WO2023050808A1 - 用于汽车防撞梁的铝合金及其制备方法 - Google Patents

用于汽车防撞梁的铝合金及其制备方法 Download PDF

Info

Publication number
WO2023050808A1
WO2023050808A1 PCT/CN2022/090251 CN2022090251W WO2023050808A1 WO 2023050808 A1 WO2023050808 A1 WO 2023050808A1 CN 2022090251 W CN2022090251 W CN 2022090251W WO 2023050808 A1 WO2023050808 A1 WO 2023050808A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
temperature
preparation
unavoidable impurities
automobile anti
Prior art date
Application number
PCT/CN2022/090251
Other languages
English (en)
French (fr)
Inventor
邹尚锋
严兰芳
李永超
陈俭
陈力
Original Assignee
广东坚美铝型材厂(集团)有限公司
佛山坚美铝业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东坚美铝型材厂(集团)有限公司, 佛山坚美铝业有限公司 filed Critical 广东坚美铝型材厂(集团)有限公司
Publication of WO2023050808A1 publication Critical patent/WO2023050808A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to the technical field of aluminum alloys, in particular to an aluminum alloy used for automobile anti-collision beams and a preparation method thereof.
  • the automobile anti-collision beam is a device used to reduce the absorption of collision energy when the vehicle is collided, and is composed of a beam, an energy-absorbing box, and a mounting plate connected to the automobile.
  • the anti-collision beam can effectively absorb the collision energy, minimize the damage to the vehicle body caused by the impact force, and reduce the injury to personnel.
  • Aluminum anti-collision beams are generally made of 6082 aluminum alloy, which requires higher strength and toughness as automotive safety parts. However, the elongation of the existing 6082 materials fluctuates greatly, and some are even less than 8%, which is difficult to effectively meet the use requirements of anti-collision beams.
  • the technical problem to be solved by the present invention is to provide an aluminum alloy for automobile anti-collision beams and a preparation method thereof, which has good toughness.
  • the technical problem to be solved by the present invention is to provide a method for preparing an aluminum alloy used in an automobile anti-collision beam.
  • the present invention provides an aluminum alloy for automobile anti-collision beams, which mainly consists of the following components in mass percentage:
  • the said composition mainly consists of the following mass percentages:
  • the tensile strength of the aluminum alloy is ⁇ 330MPa
  • the yield strength is ⁇ 300MPa
  • the elongation after fracture is ⁇ 12%.
  • the present invention also discloses a method for preparing the above-mentioned aluminum alloy for automobile anti-collision beams, which includes:
  • Aging treatment is carried out on the rough billet, and it can be used as an aluminum alloy product for automobile anti-collision beams.
  • step (2) the melting temperature is 740-760° C., and the casting speed is 60-80 mm/min.
  • step (3) the homogenization treatment temperature is 540-550° C., and the homogenization treatment time is 8-10 hours.
  • step (3) after the homogenization treatment, strong wind and water mist are used to cool together, so that the cooling rate is ⁇ 250°C/h.
  • step (4) the temperature of the casting rod before extrusion is 480-500°C, the temperature of the rough billet at the extrusion exit is ⁇ 540°C, and the extrusion speed is 6-8m/min.
  • step (5) the aging temperature is 170-180°C, and the aging time is 8-12h.
  • the invention provides an aluminum alloy used for automobile anti-collision beams.
  • the tensile strength of the aluminum alloy is ⁇ 330MPa
  • the yield strength is ⁇ 300MPa
  • the elongation after fracture is ⁇ 12%.
  • the aluminum alloy of the present invention has a stable internal structure and good product toughness.
  • the invention provides an aluminum alloy used for automobile anti-collision beams, which mainly consists of the following components in mass percentage:
  • Si and Mg are the main strengthening elements, which can be combined to form magnesium-silicon compounds to optimize the mechanical properties of aluminum alloys.
  • the content of Si is 0.7-0.9wt%. When the Si content is more than 0.9wt%, the excess Si content in the alloy is too high, and it is easy to form a blocky silicon phase, destroying the continuity of the matrix, and then reducing the extrusion plasticity.
  • the Si content is 0.72wt%, 0.78wt%, 0.83wt% or 0.88wt%, but not limited thereto.
  • the content of Si is 0.8-0.9wt%.
  • the content of Mg is 0.7-0.9wt%, exemplarily 0.73wt%, 0.75wt%, 0.8wt% or 0.85wt%, but not limited thereto.
  • the content of Mg is 0.75-0.85%.
  • Mn and Cr can generate MnAl 6 and CrAl 7 in the aluminum alloy, which are dispersed in the matrix in the form of small particles, effectively pinning dislocations and subgrain boundaries, increasing the recrystallization temperature, and preventing recrystallization and/or recrystallization.
  • the growth of the grain acts as a hindrance, and at the same time it can improve the toughness of the aluminum alloy.
  • excessive addition of Mn and Cr will significantly increase the quenching sensitivity of the alloy, and when excessive, a coarse second phase containing Mn and Cr will be formed respectively, which not only weakens the precipitation strengthening effect of the magnesium-silicon compound, but also reduces the extrudability of the alloy. .
  • the Mn content is controlled to be 0.5-0.7 wt%
  • the Cr content is controlled to be ⁇ 0.1 wt%.
  • the Mn content is 0.54wt%, 0.57wt%, 0.63wt%, 0.66wt% or 0.69wt%, but not limited thereto.
  • the content of Mn is 0.6-0.7wt%
  • Ti can form TiAl 3 phase with Al, and become the non-spontaneous core during crystallization, which is used to refine the as-cast structure and improve the toughness of the material.
  • its content is ⁇ 0.1wt%.
  • the Ti content is 0.06-0.08wt%, exemplarily 0.062wt%, 0.064wt%, 0.066wt%, 0.07wt% or 0.075wt%, but not limited thereto.
  • Cu has a certain strengthening effect, but it also increases the quenching sensitivity. For this reason, control its content ⁇ 0.1wt%.
  • the content of Cu is 0.04-0.08wt%; exemplary can be 0.045wt%, 0.05wt%, 0.055wt%, 0.06wt%, 0.065wt%, 0.07wt%, 0.075wt% or 0.08wt%, But not limited to this.
  • Fe and Zn are impurity components, and Fe will reduce the plasticity of the aluminum alloy and weaken the extrusion performance.
  • Fe content ⁇ 0.35wt%
  • Zn content ⁇ 0.1wt%.
  • the content of Fe is 0.1-0.2wt%, exemplarily 0.12wt%, 0.14wt%, 0.16wt%, 0.18wt% or 0.19wt%, but not limited thereto.
  • the preparation method of the aluminum alloy used in the automobile anti-collision beam in the present invention includes the following steps :
  • the raw materials in the present invention include but are not limited to: returned materials, pure aluminum ingots, Al-20%Mn master alloys, Al-20%Cr master alloys, Al-50%Cu master alloys, high-purity magnesium, high-purity silicon, Aluminum titanium boron wire (it is enough to control the content of Fe in each raw material, generally there is no need to specifically add Fe element, unless it is necessary to add Fe properly).
  • S2 includes:
  • the smelting temperature is controlled at 740-760°C, and full stirring is carried out during the smelting process to ensure that the metal in the furnace is completely melted and the composition is uniform.
  • the melting temperature is 742°C, 744°C, 747°C, 750°C, 755°C or 758°C, but not limited thereto.
  • the refining temperature is 740-760° C.
  • high-purity argon gas is introduced during the refining process; after refining, it is left to stand for 0.5-1 hour.
  • the casting speed should be controlled within the range of 60-80m/min.
  • the casting speed is 61 m/min, 63 m/min, 65 m/min, 67 m/min, 70 m/min, 73 m/min, 75 m/min or 79 m/min, but not limited thereto.
  • the cooling intensity should be increased during casting to reduce or eliminate intragranular segregation, and the cooling water volume should be controlled at 260-280m 3 /h.
  • the plasticity of the as-cast structure is poor, and the extrudability is poor.
  • the cast rod In order to improve the extrudability of the cast rod, the cast rod must be homogenized.
  • the purpose of homogenization is to reduce or eliminate the intragranular segregation caused by rapid condensation during casting through annealing, to spheroidize the needle-shaped or flaky AlFeSi compound at the grain boundary, to complete the transformation from the flaky ⁇ phase to the spherical ⁇ phase, and to eliminate the casting process. Stress, reduced deformation resistance and improved extrudability effect.
  • the homogenization temperature should be appropriately reduced and the cooling rate after homogenization should be increased.
  • the homogenization temperature is 540-550°C, exemplarily 542°C, 544°C, 546°C or 548°C, but not limited thereto.
  • Homogenization time is 8-10h, exemplarily 8.2h, 8.5h, 9h or 9.5h, but not limited thereto.
  • After homogenization use strong wind + water mist cooling (cooling rate ⁇ 250°C/h) to eliminate intragranular segregation and casting stress, and obtain a cast rod with uniform structure.
  • the heating temperature of the casting rod should be appropriately increased during extrusion, but it should not be too high, otherwise it is easy to be damaged in the profile. Rounded corners drag aluminum.
  • the temperature of the cast rod before extrusion should be controlled at 480-500°C, exemplarily 483°C, 486°C, 488°C, 450°C, 452°C, 454°C or 458°C, but not limited thereto.
  • the aluminum alloy of the present invention contains more excess silicon, its brittleness increases, and the extrusion speed is too fast, which may easily cause the profile to drag the aluminum.
  • the high content of Mn will significantly increase the quenching sensitivity of the alloy.
  • the extrusion speed is too slow, it will prolong the time for the profile to pass through the die to the entrance of the quenching zone, resulting in a large amount of high-temperature precipitation of magnesium and silicon phases.
  • the supersaturated solid solubility of the matrix causes the loss of mechanical properties. Therefore, the extrusion speed is controlled at 6-8m/min, exemplarily 6.3m/min, 6.6m/min, 6.9m/min, 7.2m/min, 7.5m/min or 7.9m/min, but not limited thereto .
  • the rough billet temperature at the extrusion outlet is ⁇ 540°C, specifically 540-550°C. This temperature is above the solid solution temperature of the magnesium-silicon compound, which can ensure that its supersaturation will not be reduced, increase the amount of dispersed precipitation of the magnesium-silicon strengthening phase during the aging process, and increase the strength.
  • the aging treatment is carried out on the rough billet, and it can be used as an aluminum alloy product for automobile anti-collision beams.
  • the aging temperature is 170-180°C. At this temperature, the solid-dissolved Mg and Si atoms can be decomposed again, and a fine and dispersed magnesium-silicon strengthening phase can be precipitated in the aluminum alloy matrix, thereby improving the mechanical properties.
  • the aging temperature is 172°C, 174°C, 176°C, 178°C or 180°C, but not limited thereto.
  • the aging time is 8-12 hours, exemplarily 8.5 hours, 9 hours, 9.5 hours, 10 hours, 10.5 hours, 11 hours or 11.5 hours, but not limited thereto.
  • the grain size rating of the aluminum alloy in the present invention has a micrograin level index ⁇ 11, a coarse grain layer grain size index ⁇ 5, and a coarse grain layer depth of 0.3-0.5 mm.
  • the present embodiment provides a kind of aluminum alloy that is used for automobile anti-collision beam, and its formula is:
  • the melting temperature is 740°C, and the casting speed is 80m/min;
  • the aging system is 170°C ⁇ 12h.
  • the present embodiment provides a kind of aluminum alloy that is used for automobile anti-collision beam, and its formula is:
  • the melting temperature is 740°C, and the casting speed is 75m/min;
  • the aging system is 180°C ⁇ 12h.
  • the present embodiment provides a kind of aluminum alloy that is used for automobile anti-collision beam, and its formula is:
  • the melting temperature is 760°C
  • the casting speed is 70m/min
  • the aging system is 180°C ⁇ 10h.
  • the present embodiment provides a kind of aluminum alloy that is used for automobile anti-collision beam, and its formula is:
  • the melting temperature is 755°C, and the casting speed is 75m/min;
  • the aging system is 175°C ⁇ 10h.
  • the present embodiment provides a kind of aluminum alloy that is used for automobile anti-collision beam, and its formula is:
  • the melting temperature is 755°C, and the casting speed is 75m/min;
  • the aging system is 175°C ⁇ 10h.
  • the present embodiment provides a kind of aluminum alloy that is used for automobile anti-collision beam, and its formula is:
  • the melting temperature is 755°C, and the casting speed is 75m/min;
  • the aging system is 180°C ⁇ 9h.
  • This comparative example provides a kind of aluminum alloy for automobile anti-collision beam, and its formula is:
  • the melting temperature is 755°C, and the casting speed is 75m/min;
  • the aging system is 175°C ⁇ 10h.
  • This comparative example provides a kind of aluminum alloy for automobile anti-collision beam, and its formula is:
  • the melting temperature is 755°C, and the casting speed is 75m/min;
  • the aging system is 175°C ⁇ 10h.
  • This comparative example provides a kind of aluminum alloy for automobile anti-collision beam, and its formula is:
  • the melting temperature is 720°C
  • the casting speed is 100m/min
  • the aging system is 175°C ⁇ 10h.
  • This comparative example provides a kind of aluminum alloy for automobile anti-collision beam, and its formula is:
  • the melting temperature is 755°C, and the casting speed is 75m/min;
  • the aging system is 160°C ⁇ 12h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本发明公开了一种用于汽车防撞梁的铝合金,其主要由以下质量百分比的成分组成:Si 0.7-0.9%,Mg 0.7-0.9%,Cu≤0.1%,Mn 0.5-0.7%,Fe≤0.35%,Zn≤0.1%,Cr≤0.1%,Ti≤0.1%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。相应的,本发明还公开了上述用于汽车防撞梁的铝合金的制备方法。实施本发明,可得到强度高、韧性强,内部组织稳定的铝合金。

Description

用于汽车防撞梁的铝合金及其制备方法 技术领域
本发明涉及铝合金技术领域,尤其涉及一种用于汽车防撞梁的铝合金及其制备方法。
背景技术
随着汽车制造进入轻量化的发展轨道,铝合金凭借质轻、比强度高、易成型和易加工等优良特性应用在汽车产品的比例越来越高。其中,汽车防撞梁是用来减轻车辆受到碰撞时吸收碰撞能量的装置,由横梁、吸能盒,连接汽车的安装板组成。当发生低速碰撞时,防撞梁能有效吸收碰撞能量,尽可能减少撞击力对车身的损害,减轻对人员伤害。
铝用防撞梁的材质一般使用6082铝合金,作为汽车安全件,要求有更高的强度和韧性。但现有的6082材料,其延伸率波动较大,有些甚至不足8%,难以有效满足防撞梁的使用需求。
发明内容
本发明所要解决的技术问题在于,提供一种用于汽车防撞梁的铝合金及其制备方法,其韧性好。
本发明还要解决的技术问题在于,提供一种用于汽车防撞梁的铝合金的制备方法。
为了解决上述技术问题,本发明提供了一种用于汽车防撞梁的铝合金,其主要由以下质量百分比的成分组成:
Si 0.7-0.9%,Mg 0.7-0.9%,Cu≤0.1%,Mn 0.5-0.7%,Fe≤0.35%,Zn≤0.1%,Cr≤0.1%,Ti≤0.1%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
作为上述技术方案的改进,所述主要由以下质量百分比的成分组成:
Si 0.8-0.9%,Mg 0.75-0.85%,Cu 0.04-0.08%,Mn 0.6-0.7%,Fe 0.1-0.2%, Zn≤0.1%,Cr≤0.05%,Ti 0.06-0.08%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
作为上述技术方案的改进,所述铝合金的抗拉强度≥330MPa,屈服强度≥300MPa,断后延伸率≥12%。
相应的,本发明还公开了一种上述的用于汽车防撞梁铝合金的制备方法,其包括:
(1)按照比例准备各种原料备用;其中,以重量百分比计的原料配方如下:
Si 0.7-0.9%,Mg 0.7-0.9%,Cu≤0.1%,Mn 0.5-0.7%,Fe≤0.35%,Zn≤0.1%,Cr≤0.1%,Ti≤0.1%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;
(4)将均质后的铸棒挤压,得到粗坯;
(5)将粗坯进行时效处理,即得用于汽车防撞梁铝合金成品。
作为上述技术方案的改进,步骤(2)中,熔炼温度为740-760℃,铸造速度为60-80mm/min。
作为上述技术方案的改进,步骤(3)中,均质处理温度为540-550℃,均质处理时间为8-10h。
作为上述技术方案的改进,步骤(3)中,均质处理后采用强风和水雾共同进行冷却,以使冷却速率≥250℃/h。
作为上述技术方案的改进,步骤(4)中,挤压前铸棒温度为480-500℃,挤压出口粗坯温度≥540℃,挤压速度为6-8m/min。
作为上述技术方案的改进,步骤(5)中,时效温度为170-180℃,时效时间为8-12h。
实施本发明,具有如下有益效果:
本发明提供了一种用于汽车防撞梁的铝合金,通过对于化学成分和工艺优化,使得铝合金的抗拉强度≥330MPa,屈服强度≥300MPa,断后延伸率≥12%。且本发明的铝合金,其内部组织稳定,产品韧性好。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合具体实施例对本发明作进一步地详细描述。
本发明提供了一种用于汽车防撞梁的铝合金,其主要由以下质量百分比的成分组成:
Si 0.7-0.9%,Mg 0.7-0.9%,Cu≤0.1%,Mn 0.5-0.7%,Fe≤0.35%,Zn≤0.1%,Cr≤0.1%,Ti≤0.1%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
其中,Si、Mg是主要的强化元素,其可结合形成镁硅化合物,优化铝合金的各项力学性能。Si的含量为0.7-0.9wt%,当Si含量>0.9wt%时,合金内过剩Si含量过高,容易形成块状硅相,破坏基体的连续性,进而降低挤压塑性。示例性的,Si含量为0.72wt%、0.78wt%、0.83wt%或0.88wt%,但不限于此。优选的,Si的含量为0.8-0.9wt%。其中,Mg的含量为0.7-0.9wt%,示例性的为0.73wt%、0.75wt%、0.8wt%或0.85wt%,但不限于此。优选的,Mg的含量为0.75-0.85%。
其中,Mn和Cr在铝合金中可生成MnAl 6和CrAl 7,其以小质点形式弥散分布在基体,有效钉轧位错和亚晶界,提高再结晶温度,对再结晶和/或再结晶晶粒的长大起阻碍作用,同时可改善铝合金的韧性。但Mn、Cr添加过多会显著增加合金的淬火敏感性,过量时还会分别形成含Mn、Cr的粗大第二相,不仅削弱镁硅化合物的沉淀强化效果,还降低合金的可挤压性。因此,将Mn含量控制为0.5-0.7wt%,Cr含量控制为≤0.1wt%。示例性的,Mn含量为0.54wt%、0.57wt%、0.63wt%、0.66wt%或0.69wt%,但不限于此。优选的,Mn的含量为0.6-0.7wt%,Cr的含量≤0.05wt%。
其中,Ti可与Al形成TiAl 3相,成为结晶时的非自发核心,用来细化铸态组织和提高材料韧性。具体的,其含量为≤0.1wt%。优选的,Ti含量为0.06-0.08wt%,示例性的为0.062wt%、0.064wt%、0.066wt%、0.07wt%或0.075wt%,但不限于此。
其中,Cu具有一定的强化作用,但也会增加淬火敏感性。为此,控制其含量≤0.1wt%。优选的,Cu的含量为0.04-0.08wt%;示例性的可为0.045wt%、0.05wt%、0.055wt%、0.06wt%、0.065wt%、0.07wt%、0.075wt%或0.08wt%,但不限于此。
其中,Fe、Zn属于杂质成分,Fe会降低铝合金塑性,弱化挤压性能。在本 发明中,Fe含量≤0.35wt%,Zn含量≤0.1wt%。优选的,Fe的含量为0.1-0.2wt%;示例性的可为0.12wt%、0.14wt%、0.16wt%、0.18wt%或0.19wt%,但不限于此。
相应的,为了有效提升本发明中用于汽车防撞梁的铝合金的各项性能,还需要结合制备方法,具体的,本发明中用于汽车防撞梁的铝合金的制备方法包括以下步骤:
S1:按照比例准备各种原料备用;
具体的,本发明中的原料包括但不限于:回炉料、纯铝锭、Al-20%Mn中间合金、Al-20%Cr中间合金、Al-50%Cu中间合金、高纯镁、高纯硅、铝钛硼丝(控制各原料中的Fe含量即可,一般无需专门添加Fe元素,除非有必要可适当添加Fe)。
S2:将原料混合熔铸后得到铝铸棒;
具体的,S2包括:
S21:将各种原料混合熔炼,得到第一合金液;
具体的,由于本发明的铝合金中含有较多的难熔金属Mn,其容易引起晶内偏析及固液区塑性降低,导致抗裂能力不足。因此,将熔炼温度控制为740-760℃,并且在熔炼过程中作充分搅拌以保证炉内金属完全熔化与成分均匀。示例性的,熔炼温度为742℃、744℃、747℃、750℃、755℃或758℃,但不限于此。
S22:将第一合金液进行精炼静置,得到第二合金液;
具体的,精炼温度740-760℃,精炼过程中通入高纯氩气;精炼后静置0.5-1h。
S23:将第二合金液进行铸造,得到铸棒;
由于Mn增大了合金的粘度,使其流动性下降,影响合金铸造性能。当铸造速度过高时,会使液穴加深,延伸至结晶槽外,容易形成中心裂纹缺陷,铸造速度过低时,容易产生表面裂纹和冷隔等缺陷。因此铸造速度应控制在60-80m/min范围内。示例性的,铸造速度为61m/min、63m/min、65m/min、67m/min、70m/min、73m/min、75m/min或79m/min,但不限于此。
此外,为了消除Mn带来的不利影响,还应在铸造时加大冷却强度,以减少或消除晶内偏析现象,冷却水量应控制为260-280m 3/h。
S3:将铸棒进行均质处理;
具体的,由本发明成分制备得到的铸棒中,铸态组织的塑性差,可挤压性 较差。为提高铸棒的可挤压性,必须对铸棒进行均质化处理。均质化目的是通过退火,减少或消除铸造时快速冷凝产生的晶内偏析,球化晶界的针状或者片状的AlFeSi化合物,完成片状β相向球状α相的转变,起到消除铸造应力,减少变形抗力和提高可挤压性的效果。具体的,为了充分发挥Mn细化晶粒和增强韧性的作用,应适当降低均质温度,并提升均质后的冷却速率。
具体的,均质温度为540-550℃,示例性的为542℃、544℃、546℃或548℃,但不限于此。均质时间为8-10h,示例性的为8.2h、8.5h、9h或9.5h,但不限于此。均质后采用强风+水雾冷却(冷却速率≥250℃/h),以消除晶内偏析及铸造应力,获得组织均匀的铸棒。
S4:将均质后的铸棒挤压,得到粗坯;
其中,由于防撞梁型材的力学性能指标高,需较多镁硅相强化,导致合金的变形抗力大,因此挤压时应适当提高铸棒加热温度,但不能过高,否则容易在型材的圆角位拖铝。具体的,挤压前铸棒温度应控制480~500℃,示例性的为483℃、486℃、488℃、450℃、452℃、454℃或458℃,但不限于此。
其中,由于本发明的铝合金中含有较多的过剩硅,导致其脆性增加,挤压速度过快容易导致型材拖铝。而含量较高的Mn会使合金的淬火敏感性显著增加,当挤压速度过慢时,会延长型材通过模具工作带至淬火区入口这段区域的时间,导致镁硅相大量高温析出,降低基体的过饱和固溶度,造成力学性能损失。因此挤压速度控制在6-8m/min,示例性的为6.3m/min、6.6m/min、6.9m/min、7.2m/min、7.5m/min或7.9m/min,但不限于此。
其中,挤压出口粗坯温度≥540℃,具体的为540~550℃。此温度在镁硅化合物的固溶温度以上,可保证不降低其过饱和度,提升时效过程中镁硅强化相的弥散析出量,提升强度。
S5:将粗坯进行时效处理,即得用于汽车防撞梁铝合金成品。
其中,时效温度为170~180℃,在该温度下可使得固溶的Mg、Si原子重新分解,在铝合金基体中沉淀出细小、弥散分布的镁硅强化相,进而提升力学性能。示例性的,时效温度为172℃、174℃、176℃、178℃或180℃,但不限于此。时效时间为8~12h,示例性的为8.5h、9h、9.5h、10h、10.5h、11h或11.5h,但不限于此。
综上,通过上述配方与工艺的综合调节,可得到抗拉强度≥330MPa,屈服 强度≥300MPa,断后延伸率≥12%的铝合金型材。此外,对本发明中铝合金进行晶粒度评级,其显微晶粒级别指数≥11级,粗晶层晶粒度级别指数≥5级,粗晶层深度为0.3~0.5mm。
下面以具体实施例进一步说明本发明:
实施例1
本实施例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.73%,Mg 0.95%,Cu 0.01%,Mn 0.55%,Fe 0.33%,Zn 0.05%,Cr 0.09%,Ti 0.06%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为740℃,铸造速度为80m/min;
(3)将铸棒进行均质处理;其中,均质温度为550℃,时间为8h;均质后采用强风+水雾冷却,冷却速度为280℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为480℃,挤压出口粗坯的温度为540℃,挤压速度为8m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为170℃×12h。
实施例2
本实施例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.88%,Mg 0.73%,Cu 0.1%,Mn 0.53%,Fe 0.25%,Zn 0.03%,Cr 0.05%,Ti 0.05%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为740℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为540℃,时间为10h;均质后采用强风+水雾冷却,冷却速度为260℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为490℃,挤压出口粗坯的温度为550℃,挤压速度为6.5m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为180℃×12h。
实施例3
本实施例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.78%,Mg 0.87%,Cu 0.05%,Mn 0.68%,Fe 0.12%,Zn 0.02%,Cr 0.02%,Ti 0.06%,不可避免杂质0.13%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为760℃,铸造速度为70m/min;
(3)将铸棒进行均质处理;其中,均质温度为550℃,时间为8.5h;均质后采用强风+水雾冷却,冷却速度为250℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为500℃,挤压出口粗坯的温度为550℃,挤压速度为8m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为180℃×10h。
实施例4
本实施例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.85%,Mg 0.79%,Cu 0.03%,Mn 0.68%,Fe 0.23%,Zn 0.01%,Cr 0.01%,Ti 0.08%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为755℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为548℃,时间为9h;均质后采用强风+水雾冷却,冷却速度为260℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为495℃,挤压出口粗坯的温度为540℃,挤压速度为7.5m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为175℃×10h。
实施例5
本实施例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.83%,Mg 0.78%,Cu 0.05%,Mn 0.66%,Fe 0.15%,Zn 0.02%,Cr 0.04%,Ti 0.07%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为755℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为548℃,时间为9h;均质后采用强风+水雾冷却,冷却速度为260℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为495℃,挤压出口粗坯的温度为540℃,挤压速度为7.5m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为175℃×10h。
实施例6
本实施例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.83%,Mg 0.78%,Cu 0.05%,Mn 0.66%,Fe 0.15%,Zn 0.02%,Cr 0.04%,Ti 0.07%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为755℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为540℃,时间为10h;均质后采用强风+水雾冷却,冷却速度为250℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为495℃,挤压出口粗坯的温度为540℃,挤压速度为8m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为180℃×9h。
对比例1
本对比例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.75%,Mg 0.9%,Cu 0.1%,Mn 0.2%,Fe 0.3%,Zn 0.1%,Cr 0.1%,Ti 0.1%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为755℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为548℃,时间为9h;均质后采用强风+水雾冷却,冷却速度为260℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为495℃,挤压出口粗坯的温度为540℃,挤压速度为7.5m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为175℃×10h。
对比例2
本对比例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.75%,Mg 1.05%,Cu 0.05%,Mn 0.8%,Fe 0.3%,Zn 0.05%,Cr 0.01%,Ti 0.03%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为755℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为548℃,时间为9h;均质后采用强风+水雾冷却,冷却速度为260℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为495℃,挤压出口粗坯的温度为540℃,挤压速度为7.5m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为175℃×10h。
对比例3
本对比例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.83%,Mg 0.78%,Cu 0.05%,Mn 0.66%,Fe 0.15%,Zn 0.02%,Cr 0.04%,Ti 0.07%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为720℃,铸造速度为100m/min;
(3)将铸棒进行均质处理;其中,均质温度为530℃,时间为12h;均质后采用强风+水雾冷却,冷却速度为200℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为495℃,挤压出口粗坯的温度为540℃,挤压速度为7.5m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为175℃×10h。
对比例4
本对比例提供一种用于汽车防撞梁的铝合金,其配方为:
Si 0.83%,Mg 0.78%,Cu 0.05%,Mn 0.66%,Fe 0.15%,Zn 0.02%,Cr 0.04%,Ti 0.07%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
其中,熔炼温度为755℃,铸造速度为75m/min;
(3)将铸棒进行均质处理;其中,均质温度为548℃,时间为9h;均质后采用强风+水雾冷却,冷却速度为260℃/h;
(4)将均质后的铸棒挤压,得到粗坯;其中,挤压前铸棒温度为460℃,挤压出口粗坯的温度为520℃,挤压速度为12m/min;
(5)将粗坯进行时效处理,即得用于汽车防撞梁的铝合金成品。
其中,时效制度为160℃×12h。
将实施例1-6、对比例1-4的铝合金做测试,结果如下:
Figure PCTCN2022090251-appb-000001
Figure PCTCN2022090251-appb-000002
以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

  1. 一种用于汽车防撞梁的铝合金,其特征在于,其主要由以下质量百分比的成分组成:
    Si 0.7-0.9%,Mg 0.7-0.9%,Cu≤0.1%,Mn 0.5-0.7%,Fe≤0.35%,Zn≤0.1%,Cr≤0.1%,Ti≤0.1%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
  2. 如权利要求1所述的用于汽车防撞梁的铝合金,其特征在于,所述主要由以下质量百分比的成分组成:
    Si 0.8-0.9%,Mg 0.75-0.85%,Cu 0.04-0.08%,Mn 0.6-0.7%,Fe 0.1-0.2%,Zn≤0.1%,Cr≤0.05%,Ti 0.06-0.08%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
  3. 如权利要求1或2所述的用于汽车防撞梁的铝合金,其特征在于,所述铝合金的抗拉强度≥330MPa,屈服强度≥300MPa,断后延伸率≥12%。
  4. 一种如权利要求1至3任一项所述的用于汽车防撞梁铝合金的制备方法,其特征在于,包括:
    (1)按照比例准备各种原料备用;其中,以重量百分比计的原料配方如下:
    Si 0.7-0.9%,Mg 0.7-0.9%,Cu≤0.1%,Mn 0.5-0.7%,Fe≤0.35%,Zn≤0.1%,Cr≤0.1%,Ti≤0.1%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%;
    (2)将原料混合熔铸后得到铸棒;
    (3)将所述铸棒进行均质处理;
    (4)将均质后的铸棒挤压,得到粗坯;
    (5)将粗坯进行时效处理,即得用于汽车防撞梁铝合金成品。
  5. 如权利要求4所述的制备方法,其特征在于,步骤(2)中,熔炼温度为740-760℃,铸造速度为60-80mm/min。
  6. 如权利要求4所述的制备方法,其特征在于,步骤(3)中,均质处理温度为540-550℃,均质处理时间为8-10h。
  7. 如权利要求4所述的制备方法,其特征在于,步骤(3)中,均质处理后采用强风和水雾共同进行冷却,以使冷却速率≥250℃/h。
  8. 如权利要求4所述的制备方法,其特征在于,步骤(4)中,挤压前铸棒温度为480-500℃,挤压出口粗坯温度≥540℃,挤压速度为6-8m/min。
  9. 如权利要求4所述的制备方法,其特征在于,步骤(5)中,时效温度为170-180℃,时效时间为8-12h。
PCT/CN2022/090251 2021-09-28 2022-04-29 用于汽车防撞梁的铝合金及其制备方法 WO2023050808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111143365.6A CN114032423A (zh) 2021-09-28 2021-09-28 用于汽车防撞梁的铝合金及其制备方法
CN202111143365.6 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023050808A1 true WO2023050808A1 (zh) 2023-04-06

Family

ID=80140278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090251 WO2023050808A1 (zh) 2021-09-28 2022-04-29 用于汽车防撞梁的铝合金及其制备方法

Country Status (2)

Country Link
CN (1) CN114032423A (zh)
WO (1) WO2023050808A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032423A (zh) * 2021-09-28 2022-02-11 广东坚美铝型材厂(集团)有限公司 用于汽车防撞梁的铝合金及其制备方法
CN116254443B (zh) * 2023-05-10 2023-07-25 钢研昊普科技有限公司 一种铝合金粉末及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304994A1 (en) * 2013-12-11 2016-10-20 CONSTELLIUM VALAIS SA (AG-Ltd) Manufacturing process for obtaining high strength extruded products made from 6xxx aluminium alloys
CN107779692A (zh) * 2017-09-28 2018-03-09 上海友升铝业有限公司 一种6082铝合金吸能盒的加工工艺
CN108165907A (zh) * 2018-02-22 2018-06-15 山东南山铝业股份有限公司 汽车碰撞吸能部件用铝型材生产工艺及生产的铝型材
CN109628860B (zh) * 2018-12-17 2020-11-10 广东坚美铝型材厂(集团)有限公司 一种高强度Al-Mg-Si铝合金及其制备方法
CN114032423A (zh) * 2021-09-28 2022-02-11 广东坚美铝型材厂(集团)有限公司 用于汽车防撞梁的铝合金及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072628B1 (en) * 2007-12-19 2017-10-18 ST Extruded Products Germany GmbH High strength crash resistant aluminium alloy
JP5366748B2 (ja) * 2009-09-30 2013-12-11 株式会社神戸製鋼所 曲げ圧壊性と耐食性に優れたアルミニウム合金押出材
CN104018038A (zh) * 2014-05-20 2014-09-03 广东豪美铝业股份有限公司 一种汽车防撞梁用铝合金及其产品制造方法
EP3312301A1 (en) * 2016-10-20 2018-04-25 Constellium Singen GmbH Thermomechanical ageing for 6xxx extrusions
CN110157961A (zh) * 2019-06-13 2019-08-23 江苏银奕达科技股份有限公司 一种高强度汽车防撞梁型材生产工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304994A1 (en) * 2013-12-11 2016-10-20 CONSTELLIUM VALAIS SA (AG-Ltd) Manufacturing process for obtaining high strength extruded products made from 6xxx aluminium alloys
CN107779692A (zh) * 2017-09-28 2018-03-09 上海友升铝业有限公司 一种6082铝合金吸能盒的加工工艺
CN108165907A (zh) * 2018-02-22 2018-06-15 山东南山铝业股份有限公司 汽车碰撞吸能部件用铝型材生产工艺及生产的铝型材
CN109628860B (zh) * 2018-12-17 2020-11-10 广东坚美铝型材厂(集团)有限公司 一种高强度Al-Mg-Si铝合金及其制备方法
CN114032423A (zh) * 2021-09-28 2022-02-11 广东坚美铝型材厂(集团)有限公司 用于汽车防撞梁的铝合金及其制备方法

Also Published As

Publication number Publication date
CN114032423A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2020113713A1 (zh) 一种高强韧铸造铝硅合金及其制备方法和应用
CN111560546B (zh) 一种高压溃性能的铝合金及其型材制备方法
CN109778027B (zh) 一种高强度a356合金的制备方法
WO2023050808A1 (zh) 用于汽车防撞梁的铝合金及其制备方法
WO2021184827A1 (zh) 一种再生变形铝合金熔体的复合处理方法
CN114438377A (zh) 一种新能源汽车用高强韧压铸铝合金及其制备方法
WO2024021367A1 (zh) 一种铸造Al-Si合金及其制备方法
CN104611617B (zh) 一种液态模锻Al-Cu-Zn铝合金及其制备方法
CN115044810B (zh) 一种铝合金及其制备方法、汽车用材料
WO2022228548A1 (zh) 一种铝合金建筑模板及其制备方法
CN111440974B (zh) 一种高强度铝合金及其制造方法
CN115044809B (zh) 铸造铝硅合金及其制备方法和航空或汽车铸件用铝硅合金
CN115852217A (zh) 一种高强度易挤压铝合金及其型材挤压方法
CN113684408B (zh) 一种高强韧铸造镁合金及其制备方法
CN115109974A (zh) 一种具有超高强度和良好塑性的Al-Cu-Li-Zr-Ce-Sc合金板材及制备方法
CN114875282A (zh) 一种高强度铝合金单丝材料及其制备方法和应用
CN112159917A (zh) 一种大规格高纯均质细晶铝合金铸锭及铸造方法
CN115948683A (zh) 一种高强度高塑性挤压铝合金及其制备方法
CN113278831B (zh) 一种废杂铝制备再生adc12铝合金的方法
CN110284035B (zh) 一种耐热镁合金及其制备方法
CN115198151B (zh) 一种汽车用铝合金及其制备方法
CN114836663B (zh) 一种高强度铸造镁合金及其制备方法
CN115029588B (zh) 一种非热处理高强韧压铸铝合金及其制备方法
CN117701957A (zh) 一种高导电率高强度铝合金单丝材料及其制备方法
CN114182145A (zh) 一种稀土强化型铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE