WO2023116756A1 - 感知测量方法、装置、通信设备及可读存储介质 - Google Patents

感知测量方法、装置、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2023116756A1
WO2023116756A1 PCT/CN2022/140655 CN2022140655W WO2023116756A1 WO 2023116756 A1 WO2023116756 A1 WO 2023116756A1 CN 2022140655 W CN2022140655 W CN 2022140655W WO 2023116756 A1 WO2023116756 A1 WO 2023116756A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
sensing
signal
sensing device
service
Prior art date
Application number
PCT/CN2022/140655
Other languages
English (en)
French (fr)
Inventor
李健之
袁雁南
姜大洁
丁圣利
姚健
吴建明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023116756A1 publication Critical patent/WO2023116756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a perception measurement method, device, communication device and readable storage medium.
  • the communication device may perform perception measurement through active sensing, passive sensing, or interactive sensing.
  • terminals and network-side devices usually perform sensing services or synaesthesia services directly based on beams used for communication. Since the sensing targets are located in different areas, when the same beam is used for sensing measurement, the sensing performance is different. If the communication beam is uniformly used Performing perception services or synaesthesia services may result in poor perception performance. Therefore, in the prior art, there is a problem of poor perceptual performance.
  • Embodiments of the present application provide a perception measurement method, device, communication device, and readable storage medium, which can improve perception performance.
  • a perception measurement method including:
  • the first sensing device determines a target beam that satisfies a target quality of service requirement, where the target quality of service requirement is a perception quality of service requirement or a synaesthesia quality of service requirement;
  • the first sensing device performs a sensing service or a synaesthesia service based on the target beam.
  • a sensory measurement device including:
  • a determining module configured to determine a target beam that satisfies a target quality of service requirement, where the target quality of service requirement is a perceived quality of service requirement or a synaesthesia quality of service requirement;
  • An executing module configured to execute a sensing service or a synaesthesia service based on the target beam.
  • a terminal in a third aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine a target beam that meets a target quality of service requirement, and the target quality of service requirement is a perceptual quality of service requirement or a synaesthesia quality of service requirement Requirements, the communication interface is used to perform a sensing service or a synaesthesia service based on the target beam.
  • a network-side device in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the first aspect.
  • a network side device including a processor and a communication interface, wherein the processor is configured to determine a target beam that meets a target quality of service requirement, and the target quality of service requirement is a perceived service quality requirement or a synaesthesia Quality of service requirements, the communication interface is used to perform a sensing service or a synaesthesia service based on the target beam.
  • a perception measurement system including: a terminal and a network side device, the terminal can be used to perform the steps of the perception measurement method described in the first aspect, and the network side device can be used to perform the steps in the first aspect The steps of the perception measurement method described in the aspect.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method as described in the first aspect are implemented.
  • a ninth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect .
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the target quality of service requirement can be effectively guaranteed, thereby improving the sensing performance.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application is applicable;
  • Fig. 2 is one of the schematic diagrams of sensing scenarios applicable to the embodiments of the present application.
  • FIG. 3 is a second schematic diagram of a sensing scene applicable to an embodiment of the present application.
  • Fig. 4 is the third schematic diagram of the applicable sensing scene in the embodiment of the present application.
  • FIG. 5 is a flow chart of a perception measurement method provided by an embodiment of the present application.
  • FIG. 6 is a fourth schematic diagram of a sensing scene applicable to an embodiment of the present application.
  • FIG. 7 is the fifth schematic diagram of the applicable sensing scene in the embodiment of the present application.
  • FIG. 8 is the sixth schematic diagram of the applicable sensing scene in the embodiment of the present application.
  • FIG. 9 is a structural diagram of a perception measurement device provided by an embodiment of the present application.
  • FIG. 10 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 12 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a wireless fidelity (Wireless Fidelity, WiFi) node, etc., and the base station may be called a node B, an evolved node B (eNB), Access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home B node, home Evolved Node B, Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • eNB evolved node B
  • BTS base transceiver station
  • BTS base transceiver station
  • BSS basic service set
  • Extended Service Set Extended Service Set
  • ESS Extended Service Set
  • home B node home Evolved Node B
  • TRP Trans
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • Policy Control Function Policy Control Function
  • the vacant frequency bands of mobile communication networks are decreasing day by day, and the frequency bands used are gradually developing towards high frequencies, such as the millimeter wave (mmWave) promoted by 5G NR and the terahertz (THz) promoted by 6G. These frequency bands have a large number of available resource. However, higher frequency means greater transmission loss, so beam management techniques are used in NR.
  • both the base station and the UE may use beamforming to form a beam with a narrower beam width.
  • the purpose of beam management is to obtain and maintain a set of base station-UE beam pairs that can be used for downlink (Down Link, DL) and uplink (Up Link, UL) transmission/reception to improve link performance.
  • Beam management includes the following aspects: beam scanning, beam measurement, beam reporting, beam indication and beam failure recovery.
  • Phase P1 The base station (gNB) and UE scan at the same time, the beam of gNB is wider, and the reference signal is Synchronization Signal and PBCH block (SSB).
  • SSB Synchronization Signal and PBCH block
  • P2 stage UE fixed receiving beam, base station narrow beam scanning, reference signal is Channel State Information Reference Signal (CSI-RS);
  • CSI-RS Channel State Information Reference Signal
  • Phase P3 Phase P3: gNB fixed transmission beam (narrow beam), UE narrow beam scanning, UE beam scanning is its own behavior, gNB needs to cooperate with fixed beam transmission.
  • P1 must be executed, but P2 and P3 are not necessary.
  • P2 if there are higher requirements for services, the P2 process can be performed; if the terminal capability is available and the base station believes that the service performance can be further improved, the P3 process can be performed.
  • the P1 process usually only relies on the SSB.
  • the P3 process is not suitable for using the SSB because the gNB transmit beam needs to be fixed.
  • the CSI-RS should be used.
  • the P2 process can be based on either the SSB or the CSI-RS.
  • the beam scanning of the uplink beam management is performed based on the Sounding Reference Signal (SRS). Similar to the downlink, it can be divided into U1, U2 and U3 stages, where:
  • U1 stage gNB scans the transmit beam of UE to determine the optimal transmit beam of UE, and at the same time scans the receive beam of TRP to determine the optimal receive beam of gNB (this process is optional);
  • U2 stage gNB scans the receiving beam of TRP to determine the optimal receiving beam when the transmitting beam of UE is fixed;
  • the gNB scans the transmitting beam of the UE to select the optimal UE transmitting beam;
  • Uplink beam management can be completed by configuring dedicated SRS resources, or based on beam reciprocity, the best uplink transmission beam can be determined through the best downlink transmission beam.
  • the downlink mainly relies on the SSB.
  • RSRP Reference Signal Received Power
  • the SSB with the best quality is selected.
  • One SSB corresponds to one beam, and a group of SSBs used for beam scanning constitutes a synchronization signal (Synchronization Signal, SS) burst set (burst set).
  • SS Synchronization Signal
  • the maximum number of SSBs of an SS burst set is related to the frequency band, and the maximum number of millimeter wave frequency bands is 64; the uplink mainly depends on PRACH, and there is a mapping relationship between PRACH and SSB.
  • the UE When the UE initially accesses, it will first select the physical random access channel (Physical Random Access Channel, PRACH) resource associated with the best SSB to send message 1 (MSG1).
  • PRACH Physical Random Access Channel
  • the base station determines the SSB beam selected by the UE according to the received resource position of the UE's uplink PRACH, and sends the downlink RAR and subsequent signaling on the SSB beam.
  • the downlink mainly relies on CSI-RS.
  • the base station configures one or more sets of CSI-RS for beam management to perform beam scanning.
  • the UE obtains the result of Layer 1 Reference Signal Received Power (L1-RSRP) by measuring the CSI-RS. , report the measurement results of different CSI-RSs.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • the base station selects the CSI-RS beam with the strongest L1-RSRP for downlink channel transmission; the uplink mainly relies on SRS, and multiple SRS resource sets used for beam management correspond to the UE’s transmission panel (TX Panel), and each SRS resource in the resource set corresponds to a beam.
  • TX Panel transmission panel
  • the UE initiates a beam failure recovery procedure.
  • the beam failure detection is mainly based on the SSB or CSI-RS reference signal configured by the base station. If the UE detects that the number of failures is greater than or equal to the maximum number of failures within the duration of the failure detection timer, the beam failure recovery process will be triggered.
  • the TRP receives the uplink recovery request signal through beam scanning at the receiving end, and the UE will recover according to the beam.
  • the parameter configuration of the new SSB corresponding beam is reselected, and a random access process is initiated on the PRACH resource used for beam recovery, and a new beam pair is re-established with the base station to resume transmission.
  • wireless perception based on WiFi signals can realize functions such as home behavior monitoring, fall detection, intrusion detection, motion recognition, and daily activity route tracking.
  • wireless sensing is mainly divided into two representative directions in principle, one is wireless sensing based on pattern recognition, and the other is wireless sensing based on Fresnel model.
  • the basic principle of wireless perception based on pattern recognition is to try to use machine learning/artificial intelligence technology for pattern recognition and classification, that is, to establish a one-to-one mapping relationship between the received signal of wireless perception and the dynamic behavior of the perceived target.
  • the second type is based on the Fresnel zone.
  • the basic principle of wireless sensing is to realize the dynamic behavior perception of the target by estimating and analyzing the changes in the amplitude and phase of the wireless signal caused by the cutting of the Fresnel zone by the sensing target. This sensing method attempts to reveal the relationship between the dynamic behavior of the sensing target and the amplitude and phase changes of the wireless signal from the propagation mechanism of the wireless signal, so it has strong interpretability and sensing accuracy.
  • the Fresnel zone is an ellipsoid with the transmitter and receiver as the focus.
  • the propagation path of the reflection point on the Fresnel zone ellipsoid differs from the direct path of the transmitter and receiver by an integer multiple of half the wavelength of the signal. For example, counting from the inside to the outside of the first ellipsoid, the reflection path on it is one and a half wavelengths longer than the direct path length, and this area is called the first Fresnel zone.
  • the reflection path is 2 half wavelengths (ie, 1 wavelength) longer than the direct path length, and this area is called the second Fresnel zone.
  • the 3rd...n Fresnel zone can be obtained.
  • the environment between the transmitter TX and the receiver RX has multipath propagation, and these multipaths can be divided into static paths and dynamic paths caused by the perceived motion of the target.
  • the amplitude of the dynamic path can be approximately regarded as constant, but its phase will change, which eventually leads to the overall channel vector composed of the channel vector composed of the static path and the channel vector composed of the dynamic path. Amplitude changes.
  • future electronic terminals including mobile phone terminals and other electronic terminals, such as electronic watches, various furniture controllers, etc.
  • wireless signals in the environment for gesture recognition and perception.
  • the most common wireless signals in the environment include mobile network signals, such as LTE and 5G downlink signals.
  • the perception terminal estimates CSI according to the downlink channel, and performs gesture recognition and action perception.
  • the wavelength of the wireless signal is on the order of centimeters, and the communication signal often has a certain bandwidth. Different subcarriers within the bandwidth have slightly different frequencies and wavelengths. Therefore, perception terminals are often able to achieve centimeter-level or even smaller-scale action recognition. However, there is a relatively serious defect in this perception method at present, that is, the accuracy of gesture or motion recognition will be significantly affected due to the location of the user's Fresnel zone.
  • this area is called “the first area” in this application; when the user is in the transition area between the above two areas, as shown in Figure 4, the fluctuation pattern of the CSI signal is easily affected by gestures/actions of the human body.
  • the impact of orientation, the CSI pattern of different orientations is quite different, so try not to perform gesture/action recognition in this area.
  • the scheme of the present application is proposed for this reason.
  • an embodiment of the present application provides a perception measurement method, which includes:
  • Step 501 the first sensing device determines a target beam that satisfies a target quality of service requirement, where the target quality of service requirement is a perception service quality requirement or a synaesthesia service quality requirement;
  • Step 502 the first sensing device performs a sensing service or a synaesthesia service based on the target beam.
  • the above-mentioned first sensing device may be a terminal or a network side device, and the network side device may be a base station.
  • the above-mentioned target service quality requirement can be determined by the agreement or the network side equipment, and can also be provided by the perceived service demander.
  • the perception service demander refers to the device that proposes the perception requirement, for example, it may be a terminal, a network side device or a third-party application server, which will not be further limited here. It can be understood that the target beam meets the target quality of service requirements.
  • the first measurement quantity associated with the perceived service quality can meet the preset perceived quality of service (Quality of Service, QoS) requirements, or be associated with the perceived service quality
  • QoS Quality of Service
  • the target beam includes at least one of a receiving beam and a transmitting beam.
  • the target beam may also be referred to as a target beam pair.
  • the synaesthesia service can also be called the synaesthesia integrated service, which includes both the perception service and the communication service.
  • the target beam can be used to receive the sensing signal, the target beam can also be used to send the sensing signal, and the target beam can also be used to transmit the sensing signal. sent and received so that sensory measurements can be made based on this sensory signal.
  • the target beam can be used to receive the synesthesia integrated signal, the target beam can also be used to transmit the synaesthesia integrated signal, and the target beam can also be used to send the synaesthesia integrated signal and receiving, so that the synaesthesia integration measurement can be realized based on the synaesthesia integration signal.
  • the above-mentioned perception service may be perception and recognition of gestures, expressions and body movements.
  • the acquisition of the measurement quantity in the sensing service can be performed in the UE or the gNB; the conversion from the measurement quantity to the sensing result can be performed in the UE, or in the gNB, or in the core network equipment.
  • the execution of perception services can use one of the following methods:
  • the UE can send a sensing start indication message to the gNB (the index information of the best downlink beam of the gNB can be sent at the same time, and the best downlink beam is understood as a downlink beam in the target beam), optionally, The UE starts the sensing service timer; 2. After receiving the sensing start indication message, the gNB uses the best downlink beam to send the first signal to the UE. Optionally, the gNB starts the sensing service counter; 3.
  • the UE converts the sensing measurement into a sensing result ;
  • it may send a measurement completion indication message to the gNB.
  • the function of the sensing service timer is to set the maximum time of sensing service, which is started by converting the sensing measurement quantity to the sensing result.
  • the function of the perception service counter is to set the maximum number of transmission times of the perception signal, which is started by the sender of the perception signal.
  • the UE sends a sensing start indication message to the gNB.
  • the gNB can send a response message to the UE indicating that the sensing service can be performed (the best uplink beam index information of the UE can be sent at the same time.
  • the best uplink beam can be understood as the uplink beam in the target beam), optionally, the UE starts the sensing service timer; 2, the UE uses the best uplink beam to send the first signal to the gNB, optionally, the UE starts the sensing service Counter; 3.
  • the gNB sends the sensing measurement obtained by the uplink measurement to the UE.
  • the gNB may send a measurement completion indication message to the UE after completing the sensing measurement measurement; 4.
  • the UE converts the sensing measurement into a sensing result.
  • the gNB sends a sensing start indication message to the UE.
  • the UE can send a response message to the gNB to indicate that the sensing service can be performed after the UE is ready (the best downlink beam index information of the gNB can be sent at the same time. );
  • the gNB starts the sensing service timer; 2.
  • the gNB uses the best downlink beam to send the first signal to the UE.
  • the gNB starts the sensing service counter;
  • the UE can Send a measurement completion indication message to the gNB; 3.
  • the UE reports the sensing measurement quantity obtained from the downlink measurement to the gNB.
  • the UE may send a measurement completion indication message to the gNB; 4.
  • the gNB converts the sensing measurement into a sensing result.
  • the uplink sensing beam is used.
  • the following procedures may be included: 1.
  • the gNB sends a sensing start indication message to the UE (the best uplink beam index information of the UE may be sent at the same time); optionally, the gNB starts the sensing service timer; 2.
  • the UE uses the best uplink beam index information;
  • the beam sends the first signal to the gNB; optionally, the UE starts the sensing service counter; 3.
  • the gNB converts the sensing measurement obtained from the uplink measurement into a sensing result; optionally, the gNB can send the measurement to the UE after completing the sensing measurement measurement Complete the instruction message.
  • the node for obtaining the sensing measurement amount is UE or gNB, and the corresponding downlink or uplink sensing beam is used.
  • the following procedures may be included: 1.
  • the core network device sends a sensing start indication message to the gNB and/or UE; optionally, the core network device starts the sensing service timer; 2.
  • Either the gNB or the UE uses the best downlink or The uplink sensing beam sends the first signal to the other party.
  • the first signal sender starts the sensing service counter; 3.
  • the first signal sender sends the sensing measurement obtained by measuring the first signal to the core network; optional Specifically, the first signal receiver may send a measurement completion indication message to the first signal sender after completing the measurement of the sensing measurement; 4.
  • the core network device completes the conversion of the sensing measurement into a sensing result.
  • the target quality of service requirement can be effectively guaranteed, thereby improving sensing performance.
  • the sensing service requester may send a sensing requirement to a core network device (such as a sensing network function or a sensing network element), so as to trigger the execution of corresponding sensing-related operations.
  • a core network device such as a sensing network function or a sensing network element
  • the sensing service or synaesthesia service is directly initiated, such as the initial perception service or synaesthesia service, similar to initial access, without Beam management requires cognitive service beam management to obtain target beams that meet the target quality of service requirements.
  • Situation 2 The communication service has been carried out, and the sensing service or synaesthesia service is subsequently initiated.
  • the first beam may include at least one of a transmitting beam and a receiving beam.
  • the situation that the communication service has been carried out but the beam management process has not been carried out can also be understood as belonging to the first case, such as broadcasting service.
  • the determining by the first sensing device that the target beam meets the sensing requirement includes:
  • the first sensing device uses a first signal to perform beam scanning to obtain a target beam meeting the target quality of service requirement, and the first signal includes at least one of a dedicated sensing signal, a synesthesia integrated signal, and a reference signal.
  • the aforementioned perception requirements may include at least one of the following: target quality of service requirement, perception action type, minimum (or maximum) duration of a single perception action, average duration of a single perception action, duration standard deviation, minimum perception Movement repetitions and maximum perceived movement repetitions.
  • the target service quality requirements may include the types of sensing services or synaesthesia services, the priority of sensing services or synaesthesia services, the probability of sensing detection, the probability of sensing false detection, the requirements for accuracy of sensing recognition, the requirements for sensing resolution, and the requirements for sensing errors , perception delay budget, requirements for maximum sensing range, requirements for continuous sensing capabilities, requirements for perception update frequency, and communication QoS (when performing integrated synesthesia services), etc.
  • Communication QoS may include communication delay budget and false alarm rate, etc.
  • the aforementioned sensory action types may include gesture recognition, body movement recognition, facial expression recognition, and the like.
  • case 1 and case 2 that is, regardless of whether the communication beam management is performed, the sensing service or the synaesthesia service beam management is directly performed to obtain the target beam that meets the target service quality requirement. It may also be applicable only to the first case, that is, to directly perform beam management of the sensing service or the synaesthesia service only in the absence of communication beam management, and obtain the target beam meeting the target service quality requirement.
  • the above-mentioned dedicated sensing signal and integrated synesthesia signal may be newly designed dedicated signals, and the above-mentioned reference signal may be an LTE reference signal or an NR reference signal.
  • the downlink reference signal can be SSB, CSI-RS, downlink positioning reference signal (Downlink Positioning Reference Signal, DL-PRS) or phase tracking reference signal (Phase-tracking Reference Signal, PT-RS), etc.
  • the uplink reference signal may be a reference signal that can be configured in the time domain, such as SRS or UL-SRS.
  • the first sensing device determining a target beam meeting a target quality of service requirement includes:
  • the first sensing device performs a beam measurement of a first beam to determine whether the first beam satisfies the target quality of service requirement;
  • the first sensing device determines the first beam as the target beam
  • the first beam is a beam used for communication, and the first beam is obtained based on beam management for communication.
  • the method further includes:
  • the first sensing device uses a first signal to perform beam scanning to obtain a target beam that meets the target quality of service requirement, the first signal includes At least one of a dedicated sensing signal, a synesthesia integration signal and a reference signal.
  • the first beam used for communication is obtained.
  • the beam measurement of the first beam can be performed to determine whether the first beam meets the target quality of service requirement. If the first beam meets the target quality of service requirement, the first beam is directly determined as the target beam, based on the first The beam performs the sensing service or the synaesthesia service, thereby reducing the beam management of the sensing service or the synaesthesia service, and reducing the signaling overhead.
  • the first sensing device performs beam measurement of a first beam, and determining whether the first beam meets the target quality of service requirement includes:
  • the first sensing device measures the first beam to obtain a first measurement result, where the first measurement result includes a measurement result of a first measurement quantity associated with perceived service quality;
  • the first beam is determined to be the target beam.
  • the above-mentioned first sensing device may be the receiving end of the second signal, and the second sensing device or other sensing devices participating in sensing cooperation may send the second signal on the first beam, and the first sensing device may receive second signal, and based on the second signal, measure the first beam to obtain a first measurement result.
  • the first sensing device When the first sensing device is a judging node (that is, it can judge whether the first beam meets the target quality of service requirement), it can judge whether the first beam meets the target quality of service requirement based on the first measurement result; if the first beam meets the target quality of service requirement; A sensing device that is not a judging node (that is, does not have judging capability), may report the first measurement result to the judging node, and then determine whether the first beam meets the target quality of service requirement according to the judging result returned by the judging node.
  • the judging node may be a base station or a core network device, which is not further limited here.
  • the foregoing beam measurement may be understood as uplink beam measurement.
  • both the above-mentioned second signal and the above-mentioned first signal can be understood as signals used for perception, and the difference is that they are used in different perception measurement stages.
  • the above-mentioned second signal may be the same as or different from the first signal, which is not further limited here.
  • the first sensing device performs beam measurement of a first beam, and determining whether the first beam meets the target quality of service requirement includes:
  • the first sensing device sends a second signal based on the first beam, and the second signal includes at least one of a dedicated sensing signal, a synesthesia integrated signal, and a reference signal;
  • the first sensing device determines whether the first beam satisfies the target quality of service requirement according to the first target information sent by the second sensing device;
  • the first target information is a second measurement result obtained by the second sensing device from measuring the first beam based on the second signal or determining whether the first beam is based on the second measurement result
  • the first indication information that satisfies the target quality of service requirement, and the second measurement result includes a measurement result of the first measurement quantity associated with the perceived quality of service.
  • the above-mentioned first sensing device may be the sending end of the second signal, and the first sensing device sends the second signal on the first beam, and the second sensing device may receive the second signal and based on the second The signal is measured on the first beam to obtain a second measurement result. After the second sensing device obtains the second measurement result, it can report the measurement result and send the first target information to the first sensing device, and the first sensing device can determine whether the first beam meets the target quality of service requirement according to the first target information.
  • the above beam measurement can be understood as downlink beam measurement, and the terminal reports the result of the downlink beam measurement.
  • the first beam meets the target quality of service requirement may be understood as: the measurement value of at least one first measurement quantity meets a threshold requirement corresponding to QoS.
  • the index of the first beam can be stored, so that after the execution of the sensing service or the synaesthesia service is completed, communication can be resumed on the best communication beam , so as to improve the reliability of communication, and at the same time, can further reduce signaling overhead.
  • whether to store the index of the first beam may be determined by the core network device or the base station.
  • the location where the index of the first beam is stored may also be the core network device or the base station.
  • the first sensing device uses the first signal to perform beam scanning, and obtaining a target beam that meets the target quality of service requirement includes:
  • the first sensing device uses the first signal to perform a first beam scan to obtain a third measurement result
  • the first signal is received by the first sensing device.
  • the third measurement result satisfies at least one of the following:
  • the third measurement result includes a first measurement result, or the third measurement result includes a first measurement result and a second measurement result result;
  • the third measurement result includes a first measurement result and a second measurement result
  • the first measurement quantity is a measurement quantity related to perceived service quality
  • the second measurement quantity is a measurement quantity related to communication service quality
  • the sending device of the above-mentioned first signal may be the second sensing device or other sensing devices participating in the sensing cooperation.
  • the other sensing devices are understood as devices that have not performed sensing measurement, for example, may be a base station or a terminal, Only used to send the first signal.
  • the first sensing device can be understood as a receiving device of the first signal, and the beam scanning process between the sending device and the receiving device of the first signal can be set according to actual needs.
  • the foregoing first beam scanning may be understood as downlink beam scanning.
  • the above-mentioned first beam scanning can be understood as uplink beam scanning; assuming that the first sensing device is a terminal and the sending device is a terminal, then the above-mentioned first beam scanning can be understood as a direct link Beam scanning of the road.
  • both the first sensing device and the sending device may be base stations.
  • the first sensing device uses the first signal to perform beam scanning, and obtaining a target beam that meets the target quality of service requirement includes:
  • the first sensing device performs a second beam scan using the first signal
  • the first sensing device determines a target beam that meets the target quality of service requirement according to the second target information sent by the second sensing device;
  • the second target information is the fourth measurement result of the second sensing device measuring based on the second beam scanning or the beam of the target beam that meets the target quality of service requirement determined based on the fourth measurement result information;
  • the first sensing device sends the first signal.
  • the fourth measurement result satisfies at least one of the following:
  • the fourth measurement result includes a first measurement result, or the fourth measurement result includes a first measurement result and a second measurement result result;
  • the fourth measurement result includes a first measurement result and a second measurement result
  • the first measurement quantity is a measurement quantity related to perceived service quality
  • the second measurement quantity is a measurement quantity related to communication service quality
  • the above-mentioned first sensing device can be understood as the sending device of the first signal
  • the receiving device of the first signal can be the above-mentioned second sensing device
  • beam scanning is performed between the sending device of the first signal and the receiving device
  • the process can be set according to actual needs.
  • the second beam scanning may be understood as uplink beam scanning.
  • the above-mentioned second beam scanning can be understood as downlink beam scanning.
  • the above-mentioned second beam scanning can be Understand it as beam scanning of the through link.
  • both the first sensing device and the second sensing device may be base stations.
  • scanning for the downlink beam may include three stages S1, S2 and S3:
  • the base station and the terminal scan at the same time.
  • the beam of the base station can be wider, and the newly designed integrated sensing/synthetic signal, or SSB, etc. can be used.
  • the simultaneous scanning refers to that different beams can be fixed sequentially for the base station, and the terminal scans the beams sequentially when the base station fixes the beams; after fixing different beams for the terminal, the base station scans the beams sequentially when the terminal fixes the beams; until all possible beams Iterate through all pairs;
  • the terminal fixedly receives the beam, the base station narrow beam scans, and can use the newly designed integrated sensing/synthetic signal, or CSI-RS, or DL-PRS, etc.;
  • Stage S3 The base station transmits with a fixed beam (narrow beam), and the terminal scans with a narrow beam.
  • the terminal beam scan is its own behavior, and the base station needs to cooperate with fixed beam transmission.
  • the S1 stage is necessary, but S2 and S3 are not necessary.
  • the S2 process can be performed; if the terminal has the narrow beam scanning capability, and the base station believes that the service performance can be further improved, the S3 process can be performed.
  • the beam scanning of the terminal can improve the perceived signal-to-noise ratio, and on the other hand, it can also suppress the interference (that is, suppress the interference caused by the non-sensing target, such as other dynamic multipath in the environment). suppression).
  • the scanning for the above-mentioned uplink beam includes three stages V1, V2 and V3, among which:
  • Phase V1 The base station and the terminal scan at the same time to determine the optimal transmit beam of the terminal and the optimal receive beam of the base station;
  • V2 stage the base station scans the receiving beam of the TRP to determine the optimal receiving beam when the transmitting beam of the terminal is fixed;
  • Phase V3 On the premise of determining the optimal receiving beam, the base station scans the transmitting beams of the terminal to select the optimal terminal transmitting beam.
  • Beam consistency can be understood as complete reciprocity between the sending beam and the receiving beam.
  • the gNB can indicate the beam switching behavior of the UE through the DCI message, and inform the UE of the beam scanning behavior on the gNB side.
  • the DCI message may include at least one of the following:
  • UE beam scanning start indication that is, the gNB instructs the UE to start beam scanning
  • the gNB indicates the UE beam scanning sequence (which can be a series of beam indexes), and the UE beam scanning sequence corresponding to each gNB resident beam can be the same or different;
  • UE beam dwell time indication indicates the UE beam dwell time
  • UE beam scanning stop indication that is, the gNB instructs the UE to end beam scanning
  • gNB beam scanning start indication that is, gNB informs UE to start beam scanning
  • gNB beam scanning sequence indication that is, gNB tells UE its own beam scanning sequence (it can be a series of beam indexes), and the gNB beam scanning sequence corresponding to each UE camping beam can be the same or different;
  • gNB beam dwell time indication that is, gNB informs UE of its own beam dwell time
  • the gNB informs the UE to stop beam scanning.
  • the base station uses the SSB, but after synchronization, simultaneously uses the CSI-RS and the SSB for beam scanning.
  • the first measured quantity includes at least one of the following:
  • Channel state information CSI time series CSI sample number, CSI time series smooth root mean square error, CSI time series signal to interference plus noise ratio, CSI time series autocorrelation peak difference, CSI time series period standard deviation, CSI time series Periodic variance, amplitude standard deviation of CSI time series, amplitude variance of CSI time series and reproducibility evaluation index of CSI time series.
  • the above-mentioned second measurement quantity may include at least one of the following: RSRP, Received Signal Strength Indication (Received Signal Strength Indication, RSSI), Signal to Noise Ratio (Signal to Noise Ratio, SNR) and and interference plus noise ratio (signal-to-noise and interference ratio, SINR).
  • RSSI Received Signal Strength Indication
  • SNR Signal to Noise Ratio
  • SINR interference plus noise ratio
  • the target beam when the target beam is determined based on beam scanning, the target beam may be only any beam that meets the target QoS requirement, or may be the best sensing beam that meets the target QoS requirement.
  • the base station and the terminal are used as sensing devices as an example for illustration, the method of measurement and beam selection may be at least one of the following methods:
  • Method 1 Based on downlink and/or uplink beam scanning, the scanning process simultaneously measures the first measurement quantity and the related measurement quantity that can indicate the power of the received signal (that is, the above-mentioned second measurement quantity), and scans and measures all in a certain order (the scanning order is determined by the scanning After one round, the optimal sensing beam of the base station is comprehensively determined according to the measurement results.
  • Method 2 Based on downlink and/or uplink beam scanning, the scanning process measures the first measurement quantity and the second measurement quantity at the same time, and scans and measures in a certain order (the scanning order is determined by the scanning party). Once the obtained measurement quantity meets the target quality of service requirements , then immediately select the beam pair and stop beam scanning.
  • Method 3 If the communication process has been established before, it means that the beam scanning and measurement of the communication process have been carried out. At this time, the current communication beam (that is, the first beam) and the two nearest neighbor beam pairs can be used as the initial scanning beam, and then The first measurement quantity on other beam pairs is measured from near to far, and once the obtained first measurement quantity satisfies the target quality of service requirement, the beam pair is immediately selected and the beam scanning is stopped. This reduces scan time, system resources and signaling overhead.
  • the current communication beam that is, the first beam
  • the two nearest neighbor beam pairs can be used as the initial scanning beam, and then The first measurement quantity on other beam pairs is measured from near to far, and once the obtained first measurement quantity satisfies the target quality of service requirement, the beam pair is immediately selected and the beam scanning is stopped. This reduces scan time, system resources and signaling overhead.
  • Method 4 If the communication process has been established before, it means that the beam scanning and measurement of the communication process have been carried out. At this time, several beam pairs of the original communication beam pair with better second measurement results can be used as candidate beam pairs. The first measurement quantity is measured on these several beams, and finally the optimal beam pair is determined from the above candidate beams. Several beams with better candidate second measurement results may be obtained according to previous communication (SSB or CSI-RS) beam scanning. Wherein, the candidate beam pair does not include the first beam.
  • SSB previous communication
  • CSI-RS previous communication
  • the UE performs the measurement of the first measurement quantity, determines the best beam pair based on the measurement results, and reports the best downlink transmission beam to the gNB; if based on Consistency of uplink and downlink beams, only uplink beam scanning is performed, then gNB performs the measurement of the first measurement quantity, determines the best beam pair based on the measurement results, and sends the best uplink transmission beam to the UE; if the downlink and uplink beam scanning are both Execute, the UE reports the best downlink transmission beam to the gNB, and at the same time the gNB sends the best uplink transmission beam to the UE.
  • At least one of the following items may also be obtained:
  • An antenna or an antenna port corresponding to the first signal meeting the target quality of service requirement An antenna or an antenna port corresponding to the first signal meeting the target quality of service requirement.
  • the receiving end of the first signal may determine at least one of the following:
  • CSI received signal
  • frequency domain RE or subcarrier
  • resource block Resource Block, RB index that satisfies the current service QoS (or perceived quality requirement)
  • the first sensing device uses the first signal to perform beam scanning, and before obtaining the target beam meeting the target quality of service requirement, the method further includes:
  • the first sensing device acquires sensing parameter configuration information corresponding to the target quality of service requirement, where the sensing parameter configuration information is used to configure transmission information of the first signal.
  • the acquisition by the first sensing device of the sensing parameter configuration information corresponding to the target quality of service requirement includes any of the following:
  • the first sensing device determines the sensing parameter configuration information based on the target quality of service requirement
  • the first sensing device receives the sensing parameter configuration information sent by the target device based on the target quality of service requirement, and the target device is a core network device or a second sensing device associated with the first sensing device.
  • the core network device can send the sensing requirement to the sensing device corresponding to the sensing service or synaesthesia service, such as gNB and UE, and the gNB and UE can determine the sensing parameter configuration according to the sensing requirement.
  • the core network device may also directly send the sensing parameter configuration information to the gNB and/or the UE.
  • the core network device may send the sensing parameter configuration information to the base station, and the base station continues to send the sensing parameter configuration information to the UE.
  • the sensing parameter configuration information includes at least one of the following: a first signal, a frequency domain configuration parameter, a time domain configuration parameter, an air domain configuration parameter, and a power configuration parameter.
  • the frequency domain configuration parameter may include a frequency domain span (pattern) of the first signal. If it is uniformly distributed, it should include information such as the start index and interval of the corresponding resource unit (Resource Element, RE); if it is non-uniformly distributed, it should include all RE index information, etc.
  • the foregoing time-domain configuration parameters may include a time-domain pattern of the first signal. If it is a uniform comb distribution, it should include information such as the start index and interval of the corresponding RE; if it is a non-uniform distribution, it should include all RE index information.
  • the above time domain configuration parameters may further include the burst period and burst number of the first signal, the burst duration of the first signal, and the time domain interval of the signal within the burst of the first signal.
  • the foregoing airspace configuration parameters may include antenna port indexes for sensing, antenna indexes, antenna distances, antenna numbers, and the like.
  • the foregoing power configuration parameters may include a minimum transmit power, an average transmit power, a maximum peak-to-average power ratio, and the like.
  • the above perception parameter configuration information at least satisfies at least one of the following:
  • the frequency domain configuration parameters need to meet the delay (distance) perception performance requirements of the perception service or the synaesthesia service, and/or ensure that a sufficient number of CSI (or received signal) measurement samples can be provided in the frequency domain to meet the target service quality requirements;
  • the time domain configuration parameters need to meet the Doppler perception performance requirements of the perception service or the synaesthesia service, and/or be able to provide a sufficient number of CSI (or received signal) measurement samples in the time domain to meet the service quality requirements of the perception target, And/or ensure that a preset number of perceptual measurement measurements can be completed on each scanning beam;
  • the airspace configuration parameters need to meet the beamwidth requirements of the sensing service or the synaesthesia service.
  • the power configuration parameters need to meet the SNR requirements of the sensing service or the synaesthesia service.
  • the method when the first sensing device uses the first signal to perform beam scanning and fails to obtain a target beam that meets the target quality of service requirement, the method further includes:
  • the first sensing device outputs reminder information according to the beam scanning, and the reminder information is used to prompt to change the angle of the sensing target relative to the first sensing device.
  • the core network device or the gNB cooperates with the UE to instruct the UE to change its orientation/position.
  • the reminder information includes angle adjustment information of the sensing target relative to the first sensing device, and the angle adjustment information is determined based on an optimal communication beam of the first sensing device.
  • the UE instructs the user to hold the UE and change its orientation (or change its position relative to the terminal), and then instructs the gNB to measure the first measurement quantity based on the current gNB downlink/uplink beam.
  • the UE instructs the user (that is, the perception target) to select the final orientation according to the downlink/uplink beam measurement results.
  • the UE has beamforming/beam scanning capability, based on its known best communication beam index (including uplink and/or downlink). Instruct the user to change the orientation (or change its own position relative to the terminal) according to its own beam index. After changing the orientation, the UE can update the beam so that the updated beam direction is approximately the same as the original optimal communication beam direction, thereby improving the perception performance.
  • adjusting to a designated area by instructing the user may be implemented through interaction between the UE and the user.
  • the final result of changing the orientation/position is to make the user (perceived gesture/action performer) fall into the first area (the best perception area); if the target quality of service requirements cannot be met by changing the orientation, it is considered that the current perception is not available Conditions of business or synesthesia business.
  • the first sensing device uses the first signal to perform beam scanning, and before obtaining the target beam meeting the target quality of service requirement, the method further includes:
  • the first sensing device sends sensing capability information to the target device, where the sensing capability information is used to determine a beam scanning manner;
  • the target device is a core network device or a second sensing device associated with the first sensing device
  • the beam scanning method includes at least one of the first beam scanning and the second beam scanning;
  • the first sensing device receives the first signal; during the second beam scanning process, the first sensing device sends the first signal.
  • the sensing capability information includes: beamforming capability information of the first sensing device or beam scanning capability information of the first sensing device.
  • the sensing capability information further includes sensing configuration parameter information, and the sensing parameter configuration information is used to configure transmission information of the first signal.
  • the core network device and/or the base station associated with the sensing terminal instructs the UE to report the sensing capability information.
  • the UE may report its own perception capability information to the associated gNB and core network equipment.
  • the gNB may also report its own perception capability information to the core network device.
  • the core network device can determine whether to use downlink beam scanning, uplink beam scanning, or both uplink and downlink beam scanning between gNB and UE according to the perception capability information of gNB and UE; or
  • the gNB determines whether downlink beam scanning, uplink beam scanning, or both uplink and downlink beam scanning is used between the gNB and the UE according to the perception capability information of the gNB and the UE.
  • the transmission of the wireless channel between the gNB and the UE changes, such as when a beam is blocked, it will cause a beam failure, and the detection of the perceived beam failure is determined based on the measurement results of the current target beam, such as the first measurement quantity and/or the second measurement quantity. 2.
  • the measurement quantity is continuously lower than a certain preset threshold within a preset period of time, it is determined that the beam fails.
  • beam restoration can be performed based on at least one of the following methods:
  • the communication beam management process is re-initiated to ensure communication first. If there is still a need for sensing or synaesthesia services, the UE will be triggered to output a reminder message to remind the change of the relative sensing target. The reminder information from the perspective of the first sensing device.
  • the conversion node from the measurement quantity to the perception result sends the perception result to the perception demander.
  • the conversion node may be a terminal, a base station or a core network device.
  • the conditions for switching back to the communication service can include one of the following:
  • the sensing demand direction sends a request to end the sensing service to the core network device, and the core network device notifies the base station and/or the terminal to end the sensing service or switch back to the communication service;
  • the sensing service timer of the base station reaches the preset waiting time, or the sensing service counter of the base station reaches the maximum count value; the base station notifies the terminal and the core network equipment to end the sensing service or switch back to the communication service;
  • the perceived service timer of the terminal reaches the preset waiting time, or the perceived service counter of the terminal reaches the maximum count value.
  • the terminal notifies the base station and core network equipment to end the sensing service or switch back to the communication service.
  • the base station and the terminal can switch back to the optimal communication beam pair according to the previously stored optimal communication beam pair index; optionally, if the original optimal communication beam pair cannot meet the requirements due to channel changes If the communication QoS requirement is not satisfied, the communication beam management process can be performed again.
  • Embodiment 1 Improve the gesture recognition performance of the mobile phone terminal.
  • the network can determine the optimal beam pair between the gNB and the UE through the above-mentioned method provided by this application, so that the user falls into the above-mentioned first area. Specifically, it can be realized by scanning and measuring downlink and uplink beams, or by scanning and measuring downlink (or uplink) beams, combined with beam consistency. Generally speaking, the base station has more antennas, so it can form a narrower scanning beam.
  • the base station will dwell on each beam for a certain period of time to complete the beam measurement.
  • the optimal beam pair is jointly determined based on the first measurement quantity combined with the second measurement quantity.
  • the gNB uses the current beam to repeatedly send the first signal multiple times.
  • the first measurement amount is caused by user actions, but not necessarily caused by gesture actions to be performed by the user in the sensing service.
  • the mobile phone application software instructs the user to adopt a certain fixed gesture, such as instructing the user to continuously draw " ⁇ " in the space at an appropriate distance from the mobile phone, while the subsequent actual sensing service is to write Arabic numerals in the space, and the mobile phone perceives Gestures and recognize written numbers; the user does not need to make fixed gestures during the beam measurement process.
  • the mobile phone measures the user's respiration or heartbeat by receiving the first signal reflected by the user's body, and obtains the first measurement result of the beam measurement. The result can also reflect the perception performance of the current beam pair and help to determine the best beam pair.
  • the gNB sequentially scans and measures beams in different directions.
  • the direction is facing UE, which is the best uplink/downlink beam on the base station side for pure communication services.
  • the area where the user is located is not UE's.
  • the mobile phone can realize user gesture recognition based on the downlink CSI time series or the time series of received signals, combined with the pre-collected gesture data set in the application server database, and by using related algorithms of pattern recognition or machine learning.
  • Embodiment 2 The optimal beam pair is determined by integrating the first measurement quantity and the second measurement quantity.
  • a UE in the network needs to perform breath + heartbeat sensing service (for example, the sensing terminal is a mobile phone with sensing function).
  • breath + heartbeat sensing service for example, the sensing terminal is a mobile phone with sensing function.
  • the sensing terminal is a mobile phone with sensing function.
  • the measurement quantity of traditional communication beam management (the second measurement quantity), such as the RSRP measurement result, can be integrated to make a comprehensive judgment and determine the optimal downlink/uplink beam.
  • the measurement result of the first measurement quantity of beam 4 can meet the perceptual QoS requirements, but because the corresponding signal propagation path is longer, its corresponding RSRP measurement result is worse than that of beam 5, so the gNB side is optimal
  • the downlink/uplink beam is determined as beam 5.
  • Embodiment 3 The base station realizes traffic flow perception in a certain area through perception beam management.
  • the sensing party may be UE or gNB supporting the sensing function.
  • Sensing business can be the monitoring of people/vehicle flow in a certain local area (perceiving the congestion of people/vehicle flow in the current area, such as whether it is congested or not, the level of congestion), or the behavior pattern recognition of crowds and vehicles, such as perceiving whether the vehicle is going straight or turning, etc. wait.
  • this situation belongs to the perception mode in which gNB A sends the first signal and gNB B receives the first signal.
  • gNB A and gNB B determine the best transceiver beam pair through the above method provided by this application, so as to realize the perception of a specific area around gNB B.
  • the perception measurement method provided in the embodiment of this application may be executed by a perception measurement device .
  • the perception measurement method performed by the perception measurement device is taken as an example to illustrate the perception measurement device provided in the embodiment of the present application.
  • the sensory measurement device 900 provided in the embodiment of the present application includes:
  • a determination module 901 configured to determine a target beam that meets a target quality of service requirement, where the target quality of service requirement is a perceptual quality of service requirement or a synaesthesia quality of service requirement;
  • An execution module 902 configured to execute a sensing service or a synaesthesia service based on the target beam.
  • the determining module 901 is specifically configured to: use a first signal to perform beam scanning to obtain a target beam that meets the target quality of service requirement, and the first signal includes a dedicated sensing signal, a synesthesia integration signal, and a reference at least one of the signals.
  • the determining module 901 includes:
  • an execution unit configured to perform beam measurement of the first beam, and determine whether the first beam satisfies the target quality of service requirement
  • a determining unit configured to determine the first beam as the target beam when the first beam satisfies the target quality of service requirement
  • the first beam is a beam used for communication, and the first beam is obtained based on beam management for communication.
  • the execution unit is further configured to: when the first beam does not meet the target quality of service requirement, perform beam scanning using the first signal to obtain a target beam that meets the target quality of service requirement,
  • the first signal includes at least one of a dedicated sensing signal, a synesthesia integration signal and a reference signal.
  • the execution unit is specifically configured to: measure the first beam, and obtain a first measurement result, where the first measurement result includes a measurement result of a first measurement quantity associated with perceived service quality; based on the The first measurement result determines whether the first beam satisfies the target quality of service requirement; wherein, if the first measurement result meets the target quality of service requirement, determine that the first beam is the target beam.
  • the execution unit is specifically configured to: send a second signal based on the first beam, where the second signal includes at least one of a dedicated sensing signal, a synesthesia integration signal, and a reference signal; according to the second
  • the first target information sent by the sensing device determines whether the first beam satisfies the target quality of service requirement; performing a second measurement result obtained by performing a measurement or determining first indication information whether the first beam satisfies the target quality of service requirement based on the second measurement result, where the second measurement result includes the first indication information associated with the perceived quality of service A measurement result of a measured quantity.
  • the determination module 901 is specifically configured to: use the first signal to perform a first beam scan to obtain a third measurement result; determine a target beam that meets the target quality of service requirement according to the third measurement result; wherein, During scanning of the first beam, the first signal is received by the first sensing device.
  • the third measurement result satisfies at least one of the following:
  • the third measurement result includes a first measurement result, or the third measurement result includes a first measurement result and a second measurement result result;
  • the third measurement result includes a first measurement result and a second measurement result
  • the first measurement quantity is a measurement quantity related to perceived service quality
  • the second measurement quantity is a measurement quantity related to communication service quality
  • the determination module 901 is specifically configured to: use the first signal to perform second beam scanning; determine the target beam that meets the target quality of service requirement according to the second target information sent by the second sensing device; wherein, the The second target information is the fourth measurement result obtained by the second sensing device based on the second beam scanning measurement or the beam information of the target beam that meets the target quality of service requirement determined based on the fourth measurement result; During the process of scanning the second beam, the first sensing device sends the first signal.
  • the fourth measurement result satisfies at least one of the following:
  • the fourth measurement result includes a first measurement result, or the fourth measurement result includes a first measurement result and a second measurement result result;
  • the fourth measurement result includes a first measurement result and a second measurement result
  • the first measurement quantity is a measurement quantity related to perceived service quality
  • the second measurement quantity is a measurement quantity related to communication service quality
  • the first measured quantity includes at least one of the following:
  • Channel state information CSI time series CSI sample number, CSI time series smooth root mean square error, CSI time series signal to interference plus noise ratio, CSI time series autocorrelation peak difference, CSI time series period standard deviation, CSI time series Periodic variance, amplitude standard deviation of CSI time series, amplitude variance of CSI time series and reproducibility evaluation index of CSI time series.
  • the perception measurement device 900 further includes:
  • An acquiring module configured to acquire sensing parameter configuration information corresponding to a target quality of service requirement, where the sensing parameter configuration information is used to configure transmission information of the first signal.
  • the obtaining module is specifically configured to perform any of the following:
  • the target device is a core network device or a second sensing device associated with the first sensing device.
  • the sensing parameter configuration information includes at least one of the following: a first signal, a frequency domain configuration parameter, a time domain configuration parameter, an air domain configuration parameter, and a power configuration parameter.
  • the perception measurement apparatus 900 further includes:
  • An output module configured to output reminder information according to the beam scanning, where the reminder information is used to prompt to change the angle of the sensing target relative to the first sensing device.
  • the reminder information includes angle adjustment information of the sensing target relative to the first sensing device, and the angle adjustment information is determined based on an optimal communication beam of the first sensing device.
  • the perception measurement device 900 further includes:
  • a sending module configured to send perception capability information to the target device, where the perception capability information is used to determine a beam scanning mode
  • the target device is a core network device or a second sensing device associated with the first sensing device
  • the beam scanning method includes at least one of the first beam scanning and the second beam scanning;
  • the first sensing device receives the first signal; during the second beam scanning process, the first sensing device sends the first signal.
  • the sensing capability information includes: beamforming capability information of the first sensing device or beam scanning capability information of the first sensing device.
  • the sensing capability information further includes sensing configuration parameter information, where the sensing parameter configuration information is used to configure transmission information of the first signal.
  • the target quality of service requirement can be effectively guaranteed, thereby improving the sensing performance.
  • the sensory measurement device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the perception measurement device provided in the embodiment of the present application can realize each process realized by the method embodiment in FIG. 5 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 1000, including a processor 1001 and a memory 1002, and the memory 1002 stores programs or instructions that can run on the processor 1001.
  • the programs or instructions are executed by the processor 1001, the various steps of the above embodiments of the perception measurement method can be realized, and the same technical effect can be achieved, which will not be repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to determine the target beam that meets the target quality of service requirement, the target quality of service requirement is the perception service quality requirement or the synaesthesia service quality requirement, and the communication interface It is used to perform a sensing service based on the target beam.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes, but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and a processor 1110. At least some parts.
  • the terminal 1100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processing unit (Graphics Processing Unit, GPU) 11041 and a microphone 11042, and the graphics processor 11041 is used in a video capture mode or an image capture mode by an image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes at least one of a touch panel 11071 and other input devices 11072 .
  • Touch panel 11071 also called touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 may transmit the downlink data from the network side device to the processor 1110 for processing after receiving it; in addition, the radio frequency unit 1101 may send uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1109 can be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 1109 may include volatile memory or nonvolatile memory, or, memory 1109 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1110 .
  • the processor 1110 is configured to determine a target beam that meets a target quality of service requirement, where the target quality of service requirement is a perceptual quality of service requirement or a synaesthesia quality of service requirement;
  • the radio frequency unit 1101 is configured to perform a sensing service based on the target beam.
  • the target quality of service requirement can be effectively guaranteed, thereby improving sensing performance.
  • the processor 1110 is specifically configured to: use a first signal to perform beam scanning to obtain a target beam that meets the target quality of service requirement, and the first signal includes a dedicated sensing signal, a synesthesia integration signal, and a reference at least one of the signals.
  • the processor 1110 is specifically configured to: perform beam measurement of the first beam to determine whether the first beam meets the target quality of service requirement; if the first beam meets the target quality of service requirement In some cases, the first beam is determined as the target beam; wherein, the first beam is a beam used for communication, and the first beam is obtained based on beam management for communication.
  • the processor 1110 is further configured to: when the first beam does not meet the target quality of service requirement, use the first signal to perform beam scanning to obtain a target beam that meets the target quality of service requirement , the first signal includes at least one of a dedicated sensing signal, a synesthesia integration signal, and a reference signal.
  • the processor 1110 is specifically configured to: measure the first beam, and obtain a first measurement result, where the first measurement result includes a measurement result of a first measurement quantity associated with perceived service quality; based on The first measurement result determines whether the first beam satisfies the target quality of service requirement; wherein, if the first measurement result meets the target quality of service requirement, it is determined that the first beam is the target beam .
  • the processor 1110 is specifically configured to: send a second signal based on the first beam, where the second signal includes at least one of a dedicated sensing signal, a synesthesia integration signal, and a reference signal; according to the first
  • the first target information sent by the second sensing device determines whether the first beam satisfies the target quality of service requirement;
  • the second measurement result obtained by beam measurement or the first indication information for determining whether the first beam satisfies the target quality of service requirement based on the second measurement result, the second measurement result including the perceived quality of service
  • the measurement result of the first measurement quantity is specifically configured to: send a second signal based on the first beam, where the second signal includes at least one of a dedicated sensing signal, a synesthesia integration signal, and a reference signal; according to the first
  • the first target information sent by the second sensing device determines whether the first beam satisfies the target quality of service requirement;
  • the second measurement result obtained by beam measurement or the first indication information for determining whether the first beam satisfies
  • the processor 1110 is specifically configured to: use the first signal to perform first beam scanning to obtain a third measurement result; determine a target beam that meets the target quality of service requirement according to the third measurement result; wherein, During scanning of the first beam, the first signal is received by the first sensing device.
  • the third measurement result satisfies at least one of the following:
  • the third measurement result includes a first measurement result, or the third measurement result includes a first measurement result and a second measurement result result;
  • the third measurement result includes a first measurement result and a second measurement result
  • the first measurement quantity is a measurement quantity related to perceived service quality
  • the second measurement quantity is a measurement quantity related to communication service quality
  • the processor 1110 is specifically configured to: use the first signal to perform second beam scanning; determine a target beam that meets the target quality of service requirement according to the second target information sent by the second sensing device; wherein, the The second target information is the fourth measurement result obtained by the second sensing device based on the second beam scanning measurement or the beam information of the target beam that meets the target quality of service requirement determined based on the fourth measurement result; During the process of scanning the second beam, the first sensing device sends the first signal.
  • the fourth measurement result satisfies at least one of the following:
  • the fourth measurement result includes a first measurement result, or the fourth measurement result includes a first measurement result and a second measurement result result;
  • the fourth measurement result includes a first measurement result and a second measurement result
  • the first measurement quantity is a measurement quantity related to perceived service quality
  • the second measurement quantity is a measurement quantity related to communication service quality
  • the first measured quantity includes at least one of the following:
  • Channel state information CSI time series CSI sample number, CSI time series smooth root mean square error, CSI time series signal to interference plus noise ratio, CSI time series autocorrelation peak difference, CSI time series period standard deviation, CSI time series Periodic variance, amplitude standard deviation of CSI time series, amplitude variance of CSI time series and reproducibility evaluation index of CSI time series.
  • the processor 1110 is further configured to: acquire perception parameter configuration information corresponding to a target quality of service requirement, where the perception parameter configuration information is used to configure transmission information of the first signal.
  • processor 1110 is specifically configured to perform any of the following:
  • the target device is a core network device or a second sensing device associated with the first sensing device.
  • the sensing parameter configuration information includes at least one of the following: a first signal, a frequency domain configuration parameter, a time domain configuration parameter, an air domain configuration parameter, and a power configuration parameter.
  • the processor 1110 is further configured to: output reminder information according to the beam scanning, the reminder information It is used to prompt to change the angle of the sensing target relative to the first sensing device.
  • the reminder information includes angle adjustment information of the sensing target relative to the first sensing device, and the angle adjustment information is determined based on an optimal communication beam of the first sensing device.
  • the radio frequency unit 1101 is further configured to: send perception capability information to the target device, where the perception capability information is used to determine a beam scanning manner;
  • the target device is a core network device or a second sensing device associated with the first sensing device
  • the beam scanning mode includes at least one of the first beam scanning and the second beam scanning;
  • the first sensing device receives the first signal; during the second beam scanning process, the first sensing device sends the first signal.
  • the sensing capability information includes: beamforming capability information of the first sensing device or beam scanning capability information of the first sensing device.
  • the sensing capability information further includes sensing configuration parameter information, where the sensing parameter configuration information is used to configure transmission information of the first signal.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the processor is used to determine a target beam that meets a target quality of service requirement, where the target quality of service requirement is a perceptual quality of service requirement or a synaesthesia quality of service requirement,
  • the communication interface is used to perform a sensing service based on the target beam.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1200 includes: an antenna 1201 , a radio frequency device 1202 , a baseband device 1203 , a processor 1204 and a memory 1205 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1203, where the baseband device 1203 includes a baseband processor.
  • the baseband device 1203 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1206, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1206 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 1200 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1205 and executable on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each process of the above embodiment of the sensory measurement method can be realized, and the same can be achieved. To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned sensory measurement method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned sensory measurement method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the various processes in the above embodiments of the perception measurement method, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • An embodiment of the present application also provides a perception measurement system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the above-mentioned perception measurement method, and the network-side device can be used to perform the above-mentioned perception The steps of the measurement method.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知测量方法、装置、通信设备及可读存储介质,属于通信领域,本申请实施例的感知测量方法包括:第一感知设备确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;所述第一感知设备基于所述目标波束执行感知业务。

Description

感知测量方法、装置、通信设备及可读存储介质
相关申请的交叉引用
本申请主张在2021年12月24日在中国提交的中国专利申请No.202111597770.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种感知测量方法、装置、通信设备及可读存储介质。
背景技术
随着通信技术的发展,在未来通信***中除了具有通信能力外,还将具有无线感知能力。例如,通信设备可以通过主动感知、被动感知或交互感知等方式进行感知测量。然而,目前通常由终端和网络侧设备直接基于用于通信的波束执行感知业务或通感业务,由于感知目标所在区域不同,采用同一波束进行感知测量时,感知的性能不同,若统一采用通信波束执行感知业务或通感业务,可能会导致感知性能较差。因此现有技术中,存在感知性能较差的问题。
发明内容
本申请实施例提供一种感知测量方法、装置、通信设备及可读存储介质,能够提高感知性能。
第一方面,提供了一种感知测量方法,包括:
第一感知设备确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
所述第一感知设备基于所述目标波束执行感知业务或通感业务。
第二方面,提供了一种感知测量装置,包括:
确定模块,用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
执行模块,用于基于所述目标波束执行感知业务或通感业务。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求,所述通信接口用于基于所述目标波束执行感知业务或通感业务。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求,所述通信接口用于基于所述目标波束执行感知业务或通感业务。
第七方面,提供了一种感知测量***,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的感知测量方法的步骤,所述网络侧设备可用于执行如第一方面所述的感知测量方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
本申请实施例中,通过确定满足目标服务质量需求的目标波束,基于所述目标波束执行感知业务或通感业务,从而可以有效保证目标服务质量需求,进而提升了感知性能。
附图说明
图1是本申请实施例可应用的无线通信***的框图;
图2是本申请实施例可应用的感知场景示意图之一;
图3是本申请实施例可应用的感知场景示意图之二;
图4是本申请实施例可应用的感知场景示意图之三;
图5是本申请实施例提供的感知测量方法的流程图;
图6是本申请实施例可应用的感知场景示意图之四;
图7是本申请实施例可应用的感知场景示意图之五;
图8是本申请实施例可应用的感知场景示意图之六;
图9是本申请实施例提供的感知测量装置的结构图;
图10是本申请实施例提供的通信设备的结构图;
图11是本申请实施例提供的终端的结构图;
图12是本申请实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用 于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6 th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电 收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、NR波束管理
移动通信网络的空闲频段日益减少,使用频段有逐渐往高频发展的态势,例如5G NR推动的毫米波(millimeter wave,mmWave),以及6G推动的太赫兹(THz),这些频段具有大量的可用资源。然而,更高的频率意味着更大的传输损耗,因此在NR中使用了波束管理技术。在移动通信网络中,基站和UE都有可能使用波束赋形,形成波瓣宽度较窄的波束。波束管理的目的,就是获取并维护一组可用于下行(Down Link,DL)和上行(Up Link,UL)传输/接收的基站-UE波束对,提高链路的性能。波束管理包括以下几方面内容:波束扫描、波束测量、波束上报、波束指示和波束失败恢复。
下行波束管理过程中,波束扫描分为P1、P2和P3三个阶段,其中:
P1阶段:基站(gNB)和UE同时扫描,gNB的波束较宽,参考信号为同步信号块(Synchronization Signal and PBCH block,SSB)。
P2阶段:UE固定接收波束,基站窄波束扫描,参考信号为信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
P3阶段:gNB固定发射波束(窄波束),UE窄波束扫描,UE波束扫描是自身行为,gNB需要配合固定波束发送。
上述三个过程中,P1必须执行,P2和P3并不是必须的。在P1基础上,如对业务有更高要求,可以执行P2过程;如果终端能力具备且基站认为能够进一步提升业务性能,可执行P3过程。P1过程通常只依赖SSB,P3过程因为要固定gNB发送波束,不宜用SSB,应该采用CSI-RS,P2过程则既可以基于SSB,也可以基于CSI-RS。
上行波束管理的波束扫描基于探测参考信号(Sounding Reference Signal,SRS)进行。和下行类似,可以分为U1、U2和U3阶段,其中:
U1阶段:gNB扫描UE的发送波束确定UE的最优发送波束,同时扫描TRP的接收波束,确定gNB的最优接收波束(这个过程是可选的);
U2阶段:gNB在UE发送波束固定的情况下,扫描TRP的接收波束,确定最优的接收波束;
U3阶段:gNB在确定最优接收波束的前提下,通过扫描UE的发送波束,选择最优的UE发送波束;
上行波束管理可以通过配置专属的SRS资源完成,也可以基于波束互易性,通过最佳下行发送波束来确定最佳上行发送波束。
空闲态及初始接入过程中,下行主要依靠SSB,通过测量SSB波束扫描过程的参考信号接收功率(Reference Signal Received Power,RSRP),选择质量最好的SSB。一个SSB对应一个波束,用于波束扫描的一组SSB构成一个同步信号(Synchronization Signal,SS)突发集合(burst set)。一个SS burst set的最大SSB数与频段有关,毫米波频段最大为64个;上行主要依靠PRACH,PRACH与SSB存在映射关系。UE在初始接入时首先会选择与最佳SSB关联的物理随机接入信道(Physical Random Access Channel,PRACH)资源发 送消息1(MSG1)。基站根据收到的UE上行PRACH的资源位置确定UE所选择的SSB波束,并在此SSB波束上发送下行RAR和后续信令。
连接态下,下行主要依靠CSI-RS,基站配置一组或多组用于波束管理CSI-RS进行波束扫描,UE通过对CSI-RS的测量得到层1参考信号接收功率(L1-RSRP)结果,上报不同CSI-RS的测量结果。基站选择L1-RSRP最强的CSI-RS波束进行下行信道发送;上行主要依靠SRS,用于波束管理的SRS多个资源集对应UE的发送面板(TX Panel),资源集中的每个SRS资源对应一个波束。
如果当前由于遮挡导致用户控制信道的接收质量低于一定门限,UE发起波束失败恢复流程。波束失败检测主要基于基站配置的SSB或CSI-RS参考信号。UE在失败检测定时器时长内,检测到失败的个数大于或等于失败的最大个数参数,则触发波束失败恢复流程,TRP通过收端波束扫描接收到上行恢复请求信号,UE会根据波束恢复的参数配置重新选择新的SSB对应波束,并在用于波束恢复的PRACH资源上发起随机接入过程,与基站重新建立新波束对,恢复传输。
二、基于菲涅尔区的无线感知技术
随着移动通信网络以及物联网的蓬勃发展,无线感知方式的种类也越来越多。最常见的基于传感器的感知,例如烟雾传感器、摄像头/红外传感器、医疗领域的侵入式传感器等等,能够针对特定场景实现特定目的的感知。对于用户电子产品终端,也存在一些感知应用,例如手机或者其他电子终端的手势识别感知,可以使用红外感知,也可以使用超声波感知。近年来,基于无线信号的感知研究也逐渐增多。相比于专用传感器感知,无线信号感知具有设备简单、成本低、不侵入式,以及隐私性强等优点。例如,基于WiFi信号的无线感知,能够实现居家行为监测、跌倒检测、入侵检测、动作识别、日常活动路线追踪等功能。目前,无线感知从原理上主要分为两大代表方向,一类是基于模式识别的无线感知,另一种是基于菲涅尔模型的无线感知。基于模式识别的无线感知的基本原理是试图使用机器学习/人工智能技术进行模式识别、分类,即在无线感知接收信号与感知目标动力学行为之间建立一种一对一的映射关系。然而,由于无线电波传播往往存在多径,进而引起复 杂的小尺度衰落,因此这种类别的无线感知往往存在不同环境可复现性差,感知误差大的缺点;第二类基于菲涅尔区的无线感知,其基本原理是通过估计和分析感知目标切割菲涅尔区导致无线信号幅度相位发生的变化,实现目标的动力学行为感知。这种感知方式试图从无线信号传播机制上揭示由于感知目标动力学行为与无线信号幅度和相位变化的关系,因此具有较强的可解释性以及感知准确性。
发射机和接收机之间在传输无线信号时,会形成一系列大小不同的菲涅尔区。菲涅尔区是一个以发射机、接收机为焦点的椭球区。反射点在菲涅尔区椭球面上的传播路径,与发射机和接收机直射路径相差信号半波长的整数倍。例如,从内往外数第1个椭球面,其上的反射路径相比直射径长度大1个半波长,这个区域称为第1菲涅尔区。再***的区域,反射路径相比直射径长度大2个半波长(即1个波长),这个区域称为第2菲涅尔区。往外以此类推,可以得到第3…n菲涅尔区。
发射机TX和接收机RX之间的环境存在多径传播,这些多径可以分为静态径和由于感知目标运动引起的动态径。当物体切割菲涅尔区时,动态径的幅度可以近似看做不变,但是它的相位会发生改变,最终导致由静态径构成的信道向量和动态径构成的信道向量合成的整体信道向量的幅度发生变化。
基于上述原理,未来的电子终端,包括手机终端以及其他电子终端,如电子手表、各类家具控制器等,均可利用环境中的无线信号进行手势识别感知。环境中最常见的无线信号包括移动网络信号,例如LTE和5G下行信号。感知终端根据下行信道估计CSI,进行手势识别和动作感知。
由于大多数基于菲涅尔区模型的无线感知场景,无线信号波长在厘米量级,同时通信信号往往具有一定带宽,带宽内不同子载波频率略有不同,波长也略有不同。因此感知终端往往能够实现厘米级甚至更小尺度的动作识别。然而,这种感知方法目前存在一个比较严重的缺陷,即手势或者动作识别的准确度会由于用户所在菲涅尔区位置不同而受到显著影响。如图2所示,当用户(即感知目标)位置位于基站与感知终端连线之间时,用户手势/动作大概率略在第1菲涅尔区内,信号的绕射和衍射严重,CSI信号图样(pattern)可复现性低,此时无法在该区域进行准确的手势/动作识别;当用户处在基站 到感知终端延长线附近时,不同菲涅尔区的边界几乎是等间隔分布,此时CSI信号pattern可复现性高、识别准确率高,因此应该尽量在该区域进行手势/动作识别。为了方便描述,该区域在本申请中称之为“第一区域”;当用户在上述两区域之间的过渡区域,如图4所示,CSI信号的波动模式容易受做手势/动作时人体朝向的影响,不同朝向的CSI pattern差别较大,因此尽量不要在该区域做手势/动作识别。为此提出了本申请的方案。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知测量方法进行详细地说明。
参照图5,本申请实施例提供了一种感知测量方法,该感知测量方法包括:
步骤501,第一感知设备确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
步骤502,所述第一感知设备基于所述目标波束执行感知业务或通感业务。
本申请实施例中,上述第一感知设备可以为终端或者网络侧设备,该网络侧设备可以为基站。上述目标服务质量需求可以通过协议约定或者网络侧设备决定,还可以由感知服务需求方提供。该感知服务需求方是指提出感知需求的设备,例如,可以为终端、网络侧设备或者第三方应用服务器,在此不做进一步地限定。目标波束满足目标服务质量需求可以理解为基于目标波束进行测量时,与感知服务质量关联的第一测量量可以达到预设的感知服务质量(Quality of Service,QoS)要求,或者与感知服务质量关联的第一测量量以及与通信QoS关联的第二测量量的通感QoS要求。
可选地,上述目标波束包括接收波束和发送波束中的至少一项,在目标波束包括接收波束和发送波束的情况下,目标波束也可以称之为目标波束对。通感业务也可以称之为通感一体化业务,即同时包括感知业务和通信业务。
应理解,第一感知设备确定目标波束后,在执行感知业务的过程中,可以使用目标波束进行感知信号的接收,也可以使用目标波束进行感知信号的发送,还可以使用目标波束进行感知信号的发送和接收,从而基于该感知信号可以实现感知测量。在执行通感业务的过程中,可以使用目标波束进行通 感一体化信号的接收,也可以使用目标波束进行通感一体化信号的发送,还可以使用目标波束进行通感一体化信号的发送和接收,从而基于该通感一体化信号可以实现通感一体化测量。
可选地,上述感知业务可以为手势、表情和肢体动作感知,识别等。感知业务中的测量量的获取可以在UE进行,也可以在gNB进行;测量量到感知结果的转换可以在UE进行,也可以在gNB进行,也可以在核心网设备进行。根据不同的情况,感知业务的执行可以使用以下方法之一:
一、若感知测量量的获取,以及感知测量量到感知结果的转换在UE进行,则使用下行感知波束,该感知测量量包括上述第一测量量以及多普勒频率测量量等。此时,可以执行以下流程:1、UE可以向gNB发送感知开始指示消息(可以同时发送gNB的最佳下行波束索引信息,最佳下行波束理解为目标波束中的下行波束),可选地,UE启动感知业务计时器;2、gNB收到感知开始指示消息后使用最佳下行波束向UE发送第一信号,可选地,gNB启动感知业务计数器;3、UE将感知测量量转换为感知结果;可选地,UE完成感知测量量测量后可以向gNB发送测量完成指示消息。其中,该感知业务计时器的作用是设置感知业务最大时间,由感知测量量到感知结果转换方启动。感知业务计数器作用是设置感知信号最大发送次数,由感知信号发送方启动。
二、若感知测量量的获取在gNB进行,感知测量量到感知结果的转换在UE进行,使用上行感知波束。此时,可以执行以下流程:1、UE向gNB发送感知开始指示消息,可选地,gNB准备好后可以向UE发送应答消息指示可以进行感知业务(可以同时发送UE的最佳上行波束索引信息,最佳上行波束可以理解为目标波束中的上行波束),可选地,UE启动感知业务计时器;2、UE使用最佳上行波束向gNB发送第一信号,可选地,UE启动感知业务计数器;3、gNB将上行测量得到的感知测量量下发给UE,可选地,gNB完成感知测量量测量后可以向UE发送测量完成指示消息;4、UE将感知测量量转换为感知结果。
三、若感知测量量的获取在UE进行,感知测量量到感知结果的转换在gNB进行,使用下行感知波束。此时,可以执行以下流程:1、gNB向UE发 送感知开始指示消息,可选地,UE准备好后可以向gNB发送应答消息指示可以进行感知业务(可以同时发送gNB的最佳下行波束索引信息);可选地,gNB启动感知业务计时器;2、gNB使用最佳下行波束向UE发送第一信号,可选地,gNB启动感知业务计数器;可选地,UE完成感知测量量测量后可以向gNB发送测量完成指示消息;3、UE将下行测量得到的感知测量量上报给gNB。可选地,UE完成感知测量量测量后可以向gNB发送测量完成指示消息;4、gNB将感知测量量转换为感知结果。
四、若感知测量量的获取,以及感知测量量到感知结果的转换在gNB进行,使用上行感知波束。此时,可以包括以下流程:1、gNB向UE发送感知开始指示消息(可以同时发送UE的最佳上行波束索引信息);可选地,gNB启动感知业务计时器;2、UE使用最佳上行波束向gNB发送第一信号;可选地,UE启动感知业务计数器;3、gNB将上行测量得到的感知测量量转换为感知结果;可选地,gNB完成感知测量量测量后可以向UE发送测量完成指示消息。
五、若感知测量量到感知结果的转换在核心网设备进行,根据感知测量量获取节点是UE或者gNB,使用对应下行或者上行感知波束。此时,可以包括以下流程:1、核心网设备向gNB和/或UE发送感知开始指示消息;可选地,核心网设备启动感知业务计时器;2、gNB或者UE其中一方使用最佳下行或者上行感知波束向另一方发送第一信号,可选地,第一信号发送方启动感知业务计数器;3、第一信号发送方将对第一信号测量得到的感知测量量发送至核心网;可选地,第一信号接收方完成感知测量量测量后可以向第一信号发送方发送测量完成指示消息;4、核心网设备完成感知测量量到感知结果的转换。
本申请实施例中,通过确定满足目标服务质量需求的目标波束,基于所述目标波束执行感知业务,从而可以有效保证目标服务质量需求,进而提升了感知性能。
需要说明的是,感知服务需求方可以向核心网设备(例如感知网络功能或感知网元)发送感知需求,以触发执行相应的感知相关操作。根据感知需求和通信需求是否同时发起可能存在两种情况,情况一:先前无通信业务, 直接发起感知业务或通感业务,例如初次进行感知业务或通感业务,类似于初始化接入,未进行波束管理,需要进行感知业务波束管理,获得满足目标服务质量需求的目标波束。情况二:已经进行通信业务,后续发起感知业务或通感业务,由于已经进行了通信业务,因此已经完成通信的波束管理,第一感知设备已经获得最佳的通信波束,以下称之为第一波束,该第一波束可以包括发送波束和接收波束中的至少一项。此外,对于已进行通信业务,但没有进行波束管理过程的情况也可以理解为属于情况一,例如广播业务。
针对以上不同情况,确定满足感知需求的目标波束的方式不同。例如,在一些实施例中,所述第一感知设备确定满足感知需求的目标波束包括:
所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
可选地,上述感知需求可以包括以下至少一项:目标服务质量需求、感知动作类型、单次感知动作最小(或最大)持续时间、单次感知动作平均持续时间、持续时间标准差、最小感知动作重复次数和最大感知动作重复次数。其中,目标服务质量需求可以包括感知业务或通感业务类型、感知业务或通感业务优先级、感知检测概率、感知误检概率、感知识别准确率要求、感知分辨率的要求、感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求以及通信QoS(执行通感一体化业务时)等,通信QoS可以包括通信延时预算和误报率等。上述感知动作类型可以包括手势识别、肢体动作识别和表情识别等。
本申请实施例中,可以适用于情况一和情况二,即无论是否进行通信的波束管理,均直接进行感知业务或通感业务波束管理,获得满足目标服务质量需求的目标波束。也可以仅适用于情况一,即仅在未进行通信的波束管理的情况下,直接进行感知业务或通感业务波束管理,获得满足目标服务质量需求的目标波束。
应理解,上述专用感知信号和通感一体化信号可以是新设计的专用信号,上述参考信号可以为LTE参考信号,也可以为NR参考信号。若采用NR参考信号,下行参考信号可以是SSB、CSI-RS、下行定位参考信号(Downlink  Positioning Reference Signal,DL-PRS)或者相位跟踪参考信号(Phase-tracking Reference Signal,PT-RS)等能在时域可配置的参考信号。上行参考信号可以是SRS或UL-SRS等能在时域可配置的参考信号。
可选地,在一些实施例中,所述第一感知设备确定满足目标服务质量需求的目标波束包括:
所述第一感知设备执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求;
在所述第一波束满足所述目标服务质量需求的情况下,所述第一感知设备将所述第一波束确定为所述目标波束;
其中,所述第一波束为用于通信的波束,且所述第一波束基于通信的波束管理获得。
可选地,所述第一感知设备执行第一波束的波束测量之后,所述方法还包括:
在所述第一波束不满足所述目标服务质量需求的情况下,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
本申请实施例中,针对上述情况二,在进行通信的波束管理后,获得用于通信的第一波束。此时,可以执行第一波束的波束测量,从而确定第一波束是否满足目标服务质量需求,在第一波束满足目标服务质量需求的情况下,直接将第一波束确定为目标波束,基于第一波束执行感知业务或通感业务,从而减少感知业务或通感业务的波束管理,减少了信令开销。
可选地,在一些实施例中,所述第一感知设备执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求包括:
所述第一感知设备对所述第一波束进行测量,获得第一测量结果,所述第一测量结果包括与感知服务质量关联的第一测量量的测量结果;
所述第一感知设备基于所述第一测量结果确定所述第一波束是否满足所述目标服务质量需求;
其中,在所述第一测量结果满足目标服务质量需求的情况下,确定所述 第一波束为所述目标波束。
本申请实施例中,上述第一感知设备可以为第二信号的接收端,可以由第二感知设备或者其他参与感知协作的感知设备在第一波束上发送第二信号,第一感知设备可以接收第二信号并基于所述第二信号对所述第一波束进行测量获得第一测量结果。当第一感知设备为一判断节点(即能够判断第一波束是否满足目标服务质量需求),则可以基于所述第一测量结果判断所述第一波束是否满足所述目标服务质量需求;若第一感知设备并非判断节点(即不具备判断能力),则可以向判断节点上报第一测量结果,然后根据判断节点返回的判断结果确定第一波束是否满足所述目标服务质量需求。其中判断节点可以为基站或者核心网设备,在此不做进一步地限定。
应理解,假设本申请实施例中第一感知设备为基站,第二感知设备为终端,则上述波束测量可以理解为上行波束测量。
可选地,上述第二信号与上述第一信号均可以理解为用于感知的信号,区别在于两者用于不同的感知测量阶段。上述第二信号与第一信号可以相同,也可以不同,在此不做进一步的限定。
可选地,在一些实施例中,所述第一感知设备执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求包括:
所述第一感知设备基于所述第一波束发送第二信号,所述第二信号包括专用感知信号、通感一体化信号和参考信号中的至少一种;
所述第一感知设备根据第二感知设备发送的第一目标信息确定所述第一波束是否满足所述目标服务质量需求;
其中,所述第一目标信息为所述第二感知设备基于所述第二信号对所述第一波束进行测量获得的第二测量结果或者基于所述第二测量结果确定所述第一波束是否满足所述目标服务质量需求的第一指示信息,所述第二测量结果包括与感知服务质量关联的第一测量量的测量结果。
本申请实施例中,上述第一感知设备可以为第二信号的发送端,由第一感知设备在第一波束上发送第二信号,第二感知设备可以接收第二信号并基于所述第二信号对所述第一波束进行测量获得第二测量结果。第二感知设备获得第二测量结果后可以进行测量结果上报,向第一感知设备发送第一目标 信息,第一感知设备可以根据第一目标信息确定第一波束是否满足所述目标服务质量需求。
应理解,假设本申请实施例中第一感知设备为基站,第二感知设备为终端,则上述波束测量可以理解为下行波束测量,由终端上报下行波束测量的结果。
需要说明的是,第一波束满足所述目标服务质量需求可以理解为:至少一个第一测量量的测量值达到QoS对应的门限要求。
进一步地,在一些实施例中,假设第一波束不满足目标服务质量需求,可以存储第一波束的索引,从而在感知业务或通感业务执行结束后,恢复到最佳的通信波束上进行通信,进而提高通信的可靠性,同时可以进一步减小信令开销。其中,是否储存第一波束的索引可以由核心网设备或者基站决定,此外,第一波束的索引存储的位置也可以是核心网设备或者基站。
可选地,在一些实施例中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束包括:
所述第一感知设备使用第一信号执行第一波束扫描,获得第三测量结果;
所述第一感知设备根据所述第三测量结果确定满足所述目标服务质量需求的目标波束;
其中,在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号。
可选地,所述第三测量结果满足以下至少一项:
在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第三测量结果包括第一测量量结果,或者所述第三测量结果包括第一测量量结果和第二测量量结果;
在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第三测量结果包括第一测量量结果和第二测量量结果;
其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
本申请实施例中,上述第一信号的发送设备可以为第二感知设备或者其他参与感知协作的其他感知设备,该其他感知设备理解为未进行感知测量的 设备,例如,可以为基站或者终端,仅用于发送第一信号。具体地,可以将第一感知设备理解为第一信号的接收设备,第一信号的发送设备与接收设备之间进行波束扫描的过程可以根据实际需要进行设置。
可选地,假设第一感知设备为终端,发送设备为基站,则上述第一波束扫描可以理解为下行波束扫描。假设第一感知设备为基站,发送设备为终端,则上述第一波束扫描可以理解为上行波束扫描,假设第一感知设备为终端,发送设备为终端,则上述第一波束扫描可以理解为直通链路的波束扫描。当然在其他实施例中,第一感知设备和发送设备可以均为基站。
可选地,在一些实施例中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束包括:
所述第一感知设备使用第一信号执行第二波束扫描;
所述第一感知设备根据第二感知设备发送的第二目标信息确定满足所述目标服务质量需求的目标波束;
其中,所述第二目标信息为所述第二感知设备基于所述第二波束扫描进行测量的第四测量结果或者基于所述第四测量结果确定满足所述目标服务质量需求的目标波束的波束信息;
其中,在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
可选地,所述第四测量结果满足以下至少一项:
在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第四测量结果包括第一测量量结果,或者所述第四测量结果包括第一测量量结果和第二测量量结果;
在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第四测量结果包括第一测量量结果和第二测量量结果;
其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
本申请实施例中,上述第一感知设备可以理解为第一信号的发送设备,第一信号的接收设备可以为上述第二感知设备,第一信号的发送设备与接收设备之间进行波束扫描的过程可以根据实际需要进行设置。
可选地,假设第一感知设备为终端,第二感知设备为基站,则上述第二波束扫描可以理解为上行波束扫描。假设第一感知设备为基站,第二感知设备为终端,则上述第二波束扫描可以理解为下行波束扫描,假设第一感知设备为终端,第二感知设备为终端,则上述第二波束扫描可以理解为直通链路的波束扫描。当然在其他实施例中,第一感知设备和第二感知设备可以均为基站。
应理解,针对下行波束扫描可以包括S1、S2和S3三个阶段:
S1阶段:基站和终端同时扫描,基站的波束可以较宽,可以使用新设计的感知/通感一体化信号,或者SSB等。所述同时扫描,指的是可以为基站依次固定不同波束,在基站固定波束时终端依次扫描波束;也可以为终端固定不同波束后,在终端固定波束时基站依次扫描波束;直到所有可能的波束对都遍历一遍;
S2阶段:终端固定接收波束,基站窄波束扫描,可以使用新设计的感知/通感一体化信号,或者CSI-RS,或者DL-PRS等;
S3阶段:基站固定发射波束(窄波束),终端窄波束扫描,终端波束扫描是自身行为,基站需要配合固定波束发送。
其中S1阶段是必须的,而S2和S3并不是必须的。在S1基础上,如对业务有更高要求,可以执行S2过程;如果终端窄波束扫描能力具备,且基站认为能够进一步提升业务性能,可执行S3过程。需要指出,终端进行波束扫描一方面是起到提高感知信噪比的作用,另一方面还可以起到抑制干扰的作用(即抑制非感知目标带来的干扰,比如对环境中其他动态多径的抑制)。
针对上述上行波束扫描包括V1、V2和V3三个阶段,其中:
V1阶段:基站和终端同时扫描,,确定终端的最优发送波束,以及基站的最优接收波束;
V2阶段:基站在终端发送波束固定的情况下,扫描TRP的接收波束,确定最优的接收波束;
V3阶段:基站在确定最优接收波束的前提下,通过扫描终端的发送波束,选择最优的终端发送波束。
应理解,当基站和终端间满足波束一致时,可以仅进行上行波束扫描或 仅执行下行波束扫描。波束一致性可以理解为发送波束和接收波束完全互易。实际应用时,可能存在基站或者终端的下行波束和上行波束不一致,即下行最佳方向不一定是上行最佳方向(或者上行最佳方向不一定是最佳下行方向)。
可选地,下行波束扫描或上行波束扫描,gNB可以通过DCI消息指示UE的波束切换行为,以及告知UE gNB侧的波束扫描行为。DCI消息可以包括以下至少一项:
UE波束扫描开始指示:即gNB指示UE可以开始波束扫描;
UE波束扫描顺序指示:即gNB指示UE波束扫描顺序(可以为一系列波束索引),每个gNB驻留波束对应的UE波束扫描顺序可以相同也可以不同;
UE波束驻留时间指示:即指示UE驻留波束时长;
UE波束扫描停止指示:即gNB指示UE可以结束波束扫描;
gNB波束扫描开始指示:即gNB告知UE自己开始波束扫描;
gNB波束扫描顺序指示:即gNB告诉UE自身波束扫描顺序(可以为一系列波束索引),每个UE驻留波束对应的gNB波束扫描顺序可以相同也可以不同;
gNB波束驻留时间指示:即gNB告知UE自己波束驻留时长;
UE波束扫描停止指示:即gNB告知UE自己停止波束扫描。
可选地,在同步阶段,基站会使用SSB,但是在同步后,会同时使用CSI-RS和SSB进行波束扫描。
可选地,在一些实施例中,所述第一测量量包括以下至少一项:
信道状态信息CSI时间序列、CSI样本数、CSI时间序列平滑均方根误差、CSI时间序列信号与干扰加噪声比、CSI时间序列自相关峰值差、CSI时间序列的周期标准差、CSI时间序列的周期方差、CSI时间序列的幅度标准差、CSI时间序列的幅度方差以及CSI时间序列可复现性评价指标。
可选地,在一些实施例中,上述第二测量量可以包括以下至少一项:RSRP、接收信号强度指示(Received Signal Strength Indication,RSSI)、信噪比(Signal to Noise Ratio,SNR)和号与干扰加噪声比(signal-to-noise and interference ratio,SINR)。
需要说明的是,在基于波束扫描确定目标波束时,该目标波束可以仅为满足目标服务质量需求的任一个波束,也可以为满足目标服务质量需求的最佳感知波束。例如,在一些实施例中,以基站和终端作为感知设备为例进行说明,测量和波束选取的方法可以是以下方法中的至少一种:
方法1:基于下行和/或上行波束扫描,扫描过程同时测量第一测量量以及能够指示接收信号功率的相关测量量(即上述第二测量量),按一定顺序全部扫描测量(扫描顺序由扫描方确定)完一轮后,再根据测量结果综合确定基站最佳感知波束。
方法2:基于下行和/或上行波束扫描,扫描过程同时测量第一测量量以及第二测量量,按一定顺序扫描测量(扫描顺序由扫描方确定),一旦得到的测量量满足目标服务质量需求,则立即选择该波束对,并停止波束扫描。
方法3:如果之前通信过程已经建立,说明已经进行过通信流程的波束扫描和测量,此时可以以当前通信波束(即第一波束)对最近邻的2个波束对为起始扫描波束,依次由近及远测量其它波束对上的第一测量量,一旦得到的第一测量量满足目标服务质量需求,则立即选择该波束对,并停止波束扫描。这样可以减少扫描时间,降低***资源和信令开销。
方法4:如果之前通信过程已经建立,说明已经进行过通信流程的波束扫描和测量,此时可将第二测量量结果较优中的原有通信波束对的几个波束对作为候选波束对,对这几个波束进行第一测量量测量,最终从上述候选波束中确定最佳波束对。候选第二测量量结果较优的几个波束,可以是根据前期通信(SSB或者CSI-RS)波束扫描获得。其中,该候选波束对不包括第一波束。
可选地,若是基于上下行波束一致性,只执行下行波束扫描,则UE进行第一测量量的测量,基于测量结果确定最佳波束对,并把最佳下行发送波束上报给gNB;若是基于上下行波束一致性,只执行上行波束扫描,则gNB进行第一测量量的测量,基于测量结果确定最佳波束对,并把最佳上行发送波束下发给UE;若是下行和上行波束扫描均执行,UE把最佳下行发送波束上报给gNB,同时gNB将最佳上行发送波束下发给UE。
进一步地,基于第一信号的波束扫描,还可以获得以下至少一项:
满足所述目标服务质量需求的第一信号对应的频域位置;
满足所述目标服务质量需求的第一信号对应的时域位置;
满足所述目标服务质量需求的第一信号对应的天线或天线端口。
例如,第一信号的接收端可以确定以下至少一项:
满足当前业务QoS(或者感知质量要求)的CSI(或接收信号)频域RE(或者子载波)或者资源块(Resource Block,RB)的索引;
满足当前业务QoS(或者感知质量要求)的CSI(或接收信号)时域采样时隙(slot)索引,或者burst索引,或者等效的能够指示满足当前业务QoS(或者感知质量要求)的CSI(或接收信号)的时域信息(例如起始时间戳或者起始时间采样点索引);
满足当前业务QoS(或者感知质量要求)的CSI(或接收信号)对应的天线或者天线端口索引,或者等效的能够关联满足当前业务QoS(或者感知质量要求)的CSI(或接收信号)与天线/天线端口的信息。
可选地,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束之前,所述方法还包括:
所述第一感知设备获取目标服务质量需求对应的感知参数配置信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
可选地,所述第一感知设备获取目标服务质量需求对应的感知参数配置信息包括以下任一项:
所述第一感知设备基于所述目标服务质量需求确定所述感知参数配置信息;
所述第一感知设备接收目标设备基于所述目标服务质量需求发送的所述感知参数配置信息,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备。
本申请实施例中,核心网设备可以将感知需求发送给感知业务或通感业务对应的感知设备,如gNB和UE,gNB和UE可以根据感知需求确定感知参数配置。可选地,核心网设备也可以直接发送感知参数配置信息给gNB或者和/或UE。例如,核心网设备可以将感知参数配置信息发送给基站,基站继续将感知参数配置信息发送给UE。
可选地,在一些实施例中,所述感知参数配置信息包括以下至少一项:第一信号、频域配置参数、时域配置参数、空域配置参数和功率配置参数。
其中,上述频域配置参数可以包括第一信号的频域跨度(pattern)。若是均匀梳状分布,则应包含对应资源单元(Resource Element,RE)的起始索引、间隔等信息;若是非均匀分布,则应包含所有RE索引信息等。
上述时域配置参数可以包括第一信号的时域pattern。若是均匀梳状分布,则应包含对应RE的起始索引、间隔等信息;若是非均匀分布,则应包含所有RE索引信息。上述时域配置参数还可以包括第一信号的burst周期以及burst数、第一信号burst持续时间、第一信号内信号burst内信号时域间隔。
上述空域配置参数可以包括用于感知的天线端口索引、天线索引、天线间距和天线数等。
上述功率配置参数可以包括最小发射功率、平均发射功率和最大峰均功率比等。
可选地,在一些实施例中,上述感知参数配置信息至少满足以下至少一项:
频域配置参数需要满足感知业务或通感业务的时延(距离)感知性能要求,和/或保证能够在频域上提供足够数量、满足目标服务质量需求的CSI(或接收信号)测量样本;
时域配置参数需要满足感知业务或通感业务的多普勒感知性能要求,和/或能够保证提供在时域上提供足够数量、满足感知目标服务质量需求的CSI(或接收信号)测量样本,和/或保证每个扫描波束上能够完成预设次数的感知测量量测量;
空域配置参数需要满足感知业务或通感业务的波束宽度要求。
功率配置参数需要满足感知业务或通感业务的SNR要求。
可选地,在一些实施例中,在所述第一感知设备使用第一信号执行波束扫描未获得满足所述目标服务质量需求的目标波束的情况下,所述方法还包括:
所述第一感知设备根据所述波束扫描输出提醒信息,所述提醒信息用于提示改变感知目标相对于所述第一感知设备的角度。
本申请实施例中,核心网设备或者gNB与UE配合,指示UE改变自身朝向/位置。在一些实施例中,所述提醒信息包括感知目标相对于所述第一感知设备的角度调整信息,所述角度调整信息基于所述第一感知设备的最优通信波束确定。
例如,在一些实施例中,假设UE不具有波束赋形/波束扫描能力或者能力较差(全向收发),无法通过自身波束扫描寻找最佳方向。此时UE指示用户手持UE并改变朝向(或者相对终端改变自身位置),然后向gNB指示,基于当前gNB下行/上行波束对所述第一测量量进行测量。UE根据下行/上行波束测量结果指示用户(即感知目标)选择最终朝向。
在一些实施例中,假设UE具有波束赋形/波束扫描能力,基于已知的自身最佳通信波束索引(包括上行和/或下行)。根据自身波束索引指示用户改变朝向(或者相对终端改变自身位置)。改变朝向后UE可更新波束使得更新后的波束方向与原有最佳通信波束方向大致相同,从而可以提高感知性能。
应理解,通过指示用户调整到指定的区域可以通过UE与用户交互实现。改变朝向/位置的最终结果是,使得用户(感知手势/动作执行方)落入第一区域(最佳感知区域);若通过改变朝向仍无法满足目标服务质量需求,则认为当前不具备进行感知业务或通感业务的条件。
可选地,在一些实施例中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束之前,所述方法还包括:
所述第一感知设备向目标设备发送感知能力信息,所述感知能力信息用于确定波束扫描方式;
其中,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备,所述波束扫描方式包括第一波束扫描和第二波束扫描中的至少一项;在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
可选地,在一些实施例中,所述感知能力信息包括:所述第一感知设备的波束赋形能力信息或所述第一感知设备的波束扫描能力信息。
进一步地,在一些实施例中,所述感知能力信息还包括感知配置参数信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
本申请实施例中,核心网设备和/或与感知终端关联的基站指示UE进行感知能力信息上报。可选地,UE可以将自身感知能力信息上报给关联gNB以及核心网设备。可选地,gNB也可将自身感知能力信息上报给核心网设备。
核心网设备可以根据gNB和UE的感知能力信息,确定gNB与UE之间采用下行波束扫描还是上行波束扫描,还是上下行波束扫描均采用;或者
gNB根据gNB和UE的感知能力信息,确定gNB与UE之间采用下行波束扫描还是上行波束扫描,还是上下行波束扫描均采用。
需要说明的是,当gNB与UE之间的无线信道发送变化,比如出现波束阻挡时,会导致波束失败,感知波束失败检测基于当前目标波束的测量结果确定,比如第一测量量和/或第二测量量在一段预设时间内持续低于某一个预设阈值时,判定为波束失败。在判断波束失败的情况下,可以基于以下方法中的至少一种进行波束恢复:
只有包括当前感知波束的部分波束失败,可以基于第一测量量的历史测量结果,选择其他满足目标服务质量需求的感知波束;
只有包括当前感知波束的部分波束失败,可以重新进行感知波束管理,获得当前最优感知波束;
所有感知波束都失败,但原有的最佳通信波束对可用,切换回通信波束,并触发UE输出提醒信息,以提醒改变感知目标相对于所述第一感知设备的角度的提醒信息;
所有感知波束以及原有的最佳通信波束对均失败,重新发起通信波束管理流程,优先保证通信,若仍有感知业务或通感业务需求,则触发UE输出提醒信息,以提醒改变感知目标相对于所述第一感知设备的角度的提醒信息。
进一步地,测量量到感知结果的转换节点将感知结果发送给感知需求方。其中,该转换节点可以为终端、基站或核心网设备。此外,感知业务或通感业务结束后,可以切换为通信业务,以感知业务为例,切换回通信业务的条件可以包括以下之一:
感知需求方向核心网设备发送结束感知业务请求,核心网设备通知基站和/或终端结束感知业务或者切换回通信业务;
基站的感知业务计时器达到预设等待时间,或者基站的感知业务计数器 达到最大计数值;基站通知终端以及核心网设备结束感感知业务或者切换回通信业务;
终端的感知业务计时器达到预设等待时间,或者终端的感知业务计数器达到最大计数值。终端通知基站以及核心网设备结束感知业务或者切换回通信业务。
可选地,若切换回通信业务,则基站与终端可根据之前存储的最佳通信波束对索引切换回最佳通信波束对;可选地,若原有的最佳通信波束对由于信道变化无法满足通信QoS需求,则可重新进行通信波束管理过程。
为了更好的理解本申请,以下通过一些具体实例进行说明。
实施例一:提升手机终端手势识别性能。
如图6所示,假设网络中的一个UE需要进行手势识别业务(此时感知终端是具备感知功能的手机)。感知业务请求发起后,网络可通过本申请提供的上述方法确定gNB和UE之间的最佳波束对,使得用户落入上述第一区域。具体可以通过下行和上行波束扫描和测量,也可以通过下行(或上行)波束扫描和测量,结合波束一致性实现。一般来说,基站天线数较多,因此能够形成较窄的扫描波束。基站在波束扫描过程中,在每个波束上会驻留一定时间,以完成波束测量。最佳波束对基于所述第一测量量结合第二测量量共同确定。假设下行波束扫描和测量,在波束测量过程的波束驻留时间内,gNB使用当前波束重复发送多次所述第一信号。在波束测量过程中,第一测量量由用户动作导致,但不一定是由用户在感知业务中要进行的手势动作导致。例如,波束测量过程中手机应用软件指示用户采用某种固定手势,比如指示用户在距离手机适当距离的空间中连续画“∞”,而后续实际感知业务则是在空间中书写***数字,手机感知手势并识别书写的数字;波束测量过程中用户也可以不做固定手势,手机通过接收由用户人体反射的第一信号,对用户的呼吸或者心跳进行测量,得到波束测量的第一测量量结果,该结果也能反映当前波束对的感知性能,帮助实现最佳波束对的确定。
可选地,gNB依次扫描和测量不同方向波束。对于gNB的波束1来说,方向正对UE,是纯通信业务时的基站侧最佳上行/下行波束,然而由于gNB-UE-用户的相对位置关系,此时用户所处区域并非是UE的最佳感知区 域;对于波束2来说,此时用户处于镜像gNB 2与UE之间,处于镜像gNB 2-UE的菲涅尔区之内,感知性能最差;对于波束3来说,UE处在镜像gNB 1-UE对应的最佳感知区域(即第一区域)内,此时感知性能最好。
进行手势识别感知业务时,手机可以基于下行CSI时间序列或者接收信号的时间序列,结合应用服务器数据库中预先采集的手势数据集,通过使用模式识别或者机器学习的相关算法,实现用户手势识别。
实施例二:综合第一测量量与第二测量量确定最佳波束对。
如图7所示,假设网络中的一个UE需要进行呼吸+心跳感知业务(比如感知终端是具备感知功能的手机)。进行下行/上行波束扫描和波束测量后,可能存在多个相应第一测量量均满足感知QoS要求的候选下行发送和/或上行接收波束。例如,图中的波束4和波束5均能使用户落入第一区域。此时可以综合传统通信波束管理的测量量(所述第二测量量),比如RSRP测量结果来进行综合判断,确定最优下行/上行波束。图中虽然波束4的第一测量量测量结果能满足感知QoS要求,但是由于其对应的信号传播路径更长,其对应的RSRP测量结果相对波束5的RSRP测量结果较差,因此gNB侧最优下行/上行波束确定为波束5。
实施例三:基站通过感知波束管理实现某个区域内车流感知。
感知的执行方可以是UE,也可以是支持感知功能的gNB。感知业务可以是某个局部区域内的人流/车流监控(感知当前区域路段人流/车流拥堵情况,例如是否拥堵、拥堵等级),或者人群和车辆的行为模式识别,例如感知车辆是直行还是拐弯等等。如图8所示,这种情况属于gNB A发送第一信号,gNB B接收第一信号的感知方式。gNB A和gNB B通过本申请提供的上述方法确定最佳收发波束对,实现对gNB B周围特定区域的感知。
本申请实施例提供的感知测量方法,执行主体可以为感知测量 装置。本申请实施例中以感知测量 装置执行感知测量方法为例,说明本申请实施例提供的感知测量装置。
如图9所示,本申请实施例提供的感知测量装置900包括:
确定模块901,用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
执行模块902,用于基于所述目标波束执行感知业务或通感业务。
可选地,所述确定模块901具体用于:使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
可选地,所述确定模块901包括:
执行单元,用于执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求;
确定单元,用于在所述第一波束满足所述目标服务质量需求的情况下,将所述第一波束确定为所述目标波束;
其中,所述第一波束为用于通信的波束,且所述第一波束基于通信的波束管理获得。
可选地,所述执行单元还用于:在所述第一波束不满足所述目标服务质量需求的情况下,使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
可选地,所述执行单元具体用于:对所述第一波束进行测量,获得第一测量结果,所述第一测量结果包括与感知服务质量关联的第一测量量的测量结果;基于所述第一测量结果确定所述第一波束是否满足所述目标服务质量需求;其中,在所述第一测量结果满足目标服务质量需求的情况下,确定所述第一波束为所述目标波束。
可选地,所述执行单元具体用于:基于所述第一波束发送第二信号,所述第二信号包括专用感知信号、通感一体化信号和参考信号中的至少一种;根据第二感知设备发送的第一目标信息确定所述第一波束是否满足所述目标服务质量需求;其中,所述第一目标信息为所述第二感知设备基于所述第二信号对所述第一波束进行测量获得的第二测量结果或者基于所述第二测量结果确定所述第一波束是否满足所述目标服务质量需求的第一指示信息,所述第二测量结果包括与感知服务质量关联的第一测量量的测量结果。
可选地,所述确定模块901具体用于:使用第一信号执行第一波束扫描,获得第三测量结果;根据所述第三测量结果确定满足所述目标服务质量需求 的目标波束;其中,在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号。
可选地,所述第三测量结果满足以下至少一项:
在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第三测量结果包括第一测量量结果,或者所述第三测量结果包括第一测量量结果和第二测量量结果;
在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第三测量结果包括第一测量量结果和第二测量量结果;
其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
可选地,所述确定模块901具体用于:使用第一信号执行第二波束扫描;根据第二感知设备发送的第二目标信息确定满足所述目标服务质量需求的目标波束;其中,所述第二目标信息为所述第二感知设备基于所述第二波束扫描进行测量的第四测量结果或者基于所述第四测量结果确定满足所述目标服务质量需求的目标波束的波束信息;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
可选地,所述第四测量结果满足以下至少一项:
在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第四测量结果包括第一测量量结果,或者所述第四测量结果包括第一测量量结果和第二测量量结果;
在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第四测量结果包括第一测量量结果和第二测量量结果;
其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
可选地,所述第一测量量包括以下至少一项:
信道状态信息CSI时间序列、CSI样本数、CSI时间序列平滑均方根误差、CSI时间序列信号与干扰加噪声比、CSI时间序列自相关峰值差、CSI时间序列的周期标准差、CSI时间序列的周期方差、CSI时间序列的幅度标准差、CSI时间序列的幅度方差以及CSI时间序列可复现性评价指标。
可选地,所述感知测量装置900还包括:
获取模块,用于获取目标服务质量需求对应的感知参数配置信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
可选地,所述获取模块具体用于执行以下任一项:
基于所述目标服务质量需求确定所述感知参数配置信息;
接收目标设备基于所述目标服务质量需求发送的所述感知参数配置信息,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备。
可选地,所述感知参数配置信息包括以下至少一项:第一信号、频域配置参数、时域配置参数、空域配置参数和功率配置参数。
可选地,在使用第一信号执行波束扫描未获得满足所述目标服务质量需求的目标波束的情况下,所述感知测量装置900还包括:
输出模块,用于根据所述波束扫描输出提醒信息,所述提醒信息用于提示改变感知目标相对于所述第一感知设备的角度。
可选地,所述提醒信息包括感知目标相对于所述第一感知设备的角度调整信息,所述角度调整信息基于所述第一感知设备的最优通信波束确定。
可选地,所述感知测量装置900还包括:
发送模块,用于向目标设备发送感知能力信息,所述感知能力信息用于确定波束扫描方式;
其中,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备,所述波束扫描方式包括第一波束扫描和第二波束扫描中的至少一项;在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
可选地,所述感知能力信息包括:所述第一感知设备的波束赋形能力信息或所述第一感知设备的波束扫描能力信息。
可选地,所述感知能力信息还包括感知配置参数信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
本申请实施例中,通过确定满足目标服务质量需求的目标波束,基于所述目标波束执行感知业务或通感业务,从而可以有效保证目标服务质量需求,进而提升了感知性能。
本申请实施例中的感知测量装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的感知测量装置能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,该程序或指令被处理器1001执行时实现上述感知测量方法实施例的各个步骤,且能达到相同的技术效果,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求,通信接口用于基于所述目标波束执行感知业务。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1110逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061, 可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选的,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110 中。
其中,处理器1110,用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
射频单元1101,用于基于所述目标波束执行感知业务。
本申请实施例中,通过确定满足目标服务质量需求的目标波束,基于所述目标波束执行感知业务,从而可以有效保证目标服务质量需求,进而提升了感知性能。
可选地,所述处理器1110具体用于:使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
可选地,所述处理器1110具体用于:执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求;在所述第一波束满足所述目标服务质量需求的情况下,将所述第一波束确定为所述目标波束;其中,所述第一波束为用于通信的波束,且所述第一波束基于通信的波束管理获得。
可选地,所述处理器1110还用于:在所述第一波束不满足所述目标服务质量需求的情况下,使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
可选地,所述处理器1110具体用于:对所述第一波束进行测量,获得第一测量结果,所述第一测量结果包括与感知服务质量关联的第一测量量的测量结果;基于所述第一测量结果确定所述第一波束是否满足所述目标服务质量需求;其中,在所述第一测量结果满足目标服务质量需求的情况下,确定所述第一波束为所述目标波束。
可选地,所述处理器1110具体用于:基于所述第一波束发送第二信号,所述第二信号包括专用感知信号、通感一体化信号和参考信号中的至少一种;根据第二感知设备发送的第一目标信息确定所述第一波束是否满足所述目标服务质量需求;其中,所述第一目标信息为所述第二感知设备基于所述第二信号对所述第一波束进行测量获得的第二测量结果或者基于所述第二测量结果确定所述第一波束是否满足所述目标服务质量需求的第一指示信息,所述 第二测量结果包括与感知服务质量关联的第一测量量的测量结果。
可选地,所述处理器1110具体用于:使用第一信号执行第一波束扫描,获得第三测量结果;根据所述第三测量结果确定满足所述目标服务质量需求的目标波束;其中,在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号。
可选地,所述第三测量结果满足以下至少一项:
在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第三测量结果包括第一测量量结果,或者所述第三测量结果包括第一测量量结果和第二测量量结果;
在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第三测量结果包括第一测量量结果和第二测量量结果;
其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
可选地,所述处理器1110具体用于:使用第一信号执行第二波束扫描;根据第二感知设备发送的第二目标信息确定满足所述目标服务质量需求的目标波束;其中,所述第二目标信息为所述第二感知设备基于所述第二波束扫描进行测量的第四测量结果或者基于所述第四测量结果确定满足所述目标服务质量需求的目标波束的波束信息;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
可选地,所述第四测量结果满足以下至少一项:
在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第四测量结果包括第一测量量结果,或者所述第四测量结果包括第一测量量结果和第二测量量结果;
在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第四测量结果包括第一测量量结果和第二测量量结果;
其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
可选地,所述第一测量量包括以下至少一项:
信道状态信息CSI时间序列、CSI样本数、CSI时间序列平滑均方根误差、 CSI时间序列信号与干扰加噪声比、CSI时间序列自相关峰值差、CSI时间序列的周期标准差、CSI时间序列的周期方差、CSI时间序列的幅度标准差、CSI时间序列的幅度方差以及CSI时间序列可复现性评价指标。
可选地,所述处理器1110还用于:用于获取目标服务质量需求对应的感知参数配置信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
可选地,所述处理器1110具体用于执行以下任一项:
基于所述目标服务质量需求确定所述感知参数配置信息;
接收目标设备基于所述目标服务质量需求发送的所述感知参数配置信息,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备。
可选地,所述感知参数配置信息包括以下至少一项:第一信号、频域配置参数、时域配置参数、空域配置参数和功率配置参数。
可选地,在使用第一信号执行波束扫描未获得满足所述目标服务质量需求的目标波束的情况下,所述处理器1110还用于:根据所述波束扫描输出提醒信息,所述提醒信息用于提示改变感知目标相对于所述第一感知设备的角度。
可选地,所述提醒信息包括感知目标相对于所述第一感知设备的角度调整信息,所述角度调整信息基于所述第一感知设备的最优通信波束确定。
可选地,所述射频单元1101还用于:向目标设备发送感知能力信息,所述感知能力信息用于确定波束扫描方式;
其中,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备,所述波束扫描方式包括第一波束扫描和第二波束扫描中的至少一项;在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
可选地,所述感知能力信息包括:所述第一感知设备的波束赋形能力信息或所述第一感知设备的波束扫描能力信息。
可选地,所述感知能力信息还包括感知配置参数信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知 服务质量需求或通感服务质量需求,通信接口用于基于所述目标波束执行感知业务。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1200包括:天线1201、射频装置1202、基带装置1203、处理器1204和存储器1205。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括基带处理器。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1206,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1200还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述感知测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述感知测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种感知测量***,包括:终端及网络侧设备,所述终端可用于执行如上所述的感知测量方法的步骤,所述网络侧设备可用于执行如上所述的感知测量方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种感知测量方法,包括:
    第一感知设备确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
    所述第一感知设备基于所述目标波束执行感知业务或通感业务。
  2. 根据权利要求1所述的方法,其中,所述第一感知设备确定满足目标服务质量需求的目标波束包括:
    所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
  3. 根据权利要求1所述的方法,其中,所述第一感知设备确定满足目标服务质量需求的目标波束包括:
    所述第一感知设备执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求;
    在所述第一波束满足所述目标服务质量需求的情况下,所述第一感知设备将所述第一波束确定为所述目标波束;
    其中,所述第一波束为用于通信的波束,且所述第一波束基于通信的波束管理获得。
  4. 根据权利要求3所述的方法,其中,所述第一感知设备执行第一波束的波束测量之后,所述方法还包括:
    在所述第一波束不满足所述目标服务质量需求的情况下,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
  5. 根据权利要求3所述的方法,其中,所述第一感知设备执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求包括:
    所述第一感知设备对所述第一波束进行测量,获得第一测量结果,所述第一测量结果包括与感知服务质量关联的第一测量量的测量结果;
    所述第一感知设备基于所述第一测量结果确定所述第一波束是否满足所述目标服务质量需求;
    其中,在所述第一测量结果满足目标服务质量需求的情况下,确定所述第一波束为所述目标波束。
  6. 根据权利要求3所述的方法,其中,所述第一感知设备执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求包括:
    所述第一感知设备基于所述第一波束发送第二信号,所述第二信号包括专用感知信号、通感一体化信号和参考信号中的至少一种;
    所述第一感知设备根据第二感知设备发送的第一目标信息确定所述第一波束是否满足所述目标服务质量需求;
    其中,所述第一目标信息为所述第二感知设备基于所述第二信号对所述第一波束进行测量获得的第二测量结果或者基于所述第二测量结果确定所述第一波束是否满足所述目标服务质量需求的第一指示信息,所述第二测量结果包括与感知服务质量关联的第一测量量的测量结果。
  7. 根据权利要求2或4所述的方法,其中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束包括:
    所述第一感知设备使用第一信号执行第一波束扫描,获得第三测量结果;
    所述第一感知设备根据所述第三测量结果确定满足所述目标服务质量需求的目标波束;
    其中,在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号。
  8. 根据权利要求7所述的方法,其中,所述第三测量结果满足以下至少一项:
    在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第三测量结果包括第一测量量结果,或者所述第三测量结果包括第一测量量结果和第二测量量结果;
    在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第三测量结果包括第一测量量结果和第二测量量结果;
    其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量 为通信服务质量相关的测量量。
  9. 根据权利要求2或4所述的方法,其中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束包括:
    所述第一感知设备使用第一信号执行第二波束扫描;
    所述第一感知设备根据第二感知设备发送的第二目标信息确定满足所述目标服务质量需求的目标波束;
    其中,所述第二目标信息为所述第二感知设备基于所述第二波束扫描进行测量的第四测量结果或者基于所述第四测量结果确定满足所述目标服务质量需求的目标波束的波束信息;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
  10. 根据权利要求9所述的方法,其中,所述第四测量结果满足以下至少一项:
    在所述第一感知设备基于所述目标波束执行感知业务的情况下,所述第四测量结果包括第一测量量结果,或者所述第四测量结果包括第一测量量结果和第二测量量结果;
    在所述第一感知设备基于所述目标波束执行通感业务的情况下,所述第四测量结果包括第一测量量结果和第二测量量结果;
    其中,所述第一测量量为感知服务质量相关的测量量,所述第二测量量为通信服务质量相关的测量量。
  11. 根据权利要求8或10所述的方法,其中,所述第一测量量包括以下至少一项:
    信道状态信息CSI时间序列、CSI样本数、CSI时间序列平滑均方根误差、CSI时间序列信号与干扰加噪声比、CSI时间序列自相关峰值差、CSI时间序列的周期标准差、CSI时间序列的周期方差、CSI时间序列的幅度标准差、CSI时间序列的幅度方差以及CSI时间序列可复现性评价指标。
  12. 根据权利要求2或4所述的方法,其中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束之前,所述方法还包括:
    所述第一感知设备获取目标服务质量需求对应的感知参数配置信息,所 述感知参数配置信息用于配置所述第一信号的传输信息。
  13. 根据权利要求12所述的方法,其中,所述第一感知设备获取目标服务质量需求对应的感知参数配置信息包括以下任一项:
    所述第一感知设备基于所述目标服务质量需求确定所述感知参数配置信息;
    所述第一感知设备接收目标设备基于所述目标服务质量需求发送的所述感知参数配置信息,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备。
  14. 根据权利要求13所述的方法,其中,所述感知参数配置信息包括以下至少一项:第一信号、频域配置参数、时域配置参数、空域配置参数和功率配置参数。
  15. 根据权利要求2或4所述的方法,其中,在所述第一感知设备使用第一信号执行波束扫描未获得满足所述目标服务质量需求的目标波束的情况下,所述方法还包括:
    所述第一感知设备根据所述波束扫描输出提醒信息,所述提醒信息用于提示改变感知目标相对于所述第一感知设备的角度。
  16. 根据权利要求15所述的方法,其中,所述提醒信息包括感知目标相对于所述第一感知设备的角度调整信息,所述角度调整信息基于所述第一感知设备的最优通信波束确定。
  17. 根据权利要求2或4所述的方法,其中,所述第一感知设备使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束之前,所述方法还包括:
    所述第一感知设备向目标设备发送感知能力信息,所述感知能力信息用于确定波束扫描方式;
    其中,所述目标设备为核心网设备或者与所述第一感知设备关联的第二感知设备,所述波束扫描方式包括第一波束扫描和第二波束扫描中的至少一项;在所述第一波束扫描的过程中,由所述第一感知设备接收所述第一信号;在所述第二波束扫描的过程中,由所述第一感知设备发送所述第一信号。
  18. 根据权利要求17所述的方法,其中,所述感知能力信息包括:所述第 一感知设备的波束赋形能力信息或所述第一感知设备的波束扫描能力信息。
  19. 根据权利要求18所述的方法,其中,所述感知能力信息还包括感知配置参数信息,所述感知参数配置信息用于配置所述第一信号的传输信息。
  20. 一种感知测量装置,包括:
    确定模块,用于确定满足目标服务质量需求的目标波束,所述目标服务质量需求为感知服务质量需求或通感服务质量需求;
    执行模块,用于基于所述目标波束执行感知业务或通感业务。
  21. 根据权利要求20所述的装置,其中,所述确定模块具体用于:使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
  22. 根据权利要求20所述的装置,其中,所述确定模块包括:
    执行单元,用于执行第一波束的波束测量,确定所述第一波束是否满足所述目标服务质量需求;
    确定单元,用于在所述第一波束满足所述目标服务质量需求的情况下,将所述第一波束确定为所述目标波束;
    其中,所述第一波束为用于通信的波束,且所述第一波束基于通信的波束管理获得。
  23. 根据权利要求22所述的装置,其中,所述执行单元还用于:在所述第一波束不满足所述目标服务质量需求的情况下,使用第一信号执行波束扫描,获得满足所述目标服务质量需求的目标波束,所述第一信号包括专用感知信号、通感一体化信号和参考信号中的至少一种。
  24. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的感知测量方法的步骤。
  25. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的感知测量方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1-19任一项所述的感知测量方 法的步骤。
PCT/CN2022/140655 2021-12-24 2022-12-21 感知测量方法、装置、通信设备及可读存储介质 WO2023116756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111597770.5 2021-12-24
CN202111597770.5A CN116347464A (zh) 2021-12-24 2021-12-24 感知测量方法、装置、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023116756A1 true WO2023116756A1 (zh) 2023-06-29

Family

ID=86874997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140655 WO2023116756A1 (zh) 2021-12-24 2022-12-21 感知测量方法、装置、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116347464A (zh)
WO (1) WO2023116756A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560102A (zh) * 2022-08-01 2024-02-13 维沃移动通信有限公司 感知处理方法、装置、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331738A1 (en) * 2017-05-11 2018-11-15 Samsung Electronics Co., Ltd. Beam forming method for a transmitting antenna and a device thereof
CN113726491A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号按需发送方法和设备
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331738A1 (en) * 2017-05-11 2018-11-15 Samsung Electronics Co., Ltd. Beam forming method for a transmitting antenna and a device thereof
CN113726491A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号按需发送方法和设备
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Feature lead summary for agenda item 7.2.4.5 Physical layer procedures for sidelink", 3GPP DRAFT; R1-1907682 FEATURE LEAD SUMMARY OF PHY PROCEDURE IN NR SIDELINK, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno, USA, pages 1 - 26, XP051739971 *

Also Published As

Publication number Publication date
CN116347464A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
WO2023116753A1 (zh) 定位感知方法、装置及相关设备
WO2022105756A1 (zh) 定位方法、装置、终端设备、基站及位置管理服务器
WO2023116755A1 (zh) 定位感知方法、感知测量方法、装置、终端及网络侧设备
WO2023116754A1 (zh) 目标定位感知方法、装置、通信设备和存储介质
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
WO2023116756A1 (zh) 感知测量方法、装置、通信设备及可读存储介质
JP2024523431A (ja) 通信検知方法、装置及びネットワーク機器
CN115668792A (zh) Ue自适应波束管理方法及装置
WO2023093894A1 (zh) 感知业务实现方法、装置、网络侧设备及终端
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023231921A1 (zh) 无线感知切换方法及设备
WO2023131315A1 (zh) 无线感知方法、装置、设备及存储介质
WO2023198152A1 (zh) 感知测量方法、装置及相关设备
WO2023184096A1 (zh) 波束确定方法、装置、通信设备和存储介质
WO2024017190A1 (zh) 感知信号的路径确定方法、装置、通信设备、***及存储介质
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2023231846A1 (zh) 感知方式切换处理方法、装置、通信设备及可读存储介质
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2024027538A1 (zh) 感知处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910068

Country of ref document: EP

Kind code of ref document: A1