WO2020135584A1 - 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池 - Google Patents

一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池 Download PDF

Info

Publication number
WO2020135584A1
WO2020135584A1 PCT/CN2019/128699 CN2019128699W WO2020135584A1 WO 2020135584 A1 WO2020135584 A1 WO 2020135584A1 CN 2019128699 W CN2019128699 W CN 2019128699W WO 2020135584 A1 WO2020135584 A1 WO 2020135584A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
additive
lithium ion
ion battery
battery
Prior art date
Application number
PCT/CN2019/128699
Other languages
English (en)
French (fr)
Inventor
马国强
张海兵
蒋志敏
沈旻
董经博
刘海岛
陈慧闯
李南
Original Assignee
浙江省化工研究院有限公司
中化蓝天集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江省化工研究院有限公司, 中化蓝天集团有限公司 filed Critical 浙江省化工研究院有限公司
Publication of WO2020135584A1 publication Critical patent/WO2020135584A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/15Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same unsaturated acyclic carbon skeleton
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium-ion battery electrolytes, and relates to an additive for a lithium-ion battery electrolyte, an electrolyte using the additive and a lithium-ion battery.
  • Lithium-ion batteries have the advantages of high energy density, long cycle life, high operating voltage, small self-discharge, and no memory effect. They are widely used in 3C, energy storage, and power batteries. Longer cycle life, higher energy density, faster rate performance, wider use temperature and lower price and cost are important directions for the development of lithium ion batteries.
  • Increasing the battery energy density can be achieved by increasing the battery charging cut-off voltage, for example: increasing the operating voltage of existing battery systems, such as LiCoO 2 and NMC ternary battery systems, the battery specific capacity increases by nearly 8% for each 0.1V increase in charging voltage. And its energy density increased by nearly 10%; the development of new battery systems.
  • Cathode materials such as LiCoPO 4 (4.8V), LiNi 0.5 Mn 1.5 O 4 (4.7V), Li 2 CoPO 4 F (5.1V), and LiNiPO 4 (5.1V) can be stably cycled at high voltage.
  • the electrolyte is easily oxidized and decomposed on the surface of the positive electrode at high voltage, resulting in high interface resistance and Battery capacity decay; the dissolution of metal cations in the electrolyte at high voltage will cause the destruction of the positive electrode structure and affect the battery cycle stability; the metal cations dissolved in the electrolyte will precipitate as metal dendrites in the graphite anode, affecting the battery safety . Therefore, suppressing the side reaction at the positive electrode/electrolyte interface at high voltage is a key measure to improve the performance of high-voltage lithium-ion batteries.
  • Positive electrode protection such as coating the surface of the positive electrode with some inorganic compounds (AlPO 4 , TiO 2 , AlF 3, etc.) to suppress the dissolution of metal elements in the positive electrode material and the oxidation of the electrolyte under high voltage, but the general resistance of the coating layer is relatively High, causing increased battery polarization and reduced rate performance.
  • Use electrolyte additives that is, use suitable electrolyte additives to form a good interface film on the positive electrode. At present, there is no electrolyte additive particularly suitable for forming a good interface film on the positive electrode.
  • the object of the present invention is to provide a battery electrolyte additive, which has the following structural formula (I):
  • R1 and R2 are independently selected from C1-C20 alkyl, C2-C20 alkenyl, C1-C20 haloalkyl, C2-C20 haloalkenyl, C6-C20 aryl, C6-C20 haloaryl.
  • the substituents R1 and R2 are independently selected from C1-C20 alkyl, C2-C20 alkenyl, C1-C20 haloalkyl, C2-C20 haloalkenyl, C6 -C20 aryl, C6-C20 halogenated aryl.
  • the substituents R1, R2 are independently selected from C1-C12 alkyl, C2-C12 alkenyl, C1-C12 haloalkyl, C2-C12 haloalkenyl, C6-C12 aryl, C6-C12 Halogenated aryl.
  • substituents R1, R2 are independently selected from C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl.
  • the substituents R1, R2 are independently selected from C1-C3 alkyl, C2-C3 alkenyl, C1-C3 haloalkyl, C2-C3 haloalkenyl.
  • the battery electrolyte additive represented by the structural formula (I) provided by the present invention is suitable for use as a positive electrode film-forming additive in the battery electrolyte.
  • the positive electrode of the battery is preferably LiNi 0.5 Co 0.2 Mn 0.3 O 2 , lithium cobaltate, LiNi 0.5 Mn 1.5 O 4 or Li 1.13 [ Ni 0.2 Co 0.2 Mn 0.47 ]O 2 .
  • the present invention also provides a lithium ion battery electrolyte containing the compound represented by the above structural formula (I).
  • the content of the compound represented by structural formula (I) in the lithium ion battery electrolyte is preferably 0.02% to 2%. It is further preferred that the content of the compound represented by structural formula (I) in the electrolyte of the lithium ion battery is 0.1% to 1%.
  • the lithium ion battery electrolyte provided by the present invention may further contain a lithium salt, an organic solvent and additives in addition to the compound represented by the above structural formula (I), that is, the lithium ion battery electrolyte contains a lithium salt and an organic solvent , Additives and compounds represented by structural formula (I).
  • the lithium salt used may be a lithium salt commonly used in the art.
  • the lithium salt is selected from LiBF 4 , LiPF 6 , LiFSI, LiTFSI, LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiC 2 O 4 BC 2 O 4 , LiF 2 BC 2 O 4 , LiDTI, LiPO 2 At least one of F 2 .
  • the lithium ion battery electrolyte provided by the present invention may use an organic solvent commonly used in the art.
  • the organic solvent is selected from at least one of carbonate, phosphate, carboxylate, ether, nitrile, and sulfone solvents.
  • the additive for the lithium ion battery electrolyte provided by the present invention may be an additive that helps improve the performance of the electrolyte.
  • the additive is selected from at least one of negative electrode film-forming additives, water-removing additives, positive electrode film-forming additives, conductivity-increasing additives, wettability-improving additives, and flame retardant additives.
  • the additive is selected from biphenyl, vinylene carbonate (VC), fluoroethylene carbonate, ethylene ethylene carbonate, propylene sulfite, butylene sulfite, 1,3-propanesulfonate Acid lactone (PS), 1,4-butane sultone, 1,3-(1-propene) sultone, vinyl sulfite, vinyl sulfate, cyclohexylbenzene, tris(trimethylsilane) boron
  • TMSB acid ester
  • TMSB tris(trimethylsilane) phosphate
  • tert-butylbenzene succinonitrile
  • succinic anhydride At least one of acid ester (TMSB), tris(trimethylsilane) phosphate, tert-butylbenzene, succinonitrile, ethylene glycol bis(propionitrile) ether, and succinic anhydride.
  • the additive is selected from the compound represented by structural formula (I) and selected from vinylene carbonate, 1,3-propane sultone, tris(trimethylsilane) borate, fluoro At least one of ethylene carbonate and ethylene ethylene carbonate.
  • the additive is selected from the compound represented by the structural formula (I) and at least one selected from the group consisting of vinylene carbonate, 1,3-propane sultone, and tris(trimethylsilane) borate. Species.
  • the lithium ion battery electrolyte according to the present invention contains a lithium salt, an organic solvent, an additive, and a compound represented by structural formula (I), the lithium salt, an organic solvent, an additive, and the compound represented by structural formula (I) are in the electrolyte
  • the content should improve battery performance.
  • the lithium salt content is 5 to 15%
  • the organic solvent content is 72 to 95%
  • the additive content is 0.2 to 10%
  • the content of the compound represented by structural formula (I) is 0.1% ⁇ 5%.
  • the invention also provides a lithium ion battery containing the above electrolyte.
  • the lithium ion battery according to the present invention also contains other commonly used components of the lithium ion battery described in the art.
  • the compound represented by the structural formula (I) provided by the present invention has the following advantages over the prior art when it is used in a battery electrolyte:
  • the present invention proposes a new positive electrode film-forming additive.
  • This positive electrode film-forming additive oxidizes and decomposes before the solvent, and the decomposition products are deposited on the surface of the positive electrode materials such as lithium cobalt oxide, nickel cobalt manganese, nickel manganese, and lithium-rich manganese. Can effectively improve the performance of the battery.
  • Figure 1 shows the LSV curves of the electrolytes prepared in Example 1 and Comparative Example 1.
  • FIG. 2 is an AC impedance spectrum after two cycles of assembling NCM523/metal lithium half-cells assembled from the electrolyte solutions prepared in Example 1 and Comparative Example 1, respectively.
  • the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) in a mass ratio of 93:4:3, and then mix them Dispersed in N-methyl-2-pyrrolidone (NMP) to obtain a positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry is evenly coated on both sides of the aluminum foil, after drying, rolling and vacuum drying, and the aluminum lead wire is welded with an ultrasonic welding machine to obtain a positive electrode plate.
  • a polyethylene microporous film with a thickness of 20 ⁇ m is placed between the positive electrode plate and the negative electrode plate as a separator, and then the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator is wound, and the electrode lugs are drawn out and encapsulated in an aluminum plastic film. Cell to be filled.
  • the electrolyte prepared above is injected into the battery cell, and the amount of the electrolyte should ensure that the voids in the battery cell are filled. Then proceed to the following steps: 0.01C constant current charging for 30min, 0.02C constant current charging for 60min, 0.05C constant current charging for 90min, 0.1C constant current charging for 240min, and then set aside for 1hr after shaping and sealing, and then further with 0.2C current constant
  • the battery is charged to 4.40V, and after being left at room temperature for 24hr, it is discharged to 3.0V with a constant current of 0.2C.
  • the capacity retention rate is calculated according to the following formula:
  • Capacity retention rate 300-week discharge capacity / 1st week discharge capacity * 100%.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 was replaced with a lithium-rich manganese-based positive electrode material Li 1.13 [Ni 0.2 Co 0.2 Mn 0.47 ]O 2 , the others are the same as in Example 1, and the data of the normal temperature cycle performance obtained by the test are Table 1.
  • the electrolytic solution prepared in Example 1 has an oxidative decomposition starting potential of about 4.80V and a decomposition peak of 5.2V. This shows that Compound 1 starts oxidative decomposition at 4.80V and forms on the surface of the positive electrode material. Stable interface film, this interface film can significantly passivate the side reaction between the electrode and the electrolyte. It can also be seen from Figure 1 that after Compound 1 is oxidized, the oxidation current of the electrolyte is very low, and no obvious oxidation decomposition current is observed until 6.7V, which shows that the CEI film formed on the surface of the positive electrode is more stable. It has better oxidation resistance.
  • Example 1 The electrolytes prepared in Example 1 and Comparative Example 1 were respectively assembled into NCM523/metal lithium half-cells, and the AC impedance spectra of the two NCM523/metal lithium half-cells after 2 weeks of circulation were tested. The test results are shown in FIG. 2 Show.
  • the NCM523/metal lithium half-cell assembled using the electrolyte prepared in Example 1 has a lower CEI film resistance after cycling, which shows that the additive shown in the structural formula (I) provided by the present invention can be significant Reduce the CEI membrane impedance of the battery under high voltage, thereby improving the battery's high voltage cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种应用于电池电解液的添加剂,具有如下(I)所示结构,取代基见说明书。本发明还提供了使用此添加剂的电解液和电池。本发明提供的添加剂能够在正极表面形成的稳定的CEI膜,提高电池高电压的循环性能。

Description

一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池 技术领域
本发明属于锂离子电池电解液领域,涉及一种用于锂离子电池电解液的添加剂以及使用此添加剂的电解液和锂离子电池。
背景技术
锂离子电池具有能量密度高、循环寿命长、工作电压高、自放电小和无记忆效应等优点,被广泛应用于3C、储能和动力电池等领域。更长的循环寿命、更高的能量密度、更快的倍率性能、更宽的使用温度和更低的价格成本等是锂离子电池发展的重要方向。
提升电池能量密度可以通过提升电池充电截止电压实现,例如:提高现有电池体系的工作电压,如LiCoO 2和NMC三元电池体系,其充电电压每提升0.1V,电池比容量提升接近8%,而其能量密度提升近10%;开发新型电池体系。LiCoPO 4(4.8V)、LiNi 0.5Mn 1.5O 4(4.7V)、Li 2CoPO 4F(5.1V)、LiNiPO 4(5.1V)等正极材料可以在高电压下稳定循环。
但当工作电压超过了传统碳酸酯电解液的电化学窗口(<4.3V)时,会造成一系列的问题,例如:高电压下电解液容易在正极表面剧烈氧化分解,导致高的界面阻抗和电池容量衰减;高电压下金属阳离子在电解液中的溶解,会造成正极结构破坏,影响电池循环稳定性;溶解在电解液中的金属阳离子会在石墨负极析出为金属枝晶,影响电池安全性。因此,抑制高电压下正极/电解液界面的副反应是提升高电压锂离子电池性能的关键措施。
为抑制高电压下正极/电解液界面的副反应的发生,需要构建一个稳定的正极/电解液界面。目前使用的包括正极保护和电解液添加剂的使用。正极保护,如利用一些无机化合物(AlPO 4,TiO 2,AlF 3等)对正极表面进行包覆,抑制正极材料中金属元素的溶解和高电压下电解液的氧化,但包覆层一般阻抗较高,引起电池极化增加和倍率性能下降。使用电解液添加剂,即使用适配的电解液添加剂,在正极形成良好的界面膜。目前还未见有特别适合用于在正极形成良好的界面膜的电解液添加剂。
因此,有必要对应用于锂离子电池的正极成膜添加剂作进一步的研究。
发明内容
本发明的目的在于提供一种电池电解液添加剂,所述电池电解液添加剂具有如下结构式(I):
Figure PCTCN2019128699-appb-000001
其中:
R1、R2独立地选自C1-C20烷基、C2-C20烯基、C1-C20卤代烷基、C2-C20卤代烯基、C6-C20芳基、C6-C20卤代芳基。
本发明提供的结构式(I)所示的化合物,其取代基R1、R2独立地选自C1-C20烷基、C2-C20烯基、C1-C20卤代烷基、C2-C20卤代烯基、C6-C20芳基、C6-C20卤代芳基。
优选的是,所述取代基R1、R2独立地选自C1-C12烷基、C2-C12烯基、C1-C12卤代烷基、C2-C12卤代烯基、C6-C12芳基、C6-C12卤代芳基。
进一步优选的是,所述取代基R1、R2独立地选自C1-C6烷基、C2-C6烯基、 C1-C6卤代烷基、C2-C6卤代烯基。
最优选的是,所述取代基R1、R2独立地选自C1-C3烷基、C2-C3烯基、C1-C3卤代烷基、C2-C3卤代烯基。
本发明提供的结构式(I)所示的电池电解液添加剂,适合在电池电解液中用作正极成膜添加剂。
当本发明所述的结构式(I)所示的化合物用作正极成膜添加剂时,电池的正极优选为LiNi 0.5Co 0.2Mn 0.3O 2、钴酸锂、LiNi 0.5Mn 1.5O 4或Li 1.13[Ni 0.2Co 0.2Mn 0.47]O 2
本发明还提供一种锂离子电池电解液,其含有上述结构式(I)所示的化合物。
当本发明所述的锂离子电池电解液中含有上述结构式(I)所示的化合物时,在锂离子电池电解液中,结构式(I)所示的化合物的含量优选为0.02%~2%。进一步优选的是,在锂离子电池电解液中,结构式(I)所示的化合物的含量为0.1%~1%。
本发明提供的锂离子电池电解液,除上述结构式(I)所示的化合物外,还可以进一步地含有锂盐、有机溶剂和添加剂,即:所述锂离子电池电解液含有锂盐、有机溶剂、添加剂和结构式(I)所示的化合物。
本发明提供的锂离子电池电解液,使用的锂盐可以是本领域常用的锂盐。优选的是,所述锂盐选自LiBF 4、LiPF 6、LiFSI、LiTFSI、LiAsF 6、LiClO 4、LiSO 3CF 3、LiC 2O 4BC 2O 4、LiF 2BC 2O 4、LiDTI、LiPO 2F 2中的至少一种。
本发明提供的锂离子电池电解液,使用的有机溶剂可以是本领域常用的有机溶剂。优选的是,所述有机溶剂选自碳酸酯、磷酸酯、羧酸酯、醚类、腈类和砜类溶剂中的至少一种。
本发明提供的锂离子电池电解液,使用的添加剂可以是有助于改善电解液 性能的添加剂。优选的是,所述添加剂选自负极成膜添加剂、除水添加剂、正极成膜添加剂、提高电导率添加剂、改善润湿性添加剂和阻燃添加剂中的至少一种。进一步优选的是,所述添加剂选自联苯、碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯、碳酸乙烯亚乙酯、亚硫酸丙烯酯、亚硫酸丁烯酯、1,3-丙磺酸内酯(PS)、1,4丁磺酸内酯、1,3-(1-丙烯)磺内酯、亚硫酸乙烯酯、硫酸乙烯酯、环己基苯、三(三甲基硅烷)硼酸酯(TMSB)、三(三甲基硅烷)磷酸酯、叔丁基苯、丁二腈、乙二醇双(丙腈)醚和丁二酸酐中的至少一种。更进一步优选的是,所述添加剂选自结构式(I)所示的化合物和选自碳酸亚乙烯酯、1,3-丙烷磺酸内脂、三(三甲基硅烷)硼酸酯、氟代碳酸乙烯酯和碳酸乙烯亚乙酯中的至少一种。最为优选的是,所述添加剂选自结构式(I)所示的化合物和选自碳酸亚乙烯酯、1,3-丙烷磺酸内脂和三(三甲基硅烷)硼酸酯中的至少一种。
当本发明所述的锂离子电池电解液含有锂盐、有机溶剂、添加剂和结构式(I)所示的化合物时,锂盐、有机溶剂、添加剂和结构式(I)所示的化合物在电解液中的含量应当能够改善电池的性能。优选的是,所述锂离子电池电解液中,锂盐含量为5~15%,有机溶剂含量为72~95%,添加剂含量为0.2~10%,结构式(I)所示的化合物的含量为0.1%~5%。
本发明还提供一种锂离子电池,含有上述电解液。除含有上述电解液外,本发明所述的锂离子电池还含有本领域所述的锂离子电池的其他常用部件。
本发明提供的结构式(I)所示的化合物,当将其用于电池电解液时,相比现有技术具有如下优势:
本发明提出了一种新的正极成膜添加剂,这层正极成膜添加剂先于溶剂发生氧化分解,分解产物沉积在钴酸锂、镍钴锰、镍锰和富锂锰基等正极材料表面,可以有效提升电池的使用性能。
说明书附图
图1为实施例1和对比实施例1配制的电解液的LSV曲线。
图2为由实施例1和对比实施例1配制的电解液分别组装NCM523/金属锂半电池循环2周后的交流阻抗图谱。
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
一、电解液配制和电池性能测试
实施例1
(1)电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为3:2:5进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按电解液的总质量计1%的化合物1。化合物1结构式如下:
Figure PCTCN2019128699-appb-000002
(2)正极板的制备
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板。
(3)负极板的制备
按92:2:3:3的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘 结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板。
(4)电芯的制备
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,经引出极耳后封装在铝塑膜中得到待注液的电芯。
(5)电芯的注液和化成
在水分低于10ppm的手套箱中,将上述制备的电解液注入到电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.01C恒流充电30min,0.02C恒流充电60min,0.05C恒流充电90min,0.1C恒流充电240min,之后搁置1hr后整形封口,然后进一步以0.2C的电流恒流充电至4.40V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。
(6)循环性能测试
以1C的电流恒流充电至4.40V然后恒压充电至电流下降至0.1C,然后以1C的电流恒流放电至3.0V,如此循环300周,记录第1周的放电容量和第300周的放电容量。
容量保持率按以下公式计算:
容量保持率=第300周的放电容量/第1周的放电容量*100%。
实施例2
在电解液的制备中将1%的化合物1换成0.5%的化合物1,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
实施例3
在电解液的制备中将1%的化合物1换成2%的化合物1,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
实施例4
在电解液的制备中将1%的化合物1换成1%的化合物2,其它与实施例1相同,测试得到的常温循环性能的数据见表1。化合物2结构式如下:
Figure PCTCN2019128699-appb-000003
实施例5
在电解液的制备中将1%的化合物1换成1%的化合物3,其它与实施例1相同,测试得到的常温循环性能的数据见表1。化合物3结构式如下:
Figure PCTCN2019128699-appb-000004
实施例6
在电解液的制备中将1%的化合物1换成1%的化合物4,其它与实施例1相同,测试得到的常温循环性能的数据见表1。化合物4结构式如下:
Figure PCTCN2019128699-appb-000005
实施例7
在电解液的制备中将1%的化合物1换成1%的化合物5,其它与实施例1相同,测试得到的常温循环性能的数据见表1。化合物5结构式如下:
Figure PCTCN2019128699-appb-000006
实施例8
在电解液的制备中将1%的化合物1换成1%的化合物1+1%VC(碳酸亚乙烯酯),其它与实施例1相同,测试得到的常温循环性能的数据见表1。
实施例9
在电解液的制备中将1%的化合物1换成1%的化合物1+1%VC+1%PS(1,3-丙磺酸内酯),其它与实施例1相同,测试得到的常温循环性能的数据见表1。
实施例10
在正极的制备中将LiNi 0.5Co 0.2Mn 0.3O 2更换成钴酸锂,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
实施例11
在正极的制备中将LiNi 0.5Co 0.2Mn 0.3O 2更换成LiNi 0.5Mn 1.5O 4正极,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
实施例12
在正极的制备中将LiNi 0.5Co 0.2Mn 0.3O 2更换成富锂锰基正极材料Li 1.13[Ni 0.2Co 0.2Mn 0.47]O 2,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
对比实施例1
在电解液的制备中将1%的化合物1去掉,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
对比实施例2
在电解液的制备中将1%的化合物更换成1%的VC,其它与实施例1相同, 测试得到的常温循环性能的数据见表1。
对比实施例3
在电解液的制备中将1%的化合物更换成1%的VC和1%的PS,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
对比实施例4
在电解液的制备中将1%的化合物1换成1%的TMSB(三(三甲基硅烷)硼酸酯),其它与实施例1相同,测试得到的常温循环性能的数据见表1。
对比实施例5
在电解液的制备中将1%的化合物去掉,正极的制备中将LiNi 0.5Co 0.2Mn 0.3O 2更换成LiCoO 2,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
对比实施例6
在电解液的制备中将1%的化合物去掉,正极的制备中将LiNi 0.5Co 0.2Mn 0.3O 2更换成LiNi 0.5Mn 1.5O 4正极,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
对比实施例7
在电解液的制备中将1%的化合物去掉,正极的制备中将LiNi 0.5Co 0.2Mn 0.3O 2更换成富锂锰基正极材料Li 1.13[Ni 0.2Co 0.2Mn 0.47]O 2,其它与实施例1相同,测试得到的常温循环性能的数据见表1。
表1
Figure PCTCN2019128699-appb-000007
Figure PCTCN2019128699-appb-000008
二、正极成膜性能测试
1、LSV曲线测试
采用三电极法(NMC532电极为工作电极、金属锂为参比电极和对电极,扫描速率为0.05mV/s)测试了实施例1和对比实施例1配制的电解液的LSV曲线。
从附图1可以看出,使用实施例1配制的电解液,其氧化分解起始电位为4.80V左右,分解峰为5.2V,这说明化合物1在4.80V开始氧化分解,在正极 材料表面生成稳定的界面膜,这层界面膜能够显著钝化电极与电解液之间的副反应。从附图1中还可以看出,化合物1被氧化完毕后,电解液的氧化电流很低,直至6.7V也没有观察到明显的氧化分解电流,这说明在正极表面形成的CEI膜更加稳定,具有更好的耐氧化性。
2、交流阻抗测试
将实施例1和对比实施例1配制的电解液分别组装NCM523/金属锂半电池,并测试了这两个NCM523/金属锂半电池循环2周后的交流阻抗图谱,测试结果如附图2所示。
从附图2可知,使用实施例1配制的电解液所组装的NCM523/金属锂半电池在循环后具有更低的CEI膜阻抗,这说明本发明提供的结构式(I)所示的添加剂能够显著降低高电压下电池的CEI膜阻抗,从而提高电池高电压的循环性能。

Claims (18)

  1. 一种结构式(I)所示的电池电解液添加剂,
    Figure PCTCN2019128699-appb-100001
    其中:
    R1、R2独立地选自C1-C20烷基、C2-C20烯基、C1-C20卤代烷基、C2-C20卤代烯基、C6-C20芳基、C6-C20卤代芳基。
  2. 按照权利要求1所述的电池电解液添加剂,其特征在于所述结构式(I)中:
    R1、R2独立地选自C1-C12烷基、C2-C12烯基、C1-C12卤代烷基、C2-C12卤代烯基、C6-C12芳基、C6-C12卤代芳基。
  3. 按照权利要求2所述的电池电解液添加剂,其特征在于所述结构式(I)中:
    R1、R2独立地选自C1-C6烷基、C2-C6烯基、C1-C6卤代烷基、C2-C6卤代烯基。
  4. 按照权利要求3所述的电池电解液添加剂,其特征在于所述结构式(I)中:
    R1、R2独立地选自C1-C3烷基、C2-C3烯基、C1-C3卤代烷基、C2-C3卤代烯基。
  5. 按照如权利要求1所述的电池电解液添加剂,其特征在于所述添加剂用作正极成膜添加剂。
  6. 按照权利要求5所述的电池电解液添加剂,其特征在于所述添加剂用作正极成膜添加剂,所述电池的正极选自LiNi 0.5Co 0.2Mn 0.3O 2、钴酸锂、LiNi 0.5Mn 1.5O 4或Li 1.13[Ni 0.2Co 0.2Mn 0.47]O 2
  7. 一种锂离子电池电解液,其特征在于所述锂离子电池电解液含有如权利要求1 所述的结构式(I)所示的化合物。
  8. 按照权利要求7所述的锂离子电池电解液,其特征在于所述锂离子电池电解液中,结构式(I)所示的化合物的含量为0.02%~2%。
  9. 按照权利要求8所述的锂离子电池电解液,其特征在于所述锂离子电池电解液中,结构式(I)所示的化合物的含量为0.1%~1%。
  10. 按照权利要求7所述的锂离子电池电解液,其特征在于所述锂离子电池电解液含有锂盐、有机溶剂、添加剂和结构式(I)所示的化合物。
  11. 按照权利要求10所述的锂离子电池电解液,其特征在于所述锂盐选自LiBF 4、LiPF 6、LiFSI、LiTFSI、LiAsF 6、LiClO 4、LiSO 3CF 3、LiC 2O 4BC 2O 4和LiF 2BC 2O 4中的至少一种。
  12. 按照权利要求10所述的锂离子电池电解液,其特征在于所述有机溶剂选自碳酸酯、磷酸酯、羧酸酯、醚类、腈类和砜类溶剂中的至少一种。
  13. 按照权利要求10所述的锂离子电池电解液,其特征在于所述添加剂选自负极成膜添加剂、除水添加剂、正极成膜添加剂、提高电导率添加剂、改善润湿性添加剂和阻燃添加剂中的至少一种。
  14. 按照权利要求13所述的锂离子电池电解液,其特征在于所述添加剂选自联苯、碳酸亚乙烯酯、氟代碳酸乙烯酯、碳酸乙烯亚乙酯、亚硫酸丙烯酯、亚硫酸丁烯酯、1,3-丙磺酸内酯、1,4丁磺酸内酯、1,3-(1-丙烯)磺内酯、亚硫酸乙烯酯、硫酸乙烯酯、环己基苯、三(三甲基硅烷)硼酸酯、三(三甲基硅烷)磷酸酯、叔丁基苯、丁二腈、乙二醇双(丙腈)醚和丁二酸酐中的至少一种。
  15. 按照权利要求14所述的电池电解液添加剂,其特征在于所述添加剂选自结构式(I)所示的化合物和选自碳酸亚乙烯酯、1,3-丙烷磺酸内脂、三(三甲基硅烷)硼酸酯、氟代碳酸乙烯酯和碳酸乙烯亚乙酯中的至少一种。
  16. 按照权利要求15所述的电池电解液添加剂,其特征在于所述添加剂选自结构式(I)所示的化合物和选自碳酸亚乙烯酯、1,3-丙烷磺酸内脂和三(三甲基硅烷)硼酸酯中的至少一种。
  17. 按照权利要求10所述的锂离子电池电解液,其特征在于所述锂离子电池电解液中,锂盐含量为5~15%,有机溶剂含量为72~95%,添加剂含量为0.2~10%,结构式(I)所示的化合物的含量为0.02%~2%。
  18. 一种锂离子电池,其特征在于所述锂离子电池含有权利要求10所述的电池电解液。
PCT/CN2019/128699 2018-12-29 2019-12-26 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池 WO2020135584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639257 2018-12-29
CN201811639257.6 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135584A1 true WO2020135584A1 (zh) 2020-07-02

Family

ID=71125741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128699 WO2020135584A1 (zh) 2018-12-29 2019-12-26 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池

Country Status (2)

Country Link
CN (1) CN111384442B (zh)
WO (1) WO2020135584A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366354B (zh) * 2020-12-02 2022-04-12 蜂巢能源科技有限公司 一种电解液及锂离子电池
CN114335724B (zh) * 2021-12-28 2023-06-27 广州天赐高新材料股份有限公司 一种高电压锂离子电池电解液及锂离子电池
TWI777912B (zh) * 2022-06-02 2022-09-11 台灣中油股份有限公司 鋰離子電池電解液及鋰離子電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130164605A1 (en) * 2010-09-02 2013-06-27 Nec Corporation Secondary battery
CN104584309A (zh) * 2012-08-09 2015-04-29 三菱化学株式会社 非水系电解液和使用该非水系电解液的非水系电解液二次电池
KR20150130910A (ko) * 2014-05-14 2015-11-24 주식회사 엘지화학 전해액 및 이를 포함하는 이차전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349750B1 (ko) * 2010-11-26 2014-01-10 솔브레인 주식회사 전해액 첨가제, 이를 포함하는 전해액 및 상기 전해액을 포함하는 리튬이차전지
CN102709588B (zh) * 2012-01-12 2016-04-27 宁德新能源科技有限公司 一种锂离子电池及其电解液
CN105720303B (zh) * 2014-12-05 2020-06-12 浙江蓝天环保高科技股份有限公司 一种含氟代羧酸酯的高电压锂离子电池电解液
CN104852087B (zh) * 2015-04-15 2017-03-01 宁德时代新能源科技股份有限公司 一种电解液添加剂及应用了该添加剂的锂离子电池
CN105161763A (zh) * 2015-08-03 2015-12-16 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105762410B (zh) * 2016-04-01 2018-11-02 宁德新能源科技有限公司 一种非水电解液及使用该非水电解液的锂离子电池
CN107293781B (zh) * 2016-04-11 2020-06-12 宁德新能源科技有限公司 电解液及锂离子电池
CN105762413A (zh) * 2016-05-18 2016-07-13 东莞市凯欣电池材料有限公司 一种锂离子电池用非水电解质溶液及采用该电解液的锂离子电池
CN105826607B (zh) * 2016-05-25 2019-05-14 宁德新能源科技有限公司 一种电解液以及包括该电解液的锂离子电池
CN106025278B (zh) * 2016-07-01 2018-09-14 东莞市凯欣电池材料有限公司 一种高电压锂离子电池
CN108183260A (zh) * 2017-12-13 2018-06-19 中国科学院过程工程研究所 一种电解液和锂离子电池
CN108321434A (zh) * 2018-03-23 2018-07-24 安普瑞斯(无锡)有限公司 一种高电压锂离子电池电解液
CN108666623A (zh) * 2018-05-15 2018-10-16 北京科技大学 一种高电压锂离子电池的电解液
CN108987802B (zh) * 2018-06-15 2021-11-05 桑顿新能源科技(长沙)有限公司 一种高电压锂离子电池非水电解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130164605A1 (en) * 2010-09-02 2013-06-27 Nec Corporation Secondary battery
CN104584309A (zh) * 2012-08-09 2015-04-29 三菱化学株式会社 非水系电解液和使用该非水系电解液的非水系电解液二次电池
KR20150130910A (ko) * 2014-05-14 2015-11-24 주식회사 엘지화학 전해액 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
CN111384442B (zh) 2023-09-12
CN111384442A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN111628218B (zh) 一种锂离子电池及其制备方法
EP2168199B1 (en) Non-aqueous electrolyte and electrochemical device comprising the same
JP6751158B2 (ja) 非水電解液を用いたリチウムイオン電池
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN111384443B (zh) 一种电池电解液添加剂及使用该添加剂的电解液和锂离子电池
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
WO2020135584A1 (zh) 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池
WO2017020430A1 (zh) 一种锂离子电池非水电解液及锂离子电池
US20240079652A1 (en) Lithium Ion Battery
CN111525190A (zh) 电解液及锂离子电池
WO2017020429A1 (zh) 一种高电压锂离子电池用非水电解液及锂离子电池
US20180294483A1 (en) Positive electrode plate and energy storage device
JP2001057234A (ja) 非水電解液および非水電解液二次電池
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
US20180241085A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same
JP2001057235A (ja) 非水電解液および非水電解液二次電池
CN106340671B (zh) 锂离子电池及其电解液
CN111384438B (zh) 一种锂离子电池非水电解液及锂离子电池
CN113871712B (zh) 锂离子电池电解液及其制备方法和锂离子电池
CN111384439A (zh) 一种非水电解液及锂离子电池
WO2023279953A1 (zh) 一种非水电解液及电池
US20230411689A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
JP5426809B2 (ja) 二次電池、二次電池を用いた電子機器及び輸送用機器
WO2020135694A1 (zh) 一种电池电解液添加剂及使用该添加剂的电解液和锂离子电池
CN111092264A (zh) 一种高电压电解液及含有该电解液的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905019

Country of ref document: EP

Kind code of ref document: A1