WO2023035515A1 - 一种利用二氧化碳对可再生能源发电进行调峰的***和方法 - Google Patents

一种利用二氧化碳对可再生能源发电进行调峰的***和方法 Download PDF

Info

Publication number
WO2023035515A1
WO2023035515A1 PCT/CN2021/144055 CN2021144055W WO2023035515A1 WO 2023035515 A1 WO2023035515 A1 WO 2023035515A1 CN 2021144055 W CN2021144055 W CN 2021144055W WO 2023035515 A1 WO2023035515 A1 WO 2023035515A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
formic acid
power generation
hydrogen production
hydrogen
Prior art date
Application number
PCT/CN2021/144055
Other languages
English (en)
French (fr)
Inventor
王焕君
刘蓉
范金航
赵磊
郭东方
刘练波
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023035515A1 publication Critical patent/WO2023035515A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the application belongs to the technical field of renewable energy utilization and greenhouse gas emission reduction, and specifically relates to a system and method for utilizing carbon dioxide to perform peak regulation on renewable energy power generation.
  • Thermal power plants are important power production sites in my country, contributing more than 70% of the electricity generated each year. While producing electricity, the combustion of fossil fuels produces a large amount of carbon dioxide, which accelerates the process of global warming and has a significant impact on the global ecological environment. On the one hand, in order to reduce carbon dioxide emissions and optimize the energy structure, people in the industry have carried out photovoltaic, wind power and other renewable new energy power generation projects. However, intermittent renewable energy such as wind power or photovoltaic power generation has strong uncertainty and volatility, and there are problems such as difficult peak regulation and grid connection.
  • CO2 is a renewable carbon resource with abundant reserves and safety.
  • CO2 resource utilization can be realized, and CO2 can be turned from waste to treasure, and high-value utilization can not only fix carbon dioxide, reduce air CO2 content, but also obtain High value-added energy and materials. Therefore, how to convert CO2, a greenhouse gas, into valuable clean energy has become one of the research hotspots.
  • CO2 emitted by fixed point sources such as thermal power plants and industries
  • These CO2 are widely dispersed in the air and have a high stock. How to realize the recovery of carbon dioxide in the air and alleviate the greenhouse effect It has also become one of the difficulties that people in the industry urgently need to solve.
  • the technical problem to be solved by this application is to overcome the serious waste of renewable energy in the low valley of electricity consumption in the prior art, insufficient supply during peak hours, and how to alleviate the greenhouse effect, thereby providing a method for using carbon dioxide to generate electricity from renewable energy.
  • This application provides a system for peak regulation of renewable energy power generation using carbon dioxide, including a renewable energy power generation device;
  • the carbon dioxide capture device directly captures carbon dioxide in the air;
  • the carbon dioxide capture device is equipped with a porous liquid spray port inside, and the porous liquid spray port is used to spray the porous liquid to realize the capture of carbon dioxide in the air;
  • Hydrogen production device to realize the electrolysis of water to produce hydrogen and oxygen
  • the formic acid synthesis unit is respectively connected with the carbon dioxide capture unit and the hydrogen production unit; the electricity produced by the renewable energy power generation unit, the carbon dioxide captured by the carbon dioxide capture unit and the hydrogen produced by the hydrogen production unit are used to synthesize formic acid;
  • the formic acid fuel cell is respectively connected with the carbon dioxide capture device, the hydrogen production device, and the formic acid synthesis device; the formic acid synthesized by the formic acid synthesis device and the oxygen produced by the hydrogen production device are used to generate electricity.
  • the formic acid fuel cell also obtains water and carbon dioxide during the process of generating electric energy, the water enters the hydrogen production device, and the carbon dioxide enters the carbon dioxide capture device for reuse.
  • the carbon dioxide capture device directly captures the carbon dioxide in the air by using the electricity produced by the renewable energy power generation device.
  • the hydrogen production device uses the electricity produced by the renewable energy power generation device to realize the electrolysis of water to produce hydrogen and oxygen.
  • the system also includes a PLC programmable controller
  • the PLC programmable controller is connected with the carbon dioxide capture device to adjust the capture rate and regeneration rate of carbon dioxide; and/or,
  • the PLC programmable controller is connected with the hydrogen production device to adjust the rate of hydrogen production by electrolysis of water; and/or,
  • the PLC programmable controller is connected with the formic acid synthesis device to adjust the rate of synthetic formic acid; and/or,
  • the PLC programmable controller is connected with the formic acid fuel cell to adjust the electric energy generated by the formic acid fuel cell.
  • the present application also provides a peak shaving method using the above system, including:
  • the carbon dioxide capture device captures carbon dioxide in the air
  • the hydrogen production device realizes the electrolysis of water to produce hydrogen and oxygen
  • the formic acid synthesis device uses the electricity produced by the renewable energy power generation device, the carbon dioxide captured by the carbon dioxide capture device and Synthesize formic acid from the hydrogen produced by the hydrogen production unit to realize the storage of excess electricity;
  • the formic acid fuel cell uses the formic acid synthesized by the formic acid synthesis device and the oxygen produced by the hydrogen production device to generate electricity and provide electricity.
  • the carbon dioxide capture device captures the carbon dioxide in the air, it utilizes the electricity produced by the renewable energy power generation device;
  • the hydrogen production device utilizes the electricity produced by the renewable energy power generation device when electrolyzing water to produce hydrogen and oxygen.
  • the formic acid fuel cell also generates carbon dioxide and water while generating electricity, the carbon dioxide is recycled to the carbon dioxide capture device, and the water is recycled to the hydrogen production device.
  • the ratio of the mass of the catalyst to the volume of the alkaline solution is 1-1.5g: 100ml;
  • the catalyst is a supported catalyst, including a carrier and an active center; the loading of the active center in the supported catalyst is less than 0.5wt%;
  • the carrier is at least one of silica, carbon material, molecular sieve, hydrotalcite and mesoporous alumina;
  • the active center is a noble metal single atom;
  • the noble metal nitrogen atom is at least one of Au, Pd, Ru and Rh kind;
  • Described alkaline solution is sodium bicarbonate aqueous solution, and the concentration of sodium bicarbonate aqueous solution is
  • the pressure of carbon dioxide is 1-2MPa
  • the pressure of hydrogen is 2-4MPa
  • the temperature is 80-100°C.
  • the porous liquid includes ZIF-8, and also includes at least one of ethylene glycol, 2-methylimidazole and polydimethylsiloxane;
  • the porous liquid includes ZIF-8, ethylene glycol and 2-methylimidazole; or, the porous liquid includes ZIF-8 and polydimethylsiloxane;
  • the mass fraction of ZIF-8 in the porous liquid is 10-20%.
  • Low power consumption period refers to the time interval between 23:00-7:00; peak power consumption period refers to the time interval between 8:30-11:30 and 18:00-23:00.
  • the porous liquid is called rich liquid after absorbing carbon dioxide
  • ZIF-8 is a metal-organic framework compound (MOFs), which is a kind of zeolite imidazolate framework material.
  • the system provided by this application uses carbon dioxide to regulate the peaking of renewable energy power generation.
  • the system includes a renewable energy power generation device, a carbon dioxide capture device, a hydrogen production device and a formic acid fuel cell.
  • the system cooperates with each device It can directly use the carbon dioxide in the air to effectively adjust the problem of excess power generation during low-peak periods of electricity consumption and insufficient power during peak periods of electricity consumption. It can also reduce carbon dioxide in the air and overcome the problem of difficult recovery of distributed source CO2 in the existing technology. Electric energy generated by renewable new energy such as power generation and wind power is effectively converted into high-energy compound formic acid, and then the formic acid is converted into electric energy by using formic acid fuel cells.
  • the system can use the power generated by renewable energy power generation devices to directly capture carbon dioxide in the air and electrolyze water to produce hydrogen during low power consumption periods, and optionally use the power generated by renewable energy power generation devices to synthesize formic acid, a high-energy compound, Realize the storage of excess electricity.
  • the capture device is equipped with a porous liquid, which can directly capture carbon dioxide in the air, which not only reduces the content of carbon dioxide in the air, alleviates the greenhouse effect, effectively solves the problem of high carbon dioxide stock in the air, but also overcomes the CO2 emitted by scattered sources.
  • concentration in the air is low, the distribution is wide, the capture is difficult, and the defects of high energy consumption.
  • the direct carbon capture from the air is limited by the location and has good flexibility.
  • the system provided by this application is suitable for extensive deployment in various places and is suitable for Various places where renewable energy supplies electricity.
  • This application can directly convert carbon dioxide in the air into formic acid through the carbon dioxide capture device and the formic acid synthesis device; at the same time, it cooperates with the formic acid fuel cell to realize the conversion of formic acid chemical energy into electric energy to meet the power demand.
  • This application uses carbon dioxide and hydrogen to synthesize formic acid, a high-energy compound, which can theoretically achieve 100% atom utilization.
  • the formate ion ionized by formic acid is difficult to pass through the proton exchange membrane, and it is easy to be oxidized, safe, and low in toxicity.
  • the advantages of being non-flammable can make the formic acid fuel cell have higher energy density and be convenient for storage and transportation.
  • the system provided by this application uses carbon dioxide to adjust the peak of renewable energy power generation.
  • the carbon dioxide capture device and hydrogen production device can directly use the electricity produced by the renewable energy power generation device.
  • the formic acid fuel cell also Carbon dioxide and water will be produced, carbon dioxide is captured again by the carbon dioxide capture device, and water enters the hydrogen production device for electrolysis again, realizing the recycling of materials.
  • the peak-shaving method provided by this application can use carbon dioxide in the air to effectively adjust the problem of excess power generation during low-peak periods of electricity consumption and insufficient power during peak periods of electricity consumption. It can also reduce carbon dioxide in the air and overcome the problems of distribution in the prior art The source of CO2 emissions is not easy to recover.
  • the present application uses carbon dioxide and hydrogen to synthesize formic acid under a specific catalyst and alkaline solution, which overcomes the defects in the prior art that it is difficult to synthesize formic acid due to stable carbon dioxide and high free energy.
  • This application uses a specific porous liquid that can directly capture carbon dioxide in the air.
  • the porous liquid has many advantages such as the orderly and regular pores of the solid material and the fluidity of the liquid.
  • the coupling of chemical absorption is beneficial to greatly improve the absorption and separation effect of porous liquid on CO2, and will not be limited by the low concentration of carbon dioxide in the air.
  • Fig. 1 is the schematic diagram of the system of peak regulation in the embodiment 1 of the present application.
  • Fig. 2 is a structural unit and a connection relation diagram among various devices in the system of Embodiment 1 of the present application;
  • Fig. 3 is a schematic diagram of an adjusted system of an optional implementation in Embodiment 1 of the present application
  • A-renewable energy power generation device B-carbon dioxide capture device; C-hydrogen production device; D-formic acid synthesis device; E-formic acid fuel cell;
  • 1-air compression unit 2-CO2 absorption unit; 3-cold rich liquid pump; 4-heat exchange unit; 5-rich liquid storage unit; 6-hot rich liquid pump; 7-CO2 regeneration unit; 8-heating unit; 9-hot lean liquid pump; 10-lean liquid storage unit; 11-cold lean liquid pump; 12-CO2 compression unit; 13-CO2 storage unit; 14-CO2 valve; 15-water storage unit; 16-water pump; 17- Electrolyzed water hydrogen production unit; 18-O2 storage unit; 19-H2 storage unit; 20-H2 valve; 21-gas mixing unit; 22-formic acid synthesis unit; 23-formic acid separation unit;
  • connection and “connection” should be understood in a broad sense, for example, it can be directly connected or indirectly connected through an intermediary, and can be is the connection between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • This embodiment provides a system for peak regulation of renewable energy generation using carbon dioxide, as shown in Figure 1, including a carbon dioxide capture device B, a hydrogen production device C, a formic acid synthesis device D and a formic acid fuel cell E, specifically as follows ,
  • the carbon dioxide capture device B uses the electricity produced by the renewable energy power generation device to directly capture carbon dioxide from the air; Pump 3, heat exchange unit 4, rich liquid storage unit 5, hot rich liquid pump 6, CO2 regeneration unit 7, heating unit 8, hot lean liquid pump 9, lean liquid storage unit 10, cold lean liquid pump 11, CO2 compression unit 12, CO2 storage unit 13; wherein, the air compression unit 1 communicates with the CO2 absorption unit 2, so that the compressed air enters the CO2 absorption unit 2, and the top of the CO2 absorption unit 2 is provided with a porous liquid spray port 2-3, The porous liquid is sprayed downward from the top of the CO2 absorption unit 2 to absorb carbon dioxide in the air to capture carbon dioxide, and the remaining air is discharged through the first outlet 2-1, and the porous liquid after absorbing carbon dioxide (also called cold rich liquid) It is discharged through the second outlet 2-2; the cold rich liquid passes through the heat exchange unit 4 under the action of the cold rich liquid pump 3 and then enters the rich liquid storage unit 5 to become hot rich liquid, and under the action of the hot rich liquid
  • the porous liquid used in this embodiment includes ZIF-8, ethylene glycol, and 2-methylimidazole; or, the porous liquid includes ZIF-8 and polydimethylsiloxane, and the porous liquid is in the form of slurry or suspension Cloudy liquid.
  • the hydrogen production device C uses the electricity produced by the renewable energy power generation device to realize the electrolysis of water to produce hydrogen and oxygen; Oxygen storage unit 18, hydrogen storage unit 19 and hydrogen valve 20, under the action of water pump 16, water enters into electrolyzed water hydrogen production unit 17, electrolyzes to obtain hydrogen and oxygen, enters hydrogen storage unit 19 and oxygen storage unit 18 respectively Storage, standby; wherein the hydrogen valve 20 controls the switch of the hydrogen storage device 19 .
  • the formic acid synthesis device D is connected with the carbon dioxide capture device and the hydrogen production device respectively, using the electricity generated by the renewable energy power generation device, the carbon dioxide produced by the carbon dioxide capture device and the hydrogen produced by the hydrogen production device, and the catalyst and the alkaline solution Synthesize formic acid under the effect of formic acid;
  • CO Valve 14 and hydrogen valve 20 control the flow of carbon dioxide and hydrogen respectively, make carbon dioxide and hydrogen enter in the formic acid synthesis unit;
  • Formic acid synthesis unit comprises the gas mixing unit 21 that communicates with setting, The formic acid synthesis unit 22 and the formic acid separation unit 23, the hydrogen in the H2 storage unit 19 and the CO2 in the CO2 storage unit 13 are mixed in the gas mixing unit 21 and enter the formic acid synthesis unit 22, under the action of catalyst and alkaline solution A mixed solution of formic acid and water is synthesized, and the mixed solution of formic acid and water is separated by the formic acid separation unit 23 to obtain formic acid and water, which are high-energy compounds, and the formic acid is used for
  • the alkaline solution is an aqueous solution of sodium bicarbonate
  • the catalyst is a supported catalyst, including a carrier and an active center, and the loading of the active center in the supported catalyst is less than 0.5 wt%
  • the carrier is silicon dioxide, carbon At least one of material, molecular sieve, hydrotalcite, magnesium aluminum hydrotalcite and mesoporous alumina
  • the active center is a noble metal single atom
  • the noble metal nitrogen atom is at least one of Au, Pd, Ru and Rh
  • the pressure of carbon dioxide is 1-2MPa, hydrogen pressure 2-4MPa, reaction temperature 80-100°C; when formic acid and water are separated, use the different boiling points of each component to separate formic acid and water by distillation, and the water is recycled to the hydrogen production device.
  • the formic acid fuel cell E is respectively connected with the carbon dioxide capture device B, the formic acid synthesis device D and the hydrogen production device C.
  • the formic acid synthesized by the formic acid synthesis device and the oxygen produced by the hydrogen production device enter the formic acid fuel cell to generate electric energy.
  • carbon dioxide and water are also produced.
  • the carbon dioxide enters the carbon dioxide capture device for reuse, and the water enters the hydrogen production device for reuse.
  • the formic acid fuel cell E is in grid-connected communication with the renewable energy generating device A, and when the power of the renewable energy generating device is insufficient, it supplements electric energy for it.
  • the formic acid fuel cell E can be connected with the electricity system to directly supply power to users.
  • fossil energy can be used to generate electricity for the carbon dioxide capture device to capture carbon dioxide in the air.
  • fossil energy power generation can be used to provide electric energy for the hydrogen production device, so as to realize the electrolysis of water to produce hydrogen and oxygen.
  • the system also includes a PLC programmable controller, as shown in Figure 3, the PLC programmable controller is connected to the carbon dioxide capture device, and the flow rate of the air entering the CO2 absorption unit 2 is controlled by a frequency converter , to adjust the capture rate of carbon dioxide; optionally, the PLC programmable controller can also control the flow of the porous liquid into the CO2 absorption unit 2 through a frequency converter, so as to adjust the capture rate of carbon dioxide; optionally, the PLC programmable control The device can also control the rate at which the rich liquid enters the CO2 regeneration unit 7 through a frequency converter to adjust the regeneration rate of carbon dioxide. When the curtailment of renewable energy power generation devices is reduced, the capture rate of carbon dioxide can be adjusted through the PLC programmable controller to maintain power balance.
  • the system also includes a PLC programmable controller.
  • the PLC programmable controller is connected to the hydrogen production device, and the rate of generating hydrogen gas from electrolyzed water is controlled by a frequency converter.
  • the hydrogen production rate can be adjusted through the PLC programmable controller to maintain power balance.
  • the system also includes a PLC programmable controller, as shown in Figure 3, the PLC programmable controller is connected to the formic acid synthesis device, and the rate of formic acid synthesis is controlled by a frequency converter.
  • the rate of formic acid synthesis can be adjusted through the PLC programmable controller to maintain power balance.
  • the system also includes a PLC programmable controller, as shown in Figure 3, the PLC programmable controller is connected to the formic acid fuel cell, and the electric energy generated by the formic acid fuel cell is controlled by a frequency converter to ensure that Power balance between regenerative power generation unit and formic acid fuel cell for maximum efficiency utilization of energy.
  • This embodiment provides a method for peak regulation using the system provided in Embodiment 1, which specifically includes the following steps,
  • the carbon dioxide capture device uses the electricity generated by the renewable energy power generation device to capture carbon dioxide in the air under the action of the porous liquid, and obtains carbon dioxide after regeneration, which is stored for later use; among them, the porous liquid includes ZIF-8, ethylene glycol and 2- Methylimidazole, wherein the mass fraction of ZIF-8 in the porous liquid is 15wt%, and the mass ratio of ethylene glycol and 2-methylimidazole is 3:2;
  • the hydrogen production device uses the electricity generated by the renewable energy power generation device to produce hydrogen and oxygen, and store them for backup;
  • alkaline solution is the sodium bicarbonate aqueous solution of 1mol/L
  • Catalyst is Ru/MgAl-LDHs (magnesium aluminum hydrotalcite), and the load capacity of Ru is 0.3wt%
  • Catalyst quality and sodium bicarbonate aqueous solution volume The ratio is 1.2g: 100ml; the pressure of carbon dioxide is 1.5 ⁇ 0.1MPa, the pressure of hydrogen is 3 ⁇ 0.1MPa, and the reaction temperature is 90°C.
  • the formic acid and oxygen synthesized during the low electricity consumption period enter the formic acid fuel cell to generate electricity, and carbon dioxide and water are also generated while generating electricity, which respectively enter the carbon dioxide capture device and the hydrogen production device to realize recycling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请属于可再生能源利用以及温室气体减排技术领域,具体涉及一种利用二氧化碳对可再生能源发电进行调峰的***和方法。该***包括可再生能源发电装置、二氧化碳捕集装置、制氢装置和甲酸燃料电池,该***通过各个装置间的配合作用可以直接利用空气中的二氧化碳有效调节用电低谷时段发电过剩,用电高峰时段电力不足的问题,还可以降低空气中的二氧化碳,克服现有技术中分布源排放CO2不易回收的问题,同时将光伏发电、风力发电等可再生新能源产生的电能有效地转为高能量化合物甲酸,再利用甲酸燃料电池实现将甲酸转化为电能。

Description

一种利用二氧化碳对可再生能源发电进行调峰的***和方法
相关申请的交叉引用
本申请要求了2021年月9月10日向中国专利局提交的申请号为202111063802.3的专利的优先权,其全部内容以引用的方式并入本文中。
技术领域
本申请属于可再生能源利用以及温室气体减排技术领域,具体涉及一种利用二氧化碳对可再生能源发电进行调峰的***和方法。
背景技术
火电厂是我国重要的电力生产场所,每年贡献了70%以上的发电量。在生产电力的同时,化石燃料的燃烧产生了大量的二氧化碳,加速了全球变暖的进程,对全球生态环境带来了显著的影响。一方面,为了减少二氧化碳的排放,优化能源结构,业内人士开展了光伏、风电等可再生新能源发电工程实践。但风电或光伏发电这些间歇性可再生能源具有较强的不确定性和波动性,存在调峰难、并网困难的问题。以风电为例,在用电荷低谷时段风能发电量较大,“弃风”现象突出,造成风资源浪费;而在用电负荷高峰时段,存在电力供给不足的现象。针对这一问题,急需寻找一种可以对间歇性可再生能源进行高效调峰的方法。
另一方面,发电行业和化石燃料燃烧等领域造成空气中CO2的含量日益增多。CO2是一种储量丰富、安全的可再生碳资源,通过化学转化可以实现CO2的资源化利用,将CO2变废为宝,实现高价值化利用不仅可以固定二氧化碳,减少空气CO2含量,还可以获得高附加值的能源、材料。因此,如何将CO2这一温室气体转化为有价值的清洁能源成为研究热点之一。除了火电厂电力行业及工业等固定点源排放的CO2外,还有接近50%分布源排放的CO2,这些CO2广泛分散在空气中,存量高,如何实现对空气中二氧化碳进行回收,缓解温室效应也成为业内人士急需解决的难点之一。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中可再生能源在用电低谷浪费严重,高峰时段供给不足以及如何缓解温室效应等缺陷,从而提供了一种利用二氧化碳对可再生能源发电进行调峰的***和方法。
为此,本申请提供了以下技术方案。
本申请提供了一种利用二氧化碳对可再生能源发电进行调峰的***,包括,可再生能源发电装置;
二氧化碳捕集装置,直接捕集空气中的二氧化碳;二氧化碳捕集装置内部设置有多孔液体喷淋口,所述多孔液体喷淋口用于喷淋多孔液体,实现捕集空气中的二氧化碳;
制氢装置,实现电解水制取氢气和氧气;
甲酸合成装置,分别与二氧化碳捕集装置和制氢装置连通;利用可再生能源发电装置生产的电力、二氧化碳捕集装置捕集的二氧化碳以及制氢装置制取的氢气合成甲酸;
甲酸燃料电池,分别与二氧化碳捕集装置、制氢装置、甲酸合成装置连通;利用甲酸合成装置合成的甲酸和制氢装置制取的氧气产生电能。
所述甲酸燃料电池在产生电能的过程中还会得到水和二氧化碳,水进入到制氢装置,二氧化碳进入到二氧化碳捕集装置,实现再利用。
所述二氧化碳捕集装置利用可再生能源发电装置生产的电力直接捕集空气中的二氧化碳。
所述制氢装置利用可再生能源发电装置生产的电力实现电解水制取氢气和氧气。
所述***还包括PLC可编程控制器;
所述PLC可编程控制器与二氧化碳捕集装置连接,以调整二氧化碳的捕集速率和再生速率;和/或,
所述PLC可编程控制器与制氢装置连接,以调整电解水制取氢气的速率;和/或,
所述PLC可编程控制器与甲酸合成装置连接,以调整合成甲酸的速率;和/或,
所述PLC可编程控制器与甲酸燃料电池连接,以调整甲酸燃料电池产生的电能。
本申请还提供了一种利用上述***的调峰方法,包括,
用电低谷时段,二氧化碳捕集装置捕集空气中的二氧化碳,制氢装置实现电解水制取氢气和氧气,甲酸合成装置利用可再生能源发电装置生产的电力、二氧化碳捕集装置捕集的二氧化碳以及制氢装置制取的氢气合成甲酸,实现过剩电力的储存;
用电高峰时段,甲酸燃料电池利用甲酸合成装置合成的甲酸和制氢装置制取的氧气产生电能,提供电力。
所述二氧化碳捕集装置在捕集空气中的二氧化碳时,利用可再生能源发电装置生产的电力;
所述制氢装置在电解水制取氢气和氧气时,利用可再生能源发电装置生产的电力。
可选地,甲酸燃料电池在产生电能的同时还会产生二氧化碳和水,二氧化碳循环至二氧化碳捕集装置,水循环至制氢装置。
可选地,二氧化碳和氢气在催化剂和碱性溶液作用下合成甲酸;
所述催化剂质量和碱性溶液体积的比例为1-1.5g:100ml;
所述催化剂为负载型催化剂,包括载体和活性中心;所述负载型催化剂中活性中心的负载量小于0.5wt%;
所述载体为二氧化硅、碳材料、分子筛、水滑石和介孔氧化铝中的至少一种;所述活性中心为贵金属单原子;贵金属氮原子为Au、Pd、Ru和Rh中的至少一种;
所述碱性溶液为碳酸氢钠水溶液,碳酸氢钠水溶液的浓度为
1-1.5mol/L。
所述甲酸合成装置在合成甲酸时,二氧化碳的压力为1-2MPa,氢气压力为2-4MPa,温度为80-100℃。
所述多孔液体包括ZIF-8,还包括乙二醇、2-甲基咪唑和聚二甲基硅氧烷中的至少一种;
可选地,所述多孔液体包括ZIF-8、乙二醇和2-甲基咪唑;或,所述多孔液体包括ZIF-8和聚二甲基硅氧烷;
更可选地,所述多孔液体中ZIF-8的质量分数为10-20%。
用电低谷时段是指23:00-7:00区间的时间;用电高峰时段是指8:30-11:30,18:00-23:00区间的时间。
多孔液体吸收二氧化碳后称为富液;二氧化碳从富液中解析后称为贫液。
ZIF-8是一种金属有机骨架化合物(MOFs),是沸石咪唑酯骨架材料的一种。
本申请技术方案,具有如下优点:
1.本申请提供的利用二氧化碳对可再生能源发电进行调峰的***,该***包括可再生能源发电装置、二氧化碳捕集装置、制氢装置和甲酸燃料电池,该***通过各个装置间的配合作用可以直接利用空气中的二氧化碳有效调节用电低谷时段发电过剩,用电高峰时段电力不足的问题,还可以降低空气中的二氧化碳,克服现有技术中分布源排放CO2不易回收的问题,同时将光伏发电、风力发电等可再生新能源产生的电能有效地转为高能量化合物甲酸,再利用甲酸燃料电池实现将甲酸转化为电能。
该***可以在用电低谷时段利用可再生能源发电装置产生的电力直接捕集空气中的二氧化碳和电解水制取氢气,并可选地利用可再生能源发电装置产生的电力合成高能量化合物甲酸,实现过剩电力的储存,在用电高峰时段,利用高能量化合物甲酸和电解水制取的氧气发电,补充发电量,满足高峰用电需求,从而实现了对可再生能源调峰的效果;同时二氧化碳捕集装置中设置有多孔液体,可以直接捕集空气中的二氧化碳,不仅降低空气中二氧化碳的含量,缓解温室效应,有效解决了空气中二氧化碳存量高的问题,还克服了因分散源排放的CO2在空气中的浓度低,分布广,捕集难度大,能耗高的缺陷,从空气中直接捕碳受地点限制小,灵活性好,本申请提供的***适合在各地广泛开展,适合于可再生能源提供电力的多种场所。本申请通过二氧化碳捕集装置、甲酸合成装置可以将空气中的二氧化碳直接转化为甲酸;同时与甲酸燃料电池配合作用,可以实现将甲酸化学能转化为电能,满足电力需求。
本申请利用二氧化碳和氢气合成高能量化合物甲酸,在理论上可以实现100%的原子利用率,同时甲酸电离的甲酸根离子很难透过质子交换膜,还具有易被氧化、安全、毒性低、不易燃等优点,可以使甲酸燃料电池具有更高的能量密度,存储和运输方便。
2.本申请提供的利用二氧化碳对可再生能源发电进行调峰的***,二氧化碳捕集装置和制氢装置可以直接利用可再生能源发电装置生产的电力,同时甲酸燃料电池在生产电能的过程中还会生产二氧化碳和水,二氧化碳被二氧化碳捕集装置再次捕获,水进入制氢装置再次电解,实现了物料的循环利用。
3.本申请提供的调峰方法,该方法可以利用空气中的二氧化碳有效调节用电低谷时段发电过剩,用电高峰时段电力不足的问题,还可以降低空气中的二氧化碳,克服现有技术中分布源排放CO2不易回收的问题。
本申请二氧化碳和氢气在特定催化剂和碱性溶液下合成甲酸,克服了现有技术中因二氧化碳稳定,自由能高,难以合成甲酸的缺陷。
本申请采用特定的多孔液体可以直接捕集空气中的二氧化碳,多孔液体兼具固体材料有序规整孔道和液体流动性等诸多优点,将固体材料对CO2气体的选择性物理吸附和溶液对气体的化学吸收耦合起来,有利于大大提高多孔液体对CO2的吸收分离效果,不会受空气中二氧化碳浓度低的限制。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中调峰的***的示意图;
图2是本申请实施例1***中各个装置间的结构单元及连接关系图;
图3是本申请实施例1中一种可选实施方式的调整的***的示意图
附图标记:
A-可再生能源发电装置;B-二氧化碳捕集装置;C-制氢装置;D-甲酸合成装置;E-甲酸燃料电池;
1-空气压缩单元;2-CO2吸收单元;3-冷富液泵;4-换热单元;5-富液储存单元;6-热富液泵;7-CO2再生单元;8-加热单元;9-热贫液泵;10-贫液储存单元;11-冷贫液泵;12-CO2压缩单元;13-CO2储存单元;14-CO2阀门;15-水储存单元;16-水泵;17-电解水制氢单元;18-O2储存 单元;19-H2储存单元;20-H2阀门;21-气体混合单元;22-甲酸合成单元;23-甲酸分离单元;
2-1-第一出口;2-2-第二出口-1;2-3-多孔液体喷淋口。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”、“连通”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供了一种利用二氧化碳对可再生能源发电进行调峰的***,如图1所示,包括二氧化碳捕集装置B,制氢装置C,甲酸合成装置D和甲酸燃料电池E,具体如下,
二氧化碳捕集装置B,利用可再生能源发电装置生产的电力直接从空气中捕集二氧化碳;如图2所示,二氧化碳捕集装置B内部设有空气压缩单元1,CO2吸收单元2,冷富液泵3,换热单元4,富液储存单元5,热富液泵6,CO2再生单元7,加热单元8,热贫液泵9,贫液储存单元10,冷贫液泵11,CO2压缩单元12,CO2储存单元13;其中,空气压缩单元1与CO2吸收单元2连通,以使压缩后的空气进入到CO2吸收单元2中,CO2吸收单元2顶部设置有多孔液体喷淋口2-3,多孔液体从CO2吸收单元2顶部向下喷淋,吸收空气中的二氧化碳,实现二氧化碳的捕集,剩余空气通过第一出口2-1排出,吸收二氧化碳 后的多孔液体(又称为冷富液)通过第二出口2-2排出;冷富液在冷富液泵3的作用下经换热单元4换热后进入富液储存单元5中成为热富液,在热富液泵6的作用下,热富液进入CO2再生单元7中再生,得到热贫液和CO2,其中,CO2再生单元7与加热单元8连通,加热单元8为CO2再生单元为提供热量,CO2从热富液中析出,实现再生,CO2通过CO2压缩单元12压缩后,在CO2储存单元13中储存,备用;热贫液从CO2再生单元7中排出,在热贫液泵9的作用下进入到换热装置4,与来自CO2吸收单元2的冷富液换热,换热后的贫液进入贫液储存单元10中,在冷贫液泵11的作用下进入到CO2吸收单元2中,吸收空气中的二氧化碳,实现多孔液体的循环利用。具体地,本实施例用到的多孔液体包括ZIF-8、乙二醇和2-甲基咪唑;或,多孔液体包括ZIF-8和聚二甲基硅氧烷,多孔液体呈浆料状或悬浊液状。
制氢装置C,利用可再生能源发电装置生产的电力实现电解水制取氢气和氧气;如图2所示,制氢装置内部设置有水储存单元15,水泵16,电解水制氢单元17,氧气储存单元18,氢气储存单元19和氢气阀门20,在水泵16的作用下,水进入到电解水制氢单元17中,电解得到氢气和氧气,分别进入氢气储存单元19和氧气储存单元18中储存,备用;其中氢气阀门20控制氢气储存装置19的开关情况。
甲酸合成装置D,分别与二氧化碳捕集装置和制氢装置连通,利用可再生能源发电装置产生的电力、二氧化碳捕集装置制取的二氧化碳和制氢装置制取的氢气,在催化剂和碱性溶液的作用下合成甲酸;如图2所示,CO2阀门14和氢气阀门20分别控制二氧化碳和氢气的流量,使二氧化碳和氢气进入到甲酸合成装置中;甲酸合成装置包括连通设置的气体混合单元21、甲酸合成单元22和甲酸分离单元23,H2储存单元19中的氢气和CO2储存单元13中的CO2在气体混合单元21中混合,进入到甲酸合成单元22中,在催化剂和碱性溶液的作用下合成甲酸和水的混合液,甲酸和水的混合液经甲酸分离单元23分离后得到高能量化合物甲酸和水,甲酸备用。具体地,本实施例中,碱性溶液为碳酸氢钠水溶液;催化剂为负载型催化剂,包括载体和活性中心,负载型催化剂中活性中心的负载量小于0.5wt%,载体为二氧化硅、碳材料、分子筛、水滑石、镁铝水滑石和介孔氧化铝中的至少一种,活性中心为贵金属单原子;贵金属氮原子为Au、Pd、Ru和Rh中的至少一种;二氧化碳的压力为1-2MPa,氢气压力为2-4MPa, 反应温度为80-100℃;在分离得到甲酸和水时,利用各组分的沸点不同,蒸馏分离得到甲酸和水,水循环至制氢装置。
甲酸燃料电池E,分别与二氧化碳捕集装置B、甲酸合成装置D和制氢装置C连通,甲酸合成装置合成的甲酸和制氢装置制取的氧气进入到甲酸燃料电池中产生电能,在产生电能的同时还产生二氧化碳和水,二氧化碳进入到二氧化碳捕集装置中重复利用,水进入到制氢装置中重复利用。
作为一种可选的实施方式,甲酸燃料电池E与可再生能源发电装置A并网连通,当可再生能源发电装置电力不足时,为其补充电能。
作为一种可替代的实施方式,甲酸燃料电池E可以与用电***连通,直接为用户供电。
作为一种可替代的实施方式,可以采用化石能源发电的方式为二氧化碳捕集装置提供电能,实现对空气中二氧化碳的捕集。
作为一种可替代的实施方式,可以采用化石能源发电的方式为制氢装置提供电能,实现电解水制取氢气和氧气。
作为一种可选的实施方式,该***还包括PLC可编程控制器,如图3所示,PLC可编程控制器与二氧化碳捕集装置连接,通过变频器控制进入CO2吸收单元2的空气的流量,以调整二氧化碳的捕集速率;可选地,PLC可编程控制器还可以通过变频器控制多孔液体进入CO2吸收单元2的流量,以调整二氧化碳的捕集速率;可选地,PLC可编程控制器还可以通过变频器控制富液进入CO2再生单元7的速率,以调整二氧化碳的再生速率。当可再生能源发电装置的弃电降低后,可以通过PLC可编程控制器调整二氧化碳的捕集速率,以保持电力平衡。
作为另一种可选的实施方式,该***还包括PLC可编程控制器,如图3所示,PLC可编程控制器与制氢装置连接,通过变频器控制电解水产生氢气速率。当可再生能源发电装置的弃电降低后,可以通过PLC可编程控制器调整制氢速率,以保持电力平衡。
作为另一种可选的实施方式,该***还包括PLC可编程控制器,如图3所示,PLC可编程控制器与甲酸合成装置连接,通过变频器控制合成甲酸的速率。当可再生能源发电装置的弃电降低后,可以通过PLC可编程控制器调整合成甲酸的速率,以保持电力平衡。
作为另一可选的实施方式,该***还包括PLC可编程控制器,如图3所示,PLC可编程控制器与甲酸燃料电池连接,通过变频器控制甲酸燃料电池产生的电能,以保证可再生能力发电装置和甲酸燃料电池之间的电力平衡,最大效率利用能量。
实施例2
本实施例提供了一种利用实施例1提供的***进行的调峰方法,具体包括以下步骤,
用电低谷时段
二氧化碳捕集装置利用可再生能源发电装置产生的电力,在多孔液体的作用下捕集空气中的二氧化碳,经再生后得到二氧化碳,储存备用;其中,多孔液体包括ZIF-8、乙二醇和2-甲基咪唑,其中,多孔液体中ZIF-8的质量分数为15wt%,乙二醇和2-甲基咪唑的质量比为3:2;
制氢装置利用可再生能源发电装置产生的电力制取氢气和氧气,储存备用;
利用可再生能源发电产生的电能,二氧化碳和氢气在催化剂和碱性溶液的作用下反应,得到高能量化合物甲酸和水的混合液,经蒸馏分离后得到甲酸,储存,实现了过剩电力的储存。在合成甲酸时,碱性溶液为1mol/L的碳酸氢钠水溶液;催化剂为Ru/MgAl-LDHs(镁铝水滑石),Ru的负载量为0.3wt%;催化剂质量与碳酸氢钠水溶液体积的比例为1.2g:100ml;二氧化碳的压力为1.5±0.1MPa,氢气压力为3±0.1MPa,反应温度为90℃。
用电高峰时段
用电低谷时段合成的甲酸和氧气进入到甲酸燃料电池中,产生电能,在产生电能的同时还会产生二氧化碳和水,分别进入二氧化碳捕集装置和制氢装置中,实现循环利用。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种利用二氧化碳对可再生能源发电进行调峰的***,其特征在于,包括,
    可再生能源发电装置;
    二氧化碳捕集装置,直接捕集空气中的二氧化碳;二氧化碳捕集装置内部设置有多孔液体喷淋口,所述多孔液体喷淋口用于喷淋多孔液体,实现捕集空气中的二氧化碳;
    制氢装置,实现电解水制取氢气和氧气;
    甲酸合成装置,分别与二氧化碳捕集装置和制氢装置连通;利用可再生能源发电装置生产的电力、二氧化碳捕集装置捕集的二氧化碳以及制氢装置制取的氢气合成甲酸;
    甲酸燃料电池,分别与二氧化碳捕集装置、制氢装置、甲酸合成装置连通;利用甲酸合成装置合成的甲酸和制氢装置制取的氧气产生电能。
  2. 根据权利要求1所述的***,其特征在于,所述甲酸燃料电池在产生电能的过程中还会得到水和二氧化碳,水进入到制氢装置,二氧化碳进入到二氧化碳捕集装置,实现再利用。
  3. 根据权利要求1或2所述的***,其特征在于,所述二氧化碳捕集装置利用可再生能源发电装置生产的电力直接捕集空气中的二氧化碳;和/或,
    所述制氢装置利用可再生能源发电装置生产的电力实现电解水制取氢气和氧气。
  4. 根据权利要求1-3任一项所述的***,其特征在于,所述***还包括PLC可编程控制器;
    所述PLC可编程控制器与二氧化碳捕集装置连接,以调整二氧化碳的捕集速率和再生速率;和/或,
    所述PLC可编程控制器与制氢装置连接,以调整电解水制取氢气的速率;和/或,
    所述PLC可编程控制器与甲酸合成装置连接,以调整合成甲酸的速率;和/或,
    所述PLC可编程控制器与甲酸燃料电池连接,以调整甲酸燃料电池产生的电能。
  5. 一种利用权利要求1-4任一项所述***的调峰方法,其特征在于,包括,
    用电低谷时段,二氧化碳捕集装置捕集空气中的二氧化碳,制氢装置实现电解水制取氢气和氧气,甲酸合成装置利用可再生能源发电装置生产的电力、二氧化碳捕集装置捕集的二氧化碳以及制氢装置制取的氢气合成甲酸,实现过剩电力的储存;
    用电高峰时段,甲酸燃料电池利用甲酸合成装置合成的甲酸和制氢装置制取的氧气产生电能,提供电力。
  6. 根据权利要求5所述的调峰方法,其特征在于,所述二氧化碳捕集装置在捕集空气中的二氧化碳时,利用可再生能源发电装置生产的电力;
    所述制氢装置在电解水制取氢气和氧气时,利用可再生能源发电装置生产的电力。
  7. 根据权利要求5或6所述的调峰方法,其特征在于,甲酸燃料电池在产生电能的同时还会产生二氧化碳和水,二氧化碳循环至二氧化碳捕集装置,水循环至制氢装置。
  8. 根据权利要求5-7任一项所述的调峰方法,其特征在于,二氧化碳和氢气在催化剂和碱性溶液作用下合成甲酸;
    所述催化剂质量和碱性溶液体积的比例为1-1.5g:100ml;
    所述催化剂为负载型催化剂,包括载体和活性中心;所述负载型催化剂中活性中心的负载量小于0.5wt%;
    所述载体为二氧化硅、碳材料、分子筛、水滑石和介孔氧化铝中的至少一种;所述活性中心为贵金属单原子;贵金属氮原子为Au、Pd、Ru和Rh中的至少一种;
    所述碱性溶液为碳酸氢钠水溶液,碳酸氢钠水溶液的浓度为1-1.5mol/L。
  9. 根据权利要求1-8任一项所述的调峰方法,其特征在于,所述甲酸合成装置在合成甲酸时,二氧化碳的压力为1-2MPa,氢气压力为2-4MPa,温度为80-100℃。
  10. 根据权利要求5-9任一项所述的调峰方法,其特征在于,所述多孔液体包括ZIF-8,还包括乙二醇、2-甲基咪唑和聚二甲基硅氧烷中的至少一种;
    可选地,所述多孔液体包括ZIF-8、乙二醇和2-甲基咪唑;或,所述多孔液体包括ZIF-8和聚二甲基硅氧烷;
    更可选地,所述多孔液体中ZIF-8的质量分数为10-20%。
PCT/CN2021/144055 2021-09-10 2021-12-31 一种利用二氧化碳对可再生能源发电进行调峰的***和方法 WO2023035515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111063802.3A CN113659182A (zh) 2021-09-10 2021-09-10 一种利用二氧化碳对可再生能源发电进行调峰的***和方法
CN202111063802.3 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023035515A1 true WO2023035515A1 (zh) 2023-03-16

Family

ID=78483687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/144055 WO2023035515A1 (zh) 2021-09-10 2021-12-31 一种利用二氧化碳对可再生能源发电进行调峰的***和方法

Country Status (2)

Country Link
CN (1) CN113659182A (zh)
WO (1) WO2023035515A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960396A (zh) * 2023-09-20 2023-10-27 武汉海亿新能源科技有限公司 一种化工生产用氢燃料电池发电供热***及其控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659182A (zh) * 2021-09-10 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种利用二氧化碳对可再生能源发电进行调峰的***和方法
CN114377540B (zh) * 2021-12-21 2023-08-18 国家电投集团科学技术研究院有限公司 固碳单元气体循环交换***
CN114658537B (zh) * 2022-04-25 2023-09-05 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 基于co2共电解与生物催化的发电与物质联供***及方法
CN114883610B (zh) * 2022-05-23 2024-07-02 安徽青木子德慧能源发展有限公司 一种撬装分布式燃料电池发电***的控制***
CN114988362A (zh) * 2022-05-27 2022-09-02 东北电力大学 化学链制氢耦合燃料电池碳捕集制取甲酸***及其方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219233A (ja) * 2011-04-13 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> 二酸化炭素再資源化装置
CN103890236A (zh) * 2011-08-29 2014-06-25 卡尔-赫尔曼·布塞 特别是适于住宅工程领域的能量供应装置
CN109745952A (zh) * 2019-03-18 2019-05-14 上海科技大学 一种多孔液体及其制备方法和用途
CN112138506A (zh) * 2020-09-19 2020-12-29 西北工业大学 一种低黏度ⅲ型多孔液体及制备方法
CN113054733A (zh) * 2021-03-22 2021-06-29 中国华能集团清洁能源技术研究院有限公司 一种以甲醇为载体的多能互补发电***及其工作方法
CN113659182A (zh) * 2021-09-10 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种利用二氧化碳对可再生能源发电进行调峰的***和方法
CN215731823U (zh) * 2021-09-10 2022-02-01 中国华能集团清洁能源技术研究院有限公司 一种利用二氧化碳对可再生能源发电进行调峰的***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219233A (ja) * 2011-04-13 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> 二酸化炭素再資源化装置
CN103890236A (zh) * 2011-08-29 2014-06-25 卡尔-赫尔曼·布塞 特别是适于住宅工程领域的能量供应装置
CN109745952A (zh) * 2019-03-18 2019-05-14 上海科技大学 一种多孔液体及其制备方法和用途
CN112138506A (zh) * 2020-09-19 2020-12-29 西北工业大学 一种低黏度ⅲ型多孔液体及制备方法
CN113054733A (zh) * 2021-03-22 2021-06-29 中国华能集团清洁能源技术研究院有限公司 一种以甲醇为载体的多能互补发电***及其工作方法
CN113659182A (zh) * 2021-09-10 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种利用二氧化碳对可再生能源发电进行调峰的***和方法
CN215731823U (zh) * 2021-09-10 2022-02-01 中国华能集团清洁能源技术研究院有限公司 一种利用二氧化碳对可再生能源发电进行调峰的***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960396A (zh) * 2023-09-20 2023-10-27 武汉海亿新能源科技有限公司 一种化工生产用氢燃料电池发电供热***及其控制方法
CN116960396B (zh) * 2023-09-20 2023-12-05 武汉海亿新能源科技有限公司 一种化工生产用氢燃料电池发电供热***及其控制方法

Also Published As

Publication number Publication date
CN113659182A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023035515A1 (zh) 一种利用二氧化碳对可再生能源发电进行调峰的***和方法
CN102660340B (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的工艺及设备
CN214496146U (zh) 新能源电解制氢与碳捕捉联合制甲醇***
CN101841277A (zh) 可再生能源储能储氢综合发电***
CN113594526A (zh) 一种基于氨储能的多联产***及其工作方法
CN205222680U (zh) 一种零碳排放的甲醇水重整制氢***及其燃料电池汽车
CN109707992A (zh) 一种多功能充电加氢站
CN113451612B (zh) 一种绿色高效的电力-氨-电力能源***
WO2023246669A1 (zh) 一种燃料电池发电***及其控制方法
WO2024045700A9 (zh) 烟气co2电解制合成气工艺及***
WO2022253256A1 (zh) 一种利用二氧化碳和水合成甲醇的装置及方法
CN113584530A (zh) 一种背压式铝-蒸汽燃烧多联产储能***及工作方法
WO2023035491A1 (zh) 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法
CN215731823U (zh) 一种利用二氧化碳对可再生能源发电进行调峰的***
CN219067873U (zh) 一种新能源耦合火电制用氢和二氧化碳资源化利用***
CN209655011U (zh) 一种多功能充电加氢站
CN216712257U (zh) 燃煤电厂碳捕集耦合电解水制氢联产化工品***
CN115043707B (zh) 一种集装箱式电解水制甲醇***
CN216155981U (zh) 一种背压式铝-蒸汽燃烧多联产储能***
CN215403079U (zh) 一种耦合铝燃烧和氢燃料电池的发电***
CN108400618A (zh) 一种利用电解制氢进行火电厂调峰的***和方法
CN212357095U (zh) 一种火电厂可再生能源合成甲醇***
CN112886621A (zh) 一种可再生电能储能***
CN215403949U (zh) 一种可再生能源驱动的二氧化碳加氢合成甲酸的***
CN113023671A (zh) 一种耦合铝燃烧和氢燃料电池的发电***及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE