据所述第一接收信号质量信息生成第一条件样本统计值包括:
    所述相移处理器根据多个所述第一接收信号质量信息和多个所述第一接收信号质量信息对应的相移阵列进行计算,得到多个所述第一条件样本统计值。
  3. 根据权利要求2所述的方法,其特征在于,根据多个第一条件样本统计值确定最佳相移阵列包括:
    将所述多个第一条件样本统计值中的最大值所对应的相移阵列作为所述最佳相移阵列。
  4. 根据权利要求2所述的方法,其特征在于,根据多个第一条件样本统计值确定最佳相移阵列包括:
    将所述多个第一条件样本统计值中的最小值所对应的相移阵列作为所述最佳相移阵列。
  5. 根据权利要求2所述的方法,其特征在于,所述第一接收信号质量信息为多维信号质量信息,所述相移处理器根据多个所述第一接收信号质量信息和多个所述第一接收信号质量信息对应的相移阵列进行计算,得到多个所述第一条件样本统计值包括:
    根据多个所述多维信号质量信息和多个所述多维信号质量信息对应的相移阵列进行计算,得到所述多个第一条件样本统计值,所述多维信号质量信息用于表示多天线传输的信号质量。
  6. 根据权利要求3所述的方法,其特征在于,获取第一接收信号质量信息包括:
    获取多个接收端的接收信号质量信息;
    根据所述多个接收端的接收信号质量信息确定所述第一接收信号质量信息。
  7. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述相移处理器获取第二接收信号质量信息,所述第二接收信号质量信息表示接收端接收到的第二接收信号的质量;
    所述相移处理器根据所述第二接收信号质量信息生成第二条件样本统计值,所述第二条件样本统计值表示当某个反射单元的相移值固定后,而其它反射单元的相移值随机选取时,根据随机样本所估计的第二接收信号质量的平均值;
    所述相移处理器根据第二条件样本统计值确定第二相移阵列;
    所述相移处理器向所述相移控制器发送所述第二相移阵列,所述第二相移阵列用于设置 第二反射单元的相移值,所述第二反射单元属于所述智能反射面。
  8. 根据权利要求2所述的方法,其特征在于,所述相移处理器获取所述第一接收信号质量信息对应的相移阵列。
  9. 根据权利要求8所述的方法,其特征在于,所述相移处理器和所述相移控制器存储有相移阵列码本,所述相移处理器获取所述第一接收信号质量信息对应的相移阵列包括:
    所述相移处理器根据所述相移阵列码本确定多个所述第一接收信号质量信息对应的相移阵列。
  10. 根据权利要求8所述的方法,其特征在于,所述相移处理器获取所述第一接收信号质量信息对应的相移阵列包括:
    所述相移处理器生成所述第一接收信号质量信息对应的相移阵列。
  11. 根据权利要求8所述的方法,其特征在于,所述相移处理器获取所述第一接收信号质量信息对应的相移阵列包括:
    所述相移处理器接收所述相移控制器发送的所述第一接收信号质量信息对应的相移阵列。
  12. 一种智能反射面相移控制***,其特征在于,包括:
    智能反射面,所述智能反射面包括第一反射单元,所述第一反射单元用于对信号进行反射;
    信号检测器,用于测量第一接收信号,得到第一接收信号质量信息,所述第一接收信号质量信息表示接收端接收到的所述第一接收信号的质量;
    相移处理器,与所述信号检测器连接,用于获取第一接收信号质量信息;
    所述相移处理器还用于根据所述第一接收信号质量信息生成第一条件样本统计值,所述第一条件样本统计值表示当某个反射单元的相移值固定后,而其它反射单元的相移值随机选取时,根据随机样本所估计的第一接收信号质量的平均值;
    所述相移处理器还用于根据所述第一条件样本统计值确定最佳相移阵列;
    相移控制器,与所述智能反射面连接,用于接收所述相移处理器发送的所述最佳相移阵列,并根据所述最佳相移阵列设置所述智能反射面中所述第一反射单元的相移值。
  13. 一种智能反射面相移控制设备,其特征在于,包括:
    获取单元,获取第一接收信号质量信息,所述第一接收信号质量信息表示接收端接收到的第一接收信号的质量;
    计算单元,用于根据所述第一接收信号质量信息生成第一条件样本统计值,所述第一条件样本统计值表示当某个反射单元的相移值固定后,而其它反射单元的相移值随机选取时,根据随机样本所估计的第一接收信号质量的平均值;
    所述计算单元还用于根据所述第一条件样本统计值确定最佳相移阵列,所述最佳相移阵列用于设置智能反射面的各个反射单元的相移值;
    发送单元,用于向相移控制器发送所述最佳相移阵列。
  14. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在所述计算机上运行时,使得所述计算机执行上述权利要求1至11中任一项所述的方法。
PCT/CN2022/118379 2021-09-30 2022-09-13 一种智能反射面相移控制方法、***、设备及存储介质 WO2023051226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111166681.5A CN113839694B (zh) 2021-09-30 2021-09-30 一种智能反射面相移控制方法、***、设备及存储介质
CN202111166681.5 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051226A1 true WO2023051226A1 (zh) 2023-04-06

Family

ID=78968130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118379 WO2023051226A1 (zh) 2021-09-30 2022-09-13 一种智能反射面相移控制方法、***、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113839694B (zh)
WO (1) WO2023051226A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839694B (zh) * 2021-09-30 2022-06-21 深圳市大数据研究院 一种智能反射面相移控制方法、***、设备及存储介质
CN114389668B (zh) * 2022-01-21 2024-04-09 上海物骐微电子有限公司 信号增强方法及信号增强***
CN116170040B (zh) * 2023-01-06 2023-10-03 深圳市大数据研究院 智能反射面优化方法、装置、***、介质和程序产品
CN116500598B (zh) * 2023-06-30 2023-11-03 深圳市大数据研究院 基于智能反射面的无线感知方法、***、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246491A (zh) * 2020-03-10 2020-06-05 电子科技大学 一种智能反射表面辅助的太赫兹通信***设计方法
CN113032932A (zh) * 2019-12-09 2021-06-25 中国科学院深圳先进技术研究院 一种智能反射面相移矩阵设计方法
CN113037659A (zh) * 2021-02-26 2021-06-25 浙江工业大学 一种多智能反射面辅助上行云接入网络接入链路传输方法
US20210288698A1 (en) * 2020-03-10 2021-09-16 University Of Electronic Science And Technology Of China Method for Intelligent Reflecting Surface Aided Terahertz Secure Communication System
CN113839694A (zh) * 2021-09-30 2021-12-24 深圳市大数据研究院 一种智能反射面相移控制方法、控制***及其设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266352B (zh) * 2019-05-27 2021-05-04 东南大学 一种大规模mimo***中智能反射面相移矩阵自适应设计方法
KR102192234B1 (ko) * 2019-10-28 2020-12-17 성균관대학교 산학협력단 지능형 반사 평면을 포함하는 무선 통신 시스템의 통신 방법 및 이를 위한 장치
CN111181615B (zh) * 2019-11-29 2022-08-12 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111211824B (zh) * 2020-01-14 2022-09-06 东南大学 一种智能反射表面辅助无线通信反射相位配置方法
CN115211055A (zh) * 2020-03-03 2022-10-18 中兴通讯股份有限公司 通过反射表面调制信号的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113032932A (zh) * 2019-12-09 2021-06-25 中国科学院深圳先进技术研究院 一种智能反射面相移矩阵设计方法
CN111246491A (zh) * 2020-03-10 2020-06-05 电子科技大学 一种智能反射表面辅助的太赫兹通信***设计方法
US20210288698A1 (en) * 2020-03-10 2021-09-16 University Of Electronic Science And Technology Of China Method for Intelligent Reflecting Surface Aided Terahertz Secure Communication System
CN113037659A (zh) * 2021-02-26 2021-06-25 浙江工业大学 一种多智能反射面辅助上行云接入网络接入链路传输方法
CN113839694A (zh) * 2021-09-30 2021-12-24 深圳市大数据研究院 一种智能反射面相移控制方法、控制***及其设备

Also Published As

Publication number Publication date
CN113839694B (zh) 2022-06-21
CN113839694A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2023051226A1 (zh) 一种智能反射面相移控制方法、***、设备及存储介质
US10568146B2 (en) Facilitating signaling and transmission protocols for enhanced beam management for initial access
WO2023098223A1 (zh) 智能反射面相移控制方法、装置及存储介质
US11012948B2 (en) Uplink measurement reference signal power control method, network device, and terminal device
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
WO2018082641A1 (zh) 传输信息的方法和设备
WO2014161485A1 (zh) 设备到设备通信中的发射功率控制方法、装置及***
WO2022105756A1 (zh) 定位方法、装置、终端设备、基站及位置管理服务器
EP3395116A1 (en) Beamform training and operation for multiple single-input single-output links
KR20200105895A (ko) 빔 선택 우선 순위
WO2020124731A1 (zh) 无线漫游方法及装置、存储介质、接入点设备
WO2021142774A1 (zh) 通信方法、装置、终端和存储介质
CN116170040B (zh) 智能反射面优化方法、装置、***、介质和程序产品
WO2023116756A1 (zh) 感知测量方法、装置、通信设备及可读存储介质
WO2022253150A1 (zh) 数据传输方法及装置
US20240015735A1 (en) Application layer preemptive scheduling requests for ultra-low latency
WO2022193908A1 (zh) 一种通信方法及装置
JP2022538207A (ja) 通信方法
WO2021237463A1 (en) Method and apparatus for position estimation
US20190159145A1 (en) Access Method And Access Device
WO2024140129A1 (zh) 波束测量方法及相关装置
WO2023045723A1 (zh) 通信方法、装置、设备以及存储介质
WO2022001661A1 (zh) 通信方法、装置、***及计算机可读存储介质
WO2023217023A1 (zh) 旁链路定位方法、装置、终端、服务器和无线接入网设备
WO2024146440A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE