WO2023047594A1 - フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法 - Google Patents

フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2023047594A1
WO2023047594A1 PCT/JP2021/035421 JP2021035421W WO2023047594A1 WO 2023047594 A1 WO2023047594 A1 WO 2023047594A1 JP 2021035421 W JP2021035421 W JP 2021035421W WO 2023047594 A1 WO2023047594 A1 WO 2023047594A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
semiconductor element
semiconductor
dicing
Prior art date
Application number
PCT/JP2021/035421
Other languages
English (en)
French (fr)
Inventor
和弘 山本
強 田澤
知世 金子
利泰 秋吉
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2021/035421 priority Critical patent/WO2023047594A1/ja
Priority to PCT/JP2022/035193 priority patent/WO2023048188A1/ja
Priority to JP2023549725A priority patent/JPWO2023048188A1/ja
Priority to CN202280062217.8A priority patent/CN117999641A/zh
Priority to TW111136098A priority patent/TW202323489A/zh
Publication of WO2023047594A1 publication Critical patent/WO2023047594A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present disclosure relates to a film adhesive, a dicing/die bonding integrated film, a semiconductor device, and a method for manufacturing the same.
  • laminated MCPs Multi Chip Packages
  • semiconductor elements semiconductor elements (semiconductor chips) are stacked in multiple layers
  • speeding up, high-density, high-integration, etc. of semiconductor packages are being promoted.
  • semiconductor wafers are becoming thinner, and problems such as wafer cracking during processing are likely to occur, which may cause a problem of yield reduction. Therefore, as the thickness of semiconductor wafers becomes thinner (for example, 50 ⁇ m or less), there is a shift from conventional physical grinding methods to new processing methods.
  • Patent Documents 1 and 2 a method of irradiating laser light inside a semiconductor wafer on a line to cut to form a modified region and then cutting the semiconductor wafer by expanding the outer peripheral portion has been proposed in recent years ( For example, Patent Documents 1 and 2). This method is called stealth dicing. With the development of new processing methods, it is necessary to develop compatible semiconductor materials. As such a semiconductor material, a dicing/die-bonding integrated film having both the performance of a dicing tape and a die-bonding film has been reported (for example, Patent Documents 3 and 4).
  • cooling expansion expansion under cooling conditions
  • a conventional dicing/die-bonding integrated film is applied to cooling expansion
  • the adhesive layer made of the film-like adhesive may not be cut.
  • the film-like adhesive used is required to be thin (for example, 20 ⁇ m or less in thickness).
  • the thickness of the conventional film adhesive is reduced, the die shear strength may not be ensured, and there is still room for improvement.
  • the main object of the present disclosure is to provide a film-like adhesive that is excellent in splittability by cooling expansion and has sufficient die shear strength when thinned.
  • the film adhesive contains a thermosetting resin, a curing agent, an elastomer, and an inorganic filler having an average particle size of 400 nm or less.
  • the content of the inorganic filler is 18-40% by mass based on the total amount of the film adhesive.
  • the content of the inorganic filler is 18% by mass or more based on the total amount of the film adhesive, the splitting property of the film adhesive by cooling expansion tends to be excellent.
  • the content of the inorganic filler is 40% by mass or less based on the total amount of the film adhesive, the film adhesive tends to have sufficient die shear strength when thinned.
  • the thickness of the film adhesive may be 20 ⁇ m or less.
  • the film-like adhesive may be used in the manufacturing process of a semiconductor device in which multiple semiconductor elements are laminated.
  • the semiconductor device may be a stacked MCP (Multi Chip Package) in which semiconductor elements (semiconductor chips) are stacked in multiple stages, or may be a three-dimensional NAND memory.
  • the dicing/die-bonding integrated film includes a substrate layer, an adhesive layer, and an adhesive layer made of the film-like adhesive in this order.
  • the semiconductor device includes a semiconductor element, a support member on which the semiconductor element is mounted, and an adhesive member provided between the semiconductor element and the support member to bond the semiconductor element and the support member.
  • the adhesive member is a cured product of the film adhesive described above.
  • the semiconductor device may further include another semiconductor element laminated on the surface of the semiconductor element.
  • Another aspect of the present disclosure relates to a method of manufacturing a semiconductor device.
  • the film-like adhesive is interposed between the semiconductor element and the supporting member or between the first semiconductor element and the second semiconductor element, and the semiconductor element and the A step of adhering the support member or the first semiconductor element and the second semiconductor element is provided.
  • Another aspect of the method for manufacturing the semiconductor device includes the steps of: attaching a semiconductor wafer to the adhesive layer of the dicing/die bonding integrated film; dicing the semiconductor wafer to which the adhesive layer is attached; forming a plurality of individualized semiconductor elements with adhesive pieces by expanding the material layer under cooling conditions; picking up the semiconductor elements with adhesive pieces from the adhesive layer; and removing the semiconductor elements with adhesive pieces. and gluing to the support member via adhesive strips.
  • the method of manufacturing a semiconductor device may further comprise a step of adhering, via an adhesive piece, another semiconductor element with an adhesive piece to the surface of the semiconductor element adhered to the support member.
  • a film-like adhesive that is excellent in splittability by cooling expansion and has sufficient die shear strength when thinned.
  • a dicing/die-bonding integrated film using such a film-like adhesive, a semiconductor device, and a method for manufacturing the same are provided. Further, according to the present disclosure, there is provided a method of manufacturing a semiconductor device using such a dicing/die bonding integrated film.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a film adhesive.
  • FIG. 2 is a perspective view schematically showing a sample fixed to a jig in a breaking test.
  • FIG. 3 is a cross-sectional view schematically showing a state in which a load is applied to a sample by a pressing jig in a breaking test.
  • FIG. 4 is a graph schematically showing an example of the results of the breaking test.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of a dicing/die bonding integrated film.
  • FIG. 6 is a schematic cross-sectional view showing one embodiment of a semiconductor device.
  • FIG. 7 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • the numerical range indicated using “to” indicates the range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • (meth)acrylate means acrylate or its corresponding methacrylate.
  • the film adhesive comprises a thermosetting resin (hereinafter sometimes referred to as "(A) component”), a curing agent (hereinafter sometimes referred to as “(B) component”), and an elastomer (hereinafter sometimes referred to as “(B) component”). and an inorganic filler having an average particle diameter of 400 nm or less (hereinafter sometimes referred to as "(D) component”).
  • the film adhesive contains a coupling agent (hereinafter sometimes referred to as "(E) component”), curing An accelerator (hereinafter sometimes referred to as “component (F)”) and other components may be further contained.
  • the film-like adhesive comprises (A) component, (B) component, (C) component, and (D) component, and other components added as necessary ((E) component, (F) component, other component, etc.) can be obtained by forming the adhesive composition into a film.
  • the film-like adhesive adheresive composition
  • the film-like adhesive may be in a semi-cured (B-stage) state and can be in a fully-cured (C-stage) state after curing treatment.
  • Thermosetting resin Component (A) may contain an epoxy resin, or may consist of one or more epoxy resins, from the viewpoint of adhesiveness.
  • Epoxy resins can be used without any particular restrictions as long as they have an epoxy group in the molecule.
  • Examples of epoxy resins include bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; phenol novolak type epoxy resin; cresol novolak type epoxy resin; bisphenol A novolac type epoxy resin; ; stilbene type epoxy resin; triazine skeleton-containing epoxy resin; fluorene skeleton-containing epoxy resin; triphenolmethane type epoxy resin; biphenyl type epoxy resin; xylylene type epoxy resin; and polycyclic aromatic diglycidyl ether compounds such as anthracene. You may use these individually by 1 type or in combination of 2 or more types.
  • the epoxy resin may contain a cresol novolak type epoxy resin or a fluorene skeleton-containing epoxy resin from the viewpoint of film tackiness, flexibility, and the like.
  • the epoxy equivalent of the epoxy resin is not particularly limited, but may be 90-300 g/eq, 110-290 g/eq, or 130-280 g/eq. When the epoxy equivalent of the epoxy resin is in such a range, better reactivity and fluidity tend to be obtained.
  • the content of component (A) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, based on the total mass of the film adhesive, and may be 30% by mass or less, 20% by mass or less, Or it may be 15% by mass or less.
  • the content of component (A) is in this range, the elastic modulus after curing tends to be more excellent.
  • the flexibility before curing tends to be more excellent.
  • component (B) Component: Curing Agent Any commonly used curing agent for component (A) can be used.
  • component (A) contains an epoxy resin (consisting of one or more epoxy resins)
  • component (B) includes, for example, phenolic resins, ester compounds, aromatic amines, aliphatic amines, acid anhydrides. etc.
  • the component (B) may contain a phenolic resin, or may consist of one or more phenolic resins.
  • Phenolic resins include phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and/or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehydes such as formaldehyde. It can be a polycondensation product with Polycondensation is usually carried out in the presence of a catalyst such as an acid or a base. A phenolic resin obtained when an acid catalyst is used is particularly called a novolak-type phenolic resin.
  • novolac-type phenolic resins examples include phenol/formaldehyde novolac resin, cresol/formaldehyde novolac resin, xylenol/formaldehyde novolac resin, resorcinol/formaldehyde novolac resin, phenol-naphthol/formaldehyde novolac resin, and the like.
  • Phenol resins include, for example, phenols and/or naphthols such as allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolac, phenol, and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. Synthesized phenol aralkyl resins, naphthol aralkyl resins, biphenyl aralkyl type phenol resins, phenyl aralkyl type phenol resins and the like are also included.
  • the hydroxyl equivalent of the phenolic resin may be 80-300 g/eq, 90-280 g/eq, or 100-250 g/eq.
  • the storage elastic modulus tends to be further improved, and when it is 300 g/eq or less, it becomes possible to prevent problems due to the generation of foaming, outgassing, and the like.
  • the softening point of the phenolic resin may be 50-140°C, 55-130°C, or 60-120°C.
  • the softening point means a value measured by the ring and ball method according to JIS K7234.
  • the content of component (B) may be 1% by mass or more, 2% by mass or more, or 3% by mass or more, based on the total mass of the film adhesive, and may be 20% by mass or less, 15% by mass or less, Alternatively, it may be 10% by mass or less.
  • the ratio of the epoxy equivalent of the epoxy resin to the hydroxyl equivalent of the phenolic resin is From the viewpoint of curability, 0.30/0.70 to 0.70/0.30, 0.35/0.65 to 0.65/0.35, 0.40/0.60 to 0.60/ 0.40, or 0.45/0.55 to 0.55/0.45.
  • the corresponding weight ratio is 0.30/0.70 or more (the epoxy equivalent of the epoxy resin is 0.30 or more)
  • more sufficient curability tends to be obtained.
  • the corresponding weight ratio is 0.70/0.30 or less (the epoxy equivalent of the epoxy resin is 0.70 or less) it is possible to prevent the viscosity from becoming too high and obtain more sufficient fluidity. can be done.
  • the total content of components (A) and (B) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more based on the total mass of the film adhesive. When the total content of component (A) and component (B) is in this range, the adhesiveness tends to be further improved.
  • the total content of components (A) and (B) is 40% by mass or less, 30% by mass or less, or 20% by mass or less based on the total mass of the film adhesive, from the viewpoint of handleability. you can
  • component (C) Elastomer
  • component (C) include acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, and butadiene resins; modified products of these resins. You may use these individually by 1 type or in combination of 2 or more types.
  • the component (C) is derived from a (meth)acrylic ester because it has few ionic impurities and is excellent in heat resistance, it is easy to ensure the connection reliability of a semiconductor device, and it is excellent in fluidity. It may be an acrylic resin (acrylic rubber) having structural units as a main component.
  • the content of structural units derived from (meth)acrylic acid ester in component (C) may be, for example, 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of structural units.
  • the acrylic resin (acrylic rubber) may contain structural units derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, or a carboxyl group.
  • the glass transition temperature (Tg) of component (C) may be -50 to 50°C or -30 to 30°C.
  • Tg of component (C) is -50°C or higher, it tends to be possible to prevent the flexibility of the adhesive composition from becoming too high. This makes it easier to cut the film-like adhesive during wafer dicing, making it possible to prevent the occurrence of burrs.
  • Tg of the component (C) is 50° C. or less, it tends to be possible to suppress a decrease in the flexibility of the film-like adhesive. This tends to make it easier to sufficiently fill voids when the film-like adhesive is attached to the semiconductor wafer. Also, it is possible to prevent chipping during dicing due to deterioration of adhesion of the semiconductor wafer.
  • the glass transition temperature (Tg) means a value measured using a DSC (differential scanning calorimeter) (for example, "Thermo Plus 2" manufactured by Rigaku Corporation).
  • the Tg of the component (C) is the type and content of structural units that constitute the component (C) (structural units derived from (meth)acrylic acid esters when the component (C) is an acrylic resin (acrylic rubber)). can be adjusted to a desired range by adjusting .
  • the weight average molecular weight (Mw) of component (C) may be 100,000 to 3,000,000 or 200,000 to 1,000,000.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • component (C) Commercially available products of component (C) include SG-70L, SG-708-6, WS-023 EK30, SG-P3, SG-280 EK23, SG-80H, HTR-860P, HTR-860P-3, HTR- 860P-3CSP, HTR-860P-3CSP-3DB, HTR-860P-30B (all manufactured by Nagase ChemteX Corporation) and the like.
  • the content of component (C) may be 40% by mass or more, 45% by mass or more, or 50% by mass or more based on the total mass of the film adhesive. When the content of the component (C) is in such a range, it tends to be more excellent in thin film coatability.
  • the content of component (C) may be 80% by mass or less, 75% by mass or less, or 70% by mass or less based on the total mass of the film adhesive. When the content of component (C) is in this range, the content of components (A) and (B) can be sufficiently ensured, and other properties tend to be compatible.
  • inorganic filler having an average particle size of 400 nm or less
  • inorganic fillers as component (D) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, Calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, silica and the like. These may be used singly or in combination of two or more as long as the average particle diameter is 400 nm or less.
  • the inorganic filler may be silica from the viewpoint of adjusting the melt viscosity.
  • the shape of the inorganic filler is not particularly limited, but may be spherical.
  • the average particle diameter of component (D) is 400 nm or less, and may be 350 nm or less, or 300 nm or less, from the viewpoint of thin film coatability and adhesiveness.
  • the average particle size of the inorganic filler as component (D) may be, for example, 10 nm or more, 30 nm or more, 100 nm or more, or 150 nm or more.
  • the average particle size means the average particle size determined by the dynamic light scattering method.
  • the average particle size of component (D) can also be obtained by using a film-like adhesive containing component (D). In this case, the residue obtained by heating the film adhesive to decompose the resin component is dispersed in a solvent to prepare a dispersion liquid.
  • the average particle size of component (D) can be determined.
  • Component (D) may be composed of, for example, one or more inorganic fillers having an average particle size of 400 nm or less, and one or more inorganic fillers having an average particle size of 10 to 400 nm and an average particle size of 400 nm or less.
  • the content of component (D) is 18 to 40% by mass based on the total amount of the film adhesive.
  • the content of component (D) is 18% by mass or more, and may be 20% by mass or more, 22% by mass or more, or 24% by mass or more based on the total mass of the film adhesive.
  • the content of component (D) is 40% by mass or less, and may be 38% by mass or less, 35% by mass or less, or 32% by mass or less based on the total mass of the film adhesive.
  • the film adhesive tends to have sufficient die shear strength when thinned.
  • the content of component (D) based on the total amount of the film-like adhesive can also be obtained by using a film-like adhesive containing component (D).
  • the mass of the film-like adhesive and the mass of the residue obtained by heating the film-like adhesive to decompose the resin component are determined, and the content of the component (D) can be determined from the relationship between these masses.
  • the mass of the residue obtained by heating the film adhesive to decompose the resin component may be the mass measured after the residue is washed with a solvent and dried.
  • the film adhesive may contain an inorganic filler with an average particle size of more than 400 nm in addition to the component (D).
  • an inorganic filler having an average particle size of more than 400 nm is preferred.
  • substantially does not contain means that the content of the inorganic filler having an average particle size of more than 400 nm is based on the total mass of the component (D) and the inorganic filler having an average particle size of more than 400 nm. , means that it is 5% by mass or less, 3% by mass or less, 1% by mass or less, or 0.1% by mass or less.
  • the (E) component may be a silane coupling agent.
  • Silane coupling agents include, for example, ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, and the like. be done.
  • Component (F) Curing Accelerator
  • component (F) include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. You may use these individually by 1 type or in combination of 2 or more types. Among these, imidazoles and derivatives thereof may be used as the component (F) from the viewpoint of reactivity.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. You may use these individually by 1 type or in combination of 2 or more types.
  • the film adhesive may further contain other components.
  • Other components include, for example, pigments, ion trapping agents, antioxidants, and the like.
  • the total content of component (E), component (F), and other components is 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass, based on the total mass of the film adhesive. It may be at least 20% by mass, 10% by mass or less, or 5% by mass or less.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a film adhesive.
  • the film-like adhesive 1 shown in FIG. 1 is obtained by molding an adhesive composition into a film.
  • the film-like adhesive 1 is normally in a semi-cured (B stage) state, and can be in a completely cured (C stage) state after curing.
  • the film adhesive 1 can be formed by applying an adhesive composition to a support film.
  • a varnish of an adhesive composition (adhesive varnish) may be used.
  • the components (A), (B), (C), and (D), and optionally added components are mixed or kneaded in a solvent to prepare the adhesive varnish.
  • the obtained adhesive varnish is applied to a support film, and the solvent is removed by heating and drying to obtain the film-like adhesive 1.
  • the support film is not particularly limited as long as it can withstand the heat drying described above. It's okay.
  • the support film may be a multi-layer film in which two or more types are combined, or the surface thereof may be treated with a release agent such as a silicone-based or silica-based release agent.
  • the thickness of the support film may be, for example, 10-200 ⁇ m or 20-170 ⁇ m.
  • Mixing or kneading can be carried out by using a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and combining them appropriately.
  • a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and combining them appropriately.
  • the solvent used for preparing the adhesive varnish is not limited as long as it can uniformly dissolve, knead, or disperse each component, and conventionally known solvents can be used.
  • solvents include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene and xylene.
  • the solvent may be methyl ethyl ketone or cyclohexanone from a drying speed and cost point of view.
  • a known method can be used, for example, a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method, or the like is used. be able to.
  • Heat drying is not particularly limited as long as the solvent used is sufficiently volatilized, but it can be carried out in the range of 50 to 150° C. for 1 to 30 minutes. Heat drying can be performed in stages at different heating temperatures and for different heating times.
  • the thickness of the film adhesive may be 20 ⁇ m or less, 18 ⁇ m or less, 15 ⁇ m or less, 12 ⁇ m or less, or 10 ⁇ m or less.
  • the lower limit of the thickness of the film adhesive is not particularly limited, it may be, for example, 1 ⁇ m or more.
  • the film-like adhesive produced on the support film may have a cover film on the side opposite to the support film of the film-like adhesive.
  • cover films include polyethylene films, polypropylene films, films treated with surface release agents, and the like.
  • the thickness of the cover film may be, for example, 15-200 ⁇ m or 30-170 ⁇ m.
  • a film-like adhesive can be made thinner, so it can be suitably used in the manufacturing process of a semiconductor device in which multiple semiconductor elements are laminated.
  • the semiconductor device may be a stacked MCP or a three-dimensional NAND memory.
  • the film-like adhesive 1 is a splitting property evaluation method using the results of a cleaving test performed under the following conditions (a film under low-temperature conditions (for example, a range of -15 ° C. to 0 ° C.) where cooling expansion is performed) method for evaluating splittability of adhesives), the adhesive may be a film adhesive having a breaking modulus m of 70 or less.
  • a breaking modulus m of 70 or less Width of sample: 5 mm Sample length: 23mm Relative speed between pushing jig and sample: 10 mm/min
  • the breaking test will be explained below.
  • the rupture test is classified as a bending strength test, and includes a step of pushing the central portion of the sample until the sample breaks while both ends of the sample are fixed.
  • the sample S is sandwiched and fixed between a pair of sample fixing jigs 20 and subjected to the breaking test.
  • the pair of sample fixing jigs 20 are made of, for example, cardboard having sufficient strength, and each have a rectangular opening 20a in the center.
  • a load is applied to the central portion of the fixed sample S using a pressing jig 21 (see FIG. 3).
  • the sample S may be obtained by cutting out the film-like adhesive to be evaluated, and the sample does not have to be prepared by laminating a plurality of adhesive pieces cut out from the film-like adhesive. That is, the thickness of the sample S may be the same as the thickness of the film adhesive.
  • the width of the sample S (Ws in FIG. 2) is, for example, 1 to 30 mm, and may be 3 to 8 mm. An appropriate width may be set according to the conditions of the measuring device.
  • the length of the sample S (Ls in FIG. 2) is, for example, 5-50 mm, and may be 10-30 mm or 6-9 mm. The length of the sample S depends on the size of the opening 20a of the jig 20 for fixing the sample. Note that the shape of the sample fixing jig 20 and the size of the sample S may be other than those described above as long as the fracture test can be performed.
  • the pressing jig 21 consists of a cylindrical member having a conical tip 21a.
  • the diameter (R in FIG. 3) of the pressing jig 21 is, for example, 3 to 15 mm, and may be 5 to 10 mm.
  • the angle of the tip portion 21a ( ⁇ in FIG. 3) is, for example, 40 to 120°, and may be 60 to 100°.
  • the breaking test is carried out in a constant temperature bath set at a predetermined temperature.
  • the constant temperature bath may be set at a constant temperature in the range of ⁇ 15° C. to 0° C. (expected cooling expansion temperature).
  • As the constant temperature bath for example, TLF-R3-FW-PL-S manufactured by ITEC Co., Ltd. can be used.
  • an autograph for example, AZT-CA01, load cell 50N, compression mode manufactured by A&D Co., Ltd.
  • the work at break W, the strength at break P, and the elongation at break L are obtained.
  • the relative speed between the pressing jig 21 and the sample S is, for example, 1 to 100 mm/min, and may be 5 to 20 mm/min. If this relative speed is too high, there is a tendency that sufficient data on the cleaving process cannot be obtained, and if it is too slow, the stress tends to relax, making it difficult to achieve cleaving.
  • the pushing distance of the pushing jig 21 is, for example, 1 to 50 mm, and may be 5 to 30 mm. If the pushing distance is too short, there is a tendency not to result in breakage. It is preferable to prepare a plurality of samples of the film-like adhesive to be evaluated, and to perform a cleaving test a plurality of times to confirm the stability of the test results.
  • FIG. 4 is a graph showing an example of the results of the breaking test.
  • the breaking work W is the area enclosed when a graph is created with the vertical axis representing the load and the horizontal axis representing the pressing amount until the sample S breaks.
  • the breaking strength P is the load when the sample S breaks.
  • the breaking elongation L is the elongation amount of the sample S when the sample S breaks.
  • the breaking elongation L may be calculated using a trigonometric function from the pushing distance when the sample S breaks and the width of the opening 20a of the jig 20 for fixing the sample.
  • the breaking modulus m may be 90 or less, 80 or less, 70 or less, 65 or less, or 60 or less.
  • the breaking modulus m is a parameter relating to stretchability of a film adhesive under low temperature conditions. When the breaking modulus m is 90 or less, the suitable stretchability of the film-like adhesive tends to result in sufficient breakability by cooling expansion. This tendency is more remarkable as the numerical value of the breaking modulus m becomes smaller.
  • the fracture modulus m (dimensionless) may be greater than 0 and may be 10 or more or 15 or more. When the breaking modulus m is 15 or more, the stress propagating property tends to be good.
  • a film adhesive having a breaking modulus m within such a range can be suitably used in a semiconductor device manufacturing process in which cooling expansion is performed.
  • the breaking resistance R may be more than 0 N/mm 2 and 45 N/mm 2 or less, may be 10 N/mm 2 or more or 20 N/mm 2 or more , and may be 40 N/mm 2 or less or 35 N/mm 2 or less.
  • the breaking resistance R is 45 N/mm 2 or less, the strength of the film-like adhesive does not become excessive and there is a tendency to obtain sufficient splittability.
  • the breaking resistance R is more than 0 N/mm 2 , good stress propagation occurs during cooling expansion, and there is a tendency to obtain better splitting properties. This tendency tends to become more pronounced when the breaking resistance R is 20 N/mm 2 or more.
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of a dicing/die bonding integrated film.
  • a dicing/die-bonding integrated film 10 shown in FIG. 5 includes a substrate layer 2, an adhesive layer 3, and an adhesive layer 1A made of the adhesive composition in this order.
  • the adhesive layer 1A may be the film adhesive 1.
  • the base material layer 2 and the adhesive layer 3 may be a dicing tape 4 .
  • the dicing/die-bonding integrated film may be in the form of a film, a sheet, a tape, or the like.
  • the dicing tape 4 includes a base layer 2 and an adhesive layer 3 provided on the base layer 2 .
  • the base material layer 2 examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. These substrate layers 2 may be subjected to surface treatments such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, etc., as required.
  • the adhesive layer 3 is a layer made of an adhesive.
  • the adhesive is not particularly limited as long as it has sufficient adhesive strength to prevent the semiconductor elements from scattering during dicing and has low adhesive strength to the extent that the semiconductor elements are not damaged in the subsequent step of picking up the semiconductor elements. can be used.
  • the adhesive may be either pressure sensitive or radiation curable.
  • a pressure-sensitive adhesive is an adhesive that exhibits a certain amount of adhesiveness when pressurized for a short period of time.
  • a radiation-curable pressure-sensitive adhesive is a pressure-sensitive adhesive that has the property of decreasing its adhesiveness when irradiated with radiation (for example, ultraviolet rays).
  • the radiation-curable adhesive may be, for example, an ultraviolet-curable adhesive.
  • the thickness of the dicing tape 4 may be 60 to 150 ⁇ m or 70 to 130 ⁇ m from the viewpoint of economy and film handling.
  • the dicing/die bonding integrated film 10 can be obtained, for example, by preparing a film adhesive 1 and a dicing tape 4 and bonding the film adhesive 1 and the adhesive layer 3 of the dicing tape 4 together. Further, the dicing/die-bonding integrated film 10 can be obtained, for example, by preparing the dicing tape 4 and applying an adhesive composition (adhesive varnish) to the dicing tape 4 in the same manner as in the method of forming the film adhesive 1 described above. It can also be obtained by coating on the pressure-sensitive adhesive layer 3 .
  • the dicing/die bonding integrated film 10 is applied under predetermined conditions (for example, room temperature (20° C.) or It can be formed by laminating the film adhesive 1 on the dicing tape 4 in a heated state).
  • predetermined conditions for example, room temperature (20° C.) or It can be formed by laminating the film adhesive 1 on the dicing tape 4 in a heated state.
  • the dicing/die-bonding integrated film 10 can be continuously produced and is highly efficient, so it may be formed using a roll laminator in a heated state.
  • the film-like adhesive and the dicing/die-bonding integrated film may be used in the manufacturing process of a semiconductor device, or may be used in the manufacturing process of a semiconductor device formed by laminating a plurality of semiconductor elements. good.
  • a film-like adhesive is also suitably used as an adhesive for adhering a semiconductor element and a supporting member on which the semiconductor element is mounted.
  • the film-like adhesive is also suitably used as an adhesive for bonding semiconductor elements in a laminated MCP (for example, a three-dimensional NAND memory), which is a semiconductor device formed by laminating a plurality of semiconductor elements. .
  • a laminated MCP for example, a three-dimensional NAND memory
  • the film adhesive is, for example, a protective sheet for protecting the back surface of the semiconductor element of the flip chip type semiconductor device, or a sealing sheet for sealing between the surface of the semiconductor element of the flip chip type semiconductor device and the adherend. etc. can also be used.
  • a semiconductor device manufactured using a film-like adhesive and a dicing/die-bonding integrated film will be specifically described below with reference to the drawings.
  • semiconductor devices with various structures have been proposed, and the application of the film-like adhesive and dicing/die bonding integrated film of the present embodiment is not limited to the semiconductor devices having the structures described below. do not have.
  • FIG. 6 is a schematic cross-sectional view showing one embodiment of a semiconductor device.
  • a semiconductor device 100 shown in FIG. 6 includes a semiconductor element 11 , a support member 12 on which the semiconductor element 11 is mounted, and an adhesive member 15 .
  • the adhesive member 15 is provided between the semiconductor element 11 and the support member 12 and bonds the semiconductor element 11 and the support member 12 together.
  • the adhesive member 15 is a cured product of an adhesive composition (cured film adhesive). Connection terminals (not shown) of the semiconductor element 11 are electrically connected to external connection terminals (not shown) via wires 13 and sealed with a sealing material 14 .
  • FIG. 7 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • the first semiconductor element 11a is a support member 12 having terminals 16 formed by an adhesive member 15a (cured product of adhesive composition (cured product of film adhesive)).
  • the semiconductor element 11b in the second stage is further bonded onto the semiconductor element 11a in the first stage with an adhesive member 15b (cured product of adhesive composition (cured product of film-like adhesive)).
  • Connection terminals (not shown) of the first-stage semiconductor element 11 a and the second-stage semiconductor element 11 b are electrically connected to external connection terminals via wires 13 and sealed with a sealing material 14 .
  • the semiconductor device 110 shown in FIG. 7 further includes another semiconductor element (11b) laminated on the surface of the semiconductor element (11a) in the semiconductor device 100 shown in FIG.
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of a semiconductor device.
  • a semiconductor device 120 shown in FIG. 8 includes a support member 12 and semiconductor elements 11 a, 11 b, 11 c, and 11 d stacked on the support member 12 .
  • the four semiconductor elements 11a, 11b, 11c, and 11d are offset from each other in the lateral direction (direction perpendicular to the stacking direction) for connection with connection terminals (not shown) formed on the surface of the support member 12. position (see FIG. 8).
  • the semiconductor element 11a is adhered to the support member 12 by an adhesive member 15a (cured product of adhesive composition (cured product of film adhesive)).
  • Adhesive members 15b, 15c, and 15d are interposed, respectively. It can be said that the semiconductor device 120 shown in FIG. 8 further includes other semiconductor elements (11b, 11c, 11d) laminated on the surface of the semiconductor element (11a) in the semiconductor device 100 shown in FIG. .
  • FIG. 8 illustrates a semiconductor device in which four semiconductor elements are stacked, but the number of stacked semiconductor elements is not limited to this.
  • FIG. 8 illustrates the semiconductor device in which the semiconductor elements are stacked at positions shifted in the lateral direction (direction orthogonal to the stacking direction), the semiconductor elements direction) may be stacked at positions that are not shifted from each other.
  • the semiconductor device (semiconductor package) shown in FIGS. 6, 7, and 8 is provided between the semiconductor element and the supporting member, or between the semiconductor element (first semiconductor element) and the semiconductor element (second semiconductor element). By interposing the film adhesive between and bonding the semiconductor element and the supporting member, or the semiconductor element (first semiconductor element) and the semiconductor element (second semiconductor element). be able to.
  • a method for interposing a film-like adhesive between the semiconductor element and the support member or between the semiconductor element (first semiconductor element) and the semiconductor element (second semiconductor element), as described later A method may be employed in which a semiconductor element with an adhesive piece is prepared in advance and then attached to a supporting member or a semiconductor element.
  • the method of manufacturing a semiconductor device using the dicing/die-bonding integrated film is not limited to the method of manufacturing a semiconductor device described below.
  • a semiconductor device includes, for example, a step of attaching a semiconductor wafer to the adhesive layer of the dicing/die bonding integrated film (laminating step), and a step of dicing the semiconductor wafer to which the adhesive layer is attached (dicing step). , a step of producing a plurality of individualized semiconductor elements with adhesive pieces by expanding the base material layer under cooling conditions (cooling expansion step), and a step of picking up the semiconductor elements with adhesive pieces from the adhesive layer ( picking up step) and a step of adhering the picked up semiconductor element with an adhesive piece to a support member via the adhesive piece (first adhesion step).
  • the method of manufacturing a semiconductor device may further include a step of bonding another semiconductor element with adhesive piece to the surface of the semiconductor element bonded to the support member via the adhesive piece (second bonding step). .
  • the lamination step is a step of pressing a semiconductor wafer onto the adhesive layer 1A of the dicing/die bonding integrated film 10, holding it by adhesion, and attaching it. This step may be performed while pressing with a pressing means such as a pressing roll.
  • a pressing means such as a pressing roll.
  • the semiconductor wafer the same semiconductor wafer as described above can be exemplified.
  • semiconductor wafers include monocrystalline silicon, polycrystalline silicon, various ceramics, and compound semiconductors such as gallium arsenide.
  • a dicing process is a process of dicing a semiconductor wafer. Dicing can be performed, for example, from the circuit surface side of the semiconductor wafer according to a conventional method.
  • a method called half-cut in which a half cut is made in the semiconductor wafer a method in which a modified region is formed and divided by a laser (stealth dicing), or the like can be employed.
  • Stealth dicing is preferably adopted for the adhesive layer of the dicing/die-bonding integrated film as described above because it is excellent in splitting property by cooling expansion.
  • the dicing device used in this step is not particularly limited, and conventionally known devices can be used.
  • the cooling expansion step is a step of expanding the base material layer under cooling conditions. As a result, a plurality of individualized semiconductor devices with adhesive pieces can be obtained.
  • the expansion conditions under the cooling conditions can be arbitrarily set, but for example, the cooling temperature is ⁇ 30 to 5° C., the cooling time is 30 seconds to 5 minutes, the thrust amount is 5 to 20 mm, and the thrust speed is 50 to 300 mm/second. can do.
  • Examples of semiconductor elements include ICs (integrated circuits).
  • Examples of supporting members include lead frames such as 42 alloy lead frames and copper lead frames; plastic films such as polyimide resin and epoxy resin; glass non-woven fabrics and other substrates impregnated with plastics such as polyimide resin and epoxy resin and cured. modified plastic film; ceramics such as alumina;
  • the pick-up step is a step of picking up semiconductor elements with adhesive pieces while separating the semiconductor elements with adhesive pieces from each other in order to separate the semiconductor elements with adhesive pieces adhesively fixed to the dicing/die bonding integrated film.
  • the method of expanding for separating the semiconductor elements with adhesive strips is not particularly limited, and various conventionally known methods can be employed. As a method for separating the semiconductor elements with adhesive strips, for example, a method of expanding the base material layer can be mentioned. The expansion may optionally be expansion under chilled conditions.
  • the pickup method is not particularly limited, and conventionally known various methods can be employed. Examples of such a method include a method of pushing up individual semiconductor elements with adhesive pieces from the dicing/die bonding integrated film side with a needle and picking up the pushed-up semiconductor elements with adhesive pieces with a pickup device.
  • the pick-up step can be performed after irradiating the adhesive layer with radiation.
  • the adhesive strength of the pressure-sensitive adhesive layer to the adhesive piece is lowered, and the semiconductor element with the adhesive piece is easily peeled off.
  • the first bonding step is a step of bonding the picked-up semiconductor element with the adhesive piece to a supporting member for mounting the semiconductor element via the adhesive piece.
  • a step (second bonding step) of bonding another semiconductor element with an adhesive piece to the surface of the semiconductor element bonded to the support member via the adhesive piece may be provided. Any bonding can be performed by crimping.
  • the crimping conditions are not particularly limited, and can be appropriately set according to need.
  • the crimping conditions may be, for example, a temperature condition of 80 to 160° C., a load condition of 5 to 15 N, and a time condition of 1 to 10 seconds.
  • the support member can illustrate the same support member as the above.
  • the method of manufacturing a semiconductor device may include a step of thermally curing the adhesive piece, if necessary.
  • the adhesive pieces bonding the semiconductor element and the support member, or the semiconductor element (first semiconductor element) and the semiconductor element (second semiconductor element) are thermally cured, thereby making them more firmly.
  • Adhesive fixation is possible.
  • pressure may be applied at the same time for curing.
  • the heating temperature in this step can be appropriately changed depending on the composition of the adhesive piece.
  • the heating temperature may be, for example, 60-200.degree. Note that the temperature or pressure may be changed stepwise.
  • a method of manufacturing a semiconductor device includes, if necessary, a step (wire bonding step) of electrically connecting tips of terminal portions (inner leads) of a support member and electrode pads on a semiconductor element with bonding wires. good too.
  • the bonding wire for example, gold wire, aluminum wire, copper wire, or the like is used.
  • the temperature for wire bonding (providing bonding wires) may be in the range of 80 to 250°C or 80 to 220°C.
  • the heating time can be from a few seconds to several minutes.
  • the bonding wire may be performed in a heated state within the above-mentioned temperature range by using both vibrational energy of ultrasonic waves and crimping energy of applied pressure.
  • the method of manufacturing a semiconductor device may optionally include a step of sealing the semiconductor element with a sealing material (sealing step). This step is performed to protect the semiconductor element or bonding wires mounted on the support member. This step can be performed by molding resin for sealing (sealing resin) with a mold.
  • a sealing resin for example, an epoxy resin may be used.
  • the support member and residue are embedded by heat and pressure during sealing, and peeling due to air bubbles at the adhesive interface can be prevented.
  • the method of manufacturing a semiconductor device may include, if necessary, a process (post-curing process) for completely curing the sealing resin that is insufficiently cured in the sealing process. Even if the adhesive piece is not heat-cured in the sealing process, the adhesive piece can be heat-cured together with the curing of the sealing resin in the present process to enable adhesive fixation.
  • the heating temperature in this step can be appropriately set according to the type of sealing resin, and may be, for example, within the range of 165 to 185° C., and the heating time may be approximately 0.5 to 8 hours.
  • the method of manufacturing a semiconductor device may include, if necessary, a step of heating the semiconductor element with the adhesive piece adhered to the support member using a reflow furnace (heating and melting step).
  • a resin-sealed semiconductor device may be surface-mounted on the supporting member.
  • surface mounting methods include reflow soldering in which solder is preliminarily supplied onto a printed wiring board and then heated and melted by hot air or the like for soldering.
  • Examples of the heating method include hot air reflow and infrared reflow.
  • the heating method may be a method of heating the whole or a method of locally heating. The heating temperature may be within the range of 240-280° C., for example.
  • A Component: Epoxy resin (A-1) N-500P-10 (trade name, manufactured by DIC Corporation, o-cresol novolac type epoxy resin, epoxy equivalent: 203 g/eq) (A-2) PG-100 (trade name, manufactured by Osaka Gas Chemicals Co., Ltd., epoxy resin having a fluorene skeleton, epoxy equivalent: 260 g/eq)
  • C Component: Elastomer (C-1) HTR-860P (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 800,000, Tg: -12°C) (C-2) HTR-860P-30B: manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 300,000, Tg: -12°C)
  • Component (E) Coupling agent (E-1) A-189 (trade name, ⁇ -mercaptopropyltrimethoxysilane manufactured by Nippon Unicar Co., Ltd.) (E-2) Y-9669 (trade name, manufactured by Momentive Performance Materials Japan, 3-phenylaminopropyltrimethoxysilane)
  • Curing accelerator (F-1) 2PZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole)
  • ⁇ Preparation of film adhesive> The prepared adhesive varnish was filtered through a 500 mesh filter and vacuum degassed.
  • a release-treated polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m was prepared as a support film, and an adhesive varnish after vacuum defoaming was applied onto the PET film.
  • the applied adhesive varnish is dried by heating in two stages: 90° C. for 5 minutes, followed by 140° C. for 5 minutes. Films of Examples 1 to 19 and Comparative Examples 1 to 3 in B stage. An adhesive (thickness: 7 ⁇ m) was obtained. In the film adhesive, the thickness of the film adhesive was adjusted to 7 ⁇ m by adjusting the coating amount of the adhesive varnish.
  • Adhesive pieces (width 5 mm ⁇ length 100 mm) were cut out from the film adhesives of Examples 1 to 19 and Comparative Examples 1 to 3, respectively. The adhesive pieces were fixed to a pair of jigs (cardboard), and portions of the adhesive pieces protruding from the jigs were removed. As a result, a sample (width 5 mm ⁇ length 23 mm) to be evaluated was obtained. A cleaving test was performed in a constant temperature bath (TLF-R3-FW-PL-S manufactured by ITEC Co., Ltd.) set at -15°C.
  • TEZ-R3-FW-PL-S manufactured by ITEC Co., Ltd.
  • breaking test was performed under the conditions of compression mode, speed of 10 mm/min, and pushing distance of 5 mm. Breaking work W, breaking strength P, and breaking elongation L were determined. Further, the breaking modulus m and the breaking resistance R were calculated from the above formulas (1) and (2). Note that the breaking coefficient m and breaking resistance R are the average values obtained by carrying out breaking tests eight times or more for each example and each comparative example. As the value of the breaking modulus m becomes smaller, the splitting property by cooling expansion tends to be excellent.
  • the cutting was performed by a step cut method using two blades, and dicing blades ZH05-SD2000-N1-70-FF and ZH05-SD4000-N1-70-EE (both manufactured by DISCO Corporation) were used.
  • the cutting conditions were blade rotation speed: 4000 rpm, cutting speed: 50 mm/sec, and chip size: 3 mm x 3 mm.
  • the first stage of cutting was performed so that the semiconductor wafer remained about 200 ⁇ m, and the second stage of cutting was performed so that the dicing tape was cut to about 20 ⁇ m.
  • the adhesive layer made of the ultraviolet curable adhesive was irradiated with ultraviolet rays to cure the adhesive layer, and the semiconductor element with the adhesive piece was picked up.
  • the adhesive piece of the semiconductor element with the adhesive piece was pressure-bonded to an AUS410 substrate (organic substrate with solder resist) under conditions of a temperature of 120° C., a pressure of 0.1 MPa, and a time of 1.0 second to prepare a sample for evaluation. .
  • the die shear strength between the AUS410 substrate and the adhesive piece was measured at room temperature (25° C.).
  • a case where the die shear strength is 6 MPa or more is evaluated as being particularly excellent in thin film property
  • "B" when the die shear strength is 4 MPa or more and less than 6 MPa and a case where the die shear strength is less than 4 MPa is evaluated as "C”.
  • Tables 1, 2 and 3 also show values of die shear strength.
  • reflow resistance was produced by the following method. First, using a semiconductor element with an adhesive piece, a laminate laminated in four stages as shown in FIG. A package for evaluation was obtained by doing. The sealing conditions of the sealing material were 175° C./6.7 MPa/90 seconds, and the curing conditions were 175° C. and 5 hours. Twenty evaluation packages were prepared and exposed to the environment defined by JEDEC (level 3, 30° C., 60 RH %, 192 hours) to absorb moisture. Subsequently, the package for evaluation after moisture absorption was passed three times through an IR reflow oven (260° C., maximum temperature 265° C.).
  • the film adhesives of Examples 1 to 19 were excellent in terms of cooling splitting properties and thin film properties.
  • the film adhesives of Comparative Examples 1 to 3 were insufficient in at least one of thin film properties and cooling splitting properties. From these, it was confirmed that the film-like adhesive of the present disclosure has excellent splittability by cooling expansion and has sufficient die shear strength when thinned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

フィルム状接着剤が開示される。当該フィルム状接着剤は、熱硬化性樹脂と、硬化剤と、エラストマーと、平均粒径が400nm以下である無機フィラーとを含有する。無機フィラーの含有量は、フィルム状接着剤の全量を基準として、18~40質量%である。

Description

フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
 本開示は、フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法に関する。
 近年、半導体素子(半導体チップ)を多段に積層した積層MCP(Multi Chip Package)が普及しており、携帯電話、携帯オーディオ機器用のメモリ半導体パッケージ等として搭載されている。また、携帯電話等の多機能化に伴い、半導体パッケージの高速化、高密度化、高集積化等も推し進められている。それに伴い、半導体ウェハの薄膜化も進行しており、加工時のウェハ割れ等の不具合が発生し易くなることで歩留まりの低下が問題になる場合がある。そのため、半導体ウェハの厚さが薄くなる(例えば、50μm以下)につれて、従来の物理的な研削方法から新しい加工方法への移行が進んでいる。
 新しい加工方法の1つとして、切断予定ライン上の半導体ウェハ内部にレーザー光を照射して改質領域を形成し、その後、外周部をエキスパンドによって半導体ウェハを切断する方法が近年提案されている(例えば、特許文献1、2)。この方法は、ステルスダイシングと呼ばれる。新しい加工方法の開発に伴い、これに適合可能な半導体材料の開発が必要となっている。このような半導体材料として、ダイシングテープとダイボンディングフィルムとの性能を併せ持つダイシング・ダイボンディング一体型フィルムが報告されている(例えば、特許文献3、4)。
特開2002-192370号公報 特開2003-338467号公報 特開2015-211080号公報 特開2016-115775号公報
 ところで、半導体装置の製造プロセスにおいて、ステルスダイシングによって改質領域を形成して分断する場合、冷却条件下におけるエキスパンド(以下、「冷却エキスパンド」という場合がある。)を実施することがある。しかし、従来のダイシング・ダイボンディング一体型フィルムを冷却エキスパンドに適用すると、フィルム状接着剤からなる接着剤層において未分断が発生する場合がある。接着剤層の未分断が発生すると、歩留まりの低下及び未分断品を選別するための生産時間効率の低下が問題になる。
 また、積層MCPにおいては、半導体素子が多段に積層されることから、使用されるフィルム状接着剤には、薄膜化(例えば、厚さ20μm以下)が求められている。しかしながら、従来のフィルム状接着剤を薄膜化すると、ダイシェア強度が確保できない場合があり、未だ改善の余地がある。
 そこで、本開示は、冷却エキスパンドによる分断性に優れるとともに、薄膜化したときに充分なダイシェア強度を有するフィルム状接着剤を提供することを主な目的とする。
 本開示の一側面は、フィルム状接着剤に関する。当該フィルム状接着剤は、熱硬化性樹脂と、硬化剤と、エラストマーと、平均粒径が400nm以下である無機フィラーとを含有する。無機フィラーの含有量は、フィルム状接着剤の全量を基準として、18~40質量%である。無機フィラーの含有量が、フィルム状接着剤の全量を基準として、18質量%以上であると、フィルム状接着剤の冷却エキスパンドによる分断性に優れる傾向にある。無機フィラーの含有量が、フィルム状接着剤の全量を基準として、40質量%以下であると、フィルム状接着剤を薄膜化したときに充分なダイシェア強度を有する傾向にある。
 フィルム状接着剤の厚さは、20μm以下であってよい。
 フィルム状接着剤は、複数の半導体素子を積層してなる半導体装置の製造プロセスに用いられるものであってよい。この場合、半導体装置は、半導体素子(半導体チップ)を多段に積層した積層MCP(Multi Chip Package)であってよく、三次元NAND型メモリであってもよい。
 本開示の他の一側面は、ダイシング・ダイボンディング一体型フィルムに関する。当該ダイシング・ダイボンディング一体型フィルムは、基材層と、粘着剤層と、上記のフィルム状接着剤からなる接着剤層とをこの順に備える。
 本開示の他の一側面は、半導体装置に関する。当該半導体装置は、半導体素子と、半導体素子を搭載する支持部材と、半導体素子及び支持部材の間に設けられ、半導体素子と支持部材とを接着する接着部材とを備える。接着部材は、上記のフィルム状接着剤の硬化物である。半導体装置は、半導体素子の表面上に積層された他の半導体素子をさらに備えていてもよい。
 本開示の他の一側面は、半導体装置の製造方法に関する。当該半導体装置の製造方法の一態様は、半導体素子と支持部材との間、又は、第1の半導体素子と第2の半導体素子との間に上記のフィルム状接着剤を介在させ、半導体素子及び支持部材、又は、第1の半導体素子及び第2の半導体素子を接着する工程を備える。
 当該半導体装置の製造方法の他の態様は、上記のダイシング・ダイボンディング一体型フィルムの接着剤層に半導体ウェハを貼り付ける工程と、接着剤層を貼り付けた半導体ウェハをダイシングする工程と、基材層を冷却条件下エキスパンドすることによって、複数の個片化された接着剤片付き半導体素子を作製する工程と、接着剤片付き半導体素子を粘着剤層からピックアップする工程と、接着剤片付き半導体素子を支持部材に接着剤片を介して接着する工程とを備える。半導体装置の製造方法は、他の接着剤片付き半導体素子を、支持部材に接着された半導体素子の表面に接着剤片を介して接着する工程をさらに備えていてもよい。
 本開示によれば、冷却エキスパンドによる分断性に優れるとともに、薄膜化したときに充分なダイシェア強度を有するフィルム状接着剤が提供される。また、本開示によれば、このようなフィルム状接着剤を用いたダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法が提供される。さらに、本開示によれば、このようなダイシング・ダイボンディング一体型フィルムを用いた半導体装置の製造方法が提供される。
図1は、フィルム状接着剤の一実施形態を示す模式断面図である。 図2は、割断試験における冶具に固定された状態の試料を模式的に示す斜視図である。 図3は、割断試験における押し込み冶具によって試料に荷重を加えている状態を模式的に示す断面図である。 図4は、割断試験の結果の一例を模式的に示すグラフである。 図5は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。 図6は、半導体装置の一実施形態を示す模式断面図である。 図7は、半導体装置の他の実施形態を示す模式断面図である。 図8は、半導体装置の他の実施形態を示す模式断面図である。
 以下、図面を適宜参照しながら、本開示の実施形態について説明する。ただし、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本開示における数値及びその範囲についても同様であり、本開示を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。
 本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよく、2種以上を併用して使用してもよい。
[フィルム状接着剤]
 フィルム状接着剤は、熱硬化性樹脂(以下、「(A)成分」という場合がある。)と、硬化剤(以下、「(B)成分」という場合がある。)と、エラストマー(以下、「(C)成分」という場合がある。)と、平均粒径が400nm以下である無機フィラー(以下、「(D)成分」という場合がある。)とを含有する。フィルム状接着剤は、(A)成分、(B)成分、(C)成分、及び(D)成分に加えて、カップリング剤(以下、「(E)成分」という場合がある。)、硬化促進剤(以下、「(F)成分」という場合がある。)、その他の成分等をさらに含有していてもよい。
 フィルム状接着剤は、(A)成分、(B)成分、(C)成分、及び(D)成分、並びに必要に応じて添加される他の成分((E)成分、(F)成分、その他の成分等)を含有する接着剤組成物を、フィルム状に成形することによって得ることができる。フィルム状接着剤(接着剤組成物)は、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化(Cステージ)状態となり得るものであってよい。
(A)成分:熱硬化性樹脂
 (A)成分は、接着性の観点から、エポキシ樹脂を含んでいてもよく、1種又は2種以上のエポキシ樹脂からなるものであってもよい。
 エポキシ樹脂は、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;ビスフェノールFノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;トリアジン骨格含有エポキシ樹脂;フルオレン骨格含有エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;ナフタレン型エポキシ樹脂;多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、エポキシ樹脂は、フィルムのタック性、柔軟性等の観点から、クレゾールノボラック型エポキシ樹脂又はフルオレン骨格含有エポキシ樹脂を含んでいてもよい。
 エポキシ樹脂のエポキシ当量は、特に制限されないが、90~300g/eq、110~290g/eq、又は130~280g/eqであってよい。エポキシ樹脂のエポキシ当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。
 (A)成分の含有量は、フィルム状接着剤の全質量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、30質量%以下、20質量%以下、又は15質量%以下であってよい。(A)成分の含有量がこのような範囲にあると、硬化後の弾性率により優れる傾向にある。(A)成分の含有量がこのような範囲にあると、硬化前の柔軟性により優れる傾向にある。
(B)成分:硬化剤
 (A)成分の硬化剤として一般的に使用されているものを用いることができる。(A)成分がエポキシ樹脂を含む(1種又は2種以上のエポキシ樹脂からなる)場合、(B)成分としては、例えば、フェノール樹脂、エステル化合物、芳香族アミン、脂肪族アミン、酸無水物等が挙げられる。これらの中でも、反応性及び経時安定性の観点から、(B)成分はフェノール樹脂を含んでいてもよく、1種又は2種以上のフェノール樹脂からなるものであってもよい。
 フェノール樹脂は、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド等のアルデヒド類との重縮合生成物であり得る。重縮合は、通常、酸、塩基等の触媒存在下で行われる。酸触媒を用いた場合に得られるフェノール樹脂は、特にノボラック型フェノール樹脂と呼ばれる。ノボラック型フェノール樹脂としては、例えば、フェノール/ホルムアルデヒドノボラック樹脂、クレゾール/ホルムアルデヒドノボラック樹脂、キシレノール/ホルムアルデヒドノボラック樹脂、レゾルシノール/ホルムアルデヒドノボラック樹脂、フェノール-ナフトール/ホルムアルデヒドノボラック樹脂等が挙げられる。また、フェノール樹脂としては、例えば、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類と、ジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂、フェニルアラルキル型フェノール樹脂なども挙げられる。
 フェノール樹脂の水酸基当量は、80~300g/eq、90~280g/eq、又は100~250g/eqであってよい。フェノール樹脂の水酸基当量が80g/eq以上であると、貯蔵弾性率がより向上する傾向にあり、300g/eq以下であると、発泡、アウトガス等の発生による不具合を防ぐことが可能となる。
 フェノール樹脂の軟化点は、50~140℃、55~130℃、又は60~120℃であってよい。なお、軟化点とは、JIS K7234に準拠し、環球法によって測定される値を意味する。
 (B)成分の含有量は、フィルム状接着剤の全質量を基準として、1質量%以上、2質量%以上、又は3質量%以上であってよく、20質量%以下、15質量%以下、又は10質量%以下であってよい。
 (A)成分がエポキシ樹脂であり、(B)成分がフェノール樹脂である場合、エポキシ樹脂のエポキシ当量とフェノール樹脂の水酸基当量との比(エポキシ樹脂のエポキシ当量/フェノール樹脂の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上である(エポキシ樹脂のエポキシ当量が0.30以上である)と、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下である(エポキシ樹脂のエポキシ当量が0.70以下である)と、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。
 (A)成分及び(B)成分の合計の含有量は、フィルム状接着剤の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよい。(A)成分及び(B)成分の合計の含有量がこのような範囲にあると、接着性がより向上する傾向にある。(A)成分及び(B)成分の合計の含有量は、取り扱い性の観点から、フィルム状接着剤の全質量を基準として、40質量%以下、30質量%以下、又は20質量%以下であってよい。
(C)成分:エラストマー
 (C)成分としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ブタジエン樹脂;これら樹脂の変性体等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(C)成分は、イオン性不純物が少なく耐熱性により優れること、半導体装置の接続信頼性をより確保し易いこと、流動性により優れることから、(メタ)アクリル酸エステルに由来する構成単位を主成分として有するアクリル樹脂(アクリルゴム)であってよい。(C)成分における(メタ)アクリル酸エステルに由来する構成単位の含有量は、構成単位全量を基準として、例えば、70質量%以上、80質量%以上、又は90質量%以上であってよい。アクリル樹脂(アクリルゴム)は、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むものであってよい。
 (C)成分のガラス転移温度(Tg)は、-50~50℃又は-30~30℃であってよい。(C)成分のTgが-50℃以上であると、接着剤組成物の柔軟性が高くなり過ぎることを防ぐことができる傾向にある。これによって、ウェハダイシング時にフィルム状接着剤を切断し易くなり、バリの発生を防ぐことが可能となる。(C)成分のTgが50℃以下であると、フィルム状接着剤の柔軟性の低下を抑えることができる傾向にある。これにより、フィルム状接着剤を半導体ウェハに貼り付ける際に、ボイドを充分に埋め込み易くなる傾向にある。また、半導体ウェハの密着性の低下によるダイシング時のチッピングを防ぐことが可能となる。ここで、ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定した値を意味する。(C)成分のTgは、(C)成分を構成する構成単位((C)成分がアクリル樹脂(アクリルゴム)である場合、(メタ)アクリル酸エステルに由来する構成単位)の種類及び含有量を調整することによって、所望の範囲に調整することができる。
 (C)成分の重量平均分子量(Mw)は、10万~300万又は20万~100万であってよい。(C)成分のMwがこのような範囲にあると、フィルム形成性、フィルム強度、可撓性、タック性等を適切に制御することができるとともに、リフロー性に優れ、埋め込み性を向上することができる。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。
 (C)成分の市販品としては、SG-70L、SG-708-6、WS-023 EK30、SG-P3、SG-280 EK23、SG-80H、HTR-860P、HTR-860P-3、HTR-860P-3CSP、HTR-860P-3CSP-3DB、HTR-860P-30B(いずれもナガセケムテックス株式会社製)等が挙げられる。
 (C)成分の含有量は、フィルム状接着剤の全質量を基準として、40質量%以上、45質量%以上、又は50質量%以上であってよい。(C)成分の含有量がこのような範囲にあると、薄膜塗工性により優れる傾向にある。(C)成分の含有量は、フィルム状接着剤の全質量を基準として、80質量%以下、75質量%以下、又は70質量%以下であってよい。(C)成分の含有量がこのような範囲にあると、(A)成分及び(B)成分の含有量を充分に確保することができ、他の特性との両立できる傾向にある。
(D)成分:平均粒径が400nm以下である無機フィラー
 (D)成分としての無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、シリカ等が挙げられる。これらは、平均粒径が400nm以下であれば、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、無機フィラーは、溶融粘度の調整の観点から、シリカであってもよい。無機フィラーの形状は、特に制限されないが、球状であってよい。
 (D)成分の平均粒径は、薄膜塗工性及び接着性の観点から、400nm以下であり、350nm以下又は300nm以下であってもよい。(D)成分としての無機フィラーの平均粒径は、例えば、10nm以上、30nm以上、100nm以上、又は150nm以上であってよい。ここで、平均粒径は、動的光散乱法によって求められる平均粒径を意味する。なお、(D)成分の平均粒径は、(D)成分が含有されるフィルム状接着剤を用いることによっても求めることができる。この場合、フィルム状接着剤を加熱して樹脂成分を分解することによって得られる残渣を溶媒に分散して分散液を作製し、これに動的光散乱法を適用して得られる粒度分布から、(D)成分の平均粒径を求めることができる。
 (D)成分は、例えば、1種又は2種以上の平均粒径400nm以下の無機フィラーから構成されるものであってよく、1種又は2種以上の、平均粒径10~400nm、平均粒径30~400nm、平均粒径100~400nm、平均粒径150~400nm、平均粒径10~350nm、平均粒径30~350nm、平均粒径100~350nm、平均粒径150~350nm、平均粒径10~300nm、平均粒径30~300nm、平均粒径100~300nm、又は平均粒径150~300nmの無機フィラーから構成されるものであってもよい。
 (D)成分の含有量は、フィルム状接着剤の全量を基準として、18~40質量%である。(D)成分の含有量は、フィルム状接着剤の全質量を基準として、18質量%以上であり、20質量%以上、22質量%以上、又は24質量%以上であってもよい。(D)成分の含有量が、フィルム状接着剤の全量を基準として、18質量%以上であると、フィルム状接着剤の冷却エキスパンドによる分断性に優れる傾向にある。(D)成分の含有量は、フィルム状接着剤の全質量を基準として、40質量%以下であり、38質量%以下、35質量%以下、又は32質量%以下であってもよい。(D)成分の含有量、フィルム状接着剤の全量を基準として、40質量%以下であると、フィルム状接着剤を薄膜化したときに充分なダイシェア強度を有する傾向にある。フィルム状接着剤の全量を基準とする(D)成分の含有量は、(D)成分が含有されるフィルム状接着剤を用いることによっても求めることができる。この場合、フィルム状接着剤の質量及びフィルム状接着剤を加熱して樹脂成分を分解することによって得られる残渣の質量を求め、これらの質量関係から(D)成分の含有量を求めることができる。フィルム状接着剤を加熱して樹脂成分を分解することによって得られる残渣の質量は、残渣を溶媒で洗浄し、乾燥した後に測定される質量であってもよい。
 フィルム状接着剤は、(D)成分に加えて、平均粒径が400nm超である無機フィラーを含有していてもよい。他方、フィルム状接着剤は、本開示の効果がより顕著に奏される傾向にあることから、平均粒径が400nm超である無機フィラーを実質的に含有していない(添加していない)ことが好ましい。ここで、「実質的に含有していない」とは、平均粒径が400nm超である無機フィラーの含有量が、(D)成分及び平均粒径が400nm超である無機フィラーの全質量を基準として、5質量%以下、3質量%以下、1質量%以下、又は0.1質量%以下であることを意味する。
(E)成分:カップリング剤
 (E)成分は、シランカップリング剤であってよい。シランカップリング剤としては、例えば、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。
(F)成分:硬化促進剤
 (F)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から(F)成分はイミダゾール類及びその誘導体であってもよい。
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 フィルム状接着剤は、その他の成分をさらに含有していてもよい。その他の成分としては、例えば、顔料、イオン補捉剤、酸化防止剤等が挙げられる。
 (E)成分、(F)成分、及びその他の成分の合計の含有量は、フィルム状接着剤の全質量を基準として、0.1質量%以上、0.3質量%以上、又は0.5質量%以上であってよく、20質量%以下、10質量%以下、又は5質量%以下であってよい。
 図1は、フィルム状接着剤の一実施形態を示す模式断面図である。図1に示すフィルム状接着剤1は、接着剤組成物をフィルム状に成形してなるものである。フィルム状接着剤1は、通常、半硬化(Bステージ)状態で、硬化処理後に完全硬化(Cステージ)状態となるものであり得る。フィルム状接着剤1は、接着剤組成物を支持フィルムに塗布することによって形成することができる。フィルム状接着剤1の形成においては、接着剤組成物のワニス(接着剤ワニス)を用いてもよい。接着剤ワニスを用いる場合は、(A)成分、(B)成分、(C)成分、及び(D)成分、並びに必要に応じて添加される成分を溶剤中で混合又は混練して接着剤ワニスを調製し、得られた接着剤ワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによってフィルム状接着剤1を得ることができる。
 支持フィルムは、上記の加熱乾燥に耐えるものであれば特に限定されないが、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム等であってよい。支持フィルムは、2種以上を組み合わせた多層フィルムであってもよく、表面がシリコーン系、シリカ系等の離型剤などで処理されたものであってもよい。支持フィルムの厚さは、例えば、10~200μm又は20~170μmであってよい。
 混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。
 接着剤ワニスの調製に用いられる溶剤は、各成分を均一に溶解、混練、又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。溶剤は、乾燥速度及び価格の観点から、メチルエチルケトン又はシクロヘキサノンであってよい。
 接着剤ワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等を用いることができる。加熱乾燥は、使用した溶剤が充分に揮散する条件であれば特に制限されないが、50~150℃の範囲で、1~30分の範囲で行うことができる。加熱乾燥は、異なる加熱温度で異なる加熱時間で段階的に行うことができる。
 フィルム状接着剤の厚さは、20μm以下であってよく、18μm以下、15μm以下、12μm以下、又は10μm以下であってもよい。フィルム状接着剤の厚さの下限は、特に制限されないが、例えば、1μm以上であってよい。
 支持フィルム上に作製されたフィルム状接着剤は、損傷又は汚染を防ぐ観点から、フィルム状接着剤の支持フィルムとは反対側の面にカバーフィルムを備えていてもよい。カバーフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、表面はく離剤処理フィルム等が挙げられる。カバーフィルムの厚さは、例えば、15~200μm又は30~170μmであってよい。
 フィルム状接着剤は、薄膜化が可能であることから、複数の半導体素子を積層してなる半導体装置の製造プロセスに好適に用いることができる。この場合、半導体装置は、積層MCPであってよく、三次元NAND型メモリであってもよい。
 フィルム状接着剤1は、以下の条件下で実施される割断試験の結果を利用した分断性評価方法(冷却エキスパンドが実施される低温条件(例えば、-15℃~0℃の範囲)下におけるフィルム状接着剤の分断性評価方法)において、割断係数mが70以下であるフィルム状接着剤であってよい。
<条件>
 試料の幅:5mm
 試料の長さ:23mm
 押し込み冶具と試料との相対速度:10mm/分
 以下、割断試験について説明する。割断試験は抗折強度試験に分類されるものであり、試料の両端を固定した状態で試料が破断するまで試料の中央部を押し込む工程を含む。図2に示すように、試料Sは一対の試料固定用冶具20に挟まれて固定された状態で割断試験に供される。一対の試料固定用冶具20は、例えば、充分な強度を有する厚紙からなり、中央に矩形の開口20aをそれぞれ有する。固定された状態の試料Sの中央部に、押し込み冶具21を用いて荷重を加える(図3参照)。
 試料Sは、評価対象のフィルム状接着剤を切り出したものであればよく、フィルム状接着剤から切り出した複数の接着剤片を積層して試料を作製しなくてもよい。すなわち、試料Sの厚さは、フィルム状接着剤の厚さと同じであってもよい。試料Sの幅(図2におけるWs)は、例えば、1~30mmであり、3~8mmであってもよい。測定装置の状況に応じて適当な幅に設定すればよい。試料Sの長さ(図2におけるLs)は、例えば、5~50mmであり、10~30mm又は6~9mmであってもよい。試料Sの長さは試料固定用冶具20の開口20aのサイズに依存する。なお、試料固定用冶具20の形状及び試料Sのサイズは、割断試験を実施できる限り、上記のもの以外であってもよい。
 押し込み冶具21は、円錐状の先端部21aを有する円柱状部材からなる。押し込み冶具21の直径(図3におけるR)は、例えば、3~15mmであり、5~10mmであってもよい。先端部21aの角度(図3におけるθ)は、例えば、40~120°であり、60~100°であってもよい。
 割断試験は、所定の温度に設定された恒温槽内で実施される。恒温槽は、-15℃~0℃の範囲の一定の温度(想定される冷却エキスパンドの温度)に設定すればよい。恒温槽として、例えば、株式会社アイテック社製、TLF-R3-F-W-PL-Sを使用できる。オートグラフ(例えば、株式会社エーアンドデイ製のAZT-CA01、ロードセル50N、圧縮モード)を使用し、割断仕事W、割断強度P、及び割断伸びLを得る。
 押し込み冶具21と試料Sとの相対速度は、例えば、1~100mm/分であり、5~20mm/分であってもよい。この相対速度が速すぎると割断過程のデータが充分に取得できない傾向にあり、遅すぎると応力が緩和して割断に至りにくい傾向にある。押し込み冶具21の押し込み距離は、例えば、1~50mmであり、5~30mmであってもよい。押し込み距離が短すぎると割断に至らない傾向にある。評価対象のフィルム状接着剤について、複数の試料を準備し、割断試験を複数回行って試験結果の安定性を確認することが好ましい。
 図4は、割断試験の結果の一例を示すグラフである。図4に示すように、割断仕事Wは、縦軸を荷重とし、横軸を試料Sが破断するまでの押し込み量でグラフを作成したときに囲まれた面積である。割断強度Pは、試料Sが破断したときの荷重である。割断伸びLは試料Sが破断したときの試料Sの伸び量である。割断伸びLは、試料Sが破断したときの押し込み距離と試料固定用冶具20の開口20aの幅から三角関数を用いて算出すればよい。
 割断試験によって得られた割断仕事W(N・mm)、割断強度P(N)、及び割断伸びL(mm)の値から、式(1)及び式(2)より割断係数m(無次元)及び割断抵抗R(N/mm)を求める。
 m=W/[1000×(P×L)] (1)
 R=P/A (2)
 本発明者らの検討によると、以下の条件下で割断試験を実施したとき、割断係数mが90以下であるフィルム状接着剤は、実際にステルスダイシングにおいて冷却エキスパンドによる分断性に優れる傾向にある。
<条件>
 試料の幅:5mm
 試料の長さ:23mm
 押し込み冶具と試料との相対速度:10mm/分
 割断係数m(無次元)は、90以下であってよく、80以下、70以下、65以下、又は60以下であってもよい。割断係数mは低温条件下におけるフィルム状接着剤の延伸性に関するパラメータである。割断係数mが90以下であると、フィルム状接着剤の適度な延伸性により、冷却エキスパンドによる分断性が充分となる傾向にある。この傾向は割断係数mの数値が小さくなるほど、より顕著である。割断係数m(無次元)は、0超であってよく、10以上又は15以上であってもよい。割断係数mが15以上であると、応力の伝播性が良好となる傾向にある。割断係数mがこのような範囲にあるフィルム状接着剤は、冷却エキスパンドが実施される半導体装置の製造プロセスに好適に用いることができる。
 割断抵抗Rは、0N/mm超45N/mm以下であってよく、10N/mm以上又は20N/mm以上であってもよく、40N/mm以下又は35N/mm以下であってもよい。割断抵抗Rが45N/mm以下であると、フィルム状接着剤の強度が過度となり過ぎず、充分な分断性が得られる傾向にある。割断抵抗Rが0N/mm超であると、冷却エキスパンドにおいて良好な応力伝播が生じ、より優れた分断性が得られる傾向にある。割断抵抗Rが20N/mm以上であると、この傾向がより一層顕著となる傾向にある。
[ダイシング・ダイボンディング一体型フィルム]
 図5は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。図5に示されるダイシング・ダイボンディング一体型フィルム10は、基材層2と、粘着剤層3と、上記の接着剤組成物からなる接着剤層1Aとをこの順に備える。接着剤層1Aは、フィルム状接着剤1であり得る。基材層2及び粘着剤層3は、ダイシングテープ4であり得る。このようなダイシング・ダイボンディング一体型フィルム10を用いると、半導体ウェハへのラミネート工程が1回となることから、作業の効率化が可能である。ダイシング・ダイボンディング一体型フィルムは、フィルム状、シート状、テープ状等であってもよい。
 ダイシングテープ4は、基材層2と、基材層2上に設けられた粘着剤層3とを備えている。
 基材層2としては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。これらの基材層2は、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。
 粘着剤層3は、粘着剤からなる層である。粘着剤は、ダイシング時には半導体素子が飛散しない充分な粘着力を有し、その後の半導体素子のピックアップ工程においては半導体素子を傷つけない程度の低い粘着力を有するものであれば特に制限なく、ダイシングテープの分野で従来公知のものを使用することができる。粘着剤は、感圧型又は放射線硬化型のいずれであってもよい。感圧型粘着剤は、短時間の加圧で一定の粘着性を示す粘着剤である。一方、放射線硬化型粘着剤は、放射線(例えば、紫外線)の照射によって、粘着性が低下する性質を有する粘着剤である。放射線硬化型粘着剤は、例えば、紫外線硬化型粘着剤であってよい。
 ダイシングテープ4(基材層2及び粘着剤層3)の厚さは、経済性及びフィルムの取扱い性の観点から、60~150μm又は70~130μmであってよい。
 ダイシング・ダイボンディング一体型フィルム10は、例えば、フィルム状接着剤1及びダイシングテープ4を準備し、フィルム状接着剤1とダイシングテープ4の粘着剤層3とを貼り合わせることによって得ることができる。また、ダイシング・ダイボンディング一体型フィルム10は、例えば、ダイシングテープ4を準備し、上記のフィルム状接着剤1を形成する方法と同様に、接着剤組成物(接着剤ワニス)をダイシングテープ4の粘着剤層3上に塗布することによっても得ることができる。
 フィルム状接着剤1とダイシングテープ4の粘着剤層3とを貼り合わせる場合、ダイシング・ダイボンディング一体型フィルム10は、ロールラミネーター、真空ラミネーター等を用いて所定条件(例えば、室温(20℃)又は加熱状態)でダイシングテープ4にフィルム状接着剤1をラミネートすることによって形成することができる。ダイシング・ダイボンディング一体型フィルム10は、連続的に製造ができ、効率に優れることから、加熱状態でロールラミネーターを用いて形成してもよい。
 フィルム状接着剤及びダイシング・ダイボンディング一体型フィルムは、半導体装置の製造プロセスに用いられるものであってよく、複数の半導体素子を積層してなる半導体装置の製造プロセスに用いられるものであってもよい。
 フィルム状接着剤は、半導体素子と半導体素子を搭載する支持部材とを接着するため接着剤としても好適に用いられる。
 また、フィルム状接着剤は、複数の半導体素子を積層してなる半導体装置である積層MCP(例えば、三次元NAND型メモリ)において、半導体素子同士を接着するための接着剤としても好適に用いられる。
 フィルム状接着剤は、例えば、フリップチップ型半導体装置の半導体素子の裏面を保護する保護シート、フリップチップ型半導体装置の半導体素子の表面と被着体との間を封止するための封止シート等としても用いることできる。
 フィルム状接着剤及びダイシング・ダイボンディング一体型フィルムを用いて製造された半導体装置について、以下、図面を用いて具体的に説明する。なお、近年は様々な構造の半導体装置が提案されており、本実施形態のフィルム状接着剤及びダイシング・ダイボンディング一体型フィルムの用途は、以下に説明する構造の半導体装置に限定されるものではない。
[半導体装置]
 図6は、半導体装置の一実施形態を示す模式断面図である。図6に示される半導体装置100は、半導体素子11と、半導体素子11を搭載する支持部材12と、接着部材15とを備えている。接着部材15は、半導体素子11及び支持部材12の間に設けられ、半導体素子11と支持部材12とを接着している。接着部材15は、接着剤組成物の硬化物(フィルム状接着剤の硬化物)である。半導体素子11の接続端子(図示せず)はワイヤ13を介して外部接続端子(図示せず)と電気的に接続され、封止材14によって封止されている。
 図7は、半導体装置の他の実施形態を示す模式断面図である。図7に示される半導体装置110において、一段目の半導体素子11aは、接着部材15a(接着剤組成物の硬化物(フィルム状接着剤の硬化物))によって、端子16が形成された支持部材12に接着され、一段目の半導体素子11a上にさらに接着部材15b(接着剤組成物の硬化物(フィルム状接着剤の硬化物))によって二段目の半導体素子11bが接着されている。一段目の半導体素子11a及び二段目の半導体素子11bの接続端子(図示せず)は、ワイヤ13を介して外部接続端子と電気的に接続され、封止材14によって封止されている。図7に示される半導体装置110は、図6に示される半導体装置100において、半導体素子(11a)の表面上に積層された他の半導体素子(11b)をさらに備えているともいえる。
 図8は、半導体装置の他の実施形態を示す模式断面図である。図8に示される半導体装置120は、支持部材12と、支持部材12上に積層された半導体素子11a,11b,11c,11dとを備える。四つの半導体素子11a,11b,11c,11dは、支持部材12の表面に形成された接続端子(図示せず)との接続のために、横方向(積層方向と直交する方向)に互いにずれた位置に積層されている(図8参照)。半導体素子11aは、接着部材15a(接着剤組成物の硬化物(フィルム状接着剤の硬化物))によって支持部材12に接着されており、三つの半導体素子11b,11c,11dの間にも、接着部材15b,15c,15d(接着剤組成物の硬化物(フィルム状接着剤の硬化物))がそれぞれ介在している。図8に示される半導体装置120は、図6に示される半導体装置100において、半導体素子(11a)の表面上に積層された他の半導体素子(11b,11c,11d)をさらに備えているともいえる。
 以上、本開示の実施形態について半導体装置(パッケージ)を詳細に説明したが、本開示は上記実施形態に限定されるものではない。例えば、図8においては、四つの半導体素子が積層された態様の半導体装置を例示したが、積層する半導体素子の数はこれに限定されるものではない。また、図8においては、半導体素子が横方向(積層方向と直交する方向)に互いにずれた位置に積層されている態様の半導体装置を例示したが、半導体素子が横方向(積層方向と直交する方向)に互いにずれていない位置に積層されている態様の半導体装置であってもよい。
[半導体装置の製造方法]
 図6、図7、及び図8に示される半導体装置(半導体パッケージ)は、半導体素子と支持部材との間、又は、半導体素子(第1の半導体素子)と半導体素子(第2の半導体素子)との間に上記のフィルム状接着剤を介在させ、半導体素子及び支持部材、又は、半導体素子(第1の半導体素子)及び半導体素子(第2の半導体素子)を接着させる工程を備える方法によって得ることができる。より具体的には、半導体素子と支持部材との間、又は、半導体素子(第1の半導体素子)と半導体素子(第2の半導体素子)との間に上記のフィルム状接着剤を介在させ、これらを加熱圧着して両者を接着させ、その後、必要に応じてワイヤボンディング工程、封止材による封止工程、はんだによるリフローを含む加熱溶融工程等を経ることによって得ることができる。
 半導体素子と支持部材との間、又は、半導体素子(第1の半導体素子)と半導体素子(第2の半導体素子)との間にフィルム状接着剤を介在させる方法としては、後述のように、予め接着剤片付き半導体素子を作製した後、支持部材又は半導体素子に貼り付ける方法であってよい。
 次に、図5に示されるダイシング・ダイボンディング一体型フィルムを用いて半導体装置の製造方法の一実施形態について説明する。なお、ダイシング・ダイボンディング一体型フィルムによる半導体装置の製造方法は、以下に説明する半導体装置の製造方法に限定されるものではない。
 半導体装置は、例えば、上記のダイシング・ダイボンディング一体型フィルムの接着剤層に半導体ウェハを貼り付ける工程(ラミネート工程)と、接着剤層を貼り付けた半導体ウェハをダイシングする工程(ダイシング工程)と、基材層を冷却条件下エキスパンドすることによって、複数の個片化された接着剤片付き半導体素子を作製する工程(冷却エキスパンド工程)と、接着剤片付き半導体素子を粘着剤層からピックアップする工程(ピックアップ工程)と、ピックアップされた接着剤片付き半導体素子を支持部材に接着剤片を介して接着する工程(第1の接着工程)とを備える方法によって得ることができる。半導体装置の製造方法は、他の接着剤片付き半導体素子を、支持部材に接着された半導体素子の表面に接着剤片を介して接着する工程(第2の接着工程)をさらに備えていてもよい。
 ラミネート工程は、ダイシング・ダイボンディング一体型フィルム10における接着剤層1Aに半導体ウェハを圧着し、これを接着保持させて貼り付ける工程である。本工程は、圧着ロール等の押圧手段によって押圧しながら行ってもよい。なお、半導体ウェハは、上記と同様の半導体ウェハを例示することができる。
 半導体ウェハとしては、例えば、単結晶シリコン、多結晶シリコン、各種セラミック、ガリウムヒ素等の化合物半導体などが挙げられる。
 ダイシング工程は、半導体ウェハのダイシングを行う工程である。ダイシングは、例えば、半導体ウェハの回路面側から常法に従って行うことができる。また、本工程では、例えば、半導体ウェハに半分切込みを設けるハーフカットと呼ばれる方式、レーザーによって改質領域を形成し分断する方式(ステルスダイシング)等を採用できる。上記のダイシング・ダイボンディング一体型フィルムの接着剤層は、冷却エキスパンドによる分断性に優れることから、ステルスダイシングを採用することが好ましい。本工程で用いるダイシング装置としては、特に限定されず、従来公知のものを用いることができる。
 冷却エキスパンド工程は、基材層を冷却条件下エキスパンドする工程である。これにより、複数の個片化された接着剤片付き半導体素子を得ることができる。冷却条件下におけるエキスパンドの条件は、任意に設定することができるが、例えば、冷却温度-30~5℃、冷却時間30秒~5分、突き上げ量5~20mm、突き上げ速度50~300mm/秒とすることができる。
 半導体素子(半導体チップ)としては、例えば、IC(集積回路)等が挙げられる。支持部材としては、例えば、42アロイリードフレーム、銅リードフレーム等のリードフレーム;ポリイミド樹脂、エポキシ樹脂等のプラスチックフィルム;ガラス不織布等基材にポリイミド樹脂、エポキシ樹脂等のプラスチックを含浸、硬化させた変性プラスチックフィルム;アルミナ等のセラミックスなどが挙げられる。
 ピックアップ工程は、ダイシング・ダイボンディング一体型フィルムに接着固定された接着剤片付き半導体素子を剥離するために、接着剤片付き半導体素子同士を離間させつつ、接着剤片付き半導体素子のピックアップを行う工程である。接着剤片付き半導体素子同士を離間させるためのエキスパンドの方法としては、特に限定されず、従来公知の種々の方法を採用できる。接着剤片付き半導体素子同士を離間させる方法としては、例えば、基材層をエキスパンドする方法が挙げられる。エキスパンドは、必要に応じて、冷却条件下におけるエキスパンドであってよい。ピックアップの方法としては、特に限定されず、従来公知の種々の方法を採用できる。このような方法としては、例えば、個々の接着剤片付き半導体素子をダイシング・ダイボンディング一体型フィルム側からニードルによって突き上げ、突き上げられた接着剤片付き半導体素子をピックアップ装置によってピックアップする方法等が挙げられる。
 ここでピックアップ工程は、粘着剤層が放射線(例えば、紫外線)硬化型の場合、該粘着剤層に放射線を照射した後に行うことができる。これによって、粘着剤層の接着剤片に対する粘着力が低下し、接着剤片付き半導体素子の剥離が容易になる。その結果、接着剤片付き半導体素子を損傷させることなく、ピックアップが可能となる。
 第1の接着工程は、ピックアップされた接着剤片付き半導体素子を、半導体素子を搭載するための支持部材に接着剤片を介して接着する工程である。また、必要に応じて、他の接着剤片付き半導体素子を、支持部材に接着された半導体素子の表面に接着剤片を介して接着する工程(第2の接着工程)を備えていてもよい。接着はいずれも圧着によって行うことができる。圧着条件としては、特に限定されず、適宜必要に応じて設定することができる。圧着条件は、例えば、80~160℃の温度条件、5~15Nの荷重条件、1~10秒の時間条件であってよい。なお、支持部材は、上記と同様の支持部材を例示することができる。
 半導体装置の製造方法は、必要に応じて、接着剤片を熱硬化させる工程を備えていてもよい。上記接着工程によって、半導体素子及び支持部材、又は、半導体素子(第1の半導体素子)と半導体素子(第2の半導体素子)を接着している接着剤片を熱硬化させることによって、より強固に接着固定が可能となる。熱硬化を行う場合、圧力を同時に加えて硬化させてもよい。本工程における加熱温度は、接着剤片を構成成分によって適宜変更することができる。加熱温度は、例えば、60~200℃であってよい。なお、温度又は圧力は、段階的に変更しながら行ってもよい。
 半導体装置の製造方法は、必要に応じて、支持部材の端子部(インナーリード)の先端と半導体素子上の電極パッドとをボンディングワイヤで電気的に接続する工程(ワイヤボンディング工程)を備えていてもよい。ボンディングワイヤとしては、例えば、金線、アルミニウム線、銅線等が用いられる。ワイヤボンディングを行う(ボンディングワイヤを設ける)際の温度は、80~250℃又は80~220℃の範囲内であってよい。加熱時間は数秒~数分であってよい。ボンディングワイヤを設ける際は、上記温度範囲内で加熱された状態で、超音波による振動エネルギーと印加加圧とによる圧着エネルギーの併用によって行ってもよい。
 半導体装置の製造方法は、必要に応じて、封止材によって半導体素子を封止する工程(封止工程)を備えていてもよい。本工程は、支持部材に搭載された半導体素子又はボンディングワイヤを保護するために行われる。本工程は、封止用の樹脂(封止樹脂)を金型で成型することによって行うことができる。封止樹脂としては、例えばエポキシ系の樹脂であってよい。封止時の熱及び圧力によって支持部材及び残渣が埋め込まれ、接着界面での気泡による剥離を防止することができる。
 半導体装置の製造方法は、必要に応じて、封止工程で硬化不足の封止樹脂を完全に硬化させる工程(後硬化工程)を備えていてもよい。封止工程において、接着剤片が熱硬化されない場合でも、本工程において、封止樹脂の硬化とともに接着剤片を熱硬化させて接着固定が可能になる。本工程における加熱温度は、封止樹脂の種類よって適宜設定することができ、例えば、165~185℃の範囲内であってよく、加熱時間は0.5~8時間程度であってよい。
 半導体装置の製造方法は、必要に応じて、支持部材に接着された接着剤片付き半導体素子に対して、リフロー炉を用いて加熱する工程(加熱溶融工程)を備えていてもよい。本工程では支持部材上に、樹脂封止した半導体装置を表面実装してもよい。表面実装の方法としては、例えば、プリント配線板上に予めはんだを供給した後、温風等によって加熱溶融し、はんだ付けを行うリフローはんだ付けなどが挙げられる。加熱方法としては、例えば、熱風リフロー、赤外線リフロー等が挙げられる。また、加熱方法は、全体を加熱するものであってもよく、局部を加熱するものであってもよい。加熱温度は、例えば、240~280℃の範囲内であってよい。
 以下に、本開示を実施例に基づいて具体的に説明するが、本開示はこれらに限定されるものではない。
[フィルム状接着剤の作製]
(実施例1~19及び比較例1~3)
<接着剤ワニスの調製>
 表1、表2、及び表3に示す成分及び含有量(単位:質量部)で、(A)成分、(B)成分、及び(D)成分からなる混合物にシクロヘキサノンを加え、撹拌混合した。これに、表1、表2、及び表3に示す成分及び含有量(単位:質量部)で、(C)成分を加えて撹拌し、さらに(E)成分及び(F)成分を加えて、各成分が均一になるまで撹拌して、接着剤ワニスを調製した。なお、表1、表2、及び表3に示す各成分は下記のものを意味し、表1、表2、及び表3に示す数値は固形分の質量部を意味する。
(A)成分:エポキシ樹脂
(A-1)N-500P-10(商品名、DIC株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:203g/eq)
(A-2)PG-100(商品名、大阪ガスケミカル株式会社製、フルオレン骨格を有するエポキシ樹脂、エポキシ当量:260g/eq)
(B)成分:硬化剤
(B-1)MEH-7800M(商品名、明和化学株式会社製、フェノールノボラック型フェノール樹脂、水酸基当量:167~180g/eq、軟化点:61~90℃)
(B-2)GPH-103(商品名、日本化薬株式会社製、ビフェニルアラルキル型フェノール樹脂、水酸基当量:220~240g/eq、軟化点:99~106℃)
(B-3)PSM-4326(商品名、群栄化学工業株式会社製、フェノールノボラック型フェノール樹脂、水酸基当量:105g/eq、軟化点:118~122℃)
(C)成分:エラストマー
(C-1)HTR-860P(商品名、ナガセケムテックス株式会社製、アクリルゴム、重量平均分子量:80万、Tg:-12℃)
(C-2)HTR-860P-30B:ナガセケムテックス株式会社製、アクリルゴム、重量平均分子量:30万、Tg:-12℃)
(D)成分:平均粒径が400nm以下である無機フィラー
(D-1)アエロジルR972(商品名(「アエロジル」は登録商標)、日本アエロジル株式会社製、シリカ粒子、平均粒径:16nm)
(D-2)YA050C-HHG(商品名、アドマテックス株式会社製、シリカフィラー分散液、平均粒径:50nm)
(D-3)K180ST(商品名、アドマテックス株式会社製、シリカフィラー分散液、平均粒径:180nm)
(D-4)3GF(商品名、アドマテックス株式会社製、シリカフィラー分散液、平均粒径:300nm)
(d)成分:平均粒径が400nm超である無機フィラー
(d-1)SC2050-HLG(商品名、アドマテックス株式会社製、シリカフィラー分散液、平均粒径:500nm)
(E)成分:カップリング剤
(E-1)A-189(商品名、日本ユニカー株式会社製、γ-メルカプトプロピルトリメトキシシラン)
(E-2)Y-9669(商品名、モメンティブ・パフォーマンス・マテリアルズ・ジャパン製、3-フェニルアミノプロピルトリメトキシシラン)
(F)成分:硬化促進剤
(F-1)2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
<フィルム状接着剤の作製>
 調製した接着剤ワニスを500メッシュのフィルターでろ過し、真空脱泡した。支持フィルムとして、厚さ38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルムを用意し、真空脱泡後の接着剤ワニスをPETフィルム上に塗布した。塗布した接着剤ワニスを、90℃で5分の条件、続いて140℃で5分の条件の2段階で加熱乾燥し、Bステージ状態にある実施例1~19及び比較例1~3のフィルム状接着剤(厚さ:7μm)を得た。フィルム状接着剤においては、接着剤ワニスの塗布量によって、フィルム状接着剤の厚さが7μmになるように調整した。
[冷却エキスパンドによる分断性評価]
 実施例1~19及び比較例1~3のフィルム状接着剤からそれぞれ接着剤片(幅5mm×長さ100mm)を切り出した。接着剤片を一対の冶具(厚紙)に固定するとともに、冶具からはみ出している接着剤片の箇所を除去した。これにより、評価対象の試料(幅5mm×長さ23mm)を得た。-15℃に設定された恒温槽(株式会社アイテック社製、TLF-R3-F-W-PL-S)内において割断試験を実施した。すなわち、オートグラフ(株式会社エーアンドデイ社製、AZT-CA01、ロードセル50N)を用いて圧縮モード、速度10mm/分、押し込み距離5mmの条件で割断試験を実施し、フィルム状接着剤が破断したときの割断仕事W、割断強度P、及び割断伸びLを求めた。また、上記の式(1)及び式(2)にから、割断係数m及び割断抵抗Rを算出した。なお、割断係数m及び割断抵抗Rは、各実施例及び各比較例について8回以上の割断試験を実施し、その平均値である。割断係数mはその数値が小さくなるにつれて、冷却エキスパンドによる分断性に優れる傾向にある。割断係数mが70以下である場合を、冷却エキスパンドによる分断性に特に優れるとして「A」、割断係数mが70超90以下である場合を「B」、割断係数mが90超である場合を「C」と評価した。結果を表1、表2、及び表3に示す。また、割断係数m及び割断抵抗Rの数値も併せて表1、表2、及び表3に示す。
[薄膜性の評価(ダイシェア強度の測定)]
(ダイシング・ダイボンディング一体型フィルムの作製)
 基材と粘着層とを有するダイシングテープ(商品名:6363-45、昭和電工マテリアルズ株式会社製)を用意し、実施例1~19及び比較例1~3のフィルム状接着剤のそれぞれに、ダイシングテープの粘着層をゴムロールにて張り合わせて、基材、粘着層、及び接着剤層(フィルム状接着剤)をこの順に備える実施例1~19及び比較例1~3のダイシング・ダイボンディング一体型フィルムを作製した。
(ダイシェア強度の測定)
 上記で作製した実施例1~19及び比較例1~3のダイシング・ダイボンディング一体型フィルムを用いて、厚さ7μmのフィルム状接着剤のダイシェア強度を測定した。ダイシェア強度を測定するための評価用サンプルは、以下のようにして作製した。厚さ400μmの半導体ウェハを用意し、ダイシング・ダイボンディング一体型フィルムのフィルム状接着剤側を、ステージ温度70℃で半導体ウェハにラミネートし、ダイシング用サンプルを作製した。フルオートダイサーDFD-6361(株式会社ディスコ製)を用いて、得られたダイシング用サンプルを切断した。切断には、2枚のブレードを用いるステップカット方式で行い、ダイシングブレードZH05-SD2000-N1-70-FF、及びZH05-SD4000-N1-70-EE(いずれも株式会社ディスコ製)を用いた。切断条件は、ブレード回転数:4000rpm、切断速度:50mm/秒、チップサイズ:3mm×3mmとした。切断は、半導体ウェハが200μm程度残るように1段階目の切断を行い、ダイシングテープに20μm程度の切り込みが入るように2段階目の切断を行った。次いで、紫外線硬化型粘着剤からなる粘着剤層に紫外線を照射して、粘着剤層を硬化させ、接着剤片付き半導体素子をピックアップした。続いて、接着剤片付き半導体素子の接着剤片を温度120℃、圧力0.1MPa、時間1.0秒の条件で、AUS410基板(ソルダーレジスト付き有機基板)に圧着し、評価用サンプルを作製した。万能ボンドテスター(ノードソン・アドバンスト・テクノロジー株式会社製)を用いて、AUS410基板と接着剤片とのダイシェア強度を室温(25℃)下で測定した。ダイシェア強度が6MPa以上である場合を、薄膜性に特に優れるとして「A」、ダイシェア強度が4MPa以上6MPa未満である場合を「B」、ダイシェア強度が4MPa未満である場合を「C」と評価した。結果を表1、表2、及び表3に示す。また、ダイシェア強度の数値も併せて表1、表2、及び表3に示す。
[耐リフロー性の評価]
 ダイシェア強度の測定で作製した接着剤片付き半導体素子を用いて、以下の方法で耐リフロー性を作製した。まず、接着剤片付き半導体素子を用いて、図8に示すような、四段に積層された積層体をモールド用封止材(日立化成株式会社製、商品名「CEL-9750ZHF10」)で封止することによって、評価用パッケージを得た。なお、封止材の封止条件は175℃/6.7MPa/90秒とし、硬化の条件は175℃、5時間とした。評価用パッケージを20個準備し、これらをJEDECで定めた環境下(レベル3、30℃、60RH%、192時間)に曝して吸湿させた。続いて、IRリフロー炉(260℃、最高温度265℃)に吸湿後の評価用パッケージを3回通過させた。以下の基準で評価を行った。結果を表1、表2、及び表3に示す。
 A:評価用パッケージの破損、厚さの変化、接着剤片と半導体素子との界面での剥離等が20個の評価用パッケージのうち1個も観察されなかった。
 B:評価用パッケージの破損、厚さの変化、接着剤片と半導体素子との界面での剥離等が20個の評価用パッケージのうち少なくとも1個観察された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1、表2、及び表3に示すとおり、実施例1~19のフィルム状接着剤は、冷却分断性及び薄膜性の点で優れていた。一方で、比較例1~3のフィルム状接着剤は、薄膜性及び冷却分断性の少なくとも一方で充分でなかった。これらのことから、本開示のフィルム状接着剤が、冷却エキスパンドによる分断性に優れるとともに、薄膜化したときに充分なダイシェア強度を有することが確認された。
 1…フィルム状接着剤、1A…接着剤層、2…基材層、3…粘着剤層、4…ダイシングテープ、10…ダイシング・ダイボンディング一体型フィルム、11,11a,11b,11c,11d…半導体素子、12…支持部材、13…ワイヤ、14…封止材、15,15a,15b,15c,15d…接着部材、16…端子、20…試料固定用冶具、20a…開口、21…押し込み冶具、21a…先端部、100,110,120…半導体装置。

Claims (10)

  1.  熱硬化性樹脂と、硬化剤と、エラストマーと、平均粒径が400nm以下である無機フィラーとを含有し、
     前記無機フィラーの含有量が、フィルム状接着剤の全量を基準として、18~40質量%である、
     フィルム状接着剤。
  2.  厚さが20μm以下である、
     請求項1に記載のフィルム状接着剤。
  3.  複数の半導体素子を積層してなる半導体装置の製造プロセスに用いられる、
     請求項1又は2に記載のフィルム状接着剤。
  4.  前記半導体装置が三次元NAND型メモリである、
     請求項3に記載のフィルム状接着剤。
  5.  基材層と、粘着剤層と、請求項1又は2に記載のフィルム状接着剤からなる接着剤層とをこの順に備える、
     ダイシング・ダイボンディング一体型フィルム。
  6.  半導体素子と、
     前記半導体素子を搭載する支持部材と、
     前記半導体素子及び前記支持部材の間に設けられ、前記半導体素子と前記支持部材とを接着する接着部材と、
    を備え、
     前記接着部材が、請求項1又は2に記載のフィルム状接着剤の硬化物である、
     半導体装置。
  7.  前記半導体素子の表面上に積層された他の半導体素子をさらに備える、
     請求項6に記載の半導体装置。
  8.  半導体素子と支持部材との間、又は、第1の半導体素子と第2の半導体素子との間に請求項1又は2に記載のフィルム状接着剤を介在させ、前記半導体素子及び前記支持部材、又は、前記第1の半導体素子及び前記第2の半導体素子を接着させる工程を備える、
     半導体装置の製造方法。
  9.  請求項5に記載のダイシング・ダイボンディング一体型フィルムの前記接着剤層を半導体ウェハに貼り付ける工程と、
     前記接着剤層を貼り付けた前記半導体ウェハをダイシングする工程と、
     前記基材層を冷却条件下エキスパンドすることによって、複数の個片化された接着剤片付き半導体素子を作製する工程と、
     前記接着剤片付き半導体素子を前記粘着剤層からピックアップする工程と、
     ピックアップされた前記接着剤片付き半導体素子を支持部材に接着剤片を介して接着する工程と、
    を備える、
     半導体装置の製造方法。
  10.  他の前記接着剤片付き半導体素子を、前記支持部材に接着された前記半導体素子の表面に接着剤片を介して接着する工程をさらに備える、
     請求項9に記載の半導体装置の製造方法。
PCT/JP2021/035421 2021-09-27 2021-09-27 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法 WO2023047594A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/035421 WO2023047594A1 (ja) 2021-09-27 2021-09-27 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
PCT/JP2022/035193 WO2023048188A1 (ja) 2021-09-27 2022-09-21 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
JP2023549725A JPWO2023048188A1 (ja) 2021-09-27 2022-09-21
CN202280062217.8A CN117999641A (zh) 2021-09-27 2022-09-21 膜状黏合剂、切割晶粒接合一体型膜、以及半导体装置及其制造方法
TW111136098A TW202323489A (zh) 2021-09-27 2022-09-23 膜狀接著劑、切割晶粒接合一體型膜、以及半導體裝置及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035421 WO2023047594A1 (ja) 2021-09-27 2021-09-27 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023047594A1 true WO2023047594A1 (ja) 2023-03-30

Family

ID=85720284

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/035421 WO2023047594A1 (ja) 2021-09-27 2021-09-27 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
PCT/JP2022/035193 WO2023048188A1 (ja) 2021-09-27 2022-09-21 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035193 WO2023048188A1 (ja) 2021-09-27 2022-09-21 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2023048188A1 (ja)
CN (1) CN117999641A (ja)
TW (1) TW202323489A (ja)
WO (2) WO2023047594A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074144A (ja) * 2008-08-20 2010-04-02 Hitachi Chem Co Ltd ダイシングテープ一体型接着シート及びそれを用いた半導体装置の製造方法
WO2020013250A1 (ja) * 2018-07-11 2020-01-16 日立化成株式会社 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
WO2020184490A1 (ja) * 2019-03-11 2020-09-17 日立化成株式会社 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733394B2 (ja) * 2016-07-25 2020-07-29 日立化成株式会社 接着シート、及び半導体装置の製造方法。
JP7409029B2 (ja) * 2019-11-15 2024-01-09 株式会社レゾナック 半導体装置の製造方法、並びにダイシング・ダイボンディング一体型フィルム及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074144A (ja) * 2008-08-20 2010-04-02 Hitachi Chem Co Ltd ダイシングテープ一体型接着シート及びそれを用いた半導体装置の製造方法
WO2020013250A1 (ja) * 2018-07-11 2020-01-16 日立化成株式会社 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
WO2020184490A1 (ja) * 2019-03-11 2020-09-17 日立化成株式会社 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法

Also Published As

Publication number Publication date
CN117999641A (zh) 2024-05-07
TW202323489A (zh) 2023-06-16
WO2023048188A1 (ja) 2023-03-30
JPWO2023048188A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7298613B2 (ja) 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
JP2024010048A (ja) 半導体装置
JP6662074B2 (ja) 接着フィルム
WO2019220540A1 (ja) 半導体装置、並びに、その製造に使用する熱硬化性樹脂組成物及びダイシングダイボンディング一体型テープ
WO2023047594A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2020195981A1 (ja) 半導体装置の製造方法、ダイボンディングフィルム、及びダイシング・ダイボンディング一体型接着シート
WO2020158490A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
JP7322897B2 (ja) 接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法
WO2023157846A1 (ja) フィルム状接着剤及びその製造方法、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2020129996A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
WO2020065783A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
WO2022186285A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2023152837A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2022149582A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2022054718A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
WO2022149581A1 (ja) 接着剤組成物、フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
KR20240090161A (ko) 필름상 접착제, 다이싱·다이본딩 일체형 필름, 및 반도체 장치 및 그 제조 방법
JP7435458B2 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
JP2010109362A (ja) ダイボンディングフィルム及びこれを用いた半導体装置
TW202414550A (zh) 半導體裝置的製造方法、接著層及切晶黏晶一體型膜
JP2022044991A (ja) ダイボンディングフィルム、接着シート、並びに半導体装置及びその製造方法
WO2020136903A1 (ja) 半導体装置の製造方法、フィルム状接着剤及びダイシング・ダイボンディング一体型フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE