WO2023035614A1 - 包含PI3Kα抑制剂的药物组合 - Google Patents

包含PI3Kα抑制剂的药物组合 Download PDF

Info

Publication number
WO2023035614A1
WO2023035614A1 PCT/CN2022/087086 CN2022087086W WO2023035614A1 WO 2023035614 A1 WO2023035614 A1 WO 2023035614A1 CN 2022087086 W CN2022087086 W CN 2022087086W WO 2023035614 A1 WO2023035614 A1 WO 2023035614A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
cyh33
pharmaceutically acceptable
acceptable salt
cancer
Prior art date
Application number
PCT/CN2022/087086
Other languages
English (en)
French (fr)
Inventor
张毅翔
江淑娟
余秋琼
蔡慧明
谭飞
Original Assignee
上海海和药物研究开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海和药物研究开发股份有限公司 filed Critical 上海海和药物研究开发股份有限公司
Publication of WO2023035614A1 publication Critical patent/WO2023035614A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53861,4-Oxazines, e.g. morpholine spiro-condensed or forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the present disclosure relates to the field of medicine. Specifically, the present disclosure relates to a pharmaceutical combination comprising a PI3K ⁇ inhibitor or a pharmaceutically acceptable salt thereof, and a PARP1/2 inhibitor, an estrogen receptor modulator, a cyclin-dependent kinase 4/6 ( One or two of CDK4/6) inhibitors or a pharmaceutically acceptable salt thereof, and optionally an aromatase inhibitor or a pharmaceutically acceptable salt thereof.
  • the present disclosure also relates to methods and uses of using said combinations to treat or prevent cancer.
  • the PI3K/AKT/mTOR signaling pathway is one of many mechanisms that regulate the cell cycle and apoptosis. Dysregulation of individual components in the pathway can lead to tumorigenesis.
  • Receptor tyrosine kinase (RTK) can regulate the activation of PI3K/AKT signaling pathway when activated by growth factors. These growth factors include insulin-like growth factor (Insulin-like Growth Factors, IGF), epidermal growth factor (Epidermal Growth Factor, EGF) and hepatocyte growth factor (Hepatocyte growth factor, HGF), which induce RTK tyrosine residues Autophosphorylation activates RTKs.
  • IGF insulin-like growth factor
  • EGF epidermal growth factor
  • Hepatocyte growth factor, HGF hepatocyte growth factor
  • PI3K The binding of PI3K to the phosphorylated tyrosine residues on RTK leads to the activation of the catalytic subunit of PI3K.
  • Human cells contain three genes (PIK3CA, PIK3CB and PIK3CD) that encode the catalytic subunits PI3K ⁇ (p110 ⁇ ), PI3K ⁇ (p110 ⁇ ) and PI3K ⁇ of type IA PI3K, respectively. Both p110 ⁇ and p110 ⁇ have specific roles in insulin signaling; however, glucose homeostasis is primarily mediated by p110 ⁇ .
  • the catalytic subunit p110 ⁇ of type IA PI3K activates PI3K by binding to p85 ⁇ , thereby further phosphorylating phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3).
  • PIP3 recruits AKT from the cytoplasm to the cell membrane by interacting with the PH domain of AKT.
  • AKT membrane translocation of AKT and the Thr308 and Ser473 sites of AKT are controlled by 3-phosphoinositide-dependent protein kinase 1 (phosphatidylinositol-dependent kinase 1, PDK1) and 3-phosphoinositide-dependent protein kinase 2 (phosphatidylinositol-dependent kinase 2 , PDK2) phosphorylation is a prerequisite for AKT activation.
  • PDK1 phosphatidylinositol-dependent kinase 1
  • PDK2 3-phosphoinositide-dependent protein kinase 2
  • PIK3CA encoding the PI3K catalytic subunit ⁇
  • PIK3CA is one of the frequently mutated oncogenes in human tumors.
  • the mutation rate was 11% in esophageal squamous cell carcinoma and 6% in esophageal adenocarcinoma.
  • Poly(ADP-ribose) polymerase (PARP) inhibitors are a class of hot anti-cancer drugs in continuous development, and are closely related to DNA repair, especially DNA single-strand damage repair.
  • the ribozyme can prevent the repair of DNA single-strand breaks by capturing PARP combined with DNA single-strand breaks (SSBs), and then trigger a large number of DNA double-strand breaks (double-strand breaks, DSBs) , DSBs are inaccurately repaired in homologous recombination repair-deficient (HRD) tumors, leading to DNA damage accumulation and tumor cell death.
  • HRD homologous recombination repair-deficient
  • PARP inhibitors include 18 subtypes, and the members have certain homology.
  • PRAP1 and PARP2 are the main two types of enzymes in the PARP family, of which PARP1 plays more than 90% of the functions, and PARP2 has similar functions to PARP1, but the substrate selectivity of the two is different.
  • PARP-1 has the highest content in eukaryotic cells. When tumor cell DNA is damaged by chemotherapy drugs or ionizing radiation, PARP-1 is quickly activated, and uses NAD+ as a substrate to transfer polyadenosine diphosphate-ribose (ADP) to specific proteins, and PARP-1 catalyzes specific Protein polyadenosine diphosphate ribosylation (PARylation), which initiates the DNA repair process.
  • ADP polyadenosine diphosphate-ribose
  • PARP-1 catalyzes specific Protein polyadenosine diphosphate ribosylation (PARylation), which initiates the DNA repair process.
  • PARP-1 is involved in DNA repair pathways such as base excision repair (BER), homologous recombination (Homologous recombination, HR) and non-homologous end joining (Non-homologous end joining, NHEJ).
  • BER base excision repair
  • HR homologous recombination
  • NHEJ non-homologous end joining
  • PARP inhibitor monotherapy has been clinically used in the treatment of homologous recombination-deficient (HRD) cancer patients, such as BRCA germline mutation or HRD-positive ovarian cancer, breast cancer, pancreatic cancer and prostate cancer.
  • HRD homologous recombination-deficient
  • single-agent PARP inhibitors are suboptimal.
  • drug resistance is evident in the majority of patients with advanced BRCA1/2-mutated cancers, and these acquired resistances affect the efficacy of PARP inhibitors.
  • Most of the currently known PARP-1 inhibitors also have inhibitory effects on PARP-2 with comparable activity.
  • three PARP-1/2 inhibitors, Olaparib, Rucaparib, and Niraparib were launched as antineoplastic drugs in 2014, 2016, and 2017. .
  • Estrogen receptor alpha (ER ⁇ ) and estrogen receptor beta (ER ⁇ ) are steroid hormone receptors and members of a large family of nuclear receptors. Both receptors are involved in the regulation and development of the female reproductive system, and also play roles in the central nervous system, cardiovascular system and bone metabolism.
  • Breast cancer is the most common malignant tumor in women. According to reports, about 70% of breast cancer is related to estrogen and estrogen receptor in the human body, which is positive for estrogen receptor ⁇ (ER ⁇ ); other cancers such as ovarian cancer and Endometrial cancer is also thought to depend on ER ⁇ signaling for proliferation.
  • endocrine therapy is the first-line treatment for patients with estrogen receptor-positive breast cancer.
  • Existing drugs include: Aromatase inhibitors (AIs) Selective estrogens Receptor down-regulators (SERDs), selective estrogen receptor modulators (SERMs), etc.; work by reducing the amount of hormones in the body or by blocking the hormone's effect on cells.
  • AIs Aromatase inhibitors
  • SEMDs Selective estrogens Receptor down-regulators
  • SERMs selective estrogen receptor modulators
  • selective estrogen receptor modulators are a class of drugs that can prevent estrogens such as estradiol from mediating their biological effects in the body, mainly by interacting with endogenous estradiol Alcohol competitively binds to estrogen receptors to block the estrogen signaling pathway mediated by estradiol to play a role.
  • SERMs such as tamoxifen have achieved good efficacy in the treatment of hormone-dependent (ER + ) breast cancer patients, but long-term use often leads to drug resistance.
  • Selective estrogen receptor down-regulators are a class of drugs that can induce rapid down-regulation of estrogen receptors by inhibiting the function of the two transcriptional activation domains AF1 and AF2 of estrogen receptors.
  • the drug has two functions of antagonizing ER ⁇ and degrading ER ⁇ at the same time, and has a certain curative effect on breast cancer patients who have developed resistance to antihormonal drugs.
  • fulvestrant can inhibit the growth of drug-resistant estrogen receptor positive (ER + ) breast cancer cells, but its bioavailability and receptor affinity are relatively poor.
  • Aromatase inhibitors can specifically inactivate aromatase, block the aromatization reaction, inhibit the production of estrogen, and reduce the level of estrogen in the blood to achieve the purpose of treating breast cancer.
  • aromatase inhibitors can specifically inactivate aromatase, block the aromatization reaction, inhibit the production of estrogen, and reduce the level of estrogen in the blood to achieve the purpose of treating breast cancer.
  • letrozole for the treatment of estrogen receptor positive breast cancer.
  • CDK-mediated catalytic steps include the phosphotransfer reaction from ATP to the macromolecular enzyme substrate. Regulation of CDK/cyclin complex activity at the molecular level requires a series of stimulatory and inhibitory phosphorylation or dephosphorylation events.
  • CDK phosphorylation is achieved by a group of CDK-activating kinases (CAKs) and/or kinases such as weel, Myt1 and Mik1. Dephosphorylation is achieved by phosphatases such as cdc25(a&c), pp2a or KAP.
  • CAKs CDK-activating kinases
  • kinases such as weel, Myt1 and Mik1.
  • Dephosphorylation is achieved by phosphatases such as cdc25(a&c), pp2a or KAP.
  • CDK4/6 inhibitors restore cell cycle control and block tumor cell proliferation by selectively inhibiting cyclin-dependent kinases 4 and 6 (CDK4/6).
  • CDK4/6 and cyclin D can phosphorylate the retinoblastoma gene (Rb) and then release the transcription factor E2F to promote the transcription of cell cycle-related genes and make the cells enter the S phase.
  • CDK4/6 inhibitors effectively block the progression of tumor cells from G1 phase to S phase.
  • BC Breast cancer
  • HR+ hormone receptor positive
  • HER2- human epidermal growth factor receptor 2 negative
  • endocrine therapy has been the cornerstone of treatment for these patients.
  • CDK4/6 overactivity has been very frequent in estrogen receptor-positive (ER+) breast cancers.
  • CDK4/6 inhibitors approved for marketing in combination with ET significantly increased the progression-free survival of patients with HR+ advanced breast cancer in first-line treatment. These patients inevitably develop resistance to ET and/or CDK4/6 inhibitor therapy as standard of care.
  • CYH33 is a novel, highly efficient and highly selective phosphatidylinositol-3 kinase ⁇ (PI3K ⁇ ) inhibitor, which has the strongest inhibitory effect on PI3K ⁇ and its mutants, and can significantly inhibit wild-type and mutant types (including: E542K , H1047R or E545K) PI3K ⁇ kinase activity, leading to cell arrest in G 0 /G 1 phase, thereby inhibiting cell proliferation.
  • Compound CYH33 showed significant antitumor activity both in vitro and in vivo, especially against tumors with high-frequency activation of PI3K ⁇ signaling pathway.
  • Enzyme tests show that CYH33 exhibits effective inhibitory activity on the PI3K kinase family, and has the strongest inhibitory activity on PI3K ⁇ and its mutants (IC 50 : 5-20nM). Cytological tests showed that CYH33 inhibited PI3K ⁇ -mediated AKT phosphorylation in Rh30-Myr-p110 ⁇ cells at 41nM level. In contrast, 10- to 30-fold higher concentrations were required to inhibit PI3K ⁇ / ⁇ / ⁇ -mediated AKT phosphorylation. Preclinical studies have shown that the compound CYH33 can effectively inhibit the growth of breast cancer, esophageal cancer and ovarian cancer at the cellular level and in mouse xenograft tumor models.
  • PI3K inhibitors on the market worldwide, such as Gilead’s PI3K ⁇ inhibitor Idelalisib, Bayer’s pan-PI3K inhibitor Copanlisib, Verastem’s PI3K ⁇ inhibitor Duvelisib, and Novartis’ Alpelisib (BYL719).
  • Gilead s PI3K ⁇ inhibitor Idelalisib
  • Bayer s pan-PI3K inhibitor Copanlisib
  • Verastem s PI3K ⁇ inhibitor Duvelisib
  • Novartis’ Alpelisib Novartisib
  • the present disclosure relates to a pharmaceutical combination
  • a pharmaceutical combination comprising: (a) a first active agent which is a PI3K ⁇ inhibitor or a pharmaceutically acceptable salt thereof, and (b) a second active agent which is selected from PARP1/2 inhibitory one or two of an estrogen receptor modulator, a CDK inhibitor, or a pharmaceutically acceptable salt thereof; optionally further comprising (c) a third active agent, which is an aromatase inhibitor or its pharmaceutically acceptable salt.
  • the drug combinations in the embodiments of the present disclosure are collectively referred to as "combinations of the present disclosure", wherein preferred two-drug combinations such as compound CYH33 or compound I-27 are selected from PARP1/2 inhibitors, estrogen receptor modulators, CDK4 A dual combination of one of the /6 inhibitors; and a three-drug combination such as compound CYH33 or compound I-27 and two selected from PARP1/2 inhibitors, estrogen receptor modulators, and CDK4/6 inhibitors Triple combination of , and three-drug combination such as compound CYH33 or compound I-27 with one selected from PARP1/2 inhibitors, estrogen receptor modulators, CDK4/6 inhibitors and aromatase inhibitors .
  • the inventors have found that the combinations of the present disclosure exhibit synergy.
  • the present disclosure relates to combinations of the present disclosure for the treatment or prevention of cancer.
  • the present disclosure relates to combinations of the present disclosure for the preparation of a pharmaceutical composition or medicament (eg, a pharmaceutical formulation) for the treatment or prevention of cancer in an individual in need thereof.
  • a pharmaceutical composition or medicament eg, a pharmaceutical formulation
  • the present disclosure relates to the use of the combination of the present disclosure in the preparation of a pharmaceutical composition or medicament for treating or preventing cancer.
  • the present disclosure relates to a method of treating or preventing an individual suffering from cancer comprising administering to the individual in need thereof an effective amount of a combination of the present disclosure.
  • the present disclosure further provides a commercial package, such as a kit of parts, comprising a combination of the present disclosure as therapeutic agents and instructions for their simultaneous, separate or sequential administration, for the treatment or prevention of cancer.
  • Administration of the combination of the present disclosure can not only obtain beneficial effects (such as a synergistic therapeutic effect with respect to relieving symptoms, delaying progression, or suppressing symptoms), but also can obtain unexpected beneficial effects, such as compared with only the active substances used in the combination of the present disclosure. Fewer side effects, longer-lasting response, improved quality of life, reduced mortality, and/or reduced morbidity compared to monotherapy with one of the agents.
  • Combinations of the present disclosure have beneficial therapeutic properties, such as synergistic interactions, strong in vitro or in vivo antiproliferative activity, and/or strong in vitro or in vivo antitumor responses, making them particularly suitable for the treatment of cancer.
  • Figure 1 shows the effect of the combination of compound CYH33 and olaparib on tumor volume in SK-OV-3 xenograft tumor model with PIK3CA mutation (PO QD 21 days).
  • Figure 2 shows the effect of the combination of compound CYH33 and olaparib on tumor weight in SK-OV-3 xenograft tumor model with PIK3CA mutation (PO QD 21 days).
  • Figure 3a and Figure 3b show the treatment of ER+, HER2-, PIK3CA-mutant T47D subcutaneous xenograft tumor female BALB/c nude mice model compound CYH33, fulvestrant, palbociclib as a single drug or in combination Growth curves of tumor volume changes in each group (PO QD 35 days).
  • Figure 4a, Figure 4b and Figure 4c show the administration of ER+, HER2-, PIK3CA mutation T47D subcutaneous xenograft tumor female BALB/c nude mouse model compound CYH33, palbociclib, fulvestrant single drug, dual drug combination Or after three-drug combination treatment, the growth curve of tumor volume change in each group (PO QD28 days).
  • a drug combination comprising:
  • the second active agent which is any one or any two selected from PARP1/2 inhibitors, estrogen receptor modulators, and CDK inhibitors, or a pharmaceutically acceptable salt thereof;
  • a third active agent which is an aromatase inhibitor or a pharmaceutically acceptable salt thereof.
  • Y is NH or O, (Ig).
  • R 1 is -NR 5 R 6 ;
  • R 5 and R 6 are each independently a C 1 -C 4 alkyl group, or an unsubstituted or substituted piperazine ring formed together with the nitrogen atom to which they are attached, and the substituent is -S(O) 2 R 12 ;
  • R 7 , R 8 , R 9 and R 10 are each independently H or C 1 -C 3 alkyl, or R 2 is
  • R 11 is C 1 -C 4 alkyl, benzyl unsubstituted or substituted by one or more substituents, phenyl unsubstituted or substituted by one or more substituents, unsubstituted or substituted by one or more Isoxazolyl substituted with radical, or pyridyl unsubstituted or substituted by one or more substituents selected from halogen, C 1 -C 3 alkyl, C 1 -C 3 alkane Oxygen, -CF 3 , -C(O)OR 12 , -C(O)NR 12 R 15 ,
  • R 12 and R 15 are each independently a C 1 -C 3 alkyl group
  • the second active agent which is selected from any one or any two of PARP1/2 inhibitors, estrogen receptor modulators, and CDK inhibitors, or a pharmaceutically acceptable salt thereof;
  • a third active agent which is an aromatase inhibitor or a pharmaceutically acceptable salt thereof.
  • R 1 is dimethylamino or 1-methylsulfonylpiperazinyl
  • R 11 is methyl, ethyl, propyl, cyclopropyl, tert-butyl, isobutyl, 4-fluorobenzyl, unsubstituted or phenyl substituted by one or more substituents, unsubstituted or substituted by one or isoxazole substituted by multiple substituents, or a pyridine ring which is unsubstituted or substituted by one or more substituents selected from the group consisting of fluorine, chlorine, trifluoromethyl, methyl, methoxy, ethyl Oxycarbonyl, dimethylaminocarbonyl, 4-methylpiperazine-1-carbonyl, piperidine-1-carbonyl and 4-dimethylaminopiperidine-1-carbonyl.
  • the second active agent which is selected from any one or any two of PARP1/2 inhibitors, estrogen receptor modulators, and CDK inhibitors, or a pharmaceutically acceptable salt thereof.
  • the second active agent is selected from any one of PARP1/2 inhibitors, estrogen receptor modulators, CDK inhibitors, or a pharmaceutically acceptable Salt.
  • the second active agent is selected from any two of PARP1/2 inhibitors, estrogen receptor modulators, CDK inhibitors, or a pharmaceutically acceptable Salt.
  • aromatase inhibitor may be a non-steroidal aromatase inhibitor or a steroidal aromatase inhibitor.
  • the second active agent which is selected from any one of PARP1/2 inhibitors, estrogen receptor modulators, CDK4/6 inhibitors or pharmaceutically acceptable salts thereof.
  • a second active agent which is a PARP1/2 inhibitor or a pharmaceutically acceptable salt thereof.
  • the second active agent is selected from CDK4/6 inhibitors or pharmaceutically acceptable salts thereof.
  • a second active agent which is an estrogen receptor modulator or a pharmaceutically acceptable salt thereof.
  • the second active agent which is selected from any two of PARP1/2 inhibitors, estrogen receptor modulators, and CDK4/6 inhibitors, or a pharmaceutically acceptable salt thereof.
  • a second active agent which is a CDK4/6 inhibitor or a pharmaceutically acceptable salt thereof, and an estrogen receptor modulator or a pharmaceutically acceptable salt thereof.
  • a second active agent selected from any one of PARP1/2 inhibitors, estrogen receptor modulators, CDK4/6 inhibitors, or a pharmaceutically acceptable salt thereof, and
  • a third active agent which is an aromatase inhibitor or a pharmaceutically acceptable salt thereof.
  • a third active agent which is an aromatase inhibitor or a pharmaceutically acceptable salt thereof.
  • a second active agent selected from any two of PARP1/2 inhibitors, estrogen receptor modulators, and CDK4/6 inhibitors, or a pharmaceutically acceptable salt thereof, and
  • a third active agent which is an aromatase inhibitor or a pharmaceutically acceptable salt thereof.
  • the selective estrogen receptor modulator can be a selective estrogen receptor modulator, such as azoxifene (Arzoxifene), Toremifene (Toremifene), Raloxifene (Raloxifene) or Tamoxifen (Tamoxifen), preferably Tamoxifen; can also be a selective estrogen receptor down-regulator, such as fulvestrant Fulvestrant or Giredestrant (GDC-9545), etc., preferably fulvestrant; CDK4/6 inhibitor is Palbociclib, Ribociclib or Abemaciclib, preferably Palbociclib.
  • aromatase inhibitor is Letrozole, Anastrozole, Exemestane or Vorozole, Letrozole is preferred.
  • the first active agent is compound CYH33, which may be in free form (i.e. not a salt), or in salt form, such as hydrochloride or methanesulfonate, preferably formazan Sulfonate.
  • each of the active agents can be formulated as different compositions or formulations, or two, three or all of the active agents can be formulated in the same composition or preparations.
  • the pharmaceutical combination according to any one of the preceding embodiments, wherein the compound CYH33 or a pharmaceutically acceptable salt thereof is 10-50 mg, such as 10-40 mg, 20-40 mg, 20-30 mg or 30-40 mg, such as 10 mg, In the form of a dosage unit of 20 mg, 30 mg or 40 mg, preferably an oral dosage form.
  • olaparib is in the form of a dosage unit of 200-600 mg, eg 200 mg, 250 mg, 300 mg, 400 mg, 500 mg or 600 mg, preferably an oral dosage form.
  • the daily dose (ie total daily dose) of olaparib is 200-600 mg, such as 200 mg, 250 mg, 300 mg, 400 mg, 500 mg or 600 mg, preferably 400 mg , 500mg or 600mg, more preferably administered in the form of 400mg, 500mg or 600mg tablets.
  • fulvestrant is in the form of dosage units of 250 mg to 500 mg, eg 250 mg or 500 mg, preferably in parenteral dosage form, eg injection.
  • fulvestrant is administered to an individual in need thereof in one or more doses, the next dose being administered 2, 3 or 4 weeks after the previous dose; preferably , administered on days 1 and 15 of the first cycle, and on day 1 of each subsequent cycle.
  • palbociclib is in the form of dosage units of 75-125 mg, eg 75 mg, 100 mg, 125 mg, preferably in oral dosage form.
  • letrozole is in the form of a dosage unit of 2.5 mg, preferably an oral dosage form.
  • the pharmaceutical combination is administered every 4 weeks, wherein the daily dose of compound CYH33 or a pharmaceutically acceptable salt thereof is 10-50 mg, such as 10 mg, 20 mg , 30 mg or 40 mg, once a day; and the single administration dose of fulvestrant is 500 mg, administered on the first day and the 15th day of the first cycle, and administered on the first day of each subsequent cycle; And wherein the daily dose of palbociclib is 125 mg, administered once a day for three consecutive weeks in each cycle, and then stopped for one week.
  • the daily dose of compound CYH33 or a pharmaceutically acceptable salt thereof is 10-50 mg, such as 10 mg, 20 mg , 30 mg or 40 mg, once a day
  • the single administration dose of fulvestrant is 500 mg, administered on the first day and the 15th day of the first cycle, and administered on the first day of each subsequent cycle
  • the daily dose of palbociclib is 125 mg, administered once a day for three consecutive weeks in each cycle, and then stopped for one week.
  • the pharmaceutical combination is administered every 4 weeks, wherein the daily dose of compound CYH33 or a pharmaceutically acceptable salt thereof is 10-50 mg, such as 10 mg, 20 mg , 30mg or 40mg, once a day; and the daily dose of letrozole is 2.5mg, once a day; and the daily dose of palbociclib is 75mg, 100mg or 125mg, once a day in each cycle for three consecutive weeks , and then stop the drug for a week.
  • the daily dose of compound CYH33 or a pharmaceutically acceptable salt thereof is 10-50 mg, such as 10 mg, 20 mg , 30mg or 40mg, once a day
  • the daily dose of letrozole is 2.5mg, once a day
  • the daily dose of palbociclib is 75mg, 100mg or 125mg, once a day in each cycle for three consecutive weeks , and then stop the drug for a week.
  • a method for treating or preventing a disease associated with abnormal activation of PI3K comprising administering to an individual in need thereof an effective amount of the pharmaceutical combination defined in any one of embodiments 1-67, wherein said disease is preferably cancer , more preferably a solid tumor, such as an advanced solid tumor.
  • a method for treating or preventing a disease comprising administering to an individual in need thereof an effective amount of a pharmaceutical combination as defined in any one of embodiments 1-67, wherein said disease is cancer, preferably a solid tumor, Such as advanced solid tumors.
  • 76 The method according to embodiment 74 or 75, wherein the disease is selected from ovarian cancer, breast cancer, endometrial cancer, fallopian tube cancer, primary peritoneal cancer, bile duct cancer or prostate cancer.
  • a disease selected from cancer preferably a solid tumor, such as an advanced solid tumor; more preferably, the disease selected from Ovarian, breast, endometrial, fallopian tube, primary peritoneal, bile duct, or prostate cancer.
  • the disease is preferably cancer, preferably a solid tumor, such as an advanced solid tumor; more preferably, The disease is selected from ovarian cancer, breast cancer, endometrial cancer, fallopian tube cancer, primary peritoneal cancer, bile duct cancer or prostate cancer.
  • a combined preparation comprising the pharmaceutical combination as defined in any one of the preceding embodiments 1-73.
  • a pharmaceutical composition comprising the pharmaceutical combination as defined in any one of the preceding embodiments 1-73, together with one or more pharmaceutically acceptable excipients.
  • kits of parts comprising a pharmaceutical combination as defined in any one of the preceding embodiments 1-73 and instructions for simultaneous, separate or sequential administration of the active agents, preferably wherein the active agents are in pharmaceutical dosage unit form.
  • PI3K alpha inhibitor refers to a compound that targets, reduces or inhibits phosphatidylinositol-3-kinase alpha isoforms, including wild-type and mutant forms.
  • Phosphatidylinositol-3-kinase (PI3K) activity has been shown to increase in response to stimulation by several hormones and growth factors, including insulin, platelet-derived growth factor, insulin-like growth factor, epidermal growth factor, and is involved in the process of cell growth and transformation , colony stimulating factor and hepatocyte growth factor.
  • the "first active agent” or "PI3K ⁇ inhibitor” used herein includes pyrrole[2,1-f][1,2,4] represented by general formula I described in WO2013177983, CN103450204A and other patent applications/patents of the same family Triazine compounds and pharmaceutically acceptable salts thereof, especially compounds of formula (If) and formula (Ig) and pharmaceutically acceptable salts thereof, preferably compound I-33 (also known as CYH33) and Compound I-27 and pharmaceutically acceptable salts thereof.
  • the entire content of said patent or patent application, including definitions of terms, is incorporated herein by reference.
  • first active agent or "PI3K ⁇ inhibitor” as used herein is preferably a compound of the formula CYH33, whose chemical name is ⁇ 5- ⁇ 6-[(4-methylsulfonylpiperazin-1-yl)methyl]- Methyl 4-morpholinylpyrrole[2,1-f][1,2,4]triazin-2-yl ⁇ -4-trifluoromethylpyridin-2-yl ⁇ carbamate,
  • Compound CYH33 or its pharmaceutically acceptable salt used herein, or compound I-27 or other prodrugs of compound I-27 can be synthesized by those skilled in the art, for example, its synthesis and identification can refer to WO2013177983. It can be administered in free form or as a pharmaceutically acceptable salt.
  • the PARP1/2 inhibitor is preferably Olaparib (Olaparib), whose trade name is Lipuzo or LYNPARZA, chemical name: 4-(3- ⁇ [4-(cyclopropylcarbonyl)piperazin-1-yl] Carbonyl ⁇ 4-fluorophenyl)methyl]phthalazin-1(2H)-one, the structural formula is as follows:
  • estrogen receptor modulators include selective estrogen receptor modulators (SERMs) and selective estrogen receptor down-regulators (SERDs).
  • SERMs selective estrogen receptor modulators
  • SESDs selective estrogen receptor down-regulators
  • the selective estrogen receptor modulator is preferably tamoxifen, the chemical name is (Z)-2-[4-(1,2-diphenyl-1-butene)phenoxy]-N,N- Dimethylethylamine;
  • the selective estrogen receptor down-regulator is preferably Fulvestrant, chemical name: 7 ⁇ -[9-(4,4,5,5,5-pentafluoropentylsulfite Acyl)nonyl]estra-1,3,5(10)-triene-3,17 ⁇ -diol, structural formula:
  • the CDK4/6 inhibitor is preferably Palbociclib, chemical name: 6-acetyl-8-cyclopentyl-5-methyl-2-[[5-(1-piperazinyl)-2- Pyridyl]amino]pyrido[2,3-d]pyrimidin-7(8H)-one, the structural formula is as follows:
  • the aromatase inhibitor is preferably Letrozole (Letrozole), chemical name: 4,4'-[(1H-1,2,4-triazol-1-yl)-methylene]-bis-benzonitrile , the structural formula is as follows:
  • Cancer refers to a cellular disorder characterized by uncontrolled or dysregulated cell proliferation, reduced cell differentiation, inappropriate ability to invade surrounding tissues, and/or the ability to establish new growth foci at other sites.
  • Cancer includes, but is not limited to: solid tumors and hematological malignancies, preferably solid tumors, more preferably advanced solid tumors, including cancers of the skin, tissues, organs, bones, cartilage, and the like.
  • cancer examples include, but are not limited to, human rhabdomyosarcoma, human glioma, lung cancer (including non-small cell lung cancer (NSCLC)), kidney cancer (eg, renal cell carcinoma (RCC), renal pelvis cancer), primary peritoneal cancer, breast cancer, gynecological cancer (such as ovarian cancer, ovarian clear cell carcinoma (OCCC), uterine cancer, uterine sarcoma, fallopian tube cancer, endometrial cancer, cervical cancer, vaginal cancer or vulvar cancer), endocrine system cancer (such as thyroid, parathyroid, or adrenal gland cancer), prostate cancer, testicular cancer, penile cancer, liver cancer, bowel cancer, small bowel cancer, large bowel cancer, rectal cancer, colon cancer, colorectal cancer (CRC), anal region cancer, Esophageal cancer, gastric cancer, pancreatic cancer, cholangiocarcinoma, head and neck cancer (eg, head and neck squamous cell carcinoma (
  • cancer includes both primary cancers, metastatic cancers, recurrent cancers, and refractory cancers, as well as cancers in patients with a poor prognosis.
  • cancers that are resistant or refractory to currently available therapies such as cancers that are resistant or refractory to treatment with "PARP1/2 inhibitors”, “estrogen receptor modulators”, “CDK inhibitors”.
  • “Cancer” as used herein also includes:
  • Cancers such as advanced solid tumors carrying DDR (DNA damage repair) gene mutations (especially DDR key gene mutations), such as ovarian cancer, breast cancer, prostate cancer, and cholangiocarcinoma;
  • Cancers such as advanced solid tumors carrying PIK3CA gene mutations (especially PIK3CA hotspot mutations), such as ovarian cancer, breast cancer, and endometrial cancer;
  • Cancers such as advanced solid tumors
  • PARP inhibitors asquired resistance
  • Cancers resistant to platinum-based chemotherapy agents such as advanced solid tumors or refractory recurrent cancers, such as high-grade serous ovarian cancer, fallopian tube cancer or primary peritoneal cancer;
  • Cancers described herein include PIK3CA gene mutations, DDR gene mutations, PARP inhibitor-resistant and/or platinum-based chemotherapy-resistant cancers (including advanced solid tumors), such as ovarian cancer, breast cancer, cholangiocarcinoma, endometrial cancer carcinoma, fallopian tube or primary peritoneal carcinoma, or prostate cancer, etc.
  • the cancer described herein is ovarian cancer, breast cancer, endometrial cancer, cholangiocarcinoma, fallopian tube or primary peritoneal cancer, or prostate cancer, especially if it carries a DDR gene mutation or a PIK3CA gene mutation.
  • the cancer described herein is breast cancer, especially advanced breast cancer with HR+, HER2- and PIK3CA gene mutations.
  • the combination of compound CYH33 and olaparib is used in ovarian cancer, breast cancer, endometrial cancer, fallopian tube, primary peritoneal cancer, prostate cancer, bile duct cancer, etc. carrying DDR gene mutation or PIK3CA gene mutation.
  • the combination of compound CYH33 and fulvestrant/palbociclib/fulvestrant+palbociclib/letrozole+palbociclib is used for the treatment of advanced breast cancer, especially HR+, HER2- and PIK3CA gene mutations patients with advanced breast cancer.
  • PI3K phosphatidylinositol 3-kinase
  • Diseases related to abnormal activation of PI3K include cancers related to abnormal activation of PI3K, such as cancers mediated by PI3K ⁇ subunits.
  • Diseases associated with aberrant PI3K activation can include those showing overexpression or amplification of PI3K ⁇ isoforms and/or somatic mutations in PIK3CA, or germline or somatic mutations in PTEN or mutations and translocations of p85 ⁇ for upregulation of the p85-p110 complex .
  • said cancer is a tumor and/or cancerous proliferation mediated by a PI3K ⁇ isoform.
  • the cancer is an advanced solid tumor caused by a mutation in the PIK3CA gene.
  • the "DDR gene” used herein includes: ATM, BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L and the like.
  • Treatment includes administering a combination of the present disclosure to an individual in need thereof to achieve, including but not limited to, alleviation, cure, alleviation of symptoms, reduction of symptoms, prolongation of survival, and progression of a disease or disorder or symptoms thereof (e.g., cancer) Delay; in the case of cancer, the treatment includes inhibiting the growth of solid tumors, reducing tumor size, preventing metastatic spread of tumors and the growth or development of micrometastases, and the like.
  • a disease or disorder or symptoms thereof e.g., cancer
  • Treatment delay means the administration of the combination to a patient in a pre-morbid stage or early stage of the cancer to be treated, a pre-form of the corresponding cancer has been diagnosed and/or in a patient diagnosed in a situation where the corresponding cancer is likely to develop .
  • prevention includes the suppression or delay of the occurrence or frequency of a disease or disorder, or symptoms thereof, such as cancer, and generally refers to the occurrence of signs or symptoms before they occur, especially in individuals at risk. previous drug administration. "Prevention” also includes preventing the occurrence or recurrence of cancer.
  • an effective amount refers to an amount (e.g., a therapeutically effective amount, especially a combined therapeutically effective amount) of the active agents of the present disclosure for (i) treating a particular disease, (ii) attenuating, ameliorating or eliminating a particular disease or (iii) preventing or delaying the onset of one or more symptoms of a particular disease described herein.
  • a therapeutically effective amount of the active agent can reduce the number of cancer cells; reduce tumor size; inhibit (i.e., to some extent slow and preferably stop) cancer cell infiltration of surrounding organs; inhibit (i.e., to some extent slow and preferably stop) tumor metastasis; inhibit tumor growth to some extent; and/or alleviate to some extent one or more symptoms associated with cancer.
  • “Individual” or “patient” as used herein refers to both mammals and non-mammals. Mammal refers to any member of the class Mammalia, which includes, but is not limited to: humans; non-human primates, cattle, horses, sheep, pigs, rabbits, dogs, and cats, etc. "Individual” is not limited to a specific age or gender. Preferably, the individual or patient is a human.
  • non-fixed combination means each active agent (for example, (a) compound CYH33 or compound 1-27 or a pharmaceutically acceptable salt thereof, (b) selected from PARP1/2 inhibitors, estrogen receptor modulators, One or both of the CDK4/6 inhibitors, or a pharmaceutically acceptable salt thereof, and optionally (c) an aromatase inhibitor or a pharmaceutically acceptable salt thereof) as separate entities (e.g., separate unit dosage form) are administered to an individual simultaneously, without specific time limitation, or at the same or different time intervals, sequentially, wherein such administration provides in vivo an effective amount of each of the active agents.
  • active agent for example, (a) compound CYH33 or compound 1-27 or a pharmaceutically acceptable salt thereof, (b) selected from PARP1/2 inhibitors, estrogen receptor modulators, One or both of the CDK4/6 inhibitors, or a pharmaceutically acceptable salt thereof, and optionally (c) an aromatase inhibitor or a pharmaceutically acceptable salt thereof
  • separate entities e.g., separate unit dosage form
  • the active agents used in the pharmaceutical combination are administered at levels not exceeding their respective levels when used alone.
  • “Fixed combination” means that two or more active agents are administered to a patient simultaneously in the form of a single entity (eg, the same unit dosage form).
  • the active agents may each be in separate formulations, which may be the same or different.
  • a kit of parts may contain the active agents for combined administration. Dosages and/or time intervals of each active agent are preferably selected to produce a more favorable effect.
  • Dosage unit refers to physically discrete units suitable as unitary dosages for humans and other mammals, each unit containing a predetermined quantity of active substance calculated to produce the desired therapeutic effect, together with a suitable pharmaceutically acceptable dose. acceptable excipients.
  • “Daily dose” as used herein refers to the total daily dose, which may be administered once or in divided doses, eg 2 or 3 or more times.
  • administration refers to the physical introduction of each of the active agents of the combinations of the present disclosure into an individual using any of a variety of methods and delivery systems known to those skilled in the art.
  • Routes of administration for each active agent in the combinations of the present disclosure include oral, intravenous (eg, infusion, drip or injection), intramuscular, subcutaneous, intraperitoneal, spinal, topical or other parenteral routes of administration.
  • parenteral administration refers to modes of administration other than gastrointestinal and topical administration, usually intravenously, and includes, without limitation, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intrathecal , intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcutaneous, intra-articular, subcapsular, subarachnoid, intraspinal, epidural, and intrasternal injections and infusions, and in vivo electroporation.
  • each active agent in the combination of the present disclosure can be formulated into capsules, tablets, injections (including infusion or injection solutions), syrups, sprays, lozenges, liposomes or suppositories and the like.
  • combined administration is intended to encompass the administration of selected active agents to a single patient, and is intended to include therapeutic regimens in which the active agents are not necessarily administered by the same route of administration or at the same time.
  • Continuous administration refers to daily administration.
  • the drug may be administered one or more times per day, for example, the drug may be administered at a frequency of once a day, twice a day, or three times a day, preferably once a day.
  • each treatment cycle (or prophylactic cycle) of administering the combination of the present disclosure is 14 to 28 days, preferably each cycle is two weeks (i.e., 14 days), three weeks (i.e., 21 days) or four weeks (i.e., 28 days).
  • the active agents of the combination of the present disclosure may be administered on the same day or on different days of the cycle, that is to say the active agents of the pharmaceutical combination of the present disclosure are administered separately, simultaneously or sequentially (or called sequentially) within the cycle.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms which are suitable within the scope of sound medical judgment for contact with the tissues of mammals, especially humans, without undue toxicity, irritation, allergic response and Complications of other problems and with a reasonable benefit/risk ratio.
  • compositions of the present disclosure include, but is not limited to, an acid addition salt or a base addition salt of a compound.
  • Compound CYH33 can form various salts with various inorganic and organic acids.
  • Acids useful in the preparation of pharmaceutically acceptable acid addition salts of compounds of the present disclosure are those which form non-toxic acid addition salts (i.e., salts containing a pharmaceutically acceptable anion, such as, hydrochloride, sulfuric acid or phosphate , propionate, fumarate, malonate, methanesulfonate, acetate, benzoate, bromide, chloride, citrate, fumarate, hydrobromide, iodate , lactate, maleate, mandelate, nitrate, oxalate, salicylate, succinate and tartrate, benzenesulfonic acid, 4-toluenesulfonic acid, 2-naphthalenesulfonic acid, 1 , 5-naphthalenedisulf
  • synergy refers to a therapeutic combination that is more effective than the additive effects of two or more individual active agents.
  • a determination of a synergistic interaction between compound CYH33, or a pharmaceutically acceptable salt thereof, and one or more other active agents can be based on results obtained from assays described herein.
  • the Combination Index (CI) value of the combination therapy can be calculated by Compusyn software (1.0) using an in vitro tumor cell activity test. When CI ⁇ 0.9, the combination therapy has a synergistic effect.
  • Combination therapies may provide "synergy” and be demonstrated to be “synergistic”, ie, the effect achieved when the active ingredients are used together is greater than the sum of the effects produced by the compounds alone.
  • a synergistic effect may be obtained when the active agents are: (1) co-formulated and administered or delivered simultaneously in a combined unit dosage form of two or more active ingredients; (2) delivered separately or sequentially (or sequentially) or as separate The formulations are delivered simultaneously; or (3) administered by some other regimen.
  • compositions of the present disclosure may include one or more pharmaceutically acceptable excipients and can be produced in a conventional manner by admixing one or more of the combination partners with the pharmaceutically acceptable excipients.
  • Pharmaceutically acceptable excipients include, but are not limited to, diluents, binders, disintegrants. Examples of pharmaceutically acceptable diluents include, but are not limited to, lactose, dextrose, mannitol, and/or glycerin, and/or lubricants and/or polyethylene glycol.
  • Examples of pharmaceutically acceptable binders include, but are not limited to, magnesium aluminum silicate, starch (such as corn starch, wheat starch, or rice starch), gelatin, methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone , and if necessary, pharmaceutically acceptable disintegrating agents include but are not limited to starch, agar, alginic acid or its salts (such as sodium alginate) and/or effervescent mixtures, or adsorbents, dyes, flavoring agents and sweeteners .
  • the disclosed compounds can also be in the form of parenterally administrable compositions or infusion solutions.
  • the pharmaceutical composition can be sterile and/or can comprise excipients, such as preservatives, stabilizers, wetting and/or emulsifying agents, solubilizers, salts for adjusting the osmotic pressure and/or buffers.
  • excipients such as preservatives, stabilizers, wetting and/or emulsifying agents, solubilizers, salts for adjusting the osmotic pressure and/or buffers.
  • Combinations of the present disclosure may be in the form of pharmaceutical compositions or pharmaceutical formulations.
  • the active agents contained in the combinations of the present disclosure may be in the form of a pharmaceutical dosage unit, eg a single pharmaceutical dosage unit.
  • the combination of the present disclosure can be any dosage form (for example, unit dosage form) known to those skilled in the art, such as sugar-coated tablet, tablet, capsule, granule, powder, suppository, solution, suspension, injection (injection solution) or injection suspension). They are prepared in a manner known per se, for example by conventional mixing, granulating, sugar-coating, dissolving or lyophilization processes.
  • each agent contained in an individual dose of each dosage form need not itself constitute an effective amount, since the necessary effective amount can be achieved by administering a plurality of dosage units.
  • Unit dosage forms containing the combinations of the present disclosure may contain the active agents in amounts normally administered when the active agents are administered alone.
  • kits of parts may take the form of a kit of parts, in the sense that each active agent may be administered independently or using different fixed combinations with different amounts of the active agents, ie administered simultaneously or at different points in time. Subsequently, the active agents included in the kit of parts can be administered simultaneously or chronologically crossed, ie at different time points with respect to any active ingredient of the kit of parts and the time intervals between administrations can be equal or unequal.
  • Therapeutically effective amounts may be administered simultaneously or sequentially in any order, either separately or as Fixed combination application.
  • the active agents of the disclosed combinations may be administered separately at different times during the course of treatment or simultaneously in separate or single combinations.
  • Combinations of the present disclosure may be administered to individuals who have been treated with one or more prior therapies but have subsequently relapsed or metastasized.
  • Each active agent in the combinations of the present disclosure may be administered to an individual in need thereof in one or more doses.
  • Each cycle of administration of the combination of the present disclosure is 28 days (4 weeks).
  • Combinations of the present disclosure may be administered for at least one cycle, eg, 2-12 or more treatment cycles.
  • the first active agent in the combination of the present disclosure such as compound CYH33 or compound 1-27 or a pharmaceutically acceptable salt thereof, can be administered once a day, two or more times a day, once every two days or every three days One time, continuous administration in each cycle, or a regimen of continuous administration for three weeks followed by a one-week rest period.
  • the daily dose of compound CYH33 or compound I-27 or a pharmaceutically acceptable salt thereof (based on free compound) is 10-50 mg, such as 10-40 mg, 20-40 mg, 20-30 mg, 30-40 mg, such as 10 mg, 20 mg , 30mg, 40mg.
  • the initial dose of CYH33 or compound 1-27 or a pharmaceutically acceptable salt thereof is 40 mg or 30 mg, for example administered with an initial dose of 40 mg QD or 30 mg QD.
  • compound CYH33 or compound I-27 or a pharmaceutically acceptable salt thereof is continuously administered in each cycle, with a daily dose of 10 mg, 20 mg, 30 mg or 40 mg, preferably once a day.
  • compound CYH33 or compound I-27 or a pharmaceutically acceptable salt thereof is administered orally.
  • the PARP1/2 inhibitors in the combinations of the present disclosure can be administered once a day or twice a day, once every two days, or once every three days, in each cycle, or three times in a row.
  • the daily dose of olaparib or a pharmaceutically acceptable salt thereof is 200-600 mg, such as 200 mg, 250 mg, 300 mg, 400 mg, 500 mg or 600 mg.
  • olaparib is administered continuously in each cycle, with a single dose of 200-300 mg, such as 200 mg, 250 mg or 300 mg, preferably administered twice a day.
  • olaparib or a pharmaceutically acceptable salt thereof is administered orally.
  • the estrogen receptor modulators in the combinations of the present disclosure can be administered to an individual in need in one or more doses, wherein in the case of multiple doses, the previous dose follows, 2, 3 or 4 weeks to administer the next dose.
  • administration is on days 1 and 15 of the first cycle, and on day 1 of each subsequent cycle.
  • Each dose of fulvestrant may be 250mg-500mg, eg 250mg or 500mg, preferably 500mg.
  • fulvestrant is administered intramuscularly.
  • the CDK4/6 inhibitors in the combinations of the present disclosure can be administered once a day, once every two days or once every three days, continuously within each cycle, or administered continuously A regimen of three weeks followed by one week off, or two consecutive weeks followed by two weeks off.
  • the daily dose of palbociclib or a pharmaceutically acceptable salt thereof is 75-125 mg, such as 75 mg, 100 mg, 125 mg.
  • palbociclib is administered continuously for three weeks in each cycle, followed by one week of rest, with a daily dose of 125 mg, preferably once a day.
  • palbociclib or a pharmaceutically acceptable salt thereof is administered orally.
  • the aromatase inhibitors in the combinations of the present disclosure can be administered once daily, once every two days, or once every three days, continuously within each cycle, or continuously A regimen of three weeks on followed by one week off was used.
  • the daily dose of compound CYH33 or a pharmaceutically acceptable salt thereof is 10-50 mg.
  • letrozole is administered continuously in each cycle at a daily dose of 2.5 mg, preferably once daily.
  • letrozole or a pharmaceutically acceptable salt thereof is administered orally.
  • the first active agent compound CYH33 is administered at a daily dose of about 10-40 mg, such as 20-30 mg, 20-40 mg, 30-40 mg, in combination with the second active agent, or with the second active agent and the third active agent.
  • the active agents are administered in combination.
  • compound CYH33 is administered in combination with a daily dose of 10-40 mg of olaparib at a daily dose of 200-600 mg.
  • compound CYH33 is administered at a daily dose of 20 mg in combination with a daily dose of olaparib of 400 mg, 500 mg or 600 mg.
  • compound CYH33 is administered at a daily dose of 20-40 mg in combination with fulvestrant at a dose of about 500 mg.
  • Compound CYH33 was administered at a daily dose of 20 mg, 30 mg or 40 mg in combination with fulvestrant at a dose of 250 mg or 500 mg.
  • compound CYH33 is administered at a daily dose of 10-40 mg in combination with a daily dose of palbociclib of 75-125 mg.
  • Compound CYH33 was administered at a daily dose of 10 mg, 20 mg, 30 mg or 40 mg in combination with a daily dose of palbociclib 75-mg, 100 mg or 125 mg.
  • compound CYH33 is administered at a daily dose of 10-40 mg in combination with a daily dose of fulvestrant 500 mg, and a daily dose of palbociclib 75-125 mg.
  • Compound CYH33 was administered in combination with fulvestrant 500 mg injection and palbociclib 75-125 mg daily dose at a daily dose of 10 mg, 20 mg, 30 mg or 40 mg.
  • compound CYH33 is administered at a daily dose of 10-40 mg in combination with a daily dose of palbociclib of 75 mg, 100 mg or 125 mg, and a daily dose of letrozole of 2.5 mg.
  • Compound CYH33 was administered at a daily dose of 10 mg, 20 mg, 30 mg or 40 mg in combination with a daily dose of palbociclib 75 mg, 100 mg or 125 mg, and letrozole 2.5 mg.
  • CYH33 exhibited a time- and dose-dependent inhibition of the activity of the PI3K pathway in vivo, and was able to dose-dependently inhibit several human esophageal cancer cell line mouse xenograft models (CDX) and patient-derived xenografts. Tumor growth in model (PDX).
  • CDX mouse xenograft models
  • PDX Tumor growth in model
  • the antitumor activity of CYH33 in combination with olaparib was evaluated in a mouse subcutaneous xenograft model of the PIK3CA-mutated human ovarian cancer cell line SK-OV-3. Compared with CYH33 and olaparib alone, the combination of CYH33 and olaparib showed stronger antitumor activity.
  • the dual or triple drug combination of CYH33 with fulvestrant and palbociclib has a strong inhibitory effect on cell proliferation of ER-positive, HER2-negative, PIK3CA mutant breast cancer cell line T47D cells in vitro cell viability experiments .
  • the two-drug combination of CYH33 and fulvestrant, and CYH33 and palbociclib have synergistic anti-cell proliferation effects; and the triple-drug combination of CYH33+fulvestrant+palbociclib has synergistic anti-cell proliferation effects .
  • a suitable clinical study may be, for example, an open-label, dose-escalation study in patients with cancer.
  • Such studies demonstrate in particular the synergy of the active ingredients of the combinations of the present disclosure.
  • Beneficial effects on cancer can be determined directly from the results of these studies known to those skilled in the art.
  • Such studies may be particularly suitable for comparing the effects of monotherapies with the active ingredients and combinations of the present disclosure.
  • the dose of the first active agent such as compound CYH33
  • the second active agent is administered at a fixed dose.
  • compound CYH33 can be administered at a fixed dose and the dose of the second active agent can be tapered from the maximum tolerated dose.
  • Each patient may receive doses of the compound daily or intermittently.
  • the efficacy of treatment can be determined, for example, in such studies after 12, 18 or 24 weeks by evaluating symptom scores every 6 weeks.
  • IR 0 Inhibition rate, IR 0
  • IR 0 (%) (1-(RLU compound-RLU blank control)/(RLU vehicle control-RLU blank control) ) ⁇ 100%.
  • GraphPad Prism (6.02.328) software to use log (inhibitor) vs. response (response)--variable slope (Variable slope) to fit the inhibition curve, and get Relevant parameters, including minimum inhibition rate, maximum inhibition rate and relative IC 50 , were displayed.
  • the minimum inhibition rate is the Y value corresponding to the plateau at the bottom of the curve
  • the maximum inhibition rate is the Y value corresponding to the plateau at the top of the curve
  • the relative IC50 is the concentration required to bring the curve down to a point halfway between the top and bottom plateaus of the curve
  • the absolute IC 50 refers to the drug concentration at which cell viability is inhibited by half.
  • tumor volume dimensions were assessed twice weekly. Tumor volume dimensions were determined by digital caliper measurements, and tumor volume and animal body weight were measured twice weekly throughout the experiment.
  • Body weight change BWC (%) response compared to the percentage of body weight change at the beginning of treatment, the calculation formula is: BWC (%) (BW n -BW 0 )/(BW 0 ) ⁇ 100%, BW n , BW 0 are expressed as Body weight at present and at the beginning of treatment.
  • T/C and TGI are indicators that reflect tumor (tumor volume) response to treatment.
  • T/C (%) reflects the relative tumor proliferation rate, that is, the percentage of tumor treatment/control (T/C) value, which is calculated by the following formula:
  • T/C (%) (T RTV /C RTV ) ⁇ 100, (T RTV , C RTV respectively represent the average relative tumor volume (RTV) of the treatment group and the vehicle control group on the day of treatment).
  • the average tumor volume, Vt is the average tumor volume at each measurement, T RTV and C RTV take the data of the same day.
  • TGI (%) reflects tumor growth inhibition rate.
  • T i , T 0 , V i , and V 0 are the average tumor volume of a certain treatment group at the end of administration, the average tumor volume of this treatment group at the beginning of administration (d 0 ), and the average tumor volume of the vehicle control group at the end of treatment. The average tumor volume at the beginning of treatment (d 0 ) in the vehicle control group.
  • T W The tumor weight was measured at the end of the experiment, and the relative tumor weight was calculated as: T W /C W .
  • T W and C W are the average tumor weights of the treatment group and the vehicle control group, respectively.
  • Compusyn software (1.0) was used to calculate the combination index (CI) value of combination therapy in vitro cell activity experiment (synergy: CI ⁇ 0.9; additive effect: 0.9 ⁇ CI ⁇ 1.1; antagonism: CI>1.1).
  • Example 1 Two-tailed t-test was used to evaluate the difference in tumor volume and tumor weight between each drug treatment group and vehicle control group at the end of the drug efficacy experiment.
  • Examples 3 and 5 used Graphpad Prism 6.0 software to perform one-way ANOVA (One-way ANOVA) combined with Dunnett's method for multiple comparisons to evaluate the difference in tumor volume between each drug treatment group and the vehicle control group at the end of the drug efficacy experiment.
  • Embodiments 1, 3 and 5 also used Graphpad Prism 6.0 software to conduct two-way ANOVA (Two-way ANOVA) combined with Tukey's method for multiple comparisons to evaluate the difference between the tumor volumes of each drug treatment group during the drug efficacy test.
  • Two-way ANOVA two-way ANOVA
  • Tukey's method for multiple comparisons to evaluate the difference between the tumor volumes of each drug treatment group during the drug efficacy test.
  • the significance level was set at p ⁇ 0.05 to report significance compared to the control group, ie p ⁇ 0.05 was considered statistically significant, and p ⁇ 0.01 indicated a highly significant statistical difference.
  • the cell lines SK-OV-3 and T47D breast cancer cell lines used in the experiment were all from the American Type Culture Collection (ATCC), and the product numbers were HTB-77 and HTB-133, respectively.
  • the mouse subcutaneous xenograft tumor model of PIK3CA-mutated human ovarian cancer cell line SK-OV-3 was used to evaluate the anti-tumor efficacy of CYH33 and olaparib.
  • the female mice used were purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd.
  • the tumor tissues in the vigorous growth stage were cut into about 2 mm 3 and inoculated subcutaneously in the right armpit of nude mice under aseptic conditions to observe the tumor occurrence.
  • the subcutaneous transplanted tumors of nude mice were measured with a vernier caliper to measure the diameter of the transplanted tumors.
  • the tumor-bearing mice were randomly divided into 8 groups (6 mice in each group).
  • the combination therapy of the two drugs was studied for its curative effect. Animals were divided into 8 groups according to the study dosage scheme shown in Table 1, and administered. Oral administration once a day for 21 consecutive days.
  • FIG. 1 shows the tumor growth curves of each treatment group after CYH33 and olaparib were applied alone or in combination to BALB/c female nude mice bearing subcutaneous xenograft tumors of SK-OV-3 human ovarian cancer cells.
  • FIG. 2 shows the tumor body weight of each treatment group at the end of the experiment (21 days after administration); the data points and columnar data in Figure 1 and Figure 2 represent the average tumor volume and average tumor weight of each group respectively, and the error bars represent the average tumor weight. Standard error of value (SEM). Table 2 shows the average tumor volume of each treatment group on the starting day of administration, as well as the average tumor volume, average tumor weight, and indicators of tumor response to treatment T/C, TGI and IR (%) after 21 days of administration.
  • the average tumor weights were 0.440g (inhibition rate IR: 77.12%, p ⁇ 0.01), 0.575g (IR: 70.10%, p ⁇ 0.01) 0.01) and 0.957g (IR: 50.23%), the average tumor weight of olaparib (100mg/kg) monotherapy was 1.151g (IR: 40.15%).
  • the mean tumor weights of CYH33 (20mg/kg, 10mg/kg and 5mg/kg) and olaparib (100mg/kg) combined treatment groups were 0.194g, 0.351g and 0.504g respectively, and the IR values were 89.91% ( p ⁇ 0.01), 81.75% (p ⁇ 0.01), and 73.79% (p ⁇ 0.01).
  • the study also showed that the combination of CYH33 and olaparib has a stronger tumor inhibitory effect than the corresponding dose of single drug.
  • CYH33 single drug, olaparib single drug, and CYH33 combined with olaparib can inhibit tumor growth. From the perspective of tumor volume and tumor weight, the combination of CYH33 and olaparib has a stronger tumor inhibitory effect than either of the corresponding single drugs.
  • T/C values of CYH33 5 mg/kg
  • olaparib 100 mg/kg
  • T/C values of CYH33 5 mg/kg
  • olaparib 100 mg/kg
  • the T47D breast cancer tumor cell line (ER+, HER2-, PIK3CA mutation) was cultured in an incubator at 37° C. with 5% CO 2 . Passaging regularly, cells in the logarithmic growth phase were taken for plating, and CYH33+fulvestrant, CYH33+palbociclib, and each single drug were subjected to cell plating and compound treatment respectively.
  • CYH33 starting at 10 ⁇ M, 3 times dilution, 9 concentration gradients
  • fulvestrant starting at 1 ⁇ M, 3 times dilution, 9 concentration gradients
  • palbociclib starting at 10 ⁇ M, 3 times dilution, 9 concentrations gradient
  • the final concentrations of CYH33 and palbociclib were 10, 3.3333, 1.1111, 0.3704, 0.1235, 0.0412, 0.0137, 0.0046, 0.0015 ⁇ M
  • the final concentrations of fulvestrant were 1, 0.333, 0.111, 0.037, 0.01235 , 0.00412, 0.00137, 0.00046, 0.00015 ⁇ M.
  • the luminescent signal was detected according to the Promega CellTiter-Glo Luminescent Cell Viability Detection Kit (Promega-G7573). The results are shown in Table 3 and Table 4.
  • CYH33 alone has a strong inhibitory effect on T47D cell proliferation, with a relative IC 50 of 0.075 ⁇ M and a maximum inhibition rate of 74.65%. The highest inhibition rate within the range was 40.13%, with a relative IC 50 of 8.061 ⁇ M. When the two drugs were used in combination, the highest inhibitory rate of palbociclib within the concentration setting range was 78.54%, and the relative IC 50 was 0.015 ⁇ M.
  • the CI values under each Fa were analyzed by Compusyn software, as shown in Table 4. The CI values under each Fa were all less than 0.9, indicating a synergistic effect; and the best CI value was 0.19488.
  • CYH33 a The initial concentration of CYH33 is 10 ⁇ M, and the parameters of CYH33 are calculated based on the average value of two parallel experiments. Table 4. Fa-CI values of CYH33 combined with palbociclib, CYH33 combined with fulvestrant in T47D cells
  • the concentration ratio of CYH33 to palbociclib is 1:1, and the total concentration is the sum of the concentrations of CYH33 and palbociclib.
  • the concentration ratio of CYH33 to fulvestrant was 10:1, and the total concentration was the sum of the concentrations of CYH33 and fulvestrant.
  • c Fa represents the inhibition rate (Fraction affected).
  • CYH33 with fulvestrant and palbociclib was evaluated in the subcutaneous treatment of human breast cancer T47D cells with estrogen receptor positive and PIK3CA mutation BALB/c (ER+, HER2-, PIK3CA mutation) nude mice.
  • BALB/c ER+, HER2-, PIK3CA mutation
  • In vivo drug efficacy in a xenograft tumor model The female mice used were purchased from Shanghai Xipuer-Bikay Experimental Animal Co., Ltd. Two days before cell inoculation, a 0.18 mg 17 ⁇ -estradiol tablet was implanted subcutaneously in the left upper limb of the mouse. When the average volume of the tumor reached about 193 mm 3 , it was randomly divided into 12 groups (6 rats in each group) for administration.
  • CYH33 and palbociclib were administered orally once a day for 35 consecutive days, and fulvestrant was administered subcutaneously once a week for a total of 6 times.
  • Figure 3 shows the tumor volume growth curves of each treatment group after CYH33, fulvestrant or palbociclib were applied alone or in combination to T47D xenografted female BALB/c nude mice.
  • the data points represent the average tumor volume in each group (see Table 5 for each group). Error bars represent standard error of the mean (SEM).
  • Table 5 shows the average tumor volume of each treatment group on the starting day of administration, the average tumor volume after 35 days of administration, and the indicators T/C and TGI of tumor response to treatment.
  • CYH33 can inhibit tumor growth in a dose-dependent manner at doses of 2.5 mg/kg, 5 mg/kg, and 10 mg/kg.
  • TGI tumor growth in a dose-dependent manner at doses of 2.5 mg/kg, 5 mg/kg, and 10 mg/kg.
  • TGI tumor growth in a dose-dependent manner at doses of 2.5 mg/kg, 5 mg/kg, and 10 mg/kg.
  • TGI tumor growth in a dose-dependent manner at doses of 2.5 mg/kg, 5 mg/kg, and 10 mg/kg.
  • TGI tumor inhibition of 5 mg/kg
  • T/C relative tumor proliferation rate
  • CYH33 single drug and fulvestrant single drug Compared with CYH33 single drug and fulvestrant single drug, the antitumor effect of CYH33 (2.5mg/kg, 5mg/kg, 10mg/kg) combined with fulvestrant (2mg/mouse) is stronger than single drug , all potently inhibited tumor growth, TGI were 74.28%, 89.63% and 84.82%, respectively, and T/C values were less than 40%, respectively 39.45%, 26.94% and 30.87%.
  • the combination group of CYH33 (5mg/kg) and fulvestrant (2mg/mous) has a synergistic anti-tumor effect compared with single drug (for example, TGI of the combination group (89.63%)>CYH33 (5mg/kg) TGI (36.7%) + Fulvestrant (2 mg/mouse) TGI (52%).
  • TGI tumor inhibitory effect
  • the combination of CYH33 and fulvestrant, CYH33 and palbociclib all showed stronger effects than Corresponding to the antitumor effect of any single drug.
  • the T/C values of the combination group are all less than 40%, reaching the standard of effective anti-tumor activity before clinical practice.
  • the combination of CYH33 (5 mg/kg) and fulvestrant (2 mg/mouse) has a synergistic anti-tumor effect.
  • the T47D breast cancer tumor cell line (ER+, HER2-, PIK3CA mutation) was cultured in an incubator at 37° C. with 5% CO 2 . Passage regularly, and take cells in logarithmic growth phase for plating.
  • CYH33, fulvestrant and palbociclib were subjected to cell plating and compound treatment. Among them, CYH33: start at 2 ⁇ M, 2-fold dilution, 9 concentration gradients; fulvestrant: start at 0.05 ⁇ M, 2-fold dilution, 9 concentration gradients; palbociclib: start at 10 ⁇ M, 2-fold dilution, 9 concentration gradients Concentration gradient.
  • the concentration ratio of CYH33, palbociclib, and fulvestrant is 40:200:1, and the total concentration is the sum of the concentrations of CYH33, palbociclib, and fulvestrant.
  • the anti-cell proliferation effect of CYH33 combined with fulvestrant + palbociclib showed that CYH33 alone had a strong inhibitory effect on cell proliferation on T47D cells, with a relative IC 50 of 0.066 ⁇ M and the highest inhibition rate of 77.16%.
  • the highest inhibitory rate of Setran+Palbociclib in the concentration setting range was 57.91%
  • the relative IC 50 was 0.025 ⁇ M
  • the minimum relative IC 50 was 0.002 ⁇ M
  • the highest inhibitory rate was 100% when the three drugs were used in combination.
  • the CI values below are shown in Table 8. When Fa ⁇ 0.8, the CI values are all less than 0.9, indicating a synergistic effect.
  • the anti-cell proliferation effect of palbociclib combined with CYH33 + fulvestrant showed that palbociclib alone had a strong inhibitory effect on cell proliferation of T47D cells, with a relative IC 50 of 0.916 ⁇ M and a maximum inhibition rate of 59.74%.
  • CYH33+ The highest inhibitory rate of fulvestrant within the concentration setting range was 75.57%, and the relative IC 50 was 0.010 ⁇ M.
  • the relative IC 50 was 0.001 ⁇ M when the three drugs were used in combination, and the highest inhibitory rate was 88.42%.
  • the CI under each Fa was analyzed by Compusyn software. The values are shown in Table 8. When Fa ⁇ 0.7, the CI values are all less than 0.9, indicating a synergistic effect.
  • CYH33, fulvestrant, and palbociclib were evaluated as a single agent, two-drug combination or three-drug combination, respectively, in estrogen receptor-positive, PIK3CA-mutated human breast cancer T47D cells BALB /c (ER+, HER2-, PIK3CA mutation) in vivo antitumor efficacy in subcutaneous xenograft tumor model in nude mice.
  • the mice used were purchased from Shanghai Xipuer-Bikay Experimental Animal Co., Ltd. Two days before cell inoculation, a 0.18 mg 17 ⁇ -estradiol tablet was implanted subcutaneously in the left upper limb of the mouse.
  • Figure 4 shows the tumor volume growth curves for each treatment group. Data points in Figure 4 represent mean tumor volumes within each group and error bars represent standard error of the mean (SEM). Table 9 shows the average tumor volume of each treatment group on the starting day of administration, as well as the average tumor volume and the indicators of tumor response to treatment T/C and TGI after 28 days of administration. Tables 10, 11, and 12 respectively show the results of multiple comparative analysis among the groups of CYH33, fulvestrant, and palbociclib alone, in combination with two drugs, and in combination with three drugs.
  • TGI of palbociclib (20mg/kg) was 25.8%, and the T/C was 77.85%, which did not reach the effective standard of preclinical antitumor activity; Beciclib (20mg/kg) combined, TGI were 68.58%, 66.32%, 85.55%, T/C were 41.51%, 43.3%, 27.06%, the tumor inhibitory effect was stronger than CYH33 monotherapy corresponding dose group or Piper Beciclib monotherapy group.
  • TGI CYH33 (2.5mg/kg, 5mg/kg, 10mg/kg) combined with fulvestrant (2mg) and palbociclib (20mg/kg) respectively
  • the TGI were 91.9%, 96.61%, 102.81%, respectively
  • T/C were 21.63%, 17.63%, and 12.34%, respectively
  • the anti-tumor effect of the three-drug combination was stronger than that of the single-drug therapy group, CYH33+fulvestrant, CYH33+palbociclib, or fulvestrant+palbociclib Sealy (TGI is 60.37%, T/C is 48.55%) dual drug group.
  • N is the number of animals
  • the three-drug combination of CYH33, fulvestrant and palbociclib showed a stronger effect than Corresponding to the antitumor effect of any single drug.
  • the T/C of the three-drug combination group was all less than 40%, reaching the standard of effective anti-tumor activity in preclinical.
  • the combined use of CYH33 (10 mg/kg) + fulvestrant and palbociclib has a synergistic anti-tumor effect.
  • the statistical analysis showed that the anti-tumor effect of the three-drug combination in the three dose groups tested was significantly different from that of any single drug, compared with the standard treatment fulvestrant + palbociclib. , also has extremely significant statistical significance, even the three-drug combination with CYH33 5mg/kg is still very statistically significant compared with the corresponding combination of CYH33+palbociclib (p ⁇ 0.01), and CYH33 is 10mg/kg Compared with the corresponding combination of CYH33+fulvestrant, the three-drug combination of CYH33+fulvestrant still has extremely significant statistical significance (p ⁇ 0.001), showing that the three-drug combination has a synergistic anti-tumor effect.
  • the dosage and administration regimen of CYH33 and olaparib can be selected based on the following existing information: human safety, efficacy and PK information of CYH33, preclinical safety, efficacy and PK information of olaparib, In the dose escalation and dose expansion section, determine the MTD (Maximum Tolerated Dose) or RP2D (Phase II Recommended Dose) of the combination.
  • MTD Maximum Tolerated Dose
  • RP2D Phase II Recommended Dose
  • the aim is to evaluate the clinical efficacy of the combination of CYH33 and olaparib in patients with advanced solid tumors and the pre-assessment of the drug-drug interaction potential of the combination , thereby determining the objectives and associated endpoints as described in Table 12.
  • the experimental drugs are CYH33 and olaparib, and the treatment plan is combination therapy.
  • the starting dose is 10 mg orally administered once a day (QD), 28 days as a cycle.
  • the initial dose is 20mg QD orally, 28 days as a cycle.
  • the initial dose is 30mg QD orally administered, 28 days as a cycle.
  • the initial dose is 40mg QD orally administered, 28 days as a cycle.
  • the starting dose is 300 mg, administered orally twice a day (BID), 28 days as a cycle.
  • the starting dose is 250 mg, administered orally twice a day (BID), 28 days as a cycle.
  • the initial dose is 200 mg, administered orally twice a day (BID), and 28 days is a cycle.
  • Advanced solid tumors including but not limited to ovarian cancer, fallopian tube cancer, primary peritoneal cancer, prostate cancer, endometrial cancer, etc.).
  • the experimental drug is CYH33 combined with fulvestrant or letrozole, with or without palbociclib, and the treatment plan is combination therapy.
  • the initial dose is 30 mg orally administered once a day (QD), 28 days as a cycle.
  • the initial dose is 40mg QD orally administered, 28 days as a cycle.
  • the initial dose is 20mg QD orally, and 28 days is a cycle.
  • the starting dose is 10mg QD orally, 28 days as a cycle.
  • Buttock injection In the first cycle, inject 500 mg on the first day and on the 15th day, and inject 500 mg on the first day of the subsequent cycle. 28 days is a cycle.
  • -A 125mg QD orally administered, continuous medication for 3 weeks and 1 week off, 28 days as a cycle.

Abstract

药物组合,其包含PI3Kα抑制剂或其药学上可接受的盐,和选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的一种或两种或其药学上可接受的盐,以及任选芳香化酶抑制剂或其药学上可接受的盐。还涉及使用所述组合来治疗或预防癌症的方法和用途。

Description

包含PI3Kα抑制剂的药物组合
相关申请的交叉引用
本申请要求2021年9月10日提交的专利申请CN 202111061695.0的优先权权益,其公开内容通过引用并入本文。
技术领域
本公开涉及医药领域。具体而言,本公开涉及药物组合,其包含PI3Kα抑制剂或其药学上可接受的盐,和选自PARP1/2抑制剂、***受体调节剂、细胞周期蛋白依赖性激酶4/6(CDK4/6)抑制剂中的一种或两种或其药学上可接受的盐,以及任选芳香化酶抑制剂或其药学上可接受的盐。本公开还涉及使用所述组合来治疗或预防癌症的方法和用途。
背景技术
PI3Kα抑制剂
PI3K/AKT/mTOR信号通路是调节细胞周期和细胞凋亡的众多机制之一。通路中的单个组件失调可导致肿瘤发生。受体酪氨酸激酶(receptor tyrosine kinase,RTK)在被生长因子激活时,可调控PI3K/AKT信号通路的活化。这些生长因子包括***(Insulin-like Growth Factors,IGF)、表皮生长因子(Epidermal Growth Factor,EGF)及肝细胞生长因子(Hepatocyte growth factor,HGF),它们通过诱导RTK酪氨酸残基自身磷酸化激活RTK。而PI3K与RTK上磷酸化的酪氨酸残基结合后导致PI3K的催化亚基的激活。人细胞包含三个基因(PIK3CA、PIK3CB和PIK3CD),它们分别编码IA型PI3K的催化亚基PI3Kα(p110α),PI3Kβ(p110β)和PI3Kδ。p110α和p110β都在胰岛素信号传导中起特定作用;然而,葡萄糖稳态主要由p110α介导。IA型PI3K的催化亚基p110α,通过结合p85α使PI3K活化,从而进一步磷酸化磷脂酰肌醇4,5-二磷酸(PIP2)为磷脂酰肌醇3,4,5-三磷酸(PIP3)。PIP3作为重要的第二信使和介导因子,通过与AKT的PH结构域相互作用将AKT从细胞质招募到细胞膜上。AKT的膜转位以及AKT的Thr308和Ser473位点被3-磷酸肌醇依赖性蛋白激酶1(phosphatidylinositol-dependent kinase 1,PDK1)和3-磷酸肌醇依赖性蛋白激酶2(phosphatidylinositol-dependent kinase 2,PDK2)磷酸化是AKT激活的必备条件。AKT完全激活后可调节细胞增殖和凋亡等生物过程。
PI3K信号通路失调几乎涉及所有人类癌症。PIK3CA(编码PI3K催化亚单位α)是人类肿瘤中常见的突变致癌基因之一。研究发现,约2-5%的人类实体肿瘤中存在癌基因PIK3CA的突变,其突变的比例在结肠癌、成胶质细胞瘤、胃癌、乳腺癌和肺癌中分别约为32%、27%、25%、8%和4%,在其他消化道肿瘤中,食管鳞癌突变率为11%,食管腺癌为6%。
PARP1/2抑制剂
聚腺苷二磷酸核糖聚合酶(poly(ADP-ribose)polymerase,PARP)抑制剂是一类在持续开发中的热点抗癌药物,是一种与DNA修复,尤其是DNA单链损伤修复密切相关的核酶,可通过捕获与DNA单链断裂(single-strand breaks,SSBs)相结合的PARP,阻止其修复DNA单链断裂,并进而引发产生大量DNA双链断裂(double-strand breaks,DSBs),DSBs在同源重组修复缺陷(HRD)的肿瘤中无法准确修复,可导致DNA损伤累积和肿瘤细胞死亡。
PARP抑制剂包括18种亚型,成员间具有一定的同源性。PRAP1和PARP2是PARP家族中主要的两类酶,其中PARP1发挥着90%以上的功能,PARP2具有与PARP1类似的功能,但两者的底物选择性不同。其中PARP-1在真核细胞内含量最高。当肿瘤细胞DNA受到化疗药物或电离辐射等损伤时,PARP-1很快被激活,并以NAD+为底物,将聚腺苷二磷酸核糖基(ADP)转移到特定蛋白,PARP-1催化特定蛋白聚腺苷二磷酸核糖化(PAR化),启动DNA修复过程。研究表明,PARP-1参与了碱基切除修复(base excision repair,BER)、同源重组(Homologous recombination,HR)和非同源末端连接(Non-homologous end joining,NHEJ)等DNA修复途径。
PARP抑制剂单药治疗已在临床上用于同源重组缺陷(HRD)的癌症患者的治疗,如BRCA胚系突变或HRD阳性的卵巢癌、乳腺癌、胰腺癌和***癌等患者。在同源重组修复(HRR)完整的癌症患者中,PARP抑制剂单药疗效欠佳。此外,大多数晚期BRCA1/2突变癌症患者中存在明显的耐药性,这些获得性耐药影响了PARP抑制剂的治疗效果。目前已知的大多数PARP-1抑制剂对PARP-2也具有抑制作用,且活性相当。如分别于2014年、2016年和2017年作为抗肿瘤药物上市的奥拉帕利(Olaparib)、鲁卡帕利(Rucaparib)、尼拉帕利(Niraparib)这三个PARP-1/2抑制剂。
***受体调节剂和芳香化酶抑制剂
***受体α(ERα)和***受体β(ERβ)是类固醇激素受体,也是核受体大家族的成员。两种受体都参与女性生殖***的调节和发育,此外也在中枢神经***,心血管***和骨代谢中发挥作用。乳腺癌是女性中最常见的恶性肿瘤,据报道大约70%的乳腺癌与人体内***、***受体有关,其对于***受体α(ERα)是阳性;其它癌症如卵巢癌和子宫内膜癌也被认为是依赖于ERα信号来增殖。
目前已经开发了若干种类型的疗法来对抗ERα功能,其中,内分泌治疗是***受体阳性乳腺癌患者的一线治疗方法,其现有药物包括:芳香化酶抑制剂(AI)选择性***受体下调剂(SERDs)、选择性***受体调节剂(SERMs)等;通过降低体内激素量或通过阻断激素对细胞的作用来发挥作用。具体地,选择性***受体调节剂(Selective estrogen receptor modulators,SERMs)是一类可防止***等***在体内介导其生物效应的药物,主要是通过与内源性的***竞争性的同***受体结合而阻断***介导的***信号传导通路来发挥作用。SERM如他莫昔芬在治疗荷尔蒙依赖型(ER +)乳腺癌的病人取得了较好的疗效,但是长期使用常常会产生耐药。
选择性***受体下调剂(Selective estrogen receptor down-regulators,SERDs)是一类能够通过抑制***受体两个转录激活域AF1和AF2的功能而诱导***受体的快速下调的药物,该药物同时具有拮抗ERα和降解ERα的两个功能,对已产生抗激素药物抗药 现象的乳腺癌患者有一定疗效。例如氟维司群够抑制耐药性***受体阳性(ER +)乳腺癌细胞的生长,但其生物利用度与受体的亲和力相对较差。
芳香化酶抑制剂(Aromatase inhibitor,AI)则能特异性导致芳香化酶失活,阻断芳构化反应,抑制***生成,降低血液中***水平从而达到治疗乳腺癌的目的。如来曲唑用于治疗***受体阳性乳腺癌。
CDK抑制剂
肿瘤发展与CDK以及其调节因子的基因改变和失调紧密相关,CDK的功能是磷酸化并因此活化或灭活某些蛋白,包括例如成视网膜细胞瘤蛋白、核纤层蛋白、组蛋白H1和有丝***纺锤体组分。CDK介导的催化步骤包括从ATP到大分子酶底物的磷酸转移反应。在分子水平调节CDK/细胞周期蛋白复合体活性需要一系列刺激性和抑制性的磷酸化或去磷酸化事件。CDK磷酸化是通过一组CDK活化激酶(CAK)和/或激酶例如wee1、Myt1和Mik1实现的。去磷酸化是通过磷酸酶例如cdc25(a&c)、pp2a或KAP实现的。
CDK4/6抑制剂通过选择性抑制细胞周期蛋白依赖性激酶4和6(CDK4/6),恢复细胞周期控制,阻断肿瘤细胞增殖。CDK4/6与细胞周期蛋白D(cyclin D),可磷酸化视网膜母细胞瘤基因(Rb)继而释放转录因子E2F,促进细胞周期相关基因的转录,使细胞进入S期。CDK4/6抑制剂有效地阻滞肿瘤细胞从G1期进展到S期。
乳腺癌(BC)是女性最常见的恶性肿瘤。超过70%的患者为激素受体阳性(HR+)和人表皮生长因子受体2阴性(HER2-)。近几十年来,内分泌治疗(Endocrine therapy,ET)是这些患者治疗的基石。近年来,在***受体阳性(ER+)乳腺癌中,CDK4/6的过度活跃非常频繁。获批上市与ET联合使用的CDK4/6抑制剂显著增加了HR+晚期乳腺癌患者在一线治疗中的无进展生存期。作为标准治疗,这些患者不可避免的会对ET和/或CDK4/6抑制剂治疗产生耐药。
化合物CYH33
CYH33是一种新型、高效、高选择性磷脂酰肌醇-3激酶α(PI3Kα)抑制剂,对PI3Kα及其突变体具有最强的抑制作用,可显著抑制野生型和突变型(包括:E542K、H1047R或E545K)PI3Kα激酶的活性,导致细胞阻滞于G 0/G 1期,从而抑制细胞增殖。化合物CYH33在体外和体内均显示出明显的抗肿瘤活性,特别是针对PI3Kα信号通路高频激活的肿瘤。酶学试验显示,CYH33表现出对PI3K激酶家族的有效抑制活性,且对PI3Kα及其突变体的抑制活性最强(IC 50:5-20nM)。细胞学试验显示,CYH33在41nM水平抑制Rh30-Myr-p110α细胞中PI3Kα介导的AKT磷酸化。相比之下,需要10-30倍的浓度才能抑制PI3Kβ/γ/δ介导的AKT磷酸化。临床前研究显示,化合物CYH33可以在细胞水平和小鼠异体移植瘤模型中有效地抑制乳腺癌、食管癌和卵巢癌的生长。
目前全球已上市PI3K抑制剂药物有多种,如Gilead公司的PI3Kδ抑制剂Idelalisib、拜耳的pan-PI3K抑制剂Copanlisib、Verastem公司的PI3Kδ抑制剂Duvelisib,以及由诺华公司研发的Alpelisib(BYL719)等。其中,BYL719已于2019年5月24日获FDA批准上市,是目前第一个上市的选择性PI3Kα抑制剂。
目前尽管对于癌症患者来说有多种治疗选择。但是鉴于肿瘤发生机制的复杂性、不同药物之间相互作用的不可预见性等因素,发现可行且能够带来相比单药而言具有更优异效果(缓解症状、延迟进展或抑制症状、减少单药剂量、改善治疗中的不良事件(AE)发生率和/或严重程度、改善的生命质量,和/或以协同作用的方式起作用等)的联合用药的方案和产品,仍然是医药领域的一大挑战。此外,在许多情况下,癌症获得对现有治疗的抗性并且最终变得难以治疗。因此仍需要有效和安全的治疗剂组合,尤其是用于治疗当前疗法抗性和/或难治的癌症。
发明内容
本公开涉及一种药物组合,其包含:(a)第一活性剂,其为PI3Kα抑制剂或其药学上可接受的盐,和(b)第二活性剂,其为选自PARP1/2抑制剂、***受体调节剂、CDK抑制剂中的一种或两种,或其药学上可接受的盐;任选地还包含(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
这些组合可用于分别、同时或顺序向有需要的个体施用以治疗或预防癌症。
在本公开的实施方案中的药物组合被统称为“本公开的组合”,其中优选两药组合如化合物CYH33或化合物I-27与选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的一种的二重组合;以及三药组合如化合物CYH33或化合物I-27与选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的两种的三重组合,以及三药组合如化合物CYH33或化合物I-27与选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的一种和芳香化酶抑制剂的三重组合。本发明人发现本公开的组合展示出协同作用。
本公开涉及治疗或预防癌症的本公开的组合。
本公开涉及用于制备在有需要的个体治疗或预防癌症的药物组合物或药物(如药物制剂)的本公开的组合。
本公开涉及本公开的组合在用于制备治疗或预防癌症的药物组合物或药物中的用途。
本公开涉及一种治疗或预防患有癌症的个体的方法,包括向有需要的该个体施用有效量的本公开的组合。
本公开进一步提供一种商业包装,例如成套药盒,其包含作为治疗剂的本公开的组合和其同时、分别或顺序施用的说明书,用以治疗或预防癌症。
施用本公开的组合不仅可获得有益效果(例如关于缓解症状、延迟进展或抑制症状的协同治疗效果),更可获得预料不到的有益效果,例如与仅施用本公开的组合中所使用的活性剂之一的单一疗法相比,具有更少的副作用、更持久的响应、改善的生命质量、降低的死亡率和/或减少发病率。本公开的组合具有有益的治疗特性,如协同相互作用、强的体外或体内抗增殖活性和/或强的体外或体内抗肿瘤反应,使其特别适于治疗癌症。
附图说明
图1显示化合物CYH33和奥拉帕利的联合用药在PIK3CA突变的SK-OV-3异种移植瘤模型中对肿瘤体积的影响(PO QD21天)。
图2显示化合物CYH33和奥拉帕利的联合用药在PIK3CA突变的SK-OV-3异种移植瘤模型中对肿瘤重量的影响(PO QD21天)。
图3a和图3b显示给予ER+、HER2-、PIK3CA突变的T47D皮下异种移植肿瘤雌性BALB/c裸小鼠模型化合物CYH33、氟维司群、哌柏西利的单药及其二药联用治疗后各组肿瘤体积变化生长曲线(PO QD35天)。
图4a、图4b和图4c显示给予ER+、HER2-、PIK3CA突变的T47D皮下异种移植肿瘤雌性BALB/c裸小鼠模型化合物CYH33、哌柏西利、氟维司群的单药、二药联用或三药联用治疗后,各组肿瘤体积变化生长曲线(PO QD28天)。
具体实施方案
1.一种药物组合,其包含:
(a)第一活性剂,其为PI3Kα抑制剂或其药学上可接受的盐,和
(b)第二活性剂,其为选自PARP1/2抑制剂、***受体调节剂、CDK抑制剂中的任意一种或任意两种,或其药学上可接受的盐;
任选地还包含(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
2.根据实施方案1的药物组合,其包含:
(a)第一活性剂,其是式(If)化合物或式(Ig)化合物,或其药学上可接受的盐,
Figure PCTCN2022087086-appb-000001
Y为NH或O,(Ig)。
其中,
R 1为-NR 5R 6
R 2
Figure PCTCN2022087086-appb-000002
R 5和R 6各自独立地为C 1-C 4烷基,或与它们相连的氮原子一起形成的未取代或被取代基取代的哌嗪环,所述取代基为-S(O) 2R 12
R 7、R 8、R 9和R 10各自独立地为H或C 1-C 3烷基,或者R 2
Figure PCTCN2022087086-appb-000003
R 11为C 1-C 4烷基、未取代或被一个或多个取代基取代的苄基、未取代或被一个或多个取代基取代的苯基、未取代或被一个或多个取代基取代的异噁唑基、或者未取代或被一个或多个取代基取代的吡啶基,所述一个或多个取代基选自卤素、C 1-C 3烷基、C 1-C 3烷氧基、-CF 3、-C(O)OR 12、-C(O)NR 12R 15
Figure PCTCN2022087086-appb-000004
R 12和R 15各自独立地为C 1-C 3的烷基;
(b)第二活性剂,其选自PARP1/2抑制剂、***受体调节剂、CDK抑制剂中的任意一种或任意两种,或其药学上可接受的盐;
任选地还包含(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
3.根据实施方案2的药物组合,其中
R 1为二甲氨基或1-甲磺酰基哌嗪基;
R 2
Figure PCTCN2022087086-appb-000005
R 11为甲基、乙基、丙基、环丙基、叔丁基、异丁基、4-氟苄基、未取代或被一个或多个取代基取代的苯基,未取代或被一个或多个取代基取代的异噁唑,或者未取代或被一个或多个取代基取代的吡啶环,所述取代基选自氟、氯、三氟甲基、甲基、甲氧基、乙氧羰基、二甲氨基羰基、4-甲基哌嗪-1-羰基、哌啶-1-羰基和4-二甲氨基哌啶-1-羰基。
4.根据前述实施方案中任一项的药物组合,其中第一活性剂是具有下式的化合物CYH33或其药学上可接受的盐
Figure PCTCN2022087086-appb-000006
或者具有下式的化合物I-27或其药学上可接受的盐
Figure PCTCN2022087086-appb-000007
或者化合物I-27的前药。
5.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27,或其药学上可接受的盐,和;
(b)第二活性剂,其选自PARP1/2抑制剂、***受体调节剂、CDK抑制剂中的任意一种或任意两种,或其药学上可接受的盐。
6.根据前述实施方案中任一项的药物组合,其中第二活性剂选自PARP1/2抑制剂、***受体调节剂、CDK抑制剂中的任意一种,或其药学上可接受的盐。
7.根据前述实施方案中任一项的药物组合,其中第二活性剂选自PARP1/2抑制剂、***受体调节剂、CDK抑制剂中的任意两种,或其药学上可接受的盐。
8.根据前述实施方案中任一项的药物组合,其中所述CDK抑制剂是CDK4/6抑制剂。
9.根据前述实施方案中任一项的药物组合,其中所述芳香化酶抑制剂可以是非类固醇芳香化酶抑制剂或类固醇芳香化酶抑制剂。
10.根据前述实施方案中任一项的药物组合,其中包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,以及
(b)第二活性剂,其选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的任意一种或其药学上可接受的盐。
11.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,和
(b)第二活性剂,其为PARP1/2抑制剂或其药学上可接受的盐。
12.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,和
(b)第二活性剂,其为选自CDK4/6抑制剂或其药学上可接受的盐。
13.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,和
(b)第二活性剂,其为***受体调节剂或其药学上可接受的盐。
14.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或其药学上可接受的盐,以及
(b)第二活性剂,其选自选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的任意两种或其药学上可接受的盐。
15.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
(b)第二活性剂,其为CDK4/6抑制剂或其药学上可接受的盐、和***受体调节剂或其药学上可接受的盐。
16.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
(b)第二活性剂,其选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的任意一种或其药学上可接受的盐,以及
(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
17.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
(b)第二活性剂,其为CDK4/6抑制剂或其药学上可接受的盐、以及
(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
18.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
(b)第二活性剂,其选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的任意两种或其药学上可接受的盐,以及
(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
19.根据前述实施方案中任一项的药物组合,其中,PARP1/2抑制剂是奥拉帕利(Olaparib)、鲁卡帕利(Rucaparib)、尼拉帕利(Niraparib)、他拉唑帕尼(Talazoparib)、氟唑帕利(Fluzoparib)或帕米帕利(Pamiparib),优选奥拉帕利;选择性***受体调节剂可以是选择性***受体调节剂,如阿佐昔芬(Arzoxifene)、托瑞米芬(Toremifene)、雷洛昔芬(Raloxifene)或他莫昔芬(Tamoxifen),优选他莫昔芬;也可以是选择性***受体下调剂,如氟维司群(Fulvestrant)或Giredestrant(GDC-9545)等,优选氟维司群;CDK4/6抑制剂是哌柏西利(Palbociclib)、瑞波西利(Ribociclib)或阿贝西利(Abemaciclib),优选哌柏西利。
20.根据前述实施方案中任一项的药物组合,其中芳香化酶抑制剂是来曲唑(Letrozole)、阿那曲唑(Anastrozole)、依西美坦(Exemestane)或伏氯唑(Vorozole),优选来曲唑。
21.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,以及
(b)奥拉帕利、氟维司群和哌柏西利中的任意一种。
22.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
(b)奥拉帕利、氟维司群和哌柏西利中的任意一种,以及
(c)来曲唑。
23.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,以及
(b)奥拉帕利、氟维司群和哌柏西利中的任意两种。
24.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
(b)奥拉帕利、氟维司群和哌柏西利中的任意两种,以及
(c)来曲唑。
25.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)奥拉帕利。
26.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)氟维司群。
27.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)哌柏西利。
28.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)奥拉帕利以及氟维司群。
29.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)奥拉帕利以及哌柏西利。
30.根据前述实施方案中任一项的药物组合,其中包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)氟维司群以及哌柏西利。
31.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)奥拉帕利,以及
(c)来曲唑。
32.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)氟维司群,以及
(c)来曲唑。
33.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)哌柏西利,以及
(c)来曲唑。
34.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)奥拉帕利和氟维司群,以及
(c)来曲唑。
35.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)氟维司群和哌柏西利,以及
(c)来曲唑。
36.根据前述实施方案中任一项的药物组合,其包含:
(a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
(b)奥拉帕利和哌柏西利,以及
(c)来曲唑。
37.根据前述实施方案中任一项的药物组合,其中第一活性剂是化合物CYH33或其药学上可接受的盐。
38.根据前述实施方案中任一项的药物组合,其中第一活性剂是化合物CYH33,其可以是游离形式(即不是盐),或盐形式,例如盐酸盐或甲磺酸盐,优选甲磺酸盐。
39.根据前述实施方案中任一项的药物组合,其中所述活性剂各自可以作为不同组合 物或制剂被配制,或者所述活性剂中的两种、三种或全部可以配制在同一组合物或制剂中。
40.根据前述实施方案中任一项的药物组合,其中所述活性剂各自是单位剂型。
41.根据前述实施方案中任一项的药物组合,其中化合物CYH33或其药学上可接受的盐为10-50mg,例如10-40mg、20-40mg、20-30mg或30-40mg,例如10mg、20mg、30mg或40mg的剂量单元的形式,优选为口服剂型。
42.根据前述实施方案中任一项的药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10-40mg、20-40mg、20-30mg或30-40mg,例如10mg、20mg、30mg或40mg。
43.根据前述实施方案中任一项的药物组合,其中CYH33或其药学上可接受的盐的起始日剂量40mg或30mg。
44.根据前述实施方案中任一项的药物组合,其中CYH33或其药学上可接受的盐在每个周期连续施用,优选每日一次。
45.根据前述实施方案中任一项的药物组合,其中奥拉帕利为200-600mg,例如200mg、250mg、300mg、400mg、500mg或600mg的剂量单元的形式,优选为口服剂型。
46.根据前述实施方案中任一项的药物组合,其中奥拉帕利的日剂量(即每日总剂量)为200-600mg,例如200mg、250mg、300mg、400mg、500mg或600mg,优选为400mg、500mg或600mg,更优选为以400mg、500mg或600mg片剂形式给药。
47.根据前述实施方案中任一项的药物组合,其中奥拉帕利在每个周期连续施用,优选每日一次或二次。
48.根据前述实施方案中任一项的药物组合,其中氟维司群为250mg-500mg,例如250mg或500mg的剂量单元的形式,优选为胃肠外剂型,例如注射剂。
49.根据前述实施方案中任一项的药物组合,其中氟维司群的单次施用剂量为250mg-500mg,例如250mg或500mg,优选500mg。
50.根据前述实施方案中任一项的药物组合,其中氟维司群以一个或多个剂量施用于有需要的个体,在前一剂量之后2、3或4周施用下一个剂量;优选地,在第一个周期的第1天和第15天施用,且在后续每个周期的第1天施用。
51.根据前述实施方案中任一项的药物组合,其中哌柏西利为75-125mg,例如75mg、100mg、125mg的剂量单元的形式,优选为口服剂型。
52.根据前述实施方案中任一项的药物组合,其中哌柏西利在每个周期连续施用三周、然后停药一周,优选在每个周期每日一次连续施用三周、然后停药一周。
53.根据前述实施方案中任一项的药物组合,其中来曲唑为2.5mg的剂量单元的形式,优选为口服剂型。
54.根据前述实施方案中任一项的药物组合,其中来曲唑的日剂量为2.5mg。
55.根据前述实施方案中任一项的药物组合,其中来曲唑在每个周期连续施用,优选每日一次。
56.根据前述实施方案中任一项的药物组合,其中每个周期是28天(4周)。
57.根据前述实施方案中任一项的药物组合,其中所述药物组合施用至少一个周期, 例如2-12个或更多个周期。
58.根据前述实施方案中任一项的药物组合,其中在每个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg、40mg或50mg,每日一次;且其中奥拉帕利的日剂量为200mg、250mg或300mg,每日分二次施用。
59.根据前述实施方案中任一项的药物组合,其中以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中氟维司群的单次施用剂量为500mg,在第一个周期的第1天和第15天施用,且在后续每个周期的第1天施用。
60.根据前述实施方案中任一项的药物组合,其中以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中氟维司群的单次施用剂量为500mg,在第一个周期的第1天和第15天施用,且在后续每个周期的第1天施用;且其中哌柏西利的日剂量为125mg,在每个周期每日一次连续施用三周、然后停药一周。
61.根据前述实施方案中任一项的药物组合,其中在每个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中来曲唑的日剂量为2.5mg,每日一次。
62.根据前述实施方案中任一项的药物组合,其中以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且来曲唑的日剂量为2.5mg,每日一次;且其中哌柏西利的日剂量为75mg、100mg或125mg,在每个周期每日一次连续施用三周、然后停药一周。
63.根据前述实施方案中任一项的药物组合,其中所述各个活性剂可分别、同时或顺序施用。
64.根据前述实施方案中任一项的药物组合,其中第一活性剂如化合物CYH33或化合物I-27和/或第二活性剂和/或第三活性剂同时施用。
65.根据前述实施方案中任一项的药物组合,其中第一活性剂如化合物CYH33或化合物I-27和/或第二活性剂和/或第三活性剂在不同时间施用。
66.根据前述实施方案中任一项的药物组合,其中第一活性剂如化合物CYH33或化合物I-27在施用第二活性剂和/或第三活性剂之前施用至个体。
67.根据前述实施方案中任一项的药物组合,其中第二活性剂和/或第三活性剂在施用第一活性剂如化合物CYH33或化合物I-27之前施用至个体。
68.根据实施方案1-67中任一项的药物组合,其用于治疗或预防PI3K异常活化相关疾病,所述疾病优选是癌症,更优选实体瘤,例如晚期实体瘤。
69.根据前实施方案1-67中任一项的药物组合,其用于在有需要的个体中治疗或预防或预防疾病,所述疾病是癌症,优选实体瘤,例如晚期实体瘤。
70.用于所述用途的根据实施方案68-69中任一项的药物组合,其中所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
71.用于所述用途的根据实施方案68-70中任一项的药物组合,其中所述疾病携带DNA损伤修复基因突变、PIK3CA基因突变、对PARP抑制剂耐药和/或对铂类化疗剂耐药。
72.用于所述用途的根据实施方案68-71中任一项的药物组合,其中所述疾病携带DDR通路关键基因突变且对PARP抑制剂耐药。
73.用于所述用途的根据实施方案68-72中任一项的药物组合,其中所述疾病是HR+、HER2-和/或PIK3CA基因突变的晚期乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变的晚期乳腺癌。
74.用于治疗或预防PI3K异常活化相关疾病的方法,所述方法包括向有需要的个体施用有效量的实施方案1-67中任一项所定义的药物组合,其中所述疾病优选是癌症,更优选实体瘤,例如晚期实体瘤。
75.用于治疗或预防疾病的方法,所述方法包括向有需要的个体施用有效量的实施方案1-67中任一项所定义的药物组合,其中所述疾病是癌症,优选实体瘤,例如晚期实体瘤。
76.根据实施方案74或75所述的方法,其中所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
77.根据实施方案74-76中任一项所述的方法,其中所述疾病携带DNA损伤修复基因突变、PIK3CA基因突变、对PARP抑制剂耐药和/或对铂类化疗剂耐药。
78.根据实施方案74-77中任一项所述的方法,其中所述疾病携带DDR通路关键基因突变且对PARP抑制剂耐药。
79.根据实施方案74-78中任一项所述的方法,其中所述疾病是HR+、HER2-和/或PIK3CA基因突变的乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变的晚期乳腺癌。
80.实施方案1-67中任一项的药物组合在制备用于治疗疾病药物中的用途,所述疾病选自癌症,优选实体瘤,例如晚期实体瘤;更优选地,所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
81.实施方案1-67中任一项的药物组合在制备用于治疗PI3K异常活化相关疾病的药物中的用途,所述疾病优选为癌症,优选实体瘤,例如晚期实体瘤;更优选地,所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
82.根据实施方案80或81所述的用途,其中所述疾病携带DNA损伤修复基因突变、PIK3CA基因突变、对PARP抑制剂耐药和/或对铂类化疗剂耐药。
83.根据实施方案80-82任一项所述的用途,其中所述疾病携带DDR基因突变且对PARP抑制剂耐药。
84.根据实施方案80-83任一项所述的用途,其中所述疾病是HR+、HER2-和/或PIK3CA基因突变晚期乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变的晚期乳腺癌。
85.一种组合制剂,其包含前述实施方案1-73中任一项定义的药物组合。
86.一种药物组合物,其包含前述实施方案1-73中任一项定义的药物组合,以及一种或多种药学上可接受的赋形剂。
87.成套药盒,其包含前述实施方案1-73中任一项所定义的药物组合以及说明同时、分别或顺序施用活性剂的说明书,优选其中的活性剂为药物剂量单元形式。
本公开上文以及下文所述的各个实施方案/技术方案以及各个实施方案/技术方案中的特征应当被理解为可以任意进行相互组合,这些相互组合得到的各个方案均包括在本公开的范围内,就如同在本文中具体地且逐一地列出了这些相互组合而得到的方案一样,除非上下文清楚地显示并非如此。
定义
本申请中所用的下列词语、短语和符号具有如下所述的含义,其所处的上下文中另有说明的除外。本文所用的未具体定义的技术和科学术语具有本公开所属领域的技术人员通常理解的含义。
本文所用的“包含”或“包括”旨在指明所述及的特征、成分或步骤的存在,但它们并不排除一个或多个其他特征、成分、步骤的存在或添加。除非另有指明,否则本文所用的“包含”或“包括”涵盖由所述及的特征、成分或步骤组成的情形。
本文所用的“和/或”当用于连接两个或更多个可选项时,应理解为意指可选项中的任一项或可选项中的任意两项或更多项的组合。
本文所用的“PI3Kα抑制剂”指靶向、减少或抑制磷脂酰肌醇-3-激酶α同种型(包括野生型和突变形式)的化合物。磷脂酰肌醇-3-激酶(PI3K)活性显示响应一些激素和生长因子刺激而增加且参与细胞生长和转化的过程,所述因子包括胰岛素、血小板衍生生长因子、***、表皮生长因子、集落刺激因子和肝细胞生长因子。
本文所用的“第一活性剂”或“PI3Kα抑制剂”包括描述于WO2013177983、CN103450204A及其他同族专利申请/专利中的通式I表示的吡咯[2,1-f][1,2,4]并三嗪类化合物及其药学上可接受的盐,尤其是式(If)和式(Ig)化合物及其药学上可接受的盐,优选其中公开的化合物I-33(又称为CYH33)和化合物I-27及其药学上可接受的盐。所述专利或专利申请的全部内容(包括术语定义)被引入本文,作为参考。
本文所用的“第一活性剂”或“PI3Kα抑制剂”优选是如下式的化合物CYH33,其化学名{5-{6-[(4-甲磺酰基哌嗪-1-基)甲基]-4-吗啉基吡咯[2,1-f][1,2,4]并三嗪-2-基}-4-三氟甲基吡啶-2-基}氨基甲酸甲酯,
Figure PCTCN2022087086-appb-000008
或具有下式结构的化合物I-27,其化学名为:2-(4-三氟甲基-6-氨基吡啶-3-基)-6-[(4-甲磺酰基)哌嗪-1-基]甲基-4-吗啉基吡咯[2,1-f][1,2,4]并三嗪,
Figure PCTCN2022087086-appb-000009
或化合物I-27的前药。
本文所用的化合物CYH33或其药学上可接受的盐,或化合物I-27或化合物I-27的其他前药均能由本领域技术人员合成,例如,其合成和鉴定可以参考WO2013177983。其可以以游离形式或药学上可接受的盐形式施用。
本文所用的“PARP1/2抑制剂”、“***受体调节剂”、“CDK抑制剂”、“CDK4/6抑制剂”、“芳香化酶抑制剂”中所涉及的具体化合物均为已知化合物,能由本领域技术人员按照现有技术合成。其可以以游离形式或药学上可接受的盐形式施用。
PARP1/2抑制剂优选是奥拉帕利(Olaparib),其商品名为利普卓或LYNPARZA,化学名称:4-(3-{[4-(环丙基羰基)哌嗪-1-基]羰基}4-氟苯基)甲基]酞嗪-1(2H)-酮,,结构式如下:
Figure PCTCN2022087086-appb-000010
本文所用的“***受体调节剂”包括选择性***受体调节剂(SERMs)和选择性***受体下调剂(SERDs)。
选择性***受体调节剂优选是他莫昔芬,化学名称为(Z)-2-[4-(1,2-二苯基-1-丁烯)苯氧基]-N,N-二甲基乙胺;选择性***受体下调剂优选是氟维司群(Fulvestrant),化学名称为:7α-[9-(4,4,5,5,5-五氟戊基亚硫酰基)壬基]雌甾-1,3,5(10)-三烯-3,17β-二醇,结构式:
Figure PCTCN2022087086-appb-000011
CDK4/6抑制剂优选是哌柏西利(Palbociclib),化学名称为:6-乙酰基-8-环戊基-5-甲基-2-[[5-(1-哌嗪基)-2-吡啶基]氨基]吡啶并[2,3-d]嘧啶-7(8H)-酮,结构式如下:
Figure PCTCN2022087086-appb-000012
芳香化酶抑制剂优选是来曲唑(Letrozole),化学名称为:4,4’-[(1H-1,2,4-***-1-基)-亚甲基]-双-苄腈,结构式如下:
Figure PCTCN2022087086-appb-000013
本文所用的“癌症”指以失控或失调的细胞增殖、减少的细胞分化、不恰当的侵入周围组织的能力和/或在其它部位建立新生长灶的能力为特征的细胞障碍。“癌症”包括但不限于:实体瘤和血液学恶性肿瘤、优选实体瘤、更优选晚期实体瘤,包括皮肤、组织、器官、骨骼、软骨等的癌症。“癌症”的实例包括但不限于人横纹肌肉瘤、人神经胶质瘤、肺癌(包括非小细胞肺癌(NSCLC))、肾癌(如肾细胞癌(RCC)、肾盂癌)、原发性腹膜癌、乳腺癌、妇科肿瘤(例如卵巢癌、卵巢透明细胞癌(OCCC)、子宫癌、子宫肉瘤、输卵管癌、子宫内膜癌、子***、***癌或外阴癌)、内分泌***症癌(如甲状腺癌、甲状旁腺癌或肾上腺癌)、***癌、睾丸癌、***癌、肝癌、肠癌、小肠癌、大肠癌、直肠癌、结肠癌、结肠直肠癌(CRC)、***区癌症、食道癌、胃癌、胰腺癌、胆管癌、头颈癌(如头颈鳞癌(HNSCC))、骨癌、皮肤癌、黑素瘤、中枢神经***(CNS)癌症、软组织肉瘤、尿道癌、儿童期实体瘤、膀胱癌、输尿管癌、慢性或急性白血病、慢性粒单核细胞白血病(CMML)、淋巴细胞性淋巴瘤;特别是人横纹肌肉瘤、非小细胞肺癌、人神经胶质瘤、***癌、卵巢癌、乳腺癌、结肠癌或肝癌;优选卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
本文所用的“癌症”既包括原发性癌症,也包括转移性癌症、复发性癌症和顽固性癌症,还包括预后不良的患者的癌症。例如,当前可获得的疗法抗性或难治的癌症,如用“PARP1/2抑制剂”、“***受体调节剂”、“CDK抑制剂”治疗具有抗性或难治的癌症。
本文所用的“癌症”还包括:
1)携带DDR(DNA损伤修复)基因突变(尤其是DDR关键基因突变)的癌症(如晚期实体瘤),例如卵巢癌、乳腺癌、***癌、胆管癌;
2)携带PIK3CA基因突变(尤其是PIK3CA热点突变)的癌症(如晚期实体瘤),例如卵巢癌、乳腺癌、子宫内膜癌;
3)对PARP抑制剂耐药(获得性耐药)的癌症(如晚期实体瘤),例如高级别浆液性卵巢癌、输卵管或原发性腹膜癌;
4)携带DDR基因突变且对PARP抑制剂耐药的癌症(如晚期实体瘤),例如乳腺癌、***癌;
5)对铂类化疗剂耐药的癌症(如晚期实体瘤)或难治性复发性癌症,例如高级别浆液性卵巢癌、输卵管癌或原发性腹膜癌;
6)HR+、HER2-和/或PIK3CA基因突变的癌症(如晚期实体瘤),例如晚期乳腺癌。
本文所述的癌症包括PIK3CA基因突变、DDR基因突变、PARP抑制剂耐药和/或铂类化疗剂耐药的癌症(包括晚期实体瘤),如卵巢癌、乳腺癌、胆管癌、子宫内膜癌、输卵管或原发性腹膜癌、或***癌等。
优选地,本文所述的癌症是卵巢癌、乳腺癌、子宫内膜癌、胆管癌、输卵管或原发性腹膜癌、或***癌,尤其是其携带DDR基因突变或PIK3CA基因突变。
优选地,本文所述的癌症是乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变的晚期乳腺癌。
例如,包含化合物CYH33与奥拉帕利的组合用于在携带DDR基因突变或PIK3CA基因突变的卵巢癌、乳腺癌、子宫内膜癌、输卵管、原发性腹膜癌、***癌、胆管癌等。例如包含化合物CYH33与氟维司群/哌柏西利/氟维司群+哌柏西利/来曲唑+哌柏西利的组合用于治疗晚期乳腺癌、尤其是HR+、HER2-和PIK3CA基因突变的晚期乳腺癌患者。
PI3K(磷脂酰肌醇3-激酶)异常活化相关疾病包括本公开所述的癌症。PI3K异常活化相关疾病的属性是多因子性的。在某些情况下,可将具有不同作用机理的药物组合起来。然而,仅考量具有不同作用模式的治疗剂的任何组合不一定能获得具有有利效果的组合。
PI3K异常活化相关疾病包括PI3K异常活化相关的癌症,例如PI3Kα亚基介导的癌症。PI3K异常活化相关疾病可包括显示PI3Kα同种型过表达或扩增和/或PIK3CA体细胞突变,或者PTEN种系突变或体细胞突变或者用于上调p85-p110复合体的p85α的突变和易位。在一个优选实施方案中,所述癌症是由PI3Kα同种型介导的肿瘤和/或癌性增生。在另一个优选实施方案中,所述癌症是由PIK3CA基因突变导致的晚期实体瘤。
本文所用的“DDR基因”包括:ATM、BRCA1、BRCA2、BARD1、BRIP1、CDK12、CHEK1、CHEK2、FANCL、PALB2、PPP2R2A、RAD51B、RAD51C、RAD51D、RAD54L等。
本文所用的“治疗”包括向有需要的个体施用本公开的组合,以达到疾病或病症或其症状(例如癌症)的包括但不限于减轻、治愈、缓解症状、减少症状、存活期延长以及进展延迟;就癌症而言,所述治疗包括抑制实体瘤的生长、使肿瘤体积减小、预防肿瘤的转移性蔓延和微小转移的生长或发展等。“进展延迟”指将所述组合施用于处于待治疗癌症病前阶段或早期的患者,对应癌症的预形式已被诊断出和/或在被诊断出处于对应癌症可能会发展的情况的患者中。
本文所用的“预防”包括对疾病或病症或其症状(例如癌症)的发生或发生频率的抑制或推迟,其通常是指在病征或症状发生前,特别是在具有风险个体的病征或症状发生前的药物施用。“预防”还包括防止癌症发生或复发。
本文所用的“有效量”是指本公开的活性剂用于以下的量(例如治疗有效量,尤其是联合治疗有效量):(i)治疗特定疾病,(ii)减弱、改善或消除特定疾病的一种或多种症状,或(iii)预防或延迟本文所述的特定疾病的一种或多种症状的发作。就癌症而言,活性剂的治疗有效量可以减少癌细胞数;减小肿瘤大小;抑制(即,在一定程度上减缓和优选地停止)癌细胞浸润周围器官;抑制(即,在一定程度上减缓和优选地停止)肿瘤转移;在一定程度上抑制肿瘤生长;和/或在一定程度上缓解癌症相关的一种或多种症状。
本文所用的“个体”或“患者”指哺乳动物和非哺乳动物。哺乳动物指哺乳类的任何成员,其包括但不限于:人;非人灵长类动物,牛、马、羊、猪、兔、狗和猫等。“个体”并不限定特定的年龄或性别。优选地,个体或患者是人。
本文所用的“药物组合”包括非固定组合产品和固定组合产品,包括但不限于成套药盒、药物组合物。“非固定组合”意指各活性剂(例如,(a)化合物CYH33或化合物I-27或其药学上可接受的盐,(b)选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的一种或两种,或其药学上可接受的盐,以及任选的(c)芳香化酶抑制剂或其药学上可接受的盐)以分开的实体(例如分开的单位剂型)被同时、无特定时间限制或以相同或不同的时间间隔、依次地施用于个体,其中这类施用在体内提供有效量的所述各活性剂。在一些实施方案中,药物组合中使用的各活性剂以不超过它们单独使用时的水平施用。“固定组合”意指两种以上活性剂以单个实体的形式(例如同一单位剂型)被同时施用于患者。活性剂可以各自呈单独的制剂形式,其制剂形式可以相同也可以不同。成套药盒可以包含用于组合施用的活性剂。优选对各个活性剂的剂量和/或时间间隔进行选择,以产生更加有利的效果。
本文所用的“剂量单元”是指适合作为用于人类和其他哺乳动物的单位剂量的物理离散单元,每个单元含有经计算以产生所需治疗作用的预定量的活性物质,以及合适的药学上可接受的赋形剂。
本文所用的“日剂量”指每日总剂量,其可以一次施用或者分多次施用,例如2或3次或更多次。
本文所用的“施用”指用本领域技术人员已知的多种方法和递送***中的任一种将本公开的组合中的各活性剂物理导入至个体。本公开的组合中的各活性剂的施用途径包括口服、静脉内(例如输注、滴注或注射)、肌内、皮下、腹膜内、脊髓、局部或其他胃肠外施用途径。本文所用的短语“胃肠外施用”指胃肠和局部施用之外的施用方式,通常通过静脉内,且非限制性地包括肌内、动脉内、鞘内、淋巴内、病灶内、囊内、眶内、心内、皮内、腹膜内、经气管、皮下、表皮下、关节内、囊下、蛛网膜下、脊柱内、硬膜外和胸骨内注射和输注,以及体内电穿孔。相应地,本公开的组合中的各活性剂可以被配制成胶囊剂、片剂、注射剂(包括输液或注射液)、糖浆、喷雾剂、锭剂、脂质体或栓剂等。
本文所用的“联合施用”意在涵盖向单一患者施用选定活性剂,且意在包括其中活性剂不必定通过相同施用途径或同时施用的治疗方案。
本文所用的“连续施用”指每日施用。在连续施用的情况下,每日可以施用一次或多次药物,例如,以每日一次、每日两次、每日三次的频率施用药物,优选地以每日一次的频率施用药物。
本文所用的“周期”是指以常规时间表重复的以天或周表示的特定时间段。例如,施用本公开的组合的每个治疗周期(或预防周期)为14至28天,优选每个周期为二周(即,14天)、三周(即,21天)或四周(即,28天)。本公开的组合的各活性剂可以在周期的同一天或不同天施用,也就是说本公开药物组合的活性剂在所述周期内分开、同时或依次(或称为顺序)施用。
本文所用的“药学上可接受”指在合理医学判断范围内适于接触哺乳动物(尤其是人)组织的那些化合物、材料、组合物和/或剂型,而没有过度毒性、刺激、过敏反应和其它问题并发症,并具有合理的效益/风险比。
本文所用的“药学上可接受的盐”包括但不限于化合物的酸加成盐或碱加成盐。例如:化合物CYH33可以与各种无机和有机酸形成各种不同盐。可用于制备本公开的化合物的药学上可接受的酸加成盐的酸是形成无毒性的酸加成盐(即含有药学上可接受的阴离子的盐,如、盐酸盐、硫酸或磷酸盐、丙酸盐、富马酸、丙二酸、甲磺酸盐、乙酸盐、苯甲酸盐、溴化物、氯化物、柠檬酸盐、富马酸盐、氢溴酸盐、碘酸盐、乳酸盐、马来酸盐、扁桃酸盐、硝酸盐、草酸盐、水杨酸盐、琥珀酸盐和酒石酸盐、苯磺酸、4-甲苯磺酸、2-萘磺酸、1,5-萘二磺酸、2-或3-甲苯磺酸、甲基硫酸、乙基硫酸)的那些酸。
本文所用的“协同”涉及比两种或更多种单个活性剂的累加效应更有效的治疗组合。例如,化合物CYH33或其药用盐与一种或多种其他活性剂之间的协同相互作用的确定,可以基于从本文所述的测定中获得的结果。例如,可以使用体外的肿瘤细胞活性实验通过Compusyn软件(1.0)来计算组合疗法的联合指数(CI)值,当CI<0.9时,组合疗法具有协同作用。也可以使用体内抗肿瘤药效实验通过Graphpad Prism 6.0软件对实验结果进行双因素方差分析(Two-way ANOVA)和Tukey多重比较,以便获得组间的统计学差异指数p,当p<0.05时被认为有统计学意义,如当联用组与单药组相比p<0.05,组合疗法具有协同作用。此外,当联用组的肿瘤抑制率(TGI)大于各个组肿瘤抑制率之和,组合疗法具有协同作用。组合疗法可以提供“协同作用”并证明为“协同的”,即,当活性成分一起使用时所达到的效果大于单独使用化合物所产生的效果之和。当活性剂如下时,可获得协同效应:(1)共同配制并且以联合单位剂型同时给药或递送两种或更多种活性成分;(2)分别或顺序(或依次)递送或作为单独的制剂同时递送;或(3)通过某些其他方案给药。
本文所有的数值范围应当被理解为公开了在该范围内的每个数值和数值子集,而不论其是否被具体另外公开。例如,提及任何一个数值范围时,应当视为提及了该数值范围内的每一个数值,例如该数值范围内的每一个整数。本公开涉及落入这些范围的所有值、所有更小的范围以及数值的范围的上限或下限。
剂型、施用和给药方案
本公开的药物组合物可包括一种或多种药学上可接受赋形剂,并能以常规方式通过混合组合伴侣之一或更多者与药学上可接受赋形剂来生产。药学上可接受赋形剂包括但不限于稀释剂、粘合剂、崩解剂。药学上可接受稀释剂的示例包括但不限于乳糖、右旋糖、甘露醇、和/或甘油、和/或润滑剂和/或聚乙二醇。药学上可接受粘合剂的示例包括但不限于硅酸镁铝、淀粉(如玉米淀粉、小麦淀粉或米淀粉)、明胶、甲基纤维素、羧甲基纤维素钠和/或聚乙烯吡咯烷酮,以及若需要,药学上可接受崩解剂包括但不限于淀粉、琼脂、藻酸或其盐(如藻酸钠)和/或泡腾合剂、或吸附剂、染料、调味剂和甜味剂。本公开化合物也能采用胃肠外可施用组合物形式或输液形式。所述药物组合物可无菌和/或可包括赋形剂,例如防腐剂、稳定剂、润湿剂和/或乳化剂、增溶剂、调节渗透压的盐和/或缓冲剂。
本公开的组合可以是药物组合物或药物制剂的形式。本公开的组合所包含的活性剂可以是药物剂量单元、例如单次药物剂量单元的形式。本公开的组合可以是本领域技术人员已知的任何剂型(例如单位剂型),如糖衣片剂、片剂、胶囊剂、颗粒剂、粉末、栓剂、溶液剂、混悬剂、注射剂(注射溶液或注射悬液)。其以本身已知的方式制备,例如通过常规 混合、造粒、包糖衣、溶解或冻干工艺。应理解各剂型个体剂量所含各药剂的剂量单元本身不需构成有效量,因为必需的有效量可通过施用多个剂量单元来达到。含有本公开的组合的单位剂型可以含有当独自施用所述活性剂时所通常施用的量的活性剂。
本公开的组合可以采用成套药盒的形式,在此意义上各活性剂可独立施用或使用有不同量活性剂的不同固定组合,即同时或在不同时间点施用。随后,成套药盒所包括的活性剂能同时或按时间顺序交叉施用,即就成套药盒的任何活性成分而言在不同时间点施用且施用时间间隔可以相等或不等。
本公开的组合中各活性剂的治疗有效量(联合治疗有效量、例如本文所述量的每日剂量或间歇性剂量)可同时施用或以任何顺序依序施用,这些活性剂可分开或作为固定组合施用。本公开的组合的各活性剂可在治疗进程中的不同时间分开施用或者以分开或单个组合形式同步施用。
本公开的组合可以施用于已经用一种或多种先前疗法治疗但随后复发或转移的个体。
本公开的组合中各活性剂可以以一个或多个剂量施用于有需要的个体。
本公开的组合的每个施用周期是28天(4周)。
本公开的组合可以施用至少一个周期,例如2-12个或更多个治疗周期。
本公开的组合中的第一活性剂、例如化合物CYH33或化合物I-27或其药学上可接受的盐可以以每日一次、每日二次或更多次、每两日一次或每三日一次,在每个周期内连续施用,或连续施用三周、然后停药一周的方案使用。化合物CYH33或化合物I-27或其药学上可接受的盐(以游离化合物计)的日剂量为10-50mg,例如10-40mg、20-40mg、20-30mg、30-40mg,例如10mg、20mg、30mg、40mg。优选地,CYH33或化合物I-27或其药学上可接受的盐的起始剂量40mg或30mg,例如以起始剂量40mg QD或30mg QD施用。优选地,在每个周期连续施用化合物CYH33或化合物I-27或其药学上可接受的盐,日剂量为10mg、20mg、30mg或40mg,优选每日一次。优选地,化合物CYH33或化合物I-27或其药学上可接受的盐通过口服给药。
本公开的组合中的PARP1/2抑制剂、例如奥拉帕利可以以每日一次或每日二次、每两日一次或每三日一次,在每个周期内连续施用,或连续施用三周、然后停药一周的方案使用。奥拉帕利或其药学上可接受的盐的日剂量为200-600mg,例如200mg、250mg、300mg、400mg、500mg或600mg。优选地,在每个周期连续施用奥拉帕利,单次剂量为200-300mg,如200mg、250mg或300mg,优选每日施用二次。优选地,奥拉帕利或其药学上可接受的盐通过口服给药。
本公开的组合中的***受体调节、例如氟维司群可以以一个或多个剂量施用于有需要的个体,其中在施用多个剂量的情况下,在前一剂量之后、2、3或4周施用下一个剂量。优选地,在第一个周期的第1天和第15天施用,且在后续每个周期的第1天施用。氟维司群的每个剂量可以是250mg-500mg,例如250mg或500mg,优选500mg。优选地,氟维司群肌肉注射给药。
本公开的组合中的CDK4/6抑制剂、例如哌柏西利或其药学上可接受的盐可以以每日一次每两日一次或每三日一次,在每个周期内连续施用,或连续施用三周、然后停药一周, 或连续施用二周、然后停药二周的方案施用。哌柏西利或其药学上可接受的盐的日剂量为75-125mg,例如75mg、100mg、125mg。优选地,在每个周期连续施用哌柏西利三周、然后停药一周,日剂量为125mg,优选每日一次。优选地,哌柏西利或其药学上可接受的盐通过口服给药。
本公开的组合中的芳香化酶抑制剂、例如来曲唑或其药学上可接受的盐可以以每日一次、每两日一次或每三日一次,在每个周期内连续施用,或连续施用三周、然后停药一周的方案使用。化合物CYH33或其药学上可接受的盐的日剂量为10-50mg。优选地,在每个周期连续施用来曲唑,日剂量为2.5mg,优选每日一次。优选地,来曲唑或其药学上可接受的盐通过口服给药。
例如,第一活性剂化合物CYH33以约10-40mg的日剂量,如20-30mg、20-40mg、30-40mg的日剂量施用与第二活性剂联合施用、或者与第二活性剂和第三活性剂联合施用。
例如,化合物CYH33以10-40mg的日剂量与奥拉帕利200-600mg的日剂量联合施用。优选地,化合物CYH33以20mg的日剂量与奥拉帕利400mg、500mg或600mg的日剂量联合施用。
例如,化合物CYH33以20-40mg的日剂量与氟维司群约500mg的剂量联合施用。化合物CYH33以20mg、30mg或40mg的日剂量与氟维司群250mg或500mg的剂量联合施用。
例如,化合物CYH33以10-40mg的日剂量与哌柏西利75-125mg的日剂量联合施用。化合物CYH33以10mg、20mg、30mg或40mg的日剂量与哌柏西利75-mg、100mg或125mg的日剂量联合施用。
例如,化合物CYH33以10-40mg的日剂量与氟维司群500mg的剂量,以及哌柏西利75-125mg的日剂量联合施用。化合物CYH33以10mg、20mg、30mg或40mg的日剂量与氟维司群500mg注射剂,哌柏西利75-125mg的日剂量联合施用。
例如,化合物CYH33以10-40mg的日剂量与哌柏西利75mg、100mg或125mg的日剂量,以及来曲唑2.5mg的日剂量联合施用。化合物CYH33以10mg、20mg、30mg或40mg的日剂量与哌柏西利75mg、100mg或125mg的日剂量,以及2.5mg来曲唑联合施用。
本公开的组合的效果
对人而言,对患者实施临床研究的复杂性和费用使得该类型测试作为协同作用的主要模型变得不切实际。然而,可通过观察在一个物种中的协同作用预测在其他物种和如本文所述的现有动物模型中的作用,以测量协同作用;也可以利用这些研究结果,通过药代动力学/药效动力学方法的应用来预测有效剂量比范围和在其他物种中需要的绝对剂量和血浆浓度。肿瘤模型与在人体中所观察到的效果之间的确定的关联表明动物中的协同作用可以通过异种移植模型证实。
通过已建立的测试模型可以显示本公开的组合可获得上文所述的有益效果。本领域技术人员完全能够选择相关测试模型来证明这些有益效果。本公开的组合的药理学活性在下文主要描述的临床前肿瘤细胞及动物肿瘤模型或在临床研究中证实。
具体地,在体内,CYH33对PI3K通路的活性呈现出时间和剂量依赖性抑制,并能剂量依赖性地抑制几种人食管癌细胞系小鼠移植瘤模型(CDX)和患者来源的异种移植瘤模型(PDX)中的肿瘤生长。在PIK3CA突变的人卵巢癌细胞系SK-OV-3的小鼠皮下移植瘤模型中评价了CYH33与奥拉帕利联用的抗肿瘤活性。与CYH33和奥拉帕利单药相比,CYH33与奥拉帕利两药联用显示出更强的抗肿瘤活性。
此外,CYH33与氟维司群和哌柏西利的二联或三药联用在体外细胞活性实验中对ER阳性、HER2阴性、PIK3CA突变型乳腺癌细胞系T47D细胞具有较强的细胞增殖抑制作用。通过Compusyn软件计算,CYH33与氟维司群、以及CYH33与哌柏西利的二药联用具有协同抗细胞增殖作用;并且CYH33+氟维司群+哌柏西利三药联用具有协同抗细胞增殖作用。体内CYH33与氟维司群和哌柏西利的二联或三药联用可以强烈抑制乳腺癌细胞系T47D小鼠皮下移植瘤模型中的肿瘤生长。由此证明了,CYH33+氟维司群、CYH33+哌柏西利、CYH33+氟维司群+哌柏西利联用均具有协同抗肿瘤活性。
适合的临床研究可以是例如患有癌症的患者中的开放标记、剂量递增研究。这类研究特别证明本公开的组合的活性成分的协同作用。对癌症的有益作用可直接通过为本领域的技术人员所已知的这些研究的结果来确定。这类研究可特别适合用于比较使用所述活性成分的单一疗法和本公开的组合的作用。在一个实施方案中,第一活性剂如化合物CYH33的剂量逐步增加直到达到最大耐受剂量,并且第二活性剂以固定剂量施用。或者,化合物CYH33可以固定剂量施用并且第二活性剂的剂量从最大耐受剂量可逐步减少。每个患者可每日或间歇地接受所述化合物的剂量。治疗的功效可在例如,在12、18或24周之后通过每6周评价症状得分的这类研究中来确定。
以下实施例说明上述本发明,然而其不以任何方式限制本公开的范围。本公开的组合的有益效果也可以通过本领域技术人员已知的其他测试模型确定。
体外细胞活性实验研究的实验方法
取对数生长期的细胞用于铺板,调整细胞浓度,在培养板中每孔加入90μL细胞悬液,在空白对照孔中加入不含细胞的培养液;将培养板在37℃,5%CO 2及100%相对湿度的培养箱中培养过夜;取10μL的不同浓度的CYH33工作液加入到上述的细胞培养板中,调节其它活性剂的终浓度,每组二个复孔,在溶媒对照(只含有细胞和细胞培养液)和空白对照(含有细胞培养液,不含细胞)中加入10μL DMSO-细胞培养液混合液,DMSO终浓度为0.25%,将96孔细胞板放回培养箱中培养72h。然后每孔加入50μL(等于每孔中细胞培养液一半体积)Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的CellTiter-Glo工作液,用铝箔纸包裹细胞板以避光;将培养板在轨道摇床上振摇2分钟以诱导细胞裂解,培养板在室温放置10分钟以稳定发光信号,在2104EnVision读板器上检测发光信号(表示为RLU(相对光单位))。
体外肿瘤细胞活性实验用下列公式来计算检测化合物的抑制率(Inhibition rate,IR 0):IR 0(%)=(1-(RLU化合物-RLU空白对照)/(RLU溶媒对照-RLU空白对照))×100%。在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism(6.02.328)软件使用log(抑制剂)vs.响应(response)--可变斜率(Variable slope)拟合抑制曲线图,并得出相关参数,包括最小抑制率、最大抑制率和相对IC 50
最小抑制率是指曲线底部平台对应的Y值,最大抑制率是曲线顶部平台对应的Y值,相对IC 50是使曲线降至曲线顶部与底部平台之间一半的点所需的浓度,绝对IC 50是指细胞活力被抑制一半时的药物浓度。
体内药效实验肿瘤测量和动物体重:
根据肿瘤的生长状况来反应治疗的效果。一旦肿瘤可触摸,每周二次评价肿瘤体积尺寸。用数显卡尺测量确定肿瘤体积尺寸,在整个试验中每周测量2次肿瘤体积以及动物的体重。肿瘤体积V用mm 3表示,按以下公式计算:V=0.5a×b 2,其中a、b分别为肿瘤的长径和短径。体重变化BWC(%)反应相比治疗开始时的体重变化百分比,计算公式为:BWC(%)=(BW n-BW 0)/(BW 0)×100%,BW n、BW 0分别表示为当前和治疗开始时的体重。
T/C和TGI是反应肿瘤(瘤体积)对治疗反应的指标。其中,T/C(%)反映相对肿瘤增值率,即肿瘤的治疗/对照(T/C)值百分比,用下式计算:
T/C(%)=(T RTV/C RTV)×100,(T RTV、C RTV分别表示治疗组和溶媒对照组在治疗当天的平均相对肿瘤体积(RTV))。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为:RTV=Vt/V 0,其中,V 0是分组给药开始时(即治疗第一天d 0)测量所得平均肿瘤体积,Vt为每次测量时的平均肿瘤体积,T RTV与C RTV取同一天数据。
TGI(%)反映肿瘤生长抑制率。TGI(%)的计算公式为:TGI(%)=[1-(T i-T 0)/(V i-V 0)]×100。其中,T i、T 0、V i、V 0分别为某治疗组在给药结束时的平均肿瘤体积、该治疗组在给药开始时(d 0)的平均肿瘤体积、溶媒对照组治疗结束时的平均肿瘤体积、溶媒对照组开始治疗时(d 0)的平均肿瘤体积。
在试验结束时测量肿瘤重量,相对肿瘤重量计算公式为:T W/C W。T W和C W分别为治疗组和溶媒对照组的平均肿瘤重量。
IR反映相对肿瘤(瘤重)抑制率,计算公式为:IR=(Cw-Tw)/Cw×100%,其中,Tw和Cw分别为治疗组和溶媒对照组的平均肿瘤重量。
统计分析
体外细胞活性实验用Compusyn软件(1.0)来计算组合疗法的联合指数(CI)值(协同作用:CI<0.9;累加作用:0.9<CI<1.1;拮抗作用:CI>1.1)。
体内所有数据表示为平均值的标准误差(SEM)。肿瘤体积、肿瘤重量和体重用于统计分析,计算各组在不同时间点的平均肿瘤体积、平均肿瘤重量和SEM。实施例1采用双尾t-检验评价药效实验结束时各药物治疗组与溶媒对照组之间肿瘤体积和肿瘤重量的差异。实施例3和5采用Graphpad Prism 6.0软件进行单因素方差分析(One-way ANOVA)联合Dunnett’s法多重比较评价药效实验结束时各药物治疗组与溶媒对照组之间的肿瘤体 积的差异。实施例1、3和5还采用Graphpad Prism 6.0软件进行双因素方差分析(Two-way ANOVA)联合Tukey法多重比较评价药效试验期间各药物治疗组的肿瘤体积之间的差异。对于所有统计评估,显著性水平设为p<0.05报告相较对照组的显著性,即p<0.05被认为有统计学意义,p<0.01表示极显著的统计学差异。
实验中使用的细胞系SK-OV-3、T47D乳腺癌细胞系均来源于美国菌种保藏中心公司(ATCC),货号分别为:HTB-77、HTB-133。
实施例1
CYH33联合奥拉帕利在人卵巢癌SK-OV-3模型中对裸小鼠的药效研究
此实验中,PIK3CA突变的人卵巢癌细胞系SK-OV-3的小鼠皮下移植瘤模型用于评价CYH33和奥拉帕利联用的抗肿瘤功效,主要研究考察CYH33和
Figure PCTCN2022087086-appb-000014
(奥拉帕利/Olaparib)单药及其联合在荷有SK-OV-3人卵巢癌细胞皮下异种移植瘤的BALB/c雌性裸鼠中的抑瘤效果。所用雌小鼠购自北京维通利华实验动物技术有限公司。取生长旺盛期的瘤组织剪切成2mm 3左右,在无菌条件下,接种于裸小鼠右侧腋窝皮下,观察肿瘤发生。裸小鼠皮下移植瘤用游标卡尺测量移植瘤直径,当荷瘤小鼠腋下肿瘤细胞植入后肿瘤体积到达150mm 3时,将荷瘤小鼠随机分为8组(每组6只),分别给予溶媒对照、奥拉帕利单药(100mg/kg)、CYH33单药(5、10、20mg/kg)、或奥拉帕利(100mg/kg)和CYH33(5、10、20mg/kg)二药的联合治疗,进行疗效研究。按照表1所示的研究剂量方案将动物分为8组,进行给药。每天口服给药一次,连续21天。
表1.研究剂量方案
Figure PCTCN2022087086-appb-000015
CYH33、奥拉帕利单独或联合应用于荷有SK-OV-3人卵巢癌细胞皮下异种移植瘤的BALB/c雌性裸鼠后的抗肿瘤疗效在图1、图2和表2中显示,上述图表中各组别1-8的研究剂量方案见表1中1-8组。其中,图1显示了CYH33、奥拉帕利单独或联合应用于荷有SK-OV-3人卵巢癌细胞皮下异种移植瘤的BALB/c雌性裸鼠后,各治疗组的肿瘤生长曲线,图2显示了各治疗组在实验结束日(给药21天后)的肿瘤体重;图1、图2中数据点、柱状数据分别代表各组别的平均肿瘤体积、平均肿瘤重量,误差线均代表平均值的标 准误差(SEM)。表2显示了各治疗组在给药起始日的肿瘤平均体积,以及在给药21天后的肿瘤平均体积、肿瘤平均重量,肿瘤对治疗反应的指标T/C、TGI和IR(%)。
表2.CYH33与奥拉帕利联用对SK-OV-3异种移植瘤模型的抑瘤药效评价
Figure PCTCN2022087086-appb-000016
注:
a.平均值±SEM。
b.肿瘤生长抑制由T/C(T/C(%)=T RTV/C RTV×100,RTV=V 21/V 0)和TGI(TGI(%)=[1-(T 21-T 0)/(C 21-C 0)]×100)计算;肿瘤(瘤重)抑制率IR=(C W-T W)/C W×100%。
c.采用双尾t-检验与对照组进行比较时,*p<0.05,**p<0.01,***p<0.001。
d基于所有时间点的肿瘤体积,使用Two-way ANOVA分析联合Tukey法多重比较得到各药物治疗组与单药奥拉帕利之间的差异。表格中显著性基于给药后21天的肿瘤体积计算。 #p<0.05认为数据有显著性统计学差异; ##p<0.01, ###p<0.001, ####p<0.0001认为数据有极显著统计学差异。
由图1和表2可知,对照组实验小鼠的平均肿瘤体积为2175.14±423.77mm 3。连续给药21天后,CYH33单药剂量(5、10、20mg/kg)依赖性地抑制了荷瘤小鼠的肿瘤生长,T/C分别为49.06%(TGI:48.91%)、29.04%(TGI:68.86%)、34.95%(TGI:75.60%)。奥拉帕利单药(100mg/kg)也能抑制肿瘤生长,但T/C值高于40%,为55.44%(TGI:43.37%)。不同剂量的CYH33(5、10、20mg/kg)与奥拉帕利(100mg/kg)联合用药后,肿瘤生长明显延迟,T/C值均小于40%,显示其达到了临床前抗肿瘤活性有效的标准(例如抗肿瘤药物非临床评价的技术指导原则),分别为30.84%(TGI:70.32%,p<0.01)、20.79%(TGI:80.36%,p<0.01)和12.96%(TGI:87.72%,p<0.01)。由此可知,CYH33联合奥拉帕利与对照组相比对肿瘤的生长抑制有统计学显著性差异(p<0.01)。此外,所测试的CYH33与奥拉帕利两药联用时抑制肿瘤效果强于相应任一单药。
此外,还对CYH33、奥拉帕利单独和联用组进行了多重比较分析,使用Two-way ANOVA分析联合Tukey法多重比较得到各药物治疗组之间的差异,发现不同剂量的CYH33(5、10、20mg/kg)与奥拉帕利(100mg/kg)联合用药后,联用组CYH33(5mg/kg)+奥拉帕利(100mg/kg)(p<0.01)、CYH33(10mg/kg)+奥拉帕利(100mg/kg)(p<0.0001)、 CYH33(20mg/kg)+奥拉帕利(100mg/kg)(p<0.0001)与奥拉帕利(100mg/kg)单药相比都具有极显著的差异。
此外,在实验中还考察了CYH33和奥拉帕利联合用药对肿瘤重量的影响。连续给药21天后,对各治疗组的小鼠肿瘤进行称重。图2显示了CYH33、奥拉帕利单独或联合应用于荷有SK-OV-3人卵巢癌细胞皮下异种移植瘤的BALB/c雌性裸鼠后,各治疗组的肿瘤体重。与空白溶媒对照相比较,*p<0.05,**p<0.01,***p<0.001。由表2和图2可知,对照组实验小鼠的平均肿瘤重量为1.923±0.351g。使用CYH33单药(20mg/kg、10mg/kg和5mg/kg)治疗后,肿瘤平均重量分别为0.440g(抑制率IR:77.12%,p<0.01)、0.575g(IR:70.10%,p<0.01)和0.957g(IR:50.23%),奥拉帕利(100mg/kg)单药治疗的肿瘤平均重量为1.151g(IR:40.15%)。而CYH33(20mg/kg、10mg/kg和5mg/kg)和奥拉帕利(100mg/kg)联合治疗组的肿瘤平均重量分别为0.194g、0.351g和0.504g,IR值分别为89.91%(p<0.01)、81.75%(p<0.01)和73.79%(p<0.01)。该研究也表明,CYH33与奥拉帕利联用抑制肿瘤效果都强于相应剂量单药。
综上所述,在SK-OV-3人卵巢癌小鼠皮下异种移植瘤模型中,CYH33单药、奥拉帕利单药、以及CYH33与奥拉帕利联用能抑制肿瘤生长。从肿瘤体积和肿瘤重量来看,CYH33与奥拉帕利两药联用抑制肿瘤效果强于相应任一单药。同时发现,CYH33(5mg/kg)和奥拉帕利单药(100mg/kg)单药T/C值均大于40%,达不到临床前抗肿瘤活性有效的标准,而二者联用后达到抗肿瘤活性有效的标准。多重统计分析显示,不同剂量的CYH33(5、10、20mg/kg)与奥拉帕利(100mg/kg)联合用药后,联用组与奥拉帕利单药相比具有极显著的差异。
这些结果表明,CYH33与奥拉帕利联用能显著抑制肿瘤生长,提示两药联用在临床中也有相似的作用。CYH33与奥拉帕利两药联用较相应任一单药显示出更强的抗肿瘤效果,提示两药联用能为延缓癌症的进展或为癌症患者的治疗提供临床益处,尤其是对于患有卵巢癌、乳腺癌、***癌、胆管癌、子宫内膜癌、输卵管或原发性腹膜癌等的患者。
实施例2
利用体外细胞活性实验研究CYH33联合氟维司群或哌柏西利的两药联用在T47D乳腺癌细胞系中的抗增殖作用
1、实验方法
将T47D乳腺癌肿瘤细胞系(ER+、HER2-、PIK3CA突变)在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板,将CYH33+氟维司群,CYH33+哌柏西利,以及各个单药分别进行细胞铺板和化合物处理。其中,CYH33:10μM起始,3倍稀释,9个浓度梯度,氟维司群:1μM起始,3倍稀释,9个浓度梯度,哌柏西利:10μM起始,3倍稀释,9个浓度梯度;CYH33、哌柏西利的终浓度均依次为10、3.3333、1.1111、0.3704、0.1235、0.0412、0.0137、0.0046、0.0015μM,氟维司群的终浓度依次为1、0.333、0.111、0.037、0.01235、0.00412、0.00137、0.00046、0.00015μM。细胞培养 72h后,按照Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)检测发光信号。结果如表3和表4所示。
2、实验结果
CYH33与哌柏西利联用检测结果如表3所示,CYH33单药对T47D细胞具有较强的细胞增殖抑制作用,相对IC 50为0.075μM,最高抑制率为74.65%;哌柏西利在浓度设置范围内的最高抑制率为40.13%,相对IC 50为8.061μM。两药联用时,哌柏西利在浓度设置范围内的最高抑制率为78.54%,相对IC 50为0.015μM。通过Compusyn软件分析各Fa下的CI值如表4所示,各Fa下的CI值均小于0.9,具有协同效应;且最佳CI值为0.19488。
同样,如表3所示,CYH33与氟维司群联用检测结果显示CYH33单药对T47D细胞具有较强的细胞增殖抑制作用,相对IC 50为0.075μM,最高抑制率为74.65%;氟维司群在浓度设置范围内最高抑制率为35.15%,相对IC 50为0.001μM。两药联用时,在浓度设置范围内最高抑制率为75.64%,相对IC 50为0.001μM。通过Compusyn软件分析各Fa下的CI值如表4所示,当Fa<0.9时,CI值均小于0.9,具有协同效应;且最佳CI值为0.11425。
表3.CYH33联合氟维司群或哌柏西利在T47D乳腺癌细胞系中的抗细胞增殖参数
化合物 绝对IC 50(μM) 相对IC 50(μM) 最小抑制率(%) 最大抑制率(%)
CYH33 a 0.148 0.075 7 74.65
哌柏西利 >10 8.061 -11.73 40.13
CYH33+哌柏西利 0.038 0.015 13.83 78.54
氟维司群 1 0.001 5.23 35.15
CYH33+氟维司群 0.002 0.001 6.90 75.64
注: a CYH33起始浓度为10μM,CYH33的参数基于平行两组实验的平均值计算。表4.T47D细胞中CYH33与哌柏西利、CYH33与氟维司群联用的Fa-CI值
Figure PCTCN2022087086-appb-000017
Figure PCTCN2022087086-appb-000018
注:
aCYH33与哌柏西利浓度比为1:1,总浓度是CYH33与哌柏西利浓度之和。
bCYH33与氟维司群浓度比为10:1,总浓度是CYH33与氟维司群浓度之和。
cFa表示抑制率(Fraction affected)。
实施例3
CYH33联合氟维司群或哌柏西利在乳腺癌裸小鼠模型中的药效研究
本研究评价了CYH33分别与氟维司群、哌柏西利两药联用在***受体阳性、PIK3CA突变的人乳腺癌T47D细胞BALB/c(ER+、HER2-、PIK3CA突变)裸小鼠皮下移植瘤模型中的体内药效。所用雌小鼠购自上海西普尔-必凯实验动物有限公司。细胞接种前2天在小鼠左上肢皮下埋植0.18mg的17β-***片。肿瘤平均体积达到约193mm 3时开始随机分为12组(每组6只)给药。CYH33与哌柏西利每天口服给药一次,连续35天,氟维司群每周皮下给药一次,一共给药6次。
CYH33、氟维司群或哌柏西利单独或联合应用于T47D异种移植雌性BALB/c裸鼠后的抗肿瘤疗效如图3、表5和表6中显示。其中,图3显示了CYH33、氟维司群或哌柏西利单独或联合应用于T47D异种移植雌性BALB/c裸鼠后,各治疗组的肿瘤体积生长曲线。其中,数据点代表各组内平均肿瘤体积(各组别见表5)。误差线代表平均值的标准误差(SEM)。表5显示了各治疗组在给药起始日的肿瘤平均体积,以及在给药35天后的肿瘤平均体积,肿瘤对治疗反应的指标T/C,TGI。
如图3a和表5所示,连续给药35天后,CYH33在2.5mg/kg、5mg/kg、10mg/kg剂量下能剂量依赖性地抑制肿瘤生长,给药后35天,肿瘤生长抑制率(TGI)分别为30.15%、36.70%、77.67%,相对肿瘤增殖率(T/C)分别为75.51%、70.10%、36.71%。单药CYH33在2.5mg/kg、5mg/kg未达到临床前抗肿瘤活性有效的标准。阳性药氟维司群(2mg/mouse)单药表现出一定的抑瘤效果(TGI=52.00%,T/C=57.62%),未达到临床前抗肿瘤活性有效的标准。与CYH33单药和氟维司群单药相比,CYH33(2.5mg/kg、5mg/kg、10mg/kg)与氟维司群(2mg/mouse)分别联用的抗肿瘤效果强于单药,均强效抑制肿瘤生长,TGI分别为74.28%、89.63%和84.82%,T/C值均小于40%,分别为39.45%、26.94%和30.87%。并且CYH33(5mg/kg)与氟维司群(2mg/mous)的联用组与单药相比有协同抗肿瘤作用(例如,联用组TGI(89.63%)>CYH33(5mg/kg)TGI(36.7%)+氟维司群(2mg/mouse)TGI(52%)。
表5.CYH33与氟维司群联用对T47D异种移植瘤模型的抑瘤药效评价(基于肿瘤体积)
Figure PCTCN2022087086-appb-000019
注:
a.平均值±SEM。
b.肿瘤生长抑制由T/C(T/C(%)=T RTV/C RTV×100,RTV=V 35/V 0)和TGI(TGI(%)=[1-(T 35-T 0)/(C 35-C 0)]×100)计算。
c.使用One-way ANOVA分析联合Dunnett’s法多重比较得到各药物治疗组与溶媒对照组之间的差异。表格中p值基于给药后35天的肿瘤体积计算。
此外,对于CYH33与氟维司群单药和联用各组的肿瘤体积数据进行了多重比较,使用Two-way ANOVA分析联合Tukey法多重比较得到各药物治疗组之间的差异。结果显示CYH33(2.5mg/kg)与氟维司群(2mg/mouse)联用(p<0.05),以及CYH33(5mg/kg)与氟维司群(2mg/mouse)联用(p<0.001)的抗肿瘤作用,与对应的CYH33单药组相比,都有显著的统计学意义。
如图3b和表6所示,阳性药哌柏西利(45mg/kg)单药表现出较强的抑瘤效果(TGI=75.85%,T/C=38.19%)。CYH33(2.5mg/kg、5mg/kg、10mg/kg)与哌柏西利(45mg/kg)分别联用,均强效抑制肿瘤生长,TGI分别为93.07%、99.52%和112.39%,T/C分别为24.15%、18.89%和7.96%,均小于40%,达到临床前抗肿瘤活性有效的标准。
表6.CYH33与哌柏西利联用对T47D异种移植瘤模型的抑瘤药效评价(基于肿瘤体积)
Figure PCTCN2022087086-appb-000020
Figure PCTCN2022087086-appb-000021
注:
a.平均值±SEM。
b.肿瘤生长抑制由T/C(T/C(%)=T RTV/C RTV×100,RTV=V 35/V 0)和TGI(TGI(%)=[1-(T 35-T 0)/(C 35-C 0)]×100)计算。
c.使用One-way ANOVA分析,Dunnet法多重比较得到各药物治疗组与溶媒对照组之间的差异。表格中p值基于给药后35天的肿瘤体积计算。
此外对于CYH33与哌柏西利单药和联用各组的肿瘤体积数据进行了多重比较,使用Two-way ANOVA分析联合Tukey法多重比较得到各药物治疗组之间的差异。CYH33(2.5mg/kg)与哌柏西利(45mg/kg)联用(p<0.0001),以及CYH33(5mg/kg)与哌柏西利(45mg/kg)联用(p<0.0001)的二联组的抗肿瘤作用,与对应的CYH33单药组相比,都有显著的统计学意义。
综上可知,在***受体阳性、PIK3CA突变的人乳腺癌T47D细胞BALB/c裸小鼠皮下移植瘤模型中,CYH33与氟维司群、CYH33与哌柏西利联用均表现出强于相应任一单药的抑瘤效果。联用组T/C值均小于40%,达到临床前抗肿瘤活性有效的标准。并且通过TGI值可知,CYH33(5mg/kg)与氟维司群(2mg/mouse)联用有协同抗肿瘤作用。此外,多重统计分析显示,CYH33(2.5mg/kg、5mg/kg)分别与氟维司群(2mg/mouse)和哌柏西利(45mg/kg)的二联组的抗肿瘤作用,与对应的CYH33单药组相比,都有显著的统计学意义。
实施例4
利用体外细胞活性实验研究CHY33联合氟维司群和哌柏西利在T47D乳腺癌细胞系中的抗增殖作用。
将T47D乳腺癌肿瘤细胞系(ER+、HER2-、PIK3CA突变)在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。将CYH33、氟维司群和哌柏西利进行细胞铺板和化合物处理。其中,CYH33:2μM起始,2倍稀释,9个浓度梯度;氟维司群:0.05μM起始,2倍稀释,9个浓度梯度;哌柏西利:10μM起始,2倍稀释,9个浓度梯度。细胞培养72h后,按照Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)检测发光信号。对CYH33与哌柏西利、CYH33与氟维司群、CYH33与哌柏西利和氟维司群联用在乳腺癌细胞系T47D中的抗细胞增殖作用进行研究。结果如表7和表8所示,其中,表7中板号5、6与表8中板5、6是一一对应的。
表7.CHY33联合氟维司群和哌柏西利在T47D乳腺癌细胞系中的抗细胞增殖参数
Figure PCTCN2022087086-appb-000022
Figure PCTCN2022087086-appb-000023
注:
a.实验中各参数是基于CYH33的浓度计算;
b.实验中各参数是基于哌柏西利的浓度计算;
c.实验中各参数是基于氟维司群的浓度计算。
表8.T47D细胞中CYH33与氟维司群和/或哌柏西利联用的Fa-CI值
Figure PCTCN2022087086-appb-000024
注:
a.CYH33与哌柏西利、氟维司群浓度比为40:200:1,总浓度是CYH33与哌柏西利,氟维司群浓度之和。
CYH33与氟维司群+哌柏西利联用抗细胞增殖作用结果显示,CYH33单药对T47D细胞具有较强的细胞增殖抑制作用,相对IC 50为0.066μM,最高抑制率为77.16%,氟维司群+哌柏西利在浓度设置范围内最高抑制率为57.91%,相对IC 50为0.025μM,三药联用时最小相对IC 50为0.002μM,最高抑制率为100%,通过Compusyn软件分析各Fa下的CI值如表8所示,当Fa<0.8,CI值均小于0.9,具有协同效应。
哌柏西利与CYH33+氟维司群联用抗细胞增殖作用结果显示,哌柏西利单药对T47D细胞具有较强的细胞增殖抑制作用,相对IC 50为0.916μM,最高抑制率为59.74%,CYH33+氟维司群在浓度设置范围内最高抑制率为75.57%,相对IC 50为0.010μM,三药联用时相对IC 50为0.001μM,最高抑制率为88.42%,通过Compusyn软件分析各Fa下的CI值如表8所示,当Fa<0.7,CI值均小于0.9,具有协同效应。
实施例5
CYH33联合氟维司群和哌柏西利在T47D裸小鼠乳腺癌模型中的药效研究
在乳腺癌T47D移植瘤模型中,评价了CYH33、氟维司群、哌柏西利单药,分别两药联用或三药联用在***受体阳性、PIK3CA突变的人乳腺癌T47D细胞BALB/c(ER+、HER2-、PIK3CA突变)裸小鼠皮下移植瘤模型中的体内抗肿瘤药效。所用小鼠购自上海西普尔-必凯实验动物有限公司。细胞接种前2天在小鼠左上肢皮下埋植0.18mg的17β-***片。肿瘤平均体积达到约197mm 3时开始随机分组为14组(每组6只)给药。CYH33与哌柏西利每天口服给药一次,连续28天。氟维司群每周皮下给药一次,一共给药5次。
CYH33联合氟维司群和哌柏西利在裸小鼠乳腺癌模型中的抗肿瘤疗效如图4、表9-表11所显。图4显示了各治疗组的肿瘤体积生长曲线。图4中数据点代表各组内平均肿瘤体积,误差线代表平均值的标准误差(SEM)。表9显示了各治疗组在给药起始日的肿瘤平均体积,以及在给药28天后的肿瘤平均体积和肿瘤对治疗反应的指标T/C和TGI。表10、11、12分别显示了CYH33、氟维司群和哌柏西利单药、二药联用和三药联用各组间的多重比较分析结果。
如图4和表9所示,在PG-D28(治疗后的第28天),对照组实验小鼠的平均肿瘤体积达到1337±170mm 3。单药CYH33在5mg/kg、10mg/kg剂量下能剂量依赖性地抑制肿瘤生长,肿瘤生长抑制率(TGI)分别为46.41%和62.02%,相对肿瘤增殖率(T/C)分别为60.26%和47.16%;单药氟维司群(2mg/mouse)的T/C为59.29%,均未达到临床前抗肿瘤活性有效的标准。CYH33(5mg/kg)与氟维司群(2mg)联用后,T/C为36.1%,达到临床前抗肿瘤活性有效的标准,而且CYH33(5mg/kg、10mg/kg)与氟维司群(2mg)联用(TGI分别为74.91%、69.82%;T/C分别为36.1%、40.42%)的抑瘤效果强于CYH33单药对应剂量组或氟维司群单药治疗组(TGI为47.82%,T/C为59.29%)。
哌柏西利(20mg/kg)的TGI为25.8%,T/C为77.85%,未达到临床前抗肿瘤活性有效的标准;而CYH33(2.5mg/kg、5mg/kg、10mg/kg)与哌柏西利(20mg/kg)联用,TGI分别为68.58%、66.32%,85.55%,T/C分别为41.51%、43.3%、27.06%,抑瘤效果强于CYH33单药治疗对应剂量组或哌柏西利单药治疗组。
CYH33(2.5mg/kg、5mg/kg、10mg/kg)分别与氟维司群(2mg)和哌柏西利(20mg/kg) 三药联用,TGI分别为91.9%、96.61%、102.81%,T/C分别为21.63%、17.63%、12.34%,三药联用抑瘤效果强于对应剂量的单药治疗组、CYH33+氟维司群、CYH33+哌柏西利、或氟维司群+哌柏西利(TGI为60.37%,T/C为48.55%)二联用药组。并且此结果显示,CYH33(10mg/kg)+氟维司群(2mg/mouse)和哌柏西利(20mg/kg)联用组与对应的二联CYH33+氟维司群、及与哌柏西利单药相比有协同抗肿瘤作用。
表9.CYH33与氟维司群、哌柏西利联用对T47D异种移植瘤模型的抑瘤药效评价(基于肿瘤体积)
Figure PCTCN2022087086-appb-000025
注:
a.平均值±SEM。
b.肿瘤生长抑制由T/C(T/C(%)=T RTV/C RTV×100,RTV=V 28/V 0)和TGI(TGI(%)=[1-(T 28-T 0)/(C 28-C 0)]×100)计算。
c.:N为动物数量
此外,对CYH33、氟维司群、哌柏西利单药和它们的三药联合组进行了多重比较分析,实验结果如表10所示。CYH33(2.5mg/kg、5mg/kg、10mg/kg)分别与氟维司群(2mg)+哌柏西利(20mg/kg)的三药联合与对应CYH33、氟维司群、哌柏西利单药相比,有极显著的统计学意义。
表10.肿瘤体积数据多重比较(CYH33、氟维司群、哌柏西利和三药联合)
Figure PCTCN2022087086-appb-000026
Figure PCTCN2022087086-appb-000027
注:基于所有时间点的肿瘤体积,使用Two-way ANOVA分析联合Tukey法多重比较得到各药物治疗组之间的差异。表格中显著性基于给药后28天的肿瘤体积计算。*p<0.05认为数据有显著性统计学差异;**p<0.01,***p<0.001,****p<0.0001认为数据有极显著统计学差异。
此外,对CYH33单药和当前标准治疗氟维司群+哌柏西利二联的各治疗组进行了多重比较分析。实验结果如表11所示。CYH33(2.5mg/kg、5mg/kg、10mg/kg)分别与氟维司群(2mg)+哌柏西利(20mg/kg)的三药联合与对应标准治疗氟维司群+哌柏西利的二联相比,有极显著的统计学意义。并且,CYH33(5mg/kg、10mg/kg)分别与氟维司群(2mg)+哌柏西利(20mg/kg)的三药联合与对应的CYH33单药组或氟维司群+哌柏西利二联组相比,都有极显著的统计学意义。表明CYH33(5mg/kg或10mg/kg)与标准治疗氟维司群(2mg)+哌柏西利(20mg/kg)的联合均具有协同抗肿瘤作用。
表11.肿瘤体积数据多重比较(CYH33和氟维司群+哌柏西利)
Figure PCTCN2022087086-appb-000028
注:基于所有时间点的肿瘤体积,使用Two-way ANOVA分析,Tukey法多重比较得到各药物治疗组之间的差异。表格中显著性基于给药后28天的肿瘤体积计算。*p<0.05认为数据有显著性统计学差异;**p<0.01,***p<0.001,****p<0.0001认为数据有极显著统计学差异。
同样,也分别对氟维司群单药和二联CYH33+哌柏西利联用的各治疗组分别进行了多重比较分析,实验结果显示氟维司群(2mg)分别与CYH33(2.5mg/kg、5mg/kg、10mg/kg) 和哌柏西利(20mg/kg)的三药联合与对应氟维司群单药相比,有极显著的统计学意义。并且,氟维司群(2mg)与CYH33(5mg/kg)+哌柏西利(20mg/kg)三药联用与对应的氟维司群单药组相比,以及与对应的二联CYH33+哌柏西利相比,都有极显著的统计学意义。这表明氟维司群单药和二联CYH33(5mg/kg)+哌柏西利(20mg/kg)联合具有协同抗肿瘤作用。
对单药哌柏西利和二联CYH33+氟维司群的联用的各治疗组进行了多重比较分析。实验结果显示CYH33(2.5mg/kg、5mg/kg、10mg/kg)分别与氟维司群(2mg)和哌柏西利(20mg/kg)的三药联合与对应哌柏西利单药相比,都有极显著的统计学意义。同时发现,哌柏西利(20mg/kg)、CYH33(10mg/kg)、氟维司群(2mg)三联与单药哌柏西利(20mg/kg)和二联CYH33(10mg/kg)+氟维司群相比,都具有极显著的统计学差异。表明单药哌柏西利(20mg/kg)和二联CYH33(10mg/kg)+氟维司群联用具有协同抗肿瘤作用。
综上可知,在***受体阳性、PIK3CA突变的人乳腺癌T47D细胞BALB/c裸小鼠皮下异种移植瘤模型中,CYH33与氟维司群、哌柏西利三药联用表现出强于相应任一单药的抑瘤效果。三药联用组T/C均小于40%,达到临床前抗肿瘤活性有效的标准。通过TGI值可知,CYH33(10mg/kg)+氟维司群和哌柏西利联用有协同抗肿瘤作用。
而且,统计分析显示,所测试的三个剂量组的三药联用抑瘤效果与任一单药相比具有极显著性差异,与标准治疗氟维司群+哌柏西利的二联相比,也有极显著的统计学意义,甚至CYH33为5mg/kg的三药联用与对应CYH33+哌柏西利联用相比,仍有极显著的统计学意义(p<0.01),CYH33为10mg/kg的三药联用与对应CYH33+氟维司群联用相比,仍有极显著的统计学意义(p<0.001),显示三药联用具有协同抗肿瘤作用。
实施例6
CYH33和奥拉帕利联用的临床试验
进行临床研究以临床评估CYH33和奥拉帕利的联合用药在晚期实体瘤患者中的安全性和耐受性。此研究中,CYH33和奥拉帕利的剂量和给药方案能根据以下现有信息选择:CYH33的人体安全性、功效和PK信息,奥拉帕利的临床前安全性、功效和PK信息,在剂量递增和剂量扩展部分,确定联合用药的MTD(最大耐受剂量)或RP2D(II期推荐剂量)。在本研究的剂量扩展部分,旨在评估CYH33与奥拉帕利联合给药在晚期实体瘤患者中该组合的药物-药物相互作用潜力临床疗效以及该组合的药物-药物相互作用潜力的预先测评,从而测定如表12所述的目标和相关终点。
表12.CYH33和奥拉帕利联用的临床试验的目标和相关终点
Figure PCTCN2022087086-appb-000029
Figure PCTCN2022087086-appb-000030
Figure PCTCN2022087086-appb-000031
给药方案:
试验药物为CYH33和奥拉帕利,治疗方案为联合治疗。
CYH33:
-A:起始剂量10mg每日一次(QD)口服给药,28天为1个周期。
-B:起始剂量20mg QD口服给药,28天为1个周期。
-C:起始剂量30mg QD口服给药,28天为1个周期。
-D:起始剂量40mg QD口服给药,28天为1个周期。
奥拉帕利:
-A:起始剂量300mg,每日两次(BID)口服给药,28天为1周期。
-B:起始剂量250mg,每日两次(BID)口服给药,28天为1周期。
-C:起始剂量200mg,每日两次(BID)口服给药,28天为1周期。
适应证(入组肿瘤类型):
晚期实体瘤(包括但不限于卵巢癌、输卵管癌、原发性腹膜癌、***癌、子宫内膜癌等)。
实施例7
CYH33联合内分泌治疗伴或不伴哌柏西利PIK3CA突变、HR+、HER2-局部晚期、复发性或转移性乳腺癌患者中的安全性、耐受性、药代动力学特征和初步疗效的多中心、开放的Ib期临床试验研究
本研究旨在经过前线治疗失败的PIK3CA突变、HR+、HER2-局部晚期、复发性或转移性乳腺癌患者中,评估CYH33+氟维司群、CYH33+氟维司群+哌柏西利和CYH33+来曲唑+哌柏西利的安全性、耐受性、药代动力学特征和初步疗效。
研究目的与终点如下表13所示:
表13.
Figure PCTCN2022087086-appb-000032
Figure PCTCN2022087086-appb-000033
给药方案:
试验药物为CYH33联合氟维司群或来曲唑,伴或不伴哌柏西利,治疗方案为联合治疗。
CYH33:
-A:起始剂量30mg每日一次(QD)口服给药,28天为1个周期。
-B:起始剂量40mg QD口服给药,28天为1个周期。
-C:起始剂量20mg QD口服给药,28天为1个周期。
-D:起始剂量10mg QD口服给药,28天为1个周期。
氟维司群:
臀部注射:第一周期在第1天及第15天各注射500mg,后续周期在第一天注射500mg。28天为1个周期。
来曲唑:
2.5mg QD口服给药,28天为1个周期。
哌柏西利:
-A:125mg QD口服给药,连续服药3周停1周,28天为1个周期。
-B:100mg QD口服给药,连续服药3周停1周,28天为1个周期。
-C:75mg QD口服给药,连续服药3周停1周,28天为1个周期。
适应证(入组肿瘤类型):
PIK3CA突变、HR+、HER2-晚期乳腺癌。

Claims (26)

  1. 药物组合,其包含:
    (a)第一活性剂,其是式If化合物或式Ig化合物或其药学上可接受的盐,
    Figure PCTCN2022087086-appb-100001
    其中,
    R 1为-NR 5R 6
    R 2
    Figure PCTCN2022087086-appb-100002
    R 5和R 6各自独立地为C 1-C 4烷基,或与它们相连的氮原子一起形成的未取代或被取代基取代的哌嗪环,所述取代基为-S(O) 2R 12
    R 7、R 8、R 9和R 10各自独立地为H或C 1-C 3烷基,或者R 2
    Figure PCTCN2022087086-appb-100003
    R 11为C 1-C 4烷基、未取代或被一个或多个取代基取代的苄基、未取代或被一个或多个取代基取代的苯基,未取代或被一个或多个取代基取代的异噁唑基,或者未取代或被一个或多个取代基取代的吡啶基,所述一个或多个取代基选自卤素、C 1-C 3烷基、C 1-C 3烷氧基、-CF 3、-C(O)OR 12、-C(O)NR 12R 15
    Figure PCTCN2022087086-appb-100004
    R 12和R 15各自独立地为C 1-C 3的烷基;和
    (b)第二活性剂,其选自PARP1/2抑制剂、***受体调节剂、CDK4/6抑制剂中的任意一种或任意两种,或其药学上可接受的盐;
    任选地还包含(c)第三活性剂,其为芳香化酶抑制剂或其药学上可接受的盐。
  2. 根据权利要求1的药物组合,其中,第一活性剂是具有下式的化合物CYH33或其药学上可接受的盐
    Figure PCTCN2022087086-appb-100005
    或者具有下式的化合物I-27或其药学上可接受的盐
    Figure PCTCN2022087086-appb-100006
  3. 根据前述权利要求中任一项的药物组合,其中,PARP1/2抑制剂是奥拉帕利、鲁卡帕利、尼拉帕利、他拉唑帕尼、氟唑帕利或帕米帕利,优选奥拉帕利;***受体调节剂是氟维司群、佐昔芬、托瑞米芬、雷洛昔芬或他莫昔芬,优选氟维司群;CDK4/6抑制剂选自哌柏西利、瑞波西利或阿贝西利,优选哌柏西利。
  4. 根据前述权利要求中任一项的药物组合,其中芳香化酶抑制剂是来曲唑、阿那曲唑、依西美坦或伏氯唑,优选来曲唑。
  5. 根据前述权利要求中任一项的药物组合,其包含:
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,以及
    (b)奥拉帕利、氟维司群和哌柏西利中的任意一种或任意两种。
  6. 根据前述权利要求中任一项的药物组合,其包含:
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,
    (b)奥拉帕利、氟维司群和哌柏西利中的任意一种或任意两种,以及
    (c)来曲唑。
  7. 根据前述权利要求中任一项的药物组合,其包含:
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)奥拉帕利;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)氟维司群;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)哌柏西利;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)奥拉帕利以及氟维司群;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)奥拉帕利以及哌柏西利;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)奥拉帕利,以及
    (c)来曲唑;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)氟维司群以及哌柏西利;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)氟维司群,以及
    (c)来曲唑;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)哌柏西利,以及
    (c)来曲唑;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)奥拉帕利和氟维司群,以及
    (c)来曲唑;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)氟维司群和哌柏西利,以及
    (c)来曲唑;
    或者
    (a)第一活性剂,其选自化合物CYH33或化合物I-27或其药学上可接受的盐,与
    (b)奥拉帕利和哌柏西利,以及
    (c)来曲唑。
  8. 根据前述权利要求中任一项的药物组合,其中第一活性剂是化合物CYH33或其药学上可接受的盐,优选是化合物CYH33的盐酸盐或甲磺酸盐。
  9. 根据前述权利要求中任一项的药物组合,其中化合物CYH33或其药学上可接受的盐为10-50mg,例如10-40mg、20-40mg、20-30mg或30-40mg,例如10mg、20mg、30mg或40mg的剂量单元的形式,优选为口服剂型。
  10. 根据前述权利要求中任一项的药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10-40mg、20-40mg、20-30mg或30-40mg,例如10mg、20mg、30mg或40mg。
  11. 根据前述权利要求中任一项的药物组合,其中CYH33或其药学上可接受的盐在每个周期连续施用,优选每日一次。
  12. 根据前述权利要求中任一项的药物组合,其中每个周期是4周;且所述药物组合施用至少一个周期,例如2-12个或更多个周期。
  13. 根据前述权利要求中任一项的药物组合,其中
    以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中奥拉帕利的日剂量为400mg-600mg,每日分二次施用;
    或者
    以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中氟维司群的单次施用剂量为500mg,在第一个周期的第1天和第15天施用,且在后续每个周期的第1天施用;
    或者
    以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中氟维司群的单次施用剂量为500mg,在第一个周期的第1天和第15天施用,且在后续每个周期的第1天施用;且其中哌柏西利的日剂量为125mg、100mg或75mg,在每个周期每日一次连续施用三周、然后停药一周;
    或者
    以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中来曲唑的日剂量为2.5mg,每日一次;
    或者
    以每4周一个周期施用所述药物组合,其中化合物CYH33或其药学上可接受的盐的日剂量为10-50mg,例如10mg、20mg、30mg或40mg,每日一次;且其中来曲唑的日剂量为2.5mg,每日一次;且其中哌柏西利的日剂量为125mg、100mg或75mg,在每个周期每日一次连续施用三周、然后停药一周。
  14. 根据前述权利要求中任一项的药物组合,其中所述各个活性剂可分别、同时或顺序施用。
  15. 根据前述权利要求中任一项的药物组合,其用于在有需要的个体中治疗或预防疾病,所述疾病是癌症,优选实体瘤,例如晚期实体瘤;更优选地,所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
  16. 用于所述用途的根据权利要求15的药物组合,其中所述疾病携带DNA损伤修复基因突变、PIK3CA基因突变、对PARP抑制剂耐药和/或对铂类化疗剂耐药。
  17. 用于所述用途的根据权利要求15-16中任一项的药物组合,其中所述疾病是HR+、HER2-和/或PIK3CA基因突变晚期乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变晚期乳腺癌。
  18. 用于治疗或预防疾病的方法,所述方法包括向有需要的个体施用有效量的权利要求1-14中任一项所定义的药物组合,其中所述疾病是癌症,优选实体瘤,例如晚期实体瘤;更优选地,所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
  19. 根据权利要求18所述的方法,其中所述疾病携带DNA损伤修复基因突变、PIK3CA基因突变、对PARP抑制剂耐药和/或对铂类化疗剂耐药。
  20. 根据权利要求18-19中任一项所述的方法,其中所述疾病是HR+、HER2-和/或PIK3CA基因突变晚期乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变晚期乳腺癌。
  21. 权利要求1-14中任一项的药物组合在制备用于治疗疾病药物中的用途,所述疾病选自癌症,优选实体瘤,例如晚期实体瘤;更优选地,所述疾病选自卵巢癌、乳腺癌、子宫内膜癌、输卵管癌、原发性腹膜癌、胆管癌或***癌。
  22. 根据权利要求21所述的用途,其中所述疾病携带DNA损伤修复基因突变、PIK3CA基因突变、对PARP抑制剂耐药和/或对铂类化疗剂耐药。
  23. 根据权利要求21-22任一项所述的用途,其中所述疾病是HR+、HER2-和/或PIK3CA基因突变晚期乳腺癌,尤其是HR+、HER2-和PIK3CA基因突变晚期乳腺癌。
  24. 一种组合制剂,其包含权利要求1-17中任一项定义的药物组合。
  25. 一种药物组合物,其包含权利要求1-17中任一项定义的药物组合,以及一种或多种药学上可接受的赋形剂。
  26. 成套药盒,其包含权利要求1-17中任一项所定义的药物组合以及说明同时、分别或顺序施用活性剂的说明书,优选其中的活性剂为药物剂量单元形式。
PCT/CN2022/087086 2021-09-10 2022-04-15 包含PI3Kα抑制剂的药物组合 WO2023035614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111061695.0 2021-09-10
CN202111061695 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023035614A1 true WO2023035614A1 (zh) 2023-03-16

Family

ID=85507207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087086 WO2023035614A1 (zh) 2021-09-10 2022-04-15 包含PI3Kα抑制剂的药物组合

Country Status (2)

Country Link
TW (1) TW202313056A (zh)
WO (1) WO2023035614A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049581A1 (en) * 2011-09-30 2013-04-04 Beth Israel Deaconess Medical Center Inc. Compositions and methods for the treatment of proliferative diseases
CN103450204A (zh) * 2012-05-31 2013-12-18 中国科学院上海药物研究所 吡咯[2,1-f][1,2,4]并三嗪类化合物,其制备方法及用途
CN106456776A (zh) * 2014-05-21 2017-02-22 豪夫迈·罗氏有限公司 用PI3K抑制剂Pictilisib治疗PR阳性腔性A乳腺癌的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049581A1 (en) * 2011-09-30 2013-04-04 Beth Israel Deaconess Medical Center Inc. Compositions and methods for the treatment of proliferative diseases
CN103450204A (zh) * 2012-05-31 2013-12-18 中国科学院上海药物研究所 吡咯[2,1-f][1,2,4]并三嗪类化合物,其制备方法及用途
CN106456776A (zh) * 2014-05-21 2017-02-22 豪夫迈·罗氏有限公司 用PI3K抑制剂Pictilisib治疗PR阳性腔性A乳腺癌的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Study of CYH33 in Combination With Endocrine Therapy With or Without Palbociclib in Patients With HR+, HER2-Advanced Breast Cancer ", CLINICALTRIALS.GOV; NCT04856371, 23 April 2021 (2021-04-23), XP093044058, Retrieved from the Internet <URL:https://clinicaltrials.gov/ct2/show/NCT04856371> [retrieved on 20230503] *
ANONYMOUS: "Study of CYH33 in Combination With Olaparib an Oral PARP Inhibitor in Patients With Advanced Solid Tumors", CLINICALTRIALS.GOV; NCT04586335, 14 October 2020 (2020-10-14), XP093044055, Retrieved from the Internet <URL:https://clinicaltrials.gov/ct2/show/NCT04586335> [retrieved on 20230503] *
HERRERA-ABREU, M. T. ET AL.: "Early Adaptation and Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor–Positive Breast Cancer", CANCER RESEARCH, vol. 76, no. 8, 15 April 2016 (2016-04-15), XP055506969, DOI: 10.1158/0008-5472.CAN-15-0728 *
LIU XUE-LING, XU YI-CHAO, WANG YU-XIANG, CHEN YI, WANG BO-BO, WANG YI, CHEN YAN-HONG, TAN CUN, HU LAN-DING, MA QING-YANG, ZHANG YU: "Decrease in phosphorylated ERK indicates the therapeutic efficacy of a clinical PI3Kα-selective inhibitor CYH33 in breast cancer", CANCER LETTERS, NEW YORK, NY, US, vol. 433, 1 October 2018 (2018-10-01), US , pages 273 - 282, XP093044048, ISSN: 0304-3835, DOI: 10.1016/j.canlet.2018.07.011 *
WANG DONG, WANG MIN, JIANG NAN, ZHANG YUAN, BIAN XING, WANG XIAOQING, ROBERTS THOMAS M., ZHAO JEAN J., LIU PIXU, CHENG HAILING: "Effective use of PI3K inhibitor BKM120 and PARP inhibitor Olaparib to treat PIK3CA mutant ovarian cancer", ONCOTARGET, vol. 7, no. 11, 15 March 2016 (2016-03-15), pages 13153 - 13166, XP093044051, DOI: 10.18632/oncotarget.7549 *
YUXIANG WANG, XIAN LI, XUELING LIU, YI CHEN, CHUNHAO YANG, CUN TAN, BOBO WANG, YIMING SUN, XI ZHANG, YINGLEI GAO, JIAN DING, LINGH: "Simultaneous inhibition of PI3Kα and CDK4/6 synergistically suppresses KRAS-mutated non-small cell lung cancer", CANCER BIOLOGY & MEDICINE, TIANJIN YIKE DAXUE FUSHU ZHONGLIU YIYUAN,TIANJIN MEDICAL UNIVERSITY CANCER INSTITUTE AND HOSPITAL, CN, vol. 16, no. 1, 1 January 2019 (2019-01-01), CN , pages 66, XP093044059, ISSN: 2095-3941, DOI: 10.20892/j.issn.2095-3941.2018.0361 *

Also Published As

Publication number Publication date
TW202313056A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
US20230405011A1 (en) Combination therapy for the treatment of cancer
CN109310684B (zh) 用于治疗癌症的notch和cdk4/6抑制剂的组合疗法
KR102612513B1 (ko) (s)-5-아미노-3-(4-((5-플루오로-2-메톡시벤즈아미도)메틸)페닐)-1-(1,1,1-트리플루오로프로판-2-일)-1h-피라졸-4-카르복스아미드의 분무-건조된 분산물 및 제제
CN105120868A (zh) 组合治疗
JP6805336B2 (ja) 薬学的組み合わせ
CN105338980A (zh) 药物组合
Adon et al. CDK4/6 inhibitors: a brief overview and prospective research directions
CN110582581A (zh) 用于治疗过度增殖性疾病的方法中的atr激酶的抑制剂
TWI762784B (zh) Cdk4/6抑制劑與egfr抑制劑聯合在製備治療腫瘤疾病的藥物中的用途
WO2021063332A1 (zh) 一种ezh2抑制剂与cdk4/6抑制剂联合在制备***药物中的用途
WO2015185011A1 (zh) 喹啉衍生物用于治疗甲状腺癌的方法和用途以及用于治疗甲状腺癌的药物组合物
US20230330106A1 (en) Treatment of breast cancer using combination therapies comprising an atp competitive akt inhibitor, a cdk4/6 inhibitor, and fulvestrant
CN114945369A (zh) 图卡替尼与抗her2抗体-药物缀合物联合治疗her2阳性乳腺癌的方法
EP2968564B1 (en) Combinations of inhibitors of mek, egfr and erbb2 in the treatment of kras-mutant lung cancer
WO2014177915A1 (en) Cancer combination therapy using imidazo[4,5-c]quinoline derivatives
WO2020239051A1 (zh) Cdk4/6抑制剂与vegfr抑制剂联合在制备***的药物中的用途
WO2023035614A1 (zh) 包含PI3Kα抑制剂的药物组合
KR20230031839A (ko) 암 치료에 사용하기 위한 벨바라페닙
Tenzer et al. Signal transduction inhibitors as radiosensitizers
CN114787151B (zh) 喹唑啉衍生物或其盐、或其药物组合物的用途
Bhavani et al. Imatinib mesylate: Recent drug used in oncology
WO2023051606A1 (zh) Shp2抑制剂联合egfr-tki治疗和预防肿瘤疾病的医药用途
EP2608793B1 (en) Use of a receptor-type kinase modulator for treating polycystic kidney disease
TW202345846A (zh) 使用包含gdc-6036及gdc-0077之組合療法治療癌症
TW202329946A (zh) 用於治療癌症之方法及包含cdk2抑制劑之給藥方案

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202490455

Country of ref document: EA