WO2023040168A1 - 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法 - Google Patents

用于中膨胀光纤传像元件的高折射率玻璃及其制备方法 Download PDF

Info

Publication number
WO2023040168A1
WO2023040168A1 PCT/CN2022/075011 CN2022075011W WO2023040168A1 WO 2023040168 A1 WO2023040168 A1 WO 2023040168A1 CN 2022075011 W CN2022075011 W CN 2022075011W WO 2023040168 A1 WO2023040168 A1 WO 2023040168A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
oxide
refractive
optical fiber
image transmission
Prior art date
Application number
PCT/CN2022/075011
Other languages
English (en)
French (fr)
Inventor
张磊
曹振博
贾金升
王云
赵越
张弦
汤晓峰
石钰
张敬
樊志恒
许慧超
于浩洋
宋普光
王爱新
洪常华
Original Assignee
中国建筑材料科学研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑材料科学研究总院有限公司 filed Critical 中国建筑材料科学研究总院有限公司
Priority to US17/768,692 priority Critical patent/US11858846B2/en
Publication of WO2023040168A1 publication Critical patent/WO2023040168A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • C03B5/08Glass-melting pots
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the raw material technology of optical fiber image transmission components and the field of glass materials, in particular to high-refractive index glass used for medium-expansion optical fiber image transmission components and a preparation method thereof.
  • Optical fiber image transmission components include optical fiber panels, optical fiber image inverters, optical fiber cones, optical fiber image transmission bundles, etc.
  • Optical fiber image transmission components are photoelectric imaging devices with excellent performance, which use unique leather materials, core materials and absorbent materials The formula is produced by the drawing process of vacuum control and rod tube combination, so that the product has good air tightness, small distortion, less spots, simple structure, small size, light weight, large numerical aperture, high light transmission efficiency, and inter-stage coupling. The loss is small, the coupling efficiency is high, the resolution is high, the image transmission is clear and real, the optical thickness is zero, and the edge image quality can be effectively improved.
  • the optical fiber image transmission component is a high-resolution image transmission component formed by tens of millions of parallel optical fibers and hot-melted.
  • optical fiber image transmission components The most typical application of optical fiber image transmission components is as the optical input and output windows of the low-light image intensifier, which plays an important role in improving the quality of imaging devices. It needs to be sealed with Kovar (Kovar alloy) in the application, so It needs to have a similar linear expansion coefficient (50 ⁇ 10 -7 /°C) with Kovar alloy for effective sealing matching, so as to improve the stability and prolong the service life of the low-light image tube.
  • the optical fiber imaging components currently used in China use a high-expansion system, and its thermal expansion coefficient ranges from (87 ⁇ 5) ⁇ 10 -7 /°C, which is far from the sealing matching degree of Kovar alloy.
  • it is necessary to use an optical fiber image transmission element with a medium expansion system but there is no suitable product with a medium expansion system at present.
  • the invention provides a high-refractive-index glass used for medium-expansion optical fiber image transmission components and a preparation method thereof.
  • a composition of high-refractive-index glass used for medium-expansion optical fiber image transmission components comprising the following components in weight percentage:
  • composition preferably comprises the following components in percentage by weight:
  • the refractive index of the high refractive index glass is 1.80 ⁇ n D ⁇ 1.82
  • the average linear thermal expansion coefficient in the range of 30-300°C is (68 ⁇ 5) ⁇ 10 -7 /°C
  • the strain point temperature is greater than 600°C
  • the crystallization temperature is greater than 820°C
  • high transmittance does not contain heavy metal oxides harmful to the environment such as As 2 O 3 , Sb 2 O 3 , PbO, CdO, etc., and has good chemical stability and other advantages.
  • the present invention also provides a method for preparing high-refractive-index glass for medium-expansion optical fiber image transmission elements by using the composition, comprising the following steps:
  • the formed glass rod is annealed in an annealing furnace, and then cooled to room temperature with the furnace.
  • the first preset temperature is 1350-1450°C; the melting time is 4-8 hours; the stirring frequency of the melting process is 1-2 times; the second preset temperature is 1300-1340°C ; The clarification time is 1-2 hours.
  • the annealing process is to keep the temperature at 600-650° C. for 1 hour; then cool down from 600-650° C. to 60° C. in 12 hours.
  • the present invention further provides a high-refractive-index glass used for medium-expansion optical fiber image transmission components, which is prepared according to the above-mentioned method.
  • the present invention also provides an optical glass, made according to the high refractive index glass, the optical glass has a long material viscosity curve in the viscosity range of 10 2 -10 13 dPas, which can be easier to handle and reduce air bubbles and the generation of streaks.
  • the present invention further provides an optical fiber image transmission element, including an optical fiber panel, an optical fiber image inverter, an optical fiber light cone and an optical fiber image transmission bundle.
  • the optical fiber image transmission element is drawn by combining a core glass rod and a leather glass tube.
  • the core material glass rod is made of the above-mentioned high refractive index glass.
  • the present invention also provides an application of the high-refractive-index glass used in the medium-expansion optical fiber image transmission element in optical technology and optoelectronic technology; the optical technology and optoelectronic technology include imaging, projection, photoelectric communication, mobile terminal and laser technology.
  • a kind of high-refractive-index glass used in the medium-expansion optical fiber image transmission element of the present invention has the following characteristics:
  • the invention provides a high-refractive-index glass used for a medium-expansion optical fiber image transmission element, which is suitable for use as a core material glass material of an optical fiber when preparing a medium-expansion optical fiber image transmission element.
  • the high-refractive-index glass of the present invention has sealing matching degree with Kovar alloy and good thermal stability, adopts a medium-expansion optical fiber image transmission element with an expansion coefficient of (68 ⁇ 5) ⁇ 10 -7 /°C, and has better Thermal stability, can adapt to temperature changes in a wider range of environments such as deserts, plateaus, snowy regions, oceans, jungles, etc., and further improve the performance and service life of low-light image tubes.
  • SiO 2 is a glass-forming oxide, a component that plays an important role in the glass skeleton, and is a component that improves chemical resistance.
  • the weight percent (wt.%) of SiO 2 is 5-9.
  • SiO 2 content is lower than 5wt.%, it is difficult to obtain glass with a medium expansion coefficient, and at the same time, the chemical resistance of the glass will be reduced; when the SiO 2 content is higher than 10wt.%, the high-temperature viscosity of the glass will increase, resulting in excessive glass melting temperature. High, at the same time the probability of glass phase separation increases.
  • Al 2 O 3 is the intermediate oxide of glass.
  • Al 3+ has two coordination states, that is, it is located in tetrahedron or octahedron.
  • AlO 4 aluminum oxide tetrahedron
  • silicon Oxygen tetrahedra form a continuous network.
  • aluminum oxide octahedron [AlO 6 ] is formed, which is the outer body of the network and is in the hole of the silicon-oxygen structure network, so it can be combined with SiO 2 within a certain content range. It is the main body formed by the glass network.
  • the weight percentage (wt.%) of Al 2 O 3 is 0-1. When the content of Al 2 O 3 is higher than 1wt.%, it will increase the high-temperature viscosity of the glass, resulting in too high melting temperature of the glass, and the crystallization performance of the glass will fall.
  • B 2 O 3 is a glass-forming oxide, which is also the main component of the glass skeleton, and is also a co-solvent for reducing the viscosity of glass melting.
  • Boron-oxygen triangle [BO 3 ] and boron-oxygen tetrahedron [BO 4 ] are the structural components. Boron may exist as triangle [BO 3 ] or boron-oxygen tetrahedron [BO 4 ] under different conditions. Melted at high temperature Under certain conditions, it is generally difficult to form boron-oxygen tetrahedrons, and can only exist in the form of trihedra.
  • B 3+ has a tendency to capture free oxygen to form tetrahedrons under certain conditions, making the structure compact and improving the glass.
  • Low temperature viscosity but because it has the characteristics of reducing glass viscosity at high temperature and increasing glass viscosity at low temperature, it is also the main component to reduce the refractive index of glass, so its content range is determined to be small.
  • the weight percentage (wt.%) of B 2 O 3 is 23-28, and the content of B 2 O 3 is lower than 23wt.%, can not play the role of solubilization, and will reduce the chemical stability of glass simultaneously; B 2 O 3 The content of greater than 28wt.%, will reduce the refractive index of the glass, and at the same time increase the phase separation tendency of the glass.
  • a high content of network former oxides of B2O3 and SiO2 leads to a decrease in the refractive index of the glass, in the case of certain combinations of rare earth metal oxides and conventional network former oxides , either medium expansion cannot be achieved, or the glass system has a greater tendency to crystallize, for these reasons the B2O3 content must be greater than the SiO2 content.
  • CaO is an oxide outside the glass structure network, and the weight percentage (wt.%) of CaO is 0-3. When the content of CaO is greater than 3wt.%, it will reduce the chemical resistance stability of the glass and increase the thermal expansion coefficient of the glass.
  • BaO is an oxide of the outer body of the glass structure network, which can effectively increase the refractive index of the glass.
  • the weight percentage (wt.%) of BaO is 6-12, and the content of BaO is less than 6wt.%, which will reduce the refractive index of the glass; the content of BaO If it is greater than 12wt.%, the crystallization temperature of the glass will be increased, the crystallization tendency of the glass will be increased, and the density of the glass will be significantly increased.
  • La 2 O 3 is a lanthanide rare earth oxide, which can increase the refractive index of the glass.
  • the weight percentage (wt.%) of La 2 O 3 is 30-34, but when the content of La 2 O 3 is greater than 34wt.%, it will cause glass cracking
  • the coefficient of thermal expansion increases; when the content of La 2 O 3 is less than 30wt.%, the refractive index of the glass will decrease.
  • Nb 2 O 5 is also a rare earth oxide, which can increase the refractive index of the glass, improve the process performance of the glass, and elongate the material properties of the glass.
  • the weight percentage (wt.%) of Nb 2 O 5 is 4-8, but Nb 2 O
  • the content of 5 is greater than 8wt.%, the density and thermal expansion coefficient of the glass will increase; when the content of Nb 2 O 5 is less than 4wt.%, the refractive index of the glass will decrease.
  • “Liquidity” refers to the steepness of the viscosity curve of the glass within the viscosity range of 10 2 -10 13 dPas, that is, the intensity of the change of the viscosity of the glass with temperature within the viscosity range. Glasses according to the invention have the advantage of somewhat longer toughness in the two critical temperature ranges than comparable prior art glasses, which can be handled more easily and have reduced streaking.
  • Ta 2 O 5 is also a rare earth oxide, which can increase the refractive index of the glass.
  • the weight percentage (wt.%) of Ta 2 O 5 is 0-1, but when the Ta 2 O 5 content is greater than 1wt.%, it will cause the density and The coefficient of thermal expansion increases, and at the same time, the manufacturing cost of the glass increases.
  • Y 2 O 3 is also a rare earth oxide, which can increase the refractive index of the glass, improve the process performance of the glass, and reduce the melting temperature and crystallization temperature of the glass at the same time.
  • the weight percentage (wt.%) of Y 2 O 3 is 0-1 , when the Y 2 O 3 content is greater than 1wt.%, the cost of the glass will increase.
  • ZnO is used to reduce the melting temperature of glass, improve the chemical resistance and refractive index of glass, the weight percentage (wt.%) of ZnO is 4-9%, and the content of ZnO is greater than 9wt.%, which will reduce the chemical resistance of glass Stability and increase the thermal expansion coefficient of the glass; the content of ZnO is less than 4wt.%, which will reduce the refractive index of the glass.
  • TiO 2 is used to increase the refractive index and transmittance of the glass, increase the oxide of the glass network, thereby reducing the glass density and high-temperature viscosity, and is beneficial to the clarification of the glass liquid and the elimination of streaks during the materialization process.
  • the weight percentage (wt.%) of TiO 2 is 4-8, and the content of TiO 2 is greater than 8wt.%, which will increase the thermal expansion coefficient of the glass; the content of TiO 2 is less than 4wt.%, which will reduce the refractive index of the glass.
  • TiO 2 can react with iron impurities to form a brown iron-titanate complex; in addition, TiO 2 and rare earth metal oxides, Ta 2 O 5 , Nb 2 O 5 The combination is very challenging in terms of process because Nb2O5 also releases oxygen at high temperature and competes with TiO2 for free oxygen still dissolved in the glass, and if the process is not precisely controlled , the result can be a brown tinted glass.
  • ZrO 2 is used to increase the refractive index and transmittance of glass, and has the effect of adjusting optical properties and improving chemical resistance.
  • the weight percentage (wt.%) of ZrO 2 is 4-6, and the content of ZrO 2 is greater than 6wt.%, which will increase the melting temperature of the glass and the crystallization tendency of the glass.
  • SnO 2 is used to clarify glass melting, which can improve the chemical resistance and transmittance of glass.
  • the weight percentage (wt.%) of SnO 2 is 0-1%, and the content of SnO 2 is greater than 1wt.%, which will increase Air bubbles inside the glass.
  • without X or “without component X” means that component X is substantially absent in the glass, that is to say, if any, said component exists only as an impurity, However, it is not added to the composition as a required component.
  • the glass of the present invention belongs to boron-lanthanum-barium silicate glass, and the glass does not contain heavy metal oxides such as As 2 O 3 , Sb 2 O 3 , PbO, CdO, etc., which are seriously harmful to the environment. Other glass raw materials brought in.
  • Fig. 1 is a comparison chart of the thermal expansion coefficient test of the embodiment of the present invention and high expansion coefficient glass.
  • Parameters and measuring methods and instruments measured for the high-refractive-index glass used in the middle expansion optical fiber image transmission element of the present invention are as follows:
  • the refractive index n D of the glass is measured by a refractive index tester; the linear expansion coefficient of 30-300 °C is measured by a horizontal dilatometer, expressed as an average linear expansion coefficient, measured by the method specified in ISO 7991, and listed in Table 1
  • the glass chemical composition (wt.%) and glass properties of the examples are listed in detail.
  • Quartz sand high purity, 150 ⁇ m sieve 1% or less, 45 ⁇ m sieve 30% or less, Fe 2 O 3 content less than 0.01wt.%, aluminum hydroxide (analytical pure, average particle size 50 ⁇ m), boric acid Or boric anhydride (400 ⁇ m sieve is less than 10%, 63 ⁇ m sieve is less than 10%), calcium carbonate (analytical pure, average particle size 250 ⁇ m), barium carbonate (analytical pure, purity ⁇ 99.0%), di Lanthanum (5N), niobium pentoxide (5N), tantalum pentoxide (5N), yttrium trioxide (5N), zinc oxide (analytically pure), titanium dioxide (chemically pure), zirconia (analytical pure), oxide Tin (analytical pure).
  • aluminum hydroxide analytical pure, average particle size 50 ⁇ m
  • boric acid Or boric anhydride 400 ⁇ m sieve is less than 10%, 63 ⁇ m sieve is less than 10%
  • calcium carbonate
  • the CTE Coefficient of Thermal Expansion
  • the thermal expansion coefficient of the comparative high-expansion glass is 91.324 ⁇ 10 -7 /°C.
  • Examples 1 to 300°C of the present invention The thermal expansion coefficients of Example 5 are 70.234 ⁇ 10 -7 /°C, 67.918 ⁇ 10 -7 /°C, 66.830 ⁇ 10 -7 /°C, 71.094 ⁇ 10 -7 /°C, 68.607 ⁇ 10 -7 /°C respectively.
  • the glass After the glass is melted, it is cooled to 1320°C for 2 hours, and then The molten glass is cast into the specified test product requirements, and then annealed.
  • the annealing process is 625 ° C for 1 hour, and then cooled to 60 ° C in 12 hours, and then cooled to room temperature with the furnace. Its test performance is shown in Table 1, (1) the refractive index is 1.80; (2) the average linear expansion coefficient at 30-300°C is 70.234 ⁇ 10 -7 /°C.
  • the actual composition of the glass refers to Example 2 of Table 1.
  • quartz sand, aluminum hydroxide, boric anhydride, calcium carbonate, barium nitrate, lanthanum oxide, niobium oxide, tantalum oxide, yttrium oxide, zinc oxide , titanium dioxide, zirconia and tin oxide were put into a platinum crucible and melted at 1350°C for 8 hours. During the glass melting process, the glass was stirred once to make the glass melt evenly. Cool down to 1300°C for 1 hour, then cast the molten glass into the specified test product requirements, and then anneal.
  • the annealing process is 650°C for 1 hour, then cool down to 60°C for 12 hours, and then cool with the furnace to room temperature.
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.82; (2) The average coefficient of linear expansion at 30-300°C is 67.918 ⁇ 10 -7 /°C.
  • Example 3 in Table 1 for the actual composition of the glass use the same raw materials and raw material requirements as in Example 1, melt at a temperature of 1450 ° C for 4 hours, and stir the glass twice during the glass melting process to make the glass melt Evenly, after the glass is melted, it is cooled to 1340°C for 2 hours to clarify, and then the molten glass is cast into the specified test product requirements, and then annealed. The annealing process is 600°C for 1 hour, and then cooled to 60°C, and then cooled to room temperature with the furnace.
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.82; (2) The average coefficient of linear expansion at 30-300°C is 66.830 ⁇ 10 -7 /°C.
  • Example 4 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1, and adopt the same melting process system and test conditions.
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.82; (2) The average coefficient of linear expansion at 30-300°C is 71.094 ⁇ 10 -7 /°C.
  • Example 5 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1, and adopt the same melting process system and test conditions.
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.81; (2) The average linear expansion coefficient at 30-300°C is 68.607 ⁇ 10 -7 /°C.
  • the high-refractive-index glass used in the medium-expansion optical fiber image transmission element of the present invention has the advantages of high refractive index and does not contain heavy metal oxides that are seriously harmful to the environment, and is suitable for preparing optical fiber image transmission components.
  • Components, optical fiber image transmission components can be fiber optic panels, fiber optic image inverters, fiber optic cones, and fiber optic image transmission bundles, etc., and the core material used in them is prepared from the high refractive index glass of the medium-expansion optical fiber image transmission components of the present invention.
  • high-refractive index glass with excellent chemical stability, low thermal expansion coefficient, and excellent transmittance can shorten the focal length of the lens to reduce the size of components or lens components.
  • the high refractive index glass of the present invention can be used as an optical glass of this type of technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明公开了一种用于中膨胀光纤传像元件的高折射率玻璃及其制备方法,该高折射率玻璃包括以下重量百分含量的组分:SiO 2 5-9%、Al 2O 3 0-1%、B 2O 3 23-28%、CaO 0-3%、BaO 6-12%、La 2O 3 30-34%、Nb 2O 5 4-8%、Ta 2O 5 0-1%、Y 2O 3 0-1%、ZnO 4-9%、TiO 2 4-8%、ZrO 2 4-6%、SnO 2 0-1%。本发明还提供一种高折射率玻璃的制备方法,包括:将石英砂、氢氧化铝、硼酸或硼酐、碳酸钙、碳酸钡或硝酸钡、氧化镧、氧化铌、氧化钽、氧化钇、氧化锌、二氧化钛、氧化锆和氧化锡等原料按照配料要求放入铂金坩埚中,高温熔融、降温澄清、漏料浇铸后形成玻璃棒,再退火、降温、冷却。本发明的高折射率玻璃具有折射率高、应变点温度大于600℃,析晶温度大于820℃,热膨胀系数(68±5)×10 -7/℃,具有良好的化学稳定性等优点。

Description

用于中膨胀光纤传像元件的高折射率玻璃及其制备方法 技术领域
本发明涉及光纤传像元件原料技术及玻璃材料领域,特别是涉及用于中膨胀光纤传像元件的高折射率玻璃及其制备方法。
背景技术
光纤传像元件包括光学纤维面板、光纤倒像器、光学纤维锥、光纤传像束等,光纤传像元件是一种性能优异的光电成像器件,其采用独特的皮料、芯料和吸收料配方,利用真空控制和棒管结合的拉制工艺生产,使产品气密性好、畸变小、斑点少,具有结构简单,体积小,重量轻,数值孔径大,传光效率高,级间耦合损失小,耦合效率高,分辨率高,传像清晰、真实,在光学上具有零厚度,能有效改善边缘像质等特点。光纤传像元件是由数千万根平行排列的光学纤维,经热熔压形成的高分辨力图像传像元件,是像增强器、高清晰显示用的关键材料,广泛地应用于军事、刑侦、航天、医疗等领域的各种阴极射线管、摄像管、CCD耦合、微光夜视、医疗器械显示屏以及高清晰度电视成像和其他需要传送图像的仪器和设备中,是当今世纪光电子行业的高科技尖端产品。
光纤传像元件最典型的应用是作为微光像增强器的光学输入、输出窗口,对提高成像器件的品质起着重要的作用,其在应用中需要与Kovar(可伐合金)封接,因此需要与可伐合金具有相近的线膨胀系数(50×10 -7/℃)进行有效的封接匹配,以提高微光像管的稳定性和延长使用寿命。国内目前使用的光纤传像元件采用的是高膨胀体系,其热膨胀系数范围为(87±5)×10 -7/℃,其与可伐合金的封接匹配度相差甚远。为了提高像增强器件的热稳定性,需要采用中膨胀体系的光纤传像元件,但是目前尚无适合的中膨胀体系产品。
发明内容
为了解决现有的技术问题,本发明提供了一种用于中膨胀光纤传像元件的高折射率玻璃及其制备方法。
为了实现上述目的,本发明采取了如下技术方案:
一种用于中膨胀光纤传像元件的高折射率玻璃的组合物,包括以下重量百分含量的组分:
Figure PCTCN2022075011-appb-000001
所述的组合物,优选包括以下重量百分含量组分:
Figure PCTCN2022075011-appb-000002
进一步地,所述高折射率玻璃的折射率为1.80≤n D≤1.82,在30~300℃范围的平均线热膨胀系数为(68±5)×10 -7/℃,应变点温度大于600℃,析晶温度大于820℃,透过率 高,不含有对环境有害的重金属氧化物如As 2O 3、Sb 2O 3、PbO、CdO等,具有良好的化学稳定性等优点。
进一步地,本发明还提供一种利用所述的组合物制备用于中膨胀光纤传像元件的高折射率玻璃的方法,包括以下步骤:
(1)将石英砂、氢氧化铝、硼酸或硼酐、碳酸钙、碳酸钡或硝酸钡、氧化镧、氧化铌、氧化钽、氧化钇、氧化锌、二氧化钛、氧化锆和氧化锡,按照配料要求放入铂金坩埚中;
(2)在第一预设温度下熔融,熔融过程中进行搅拌,再降温至第二预设温度澄清;
(3)将澄清后的玻璃熔体通过漏料口流下来,在模具中浇铸形成玻璃棒;
(4)成型后的玻璃棒在退火炉中退火,然后再随炉冷却至室温。
所述的第一预设温度为1350-1450℃;所述熔融的时间为4-8小时;所述熔融过程的搅拌次数为1-2次;所述第二预设温度为1300-1340℃;所述澄清的时间为1-2小时。
所述的退火工艺为在600-650℃保温1小时;再用12小时从600-650℃降温至60℃。
本发明又提供一种用于中膨胀光纤传像元件的高折射率玻璃,按照上述的方法制备得到。
本发明还提供一种光学玻璃,根据所述的高折射率玻璃制成,所述光学玻璃在10 2-10 13dPas的粘度范围内具有长料性的粘度曲线,可以更容易处理并降低气泡和条纹的产生。
本发明再提供一种光纤传像元件,包括光纤面板、光纤倒像器、光纤光锥和光纤传像束,所述光纤传像元件是采用芯料玻璃棒和皮料玻璃管结合的拉制工艺生产而成,所述芯料玻璃棒为由上述的高折射率玻璃制成。
本发明还提供一种用于中膨胀光纤传像元件的高折射率玻璃在光学技术和光电子技术中的应用;所述光学技术和光电子技术包括成像、投影、光电通信、移动终端和激光技术。
与现有技术相比,本发明的一种用于中膨胀光纤传像元件的高折射率玻璃具有以下特性:
(1)具有与可伐合金相近的热膨胀系数,在30~300℃范围的平均线热膨胀系数为(68±5)×10 -7/℃,且应变点温度大于600℃,可与中膨胀微光像增强器封接材料实现完美封接;
(2)具有高折射率,折射率n D为1.80~1.82,可实现光学纤维的最佳传光能力,满足光学纤维最佳的全反射条件数值孔径N.A.≥1;
(3)具有良好的抗析晶性能,析晶温度>820℃,且具有良好的对可见光辐射透明和良好的化学稳定性,能够满足光纤倒像器的特殊制作工艺要求,实现玻璃在经过多次高温拉丝、高温熔压、高温扭转或拉锥后依旧保持玻璃本身特性不发生变化;
(4)不含有对环境严重危害的重金属氧化物如As 2O 3、Sb 2O 3、PbO、CdO等。
本发明提供的一种用于中膨胀光纤传像元件的高折射率玻璃,适合用来制备中膨胀光纤传像元件时,用作光学纤维的芯料玻璃材料。
本发明的高折射率玻璃具有与可伐合金封接匹配度和良好的热稳定性,采用膨胀系数为(68±5)×10 -7/℃的中膨胀光纤传像元件,具有更好的热稳定性,能适应更广泛的环境如沙漠、高原、雪域、海洋、丛林等的温度变化,进一步提高微光像管的使用性能和使用寿 命。
本发明中,SiO 2是玻璃形成氧化物,是玻璃骨架中起重要作用的成分,同时是提高耐化学的成分。SiO 2的重量百分比(wt.%)为5-9。SiO 2含量低于5wt.%,不易获得中膨胀系数的玻璃,同时会降低玻璃的耐化学稳定性;SiO 2含量高于10wt.%时,玻璃的高温黏度会增加,造成玻璃熔制温度过高,同时玻璃分相的几率增大。
Al 2O 3为玻璃的中间体氧化物,Al 3+有两种配位状态,即位于四面体或八面体中,当玻璃中氧足够多时,形成铝氧四面体[AlO 4],与硅氧四面体形成连续的网络,当玻璃中氧不足时,形成铝氧八面体[AlO 6],为网络外体而处于硅氧结构网络的空穴中,所以在一定含量范围内可以和SiO 2是玻璃网络形成的主体。Al 2O 3的重量百分比(wt.%)为0-1,Al 2O 3含量高于1wt.%时,会增加玻璃的高温黏度,造成玻璃熔制温度过高,同时玻璃的析晶性能会下降。
B 2O 3为玻璃形成氧化物,也是构成玻璃骨架的主要成分,同时又是一种降低玻璃熔制黏度的助溶剂。硼氧三角体[BO 3]和硼氧四面体[BO 4]为结构组元,在不同条件下硼可能以三角体[BO 3]或硼氧四面体[BO 4]存在,在高温熔制条件时,一般难于形成硼氧四面体,而只能以三面体的方式存,但在低温时,在一定条件下B 3+有夺取游离氧形成四面体的趋势,使结构紧密而提高玻璃的低温黏度,但由于它有高温降低玻璃黏度和低温提高玻璃黏度的特性,也是降低玻璃折射率的主要成分,由此决定了它的含量范围较小。B 2O 3的重量百分比(wt.%)为23-28,B 2O 3的含量低于23wt.%,无法起到助溶的作用,同时会降低玻璃的化学稳定性;B 2O 3的含量大于28wt.%,会降低玻璃的折射率,同时使玻璃的分相倾向增加。
在本发明中,高含量的B 2O 3和SiO 2的网络形成体氧化物,会导致玻璃的折射率下降,在稀土金属氧化物和传统的网络形成体氧化物的某些组合的情况下,要么不能实现中膨胀,要么玻璃体系具有更大的结晶倾向,出于这些原因,B 2O 3含量必须大于SiO 2含量。
CaO是玻璃结构网络外体氧化物,CaO的重量百分比(wt.%)为0-3,CaO的含量大于3wt.%时,会降低玻璃的耐化学稳定性,增加玻璃的热膨胀系数。
BaO是玻璃结构网络外体氧化物,能有效提高玻璃的折射率,BaO的重量百分比(wt.%)为6-12,BaO的含量小于6wt.%,会降低玻璃的折射率;BaO的含量大于12wt.%,会增加玻璃的析晶温度,增大玻璃的析晶倾向,同时使得玻璃的密度显著提高。
La 2O 3是镧系稀土氧化物,能提高玻璃的折射率,La 2O 3的重量百分比(wt.%)为30-34,但La 2O 3含量大于34wt.%时会造成玻璃的热膨胀系数增加;La 2O 3含量小于30wt.%时会造成玻璃的折射率降低。
Nb 2O 5也是稀土氧化物,能增加玻璃的折射率,改善玻璃的工艺性能,拉长玻璃的料性,Nb 2O 5的重量百分比(wt.%)为4-8,但Nb 2O 5含量大于8wt.%时会造成玻璃的密度和热膨胀系数增加;Nb 2O 5含量小于4wt.%时会造成玻璃的折射率下降。“料性长短”是指在10 2-10 13dPas的粘度范围内玻璃的粘度曲线的陡峭程度,即在该粘度范围内玻璃的粘度随温度的变化的剧烈程度。本发明的玻璃具有在两个临界温度范围内比现有技术的同类玻璃稍微更长的料性的优点,所述本发明的玻璃可以更容易处理并降低条纹的产生。
Ta 2O 5也是稀土氧化物,能增加玻璃的折射率,Ta 2O 5的重量百分比(wt.%)为0-1,但Ta 2O 5含量大于1wt.%时会造成玻璃的密度和热膨胀系数增加,同时会使得玻璃的制造成本升高。
Y 2O 3也是稀土氧化物,能增加玻璃的折射率,改善玻璃的工艺性能,同时降低玻璃的熔制温度和析晶温度,Y 2O 3的重量百分比(wt.%)为0-1,Y 2O 3含量大于1wt.%时会造成玻璃的成本增加。
ZnO是用来降低玻璃的熔制温度,改善玻璃耐化性的和折射率的,ZnO的重量百分比(wt.%)为4~9%,ZnO的含量大于9wt.%,会降低玻璃耐化学稳定性和增加玻璃的热膨胀系数;ZnO的含量小于4wt.%,会降低玻璃的折射率。
TiO 2是用来提高玻璃的折射率和透过率的,增加玻璃网络的氧化物,从而降低玻璃密度和高温粘度,有利于化料过程中玻璃液的澄清和条纹的消除。TiO 2的重量百分比(wt.%)为4-8,TiO 2的含量大于8wt.%,会增加玻璃的热膨胀系数;TiO 2的含量小于4wt.%,会降低玻璃的折射率。在本发明的高折射率玻璃中,TiO 2可以与铁杂质反应以形成褐色的铁-钛酸盐络合物;另外,TiO 2与稀土金属氧化物、Ta 2O 5、Nb 2O 5的组合在工艺方面非常具有挑战性,因为Nb 2O 5在高温下也释放氧并且与TiO 2竞争仍然溶解在玻璃中的游离氧,如果没有精确的控制工艺,结果可能会形成棕色着色的玻璃。
ZrO 2是用来提高玻璃的折射率和透过率的,具有调整光学性能、提高耐化性的效果。ZrO 2的重量百分比(wt.%)为4-6,ZrO 2的含量大于6wt.%,会增加玻璃的熔制温度和玻璃的析晶倾向。
SnO 2是用来澄清玻璃熔制的,可以改善玻璃的耐化性和透过率,SnO 2的重量百分比(wt.%)为0~1%,SnO 2的含量大于1wt.%,会增加玻璃内部的气泡。
本发明中,在下述表达“无X”或“不含组份X”是指在玻璃中基本上不存在组份X,也就是说,如果有的话,所述组份仅作为杂质存在,但是其并不作为所需的组份添加至组合物内。本发明的玻璃属于硼镧钡硅酸盐玻璃,玻璃中不含有对环境严重危害的重金属氧化物如As 2O 3、Sb 2O 3、PbO、CdO等,即使含有及其微少的量也是由于其它玻璃原料所带入。
附图说明
图1是本发明的实施例与高膨胀系数玻璃的热膨胀系数测试对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合具体实施例对本发明作进一步地详细描述,但不作为对本发明的限定。
对本发明用于中膨胀光纤传像元件的高折射率玻璃所测定的参数及测定方法和仪器如下:
(1)折射率n D[λ=589.3nm时玻璃的折射率];
(2)30-300℃的平均热膨胀系数α 30/300[10 -7/℃]。
其中,玻璃的折射率n D采用折射率测试仪来测定;30-300℃的线膨胀系数采用卧式膨胀仪测量,以平均线膨胀系数表示,采用ISO 7991规定的方法测量,在表1中详细列出了实施例的玻璃化学组成(wt.%)和玻璃性能。
表1实施例的化学组成(wt.%)和玻璃性能
Figure PCTCN2022075011-appb-000003
以下实施例中所用原料及原料要求如下:
石英砂(高纯,150μm筛上物为1%以下、45μm筛下物为30%以下、Fe 2O 3含量小于0.01wt.%)、氢氧化铝(分析纯,平均粒径50μm)、硼酸或硼酐(400μm筛上物为10%以下、63μm筛下物为10%以下)、碳酸钙(分析纯,平均粒径250μm)、碳酸钡(分析纯,纯度≥99.0%)、三氧化二镧(5N)、五氧化二铌(5N)、五氧化二钽(5N)、三氧化二钇(5N)、氧化锌(分析纯)、二氧化钛(化学纯)、氧化锆(分析纯)、氧化锡(分析纯)。
参见图1,图中的CTE(Coefficient of Thermal Expansion)为热膨胀系数,其测试范围为30~300℃,对比的高膨胀玻璃的热膨胀系数为91.324×10 -7/℃,本发明实施例1至实施例5的热膨胀系数依次分别为70.234×10 -7/℃、67.918×10 -7/℃、66.830×10 -7/℃、71.094×10 -7/℃、68.607×10 -7/℃。
下面通过实施例的具体制备方法对本发明作进一步的说明:
实施例1
首先,按表1实施例1玻璃成份选择原料,并且要求对玻璃原料中的变价元素的氧化物如Fe 2O 3等进行严格控制,成品玻璃Fe 2O 3含量小于100PPm,并使其配料满足表1的玻璃化学组成,然后将石英砂、氢氧化铝、硼酸、碳酸钙、碳酸钡、氧化镧、氧化铌、氧化钽、氧化钇、氧化锌、二氧化钛、氧化锆和氧化锡放入铂金坩埚中,在1400℃温度下熔融6小时,在玻 璃熔制过程中,对玻璃进行2次的搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1320℃温度澄清2小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,然后进行退火,退火工艺为625℃保温1小时,再用12小时降温至60℃,然后再随炉冷却至室温。其测试性能如表1所示,(1)折射率为1.80;(2)30-300℃的平均线膨胀系数70.234×10 -7/℃。
实施例2
玻璃实际组成参照表1实施例2,使用与实施例1相同原料要求,将石英砂、氢氧化铝、硼酐、碳酸钙、硝酸钡、氧化镧、氧化铌、氧化钽、氧化钇、氧化锌、二氧化钛、氧化锆和氧化锡放入铂金坩埚中,在1350℃温度下熔融8小时,在玻璃熔制过程中,对玻璃进行1次的搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1300℃温度澄清1小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,然后进行退火,退火工艺为650℃保温1小时,再用12小时降温至60℃,然后再随炉冷却至室温。采用与实施例1相同的测试条件,在表1显示了试样的基本性能。(1)折射率为1.82;(2)30-300℃的平均线膨胀系数67.918×10 -7/℃。
实施例3
玻璃实际组成参照表1实施例3,使用与实施例1相同的原料及原料要求,在1450℃温度下熔融4小时,在玻璃熔制过程中,对玻璃进行2次的搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1340℃温度澄清2小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,然后进行退火,退火工艺为600℃保温1小时,再用12小时降温至60℃,然后再随炉冷却至室温。采用与实施例1相同的测试条件,在表1显示了试样的基本性能。(1)折射率为1.82;(2)30-300℃的平均线膨胀系数66.830×10 -7/℃。
实施例4
玻璃实际组成参照表1实施例4,使用与实施例1相同的原料及原料要求,并且采取相同熔化工艺制度和测试条件,在表1显示了试样的基本性能。(1)折射率为1.82;(2)30-300℃的平均线膨胀系数71.094×10 -7/℃。
实施例5
玻璃实际组成参照表1实施例5,使用与实施例1相同的原料及原料要求,并且采取相同熔化工艺制度和测试条件,在表1显示了试样的基本性能。(1)折射率为1.81;(2)30-300℃的平均线膨胀系数68.607×10 -7/℃。
由实施例获得的数据可以得知,本发明用于中膨胀光纤传像元件的高折射率玻璃具有折射率高,不含有对环境严重危害的重金属氧化物的优势,适合用于制备光纤传像元件,光纤传像元件可以是光纤面板、光纤倒像器、光纤光锥、和光纤传像束等,其所用芯料由本发明的中膨胀光纤传像元件的高折射率玻璃制备而成。
另外,随着光学技术和光电子技术的小型化发展趋势,具有优良化学稳定性、低热膨胀系数、透过率优良的高折射率玻璃,可以缩短透镜的焦距以实现缩短部件或透镜组件的尺寸,本发明的高折射率玻璃可以作为此类技术的光学玻璃。
以上所述仅为本发明的示例性实施例,并不用以限制本发明,本发明的保护范围由权利要求书限定,本领域技术人员凡在在本发明的实质和保护范围内,对本发明做出的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于中膨胀光纤传像元件的高折射率玻璃的组合物,其特征在于,包括以下重量百分含量的组分:
    Figure PCTCN2022075011-appb-100001
  2. 根据权利要求1所述的组合物,其特征在于,包括以下重量百分含量组分:
    Figure PCTCN2022075011-appb-100002
  3. 根据权利要求1或2所述的组合物,其特征在于,所述的高折射率玻璃的折射率为1.80~1.82,在30~300℃范围的平均线热膨胀系数为(68±5)×10 -7/℃,应变点温度大于600℃,析晶温度大于820℃。
  4. 根据权利要求1至3任一项所述的组合物制备用于中膨胀光纤传像元件的高折射率玻璃的方法,其特征在于,包括以下步骤:
    (1)将石英砂、氢氧化铝、硼酸或硼酐、碳酸钙、碳酸钡或硝酸钡、氧化镧、氧化铌、氧化钽、氧化钇、氧化锌、二氧化钛、氧化锆和氧化锡,按照配料要求放入铂金坩埚中;
    (2)在第一预设温度下熔融,熔融过程中进行搅拌,再降温至第二预设温度澄清;
    (3)将澄清后的玻璃熔体通过漏料口流下来,在模具中浇铸形成玻璃棒;
    (4)成型后的玻璃棒在退火炉中退火,然后再随炉冷却至室温。
  5. 根据权利要求4所述的方法,其特征在于,所述的第一预设温度为1350-1450℃;所述熔融的时间为4-8小时;所述熔融过程的搅拌次数为1-2次;所述第二预设温度为1300-1340℃;所述澄清的时间为1-2小时。
  6. 根据权利要求4所述的方法,其特征在于,所述的退火工艺为在600-650℃保温1小时;再用12小时从600-650℃降温至60℃。
  7. 一种用于中膨胀光纤传像元件的高折射率玻璃,其特征在于,按照权利要求4-6任一项所述的方法制备得到。
  8. 一种光学玻璃,其特征在于,由权利要求7所述的高折射率玻璃制成,所述光学玻璃在10 2-10 13dPas的粘度范围内具有长料性的粘度曲线。
  9. 一种光纤传像元件,包括光纤面板、光纤倒像器、光纤光锥和光纤传像束,其特征在于,所述光纤传像元件采用芯料玻璃棒和皮料玻璃管结合的拉制工艺生产而成,所述芯料玻璃棒由权利要求7所述的高折射率玻璃制成。
  10. 一种用于中膨胀光纤传像元件的高折射率玻璃在光学技术和光电子技术中的应用;所述光学技术和光电子技术包括成像、投影、光电通信、移动终端和激光技术。
PCT/CN2022/075011 2021-09-14 2022-01-29 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法 WO2023040168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/768,692 US11858846B2 (en) 2021-09-14 2022-01-29 Glass with high refractive index for fiber optic imaging element with medium-expansion and fabrication method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111074733.6 2021-09-14
CN202111074733.6A CN113603367B (zh) 2021-09-14 2021-09-14 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法

Publications (1)

Publication Number Publication Date
WO2023040168A1 true WO2023040168A1 (zh) 2023-03-23

Family

ID=78310458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075011 WO2023040168A1 (zh) 2021-09-14 2022-01-29 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法

Country Status (3)

Country Link
US (1) US11858846B2 (zh)
CN (1) CN113603367B (zh)
WO (1) WO2023040168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603367B (zh) * 2021-09-14 2022-12-02 中国建筑材料科学研究总院有限公司 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法
CN113603366B (zh) * 2021-09-14 2022-10-21 中国建筑材料科学研究总院有限公司 一种中膨胀光纤传像元件及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503764A (en) * 1967-01-20 1970-03-31 Bendix Corp Core glass for fiber-optic structures having high index of refraction
GB1302526A (zh) * 1969-03-25 1973-01-10
CN103482867A (zh) * 2013-08-30 2014-01-01 中国建筑材料科学研究总院 一种用于光纤面板的环保型高折射率玻璃及光学元件
CN103755140A (zh) * 2013-12-12 2014-04-30 广州宏晟光电科技有限公司 用于中膨胀光纤倒像器的高折射率中膨胀芯料玻璃及其制备方法
CN104402218A (zh) * 2014-10-29 2015-03-11 中国建筑材料科学研究总院 一种高折射率透紫外玻璃及其制备方法
CN107935381A (zh) * 2017-11-17 2018-04-20 中国建筑材料科学研究总院有限公司 用于中膨胀光纤传像元件的高折射率玻璃的组合物及其制备方法
CN113603367A (zh) * 2021-09-14 2021-11-05 中国建筑材料科学研究总院有限公司 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法
CN113603366A (zh) * 2021-09-14 2021-11-05 中国建筑材料科学研究总院有限公司 一种中膨胀光纤传像元件及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007008300B4 (de) * 2006-08-12 2011-08-25 Schott Ag, 55122 Bleifreies optisches Glas der Schwerflint- und Lanthanschwerflintlage sowie dessen Herstellung und Verwendung
CN101215086A (zh) * 2007-01-06 2008-07-09 湖北新华光信息材料股份有限公司 低熔点光学玻璃
CN111170631A (zh) * 2016-09-05 2020-05-19 成都光明光电股份有限公司 重镧火石玻璃
CN107337346B (zh) * 2017-06-27 2019-12-06 东旭科技集团有限公司 一种低脆性、高折射率的玻璃、组合物及其制备方法及其应用
CN109179982B (zh) * 2018-11-21 2022-04-15 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN111253064B (zh) * 2018-12-03 2022-03-08 成都光明光电股份有限公司 光学玻璃、光学预制件、光学元件和光学仪器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503764A (en) * 1967-01-20 1970-03-31 Bendix Corp Core glass for fiber-optic structures having high index of refraction
GB1302526A (zh) * 1969-03-25 1973-01-10
CN103482867A (zh) * 2013-08-30 2014-01-01 中国建筑材料科学研究总院 一种用于光纤面板的环保型高折射率玻璃及光学元件
CN103755140A (zh) * 2013-12-12 2014-04-30 广州宏晟光电科技有限公司 用于中膨胀光纤倒像器的高折射率中膨胀芯料玻璃及其制备方法
CN104402218A (zh) * 2014-10-29 2015-03-11 中国建筑材料科学研究总院 一种高折射率透紫外玻璃及其制备方法
CN107935381A (zh) * 2017-11-17 2018-04-20 中国建筑材料科学研究总院有限公司 用于中膨胀光纤传像元件的高折射率玻璃的组合物及其制备方法
CN113603367A (zh) * 2021-09-14 2021-11-05 中国建筑材料科学研究总院有限公司 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法
CN113603366A (zh) * 2021-09-14 2021-11-05 中国建筑材料科学研究总院有限公司 一种中膨胀光纤传像元件及其制备方法

Also Published As

Publication number Publication date
US20230242436A1 (en) 2023-08-03
US11858846B2 (en) 2024-01-02
CN113603367B (zh) 2022-12-02
CN113603367A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023040169A1 (zh) 一种中膨胀光纤传像元件及其制备方法
CN107935381B (zh) 用于中膨胀光纤传像元件的高折射率玻璃的组合物及其制备方法
WO2023040168A1 (zh) 用于中膨胀光纤传像元件的高折射率玻璃及其制备方法
CN104402218A (zh) 一种高折射率透紫外玻璃及其制备方法
CN103482867B (zh) 一种用于光纤面板的环保型高折射率玻璃及光学元件
CN101107202A (zh) 玻璃
JPS641415B2 (zh)
CN115536283B (zh) 用于光纤传像元件的高折射率纤芯玻璃及其制备方法
CN115542456B (zh) Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用
CN110183108B (zh) 用于光纤传像元件的光纤皮层玻璃及其机械拉管成型方法
WO2007145173A1 (ja) 光学ガラスおよびそれを用いたレンズ
WO2023147757A1 (zh) 用于高对比度光纤倒像器的光吸收料玻璃及其制备方法
CN115469395A (zh) 一种高均匀性光纤倒像器及其制备方法
JP7213952B2 (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
JPH0230640A (ja) ファイバープレート用芯ガラス
CN115304284B (zh) 一种用于光纤传像元件的低折射率皮层玻璃及其制备方法
JP2014210696A (ja) 光学ガラス
JP7165810B2 (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
CN117602828A (zh) 用于中膨胀光纤传像元件的低折射率玻璃及其制备方法
CN115368011B (zh) 用于光纤传像元件的相容性匹配良好的芯皮玻璃及其制备方法
JPH0238343A (ja) ファイバープレート用吸収体ガラス
JP2021119106A (ja) 光伝導ファイバー用ガラス及び光伝導ファイバー
CN117602829A (zh) 高分辨力超窄扭丝区光纤倒像器用玻璃及其制备方法
CN117666014A (zh) 一种2.5μm光纤倒像器及其制备方法
JP7148880B2 (ja) 光学ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE