WO2023035491A1 - 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法 - Google Patents

一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法 Download PDF

Info

Publication number
WO2023035491A1
WO2023035491A1 PCT/CN2021/140576 CN2021140576W WO2023035491A1 WO 2023035491 A1 WO2023035491 A1 WO 2023035491A1 CN 2021140576 W CN2021140576 W CN 2021140576W WO 2023035491 A1 WO2023035491 A1 WO 2023035491A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
formic acid
unit
hydrogen
renewable energy
Prior art date
Application number
PCT/CN2021/140576
Other languages
English (en)
French (fr)
Inventor
王焕君
刘蓉
郭东方
刘练波
范金航
赵磊
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023035491A1 publication Critical patent/WO2023035491A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the application belongs to the technical field of renewable energy utilization and greenhouse gas emission reduction, and specifically relates to a system and method for hydrogenating carbon dioxide to synthesize formic acid driven by renewable energy.
  • Thermal power plants are important power production sites in my country, contributing more than 70% of the electricity generated each year. While producing electricity, the combustion of fossil fuels produces a large amount of carbon dioxide, which accelerates the process of global warming and has a significant impact on the global ecological environment. On the one hand, in order to reduce carbon dioxide emissions and optimize the energy structure, people in the industry have carried out photovoltaic, wind power and other renewable new energy power generation projects. However, intermittent renewable energy such as wind power or photovoltaic power generation has strong uncertainty and volatility, and there are problems such as difficult peak regulation and grid connection.
  • the amount of wind power generation is large during the period of low charge consumption, and the phenomenon of "abandoned wind” is prominent, resulting in waste of wind resources; while during the peak period of electricity load, there is a phenomenon of insufficient power supply.
  • CO 2 is a renewable carbon resource with abundant reserves and safety. Through chemical conversion, CO 2 resource utilization can be realized, and CO 2 can be turned from waste into treasure, and high-value utilization can not only fix carbon dioxide, but also reduce air CO 2 content. , can also obtain high value-added energy and materials. Therefore, how to convert CO 2 , a greenhouse gas, into valuable clean energy has become one of the research hotspots.
  • CO 2 emitted by fixed point sources such as thermal power plants, power industry and industry
  • Formic acid is widely used and is one of the basic organic chemical raw materials. It is widely used in pharmaceutical, pesticide, leather and chemical industries. In addition, formic acid can theoretically achieve 100% atomic utilization by hydrogenation of carbon dioxide. How to use renewable The production of formic acid from electricity generated by energy sources and carbon dioxide in the air has become a difficult point in current research.
  • the technical problem to be solved in this application is to overcome the serious waste of renewable energy in the low power consumption valley in the prior art, the high carbon dioxide stock in the air, and the greenhouse effect, thereby providing a renewable energy-driven carbon dioxide hydrogenation Systems and methods for synthesizing formic acid.
  • the application provides a system for the hydrogenation of carbon dioxide to formic acid driven by renewable energy, including,
  • Carbon dioxide capture device which directly captures carbon dioxide in the air
  • Hydrogen production device used to electrolyze water to produce hydrogen and oxygen
  • the formic acid synthesis device is connected to the carbon dioxide capture device and the hydrogen production device respectively, and uses the electric energy produced by the renewable energy power generation device, the carbon dioxide captured by the carbon dioxide capture device, and the hydrogen produced by the hydrogen production device to synthesize formic acid.
  • the renewable energy power generation device communicates with the carbon dioxide capture device to provide electrical energy for the carbon dioxide capture device; and/or,
  • the renewable energy power generation device communicates with the hydrogen production device to provide electric energy for the hydrogen production device.
  • the formic acid synthesis unit includes a gas mixing unit, the carbon dioxide from the carbon dioxide capture unit and the hydrogen from the hydrogen production unit are uniformly mixed to form a mixed gas;
  • the formic acid synthesis unit is communicated with the gas mixing unit, the mixed gas of carbon dioxide and hydrogen enters the formic acid synthesis unit, and the mixed solution of formic acid and water is obtained after the reaction;
  • the formic acid separation unit communicates with the formic acid synthesis unit and is used to separate the mixed solution of formic acid and water to obtain formic acid.
  • the carbon dioxide capture device includes a CO2 absorption unit, which is provided with a porous liquid spray port, and the porous liquid spray port is used for spraying the porous liquid to capture carbon dioxide in the air;
  • the CO2 regeneration unit communicates with the CO2 absorption unit, the rich liquid from the CO2 absorption unit exchanges heat with the lean liquid from the CO2 regeneration unit, and the lean liquid after heat exchange enters the CO2 absorption unit to capture the Carbon dioxide, the rich liquid after heat exchange enters the CO2 regeneration unit for regeneration to obtain lean liquid and carbon dioxide, the lean liquid is circulated to the CO2 absorption unit for reuse, and the carbon dioxide enters the CO2 storage unit for storage and standby;
  • the CO2 storage unit communicates with the CO2 regeneration unit and the formic acid synthesis unit respectively, and is used for storing the carbon dioxide regenerated by the CO2 regeneration unit and providing carbon dioxide for the formic acid synthesis unit.
  • the hydrogen production device includes a water electrolysis hydrogen production unit, which is used to electrolyze water to obtain hydrogen and oxygen;
  • the hydrogen storage unit communicates with the hydrogen production unit by electrolyzing water, and is used for storing hydrogen and providing hydrogen for the formic acid synthesis unit.
  • the system also includes a PLC programmable controller
  • the PLC programmable controller is connected with the carbon dioxide capture device to adjust the capture rate and regeneration rate of carbon dioxide; and/or,
  • the PLC programmable controller is connected with the hydrogen production device to adjust the rate of hydrogen production by electrolysis of water; and/or,
  • the PLC programmable controller is connected with the formic acid synthesis device to adjust the rate of formic acid synthesis.
  • the present application also provides a method for synthesizing formic acid by hydrogenation of carbon dioxide driven by renewable energy, using the above-mentioned system, and the specific steps of the method include synthesizing formic acid with carbon dioxide and hydrogen under the action of a catalyst and an alkaline solution.
  • the catalyst is a supported catalyst, including a carrier and an active center; the loading of the active center in the supported catalyst is less than 0.5wt%;
  • the carrier is at least one of silica, carbon material, molecular sieve, hydrotalcite and mesoporous alumina;
  • the active center is a noble metal single atom; the noble metal nitrogen atom is at least one of Au, Pd, Ru and Rh.
  • the alkaline solution is an aqueous sodium bicarbonate solution, and the concentration of the aqueous sodium bicarbonate solution is 1-1.5mol/L;
  • the ratio of the mass of the catalyst to the volume of the alkaline solution is 1-1.5g:100ml.
  • the porous liquid includes ZIF-8, and also includes at least one of ethylene glycol, 2-methylimidazole and polydimethylsiloxane;
  • the porous liquid includes ZIF-8, ethylene glycol and 2-methylimidazole; or, the porous liquid includes ZIF-8 and polydimethylsiloxane;
  • the mass fraction of ZIF-8 in the porous liquid is 10-20%.
  • the porous liquid is called rich liquid after absorbing carbon dioxide
  • ZIF-8 is a metal-organic framework compound (MOFs), which is a kind of zeolite imidazolate framework material.
  • the renewable energy-driven carbon dioxide hydrogenation system for formic acid synthesis includes a carbon dioxide capture device, a hydrogen production device, a formic acid synthesis device and a renewable energy power generation device. It can directly synthesize high-energy formic acid by using carbon dioxide in the air and excess electric energy of renewable energy power generation devices, which not only reduces the serious waste of renewable energy in low power consumption, solves the problem of renewable energy abandonment, but also reduces air pollution.
  • the content of the greenhouse gas carbon dioxide is low, and the resource utilization of carbon dioxide gas is realized at the same time, and the high-energy compound formic acid is obtained, which saves the transportation cost of raw materials.
  • the system can realize flexible operation.
  • the system can run when there is a power outage, and it can also stop when there is no power outage.
  • the working state can be adjusted in time according to the power supply of renewable energy, and the installation of the system is less restricted by the location. It is suitable for Various sites for renewable energy generation.
  • the carbon dioxide hydrogenation synthesis formic acid system driven by renewable energy provided by this application, the carbon dioxide capture device and the hydrogen production device can use the electric energy generated by renewable energy to obtain carbon dioxide and hydrogen, which further solves the problem of electricity abandonment of renewable energy , the impact on the environment is small in the process of development and utilization, and no additional carbon dioxide will be produced in the process of carbon capture, which can effectively alleviate the greenhouse effect.
  • the absorption and analysis of carbon capture, hydrogen production by electrolysis and synthesis of formic acid are controlled independently, which is conducive to improving the ability of the integrated system to accept fluctuations.
  • the renewable energy-driven carbon dioxide hydrogenation synthesis formic acid system provided by this application can adjust the carbon dioxide capture rate, regeneration rate, hydrogen production rate by electrolysis of water and the rate of synthesis of formic acid through the PLC programmable controller According to the power situation provided by the renewable energy power generation device, the rate of synthetic formic acid is adjusted in time to assist the power system to maintain balance, so that the process of synthesizing formic acid and the power fluctuation energy of the renewable energy power generation device can be well matched within an appropriate time scale.
  • the peak-shaving method of carbon dioxide hydrogenation synthesis formic acid driven by renewable energy provided by this application, this method can produce formic acid by using the system of this application, this method is energy-saving and environmentally friendly, and it not only consumes the waste electricity generated by renewable energy power generation devices , and can use the carbon dioxide in the air, effectively solving the problem of high carbon dioxide stock in the air.
  • the present application adopts a specific catalyst and can directly synthesize formic acid under an alkaline solution, which overcomes the defect in the prior art that it is difficult to synthesize formic acid due to stable carbon dioxide and high free energy.
  • the carbon dioxide in the air can be directly captured by using a specific porous liquid, because the porous liquid can have many advantages such as the orderly and regular channels of the solid material and the fluidity of the liquid, and the selectivity of the solid material to the CO 2 gas
  • the coupling of adsorption and chemical absorption of gas by solution is beneficial to greatly improve the absorption and separation effect of porous liquid on CO2 , and will not be limited by the low concentration of carbon dioxide in the air.
  • porous liquid to capture carbon dioxide in the air also overcomes the defects of low concentration, wide distribution, difficult capture and high energy consumption of CO2 emitted by dispersed sources in the air, and direct carbon capture from the air It has the advantages of being less restricted by location and good flexibility.
  • Fig. 1 is the system schematic diagram of formic acid hydrogenation synthesis formic acid driven by renewable energy in Example 1 of the present application;
  • Fig. 2 is the system of carbon dioxide hydrogenation synthesis formic acid driven by renewable energy in an optional embodiment of the present application;
  • A-renewable energy power generation device B-carbon dioxide capture device; C-hydrogen production device; D-formic acid synthesis device;
  • 1-air compression unit 2-CO 2 absorption unit; 3-cold rich liquid pump; 4-heat exchange unit; 5-rich liquid storage unit; 6-hot rich liquid pump; 7-CO 2 regeneration unit; 8-heating Unit; 9-hot lean liquid pump; 10-lean liquid storage unit; 11-cold lean liquid pump; 12-CO 2 compression unit; 13-CO 2 storage unit; 14-CO 2 valve; 15-water storage unit; 16 -water pump; 17-electrolyzed water hydrogen production unit; 18- O2 storage unit; 19- H2 storage unit; 20- H2 valve; 21-gas mixing unit; 22-formic acid synthesis unit; 23-formic acid separation unit;
  • connection and “connection” should be understood in a broad sense, for example, it can be directly connected or indirectly connected through an intermediary, and can be is the connection between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • This embodiment provides a system for the hydrogenation of carbon dioxide driven by renewable energy to synthesize formic acid, as shown in Figure 1, including a renewable energy power generation device A, a carbon dioxide capture device B, a hydrogen production device C and a formic acid synthesis device D, details as follows,
  • the carbon dioxide capture device B uses the electric energy produced by the renewable energy power generation device to directly capture carbon dioxide from the air; as shown in Figure 1, the carbon dioxide capture device B is equipped with an air compression unit 1, a CO2 absorption unit 2, a cold Liquid pump 3, heat exchange unit 4, rich liquid storage unit 5, hot rich liquid pump 6, CO regeneration unit 7, heating unit 8, hot lean liquid pump 9, lean liquid storage unit 10, cold lean liquid pump 11, CO 2 Compression unit 12, CO2 storage unit 13; wherein, the air compression unit 1 communicates with the CO2 absorption unit 2, so that the compressed air enters the CO2 absorption unit 2, and the top of the CO2 absorption unit 2 is provided with a porous liquid Spray port 2-3, the porous liquid sprays downward from the top of the CO2 absorption unit 2, absorbs carbon dioxide in the air, realizes the capture of carbon dioxide, and the remaining air is discharged through the first outlet 2-1, the porous liquid after absorbing carbon dioxide (also known as cold rich liquid) is discharged through the second outlet 2-2; the cold rich liquid passes through the heat exchange unit 4
  • the hot rich liquid enters the CO 2 regeneration unit 7 for regeneration to obtain hot lean liquid and CO 2 , wherein the CO 2 regeneration unit 7 communicates with the heating unit 8, and the heating unit 8 is a CO 2 regeneration unit
  • CO2 is precipitated from the hot rich liquid to realize regeneration.
  • the CO2 is compressed by the CO2 compression unit 12, it is stored in the CO2 storage unit 13 for standby; the hot lean liquid is discharged from the CO2 regeneration unit 7, Under the action of the hot lean liquid pump 9, it enters the heat exchange device 4, and exchanges heat with the cold rich liquid from the CO2 absorption unit 2.
  • the CO 2 absorption unit 2 Under the action of the CO 2 absorption unit 2, the carbon dioxide in the air is absorbed to realize the recycling of the porous liquid.
  • the porous liquid used in this embodiment includes ZIF-8, ethylene glycol, and 2-methylimidazole; or, the porous liquid includes ZIF-8 and polydimethylsiloxane, and the porous liquid is in the form of slurry or suspension Cloudy liquid.
  • the hydrogen production device C uses the electric energy produced by the renewable energy power generation device to realize the electrolysis of water to produce hydrogen and oxygen; Oxygen storage unit 18, hydrogen storage unit 19 and hydrogen valve 20; under the action of water pump 16, water enters into electrolyzed water hydrogen production unit 17, electrolyzes to obtain hydrogen and oxygen, and enters hydrogen storage unit 19 and oxygen storage unit 18 respectively Storage, standby; wherein the hydrogen valve 20 controls the switch of the hydrogen storage device 19 .
  • the formic acid synthesis device D is connected with the carbon dioxide capture device and the hydrogen production device respectively, and utilizes the electric energy generated by the renewable energy power generation device, the carbon dioxide produced by the carbon dioxide capture device and the hydrogen produced by the hydrogen production device, in the catalyst and alkaline solution Synthetic formic acid under the effect of formic acid;
  • CO Valve 14 and hydrogen valve 20 control the flow of carbon dioxide and hydrogen respectively, make carbon dioxide and hydrogen enter in the formic acid synthesis unit;
  • Formic acid synthesis unit comprises the gas mixing unit 21 that communicates with setting , formic acid synthesis unit 22 and formic acid separation unit 23, the hydrogen in the H storage unit 19 and the CO in the CO storage unit 13 are mixed in the gas mixing unit 21 and enter the formic acid synthesis unit 22, where the catalyst and alkaline Under the action of the solution, a mixed solution of formic acid and water is synthesized, and the mixed solution of formic acid and water is separated by the formic acid separation unit 23 to obtain formic acid and water, which are high-energy compounds, and the formic acid is
  • the alkaline solution is an aqueous solution of sodium bicarbonate
  • the catalyst is a supported catalyst, including a carrier and an active center, and the loading of the active center in the supported catalyst is less than 0.5 wt%
  • the carrier is silicon dioxide, carbon At least one of material, molecular sieve, hydrotalcite, magnesium aluminum hydrotalcite and mesoporous alumina
  • the active center is a noble metal single atom
  • the noble metal nitrogen atom is at least one of Au, Pd, Ru and Rh
  • the pressure of carbon dioxide is 1-2MPa, hydrogen pressure 2-4MPa, reaction temperature 80-100°C; when formic acid and water are separated, use the different boiling points of each component to separate formic acid and water by distillation, and the water is recycled to the hydrogen production device.
  • fossil energy can be used to generate electricity for the carbon dioxide capture device to capture carbon dioxide in the air.
  • fossil energy power generation can be used to provide electric energy for the hydrogen production device, so as to realize the electrolysis of water to produce hydrogen and oxygen.
  • the renewable energy-driven carbon dioxide hydrogenation system for formic acid also includes a PLC programmable controller, as shown in Figure 2, the PLC programmable controller is connected to the carbon dioxide capture device, through a frequency converter Control the flow of air entering the CO2 absorption unit 2 to adjust the capture rate of carbon dioxide; further, the PLC programmable controller can also control the flow of the porous liquid into the CO2 absorption unit 2 through a frequency converter to adjust the capture rate of carbon dioxide Set rate; Furthermore, the PLC programmable controller can also control the rate at which the rich liquid enters the CO2 regeneration unit 7 through a frequency converter to adjust the regeneration rate of carbon dioxide. When the curtailment of renewable energy power generation devices is reduced, the capture rate of carbon dioxide can be adjusted through the PLC programmable controller to maintain power balance.
  • the renewable energy-driven carbon dioxide hydrogenation synthesis formic acid system also includes a PLC programmable controller, as shown in Figure 2, the PLC programmable controller is connected to the hydrogen production device, through a frequency converter Control the rate of electrolysis of water to produce hydrogen.
  • the hydrogen production rate can be adjusted through the PLC programmable controller to maintain power balance.
  • the renewable energy-driven carbon dioxide hydrogenation formic acid system also includes a PLC programmable controller, as shown in Figure 2, the PLC programmable controller is connected with the formic acid synthesis device, through a frequency converter Controls the rate of formic acid synthesis.
  • the rate of formic acid synthesis can be adjusted through the PLC programmable controller to maintain power balance.
  • This embodiment provides a method for preparing formic acid using the system of Embodiment 1, which specifically includes the following steps,
  • the porous liquid includes ZIF-8, ethylene glycol and 2-methyl Imidazole, wherein, the mass fraction of ZIF-8 in the porous liquid is 15wt%, and the mass ratio of ethylene glycol and 2-methylimidazole is 3:2;
  • the hydrogen production device electrolyzes water to obtain oxygen and hydrogen for standby;
  • carbon dioxide and hydrogen react under the action of catalyst and alkaline solution to obtain a mixture of formic acid and water, which are separated by distillation to obtain formic acid and water; among them, the alkaline solution is 1mol/L
  • the sodium bicarbonate aqueous solution Catalyst is Ru/MgAl-LDHs (magnesium aluminum hydrotalcite), and the load capacity of Ru is 0.3wt%
  • the ratio of catalyst quality and sodium bicarbonate aqueous solution volume is 1.2g: 100ml;
  • the pressure of carbon dioxide is 1.5 ⁇ 0.1MPa, the hydrogen pressure is 3 ⁇ 0.1MPa, and the reaction temperature is 90°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Gas Separation By Absorption (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本申请属于可再生能源利用以及温室气体减排技术领域,具体涉及一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法。该***包括二氧化碳捕集装置、制氢装置、甲酸合成装置和可再生能源发电装置,该***通过各个装置间的配合作用可以直接利用空气中的二氧化碳和可再生能源发电装置过剩的电能合成高能量甲酸,既减少了可再生能源在用电低谷浪费严重的现象,解决了可再生能源的弃电问题,又降低了空气中温室气体二氧化碳的含量,同时还实现了二氧化碳气体的资源化利用,得到了高能量化合物甲酸,节省了原料的运输成本。

Description

一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法
交叉引用
本申请要求在2021年9月10日提交中国专利局、申请号为202111065743.3、发明名称为“一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于可再生能源利用以及温室气体减排技术领域,具体涉及一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法。
背景技术
火电厂是我国重要的电力生产场所,每年贡献了70%以上的发电量。在生产电力的同时,化石燃料的燃烧产生了大量的二氧化碳,加速了全球变暖的进程,对全球生态环境带来了显著的影响。一方面,为了减少二氧化碳的排放,优化能源结构,业内人士开展了光伏、风电等可再生新能源发电工程实践。但风电或光伏发电这些间歇性可再生能源具有较强的不确定性和波动性,存在调峰难、并网困难的问题。以风电为例,在用电荷低谷时段风能发电量较大,“弃风”现象突出,造成风资源浪费;而在用电负荷高峰时段,存在电力供给不足的现象。
另一方面,发电行业和化石燃料燃烧等领域造成空气中CO 2的含量日益增多。CO 2是一种储量丰富、安全的可再生碳资源,通过化学转化可以实现CO 2的资源化利用,将CO 2变废为宝,实现高价值化利用不仅可以固定二氧化碳,减少空气CO 2含量,还可以获得高附加值的能源、材料。因此,如何将CO 2这 一温室气体转化为有价值的清洁能源成为研究热点之一。除了火电厂电力行业及工业等固定点源排放的CO 2外,还有接近50%分布源排放的CO 2,这些CO 2广泛分散在空气中,存量高,如何实现对空气中二氧化碳进行回收,缓解温室效应也成为业内人士急需解决的难点之一。
在利用二氧化碳的各种反应路线中,催化加氢在实验室基础研究和化工产业中得到了广泛的关注和发展。甲酸用途广泛,是基本的有机化工原料之一,在医药、农药、制革和化学等行业应用较多;此外,二氧化碳加氢制甲酸在理论上可以实现100%原子利用率,如何利用可再生能源产生的电能和空气中的二氧化碳制得甲酸成为当前研究难点。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中可再生能源在用电低谷浪费严重,空气中二氧化碳存量高、造成温室效应等缺陷,从而提供了一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法。
为此,本申请提供了以下技术方案,
本申请提供了一种可再生能源驱动的二氧化碳加氢合成甲酸的***,包括,
可再生能源发电装置;
二氧化碳捕集装置,直接捕集空气中的二氧化碳;
制氢装置,用于电解水制取氢气和氧气;
甲酸合成装置,分别与二氧化碳捕集装置和制氢装置连通,利用可再生能源发电装置生产的电能、二氧化碳捕集装置捕集的二氧化碳以及制氢装置制取的氢气合成甲酸。
所述可再生能源发电装置与所述二氧化碳捕集装置连通,为二氧化碳捕集装置提供电能;和/或,
所述可再生能源发电装置与所述制氢装置连通,为制氢装置提供电能。
所述甲酸合成装置包括,气体混合单元,来自二氧化碳捕集装置的二氧化碳和制氢装置的氢气混合均匀,形成混合气体;
甲酸合成单元,与所述气体混合单元连通,二氧化碳和氢气的混合气体进入甲酸合成单元,反应后得到甲酸和水的混合液;
甲酸分离单元,与所述甲酸合成单元连通,用于分离甲酸和水的混合液,得到甲酸。
所述二氧化碳捕集装置包括,CO 2吸收单元,内设置有多孔液体喷淋口,所述多孔液体喷淋口用于喷淋多孔液体,捕集空气中的二氧化碳;
CO 2再生单元,与所述CO 2吸收单元连通,来自CO 2吸收单元的富液与来自CO 2再生单元的贫液换热,换热后的贫液进入CO 2吸收单元捕集空气中的二氧化碳,换热后的富液进入CO 2再生单元中进行再生,得到贫液和二氧化碳,贫液循环至CO 2吸收单元中再利用,二氧化碳进入CO 2储存单元储存,备用;
CO 2储存单元,分别与所述CO 2再生单元和所述甲酸合成装置连通,用于储存CO 2再生单元再生的二氧化碳和为甲酸合成装置提供二氧化碳。
所述制氢装置包括,电解水制氢单元,用于电解水得到氢气和氧气;
氢气储存单元,与所述电解水制氢单元连通,用于储存氢气和为甲酸合成装置提供氢气。
所述***还包括PLC可编程控制器;
所述PLC可编程控制器与二氧化碳捕集装置连接,以调整二氧化碳的捕集速率和再生速率;和/或,
所述PLC可编程控制器与制氢装置连接,以调整电解水制取氢气的速率;和/或,
所述PLC可编程控制器与甲酸合成装置连接,以调整合成甲酸的速率。
本申请还提供了一种可再生能源驱动的二氧化碳加氢合成甲酸的方法,采用上述***,该方法具体步骤包括,二氧化碳和氢气在催化剂和碱性溶液的作用下合成甲酸。
所述催化剂为负载型催化剂,包括载体和活性中心;所述负载型催化剂中活性中心的负载量小于0.5wt%;
所述载体为二氧化硅、碳材料、分子筛、水滑石和介孔氧化铝中的至少一种;
所述活性中心为贵金属单原子;贵金属氮原子为Au、Pd、Ru和Rh中的至少一种。
所述碱性溶液为碳酸氢钠水溶液,碳酸氢钠水溶液的浓度为1-1.5mol/L;
所述催化剂质量与碱性溶液体积的比例为1-1.5g:100ml。
所述多孔液体包括ZIF-8,还包括乙二醇、2-甲基咪唑和聚二甲基硅氧烷中的至少一种;
可选地,所述多孔液体包括ZIF-8、乙二醇和2-甲基咪唑;或,所述多孔液体包括ZIF-8和聚二甲基硅氧烷;
可选地,所述多孔液体中ZIF-8的质量分数为10-20%。
多孔液体吸收二氧化碳后称为富液;二氧化碳从富液中解析后称为贫液。
ZIF-8是一种金属有机骨架化合物(MOFs),是沸石咪唑酯骨架材料的一种。
本申请技术方案,具有如下优点:
1.本申请提供的可再生能源驱动的二氧化碳加氢合成甲酸的***,该***包括二氧化碳捕集装置、制氢装置、甲酸合成装置和可再生能源发电装置,该***通过各个装置间的配合作用可以直接利用空气中的二氧化碳和可再生能源 发电装置过剩的电能合成高能量甲酸,既减少了可再生能源在用电低谷浪费严重的现象,解决了可再生能源的弃电问题,又降低了空气中温室气体二氧化碳的含量,同时还实现了二氧化碳气体的资源化利用,得到了高能量化合物甲酸,节省了原料的运输成本。
该***可实现灵活运行,当有弃电时***运行,无弃电时也可以停止运行,根据可再生能源供电情况可以及时调整工作状态,且该***安装受地点约束限制较少,适用于有可再生能源发电的多种场所。
2.本申请提供的可再生能源驱动的二氧化碳加氢合成甲酸的***,二氧化碳捕集装置和制氢装置可以利用可再生能源产生的电能得到二氧化碳和氢气,进一步解决了可再生能源的弃电问题,在开发利用过程中对环境影响较小,且在捕碳过程中不会产生附加的二氧化碳,可以有效缓解温室效应。
本申请***中捕碳的吸收、解析,电解制氢和甲酸合成等各个环节独立控制,有利于提高集成***接受波动性的能力。
3.本申请提供的可再生能源驱动的二氧化碳加氢合成甲酸的***,通过PLC可编程控制器可以实现对二氧化碳捕集速率、再生速率,电解水制取氢气的速率以及合成甲酸的速率进行调整,根据可再生能发电装置提供的电力情况及时调整合成甲酸速率,以协助电力***保持平衡,使合成甲酸的过程与可再生能源发电装置电力波动能在合适的时间尺度内可以良好的匹配。
4.本申请提供的可再生能源驱动的二氧化碳加氢合成甲酸的调峰方法,该方法利用本申请***可以制得甲酸,该方法节能环保,既消纳了可再生能源发电装置产生的弃电,又可以利用空气中的二氧化碳,有效解决了空气中二氧化碳存量高的问题。
本申请采用特定的催化剂和碱性溶液下可以直接合成甲酸,克服了现有技术中因二氧化碳稳定、自由能高,难以合成甲酸的缺陷。进一步地,采用特定 的多孔液体可以直接捕集空气中的二氧化碳,这是因为多孔液体可以兼具固体材料有序规整孔道和液体流动性等诸多优点,将固体材料对CO 2气体的选择性物理吸附和溶液对气体的化学吸收耦合起来,有利于大大提高多孔液体对CO 2的吸收分离效果,不会受空气中二氧化碳浓度低的限制。进一步地,该采用多孔液体捕集空气中的二氧化碳还克服了因分散源排放的CO 2在空气中的浓度低,分布广,捕集难度大,能耗高的缺陷,从空气中直接捕碳具有受地点限制小,灵活性好等优点。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中可再生能源驱动的二氧化碳加氢合成甲酸的***示意图;
图2是本申请一种可选的实施方式中可再生能源驱动的二氧化碳加氢合成甲酸的***;
附图标记:
A-可再生能源发电装置;B-二氧化碳捕集装置;C-制氢装置;D-甲酸合成装置;
1-空气压缩单元;2-CO 2吸收单元;3-冷富液泵;4-换热单元;5-富液储存单元;6-热富液泵;7-CO 2再生单元;8-加热单元;9-热贫液泵;10-贫液储存单元;11-冷贫液泵;12-CO 2压缩单元;13-CO 2储存单元;14-CO 2阀门;15-水储存单元;16-水泵;17-电解水制氢单元;18-O 2储存单元;19-H 2储存单元; 20-H 2阀门;21-气体混合单元;22-甲酸合成单元;23-甲酸分离单元;
2-1-第一出口;2-2-第二出口-1;2-3-多孔液体喷淋口。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”、“连通”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供了一种可再生能源驱动的二氧化碳加氢合成甲酸的***,如图1所示,包括可再生能源发电装置A,二氧化碳捕集装置B,制氢装置C和甲酸合成装置D,具体如下,
二氧化碳捕集装置B,利用可再生能源发电装置生产的电能直接从空气中捕集二氧化碳;如图1所示,二氧化碳捕集装置B内部设有空气压缩单元1, CO 2吸收单元2,冷富液泵3,换热单元4,富液储存单元5,热富液泵6,CO 2再生单元7,加热单元8,热贫液泵9,贫液储存单元10,冷贫液泵11,CO 2压缩单元12,CO 2储存单元13;其中,空气压缩单元1与CO 2吸收单元2连通,以使压缩后的空气进入到CO 2吸收单元2中,CO 2吸收单元2顶部设置有多孔液体喷淋口2-3,多孔液体从CO 2吸收单元2顶部向下喷淋,吸收空气中的二氧化碳,实现二氧化碳的捕集,剩余空气通过第一出口2-1排出,吸收二氧化碳后的多孔液体(又称为冷富液)通过第二出口2-2排出;冷富液在冷富液泵3的作用下经换热单元4换热后进入富液储存单元5中成为热富液,在热富液泵6的作用下,热富液进入CO 2再生单元7中再生,得到热贫液和CO 2,其中,CO 2再生单元7与加热单元8连通,加热单元8为CO 2再生单元为提供热量,CO 2从热富液中析出,实现再生,CO 2通过CO 2压缩单元12压缩后,储存在CO 2储存单元13中,备用;热贫液从CO 2再生单元7中排出,在热贫液泵9的作用下进入到换热装置4,与来自CO 2吸收单元2的冷富液换热,换热后的贫液进入贫液储存单元10中,在冷贫液泵11的作用下进入到CO 2吸收单元2中,吸收空气中的二氧化碳,实现多孔液体的循环利用。具体地,本实施例用到的多孔液体包括ZIF-8、乙二醇和2-甲基咪唑;或,多孔液体包括ZIF-8和聚二甲基硅氧烷,多孔液体呈浆料状或悬浊液状。
制氢装置C,利用可再生能源发电装置生产的电能实现电解水制取氢气和氧气;如图1所示,制氢装置内部设置有水储存单元15,水泵16,电解水制氢单元17,氧气储存单元18,氢气储存单元19和氢气阀门20;在水泵16的作用下,水进入到电解水制氢单元17中,电解得到氢气和氧气,分别进入氢气储存单元19和氧气储存单元18中储存,备用;其中氢气阀门20控制氢气储存装置19的开关情况。
甲酸合成装置D,分别与二氧化碳捕集装置和制氢装置连通,利用可再生能源发电装置产生的电能、二氧化碳捕集装置制取的二氧化碳和制氢装置制取的氢气,在催化剂和碱性溶液的作用下合成甲酸;如图1所示,CO 2阀门14和 氢气阀门20分别控制二氧化碳和氢气的流量,使二氧化碳和氢气进入到甲酸合成装置中;甲酸合成装置包括连通设置的气体混合单元21、甲酸合成单元22和甲酸分离单元23,H 2储存单元19中的氢气和CO 2储存单元13中的CO 2在气体混合单元21中混合,进入到甲酸合成单元22中,在催化剂和碱性溶液的作用下合成甲酸和水的混合液,甲酸和水的混合液经甲酸分离单元23分离后得到高能量化合物甲酸和水,甲酸备用。具体地,本实施例中,碱性溶液为碳酸氢钠水溶液;催化剂为负载型催化剂,包括载体和活性中心,负载型催化剂中活性中心的负载量小于0.5wt%,载体为二氧化硅、碳材料、分子筛、水滑石、镁铝水滑石和介孔氧化铝中的至少一种,活性中心为贵金属单原子;贵金属氮原子为Au、Pd、Ru和Rh中的至少一种;二氧化碳的压力为1-2MPa,氢气压力为2-4MPa,反应温度为80-100℃;在分离得到甲酸和水时,利用各组分的沸点不同,蒸馏分离得到甲酸和水,水循环至制氢装置中。
作为一种可替代的实施方式,可以采用化石能源发电的方式为二氧化碳捕集装置提供电能,实现对空气中二氧化碳的捕集。
作为一种可替代的实施方式,可以采用化石能源发电的方式为制氢装置提供电能,实现电解水制取氢气和氧气。
作为一种可选的实施方式,可再生能源驱动的二氧化碳加氢合成甲酸的***还包括PLC可编程控制器,如图2所示,PLC可编程控制器与二氧化碳捕集装置连接,通过变频器控制进入CO 2吸收单元2的空气的流量,以调整二氧化碳的捕集速率;进一步地,PLC可编程控制器还可以通过变频器控制多孔液体进入CO 2吸收单元2的流量,以调整二氧化碳的捕集速率;更进一步地,PLC可编程控制器还可以通过变频器控制富液进入CO 2再生单元7的速率,以调整二氧化碳的再生速率。当可再生能源发电装置的弃电降低后,可以通过PLC可编程控制器调整二氧化碳的捕集速率,以保持电力平衡。
作为另一种可选的实施方式,可再生能源驱动的二氧化碳加氢合成甲酸的***还包括PLC可编程控制器,如图2所示,PLC可编程控制器与制氢装置连接,通过变频器控制电解水产生氢气速率。当可再生能源发电装置的弃电降低后,可以通过PLC可编程控制器调整制氢速率,以保持电力平衡。
作为另一种可选的实施方式,可再生能源驱动的二氧化碳加氢合成甲酸的***还包括PLC可编程控制器,如图2所示,PLC可编程控制器与甲酸合成装置连接,通过变频器控制合成甲酸的速率。当可再生能源发电装置的弃电降低后,可以通过PLC可编程控制器调整合成甲酸的速率,以保持电力平衡。
实施例2
本实施例提供了一种利用实施例1***制备甲酸的方法,具体包括以下步骤,
在多孔液体的作用下,利用可再生能源发电装置产生的电能二氧化碳捕集装置捕集得到二氧化碳,经再生后得到二氧化碳,储存备用;其中,多孔液体包括ZIF-8、乙二醇和2-甲基咪唑,其中,多孔液体中ZIF-8的质量分数为15wt%,乙二醇和2-甲基咪唑的质量比为3:2;
利用可再生能源发电装置产生的电能,制氢装置电解水制取得到氧气和氢气,备用;
利用可再生能源发电装置产生的电能,二氧化碳和氢气在催化剂和碱性溶液的作用下反应,得到甲酸和水的混合液,经蒸馏分离后得到甲酸和水;其中,碱性溶液为1mol/L的碳酸氢钠水溶液;催化剂为Ru/MgAl-LDHs(镁铝水滑石),Ru的负载量为0.3wt%;催化剂质量与碳酸氢钠水溶液体积的比例为1.2g:100ml;二氧化碳的压力为1.5±0.1MPa,氢气压力为3±0.1MPa,反应温度为90℃。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种可再生能源驱动的二氧化碳加氢合成甲酸的***,其特征在于,包括,
    可再生能源发电装置;
    二氧化碳捕集装置,直接捕集空气中的二氧化碳;
    制氢装置,用于电解水制取氢气和氧气;
    甲酸合成装置,分别与二氧化碳捕集装置和制氢装置连通,利用可再生能源发电装置生产的电能、二氧化碳捕集装置捕集的二氧化碳以及制氢装置制取的氢气合成甲酸。
  2. 根据权利要求1所述的***,其特征在于,所述可再生能源发电装置与所述二氧化碳捕集装置连通,为二氧化碳捕集装置提供电能;和/或,
    所述可再生能源发电装置与所述制氢装置连通,为制氢装置提供电能。
  3. 根据权利要求1或2所述的***,其特征在于,所述甲酸合成装置包括,气体混合单元,来自二氧化碳捕集装置的二氧化碳和制氢装置的氢气混合均匀,形成混合气体;
    甲酸合成单元,与所述气体混合单元连通,二氧化碳和氢气的混合气体进入甲酸合成单元,反应后得到甲酸和水的混合液;
    甲酸分离单元,与所述甲酸合成单元连通,用于分离甲酸和水的混合液,得到甲酸。
  4. 根据权利要求1-3任一项所述的***,其特征在于,所述二氧化碳捕集装置包括,CO 2吸收单元,内设置有多孔液体喷淋口,所述多孔液体喷淋口用于喷淋多孔液体,捕集空气中的二氧化碳;
    CO 2再生单元,与所述CO 2吸收单元连通,来自CO 2吸收单元的富液与来 自CO 2再生单元的贫液换热,换热后的贫液进入CO 2吸收单元捕集空气中的二氧化碳,换热后的富液进入CO 2再生单元中进行再生,得到贫液和二氧化碳,贫液循环至CO 2吸收单元中再利用,二氧化碳进入CO 2储存单元储存,备用;
    CO 2储存单元,分别与所述CO 2再生单元和所述甲酸合成装置连通,用于储存CO 2再生单元再生的二氧化碳和为甲酸合成装置提供二氧化碳。
  5. 根据权利要求1-4任一项所述的***,其特征在于,所述制氢装置包括,电解水制氢单元,用于电解水得到氢气和氧气;
    氢气储存单元,与所述电解水制氢单元连通,用于储存氢气和为甲酸合成装置提供氢气。
  6. 根据权利要求1-5任一项所述的***,其特征在于,所述***还包括PLC可编程控制器;
    所述PLC可编程控制器与二氧化碳捕集装置连接,以调整二氧化碳的捕集速率和再生速率;和/或,
    所述PLC可编程控制器与制氢装置连接,以调整电解水制取氢气的速率;和/或,
    所述PLC可编程控制器与甲酸合成装置连接,以调整合成甲酸的速率。
  7. 一种可再生能源驱动的二氧化碳加氢合成甲酸的方法,其特征在于,采用权利要求1-6任一项所述***,具体步骤包括,二氧化碳和氢气在催化剂和碱性溶液的作用下合成甲酸。
  8. 根据权利要求7所述的方法,其特征在于,所述催化剂为负载型催化剂,包括载体和活性中心;所述负载型催化剂中活性中心的负载量小于0.5wt%;
    所述载体为二氧化硅、碳材料、分子筛、水滑石和介孔氧化铝中的至少一种;
    所述活性中心为贵金属单原子;贵金属氮原子为Au、Pd、Ru和Rh中的 至少一种。
  9. 根据权利要求7或8所述的方法,其特征在于,所述碱性溶液为碳酸氢钠水溶液,碳酸氢钠水溶液的浓度为1-1.5mol/L;
    所述催化剂质量与碱性溶液体积的比例为1-1.5g:100ml。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述多孔液体包括ZIF-8,还包括乙二醇、2-甲基咪唑和聚二甲基硅氧烷中的至少一种;
    可选地,所述多孔液体包括ZIF-8、乙二醇和2-甲基咪唑;或,所述多孔液体包括ZIF-8和聚二甲基硅氧烷;
    可选地,所述多孔液体中ZIF-8的质量分数为10-20%。
PCT/CN2021/140576 2021-09-10 2021-12-22 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法 WO2023035491A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111065743.3A CN113620798A (zh) 2021-09-10 2021-09-10 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法
CN202111065743.3 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023035491A1 true WO2023035491A1 (zh) 2023-03-16

Family

ID=78389640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140576 WO2023035491A1 (zh) 2021-09-10 2021-12-22 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法

Country Status (2)

Country Link
CN (1) CN113620798A (zh)
WO (1) WO2023035491A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620798A (zh) * 2021-09-10 2021-11-09 中国华能集团清洁能源技术研究院有限公司 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890236A (zh) * 2011-08-29 2014-06-25 卡尔-赫尔曼·布塞 特别是适于住宅工程领域的能量供应装置
CN105013292A (zh) * 2014-04-28 2015-11-04 中国石油大学(北京) 一种捕集混合气中co2的复合方法
CN109745952A (zh) * 2019-03-18 2019-05-14 上海科技大学 一种多孔液体及其制备方法和用途
CN113350989A (zh) * 2021-04-23 2021-09-07 东南大学 燃煤发电耦合可再生能源发电二氧化碳捕集方法及***
CN113620798A (zh) * 2021-09-10 2021-11-09 中国华能集团清洁能源技术研究院有限公司 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864597B (zh) * 2014-03-27 2015-10-21 西安科技大学 一种负载型Ru基催化剂的应用
CN107970743B (zh) * 2016-10-20 2020-01-03 中国石化工程建设有限公司 一种分离二氧化碳的方法
CN107998840A (zh) * 2017-11-06 2018-05-08 宁波大学 一种可再生能源驱动碳捕集与水解制氢合成甲烷装置
CN111195515B (zh) * 2018-11-20 2021-04-23 中国科学院大连化学物理研究所 一种单原子分散贵金属催化剂、其制备方法及应用
CN110560052A (zh) * 2019-09-12 2019-12-13 中国原子能科学研究院 一种含钌催化剂及其制备方法与用途
CN212701238U (zh) * 2020-07-15 2021-03-16 中国华电科工集团有限公司 一种二氧化碳的捕集***
CN112871198B (zh) * 2021-02-20 2022-05-17 山东大学 一种二氧化碳加氢合成甲酸催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890236A (zh) * 2011-08-29 2014-06-25 卡尔-赫尔曼·布塞 特别是适于住宅工程领域的能量供应装置
CN105013292A (zh) * 2014-04-28 2015-11-04 中国石油大学(北京) 一种捕集混合气中co2的复合方法
CN109745952A (zh) * 2019-03-18 2019-05-14 上海科技大学 一种多孔液体及其制备方法和用途
CN113350989A (zh) * 2021-04-23 2021-09-07 东南大学 燃煤发电耦合可再生能源发电二氧化碳捕集方法及***
CN113620798A (zh) * 2021-09-10 2021-11-09 中国华能集团清洁能源技术研究院有限公司 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, JIANGONG; LIU, ZHIJIAN; LIU, CHUNSHENG: "Technology Progress in Catalytic Conversion of Carbon Dioxide to Formic Acid", SINO-GLOBAL ENERGY, vol. 24, no. 4, 30 April 2019 (2019-04-30), pages 64 - 82, XP009544436, ISSN: 1673-579X *

Also Published As

Publication number Publication date
CN113620798A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023035515A1 (zh) 一种利用二氧化碳对可再生能源发电进行调峰的***和方法
CN111378980A (zh) 一种联产氢气和尿素的储能***和方法
CN104722177B (zh) 一种浓缩变换和电解再生的二氧化碳捕集***
CN106180747B (zh) 一种钯铜二元合金纳米材料、其制备方法及其作为催化剂电催化还原co2的应用
CN214496146U (zh) 新能源电解制氢与碳捕捉联合制甲醇***
CN213013112U (zh) 一种大型碱性电解水制氢装置的综合热管理***
CN101757943B (zh) 二氧化碳加氢合成甲醇的催化剂及其制备方法和应用
CN204710062U (zh) 一种浓缩变换和电解再生的二氧化碳捕集装置
WO2023160261A1 (zh) 一种co 2捕集与电再生同步转化***及方法
CN109707992A (zh) 一种多功能充电加氢站
WO2023035491A1 (zh) 一种可再生能源驱动的二氧化碳加氢合成甲酸的***及方法
CN113451612B (zh) 一种绿色高效的电力-氨-电力能源***
CN103756741A (zh) 一种利用可再生电力的固体氧化物电解池制天然气的方法
WO2024045700A9 (zh) 烟气co2电解制合成气工艺及***
CN211999936U (zh) 一种联产氢气和尿素的储能***
WO2022253256A1 (zh) 一种利用二氧化碳和水合成甲醇的装置及方法
CN111137856B (zh) 一种撬装式移动现场制氢一体机
CN215731823U (zh) 一种利用二氧化碳对可再生能源发电进行调峰的***
EP4093701A1 (en) Ammonia production process
CN209655011U (zh) 一种多功能充电加氢站
CN216712257U (zh) 燃煤电厂碳捕集耦合电解水制氢联产化工品***
CN215403949U (zh) 一种可再生能源驱动的二氧化碳加氢合成甲酸的***
CN216756382U (zh) 一种甲醇制备及循环利用***
CN115837208A (zh) 一种基于离子液体的二氧化碳捕集与电催化还原***及方法
CN104174406A (zh) 一种煤制代用天然气甲烷化催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE