WO2021142774A1 - 通信方法、装置、终端和存储介质 - Google Patents

通信方法、装置、终端和存储介质 Download PDF

Info

Publication number
WO2021142774A1
WO2021142774A1 PCT/CN2020/072756 CN2020072756W WO2021142774A1 WO 2021142774 A1 WO2021142774 A1 WO 2021142774A1 CN 2020072756 W CN2020072756 W CN 2020072756W WO 2021142774 A1 WO2021142774 A1 WO 2021142774A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpmi
precoding matrix
tpmi group
group
communication method
Prior art date
Application number
PCT/CN2020/072756
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
方昀
黄莹沛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/072756 priority Critical patent/WO2021142774A1/zh
Priority to CN202210893598.6A priority patent/CN115276737B/zh
Priority to CN202080077831.2A priority patent/CN114731176A/zh
Priority to PCT/CN2020/083925 priority patent/WO2021142955A1/zh
Priority to EP20913494.9A priority patent/EP4072035A4/en
Publication of WO2021142774A1 publication Critical patent/WO2021142774A1/zh
Priority to US17/861,335 priority patent/US11990956B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device, terminal, and storage medium.
  • the coherent transmission capability of the terminal device is divided into fully coherent, partially coherent and incoherent according to the coherent characteristics between the antenna ports in the terminal device.
  • the terminal device reports its own coherent transmission capability to the network.
  • the network selects an appropriate precoding matrix in the codebook subset corresponding to the coherent transmission capability according to the coherent transmission capability of the terminal device, and uses Downlink Control Information (DCI) to convert
  • DCI Downlink Control Information
  • the precoding matrix indicator (Transmitted Precoding Matrix Indicator, TPMI for short) corresponding to the precoding matrix is issued to the terminal device, so that the terminal device can perform precoding processing on the uplink data through the corresponding precoding matrix.
  • terminal devices with different coherent transmission capabilities correspond to different codebook subsets.
  • the codebook subset for non-coherent terminal devices is nonCoherent, and the codebook subset for fully coherent terminal devices can be fullyAndPartialAndNonCoherent, nonCoherent, or partialAndNonCoherent, partly.
  • the codebook subset corresponding to the coherent type terminal device may be nonCoherent, or partialAndNonCoherent, and nonCoherent is a subset of fullyAndPartialAndNonCoherent.
  • the terminal device In the uplink transmission, in order to ensure the transmission quality and reduce the uplink interference, it is necessary to control the transmission power of the terminal equipment.
  • the terminal device In the process of power control, the terminal device first calculates a transmit power based on network configuration information, etc., and then after determining to scale the calculated transmit power, calculates the power scaling factor for actual transmission; and uses the power scaling factor to measure the transmit power. After scaling, it is allocated to the non-zero transmission port of PUSCH for transmission.
  • the embodiments of the present application provide a communication method, device, network device, terminal, and storage medium.
  • a communication method includes:
  • the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in the TPMI group set;
  • a communication method includes:
  • the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a preset TPMI group set;
  • a communication device includes a sending module and a receiving module:
  • a sending module configured to send first indication information to a network device, where the first indication information is used to indicate a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the receiving module is used to receive the first TPMI indicated by the network device.
  • a communication device includes a receiving module and a sending module:
  • a receiving module configured to receive first indication information sent by a terminal device; the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the sending module is used to send the first TPMI to the terminal device.
  • a terminal includes a transmitter and a receiver:
  • a transmitter configured to send first indication information to a network device, where the first indication information is used to indicate a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the receiver is configured to receive the first TPMI indicated by the network device.
  • a network device includes a receiver and a transmitter:
  • a receiver configured to receive first indication information sent by a terminal device, where the first indication information is used to indicate a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the transmitter is used to send the first TPMI to the terminal device.
  • a computer-readable storage medium has a computer program stored thereon, and the computer program implements the steps of the communication method when executed by a processor.
  • the terminal device sends first indication information to the network device, the first indication information is used to indicate the first TPMI group, and the first TPMI group is a TPMI group in the TPMI group set; then, Receive the first TPMI indicated by the network device.
  • the network device selects the first TPMI instruction to the terminal device based on the first TPMI group, the terminal device can perform full power transmission based on the target precoding matrix corresponding to the first TPMI, which improves the uplink coverage capability of the terminal device, and the terminal device The upstream transmission performance of the device.
  • FIG. 1 is a diagram of an application environment of a communication method provided by an embodiment
  • Figure 2 is a flowchart of a communication method provided by an embodiment
  • FIG. 3 is a flowchart of a communication method provided by an embodiment
  • Figure 4 is a schematic diagram of reporting in an embodiment
  • Figure 5 is a block diagram of a communication device provided by an embodiment
  • Fig. 6 is a block diagram of a communication device provided by an embodiment
  • FIG. 7 is a block diagram of a communication device provided by another embodiment.
  • FIG. 8 is a block diagram of a communication device provided by another embodiment.
  • FIG. 9 is a schematic diagram of the internal structure of a terminal provided by an embodiment.
  • FIG. 10 is a schematic diagram of the internal structure of a network device provided by an embodiment.
  • the coherent transmission capabilities of the terminal equipment can be divided into fully coherent, partially coherent and non-coherent, among which:
  • Non-coherent non-coherent means that the phase difference corresponding to any two antenna ports in the terminal device cannot maintain a constant relationship. For example, the phase difference between two antenna ports will change and it is difficult to maintain the same within a certain period of time; or in a certain period of time The variation range of the phase difference between the two internal antenna ports exceeds a certain range.
  • Partially coherent partial Coherent means that the antenna ports of the terminal device are divided into multiple groups, and the phase difference between the antenna ports of each group can maintain a constant relationship, but the phase difference between the antenna ports of different groups cannot maintain a constant relationship.
  • Full coherent full Coherent means that the phase difference between all antenna ports of the terminal device can maintain a constant relationship.
  • the above-mentioned antenna port is an abstract representation of a physical antenna port, and the antenna port and the physical antenna port can correspond one-to-one or one-to-many.
  • Terminal devices report their own coherent transmission capabilities to the network; among them, 2-port terminal devices can have two types, non-coherent and fully coherent, and 4-port terminal devices can have three types, non-coherent, partially coherent, and fully coherent.
  • the network device After the network device receives the coherent transmission capability uploaded by the terminal device, for the codebook-based uplink transmission, it can select the appropriate preset from the codebook subset corresponding to the coherent transmission capability according to the coherent transmission capability of the terminal device.
  • the coding matrix can be used to deliver the TPMI corresponding to the precoding matrix to the terminal device through the DCI, so that the terminal device can perform precoding processing on the uplink data through the precoding matrix corresponding to the TPMI.
  • the current protocol specifies three different codebook subsets, including: fullyAndPartialAndNonCoherent, partialAndNonCoherent, and nonCoherent.
  • fullyAndPartialAndNonCoherent can be applied to terminals with coherent transmission capabilities of fullCoherent
  • partialAndNonCoherent can be applied to terminals with coherent transmission capabilities of partialCoherent and fullCoherent
  • nonCoherent can be used for terminals with coherent transmission capabilities of nonCoherent, partialCoherent, and fullCoherent.
  • the codebook subset nonCoherent is a subset of partialAndNonCoherent
  • partialAndNonCoherent is a subset of fullyAndPartialAndNonCoherent.
  • the terminal device can calculate a transmit power based on network configuration information and/or scheduling information corresponding to uplink transmission, such as frequency domain resource allocation information, transmit power control (TPC) commands, etc.; Then, the terminal device determines whether to scale the calculated transmit power according to the current transmission situation; finally, when it is determined that the calculated transmit power needs to be scaled, it is based on the physical uplink shared channel (Physical Uplink Shared Channel, abbreviated as Physical Uplink Shared Channel).
  • Physical Uplink Shared Channel Physical Uplink Shared Channel
  • PUSCH port information calculates the power scaling factor, and uses the power scaling factor to scale the calculated transmit power, and then allocates it to the PUSCH non-zero transmission port for transmission, where the PUSCH non-zero transmission port can correspond to the precoding matrix used by PUSCH The non-zero transmission port.
  • the calculation method of the scaling factor is: the number of PUSCH non-zero transmission ports divided by the maximum number of sounding reference signal (SRS) ports that the terminal device can support.
  • SRS sounding reference signal
  • the maximum transmitting power of the terminal device is 23 dBm
  • the maximum actual transmitting power of the terminal device is 20 dBm. Therefore, for terminal devices with partially coherent and non-coherent transmission capabilities, when power control is performed in accordance with the above method, the maximum power cannot be used to transmit uplink signals. We call this situation inability to transmit at full power.
  • FIG. 1 is a schematic diagram of an application scenario of a communication method provided by an embodiment of this application. As shown in FIG. 1, this scenario includes a network device 100 and a terminal device 200, and the network device 100 and the terminal device 200 communicate through a network.
  • the network equipment 100 may be a base station (Base Transceiver Station, referred to as BTS) in Global System of Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, referred to as CDMA), or broadband
  • BTS Base Transceiver Station
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • the base station (NodeB, NB) in Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA for short) can also be the Evolutional Node B (eNB or eNodeB for short) in LTE, or a relay station or an access point , Or the base station in the 5G network, etc., are not limited here.
  • the terminal device 200 may be a wireless terminal, which may be a device that provides voice and/or other service data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, referred to as RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a mobile phone with a mobile terminal.
  • Computers for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • Fig. 2 is a flowchart of a communication method in an embodiment.
  • the communication method in this embodiment is described by taking the terminal device running in FIG. 1 as an example. As shown in Figure 2, the above communication method includes the following steps:
  • S101 Send first indication information to a network device, where the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set.
  • the precoding matrix corresponding to the TPMI in the first TPMI group is a precoding matrix that supports the terminal device to perform PUSCH full power transmission.
  • the above-mentioned first TPMI group is a TPMI group in a preset TPMI group set.
  • the precoding matrix set corresponding to each TPMI group may include at least one precoding matrix.
  • terminal equipment and network equipment can achieve parallel transmission of multiple signal streams in the air through multiple antennas.
  • the terminal device transmits several parallel data streams through multiple antenna ports, and then the network device receives the parallel data streams through multiple receiving antennas at the receiving end, and detects the signal sent by the terminal device.
  • the MIMO system can adopt a space division multiplexing mode. For example, a high-speed data stream is divided into several lower-rate data streams, which are pre-encoded and then sent from different antenna ports.
  • the precoding matrix can be stored in the codebook in the device; the codebook includes multiple codewords, and each codeword is a precoding matrix.
  • the corresponding precoding matrix can be identified by TPMI.
  • the coefficients of the precoding matrix involved in the embodiments of the present application may also be 1, or other values.
  • the precoding matrix set corresponding to the first TPMI group may include one precoding matrix or multiple precoding matrices; it is not limited here.
  • the number of TPMI groups included in the above TPMI group set is not limited here, and it may be 6 TPMI groups or 10 TPMI groups.
  • the above TPMI group set may include at least 8 TPMI groups.
  • the terminal device uses 4 bits to report the first TPMI group (for the case that the terminal device supports 4 antenna ports)
  • the above TPMI group set may include 16 TPMI groups, or may include 15 TPMI groups, or other numbers TPMI group.
  • the TPMI group set includes at least 8 TPMI groups, which can greatly increase the selectable range of the terminal device when selecting the first TPMI group in the TPMI group set, so that the terminal device can select a more matching first TPMI group for reporting.
  • two different TPMI groups may include part of the same precoding matrix.
  • the foregoing TPMI group may be applicable to terminal devices of different implementation types, and the foregoing implementation types may be terminal devices that support different power architectures.
  • the terminal device when the terminal device has full power transmission capability, it can report first indication information to the network device.
  • the above first indication information indicates a corresponding TPMI group in the TPMI group set.
  • the first indication information also indicates that the terminal device can The precoding matrix included in the above TPMI group is used to achieve full power transmission.
  • the terminal device when the terminal device sends the first indication information for indicating the first TPMI group to the network device, it may determine the first TPMI group indicated by the first indication information based on the number of antenna ports of the terminal device and the TPMI group set. For example, when the number of antenna ports supported by the terminal device is 4, the first TPMI group can be selected from the TPMI group set corresponding to the terminal device supporting 4 antenna ports according to the power capability corresponding to each antenna port, and the first indication information can be passed Report to the network device.
  • the terminal device may send the first indication information to the network device through high-level signaling.
  • the terminal device may send the first indication information to the network device through radio resource control (Radio Resource Control, RRC) signaling; optionally, the terminal device may send the first indication information to the network device through terminal capability reporting signaling.
  • RRC Radio Resource Control
  • the above-mentioned terminal device may be a terminal device that supports transmission by two antenna ports, a terminal device that supports transmission by four antenna ports, or a terminal device that supports transmission by other multiple antenna ports, which is not limited here.
  • the above-mentioned number of antenna ports refers to the number of logical ports, which may be equal to the number of physical antenna ports (or physical antennas), or may be less than the number of physical antenna ports.
  • a terminal device with 4 physical antenna ports can support 4 antenna port transmission, or virtualize two of the physical antenna ports to form 2 antenna ports to support 2 antenna port transmission.
  • the antenna port is sometimes referred to as a port for short, such as 2-port transmission and 4-port terminal equipment.
  • the terminal device can report the above-mentioned TPMI group according to the number of antenna ports and the coherent transmission capability of the terminal device. For example, for a terminal device that supports 4 antenna ports, on the basis of reporting the first TPMI group through the first indication information, a 2-bit bitmap (bitmap) may also be used to report the second indication information, where each bit Corresponding to one precoding matrix, which is used to indicate whether the corresponding precoding matrix can support full power transmission; the above reporting method is not limited here.
  • the terminal device when the terminal device sends the first indication information for indicating the first TPMI group to the network device, it can also report to the network device that the terminal device supports the first full power transmission mode; the first full power transmission mode is used to indicate that the terminal device has Full power transmission capability.
  • the above-mentioned first full-power transmission mode may be reported through RRC signaling, and may also be reported through terminal capability signaling.
  • the reporting manner of the above-mentioned first indication information may be optional reporting. That is, when the terminal device reports the first full power transmission mode to the network device, it optionally sends the first indication information.
  • the reporting mode of the above-mentioned first indication information may be mandatory reporting. That is to say, when the terminal device reports the first full power transmission mode to the network device, the first indication information must be sent to the network device at the same time.
  • the network device can select a TPMI from the first TPMI group sent by the terminal device and send it to the terminal device according to the received first full power transmission mode, or it can select a subset of code words corresponding to the terminal device.
  • the other TPMI is issued to the terminal device for PUSCH transmission, which is not limited here.
  • the network device can also send the sounding reference signal resource group configuration SRS resource set to the terminal device; among them, the above SRS resource set can be configured with at least one SRS resource, and each SRS resource corresponds to it.
  • the number of ports corresponding to each SRS resource can be the same; optionally, the number of ports corresponding to some or all of the SRS resources can be different.
  • the foregoing SRS resource may correspond to one port or two ports; optionally, the number of ports corresponding to the SRS resource is less than or equal to 4.
  • the number of ports corresponding to one SRS resource can be 2, and the number of ports corresponding to the other SRS resource can be 4; if the above SRS resource set carries 4 SRS resources, The number of ports corresponding to two SRS resources can be 1, and the number of ports corresponding to the other SRS resource can be 2.
  • the above-mentioned SRS resources may correspond to the same spatial relationship information, or may correspond to different spatial relationships; optionally, the number of spatial relationships corresponding to all SRS resources is less than or equal to 2.
  • the aforementioned SRS resource set is used to support codebook-based PUSCH transmission; wherein, the usage configuration corresponding to the SRS resource set may be "codebook”.
  • the terminal device may use the target precoding matrix corresponding to the first TPMI to perform full power transmission. If the first TPMI does not belong to the first TPMI group, the terminal device uses the target precoding matrix corresponding to the first TPMI to perform corresponding power control according to the specified power scaling method.
  • the terminal device may use the target precoding matrix corresponding to the first TPMI to perform full power transmission. If the first TPMI does not belong to the first TPMI group, the terminal device can perform corresponding power control according to the specified power scaling method; for example, the terminal device uses the first TPMI with full power transmission capability to obtain a scaling factor of 1, and then adopts This scaling factor performs full power transmission.
  • the network device can select a precoding matrix and then deliver it to the terminal device through DCI, so that the terminal device obtains the target precoding matrix indicated by the DCI based on the predetermined format of the DCI.
  • the terminal device uses the target precoding matrix to perform precoding processing on the uplink data, and then precoding The uplink data of is allocated to the PUSCH non-zero port, and then the uplink data after the precoding processing is sent at full power.
  • the transmit power is obtained based on network configuration information issued by the network device and/or scheduling information corresponding to uplink transmission, such as frequency domain resource allocation information, TPC commands, etc.
  • the calculated transmit power may not be scaled, and the calculated transmit power may be allocated to the corresponding port of PUSCH, or a scaling factor of 1 may be used to calculate the result. Scale the transmitted power of, and allocate the scaled transmit power to the corresponding port of PUSCH.
  • the implementation of the above-mentioned full-power transmission is not limited here.
  • the terminal device sends first indication information to the network device, the first indication information is used to indicate the first TPMI group, and the first TPMI group is a TPMI group in the TPMI group set; then, the first indication information is received from the network device.
  • TPMI TPMI.
  • the network device selects the first TPMI instruction to the terminal device based on the first TPMI group, the terminal device can perform full power transmission based on the target precoding matrix corresponding to the first TPMI, which improves the uplink coverage capability of the terminal device, and the terminal device The upstream transmission performance of the device.
  • Fig. 3 is a flowchart of a communication method in an embodiment.
  • the communication method in this embodiment is described by taking the network device running in FIG. 1 as an example. As shown in Figure 3, the above communication method includes the following steps:
  • S201 Receive first indication information sent by a terminal device; the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set.
  • the above TPMI group set may include a basic TPMI group and/or a newly added TPMI group, where the newly added TPMI group is obtained based on some or all elements in the basic TPMI group.
  • the number of basic TPMI groups and the number of newly added TPMI groups included in the above TPMI group set are not limited.
  • the above TPMI group set may include 6 TPMI groups, where the above 6 TPMI groups may include 4 basic TPMI combinations and 2 newly added TPMI groups; for another example, the above TPMI group set may also include 10 TPMI groups, where The above 10 TPMI groups may include 6 basic TPMI combinations and 4 newly added TPMI groups.
  • the above-mentioned basic TPMI group may correspond to the number of first target ports and/or second target ports included in the terminal device, where the first target port is a port in the terminal device with full power transmission capability; the second target The port is a port with half-power transmission capability in the terminal device.
  • the aforementioned basic TPMI group may be at least one of TPMI group G0, TPMI group G1, TPMI group G2, TPMI group G3, TPMI group G4, TPMI group G5, and TPMI group G6.
  • the foregoing basic TPMI group may include at least one of the following TPMI groups:
  • the foregoing terminal device may be a device with 4 antenna ports;
  • the foregoing basic TPMI group may be as shown in the following table:
  • the precoding matrix corresponding to the TPMI group G0 may include the precoding matrix shown in the second row of the above table.
  • G0 can be reported to the network device.
  • the maximum transmit power corresponding to the terminal device is 23dBm.
  • the terminal device can use the precoding matrix to achieve full power transmission.
  • the precoding matrix corresponding to the TPMI group G1 may include the precoding matrix shown in the third row of the above table.
  • G1 when two of the power amplifiers in the terminal device support full power transmission, G1 can be reported to the network device.
  • the maximum transmission power corresponding to the terminal device is 23dBm.
  • the terminal device can use the precoding matrix with the layer number of 1 in G1 to achieve full power transmission;
  • the precoding matrix with the number of layers of 2 in G1 can also be used to achieve full power transmission.
  • the precoding matrix corresponding to the TPMI group G2 may include the precoding matrix shown in the fourth row of the above table.
  • G2 when three of the power amplifiers in the terminal device support full power transmission, G2 can be reported to the network device.
  • the maximum transmission power corresponding to the terminal device is 23dBm.
  • the terminal device can use the precoding matrix with the layer number of 1 in G2 to achieve full power transmission; also When the number of layers of the data stream is 2, the precoding matrix with the number of layers of 2 in G2 can be used to achieve full power transmission.
  • the precoding matrix with the number of layers of 3 in G2 can also be used to achieve full power transmission.
  • the precoding matrix corresponding to the TPMI group G3 may include the precoding matrix shown in the fifth row of the above table. For example, when three of the power amplifiers in the terminal device support half-power transmission, G3 can be reported to the network device. For example, the maximum transmit power corresponding to the terminal device is 23dBm. When the transmit power of three power amplifiers in the terminal device can reach 20dBm, the terminal device can use the precoding matrix with the layer number of 2 in G3 to achieve full power transmission; When the number of layers of the data stream is 3, the precoding matrix with the number of layers of 3 in G3 can also be used to achieve full power transmission.
  • TPMI group G0-TPMI group G3 can be applied to terminal devices with non-coherent transmission capabilities, and can also be applied to terminal devices with partial coherent transmission capabilities.
  • the precoding matrix corresponding to the TPMI group G4 may include the precoding matrix shown in the sixth row of the above table.
  • G4 can be reported to the network device.
  • the maximum transmission power corresponding to the terminal device is 23dBm.
  • the terminal device can use the precoding matrix with the layer number of 1 in G4 to achieve full power transmission; It is also possible to use a precoding matrix with a layer number of 2 in G4 when the number of layers of the data stream is 2, to achieve full power transmission.
  • the precoding matrix corresponding to the TPMI group G5 may include the precoding matrix shown in the seventh row of the above table. For example, when three power amplifiers in the terminal device support half-power transmission, and the antenna ports corresponding to two of the above three power amplifiers are coherent, G5 can be reported to the network device. For example, the maximum transmit power corresponding to the terminal device is 23dBm.
  • the terminal device can use the precoding matrix with the layer number of 1 in G5 to allocate the uplink data to Two coherent second target ports can achieve full power transmission; when the number of layers of the data stream is 2, the precoding matrix with layer number 2 in G5 can be used to achieve full power transmission; in addition, the block can also be used in the data stream.
  • the number of layers is 3, a precoding matrix with a layer number of 3 in G5 is used to achieve full power transmission.
  • the precoding matrix corresponding to the TPMI group G6 may include the precoding matrix shown in the eighth row of the above table. For example, when the four power amplifiers in the terminal device support half-power transmission, and the above four power amplifiers correspond to two sets of coherent antenna ports, G6 can be reported to the network device. For example, the maximum transmit power corresponding to the terminal device is 23dBm.
  • the terminal device can use the precoding matrix with the layer number of 1 in G6 to achieve full power transmission; also When the number of layers in the data stream is 2, use the precoding matrix with the number of layers in G6 as 2 to achieve full power transmission; in addition, when the number of layers in the data stream is 3, the block can also use the layer number in G6 as 3 Precoding matrix to achieve full power transmission.
  • TPMI group G4-TPMI group G6 is applicable to terminal devices with partial coherent transmission capabilities.
  • the above G0-G6 group may also only include part of the precoding matrix in the corresponding row in the above table.
  • the at least 8 TPMI groups may include part of the basic TPMI groups among the 7 basic TPMI groups, or may include all the basic TPMI groups. This is not limited.
  • the aforementioned at least 8 TPMI groups may include 6 basic TPMI groups and at least 2 newly added TPMI groups.
  • the aforementioned newly added TPMI group may be obtained based on part or all of the aforementioned 7 basic TPMI groups. Specifically, the newly added TPMI group can be obtained based on 2 basic TPMI groups, or can be obtained based on 3 TPMI groups, which is not limited here. In addition, the newly added TPMI group can be directly formed by combining two basic TPMI groups, or it can be obtained by adjusting the position of non-zero ports in the TPMI group. The method for obtaining the newly added TPMI group is not limited here.
  • the precoding matrix corresponding to the newly added TPMI group may include: the precoding matrix in the TPMI group G0 and some or all of the precoding matrix in the first set; wherein the first set is the TPMI group G4, At least one of TPMI group G5 and TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the first set.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G2 and some or all of the precoding matrix in the second set; where the second set is the TPMI group G5, At least one of TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and the matrix obtained after non-zero port adjustment is performed on part or all of the precoding matrix in the first set. .
  • the above-mentioned newly added TPMI group may include a precoding matrix in TPMI group G1 and part of the precoding matrix in TPMI group G4, and may also include a precoding matrix in TPMI group G1 and a part of precoding matrix in TPMI group G4. , It is not limited here.
  • the TPMI group set includes the basic TPMI group and the newly added TPMI group, and the newly added TPMI group is obtained based on the basic TPMI group, this greatly improves the terminal device's selection of the first TPMI group in the TPMI group set.
  • the selectable range of the time so that the terminal device can select a more matching first TPMI group for reporting; further, when the network device selects a first TPMI based on the first TPMI group and sends it to the terminal device, the terminal device can Full power transmission is performed based on the target precoding matrix indicated by the TPMI, which improves the uplink coverage capability of the terminal device and the uplink transmission performance of the terminal device.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and part or all of the precoding matrix in the TPMI group G4.
  • the precoding matrix corresponding to the newly added TPMI group includes: all precoding matrix matrices in the TPMI group G0, and all precoding matrixes in the TPMI group G4.
  • the precoding matrix corresponding to the newly added TPMI group G01 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23,17,20,17]dBm respectively.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and part or all of the precoding matrix in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group includes: all the precoding matrix matrices in the TPMI group G0, and all the precoding matrixes in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group G02 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23,20,20,17]dBm respectively.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and part or all of the precoding matrix in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: all precoding matrix matrices in the TPMI group G0, and all precoding matrixes in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group G03 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23 dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23, 20, 20, 20] dBm, respectively
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the TPMI group G4.
  • the precoding matrix corresponding to the newly added TPMI group includes: all the precoding matrix matrices in the TPMI group G1, and all the precoding matrixes in the TPMI group G4.
  • the precoding matrix corresponding to the newly added TPMI group G04 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23, 17, 23, 17] dBm, respectively
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group includes: all precoding matrix matrices in the TPMI group G1, and all precoding matrixes in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group G05 may include:
  • the maximum transmit power of the corresponding level of the terminal device is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23, 20, 23, 17] dBm, respectively
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: all the precoding matrix matrices in the TPMI group G1, and all the precoding matrixes in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group G06 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23, 20, 23, 20] dBm, respectively
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G2, and part or all of the precoding matrix in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group includes: all precoding matrix matrices in the TPMI group G2, and all precoding matrixes in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group G07 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23,23,23,17]dBm respectively.
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G2, and part or all of the precoding matrix in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: all the precoding matrix matrices in the TPMI group G2, and all the precoding matrixes in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group G08 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23, 23, 23, 20] dBm, respectively
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and a matrix obtained after non-zero port adjustment is performed on part or all of the precoding matrix in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group includes: all precoding matrix matrices in the TPMI group G0, and a matrix obtained after all the precoding matrices in the TPMI group G5 are adjusted with non-zero ports.
  • the precoding matrix corresponding to the newly added TPMI group G09 may include:
  • the maximum transmission power of the corresponding level of the terminal equipment is 23dBm
  • the power amplifier power corresponding to the 4 antenna ports is [23, 20, 17, 20] dBm, respectively
  • the above new TPMI group can be any one of the new TPMI groups G01-G09; when the above TPMI group set includes two new TPMI groups , The above-mentioned newly added TPMI group may include newly-added TPMI group G01 and newly-added TPMI group G02, may also include newly-added TPMI group G01 and newly-added TPMI group G08, or a combination of other newly-added TPMI groups; the above-mentioned TPMI group set When three new TPMI groups are included in the new TPMI group, the above new TPMI group can include the new TPMI group G01, the new TPMI group G02, and the new TPMI group G03, or the new TPMI group G01, the new TPMI group G02, and the The newly-added TPMI group G08 can also be a combination of other newly-added TPMI groups;
  • the terminal device when the terminal device has 4 antenna ports, the terminal device may also perform transmission on 2 antenna ports corresponding to its configuration.
  • the terminal device may use a 2-bit bitmap to report the second indication information, and the second indication information indicates whether the corresponding two precoding matrices can support the terminal device to perform full power transmission during 2-port transmission.
  • each bit corresponds to one precoding matrix, and the terminal device may use the precoding matrix indicated by the second indication information to perform full power transmission.
  • a bitmap with a value of 1 is used to indicate that the precoding matrix corresponding to the bit supports full power transmission;
  • a bitmap with a value of 0 is used to indicate that the precoding matrix corresponding to the bit is not Support full power transmission.
  • the above-mentioned first indication information and the second indication information may be transmitted through the same signaling, for example, both are transmitted through the same RRC signaling.
  • the above-mentioned first indication information and second indication information may also be transmitted through the same signaling as the first full power transmission mode.
  • the reporting mode of the second indication information may be an optional report; that is to say, when the terminal device reports the first indication information to the network device, it may optionally upload Report the corresponding second instruction information for port 2 transmission.
  • the reporting mode of the second indication information may be mandatory; that is to say, when the terminal device reports the first indication information to the network device, it must report at the same time.
  • the port transmits the corresponding second indication information.
  • the first two bits in the figure are the second indication information; the last four bits are used to report the first indication information indicating the first TPMI group.
  • the first indication information may be in the front, and the position of the second information may be in the back.
  • the 2-bit bitmap reported by the terminal device when the 2-bit bitmap reported by the terminal device is 10, it indicates the corresponding precoding matrix Full power transmission is possible; when the bitmap reported by the terminal device is 01, it indicates the corresponding precoding matrix Can carry out full power transmission.
  • the terminal device also uses 2 bits to report the second indication information while reporting the first TPMI group to the network device, and the second indication information is used to indicate the full power transmission capability of the terminal device in the case of 2 ports; Therefore, the network device can send the appropriate TPMI according to the different transmission conditions of the terminal device, so that the terminal device can achieve full power transmission by receiving the specific TMPI indicated by the network device regardless of whether it is working on a 4-port or a 2-port situation. , Improve the uplink transmission capacity of terminal equipment.
  • the terminal device when the terminal device reports one of the TPMI group G0-TPMI group G3 to the network device, it can also use a 2-bit bitmap to report the third indication information; Whether the precoding matrix corresponding to the indication information can support non-coherent terminal equipment to perform full power transmission during 2-port transmission.
  • the third indication information a bit value of 1 in the bitmap is used to indicate that the precoding matrix corresponding to the bit supports full power transmission; a bit in the bitmap having a value of 0 is used to indicate the The precoding matrix corresponding to the bit does not support full power transmission.
  • the reporting of the aforementioned third indication information may be an optional report, that is, when a non-coherent terminal device reports one of the TPMI group G0-TPMI group G3 to the network device, it can optionally report the terminal
  • the device 2 port transmits the corresponding third instruction information.
  • the reporting of the aforementioned third indication information may be mandatory, that is, when a non-coherent terminal device reports one of the TPMI groups in the TPMI group G0-TPMI group G3 to the network device, it must report the terminal device port 2 The corresponding third instruction information is transmitted.
  • the network device may receive the first indication information reported by the terminal device through radio resource control RRC signaling.
  • the network device may receive the second indication information reported by the terminal device; the second indication information indicates whether the corresponding precoding matrix can support full power transmission by the terminal device during 2-port transmission through a bitmap.
  • the value of the bit in the above bitmap is 1 to indicate that the precoding matrix corresponding to the bit supports full power transmission; the bit of the bitmap is the value 0 to indicate that the precoding matrix corresponding to the bit does not support full power transmission. Power transmission.
  • the first indication information and the second indication information received by the network device may be transmitted through the same signaling.
  • the network device may receive the first full power transmission mode reported by the terminal device.
  • the first full power transmission mode is reported through RRC signaling.
  • the network device may send a sounding reference signal resource group configuration SRS resource set to the terminal device; the SRS resource set carries at least one sounding reference signal resource SRS resource.
  • the number of ports corresponding to some or all of the above SRS resources is different.
  • the number of ports corresponding to the foregoing SRS resource is less than or equal to 4.
  • the number of spatial relationships corresponding to all SRS resources is less than or equal to 2.
  • SRS resource set is used for PUSCH transmission based on codebook codebook.
  • the network device receives the second indication information reported by the terminal device while receiving the first TPMI group reported by the terminal device.
  • the second indication information is used to instruct the terminal device to transmit at full power in the case of 2 ports.
  • the network device can issue appropriate TPMI according to the different transmission conditions of the terminal device, so that the terminal device can achieve fullness by receiving the specific TMPI indicated by the network device regardless of whether it is working on 4-port or 2-port. Power transmission improves the uplink transmission capacity of terminal equipment.
  • a communication device is provided. As shown in FIG. 5, the above-mentioned communication device includes a sending module 10 and a receiving module 20:
  • the sending module 10 is configured to send first indication information to a network device, where the first indication information is used to indicate a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the receiving module 20 is configured to receive the first TPMI indicated by the network device.
  • the precoding matrix corresponding to the TPMI in the first TPMI group is a precoding matrix that supports the terminal device to perform PUSCH full power transmission.
  • the above-mentioned apparatus further includes a precoding module 30, configured to: use the target precoding matrix corresponding to the first TPMI for full power transmission; the target precoding matrix corresponding to the first TPMI is a support A precoding matrix for the terminal device to perform PUSCH full power transmission.
  • the above-mentioned precoding module 30 is further used for: when the first TPMI corresponds to a precoding matrix in the first TPMI group, the target precoding matrix indicated by the first TPMI is used for full power transmission.
  • the first indication information is determined based on the number of antenna ports of the terminal device and the TPMI group set.
  • At least 8 TPMI groups are included in the TPMI group set.
  • the TPMI group set includes a basic TPMI group and/or a newly added TPMI group, where the newly added TPMI group is obtained based on some or all elements in the basic TPMI group.
  • the at least 8 TPMI groups include 7 basic TPMI groups and at least one newly added TPMI group, where the newly added TPMI group is obtained based on some or all of the elements in the 7 basic TPMI groups.
  • the basic TPMI group corresponds to the number of first target ports and/or second target ports included in the terminal device, where the first target port is a port with full power transmission capability in the terminal device; the second target The port is a port with half-power transmission capability in the terminal device.
  • the basic TPMI group is at least one of TPMI group G0, TPMI group G1, TPMI group G2, TPMI group G3, TPMI group G4, TPMI group G5, and TPMI group G6.
  • the basic TPMI group includes at least one of the following:
  • the precoding matrix in the TPMI group G0 is used to indicate that the terminal device includes a first target port
  • the precoding matrix in the TPMI group G1 is used to indicate that the terminal device contains two first target ports;
  • the precoding matrix in the TPMI group G2 is used to indicate that the terminal device contains three first target ports;
  • the precoding matrix in the TPMI group G3 is used to indicate that the terminal device contains three second target ports;
  • the precoding matrix in the TPMI group G4 is used to indicate that the terminal device contains two coherent second target ports;
  • the precoding matrix in the TPMI group G5 is used to indicate that the terminal device includes three second target ports; wherein, the three second target ports include a group of coherent ports;
  • the precoding matrix in the TPMI group G6 is used to indicate that the terminal device includes four second target ports; among them, the four second target ports include two sets of coherent ports.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0 and some or all of the precoding matrix in the first set; One set is at least one of TPMI group G4, TPMI group G5, and TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and part or all of the precoding matrix in the TPMI group G4.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and part or all of the precoding matrix in the TPMI group G5.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and part or all of the precoding matrix in the TPMI group G6.
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the first set ;
  • the first set is at least one of TPMI group G4, TPMI group G5, and TPMI group G6.
  • the precoding matrix corresponding to the above-mentioned newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the TPMI group G4 matrix.
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the TPMI group G5 matrix.
  • the precoding matrix corresponding to the above-mentioned newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G1, and part or all of the precoding matrix in the TPMI group G6 matrix.
  • the precoding matrix corresponding to the newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G2 and part or all of the precoding matrix in the second set; Wherein, the second set is at least one of TPMI group G5 and TPMI group G6.
  • the precoding matrix corresponding to the above-mentioned newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G2, and part or all of the precoding matrix in the TPMI group G5 matrix.
  • the precoding matrix corresponding to the above-mentioned newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G2, and part or all of the precoding matrix in the TPMI group G6 matrix.
  • the precoding matrix corresponding to the above-mentioned newly added TPMI group includes: part or all of the precoding matrix in the TPMI group G0, and performing non-processing on the precoding matrix in the first set.
  • the precoding matrix corresponding to the newly added TPMI group includes: the precoding matrix in the TPMI group G0, and performing some or all of the precoding matrix in the TPMI group G5 Matrix obtained after adjustment of non-zero ports.
  • the foregoing terminal device is a device that supports 4 antenna ports.
  • the precoding matrix corresponding to the foregoing TPMI group G0 includes:
  • the precoding matrix corresponding to the foregoing TPMI group G1 includes:
  • the precoding matrix corresponding to the foregoing TPMI group G2 includes:
  • the precoding matrix corresponding to the foregoing TPMI group G3 includes:
  • the precoding matrix corresponding to the foregoing TPMI group G4 includes:
  • the precoding matrix corresponding to the foregoing TPMI group G5 includes:
  • the precoding matrix corresponding to the foregoing TPMI group G6 includes:
  • the foregoing sending module 10 is specifically configured to report the first indication information to the network device through radio resource control RRC signaling.
  • the foregoing sending module 10 is further configured to: report second indication information to the network device; the second indication information indicates whether the corresponding two precoding matrices can be Support terminal equipment for full power transmission during 2-port transmission.
  • the value of the bit in the bitmap is 1 to indicate that the precoding matrix corresponding to the bit supports full power transmission; the bit in the bitmap is the value 0 to indicate The precoding matrix corresponding to this bit does not support full power transmission.
  • the above-mentioned first indication information and the second indication information are transmitted through the same signaling.
  • the reporting mode of the second indication information is optional reporting.
  • the reporting mode of the second indication information is mandatory.
  • the foregoing apparatus further includes a reporting module 40 configured to report the first full-power transmission mode to the network device.
  • the above-mentioned first full power transmission mode is reported through RRC signaling.
  • the above-mentioned first full power transmission mode is reported through terminal capability signaling.
  • the reporting mode of the first TPMI group is optional reporting.
  • the reporting mode of the first TPMI group is mandatory reporting.
  • the above-mentioned first full-power transmission mode report, the first indication information and the second indication information are transmitted through the same signaling.
  • the above-mentioned receiving module 20 is further configured to: receive a sounding reference signal resource group configuration SRS resource set indicated by the network device; the SRS resource set carries at least one sounding reference signal resource.
  • the number of ports corresponding to some or all of the SRS resources is different.
  • the number of ports corresponding to the SRS resource is less than or equal to 4.
  • the number of spatial relationships corresponding to all SRS resources is less than or equal to 2.
  • the SRS resource set is used to support PUSCH transmission based on the codebook.
  • the usage configuration corresponding to the SRS resource set is "codebook”.
  • a communication device is provided. As shown in FIG. 8, the above-mentioned communication device includes a receiving module 110 and a sending module 120, wherein:
  • the receiving module 110 is configured to receive first indication information sent by a terminal device; the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the sending module 120 is configured to send the first TPMI to the terminal device.
  • the communication device may be divided into different modules as needed to complete all or part of the functions of the communication device.
  • Each module in the above-mentioned communication device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • each module in the network equipment device provided in the embodiments of the present application may be in the form of a computer program.
  • the computer program can be run on a terminal or a server.
  • the program module composed of the computer program can be stored in the memory of the terminal or the server.
  • a terminal including a transmitter and a receiver
  • a transmitter configured to send first indication information to a network device, where the first indication information is used to indicate a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the receiver is configured to receive the first TPMI indicated by the network device.
  • a network device including a receiver and a transmitter
  • a receiver configured to receive first indication information sent by a terminal device; the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the transmitter is used to send the first TPMI to the terminal device.
  • FIGS. 9 and 10 are only block diagrams of part of the structure related to the solution of the present application, and do not constitute a limitation on the terminal or network device to which the solution of the present application is applied.
  • the terminal or network device of may include more or fewer components than shown in the figure, or combine certain components, or have a different component arrangement.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the first indication information is used to indicate a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the first indication information indicates a first precoding matrix indicator TPMI group, and the first TPMI group is a TPMI group in a TPMI group set;
  • a computer program product containing instructions that, when run on a computer, causes the computer to execute a communication method.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法、装置、终端和存储介质,终端设备向网络设备发送第一指示信息;第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;然后,接收网络设备指示的第一TPMI。采用上述方法可以提升终端设备的上行覆盖能力,以及终端设备的上行传输性能。

Description

通信方法、装置、终端和存储介质 技术领域
本申请涉及通信技术领域,特别是涉及一种通信方法、装置、终端和存储介质。
背景技术
在新无线(New Radio,简称NR)***中,根据终端设备中各天线端口之间的相干特性,将终端设备的相干传输能力分为完全相干、部分相干以及非相干。终端设备向网络上报自身的相干传输能力。针对基于码本的上行传输,网络根据该终端设备的相干传输能力,在与该相干传输能力对应的码本子集中选择合适的预编码矩阵,并通过下行控制信息(Downlink Control Information,简称DCI)将该预编码矩阵对应的预编码矩阵指示符(Transmitted Precoding Matrix Indicator,简称TPMI)下发给终端设备,使得终端设备可以通过相应的预编码矩阵对上行数据进行预编码处理。其中,不同相干传输能力的终端设备对应不同码本子集,非相干类型的终端设备对应码本子集为nonCoherent,完全相干类型终端设备对应码本子集可以为fullyAndPartialAndNonCoherent,nonCoherent,或者partialAndNonCoherent,部分相干类型的终端设备对应的码本子集可以为nonCoherent,或者partialAndNonCoherent,nonCoherent是fullyAndPartialAndNonCoherent的子集。
在上行传输中,为了保证传输质量以及降低上行干扰,需要对终端设备的发射功率进行控制。在功率控制过程中,终端设备先根据网络配置信息等计算一个发射功率,然后在确定对计算出的发送功率进行缩放后,针对实际传输计算出功率缩放系数;并采用功率缩放系数对发射功率进行缩放后,分配至PUSCH的非零传输端口上进行传输。
但是,对于相干传输能力为部分相干以及非相干的终端设备,按照上述方法进行功率控制时,会出现终端设备无法达到最大发射功率的情况。
发明内容
本申请实施例提供一种通信方法、装置、网络设备、终端和存储介质。
第一方面,一种通信方法,包括:
向网络设备发送第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
接收网络设备指示的第一TPMI。
第二方面,一种通信方法,包括:
接收终端设备发送的第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为预设的TPMI组集合中的一个TPMI组;
向终端设备发送第一TPMI。
第三方面,一种通信装置,包括发送模块和接收模块:
发送模块,用于向网络设备发送第一指示信息,第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
接收模块,用于接收网络设备指示的第一TPMI。
第四方面,一种通信装置,包括接收模块和发送模块:
接收模块,用于接收终端设备发送的第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
发送模块,用于向终端设备发送第一TPMI。
第五方面,一种终端,包括发送器和接收器:
发送器,用于向网络设备发送第一指示信息,第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
接收器,用于接收网络设备指示的第一TPMI。
第六方面,一种网络设备,包括接收器和发送器:
接收器,用于接收终端设备发送的第一指示信息,第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
发送器,用于向终端设备发送第一TPMI。
第七方面,一种计算机可读存储介质,其上存储有计算机程序,上述计算机程序被处理器执行时实现上述通信方法的步骤。
上述通信方法、装置、终端和存储介质,终端设备向网络设备发送第一指示信息,第一指示信息用于指示第一TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;然后,接收网络设备指示的第 一TPMI。当网络设备基于第一TPMI组选择第一TPMI指示给终端设备时,终端设备就可以基于该第一TPMI所对应的目标预编码矩阵进行满功率发送,提高了终端设备的上行覆盖能力,以及终端设备的上行传输性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例提供的通信方法的应用环境图;
图2为一个实施例提供的通信方法的流程图;
图3为一个实施例提供的通信方法的流程图;
图4为一个实施例中上报示意图;
图5为一个实施例提供的通信装置的框图;
图6为一个实施例提供的通信装置的框图;
图7为另一个实施例提供的通信装置的框图;
图8为另一个实施例提供的通信装置的框图;
图9为一个实施例提供的终端的内部结构示意图;
图10为一个实施例提供的网络设备的内部结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在新无线(New Radio,简称NR)***中,根据终端设备中各天线端口之间的相干特性,可以将终端设备的相干传输能力分为完全相干、部分相干以及非相干,其中:
非相干nonCoherent,是指终端设备中任意两个天线端口对应的相位差不能保持恒定关系,例如两个天线端口之间的相位差会发生变化,难以在一定时长内保持不变;或者在一定时长内两个天线端口之间的相位差变化幅度超出一定的范围。
部分相干partialCoherent,是指终端设备的天线端口分为多个组,每组天线端口之间的相位差可以保持恒定关系,但是不同组之间的天线端口之间的相位差不能保持恒定关系。
全相干fullCoherent,是指终端设备的所有天线端口之间的相位差可以保持恒定关系。上述天线端口是物理天线端口的抽象表示,天线端口与物理天线端口可以一一对应,也可以一对多。
终端设备向网络上报自身的相干传输能力;其中,2端口终端设备可以有非相干和全相干两种类型,4端口终端设备可以有非相干、部分相干和全相干三种类型。网络设备接收到终端设备上传的相干传输能力之后,针对基于码本的上行传输,可以根据该终端设备的相干传输能力,在与该相干传输能力对应的码本子集codebook subset中选择合适的预编码矩阵,可以通过DCI将该预编码矩阵对应的TPMI下发给终端设备,使得终端设备可以通过该TPMI对应的预编码矩阵对上行数据进行预编码处理。
目前协议规定了三种不同的码本子集,包括:fullyAndPartialAndNonCoherent,partialAndNonCoherent、nonCoherent。其中,fullyAndPartialAndNonCoherent,可以适用于相干传输能力为fullCoherent的终端;partialAndNonCoherent,可以适用于相干传输能力为partialCoherent以及fullCoherent的终端;nonCoherent:可用于相干传输能力为nonCoherent,partialCoherent以及fullCoherent的终端。其中,对于支持4个天线端口的终端设备,码本子集nonCoherent是partialAndNonCoherent的子集,partialAndNonCoherent是fullyAndPartialAndNonCoherent的子集。
在上行传输中,为了保证传输质量以及降低上行干扰,需要对终端设备的发射功率进行控制。上行功率控制过程中,终端设备可以根据网络配置信息,和/或上行传输对应的调度信息,例如频域资源分配信息、发射功率控制(transmit power control,简称TPC)命令等,计算一个发射功率;然后,终端设备根据当前传输情况,确定是否对所述计算得到的发射功率进行缩放;最后,当确定需要对所述计算得到发射功率进行缩放时,基于物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)端口信息计算出功率缩放系数,并采用功率缩放系数对计算得到的发射功率进行缩放后,分配至PUSCH非零传输端口上进行传输,其中PUSCH非零传输端口可以对应PUSCH所用的预编码矩阵的非零传输端口。
其中,缩放系数的计算方法为:PUSCH非零传输端口数目除以终端设备能支持的探测参考信号(Sounding Reference Signal,简称SRS)的最大端口数目。例如,对于相干传输能力为nonCoherent的2天线端口的终端设备,网络设备下发的TPMI对应的预编码矩阵为
Figure PCTCN2020072756-appb-000001
由预编码矩阵可以看出对应的PUSCH非零传输端口数目为1,而终端设备能支持的最大端口数目为2,因此计算得到的 缩放系数为0.5。也就是说,当终端设备计算出的发射功率为20dBm时,实际发射功率只能是17dBm,因此会导致终端设备的最大发射功率为23dBm时,该终端设备实际发送的最大功率为20dBm。因此,对于相干传输能力为部分相干以及非相干的终端设备,按照上述方法进行功率控制时,无法使用最大功率发送上行信号,我们把这种情况简称为无法进行满功率发射。
基于上述情况,本申请实施例提供的一种通信方法。该方法可以应用于基于5G通信技术和IoT相关的技术的智能服务,例如智能家居,智能建筑,智能城市,智能汽车,联网汽车,医疗保健,数字教育,智能零售,安全和安全服务。图1为本申请实施例提供的通信方法的一种应用场景示意图。如图1所示,该场景包括网络设备100和终端设备200,网络设备100和终端设备200通过网络进行通信。其中,网络设备100可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站等,在此并不限定。
终端设备200可以是无线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案进行介绍。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为一个实施例中通信方法的流程图。本实施例中的通信方法,以运行于图1中的终端设备为例进行描述。如图2所示,上述通信方法包括以下步骤:
S101、向网络设备发送第一指示信息,所述第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组。
可选的,第一TPMI组中的TPMI对应的预编码矩阵为支持终端设备进行PUSCH满功率发送的预编码矩阵。
其中,上述第一TPMI组为预设的TPMI组集合中的一个TPMI组。上述每个TPMI组对应的预编码矩阵集合中可以包括至少一个预编码矩阵。
在MIMO***中,终端设备和网络设备可以通过多个天线实现多个信号流在空中的并行传输。例如,在上行传输中,终端设备通过多个天线端口传输几路并行的数据流,然后网络设备在接收端再通过多个接收天线将并行的数据流接收下来,检测出终端设备发送的信号。
为了提高数据流的传输效率,MIMO***可以采用空分复用模式,例如,将1个高速的数据流分割为几个速率较低的数据流,通过预编码处理然后从不同的天线端口发送。预编码矩阵可以保存于设备中的码本中;码本中包括多个码字,每个码字是一个预编码矩阵。对于上行传输,对应的上述预编码矩阵可以通过TPMI来标识。
本申请实施例涉及的预编码矩阵的系数除实施例中给出的具体系数外,还可以是1,或者其他值。
上述第一TPMI组对应的预编码矩阵集合中可以包括一个预编码矩阵,也可以包括多个预编码矩阵;在此不做限定。上述TPMI组集合中包含的TPMI组的数量在此不做限定,可以是6个TPMI组,也可以是10个TPMI组。可选地,上述TPMI组集合中可以包括至少8个TPMI组。例如,当终端设备采用4比特上报第一TPMI组时(针对终端设备支持4个天线端口的情况),上述TPMI组集合中可以包含16个TPMI组,或者可以包括15个TPMI组,或者其他数目的TPMI组。TPMI组集合至少包括至少8个TPMI组,可以大大提高终端设备在TPMI组集合中选择第一TPMI组时的可选范围,从而使得终端设备能够选择到更加匹配的第一TPMI组进行上报。
上述TPMI组集合中的各个TPMI组中,不同的两个TPMI组可以包含部分相同的预编码矩阵。
上述TPMI组可以适用于不同实现类型的终端设备,上述实现类型可以是支持不同功率架构的终端设备。例如,终端设备具有满功率发送能力时,可以向网络设备上报第一指示信息,上述第一指示信息指示TPMI组集合中相应的一个TPMI组,可选的,第一指示信息同时指示终端设备可以采用上述TPMI组中包含的预编码矩阵实现满功率发送。
可选的,终端设备在向网络设备发送用于指示第一TPMI组的第一指示信息时,可以基于终端设备的天线端口数目以及TPMI组集合,确定第一指示信息指示的第一TPMI组。例如,终端设备支持的天线端口数目为4时,可以根据各天线端口对应的功率能力,在支持4个天线端口的终端设备对应的TPMI组集合中选择第一TPMI组,并通过第一指示信息上报给网络设备。
具体地,终端设备可以通过高层信令向网络设备发送第一指示信息。可选地,终端设备可以通过无线资源控制((Radio Resource Control,简称RRC)信令向网络设备发送第一指示信息;可选的,终端设备可以通过终端能力上报信令向网络设备发送第一指示信息。
上述终端设备可以是支持2个天线端口传输的终端设备,也可以是支持4个天线端口传输的终端设备,还可以是支持其他多个天线端口传输的终端设备,在此不做限定。其中,上述天线端口数目是指逻辑端口的数目,可以等于物理天线端口(或物理天线)的数目,也可以小于物理天线端口的数目。例如,具有4个物理天线端口终端设备,可以支持4个天线端口传输,也可以是将其中两个物理天线端口进行虚拟化之后形成2个天线端口,支持2天线端口传输。在后面描述中,天线端口有时简称为端口,例如2端口传输,4端口终端设备。
终端设备可以根据天线端口数目以及终端设备的相干传输能力,上报上述TPMI组。例如,对于支持4个天线端口的终端设备,在前面通过第一指示信息上报第一TPMI组的基础上,还可以采用2比特的位图(bitmap)来上报第二指示信息,其中每个比特对应1个预编码矩阵,用于指示对应的预编码矩阵能否支持满功率发送;对于上述上报方式,在此不做限定。
另外,终端设备向网络设备发送用于指示第一TPMI组的第一指示信息时,还可以向网络设备上报终端设备支持第一满功率发送模式;第一满功率发送模式用于表征终端设备具有满功率发送能力。
可选地,上述第一满功率发送模式可以通过RRC信令上报,也可以通过终端能力信令上报。
可选地,当终端设备向网络设备上报第一满功率发送模式时,上述第一指示信息的上报方式可以为可选上报。也就是说,当终端设备向网络设备上报第一满功率发送模式时,可选地发送第一指示信息。
可选地,当终端设备向网络设备上报第一满功率发送模式时,上述第一指示信息的上报方式可以为必须上报。也就是说,当终端设备向网络设备上报第一满功率发送模式时,必须同时向网络设备发送第一指示信息。
进一步地,网络设备可以根据接收到的第一满功率发送模式,可以在终端设备发送的第一TPMI组中选择一个TPMI下发给终端设备,也可以在终端设备所对应的码字子集中选择其他一个TPMI下发给终端设备,用于PUSCH传输,在此不做限定。
若网络设备配置终端设备工作在第一满功率发送模式,还可以向终端设备发送探测参考信号资源组配置SRS resource set;其中,上述SRS resource set可以配置至少一个SRS resource,并携带各SRS resource对应的端口数量。各SRS resource对应的端口数量可以相同;可选地,部分或全部SRS resource对应的端口数量可以不同。上述SRS resource可以对应1个端口,也可以对应2个端口;可选地,SRS resource对应的端口数量小于等于4。例如,若上述SRS resource set中携带2个SRS resource,其中一个SRS resource对应的端口数量可以为2,另一个SRS resource对应的端口数量可以为4;若上述SRS resource set中携带4个SRS resource,其中两个SRS resource对应的端口数量可以为1,另外另个SRS resource对应的端口数量可以为2。
上述各SRS resource可以对应同一个空间关系spatial relation information,也可以对应不同的空间关系;可选地,所有SRS resource对应的空间关系的数量小于等于2。可选地,上述SRS resource set用于支持基于codebook的PUSCH传输;其中,SRS resource set对应的usage配置可以是“codebook”。
S102、接收网络设备指示的第一TPMI。
若第一TPMI对应第一TPMI组中的其中一个预编码矩阵,终端设备可以采用第一TPMI对应的目标预编码矩阵进行满功率发送。若第一TPMI不属于第一TPMI组,终端设备采用第一TPMI对应的目标预编码矩阵,根据规定的功率缩放方法进行对应的功率控制。
可选地,若第一TPMI对应的预编码矩阵具有满功率发送能力,终端设备可以采用该第一TPMI对应的目标预编码矩阵进行满功率发送。若第一TPMI不属于第一TPMI组,那么终端设备可以根据规定的功率缩放方法进行对应的功率控制;例如,终端设备采用具有满功率发送能力的第一TPMI获得的缩放系数为1,然后采用该缩放系数进行满功率发送。
终端设备向网络发送第一TPMI组之后,网络设备可以选择一个预编码矩阵,然后通过DCI下发给终端设备,从而使得终端设备基于DCI的预定格式获取DCI指示的目标预编码矩阵。
如果终端设备获取的目标预编码矩阵包含在已上报的第一TPMI组中所对应的预编码矩阵集合中, 终端设备采用该目标预编码矩阵对上行数据进行预编码处理,然后将预编码处理后的上行数据分配至PUSCH非零端口中,进而对预编码处理后的上行数据进行满功率发送。
需要说明的是,终端设备在进行满功率发送时,发射功率是基于网络设备下发的网络配置信息,和/或上行传输对应的调度信息,例如频域资源分配信息、TPC命令等得到的。
具体地,终端设备在进行满功率发送时,可以在上行功率控制过程中,不对计算得到的发射功率进行缩放处理,把计算得到的发送功率分配到PUSCH对应端口,或者采用缩放系数1对计算得到的发射功率进行缩放,把缩放后的发射功率分配到PUSCH对应端口。对于上述满功率发送的实现方式在此不做限定。
上述通信方法,终端设备向网络设备发送第一指示信息,第一指示信息用于指示第一TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;然后,接收网络设备指示的第一TPMI。当网络设备基于第一TPMI组选择第一TPMI指示给终端设备时,终端设备就可以基于该第一TPMI所对应的目标预编码矩阵进行满功率发送,提高了终端设备的上行覆盖能力,以及终端设备的上行传输性能。
图3为一个实施例中通信方法的流程图。本实施例中的通信方法,以运行于图1中的网络设备为例进行描述。如图3所示,上述通信方法包括以下步骤:
S201、接收终端设备发送的第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组。
S202、向终端设备发送第一TPMI。
上述实施例中的实现原理和技术效果,与图2对应实施例中类似,在此不再赘述。
在一个实施例中,上述TPMI组集合中可以包括基础TPMI组和/或新增TPMI组,其中,新增TPMI组基于基础TPMI组中的部分元素或者全部元素获得。上述TPMI组集合中包括的基础TPMI组的数量和新增TPMI组的数量不做限定。
例如,上述TPMI组集合中可以包括6个TPMI组,其中上述6个TPMI组可以包括4个基础TPMI组合2个新增TPMI组;再例如,上述TPMI组集合还可以包括10个TPMI组,其中上述10个TPMI组可以包括6个基础TPMI组合4个新增TPMI组。
可选地,上述基础TPMI组可以与终端设备包含的第一目标端口和\或第二目标端口的数量对应,其中,第一目标端口为终端设备中具有满功率发送能力的端口;第二目标端口为终端设备中具有半功率发送能力的端口。
可选地,上述基础TPMI组可以为TPMI组G0、TPMI组G1、TPMI组G2、TPMI组G3、TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
可选地,上述基础TPMI组可以包括以下TPMI组中的至少一个:
TPMI组G0中的预编码矩阵用于指示终端设备中包含一个具有满功率发送能力的第一目标端口;TPMI组G1中的预编码矩阵用于指示终端设备中包含两个具有满功率发送能力的第一目标端口;TPMI组G2中的预编码矩阵用于指示终端设备中包含三个具有满功率发送能力的第一目标端口;TPMI组G3中的预编码矩阵用于指示终端设备中包含三个具有半功率发送能力的第二目标端口;TPMI组G4中的预编码矩阵用于指示终端设备中包含两个相干的具有半功率发送能力的第二目标端口;TPMI组G5中的预编码矩阵用于指示终端设备中包含三个具有半功率发送能力的第二目标端口;其中,三个第二目标端口中包含一组相干端口;TPMI组G6中的预编码矩阵用于指示终端设备中包含四个具有半功率发送能力的第二目标端口;其中,四个第二目标端口中包含两组相干端口。
可选的,上述终端设备可以是具有4个天线端口的设备;上述基础TPMI组可以如下表所示:
Figure PCTCN2020072756-appb-000002
Figure PCTCN2020072756-appb-000003
对于4个天线端口的终端设备,TPMI组G0对应的预编码矩阵可以包括上表第二行所示的预编码矩阵。例如,当终端设备中其中一个功率放大器支持满功率发送时,可以将G0上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中其中一个功率放大器的发射功率可以达到23dBm时,终端设备可以采用该预编码矩阵实现满功率发送。
TPMI组G1对应的预编码矩阵可以包括上表第三行所示的预编码矩阵。例如,当终端设备中其中两个功率放大器支持满功率发送时,可以将G1上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中其中两个功率放大器的发射功率可以达到23dBm时,终端设备可以采用G1中的层数为1的预编码矩阵,实现满功率发送;也可以在数据流的层数为2时,采用G1中层数为2的预编码矩阵,实现满功率发送。
TPMI组G2对应的预编码矩阵可以包括上表第四行所示的预编码矩阵。例如,当终端设备中其中 三个功率放大器支持满功率发送时,可以将G2上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中其中三个功率放大器的发射功率可以达到23dBm时,终端设备可以采用G2中的层数为1的预编码矩阵实现满功率发送;也可以在数据流的层数为2时,采用G2中层数为2的预编码矩阵,实现满功率发送。另外,还可以在数据流的层数为3时,采用G2中层数为3的预编码矩阵,实现满功率发送。
TPMI组G3对应的预编码矩阵可以包括上表第五行所示的预编码矩阵。例如,当终端设备中其中三个功率放大器支持半功率发送时,可以将G3上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中其中三个功率放大器的发射功率可以达到20dBm时,终端设备可以采用G3中的层数为2的预编码矩阵,实现满功率发送;还可以在数据流的层数为3时,采用G3中层数为3的预编码矩阵,实现满功率发送。
需要说明的是,上述TPMI组G0-TPMI组G3,既可以适用于具有非相干传输能力的终端设备,也可以适用于具有部分相干传输能力的终端设备。
TPMI组G4对应的预编码矩阵可以包括上表第六行所示的预编码矩阵。例如,当终端设备中两个功率放大器支持半功率发送,且上述两个功率放大器对应的天线端口相干时,可以将G4上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中其中两个功率放大器的发射功率可以达到20dBm时,终端设备可以采用G4中的层数为1的预编码矩阵,实现满功率发送;也可以在数据流的层数为2时,采用G4中层数为2的预编码矩阵,实现满功率发送。
TPMI组G5对应的预编码矩阵可以包括上表第七行所示的预编码矩阵。例如,当终端设备中三个功率放大器支持半功率发送,且上述三个功率放大器中其中两个功率放大器对应的天线端口相干时,可以将G5上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中其中三个功率放大器的发射功率可以达到20dBm时,终端设备可以采用G5中的层数为1的预编码矩阵,将上行数据分配至两个相干的第二目标端口,实现满功率发送;也可以在数据流的层数为2时,采用G5中层数为2的预编码矩阵,实现满功率发送;另外块还可以在数据流的层数为3时,采用G5中层数为3的预编码矩阵,实现满功率发送。
TPMI组G6对应的预编码矩阵可以包括上表第八行所示的预编码矩阵。例如,当终端设备中四个功率放大器支持半功率发送,且上述四个功率放大器对应两组相干的天线端口时,可以将G6上报给网络设备。例如,终端设备对应的最大发射功率为23dBm,当终端设备中四个功率放大器的发射功率可以达到20dBm时,终端设备可以采用G6中的层数为1的预编码矩阵,实现满功率发送;也可以在数据流的层数为2时,采用G6中层数为2的预编码矩阵,实现满功率发送;另外块还可以在数据流的层数为3时,采用G6中层数为3的预编码矩阵,实现满功率发送。
需要说明的是,上述TPMI组G4-TPMI组G6适用于具有部分相干传输能力的终端设备。
可选的,上面G0-G6组也可以只包含上表中的对应行中的部分预编码矩阵。
可选地,上述TPMI组集合中包含至少8个TPMI组的情况下,上述至少8个TPMI组可以包含上述7个基础TPMI组中的部分基础TPMI组,也可以包含全部的基础TPMI组,在此不做限定。例如,上述至少8个TPMI组中可以包括6个基础TPMI组,以及至少2个新增TPMI组。
上述新增TPMI组可以基于上述7个基础TPMI组中的部分或者全部获得。具体地,新增TPMI组可以基于2个基础TPMI组获得,也可以基于3个TPMI组获得,在此不做限定。另外,新增TPMI组可以直接由2个基础TPMI组组合形成,也可以通过调整TPMI组中的非零端口位置获得,对于新增TPMI组的获取方式在此不做限定。
在一种实现方式中,新增TPMI组对应的预编码矩阵可以包括:TPMI组G0中的预编码矩阵以及第一集合中的部分或全部预编码矩阵;其中,第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
在另一种实现方式中,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及第一集合中的部分或全部预编码矩阵。
在另一种实现方式中,新增TPMI组对应的预编码矩阵包括:TPMI组G2中的预编码矩阵以及第 二集合中的部分或全部预编码矩阵;其中,第二集合为TPMI组G5、TPMI组G6中的至少一个。
在另一种实现方式中,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及对第一集合中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵。
例如,上述新增TPMI组可以包括TPMI组G1中一个预编码矩阵,以及TPMI组G4中的部分预编码矩阵,还可以包括TPMI组G1中一个预编码矩阵以及TPMI组G4中的部分预编码矩阵,在此不做限定。
上述通信方法,由于上述TPMI组集合中包括了基础TPMI组和新增TPMI组,并且新增TPMI组为基于基础TPMI组获得的,因此大大提高了终端设备在TPMI组集合中选择第一TPMI组时的可选范围,从而使得终端设备能够选择到更加匹配的第一TPMI组进行上报;进一步地,当网络设备基于第一TPMI组选择一个第一TPMI下发给终端设备时,终端设备就可以基于该TPMI所指示的目标预编码矩阵进行满功率发送,提高了终端设备的上行覆盖能力,以及终端设备的上行传输性能。
在下面几个实施例中,分别介绍适用于不同实现类型终端设备的新增TPMI组。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,TPMI组G4中的部分或全部预编码矩阵。可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的所有预编码矩阵矩阵,以及,TPMI组G4中的所有预编码矩阵。该新增TPMI组G01对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000004
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,17,20,17]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G0或者TPMI组G4中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,TPMI组G5中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的所有预编码矩阵矩阵,以及,TPMI组G5中的所有预编码矩阵。该新增TPMI组G02对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000005
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,20,20,17]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G0或者TPMI组G5中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,TPMI组G6中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的所有预编码矩阵矩阵,以及,TPMI 组G6中的所有预编码矩阵。该新增TPMI组G03对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000006
Figure PCTCN2020072756-appb-000007
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,20,20,20]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G0或者TPMI组G6中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,TPMI组G4中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的所有预编码矩阵矩阵,以及,TPMI组G4中的所有预编码矩阵。该新增TPMI组G04对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000008
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,17,23,17]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G1或者TPMI组G4中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,TPMI组G5中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的所有预编码矩阵矩阵,以及,TPMI组G5中的所有预编码矩阵。该新增TPMI组G05对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000009
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,20,23,17]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G1或者TPMI组G5中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵, 以及,TPMI组G6中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G1中的所有预编码矩阵矩阵,以及,TPMI组G6中的所有预编码矩阵。该新增TPMI组G06对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000010
Figure PCTCN2020072756-appb-000011
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,20,23,20]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G1或者TPMI组G6中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,TPMI组G5中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G2中的所有预编码矩阵矩阵,以及,TPMI组G5中的所有预编码矩阵。该新增TPMI组G07对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000012
Figure PCTCN2020072756-appb-000013
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,23,23,17]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G2或者TPMI组G5中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,TPMI组G6中的部分或全部预编码矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G2中的所有预编码矩阵矩阵,以及,TPMI组G6中的所有预编码矩阵。该新增TPMI组G08对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000014
Figure PCTCN2020072756-appb-000015
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,23,23,20]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G2或者TPMI组G6中的其中一个。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
在一个实施例中,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,对TPMI组G5中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵。
可选地,新增TPMI组对应的预编码矩阵包括:TPMI组G0中的所有预编码矩阵矩阵,以及,TPMI组G5中的全部预编码矩阵进行非零端口调整后获得的矩阵。该新增TPMI组G09对应的预编码矩阵可以包括:
Figure PCTCN2020072756-appb-000016
上述通信方法中,对于其中一个实现类型的终端设备,例如终端设备相应等级的最大发射功率为23dBm,4个天线端口对应的功率放大器功率分别为[23,20,17,20]dBm的情况下,若基于基础TPMI组上报第一TPMI组时,只能选择TPMI组G0;相应地,网络设备只能在TPMI组G0的预编码矩阵中选择一个预编码矩阵下发。TPMI组集合中增加了上述新增TPMI组之后,该类型的终端设备可以上报新增TPMI组,使得更多的预编码矩阵可以支持满功率发送。因此,上述新增TPMI组可以更好地支持该实现类型的终端设备,提升终端设备的上行传输能力。
需要说明的是,上述TPMI组集合中包含一个新增TPMI组时,上述新增TPMI组可以是新增TPMI组G01-G09中的任意一个;上述TPMI组集合中包含两个新增TPMI组时,上述新增TPMI组可以包括新增TPMI组G01和新增TPMI组G02,也可以包括新增TPMI组G01和新增TPMI组G08,还可以是其它新增TPMI组的组合;上述TPMI组集合中包含三个新增TPMI组时,上述新增TPMI组可以包括新增TPMI组G01、新增TPMI组G02和新增TPMI组G03,也可以包括新增TPMI组G01、新增TPMI组G02和新增TPMI组G08,还可以是其它新增TPMI组的组合;类似地,上述TPMI组集合中包含9个新增TPMI组时,上述新增TPMI组可以包括新增TPMI组G01、新增TPMI组G02、新增TPMI组G03、新增TPMI组G04、新增TPMI组G05、新增TPMI组G06、新增TPMI组G07、新增TPMI组G08、和新增TPMI组G09。对于上述新增TPMI组的组合方式在此不做限定。
在一个实施例中,终端设备在具有4个天线端口的情况下,还可以对其配置对应的2个天线端口进行传输。终端设备可以采用2比特的bitmap上报第二指示信息,第二指示信息指示对应的两个预编码矩阵能否支持终端设备在2端口传输时进行满功率发送。其中,每个比特对应1个预编码矩阵,终端设备可以采用第二指示信息指示的预编码矩阵进行满功率发送。
可选地,bitmap的某个比特位值为1用于指示该比特位对应的预编码矩阵支持满功率发送;bitmap的某个比特位为值0用于指示该比特位对应的预编码矩阵不支持满功率发送。
可选地,上述第一指示信息和第二指示信息可以通过同一信令传输,例如均通过同一个RRC信令传输。可选地,上述第一指示信息和第二指示信息,还可以与第一满功率发送模式通过同一信令传输。
可选地,当向网络设备发送所述第一指示信息时,上述第二指示信息的上报方式可以是可选上报;也就是说当终端设备向网络设备上报第一指示信息时,可选地上报2端口传输对应的第二指示信息。
可选地,当向网络设备发送所述第一指示信息时,上述第二指示信息的上报方式可以是必须上报;也就是说当终端设备向网络设备上报第一指示信息时,必须同时上报2端口传输对应的第二指示信息。
如图4所示,图中前两个比特位为第二指示信息;后四个比特位用于上报指示第一TPMI组的第一指示信息。可选的,第一指示信息可以在前面,第二信息的位置在后面。
例如,终端设备上报的2比特的bitmap为10时,指示对应的预编码矩阵
Figure PCTCN2020072756-appb-000017
可以进行满功率发送;终端设备上报的bitmap为01时,指示对应的预编码矩阵
Figure PCTCN2020072756-appb-000018
可以进行满功率发射。
上述通信方法,终端设备在向网络设备上报第一TPMI组的同时,还采用2比特上报第二指示信息,上述第二指示信息用于指示终端设备在2端口情况下的满功率发送的能力;因此,网络设备可以根据终端设备的不同传输情况下发合适的TPMI,使得终端设备无论工作在4端口的情况下还是2端口的情况下,均可以通过接收网络设备指示特定的TMPI实现满功率发送,提升终端设备的上行传输能力。
另外,对于具有非相干传输能力的终端设备,当终端设备向网络设备上报TPMI组G0-TPMI组G3中的其中一个TPMI组时,也可以采用2比特的bitmap上报第三指示信息;上述第三指示信息对应的预编码矩阵能否支持非相干终端设备在2端口传输时进行满功率发送。可选地,第三指示信息中,bitmap中某个比特位值为1用于指示所述比特位对应的预编码矩阵支持满功率发送;bitmap中某个比特位为值0用于指示所述比特位对应的预编码矩阵不支持满功率发送。
可选地,上述第三指示信息的上报可以是可选上报,也就是说当非相干终端设备向网络设备上报TPMI组G0-TPMI组G3中的其中一个TPMI组时,可选地上报该终端设备2端口传输对应的第三指示信息。
可选地,上述第三指示信息的上报可以是必须上报,也就是说当非相干终端设备向网络设备上报TPMI组G0-TPMI组G3中的其中一个TPMI组时,必须上报该终端设备2端口传输对应的第三指示信息。
在一个实施例中,网络设备可以通过无线资源控制RRC信令接收终端设备上报的第一指示信息。
在一个实施例中,网络设备可以接收终端设备上报的第二指示信息;第二指示信息通过位图bitmap指示对应的预编码矩阵能否支持终端设备在2端口传输时进行满功率发送。
在一个实施例中,上述bitmap中的比特位值为1用于指示比特位对应的预编码矩阵支持满功率发送;bitmap的比特位为值0用于指示比特位对应的预编码矩阵不支持满功率发送。
在一个实施例中,网络设备接收的第一指示信息和第二指示信息可以通过同一信令传输。
在一个实施例中,网络设备可以接收终端设备上报的第一满功率发送模式。
在一个实施例中,第一满功率发送模式通过RRC信令上报。
在一个实施例中,网络设备可以向终端设备发送探测参考信号资源组配置SRS resource set;SRS resource set中携带至少一个探测参考信号资源SRS resource。
在一个实施例中,上述部分或全部SRS resource对应的端口数量不同。
在一个实施例中,上述SRS resource对应的端口数量小于等于4。
在一个实施例中,所有SRS resource对应的空间关系的数量小于等于2。
在一个实施例中,SRS resource set用于基于码本codebook的PUSCH传输。
上述通信方法,网络设备在接收终端设备上报的第一TPMI组的同时,还接收终端设备上报的第二指示信息,上述第二指示信息用于指示终端设备在2端口情况下的满功率发送的能力;因此,网络设备可以根据终端设备的不同传输情况下发合适的TPMI,使得终端设备无论工作在4端口的情况下还是2端口的情况下,均可以通过接收网络设备指示特定的TMPI实现满功率发送,提升终端设备的上行传输能力。
应该理解的是,虽然图2-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分 轮流或者交替地执行。
在一个实施例中,提供一种通信装置,如图5所示,上述通信装置包括发送模块10和接收模块20:
发送模块10,用于向网络设备发送第一指示信息,第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
接收模块20,用于接收网络设备指示的第一TPMI。
上述实施例提供的一种通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,第一TPMI组中的TPMI对应的预编码矩阵为支持终端设备进行PUSCH满功率发送的预编码矩阵。
在一个实施例中,如图6所示,上述装置还包括预编码模30,用于:采用第一TPMI对应的目标预编码矩阵进行满功率发送;第一TPMI对应的目标预编码矩阵为支持终端设备进行PUSCH满功率发送的预编码矩阵。
在一个实施例中,上述预编码模30,还用于:在第一TPMI对应第一TPMI组中的一个预编码矩阵时,采用第一TPMI指示的目标预编码矩阵进行满功率发送。
在一个实施例中,在上述实施例的基础上,第一指示信息为基于终端设备的天线端口数目以及TPMI组集合确定的。
在一个实施例中,TPMI组集合中包括至少8个TPMI组。
在一个实施例中,TPMI组集合中包括基础TPMI组和/或新增TPMI组,其中,新增TPMI组基于基础TPMI组中的部分元素或者全部元素获得。
在一个实施例中,至少8个TPMI组包括7个基础TPMI组和至少一个新增TPMI组,其中,新增TPMI组基于7个基础TPMI组中的部分元素或者全部元素获得。
在一个实施例中,基础TPMI组与终端设备包含的第一目标端口和\或第二目标端口的数量对应,其中,第一目标端口为终端设备中具有满功率发送能力的端口;第二目标端口为终端设备中具有半功率发送能力的端口。
在一个实施例中,基础TPMI组为TPMI组G0、TPMI组G1、TPMI组G2、TPMI组G3、TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
在一个实施例中,基础TPMI组包括以下至少一个:
TPMI组G0中的预编码矩阵用于指示终端设备中包含一个第一目标端口;
TPMI组G1中的预编码矩阵用于指示终端设备中包含两个第一目标端口;
TPMI组G2中的预编码矩阵用于指示终端设备中包含三个第一目标端口;
TPMI组G3中的预编码矩阵用于指示终端设备中包含三个第二目标端口;
TPMI组G4中的预编码矩阵用于指示终端设备中包含两个相干的第二目标端口;
TPMI组G5中的预编码矩阵用于指示终端设备中包含三个第二目标端口;其中,三个第二目标端口中包含一组相干端口;
TPMI组G6中的预编码矩阵用于指示终端设备中包含四个第二目标端口;其中,四个第二目标端口中包含两组相干端口。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵以及第一集合中的部分或全部预编码矩阵;其中,第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,TPMI组G4中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,TPMI组G5中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,TPMI组G6中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及第一集合中的部分或全部预编码矩阵;其中,第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,TPMI组G4中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,TPMI组G5中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,TPMI组G6中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵以及第二集合中的部分或全部预编码矩阵;其中,第二集合为TPMI组G5、TPMI组G6中的至少一个。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,TPMI组G5中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,TPMI组G6中的部分或全部预编码矩阵。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的部分或全部预编码矩阵,以及对第一集合中的预编码矩阵进行非零端口调整后获得的矩阵;其中,第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
在一个实施例中,在上述实施例的基础上,上述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,对TPMI组G5中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵。
在一个实施例中,在上述实施例的基础上,上述终端设备为支持4个天线端口的设备。
在一个实施例中,在上述实施例的基础上,上述TPMI组G0对应预编码矩阵包括:
Figure PCTCN2020072756-appb-000019
在一个实施例中,在上述实施例的基础上,上述TPMI组G1对应的预编码矩阵包括:
Figure PCTCN2020072756-appb-000020
Figure PCTCN2020072756-appb-000021
在一个实施例中,在上述实施例的基础上,上述TPMI组G2对应的预编码矩阵包括:
Figure PCTCN2020072756-appb-000022
Figure PCTCN2020072756-appb-000023
在一个实施例中,在上述实施例的基础上,上述TPMI组G3对应的预编码矩阵包括:
Figure PCTCN2020072756-appb-000024
Figure PCTCN2020072756-appb-000025
在一个实施例中,在上述实施例的基础上,上述TPMI组G4对应的预编码矩阵包括:
Figure PCTCN2020072756-appb-000026
Figure PCTCN2020072756-appb-000027
在一个实施例中,在上述实施例的基础上,上述TPMI组G5对应的预编码矩阵包括:
Figure PCTCN2020072756-appb-000028
Figure PCTCN2020072756-appb-000029
在一个实施例中,在上述实施例的基础上,上述TPMI组G6对应的预编码矩阵包括:
Figure PCTCN2020072756-appb-000030
Figure PCTCN2020072756-appb-000031
Figure PCTCN2020072756-appb-000032
在一个实施例中,在上述实施例的基础上,上述发送模块10具体用于:通过无线资源控制RRC信令向网络设备上报第一指示信息。
在一个实施例中,在上述实施例的基础上,上述发送模块10还用于:向网络设备上报第二指示信息;第二指示信息通过2比特的bitmap指示对应的两个预编码矩阵能否支持终端设备在2端口传输时进行满功率发送。
在一个实施例中,在上述实施例的基础上,上述bitmap中的比特位值为1用于指示该比特位对应的预编码矩阵支持满功率发送;bitmap中的比特位为值0用于指示该比特位对应的预编码矩阵不支持满功率发送。
在一个实施例中,上述第一指示信息和第二指示信息通过同一信令传输。
在一个实施例中,当向网络设备发送所述第一指示信息时,第二指示信息的上报方式为可选上报。
在一个实施例中,当向网络设备发送所述第一指示信息时,第二指示信息的上报方式为必须上报。
在一个实施例中,在上述实施例的基础上,如图7所示,上述装置还包括上报模块40用于:向网络设备上报第一满功率发送模式。
在一个实施例中,上述第一满功率发送模式通过RRC信令上报。
在一个实施例中,上述第一满功率发送模式通过终端能力信令上报。
在一个实施例中,当向网络设备上报第一满功率发送模式时,第一TPMI组的上报方式为可选上报。
在一个实施例中,当向网络设备上报第一满功率发送模式时,第一TPMI组的上报方式为必须上报。
在一个实施例中,上述第一满功率发送模式上报、第一指示信息和第二指示信息通过同一信令传输。
在一个实施例中,上述接收模块20还用于:接收网络设备指示的探测参考信号资源组配置SRS resource set;SRS resource set中携带至少一个探测参考信号资源。
在一个实施例中,部分或全部SRS resource对应的端口数量不同。
在一个实施例中,SRS resource对应的端口数量小于等于4。
在一个实施例中,所有SRS resource对应的空间关系的数量小于等于2。
在一个实施例中,SRS resource set用于支持基于码本codebook的PUSCH传输。
在一个实施例中,SRS resource set对应的usage配置为“codebook”。
上述实施例提供的一种通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供一种通信装置,如图8所示,上述通信装置包括接收模块110和发送模块120,其中:
接收模块110,用于接收终端设备发送的第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
发送模块120,用于向终端设备发送第一TPMI。
上述实施例提供的一种通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
上述通信装置中各个模块的划分仅用于举例说明,在其他实施例中,可将通信装置按照需要划分为不同的模块,以完成上述通信装置的全部或部分功能。
关于通信装置的具体限定可以参见上文中对于通信方法的限定,在此不再赘述。上述通信装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请实施例中提供的网络设备装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在终端或服务器的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。
在一个实施例中,如图9所示,提供了一种终端,包括发送器和接收器,
发射器,用于向网络设备发送第一指示信息,第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
接收器,用于接收网络设备指示的第一TPMI。
上述实施例提供的一种终端,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图10所示,提供了一种网络设备,包括接收器和发送器,
接收器,用于接收终端设备发送的第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI 组,第一TPMI组为TPMI组集合中的一个TPMI组;
发射器,用于向终端设备发送第一TPMI。
上述实施例提供的一种网络设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本领域技术人员可以理解,图9、10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的终端或网络设备的限定,具体的终端或网络设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行通信方法的步骤,包括:
向网络设备发送第一指示信息,第一指示信息用于指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
接收网络设备指示的第一TPMI。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行通信方法的步骤,包括:
接收终端设备发送的第一指示信息;第一指示信息指示第一预编码矩阵指示符TPMI组,第一TPMI组为TPMI组集合中的一个TPMI组;
向终端设备发送第一TPMI。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行通信方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (95)

  1. 一种通信方法,其特征在于,包括:
    向网络设备发送第一指示信息;所述第一指示信息指示第一预编码矩阵指示符TPMI组,所述第一TPMI组为TPMI组集合中的一个TPMI组;
    接收所述网络设备指示的第一TPMI。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一TPMI组中的TPMI对应的预编码矩阵支持终端设备进行物理上行共享信道PUSCH满功率发送。
  3. 根据权利要求1和/或2所述的通信方法,其特征在于,所述方法还包括:
    采用所述第一TPMI对应的目标预编码矩阵进行满功率发送;所述第一TPMI对应的目标预编码矩阵为支持终端设备进行PUSCH满功率发送的预编码矩阵。
  4. 根据权利要求1和/或2所述的通信方法,其特征在于,所述方法还包括:
    若所述第一TPMI对应所述第一TPMI组中的一个预编码矩阵,则采用所述第一TPMI对应的目标预编码矩阵进行满功率发送。
  5. 根据权利要求1所述的通信方法,其特征在于,所述第一指示信息为基于终端设备的天线端口数目以及所述TPMI组集合确定的。
  6. 根据权利要求1-5任一项所述的通信方法,其特征在于,所述TPMI组集合中包括至少8个TPMI组。
  7. 根据权利要求1-6任一项所述的通信方法,其特征在于,所述TPMI组集合中包括基础TPMI组和/或新增TPMI组,其中,所述新增TPMI组基于所述基础TPMI组中的部分元素或者全部元素获得。
  8. 根据权利要求6所述的通信方法,其特征在于,所述至少8个TPMI组包括7个基础TPMI组和至少一个新增TPMI组,其中,所述新增TPMI组基于所述7个基础TPMI组中的部分元素或者全部元素获得。
  9. 根据权利要求7或8所述的通信方法,其特征在于,所述基础TPMI组与终端设备的第一目标端口和\或第二目标端口的数量对应,其中,所述第一目标端口为终端设备中具有满功率发送能力的端口;所述第二目标端口为终端设备中具有半功率发送能力的端口。
  10. 根据权利要求9所述的通信方法,其特征在于,所述基础TPMI组为TPMI组G0、TPMI组G1、TPMI组G2、TPMI组G3、TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  11. 根据权利要求10所述的通信方法,其特征在于,所述基础TPMI组包括以下至少一个:
    所述TPMI组G0中的预编码矩阵用于指示终端设备中包含一个所述第一目标端口;
    所述TPMI组G1中的预编码矩阵用于指示终端设备中包含两个所述第一目标端口;
    所述TPMI组G2中的预编码矩阵用于指示终端设备中包含三个所述第一目标端口;
    所述TPMI组G3中的预编码矩阵用于指示终端设备中包含三个所述第二目标端口;
    所述TPMI组G4中的预编码矩阵用于指示终端设备中包含两个相干的所述第二目标端口;
    所述TPMI组G5中的预编码矩阵用于指示终端设备中包含三个所述第二目标端口;其中,三个所述第二目标端口中包含一组相干端口;
    所述TPMI组G6中的预编码矩阵用于指示终端设备中包含四个所述第二目标端口;其中,四个所述第二目标端口中包含两组相干端口。
  12. 根据权利要求10或11所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵以及第一集合中的部分或全部预编码矩阵;其中,所述第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  13. 根据权利要求12所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,所述TPMI组G4中的部分或全部预编码矩阵。
  14. 根据权利要求12所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,所述TPMI组G5中的部分或全部预编码矩阵。
  15. 根据权利要求12所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括: TPMI组G0中的预编码矩阵,以及,所述TPMI组G6中的部分或全部预编码矩阵。
  16. 根据权利要求10或11所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及第一集合中的部分或全部预编码矩阵;其中,所述第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  17. 根据权利要求16所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,所述TPMI组G4中的部分或全部预编码矩阵。
  18. 根据权利要求16所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,所述TPMI组G5中的部分或全部预编码矩阵。
  19. 根据权利要求16所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,所述TPMI组G6中的部分或全部预编码矩阵。
  20. 根据权利要求10或11所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵以及第二集合中的部分或全部预编码矩阵;其中,所述第二集合为TPMI组G5、TPMI组G6中的至少一个。
  21. 根据权利要求20所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,所述TPMI组G5中的部分或全部预编码矩阵。
  22. 根据权利要求20所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,所述TPMI组G6中的部分或全部预编码矩阵。
  23. 根据权利要求10或11所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及对第一集合中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵;其中,所述第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  24. 根据权利要求23所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,对所述TPMI组G5中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵。
  25. 根据权利要求10-24任一项所述的通信方法,其特征在于,所述终端设备为支持4个天线端口的设备。
  26. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G0对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100001
  27. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G1对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100002
  28. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G2对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100003
  29. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G3对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100004
  30. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G4对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100005
  31. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G5对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100006
  32. 根据权利要求25所述的通信方法,其特征在于,所述TPMI组G6对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100007
    Figure PCTCN2020072756-appb-100008
  33. 根据权利要求1-32任一项所述的通信方法,其特征在于,所述向网络设备发送第一指示信息,包括:
    通过无线资源控制RRC信令向网络设备上报所述第一指示信息。
  34. 根据权利要求1-32任一项所述的通信方法,其特征在于,所述方法还包括:
    向网络设备上报第二指示信息;所述第二指示信息通过位图bitmap指示对应的预编码矩阵能否支持所述终端设备在2端口传输时进行满功率发送。
  35. 根据权利要求34所述的通信方法,其特征在于,所述bitmap中的比特位值为1用于指示所述比特位对应的预编码矩阵支持满功率发送;所述bitmap的比特位为值0用于指示所述比特位对应的预编码矩阵不支持满功率发送。
  36. 根据权利要求34或35所述的通信方法,其特征在于,所述第一指示信息和所述第二指示信息通过同一信令传输。
  37. 根据权利要求34-36任一项所述的通信方法,其特征在于,当向网络设备发送所述第一指示信息时,所述第二指示信息的上报方式为可选上报。
  38. 根据权利要求34-36任一项所述的通信方法,其特征在于,当向网络设备发送所述第一指示信息时,所述第二指示信息的上报方式为必须上报。
  39. 根据权利要求1-38任一项所述的通信方法,其特征在于,所述方法还包括:
    向所述网络设备上报第一满功率发送模式。
  40. 根据权利要求39所述的通信方法,其特征在于,所述第一满功率发送模式通过RRC信令上报。
  41. 根据权利要求39或40所述的通信方法,其特征在于,当向所述网络设备上报所述第一满功率发送模式时,所述第一指示信息的上报方式为可选上报。
  42. 根据权利要求39或40所述的通信方法,其特征在于,当向所述网络设备上报所述第一满功率发送模式时,所述第一指示信息的上报方式为必须上报。
  43. 根据权利要求39-42任一项所述的通信方法,其特征在于,所述方法还包括:
    接收所述网络设备指示的探测参考信号资源组配置SRS resource set;所述SRS resource set中携带至少一个探测参考信号资源SRS resource。
  44. 根据权利要求43所述的通信方法,其特征在于,部分或全部SRS resource对应的端口数量不同。
  45. 根据权利要求43或44所述的通信方法,其特征在于,所述SRS resource对应的端口数量小于等于4。
  46. 根据权利要求43-45任一项所述的通信方法,其特征在于,所有SRS resource对应的空间关系的数量小于等于2。
  47. 根据权利要求43-46任一项所述的通信方法,所述SRS resource set用于基于码本codebook的PUSCH传输。
  48. 一种通信方法,其特征在于,包括:
    接收终端设备发送的第一指示信息;所述第一指示信息指示第一预编码矩阵指示符TPMI组,所述第一TPMI组为TPMI组集合中的一个TPMI组;
    向所述终端设备发送第一TPMI。
  49. 根据权利要求48所述的通信方法,其特征在于,所述第一TPMI组中的TPMI对应的预编码矩阵为支持所述终端设备进行物理上行共享信道PUSCH满功率发送的预编码矩阵。
  50. 根据权利要求48和/或49所述的通信方法,其特征在于,所述方法还包括:
    所述第一TPMI用于指示所述终端设备采用所述第一TPMI对应的目标预编码矩阵进行满功率发送;所述第一TPMI对应的目标预编码矩阵为支持终端设备进行PUSCH满功率发送的预编码矩阵。
  51. 根据权利要求48和/或49所述的通信方法,其特征在于,若所述第一TPMI对应所述第一TPMI组中的一个预编码矩阵,则所述第一TPMI用于指示所述终端设备采用所述第一TPMI对应的目标预编码矩阵进行满功率发送。
  52. 根据权利要求48所述的通信方法,其特征在于,所述第一指示信息为基于终端设备的天线端口数目以及所述TPMI组集合确定的。
  53. 根据权利要求47-52任一项所述的通信方法,其特征在于,所述TPMI组集合中包括至少8个TPMI组。
  54. 根据权利要求47-53任一项所述的通信方法,其特征在于,所述TPMI组集合中包括基础TPMI组和/或新增TPMI组,其中,所述新增TPMI组基于所述基础TPMI组中的部分元素或者全部元素获得。
  55. 根据权利要求53所述的通信方法,其特征在于,所述至少8个TPMI组包括7个基础TPMI组和至少一个新增TPMI组,其中,所述新增TPMI组基于所述7个基础TPMI组中的部分元素或者全部元素获得。
  56. 根据权利要求54或55所述的通信方法,其特征在于,所述基础TPMI组与终端设备包含的第一目标端口和\或第二目标端口的数量对应,其中,所述第一目标端口为终端设备中具有满功率发送能力的端口;所述第二目标端口为终端设备中具有半功率发送能力的端口。
  57. 根据权利要求56所述的通信方法,其特征在于,所述基础TPMI组为TPMI组G0、TPMI组G1、TPMI组G2、TPMI组G3、TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  58. 根据权利要求57所述的通信方法,其特征在于,所述基础TPMI组包括以下至少一个:
    所述TPMI组G0中的预编码矩阵用于指示终端设备中包含一个所述第一目标端口;
    所述TPMI组G1中的预编码矩阵用于指示终端设备中包含两个所述第一目标端口;
    所述TPMI组G2中的预编码矩阵用于指示终端设备中包含三个所述第一目标端口;
    所述TPMI组G3中的预编码矩阵用于指示终端设备中包含三个所述第二目标端口;
    所述TPMI组G4中的预编码矩阵用于指示终端设备中包含两个相干的所述第二目标端口;
    所述TPMI组G5中的预编码矩阵用于指示终端设备中包含三个所述第二目标端口;其中,三个所述第二目标端口中包含一组相干端口;
    所述TPMI组G6中的预编码矩阵用于指示终端设备中包含四个所述第二目标端口;其中,四个所述第二目标端口中包含两组相干端口。
  59. 根据权利要求57或58所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵以及第一集合中的部分或全部预编码矩阵;其中,所述第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  60. 根据权利要求59所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,所述TPMI组G4中的部分或全部预编码矩阵。
  61. 根据权利要求59所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,所述TPMI组G5中的部分或全部预编码矩阵。
  62. 根据权利要求59所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,所述TPMI组G6中的部分或全部预编码矩阵。
  63. 根据权利要求57或58所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及第一集合中的部分或全部预编码矩阵;其中,所述第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  64. 根据权利要求63所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,所述TPMI组G4中的部分或全部预编码矩阵。
  65. 根据权利要求63所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,所述TPMI组G5中的部分或全部预编码矩阵。
  66. 根据权利要求63所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G1中的部分或全部预编码矩阵,以及,所述TPMI组G6中的部分或全部预编码矩阵。
  67. 根据权利要求57或58所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵以及第二集合中的部分或全部预编码矩阵;其中,所述第二集合为TPMI组G5、TPMI组G6中的至少一个。
  68. 根据权利要求67所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,所述TPMI组G5中的部分或全部预编码矩阵。
  69. 根据权利要求67所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G2中的部分或全部预编码矩阵,以及,所述TPMI组G6中的部分或全部预编码矩阵。
  70. 根据权利要求57或58所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及对第一集合中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵;其中,所述第一集合为TPMI组G4、TPMI组G5、TPMI组G6中的至少一个。
  71. 根据权利要求70所述的通信方法,其特征在于,所述新增TPMI组对应的预编码矩阵包括:TPMI组G0中的预编码矩阵,以及,对所述TPMI组G5中的部分或全部预编码矩阵进行非零端口调整后获得的矩阵。
  72. 根据权利要求57-71任一项所述的通信方法,其特征在于,所述终端设备为支持4个天线端口的设备。
  73. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G0对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100009
  74. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G1对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100010
  75. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G2对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100011
  76. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G3对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100012
  77. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G4对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100013
  78. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G5对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100014
  79. 根据权利要求72所述的通信方法,其特征在于,所述TPMI组G6对应的预编码矩阵包括:
    Figure PCTCN2020072756-appb-100015
    Figure PCTCN2020072756-appb-100016
  80. 根据权利要求47-79任一项所述的通信方法,其特征在于,所述接收终端设备发送的第一指示信息,包括:
    通过无线资源控制RRC信令接收终端设备上报的所述第一指示信息。
  81. 根据权利要求47-79任一项所述的通信方法,其特征在于,所述方法还包括:
    接收所述终端设备上报的第二指示信息;所述第二指示信息通过位图bitmap指示对应的预编码矩阵能否支持所述终端设备在2端口传输时进行满功率发送。
  82. 根据权利要求81所述的通信方法,其特征在于,所述bitmap中的比特位值为1用于指示所述比特位对应的预编码矩阵支持满功率发送;所述bitmap的比特位为值0用于指示所述比特位对应的预编码矩阵不支持满功率发送。
  83. 根据权利要求81或82所述的通信方法,其特征在于,所述第一指示信息和所述第二指示信息通过同一信令传输。
  84. 根据权利要求47-83任一项所述的通信方法,其特征在于,所述方法还包括:
    接收所述终端设备上报的第一满功率发送模式。
  85. 根据权利要求84所述的通信方法,其特征在于,所述第一满功率发送模式通过RRC信令上报。
  86. 根据权利要求85所述的通信方法,其特征在于,所述方法还包括:
    向所述终端设备发送探测参考信号资源组配置SRS resource set;所述SRS resource set中携带至少一个探测参考信号资源SRS resource。
  87. 根据权利要求86所述的通信方法,其特征在于,部分或全部SRS resource对应的端口数量不同。
  88. 根据权利要求86或87所述的通信方法,其特征在于,所述SRS resource对应的端口数量小于等于4。
  89. 根据权利要求86-88任一项所述的通信方法,其特征在于,所有SRS resource对应的空间关系的数量小于等于2。
  90. 根据权利要求86-90任一项所述的通信方法,所述SRS resource set用于基于码本codebook的PUSCH传输。
  91. 一种通信装置,其特征在于,包括发送模块和接收模块:
    发送模块,用于向网络设备发送第一指示信息;所述第一指示信息指示第一预编码矩阵指示符TPMI组,所述第一TPMI组为TPMI组集合中的一个TPMI组;
    接收模块,用于接收所述网络设备指示的第一TPMI。
  92. 一种通信装置,其特征在于,包括接收模块和发送模块:
    接收模块,用于接收终端设备发送的第一指示信息;所述第一指示信息指示第一预编码矩阵指示符TPMI组,所述第一TPMI组为TPMI组集合中的一个TPMI组;
    发送模块,用于向所述终端设备发送第一TPMI。
  93. 一种终端,包括发送器和接收器,其特征在于:
    所述发送器,用于向网络设备发送第一指示信息;所述第一指示信息指示第一预编码矩阵指示符TPMI组,所述第一TPMI组为TPMI组集合中的一个TPMI组,所述TPMI组集合中包括至少8个TPMI组;
    所述接收器,用于接收所述网络设备指示的第一TPMI。
  94. 一种网络设备,发送器和接收器,其特征在于:
    所述接收器,用于接收终端设备发送的第一指示信息;所述第一指示信息指示第一预编码矩阵指示符TPMI组,所述第一TPMI组为TPMI组集合中的一个TPMI组;
    所述发射器,用于向所述终端设备发送第一TPMI。
  95. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至90中任一项所述的通信方法的步骤。
PCT/CN2020/072756 2020-01-17 2020-01-17 通信方法、装置、终端和存储介质 WO2021142774A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/072756 WO2021142774A1 (zh) 2020-01-17 2020-01-17 通信方法、装置、终端和存储介质
CN202210893598.6A CN115276737B (zh) 2020-01-17 2020-04-09 通信方法、装置、终端和存储介质
CN202080077831.2A CN114731176A (zh) 2020-01-17 2020-04-09 通信方法、装置、终端和存储介质
PCT/CN2020/083925 WO2021142955A1 (zh) 2020-01-17 2020-04-09 通信方法、装置、终端和存储介质
EP20913494.9A EP4072035A4 (en) 2020-01-17 2020-04-09 COMMUNICATION METHOD AND DEVICE, TERMINAL AND STORAGE MEDIUM
US17/861,335 US11990956B2 (en) 2020-01-17 2022-07-11 Communication method and apparatus, terminal, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072756 WO2021142774A1 (zh) 2020-01-17 2020-01-17 通信方法、装置、终端和存储介质

Publications (1)

Publication Number Publication Date
WO2021142774A1 true WO2021142774A1 (zh) 2021-07-22

Family

ID=76863232

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/072756 WO2021142774A1 (zh) 2020-01-17 2020-01-17 通信方法、装置、终端和存储介质
PCT/CN2020/083925 WO2021142955A1 (zh) 2020-01-17 2020-04-09 通信方法、装置、终端和存储介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083925 WO2021142955A1 (zh) 2020-01-17 2020-04-09 通信方法、装置、终端和存储介质

Country Status (4)

Country Link
US (1) US11990956B2 (zh)
EP (1) EP4072035A4 (zh)
CN (2) CN114731176A (zh)
WO (2) WO2021142774A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220104038A (ko) * 2020-02-12 2022-07-25 애플 인크. 전체 전력 업링크 송신 향상
WO2022027997A1 (en) * 2020-08-06 2022-02-10 Apple Inc. Full power transmission mode 2 tpmi list signaling enhancement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936484A (zh) * 2015-12-28 2017-07-07 电信科学技术研究院 一种上行信息反馈和下行数据传输方法和设备
US20190327693A1 (en) * 2018-04-19 2019-10-24 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems
CN110535499A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 一种功率控制的实现方法、装置和通信节点

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、***及装置
ES2555534T3 (es) * 2010-08-26 2016-01-04 Huawei Technologies Co., Ltd. Método y sistema de precodificación
KR20130081138A (ko) * 2012-01-06 2013-07-16 삼성전자주식회사 Crs 기반 협력 통신을 위한 송수신 방법 및 장치
US9287948B2 (en) * 2014-05-11 2016-03-15 Lg Electronics Inc. Method and apparatus for receiving downlink wireless signal
US20180368083A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method And Apparatus For Uplink Transmissions In Mobile Communications
KR102095048B1 (ko) * 2017-09-07 2020-03-30 엘지전자 주식회사 무선 통신 시스템에서 코드북에 기초하여 상향링크 신호를 전송하는 방법 및 이를 위한 장치
JP6714151B2 (ja) * 2017-09-08 2020-06-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるチャネル状態情報を報告するための方法及びそのための装置
WO2019127143A1 (zh) * 2017-12-27 2019-07-04 Oppo广东移动通信有限公司 数据预编码的方法、终端设备和网络设备
CN110475330B (zh) 2018-05-11 2021-05-25 电信科学技术研究院有限公司 一种上行功率控制方法、终端及网络设备
CN110535508A (zh) * 2019-07-30 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置和计算机可读存储介质
US20230155763A1 (en) * 2019-11-01 2023-05-18 Qualcomm Incorporated Uplink subband precoding via linear combination of frequency domain bases
JP7463506B2 (ja) * 2019-11-07 2024-04-08 株式会社Nttドコモ 4Tx Capability3の部分コヒーレントUEのモード2動作のためのTPMIグループ化の方法
WO2021117193A1 (ja) * 2019-12-12 2021-06-17 株式会社Nttドコモ 端末及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936484A (zh) * 2015-12-28 2017-07-07 电信科学技术研究院 一种上行信息反馈和下行数据传输方法和设备
US20190327693A1 (en) * 2018-04-19 2019-10-24 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems
CN110535499A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 一种功率控制的实现方法、装置和通信节点

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Details on Full Power Uplink Transmission", 3GPP DRAFT; R1-1910415 DETAILS ON FULL POWER UPLINK TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789220 *
LG ELECTRONICS: "Discussions on full Tx power uplink transmission", 3GPP DRAFT; R1-1912271, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823336 *

Also Published As

Publication number Publication date
EP4072035A1 (en) 2022-10-12
CN114731176A (zh) 2022-07-08
CN115276737A (zh) 2022-11-01
CN115276737B (zh) 2023-10-31
US20220352934A1 (en) 2022-11-03
WO2021142955A1 (zh) 2021-07-22
US11990956B2 (en) 2024-05-21
EP4072035A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP7403459B2 (ja) 測定報告方法、端末装置及びネットワーク装置
JP7033205B2 (ja) データ伝送方法、基地局および端末
TWI757643B (zh) 上行功率控制方法、終端設備及電腦存儲介質
WO2021159409A1 (zh) 一种功率控制方法及装置、终端
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
US20200195330A1 (en) Method and apparatus for transmitting downlink control information (dci)
WO2018228535A1 (zh) 传输方法、网络设备和终端
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
JP2020523913A (ja) チャネル品質フィードバック方法及び装置
WO2018228228A9 (zh) 信息传输方法及装置
WO2018201402A1 (zh) 确定上行信号的传输参数的方法、终端和网络设备
JP2022543534A (ja) コードブックサブセットの決定方法及び装置、ユーザデバイス
US11990956B2 (en) Communication method and apparatus, terminal, and storage medium
JP2022153432A (ja) アップリンクデータ伝送に用いられる方法、端末装置及びネットワーク装置
AU2017437155A1 (en) Data transmission method, terminal device and network device
US20220167199A1 (en) Communications method and apparatus, and device
CN110034788B (zh) 信道状态信息的测量方法和装置
US10469135B2 (en) Transmission control methods and transmission control apparatus
WO2019024786A1 (zh) 通信方法和网络设备
CN109617581B (zh) 用于信道状态信息反馈的方法、装置和计算机可读介质
WO2020143805A1 (zh) 一种通信方法及装置
WO2018137642A1 (zh) 信道质量信息的上报方法、多用户调度方法及装置
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2022061782A1 (zh) 信道状态信息的反馈方法、装置、终端设备和存储介质
WO2022028599A1 (zh) 信息传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913518

Country of ref document: EP

Kind code of ref document: A1