WO2023035399A1 - 一种非水电解液以及一种电池 - Google Patents

一种非水电解液以及一种电池 Download PDF

Info

Publication number
WO2023035399A1
WO2023035399A1 PCT/CN2021/130031 CN2021130031W WO2023035399A1 WO 2023035399 A1 WO2023035399 A1 WO 2023035399A1 CN 2021130031 W CN2021130031 W CN 2021130031W WO 2023035399 A1 WO2023035399 A1 WO 2023035399A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
battery
solvents
phosphate
Prior art date
Application number
PCT/CN2021/130031
Other languages
English (en)
French (fr)
Inventor
夏兰
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Publication of WO2023035399A1 publication Critical patent/WO2023035399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium batteries, and in particular relates to a nonaqueous electrolyte and a battery.
  • lithium-ion batteries have been widely used in fields such as new energy vehicles and energy storage.
  • the electrolyte used in commercial lithium-ion batteries is usually composed of an organic carbonate mixed solvent and a lithium salt dissolved in it, such as lithium hexafluorophosphate LiPF 6 .
  • LiPF 6 lithium hexafluorophosphate
  • LiPF 6 lithium salts have long been considered an essential component in electrolytes for lithium-ion batteries.
  • the demand for lithium salts has also increased, resulting in high costs.
  • there is a small amount of water and ethanol in the actual battery and LiPF 6 lithium salt will absorb heat and melt and decompose at a not too high temperature (80-100°C) to produce LiF and PF 5 .
  • the technical problem to be solved by the present invention is to provide a non-aqueous electrolyte and a battery.
  • the non-aqueous electrolyte provided by the present invention greatly reduces and simplifies the configuration of the electrolyte while ensuring the normal performance of the lithium-ion battery. , storage, transportation and use of all aspects of the cost and improve environmental safety.
  • the invention provides a nonaqueous electrolytic solution, which includes a nonaqueous organic solvent and does not include lithium salt.
  • the lithium salt is selected from one or more of lithium hexafluorophosphate LiPF 6 , lithium bistrifluoromethanesulfonimide LiTFSI, lithium bisfluorosulfonimide LiFSI, LiAsF 6 , LiBF 4 , and LiClO 4 .
  • the non-aqueous organic solvent is selected from carbonate solvents, carboxylate solvents, cyclic lactone solvents, ether solvents, ionic liquids, phosphoric acid ester solvents, fluorocarbonate solvents, fluorine One or more of carboxylate solvents and fluoroether solvents.
  • the carbonate solvent is selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene propyl carbonate, carbonic acid
  • vinylene ester ethylene vinylene carbonate
  • the cyclic lactone compound is selected from ⁇ -butyrolactone, 1,3-propane sultone, 1,4-propane sultone
  • the ether solvent is selected from one or more of dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, and 1,3-dioxolane
  • the ester solvent is selected from one or more of trimethyl phosphate TMP, methylene methyl phosphate DMMP
  • the fluorocarbonate solvent is selected from fluoroethylene carbonate, bisfluoroethylene carbonate One or more
  • the non-aqueous electrolytic solution further includes additives.
  • the additive is selected from fluoroethylene carbonate FEC, VC, succinic anhydride compounds, maleic anhydride compounds, caprolactam compounds, succinonitrile, tris(pentafluorophenyl)borane, isocyanate compounds , sulfur-containing lactone compounds, sulfolane, tris(pentafluorophenyl)phosphite, fluorophosphate, tetramethoxytitanium, tris(hexafluoroisopropyl)phosphate, ion salt .
  • FEC fluoroethylene carbonate
  • VC succinic anhydride compounds
  • maleic anhydride compounds maleic anhydride compounds
  • caprolactam compounds succinonitrile
  • succinonitrile tris(pentafluorophenyl)borane
  • isocyanate compounds sulfur-containing lactone compounds
  • sulfolane tris(pentafluorophenyl)phosphite
  • the ionic salt is selected from one or more of nitrates, carbonates, fluorides, and sulfates.
  • the mass percentage of the additive in the non-aqueous organic solvent is 0.05%-50%.
  • the present invention also provides a battery, including a positive electrode, a separator, a negative electrode, an electrolyte and a battery casing, the electrolyte is selected from the above non-aqueous electrolytes, and at least one of the positive electrode and the negative electrode contains lithium element.
  • the lithium-containing compound is selected from lithium-containing positive electrode active materials, lithium metal, lithiated graphite, lithiated silicon, lithium salt LiPF 6 , LiCl, LiNO 3 , Li 2 CO 3 , Li 2 O, LiTFSI , LiFSI, LiPO 2 F 2 , LiBF 4 , LiClO 4 , lithium dioxalate borate, lithium difluorooxalate borate, lithium trifluorooxalate phosphate, lithium difluorodioxalate phosphate, tetrafluorolithium oxalate phosphate, one of lithium-containing organic compounds one or more kinds;
  • the mass percentage of the lithium-containing substance in the electrode is 0.05%-20%.
  • the invention provides a non-aqueous electrolytic solution, which includes a non-aqueous organic solvent and does not include lithium salt.
  • the non-aqueous electrolytic solution provided by the invention does not contain lithium salt, and at least one of the electrodes of the battery contains lithium element.
  • the lithium ions deintercalated in the electrode pass through the non-aqueous electrolyte and act as conductive ions at the same time, which does not affect the normal charge and discharge behavior of the battery.
  • the non-aqueous electrolyte provided by the present invention can form an effective interface film on the surface of the positive and negative electrodes, so the lithium-ion battery prepared by the non-aqueous electrolyte provided by the present invention ensures good cycle performance, and can greatly reduce and simplify the electrolysis process. Costs in all aspects of liquid configuration, storage, transportation and use and improved environmental safety.
  • the experimental results show that the lithium ion battery prepared by the nonaqueous electrolytic solution provided by the invention has the equivalent charging and discharging electrochemical behavior of the lithium ion battery of the conventional electrolyte, and the lithium ion battery prepared by the nonaqueous electrolytic solution provided by the invention has a relatively Good cycle performance.
  • Figure 1 is a comparison chart of the LiCoO 2 /Li batteries of Example 1 and Comparative Example 1 at 2.7-4.3V in the first week of charge and discharge curves at a rate of 0.2C in a normal temperature environment;
  • Fig. 2 is the Li/Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 battery of Example 6 at a normal temperature environment at a rate of 0.05C and a charge-discharge curve of 2.0-4.8V for the first cycle;
  • Fig. 3 is a charge-discharge curve of the Li 4 Ti 5 O 12 /LiFePO 4 battery in Example 8 at a rate of 0.2C at a rate of 2.5-0V in the first cycle at room temperature.
  • the invention provides a nonaqueous electrolytic solution, which includes a nonaqueous organic solvent and does not include lithium salt.
  • the lithium salt is selected from one or more of lithium hexafluorophosphate LiPF 6 , lithium bistrifluoromethanesulfonimide LiTFSI, lithium bisfluorosulfonimide LiFSI, LiAsF 6 , LiBF 4 , and LiClO 4 .
  • the non-aqueous organic solvent is selected from one or more of non-fluorinated solvents and fluorinated solvents.
  • the non-fluorinated solvent is selected from one or more of carbonate solvents, carboxylate solvents, cyclic lactone solvents, ether solvents, ionic liquids, and phosphate ester solvents.
  • Described carbonate solvent is selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, vinylene carbonate , one or more of ethylene vinylene carbonate;
  • the cyclic lactone compound is selected from gamma-butyrolactone, 1,3-propane sultone, 1,4-propane sultone One or more;
  • the ether solvent is selected from one or more of dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane;
  • the phosphate ester solvent One or more selected from trimethyl phosphate TMP and methyl methyl phosphate DMMP.
  • the fluorinated solvent is selected from one or more of fluorocarbonate solvents, fluorocarboxylate solvents, and fluoroether solvents.
  • the fluorocarbonate solvent is selected from one or more of fluoroethylene carbonate and bisfluoroethylene carbonate;
  • the fluorocarboxylate solvent is selected from methyl trifluoropropionate, trifluoroethylene One or more of ethyl propionate, methyl trifluoroacetate, ethyl trifluoroacetate, methyl pentafluoropropionate, ethyl pentafluoropropionate;
  • the fluorinated ether solvent is selected from nonafluoro-n- One or more of butyl methyl ether, nonafluoroisobutyl methyl ether, heptafluoro-n-propyl methyl ether, heptafluoroisopropyl methyl ether, and hexafluoroisopropyl methyl ether.
  • the non-aqueous electrolytic solution further includes additives.
  • the additive is selected from fluoroethylene carbonate FEC, VC, succinic anhydride compounds, maleic anhydride compounds, caprolactam compounds, succinonitrile, three (pentafluorophenyl) borane, isocyanate compounds, sulfur-containing One or more of lactone compounds, sulfolane, tris(pentafluorophenyl)phosphorous acid, fluorophosphate, tetramethoxytitanium, tris(hexafluoroisopropyl)phosphate, and ionic salts.
  • the sulfur-containing lactone compound is preferably 1,3-propanesultone.
  • the ionic salt is selected from one or more of nitrates, carbonates, fluorides, and sulfates.
  • Described nitrate is selected from one or more in lithium nitrate, sodium nitrate, potassium nitrate, zinc nitrate, aluminum nitrate, magnesium nitrate, copper nitrate, ammonium nitrate;
  • Described carbonate is selected from lithium carbonate, sodium carbonate, One or more of potassium carbonate, zinc carbonate, aluminum carbonate, magnesium carbonate, copper carbonate, ammonium carbonate;
  • the fluoride salt is selected from lithium fluoride, sodium fluoride, potassium fluoride, zinc fluoride, aluminum fluoride, One or more of magnesium fluoride, copper fluoride, ammonium fluoride;
  • the sulfate is selected from one or more of lithium sulfate, sodium sulfate, potassium sulfate, zinc sulfate, aluminum sulfate, magnesium sulfate, copper sulfate, ammonium sulfate Several kinds.
  • the mass percentage of the additive in the non-aqueous organic solvent is 0.05% to 50%, preferably 0.05%, 0.1%, 0.5%, 1.0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or any value between 0.05% and 50%.
  • the present invention also provides a battery, including a positive electrode, a separator, a negative electrode, an electrolyte and a battery casing, the electrolyte is selected from the above non-aqueous electrolytes, and at least one of the positive electrode and the negative electrode contains lithium element.
  • the lithium-containing compound is selected from lithium-containing positive electrode active materials, lithium metal, lithiated graphite, lithiated silicon, lithium salt LiPF 6 , LiCl, LiNO 3 , Li 2 CO 3 , Li 2 O, LiTFSI, LiFSI, One or more of LiPO 2 F 2 , LiBF 4 , LiClO 4 , lithium bisoxalate borate, lithium difluorooxalate borate, lithium trifluorooxalate phosphate, lithium difluorooxalate phosphate, lithium tetrafluorooxalate phosphate, lithium-containing organic matter kind, the lithium-containing organic matter is selected from one or more of lithium methyl carbonate, lithium ethyl carbonate;
  • the lithium-containing positive electrode active material is selected from one or more of lithium cobaltate, lithium iron phosphate, lithium manganate, ternary positive electrode materials, and lithium-rich positive electrode materials.
  • Lithium-containing substances can also be mixed in the positive and negative electrode materials, preferably lithium element, lithium-containing compound, lithium-containing organic matter, the lithium-containing compound is selected from lithium salts LiPF 6 , LiCl, LiNO 3 , Li 2 CO 3 , Li 2 O, LiTFSI, LiFSI, LiPO 2 F 2 , LiBF 4 , LiClO 4 , lithium bisoxalate borate, lithium difluorooxalate borate LiDFOB, lithium trifluorooxalate phosphate, lithium difluorooxalate phosphate, tetrafluorooxalate phosphate
  • the lithium-containing organic substances are selected from one or more of lithium methyl carbonate and lithium ethyl carbonate.
  • the mass percentage of the lithium-containing substance in the electrode is 0.05% to 20%, preferably 0.05%, 0.1%, 0.5%, 1.0%, 5%, 10%, 15%, 20%, or 0.05% to 20% Any value between %.
  • the invention provides a novel non-aqueous electrolyte system.
  • the non-aqueous electrolytic solution does not include any lithium salt, and only consists of a single or mixed organic solvent.
  • the nonaqueous electrolytic solution system of the present invention may contain additives.
  • the positive electrode material can be a lithium ion battery positive electrode material, preferably lithium cobaltate, lithium ferrous phosphate, Lithium manganese oxide, ternary positive electrode materials, lithium-rich positive electrode materials, etc.
  • negative electrode materials are metal lithium, lithiated graphite, lithiated silicon negative electrodes, etc.
  • Materials containing lithium elements can also be mixed in the positive and negative electrode materials of the battery of the present invention, such as lithium simple substance, lithium-containing compounds (may include lithium salts LiPF 6 , LiCl, LiNO 3 , Li 2 CO 3 , Li 2 O, LiTFSI, LiPO 2 F 2 etc).
  • the non-aqueous electrolytic solution provided in the present invention does not contain lithium salts. It is applied to the lithium ion battery, which can ensure the performance of the battery under normal conditions. On the one hand, the cost of the battery can be greatly reduced. On the other hand, due to the It does not contain lithium salts that are unstable in the air, which can greatly simplify the cost of electrolyte use, transportation and storage in the battery assembly process and reduce environmental pollution.
  • the lithium in the positive electrode material is extracted through the non-aqueous electrolyte and embedded in the negative electrode material; the discharge process is just the opposite.
  • the positive electrode is a sulfur positive electrode
  • the lithium in the negative electrode material is released through the non-aqueous electrolyte, and the composite into the positive electrode material; the charging process is just the opposite.
  • the deintercalated lithium ions pass through the non-aqueous electrolyte and act as conductive ions at the same time, which does not affect the normal charge and discharge behavior of the battery.
  • the non-aqueous electrolyte provided by the present invention can form an effective interface film on the surface of the positive and negative electrodes, so the lithium-ion battery prepared by the non-aqueous electrolyte provided by the present invention ensures good cycle performance, and can greatly reduce and simplify the electrolysis process. Costs in all aspects of liquid configuration, storage, transportation and use and improved environmental safety.
  • the experimental results show that the lithium ion battery prepared by the nonaqueous electrolytic solution provided by the invention has the equivalent charging and discharging electrochemical behavior of the lithium ion battery of the conventional electrolyte, and the lithium ion battery prepared by the nonaqueous electrolytic solution provided by the invention has a relatively Good cycle performance.
  • non-aqueous electrolyte and the battery provided by the present invention will be described below in conjunction with examples, and the scope of protection of the present invention is not limited by the following examples.
  • non-aqueous electrolyte solution I namely EC-DMC (volume ratio 1:1).
  • the prepared non-aqueous electrolyte solution was added to a 2032 button battery whose positive pole was lithium cobalt oxide positive pole material LiCoO 2 , negative pole was a lithium sheet, and the diaphragm was a Celgard polypropylene diaphragm, and the battery was tested. Under the condition of 2.7 ⁇ 4.3V and 0.2C current density, the charge and discharge test was carried out on the battery. The test results are shown in Figure 1, Table 1 and Table 2.
  • non-aqueous electrolyte solution III i.e. DOL-DME ( Volume ratio 1:1).
  • the prepared non-aqueous electrolyte solution was added to a 2032 button battery with a lithium iron phosphate cathode material LiFePO 4 as the positive electrode, a lithium sheet as the negative electrode, and a Celgard polypropylene separator as the diaphragm, and the battery was tested. Under the condition of 2.0 ⁇ 3.8V and 0.2C current density, the charge and discharge test was carried out on the battery, and the test results are shown in Table 1 and Table 2.
  • the prepared non-aqueous electrolyte solution was added to a 2032 button battery with a lithium iron phosphate cathode material LiFePO 4 as the positive electrode, a lithium sheet as the negative electrode, and a Celgard polypropylene separator as the diaphragm, and the battery was tested. Under the condition of 2.0 ⁇ 3.8V and 0.2C current density, the charge and discharge test was carried out on the battery, and the test results are shown in Table 1 and Table 2.
  • non-aqueous electrolyte V i.e. FEC-TMP (volume ratio 3:7 ).
  • the prepared non-aqueous electrolyte solution was added to a 2032 button battery whose positive pole was lithium cobalt oxide positive pole material LiCoO 2 , negative pole was a lithium sheet, and the diaphragm was a Celgard polypropylene diaphragm, and the battery was tested. Under the condition of 2.7 ⁇ 4.3V and 0.2C current density, the charge and discharge test was carried out on the battery, and the test results are shown in Table 1 and Table 2.
  • non-aqueous electrolyte V i.e. FEC-TMP (volume ratio 3:7 ).
  • FEC-TMP volume ratio 3:7
  • the prepared non-aqueous electrolyte was added to a 2032 button battery with a lithium-rich positive electrode material Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 as the positive pole, a lithium sheet as the negative pole, and a Celgard polypropylene diaphragm as the separator. test. Under the condition of 2.0 ⁇ 4.8V and 0.05C current density, charge and discharge the battery, the test results are shown in Figure 2 and Table 1.
  • non-aqueous electrolyte VII namely FEC-TMP (volume ratio 3:7, in air).
  • the obtained non-aqueous electrolyte solution was added to a 2032 button battery whose positive electrode was lithium iron phosphate positive electrode material LiFePO 4 , negative electrode was Li 4 Ti 5 O 12 , and the separator was Celgard polypropylene separator, and the battery was tested. Under the condition of 2.5 ⁇ 0V and 0.2C current density, charge and discharge test was carried out on the battery. The test results are shown in Figure 3 and Table 1.
  • the molar concentration in (DMC) is 1mol/L.
  • the S-3015A electrolyte was added to a 2032 button cell whose positive electrode was lithium cobalt oxide positive electrode material LiCoO 2 , the negative electrode was a lithium sheet, and the separator was a Celgard polypropylene separator. test. Under the condition of 2.7 ⁇ 4.3V and 0.2C current density, the battery is charged and discharged. The test results are shown in Figure 1 and Table 1.
  • Table 1 is a comparison of the first-week charge-discharge specific capacity and first-week efficiency of the batteries of Examples 1-8 and Comparative Example 1. From the test data in Table 1, it can be seen that the reversible discharge specific capacity of the first week of the battery using the non-aqueous electrolyte without lithium salt is significantly increased, and the efficiency of the first week is greatly improved, and its cycle performance is significantly better than that of the conventional carbonate electrolysis.
  • the battery of the comparative example 1 of the liquid, meanwhile, the cycle performance of the battery of Example 3 using the non-aqueous electrolyte of the additive is obviously better than the battery of Example 1 of the lithium-salt-free non-aqueous electrolyte without the additive.
  • Example 8 since the electrolyte system does not contain lithium salts that are unstable in the air, it can greatly simplify the cost of electrolyte use, transportation and storage in the battery assembly process and reduce environmental pollution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种非水电解液,包括非水有机溶剂且不包括锂盐。本发明提供的非水电解液不包含锂盐,电池的电极中至少有一个含有锂元素。在充放电过程中,电极中脱嵌的锂离子经过非水电解液同时充当导电离子的作用,不影响电池正常充放电行为。同时本发明提供的非水电解液可以在正负极表面形成有效的界面膜,因此本发明提供的非水电解液制备的锂离子电池保证了较好的循环性能,同时可以大大降低和简化电解液配置、储存、运输和使用各方面的成本及提高环境安全性。

Description

一种非水电解液以及一种电池
本申请要求于2021年09月10日提交中国专利局、申请号为202111062932.5、发明名称为“一种非水电解液以及一种电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于锂电池技术领域,具体涉及一种非水电解液以及一种电池。
背景技术
当前,锂离子电池已广泛应用于新能源汽车和储能等领域。商品化的锂离子电池所采用的电解液通常由有机碳酸酯混合溶剂以及溶于其中的锂盐如六氟磷酸锂LiPF 6所组成。锂盐一直被认为是锂离子电池电解液中必不可少的组成部分。近年来,随着锂离子电池产量急剧增加,对锂盐的需求也越来越多,导致其成本的居高不下。另一方面,在实际电池中存在微量的水和乙醇,LiPF 6锂盐在不太高的温度下(80~100℃),会吸热融化、分解,生产LiF和PF 5。PF 5作为一种强亲核试剂,会进攻有机碳酸酯溶剂分子和电解液中痕量水的氧原子上的孤对电子,导致它们的放热分解,生成大量高毒性的氟磷酸烷基酯的同时,释放出大量的热。锂盐在实际应用过程中的不稳定性给锂离子电池电解液的配置、储存、运输等增加了困难,同时对环境及从业人员的身体健康也产生较难消除的危害。虽然人们尝试开发了一些其它稳定性的锂盐如LiTFSI等,但其成本将更高。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种非水电解液以及一种电池,本发明提供的非水电解液在保证锂离子电池正常性能的条件下,大大降低和简化电解液配置、储存、运输和使用各方面的成本及提高环境安全性。
本发明提供了一种非水电解液,包括非水有机溶剂且不包括锂盐。
优选的,所述锂盐选自六氟磷酸锂LiPF 6,双三氟甲烷磺酰亚胺锂LiTFSI,双氟磺酰亚胺锂LiFSI,LiAsF 6,LiBF 4,LiClO 4中的一种或者多种。
优选的,所述非水有机溶剂选自选自碳酸酯类溶剂、羧酸酯类溶剂、环内酯类溶剂、醚类溶剂、离子液体、磷酸酯类溶剂、氟代碳酸酯类溶剂、氟代羧酸酯类溶剂、氟代醚类溶剂中一种或几种。
优选的,所述碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚乙烯酯、碳酸乙烯亚乙烯酯中的一种或多种;所述环内酯类化合物选自γ-丁内酯、1,3-丙烷磺酸内酯、1,4-丙烷磺酸内酯中的一种或多种;所述醚类溶剂选自二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环中的一种或几种;所述磷酸酯类溶剂选自磷酸三甲酯TMP、甲基磷酸亚甲酯DMMP中的一种或多种;所述氟代碳酸酯类溶剂选自氟代碳酸乙烯酯、双氟代碳酸乙烯酯中的一种或多种;所述氟代羧酸酯类溶剂选自三氟丙酸甲酯、三氟丙酸乙酯、三氟乙酸甲酯、三氟乙酸乙酯、五氟丙酸甲酯、五氟丙酸乙酯中的一种或多种;所述氟代醚类溶剂选自九氟正丁基甲基醚、九氟异丁基甲基醚、七氟正丙基甲基醚、七氟异丙基甲基醚、六氟异丙基甲基醚中一种或多种。
优选的,所述非水电解液还包括添加剂。
优选的,所述添加剂选自氟代碳酸乙烯酯FEC、VC、丁二酸酐类化合物、马来酸酐类化合物、己内酰胺类化合物、丁二腈、三(五氟苯基)硼烷、异氰酸酯类化合物、含硫的内酯化合物、环丁砜,三(五氟苯基)亚磷酸,氟代磷酸酯,四甲氧基钛,三(六氟异丙基)磷酸酯、离子盐中一种或多种。
优选的,所述离子盐选自硝酸盐、碳酸盐、氟化盐、硫酸盐的一种或多种。
优选的,所述添加剂在所述非水有机溶剂中的质量百分数为0.05%~50%。
本发明还提供了一种电池,包括正极、隔膜、负极、电解液和电池外壳,所述电解液选自上述非水电解液,所述正极和负极至少一个含有锂元素。
优选的,所述含锂元素的化合物选自含锂的正极活性材料、金属锂、锂化石墨、锂化硅、锂盐LiPF 6,LiCl,LiNO 3,Li 2CO 3,Li 2O,LiTFSI,LiFSI,LiPO 2F 2,LiBF 4,LiClO 4,双草酸硼酸锂、二氟草酸硼酸锂、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、含锂的有机物中的一种或多种;
所述含锂元素的物质在电极中质量百分数为0.05%~20%。
与现有技术相比,本发明提供了一种非水电解液,包括非水有机溶剂且不包括锂盐。本发明提供的非水电解液不包含锂盐,电池的电极中至少有一个含有锂元素。在充放电过程中,电极中脱嵌的锂离子经过非水电解液同时充当导电离子的作用,不影响电池正常充放电行为。同时本发明提供的非水电解液可 以在正负极表面形成有效的界面膜,因此本发明提供的非水电解液制备的锂离子电池保证了较好的循环性能,同时可以大大降低和简化电解液配置、储存、运输和使用各方面的成本及提高环境安全性。
实验结果表明,本发明提供的非水电解液制备的锂离子电池具有与常规电解液的锂离子电池相当的充放电电化学行为,且本发明提供的非水电解液制备的锂离子电池具有较好的循环性能。
附图说明
图1为实施例1和对比例1的LiCoO 2/Li电池在常温环境下0.2C倍率下2.7~4.3V首周充放电曲线比较图;
图2为实施例6的Li/Li[Li 0.144Ni 0.136Co 0.136Mn 0.544]O 2电池在常温环境下0.05C倍率下2.0~4.8V首周充放电曲线图;
图3为实施例8的Li 4Ti 5O 12/LiFePO 4电池在常温环境下0.2C倍率下2.5~0V首周充放电曲线图。
具体实施方式
本发明提供了一种非水电解液,包括非水有机溶剂且不包括锂盐。
在本发明中,所述锂盐选自六氟磷酸锂LiPF 6,双三氟甲烷磺酰亚胺锂LiTFSI,双氟磺酰亚胺锂LiFSI,LiAsF 6,LiBF 4,LiClO 4中的一种或者多种。
在本发明中,所述非水有机溶剂选自非氟代溶剂和氟代溶剂中一种或多种。
其中,所述非氟代溶剂选自碳酸酯类溶剂、羧酸酯类溶剂、环内酯类溶剂、醚类溶剂、离子液体、磷酸酯类溶剂中一种或多种。
所述碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚乙烯酯、碳酸乙烯亚乙烯酯中的一种或多种;所述环内酯类化合物选自γ-丁内酯、1,3-丙烷磺酸内酯、1,4-丙烷磺酸内酯中的一种或多种;所述醚类溶剂选自二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环中的一种或几种;所述磷酸酯类溶剂选自磷酸三甲酯TMP、甲基磷酸亚甲酯DMMP中的一种或多种。
所述氟代溶剂选自氟代碳酸酯类溶剂、氟代羧酸酯类溶剂、氟代醚类溶剂中一种或几种。
所述氟代碳酸酯类溶剂选自氟代碳酸乙烯酯、双氟代碳酸乙烯酯中的一种或多种;所述氟代羧酸酯类溶剂选自三氟丙酸甲酯、三氟丙酸乙酯、三氟乙酸甲酯、三氟乙酸乙酯、五氟丙酸甲酯、五氟丙酸乙酯中的一种或多种;所述氟代醚类溶剂选自九氟正丁基甲基醚、九氟异丁基甲基醚、七氟正丙基甲基醚、七氟异丙基甲基醚、六氟异丙基甲基醚中一种或多种。
在本发明的一些具体实施方式中,所述非水电解液还包括添加剂。
所述添加剂选自氟代碳酸乙烯酯FEC、VC、丁二酸酐类化合物、马来酸酐类化合物、己内酰胺类化合物、丁二腈、三(五氟苯基)硼烷、异氰酸酯类化合物、含硫的内酯化合物、环丁砜,三(五氟苯基)亚磷酸,氟代磷酸酯,四甲氧基钛,三(六氟异丙基)磷酸酯、离子盐中一种或多种。所述含硫的内酯化合物优选为1,3-丙磺内酯。
所述离子盐选自硝酸盐、碳酸盐、氟化盐、硫酸盐的一种或多种。
所述硝酸盐选自硝酸锂、硝酸钠、硝酸钾、硝酸锌、硝酸铝、硝酸镁、硝酸铜、硝酸铵中的一种或多种;所述碳酸盐选自碳酸锂、碳酸钠、碳酸钾、碳酸锌、碳酸铝、碳酸镁、碳酸铜、碳酸铵中的一种或多种;氟化盐选自氟化锂、氟化钠、氟化钾、氟化锌、氟化铝、氟化镁、氟化铜、氟化铵中的一种或多种;硫酸盐选自硫酸锂、硫酸钠、硫酸钾、硫酸锌、硫酸铝、硫酸镁、硫酸铜、硫酸铵中一种或几种。
所述添加剂在所述非水有机溶剂中的质量百分数为0.05%~50%,优选为0.05%、0.1%、0.5%、1.0%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%,或0.05%~50%之间的任意值。
本发明还提供了一种电池,包括正极、隔膜、负极、电解液和电池外壳,所述电解液选自上述非水电解液,所述正极和负极至少一个含有锂元素。
所述含锂元素的化合物选自含锂的正极活性材料、金属锂、锂化石墨、锂化硅、锂盐LiPF 6,LiCl,LiNO 3,Li 2CO 3,Li 2O,LiTFSI,LiFSI,LiPO 2F 2,LiBF 4,LiClO 4,双草酸硼酸锂、二氟草酸硼酸锂、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、含锂的有机物中的一种或多种,所述含锂的有机物选自甲基碳酸锂、乙基碳酸锂中的一种或多种;
其中,所述含锂的正极活性材料选自钴酸锂、磷酸亚铁锂、锰酸锂、三元 正极材料、富锂正极材料中的一种或多种。
在所述正负极材料中也可以混合含锂元素的物质,优选为锂单质、含锂化合物、含锂的有机物,所述含锂化合物选自锂盐LiPF 6,LiCl,LiNO 3,Li 2CO 3,Li 2O,LiTFSI,LiFSI,LiPO 2F 2,LiBF 4,LiClO 4,双草酸硼酸锂、二氟草酸硼酸锂LiDFOB、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、含锂的有机物中的一种或多种,所述含锂的有机物选自甲基碳酸锂、乙基碳酸锂中的一种或多种。
所述含锂元素的物质在电极中质量百分数为0.05%~20%,优选为0.05%、0.1%、0.5%、1.0%、5%、10%、15%、20%,或0.05%~20%之间的任意值。
本发明提供了一种的非水电解液新体系。所述的非水电解液,不包括任何锂盐,仅由单一或混合有机溶剂组成。本发明的非水电解液体系可以含有添加剂。本发明的非水电解液应用的电池中,电池的正极和负极中必须有一个材料为含锂元素的物质,正极材料可以为锂离子电池正极材料,优选为钴酸锂、磷酸亚铁锂、锰酸锂、三元正极材料、富锂正极材料等,负极材料为金属锂、锂化石墨、锂化硅负极等。本发明电池的正负极材料中还可混合含锂元素的物质,如锂单质、含锂化合物(可以包括锂盐LiPF 6,LiCl,LiNO 3,Li 2CO 3,Li 2O,LiTFSI,LiPO 2F 2等)。在本发明中提供的非水电解液不含锂盐,应用于所述的锂离子电池,可以保证电池正常条件下的性能,一方面可以大大降低电池的成本,另一方面由于电解液体系中不含在空气中不稳定的锂盐,可以极大地简化电池组装过程中电解液使用、运输及储存等过程的成本和减少环境污染。
在本发明的一些具体实施方式中,该电池在充电过程中,正极材料中的锂脱出经过非水电解液,嵌入到负极材料中;放电过程,正好相反。在本发明的一些具体实施方式中,当负极材料中包括锂如直接以金属锂片为负极,正极为硫正极,在电池首次放电过程中,负极材料中的锂脱出经过非水电解液,复合到正极材料中;充电过程,正好相反。
在充放电过程中,脱嵌的锂离子经过非水电解液同时充当导电离子的作用,不影响电池正常充放电行为。同时本发明提供的非水电解液可以在正负极表面形成有效的界面膜,因此本发明提供的非水电解液制备的锂离子电池保证了较好的循环性能,同时可以大大降低和简化电解液配置、储存、运输和使用 各方面的成本及提高环境安全性。
实验结果表明,本发明提供的非水电解液制备的锂离子电池具有与常规电解液的锂离子电池相当的充放电电化学行为,且本发明提供的非水电解液制备的锂离子电池具有较好的循环性能。
为了进一步理解本发明,下面结合实施例对本发明提供的非水电解液以及电池进行说明,本发明的保护范围不受以下实施例的限制。
本发明以下实施例所用到的试剂均为市售商品。
实施例1
在充满氩气的手套箱中,将50mL的碳酸乙烯酯EC、50mL的碳酸二甲酯DMC混合均匀,得到混合有机溶剂为非水电解液I,即EC-DMC(体积比1:1)。将制备的非水电解液加入到正极为钴酸锂正极材料LiCoO 2,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.7~4.3V以0.2C电流密度下,对电池进行充放电测试,测试结果见图1、表1和表2。
实施例2
在充满氩气的手套箱中,将50mL的碳酸乙烯酯EC、50mL的碳酸二甲酯DMC混合均匀,将LiNO 3在25℃、搅拌的条件下加入到所述有机溶剂中,所述LiNO 3在所述电解液中的质量百分比浓度为1%,得到非水电解液II,即1%LiNO 3/EC-DMC(体积比1:1)。将制备的非水电解液加入到正极为钴酸锂正极材料LiCoO 2,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.7~4.3V以0.2C电流密度下,对电池进行充放电测试,测试结果见表1和表2。
实施例3
在充满氩气的手套箱中,将50mL的1,3-二氧戊环DOL、50mL的二甲氧基乙烷DME混合均匀,得到混合有机溶剂为非水电解液III,即DOL-DME(体积比1:1)。将制备的非水电解液加入到正极为磷酸亚铁锂正极材料LiFePO 4,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.0~3.8V以0.2C电流密度下,对电池进行充放电测试,测试结果见表1和表2。
实施例4
在充满氩气的手套箱中,将50mL的1,3-二氧戊环DOL、50mL的二甲氧基乙烷DME混合均匀,将二氟草酸硼酸锂LiDFOB在25℃、搅拌的条件下加入到所述有机溶剂中,所述LiDFOB在所述电解液中的质量百分比浓度为0.1%,得到非水电解液IV,即0.1%LiDFOB/DOL-DME(体积比1:1)。将制备的非水电解液加入到正极为磷酸亚铁锂正极材料LiFePO 4,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.0~3.8V以0.2C电流密度下,对电池进行充放电测试,测试结果见表1和表2。
实施例5
在充满氩气的手套箱中,将30mL的氟代碳酸乙烯酯FEC、70mL的磷酸三甲酯TMP混合均匀,得到混合有机溶剂为非水电解液V,即FEC-TMP(体积比3:7)。将制备的非水电解液加入到正极为钴酸锂正极材料LiCoO 2,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.7~4.3V以0.2C电流密度下,对电池进行充放电测试,测试结果见表1和表2。
实施例6
在充满氩气的手套箱中,将30mL的氟代碳酸乙烯酯FEC、70mL的磷酸三甲酯TMP混合均匀,得到混合有机溶剂为非水电解液V,即FEC-TMP(体积比3:7)。将制备的非水电解液加入到正极为富锂正极材料Li[Li 0.144Ni 0.136Co 0.136Mn 0.544]O 2,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.0~4.8V以0.05C电流密度下,对电池进行充放电测试,测试结果见图2和表1。
实施例7
在充满氩气的手套箱中,将30mL的氟代碳酸乙烯酯FEC、70mL的磷酸三甲酯TMP混合均匀,将LiNO 3在25℃、搅拌的条件下加入到所述有机溶剂中,所述LiNO 3在所述电解液中的质量百分比浓度为10%,得到非水电解液VI,即10%LiNO3/FEC-TMP(体积比3:7)。将制备的非水电解液加入到正极为钴酸锂正极材料LiCoO 2,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.7~4.3V以0.2C电流密度下,对电池进行充放电测试,测试结果见表1和表2。
实施例8
在常规环境(如温度为30℃,湿度为84%)空气中,将30mL的氟代碳酸乙烯酯FEC、70mL的磷酸三甲酯TMP混合均匀,得到混合有机溶剂为非水电解液VII,即FEC-TMP(体积比3:7,空气中)。将得到的非水电解液加入到正极为磷酸亚铁锂正极材料LiFePO 4,负极为Li 4Ti 5O 12,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.5~0V以0.2C电流密度下,对电池进行充放电测试,测试结果见图3和表1。
对比例1
采用市售的S-3015A型号的碳酸酯电解液,其主要组成成分为体积百分比30%的EC、70%的DMC和LiPF 6,所述LiPF 6在碳酸乙烯酯(EC)和碳酸二甲酯(DMC)中的摩尔浓度为1mol/L。在充满氩气的手套箱中,将S-3015A型号的电解液加入到正极为钴酸锂正极材料LiCoO 2,负极为锂片,隔膜为Celgard聚丙烯隔膜的2032扣式电池中,对电池进行测试。在2.7~4.3V以0.2C电流密度下,对电池进行充放电测试,测试结果见图1和表1。
表1为实施例1~8和对比例1的电池首周充放电比容量和首周效率比较。从表1的测试数据可知,采用无锂盐的非水电解液的实施例电池的首周可逆放电比容量明显增加,且首周效率大大提高,且其循环性能明显优于现常规碳酸酯电解液的对比例1的电池,同时,采用添加剂的非水电解液的实施例3电池的循环性能明显优于不加添加剂的无锂盐非水电解液的实施例1电池。
附图1和表1为实施例1和对比例1的LiCoO 2/Li电池在常温环境下0.2C倍率下2.7~4.3V下的首周充放电曲线比较,图中曲线△为实施例1电池的首周充放电曲线,首周库伦效率为92.34%,而曲线□为对比例1电池的首周充放电曲线曲线,首周库伦效率为89.16%。由图1和表1可知,本发明非水电解液制备的LiCoO 2/Li电池常温循环下的首周充放电性能明显优于常规电解液制备的电池首周电化学行为,首周效率更高。表2为实施例1、实施例2、实施例5、实施例7和对比例1的LiCoO 2/Li电池在常温环境下0.2C倍率下2.7~4.3V下的充放电循环性能比较。其中实施例2和实施例7中非水电解液均添加剂了LiNO 3作为添加剂。从表2可知,循环50周后,电池在无盐非水电解液I、II、V、VI和常规电解液中放电比容量分别为137.9、144.6、133.6、141.8和 129.2mAh g -1,相应的容量保持率分别为95.04%、95.13%、87.61%、95.17%和90.35%,表明含有添加剂硝酸锂的电解液电池具有最优异的循环稳定性。
实施例8中由于电解液体系中不含在空气中不稳定的锂盐,可以极大地简化电池组装过程中电解液使用、运输及储存等过程的成本和减少环境污染。实施例8电池完全可以在常规环境(如温度为30℃,湿度为84%)空气中组装,装有混合有机溶剂FEC:TMP=3:7(v/v)非水电解液III的电池Li 4Ti 5O 12/LiFePO 4在2.5~0V以0.2C电流密度下,首周充放电比容量分别为186.7和145.2mAh g -1,显示较好的电化学性能。
表1实施例1~8和对比例1的电池首周充放电比容量和首周效率比较
Figure PCTCN2021130031-appb-000001
表2实施例1、实施例2、实施例5、实施例7和对比例1电池的50周循环性能比较
Figure PCTCN2021130031-appb-000002
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种非水电解液,其特征在于,包括非水有机溶剂且不包括锂盐。
  2. 根据权利要求1所述的非水电解液,其特征在于,所述锂盐选自六氟磷酸锂LiPF 6,双三氟甲烷磺酰亚胺锂LiTFSI,双氟磺酰亚胺锂LiFSI,LiAsF 6,LiBF 4,LiClO 4中的一种或者多种。
  3. 根据权利要求1所述的非水电解液,其特征在于,所述非水有机溶剂选自选自碳酸酯类溶剂、羧酸酯类溶剂、环内酯类溶剂、醚类溶剂、离子液体、磷酸酯类溶剂、氟代碳酸酯类溶剂、氟代羧酸酯类溶剂、氟代醚类溶剂中一种或几种。
  4. 根据权利要求3所述的非水电解液,其特征在于,所述碳酸酯类溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚乙烯酯、碳酸乙烯亚乙烯酯中的一种或多种;所述环内酯类化合物选自γ-丁内酯、1,3-丙烷磺酸内酯、1,4-丙烷磺酸内酯中的一种或多种;所述醚类溶剂选自二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环中的一种或几种;所述磷酸酯类溶剂选自磷酸三甲酯TMP、甲基磷酸亚甲酯DMMP中的一种或多种;所述氟代碳酸酯类溶剂选自氟代碳酸乙烯酯、双氟代碳酸乙烯酯中的一种或多种;所述氟代羧酸酯类溶剂选自三氟丙酸甲酯、三氟丙酸乙酯、三氟乙酸甲酯、三氟乙酸乙酯、五氟丙酸甲酯、五氟丙酸乙酯中的一种或多种;所述氟代醚类溶剂选自九氟正丁基甲基醚、九氟异丁基甲基醚、七氟正丙基甲基醚、七氟异丙基甲基醚、六氟异丙基甲基醚中一种或多种。
  5. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包括添加剂。
  6. 根据权利要求5所述的非水电解液,其特征在于,所述添加剂选自氟代碳酸乙烯酯FEC、VC、丁二酸酐类化合物、马来酸酐类化合物、己内酰胺类化合物、丁二腈、三(五氟苯基)硼烷、异氰酸酯类化合物、含硫的内酯化合物、环丁砜,三(五氟苯基)亚磷酸,氟代磷酸酯,四甲氧基钛,三(六氟异丙基)磷酸酯、离子盐中一种或多种。
  7. 根据权利要求6所述的非水电解液,其特征在于,所述离子盐选自硝酸盐、碳酸盐、氟化盐、硫酸盐的一种或多种。
  8. 根据权利要求5所述的非水电解液,其特征在于,所述添加剂在所述非水有机溶剂中的质量百分数为0.05%~50%。
  9. 一种电池,其特征在于,包括正极、隔膜、负极、电解液和电池外壳,所述电解液选自权利要求1~8任意一项所述的非水电解液,所述正极和负极至少一个含有锂元素。
  10. 根据权利要求9所述的电池,其特征在于,所述含锂元素的化合物选自含锂的正极活性材料、金属锂、锂化石墨、锂化硅、锂盐LiPF 6,LiCl,LiNO 3,Li 2CO 3,Li 2O,LiTFSI,LiFSI,LiPO 2F 2,LiBF 4,LiClO 4,双草酸硼酸锂、二氟草酸硼酸锂、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、含锂的有机物中的一种或多种;
    所述含锂元素的物质在电极中质量百分数为0.05%~20%。
PCT/CN2021/130031 2021-09-10 2021-11-11 一种非水电解液以及一种电池 WO2023035399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111062932.5 2021-09-10
CN202111062932.5A CN115799628A (zh) 2021-09-10 2021-09-10 一种非水电解液以及一种电池

Publications (1)

Publication Number Publication Date
WO2023035399A1 true WO2023035399A1 (zh) 2023-03-16

Family

ID=85417147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130031 WO2023035399A1 (zh) 2021-09-10 2021-11-11 一种非水电解液以及一种电池

Country Status (2)

Country Link
CN (1) CN115799628A (zh)
WO (1) WO2023035399A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142155A (ja) * 2001-10-31 2003-05-16 Hitachi Maxell Ltd エネルギー貯蔵素子
CN102082300A (zh) * 2009-11-27 2011-06-01 三星Sdi株式会社 制造锂二次电池的方法
CN103247790A (zh) * 2012-02-07 2013-08-14 三星Sdi株式会社 负极活性物质、含其的可再充电锂电池和其形成方法
CN103718368A (zh) * 2011-05-24 2014-04-09 赛昂能源有限公司 电化学电池、其组件以及它们的制备方法和应用
KR20160002173A (ko) * 2014-06-30 2016-01-07 주식회사 엘지화학 리튬염을 포함하는 다공성 코팅층을 구비하는 이차 전지용 분리막 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142155A (ja) * 2001-10-31 2003-05-16 Hitachi Maxell Ltd エネルギー貯蔵素子
CN102082300A (zh) * 2009-11-27 2011-06-01 三星Sdi株式会社 制造锂二次电池的方法
CN103718368A (zh) * 2011-05-24 2014-04-09 赛昂能源有限公司 电化学电池、其组件以及它们的制备方法和应用
CN103247790A (zh) * 2012-02-07 2013-08-14 三星Sdi株式会社 负极活性物质、含其的可再充电锂电池和其形成方法
KR20160002173A (ko) * 2014-06-30 2016-01-07 주식회사 엘지화학 리튬염을 포함하는 다공성 코팅층을 구비하는 이차 전지용 분리막 및 이의 제조 방법

Also Published As

Publication number Publication date
CN115799628A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN108172902B (zh) 丙烯酸乙酯类化合物用作电解液添加剂、电解液、基于铝负极的二次电池及其制备方法
CA2693692C (en) Non-aqueous electrolytic solutions and electrochemical cells comprising the same
US8808404B2 (en) Method for making electrochemical cells
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
US20110159379A1 (en) Secondary battery
US20070231706A1 (en) Non-Aqueous Electrolytic Solution With Mixed Salts
CN108808087B (zh) 一种含有磷酰亚胺锂的电解液及使用该电解液的电池
CN110112465B (zh) 富锂锰基正极材料体系电池用电解液及锂离子电池
US20190214680A1 (en) Lithium ion battery and electrolytic soluton thereof
CN105720304A (zh) 一种非水电解液和一种锂离子电池
CN105206873B (zh) 一种含有磷腈氟烷基磺酰亚胺锂的电解液及使用该电解液的电池
CN108258317B (zh) 一种锂硫电池
CN114122491A (zh) 锂离子电池
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN114614088B (zh) 一种容量补偿型电解液添加剂、制备方法、应用以及含有该添加剂的电解液和二次电池
CN111082038B (zh) 一种锂电池用低硼含量锂硼合金电极材料及应用
KR20010095277A (ko) 비수 전해질 전지 및 비수 전해액
KR20180114631A (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2021047405A1 (zh) 一种电解液及包含该电解液的锂金属电池、电池模块、电池包和装置
KR20200082557A (ko) 리튬이차전지용 전해액 및 이를 포함한 리튬이차전지
CN113851622A (zh) 一种电池体系的保护层及电化学装置
WO2020135584A1 (zh) 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池
WO2019095717A1 (zh) 一种锂原电池
CN111883834B (zh) 一种非水锂离子电池电解液添加剂、包含其的电解液以及锂离子电池
CN105390747A (zh) 一种含硼酸三甲酯添加剂的电解液及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE