WO2023035188A1 - 触控面板、触控显示面板和触控显示装置 - Google Patents

触控面板、触控显示面板和触控显示装置 Download PDF

Info

Publication number
WO2023035188A1
WO2023035188A1 PCT/CN2021/117463 CN2021117463W WO2023035188A1 WO 2023035188 A1 WO2023035188 A1 WO 2023035188A1 CN 2021117463 W CN2021117463 W CN 2021117463W WO 2023035188 A1 WO2023035188 A1 WO 2023035188A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
branch
electrodes
sub
Prior art date
Application number
PCT/CN2021/117463
Other languages
English (en)
French (fr)
Inventor
王裕
张顺
罗昶
文平
张元其
张毅
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,219 priority Critical patent/US20240184411A1/en
Priority to PCT/CN2021/117463 priority patent/WO2023035188A1/zh
Priority to CN202180002489.4A priority patent/CN116113914A/zh
Publication of WO2023035188A1 publication Critical patent/WO2023035188A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • Embodiments of the present disclosure relate to but are not limited to the field of touch technology, and specifically relate to a touch panel, a touch display panel, and a touch display device.
  • OLED Organic Light Emitting Diode
  • LCD Organic Light Emitting Diode
  • TFT Thin Film Transistor
  • the touchable OLED display device is equipped with a touch panel, wherein the touch panel adopts a Flexible Multi Layer On Cell (FMLOC) structure ,
  • the touch panel is arranged on the encapsulation layer of the OLED backplane, which has the advantages of being thin, light and foldable.
  • the driving electrodes (Tx) and sensing electrodes (Rx) in the touch panel adopt the form of metal mesh (Metal Mesh).
  • metal mesh Compared with the use of transparent conductive materials (such as Indium Tin Oxide, ITO for short) to form touch electrodes, metal grids have the advantages of small resistance, small thickness and fast response speed.
  • the present disclosure provides a touch panel, including: a plurality of first touch structures extending along a first direction and a plurality of second touch structures extending along a second direction, the plurality of first touch structures The structures are arranged along the second direction, and a plurality of second touch structures are arranged along the first direction;
  • the first touch structure includes: a plurality of first touch electrodes and a plurality of first connecting parts, and the second
  • the touch structure includes: a plurality of second touch electrodes and a plurality of second connection parts, the first direction intersects with the second direction; the first touch electrodes and the second touch electrodes are in the same layer Setting, the first connection part or the second connection part is arranged on the same layer as the first touch electrode;
  • the touch panel further includes: at least one touch branch located on the edge of the touch electrode, the extension direction of each touch branch intersects the extension direction of the edge of the touch electrode where the touch branch is located , the extension direction of the touch control branch is different from the first direction and the second direction, and the touch control electrode includes: the first touch control electrode, and/or the second touch control electrode;
  • the length of the touch control branch is greater than the length of the connecting part provided on the same layer as the first touch electrode along the third direction, and the third direction is the same as the extending direction of some touch control branches, and is the same as the extension direction of the first touch control electrode. direction intersects the second direction.
  • the touch branch includes: a branch body and at least one protrusion located at an edge of the branch body;
  • the at least two touch-control branches are spaced apart from each other, and the at least two touch-control branches are located on both sides of the touch-control electrodes.
  • the length of the branch body is greater than half of the length of the touch electrode where the touch branch is located along the extending direction of the touch branch.
  • the branch body includes: a first side and a second side opposite to each other and a third side and a fourth side opposite to each other; the third side and the touch point where the touch branch is located Control electrode connection;
  • said at least one protrusion is located on said first side and said second side of said branch body
  • the protrusions on the first side of the branch body and the protrusions on the second side of the branch body are arranged alternately.
  • the width of the protrusion close to the touch control electrode where the touch control branch is located is greater than the width of the protrusion far from the touch control electrode where the touch control branch is located.
  • the touch electrode when the touch electrode includes: the first touch electrode and the second touch electrode, the touch branch on the first touch electrode is the first touch branch,
  • the first touch branch includes: a first branch body and at least one first protrusion located on the edge of the first branch body;
  • the touch branch on the second touch electrode is a second touch branch, so
  • the second touch branch includes: a second branch body and at least one second protrusion located on the edge of the second branch body;
  • At least two first touch branches are arranged at intervals, and at least two second touch branches are arranged at intervals; at least One first touch branch is located between adjacent second touch branches, and at least one second touch branch is located between adjacent first touch branches;
  • the maximum distance between adjacent first touch branches is greater than the maximum width of the second touch branches
  • the maximum distance between adjacent second touch branches is greater than the maximum width of the first touch branches.
  • first grooves are formed between adjacent first touch branches, and the second touch branches are fitted into the first grooves;
  • Second grooves are formed between adjacent second touch branches, and the first touch branches are fitted into the second grooves.
  • the shape of the first branch body and the shape of the second branch body both include: a rectangle;
  • Both the shape of the first protrusion and the shape of the second protrusion include: rectangle, triangle or wave.
  • the first touch branch and the first touch electrode are integrally formed
  • the second touch branch and the second touch electrode are integrally formed.
  • it includes: a buffer layer, a bridging layer, an insulating layer, a touch layer and a protective layer stacked in sequence;
  • the touch layer includes: a plurality of the first touch electrodes and a plurality of the first connection parts and a plurality of the second touch electrodes; a plurality of the first touch electrodes and a plurality of the The first connecting parts are arranged alternately and connected in sequence, and a plurality of the second touch electrodes are arranged at intervals;
  • the bridging layer includes: a plurality of the second connecting parts, each of the second connecting parts includes: two first connecting structures arranged symmetrically with respect to the first axis of symmetry, and each of the first connecting structures includes : a first pad portion and a first connection bridge; the first pad portion is configured to be connected to an adjacent second touch electrode through a via hole on the insulating layer, and the first connection bridge is configured to connect In the first pad portion, the first axis of symmetry extends along a second direction.
  • the first connecting bridge is a closed-loop structure formed by a plurality of first connecting wires.
  • it includes: a buffer layer, a bridging layer, an insulating layer, a touch layer and a protective layer stacked in sequence;
  • the touch layer includes: a plurality of the second touch electrodes and a plurality of the second connection parts and a plurality of the first touch electrodes; a plurality of the second touch electrodes and a plurality of the The second connecting parts are arranged alternately and connected in sequence, and a plurality of the first touch electrodes are arranged at intervals;
  • the bridging layer includes: a plurality of the first connecting parts, each of the first connecting parts includes: two second connecting structures arranged symmetrically with respect to the second axis of symmetry, and each of the second connecting structures includes : a second pad portion and a second connection bridge; the second pad portion is configured to be connected to an adjacent first touch electrode through a via hole on the insulating layer, and the second connection bridge is configured to connect In the first pad portion, the second axis of symmetry extends along a first direction.
  • the second connecting bridge is a closed-loop structure formed by a plurality of second connecting wires.
  • each of the first connection parts includes: a first sub-connection part, a first sub-connection structure, and a second sub-connection part;
  • the first sub-connection part and the second sub-connection part are respectively located on the first touch branch of the two first touch electrodes connected by the first connection part, and the first sub-connection structure located between the first sub-connection part and the second sub-connection part;
  • Both the length of the first sub-connection portion along the third direction and the length of the second sub-connection portion along the third direction are less than half of the length of the first touch branch.
  • each of the second connection parts includes: a third sub-connection part, a second sub-connection structure and a fourth sub-connection part connected to each other;
  • the third sub-connection part and the fourth sub-connection part are respectively located on the second touch branch of the two second touch electrodes connected by the second connection part, and the second sub-connection structure located between the third sub-connection part and the fourth sub-connection part;
  • Both the length of the third sub-connection portion along the third direction and the length of the fourth sub-connection portion along the third direction are less than half of the length of the second touch branch.
  • the first touch electrode, the second touch electrode, the first connection part, the second connection part and the touch branch all include: a plurality of grids A pattern; wherein, the grid pattern is a polygon formed of metal wires.
  • the first touch electrode is a planar electrode
  • the first touch electrode includes: a plurality of first electrodes extending along a fourth direction and a plurality of second electrodes extending along a fifth direction; both the first electrodes and the second electrodes include: a plurality of grids a grid pattern, a plurality of dummy regions are defined between the plurality of first electrodes and the plurality of second electrodes;
  • the fourth direction intersects with the fifth direction, and both the fourth direction and the fifth direction are different from the first direction and the second direction.
  • the first touch electrodes include: a plurality of first electrodes extending along the fourth direction and a plurality of second electrodes extending along the fifth direction , the width of the first border electrode is smaller than the width of the first non-border electrode, and the width of the second border electrode is smaller than the width of the second non-border electrode;
  • the first boundary electrode is a first electrode close to the second touch electrode
  • the second non-boundary electrode is a first electrode located on a side of the first boundary electrode away from the second touch electrode.
  • the second boundary electrode is a second electrode close to the second touch electrode
  • the second non-boundary electrode is a second electrode located on the side of the second boundary electrode away from the second touch electrode. electrode.
  • the first electrode and the second electrode forming the dummy region are respectively provided with a first branch segment and a second branch segment;
  • the first branch section and the second branch section located in the same virtual area are spaced apart from each other, or connected to each other;
  • Each of the first branch segment and the second branch segment includes a plurality of grid patterns
  • the shapes of the first branch segment and the second branch segment include: cross shape or square shape.
  • the second touch electrode is a planar electrode
  • the second touch electrode includes: a plurality of third electrodes extending along a fifth direction and a plurality of extending along a fourth direction; both the third electrodes and the fourth electrodes include: a plurality of grid patterns, A plurality of virtual regions are defined between the plurality of third electrodes and the plurality of fourth electrodes;
  • the fourth direction intersects with the fifth direction, and both the fourth direction and the fifth direction are different from the first direction and the second direction.
  • the second touch electrodes include: a plurality of third electrodes extending along the fifth direction and a plurality of fourth electrodes extending along the fourth direction , the width of the third border electrode is smaller than the width of the third non-border electrode, and the width of the fourth border electrode is smaller than the width of the fourth non-border electrode;
  • the third boundary electrode is a third electrode close to the first touch electrode, and the third non-boundary electrode is a third electrode located on the side of the third boundary electrode away from the first touch electrode. electrode; the fourth boundary electrode is a fourth electrode close to the first touch electrode, and the fourth non-boundary electrode is a fourth electrode located on the side of the fourth boundary electrode away from the first touch electrode. electrode.
  • the third electrode and the fourth electrode forming the dummy region are respectively provided with a third branch segment and a fourth branch segment;
  • the third branch section and the fourth branch section located in the same virtual area are spaced apart from each other or connected to each other;
  • Each of the third branch segment and the fourth branch segment includes a plurality of grid patterns
  • the shapes of the third branch segment and the fourth branch segment include: cross shape or square shape.
  • it further includes: a metal structure provided on the same layer as the touch electrode;
  • the metal structure is located in the virtual area, and the metal structure includes: a plurality of grid patterns.
  • the length of the first touch branch is about 450 microns to 600 microns;
  • the length of the second touch branch is about 450 microns to 600 microns.
  • the present disclosure also provides a touch display panel, including: a display panel and the above-mentioned touch panel;
  • the touch panel is located on the light emitting side of the display panel or on the backlight side opposite to the light emitting side;
  • the display panel includes a base, the base includes: a light emitting area and a non-light emitting area, the light emitting area includes a plurality of sub-pixels arranged periodically, and the non-light emitting area includes sub-pixel edges located between adjacent sub-pixels;
  • the touch panel includes a plurality of metal grids made of metal wires;
  • the area enclosed by the orthographic projection of the metal line on the substrate includes the orthographic projection of at least one sub-pixel on the substrate, and the orthographic projection of the edge of the sub-pixel on the substrate includes the metal line Orthographic projection onto the substrate.
  • the present disclosure further provides a touch display device, including: the above touch display panel.
  • FIG. 1A is a schematic structural diagram of a touch panel provided by an embodiment of the present disclosure
  • Fig. 1B is a sectional view along B-B direction of Fig. 1A;
  • Fig. 1C is a sectional view along C-C direction of Fig. 1A;
  • Fig. 2 is an enlarged schematic diagram 1 of area A in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a first touch branch provided by an exemplary embodiment
  • Fig. 4 is a schematic structural diagram of a second touch branch provided by an exemplary embodiment
  • Fig. 5A is a first structural schematic diagram of a second connection part provided by an exemplary embodiment
  • Fig. 5B is a first structural schematic diagram of the first connecting part provided by an exemplary embodiment
  • Fig. 6A is a second structural schematic diagram of the first connecting part provided by an exemplary embodiment
  • Fig. 6B is a second structural schematic diagram of the second connecting part provided by an exemplary embodiment
  • Figure 7-1 to Figure 7-5 are structural schematic diagrams of several metal grids
  • Fig. 8 is an enlarged schematic diagram II of area A in Fig. 1;
  • Fig. 9 is an enlarged schematic diagram three of area A in Fig. 1;
  • Fig. 10 is an enlarged schematic diagram four of area A in Fig. 1;
  • Fig. 11 is an enlarged schematic diagram five of area A in Fig. 1;
  • Fig. 12 is a schematic structural diagram of a touch panel provided by an exemplary embodiment
  • FIG. 13 is a schematic structural diagram of a touch display panel provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic plan view of a display panel
  • Figures 15-1 to 15-3 are structural schematic diagrams of several pixel units
  • 16 is a schematic cross-sectional structure diagram of a display panel
  • Fig. 17 is a schematic structural diagram of a touch display panel provided by an exemplary embodiment.
  • connection should be interpreted in a broad sense.
  • it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • a channel region refers to a region through which current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and “drain electrode” may be interchanged. Therefore, in this specification, “source electrode” and “drain electrode” can be interchanged with each other.
  • electrically connected includes the case where constituent elements are connected together through an element having some kind of electrical function.
  • the "element having some kind of electrical action” is not particularly limited as long as it can transmit and receive electrical signals between connected components.
  • Examples of “elements having some kind of electrical function” include not only electrodes and wiring but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • parallel refers to a state where the angle formed by two straight lines is -10° to 10°, and therefore includes a state where the angle is -5° to 5°.
  • perpendicular means a state in which the angle formed by two straight lines is 80° to 100°, and therefore also includes an angle of 85° to 95°.
  • film and “layer” are interchangeable.
  • conductive layer may sometimes be replaced with “conductive film”.
  • insulating film may sometimes be replaced with “insulating layer”.
  • the touch design of folding products faces technical challenges. Due to the special and changeable folded OLED stack structure, the touch structure in the folded OLED display device can no longer meet the needs of new products. Changes in the thickness and dielectric constant of the stacked structure of the folded OLED display device make the signal amount of the touch parameters of the touch structure in the folded OLED display device smaller, resulting in deterioration of the touch performance of the touch panel.
  • Figure 1A is a schematic structural view of a touch panel provided by an embodiment of the present disclosure
  • Figure 1B is a cross-sectional view of Figure 1A along the B-B direction
  • Figure 1C is a cross-sectional view of Figure 1A along the C-C direction
  • Figure 2 is an enlarged view of the A region in Figure 1 Schematic diagram one.
  • a touch panel provided by an embodiment of the present disclosure includes: a plurality of first touch structures 101 extending along a first direction D1 and a plurality of second touch structures 101 extending along a second direction D2.
  • the touch structure 201 a plurality of first touch structures 101 are arranged along the second direction D2, and a plurality of second touch structures 201 are arranged along the first direction D1.
  • the first touch structure 101 may include: a plurality of first touch electrodes 10 and a plurality of first connecting parts 11
  • the second touch structure 201 may include: a plurality of second touch electrodes electrode 20 and a plurality of second connection parts 21 .
  • the first direction D1 and the second direction D2 intersect.
  • the first touch electrode 10 and the second touch electrode 20 are disposed on the same layer, and the first connection portion 11 or the second connection portion 21 is disposed on the same layer as the first touch electrode 10 .
  • FIG. 1 to FIG. 2 are illustrated by taking the example that the first connecting portion and the first touch electrode are arranged on the same layer.
  • the touch panel may further include: at least one touch branch located at an edge of the touch electrode.
  • the extending direction of each touch branch intersects with the extending direction of the edge of the touch electrode where the touch branch is located, and the extending direction of the touch branch is different from the first direction D1 and the second direction D2.
  • the touch electrodes include: first touch electrodes 10 and/or second touch electrodes 20 .
  • the length of the touch branch is greater than the length along the third direction of the connecting portion disposed on the same layer as the first touch electrode.
  • the third direction may be the same as the extension direction of some touch branches, and intersects the first direction and the second direction. As shown in FIG. 2 , the length of the touch branch can be h1 or h2 .
  • FIG. 2 is illustrated by taking the touch electrodes as a first touch electrode and a second touch electrode as an example.
  • first touch electrodes 10 and multiple second touch electrodes 20 can be formed through the same patterning process.
  • the first connection part 11 and the second connection part 21 are arranged in different layers.
  • the first touch electrodes 10 and the second touch electrodes 20 can be arranged in the same layer and the same material, and have the same pattern, which can improve the interference caused by the mutual interference of different layers of metal grids due to differences in line width and the like. Poor disappearance and optical moiré problems, with good disappearance effect.
  • the first touch electrodes 10 and the second touch electrodes 20 can be arranged on the same layer as the first connecting portion 11 .
  • the first touch electrodes 10 and the first connecting parts 11 can be an integral structure connected to each other, or multiple first touch electrodes 10, multiple second touch electrodes 20 and multiple second connecting parts 21 can be arranged on the same layer
  • the second touch electrode 20 and the second connecting portion 21 may be an integral structure connected to each other.
  • the first touch structure 101 may be a driving electrode (Tx)
  • the second touch structure 201 may be a sensing electrode (Rx)
  • the first touch structure 101 may be a sensing electrode ( Rx)
  • the second touch structure 201 may be a driving electrode (Tx), which is not limited in this disclosure.
  • the first touch electrode 10 and the second touch electrode 20 may have a rhombus shape, such as a regular rhombus, or a horizontally long rhombus, or a vertically long rhombus.
  • the first touch electrodes 10 and the second touch electrodes 20 may have any one or more of triangles, squares, trapezoids, parallelograms, pentagons, hexagons and other polygons. This is not limited.
  • FIG. 1A and FIG. 2 are illustrated by taking the diamond-shaped first touch electrode 10 and the second touch electrode 20 as an example.
  • the quantity of the first touch structure 101 and the second touch structure 201 can be set according to the touch precision.
  • the touch panel provided by the embodiments of the present disclosure includes: a plurality of first touch structures extending along a first direction and a plurality of second touch structures extending along a second direction, and the first touch structure includes: a plurality of first touch structures The touch electrodes and a plurality of first connection parts, the second touch structure includes: a plurality of second touch electrodes and a plurality of second connection parts; the first touch electrodes and the second touch electrodes are arranged in the same layer, and the first touch electrodes The connecting part or the second connecting part is arranged on the same layer as the first touch electrode; the touch panel also includes: at least one touch branch located on the edge of the touch electrode, and the extension direction of each touch branch is the same as that of the touch branch.
  • the extending directions of the edges of the touch electrodes intersect, the extending directions of the touch branches are different from the first direction and the second direction, and the touch electrodes include: the first touch electrodes, and/or the second touch electrodes;
  • the length is longer than the length of the connecting portion disposed on the same layer as the first touch electrode along the third direction, and the third direction is the same as the extending direction of some touch branches, and intersects the first direction and the second direction.
  • the interaction area between the first touch structure and the second touch structure can be increased, the mutual capacitance value can be increased, and the The semaphore of the weak ground parameter of the touch panel optimizes the touch performance of the touch panel.
  • the touch branch may include: a branch body and at least one protrusion located on an edge of the branch body.
  • the at least two touch control branches are arranged at intervals from each other, and the at least two touch control branches are located on both sides of the touch control electrodes.
  • the length of the branch body is greater than half of the length of the touch electrode where the touch branch is located along the extending direction of the touch branch.
  • the length of the branch main body is greater than half of the length of the touch electrode where the touch branch is located along the extending direction of the touch branch, which can make the length of the touch branch longer and increase the size of the first touch structure and the second touch structure. Control the interaction area of the structure and increase the mutual capacitance value.
  • the branch body includes: a first side and a second side opposite to each other and a third side and a fourth side opposite to each other; the third side is connected to the touch electrode where the touch control branch is located; at least A protrusion is located on the first side and the second side of the branch body.
  • the protrusions on the first side of the branch body and the protrusions on the second side of the branch body are arranged alternately.
  • the interlaced arrangement of the protrusions on the first side of the branch body and the protrusions on the second side of the branch body can increase the stability and reliability of the touch branch structure.
  • the width of the protrusion of the touch electrode close to the touch branch is greater than the width of the protrusion of the touch electrode far away from the touch branch.
  • the width of the protrusion close to the touch electrode is greater than the width of the protrusion far away from the touch electrode, which can increase the surface area of the touch branch, increase the interaction area between the first touch structure and the second touch structure, and increase the The mutual capacitance value of the touch panel.
  • the touch electrode when the touch electrode includes: the first touch electrode, the touch branch on the first touch electrode is the first touch branch, and the first touch branch may include: the first branch The main body and at least one first protrusion located on the edge of the main body of the first branch.
  • first touch branches when the number of first touch branches is at least two, at least two first touch branches are spaced apart from each other, and the maximum distance between adjacent first touch branches is about 100 microns to 150 microns.
  • the touch electrode when the touch electrode includes: the second touch electrode, the touch branch on the second touch electrode is the second touch branch, and the second touch branch may include: the second branch The segment body and at least one second protrusion located at the edge of the second branch segment body.
  • the number of the second touch branches is at least two, at least two second touch branches are spaced apart from each other, and the maximum distance between adjacent second touch branches is about 100 microns to 150 microns.
  • FIG. 3 is a schematic structural diagram of a first touch branch provided by an exemplary embodiment
  • FIG. 4 is a schematic structural diagram of a second touch branch provided by an exemplary embodiment.
  • the touch electrode includes: the first touch electrode 10 and the second touch electrode 20
  • the touch branch on the first touch electrode 10 is the first touch branch 12
  • the touch branch on the first touch electrode 10 is the first touch branch 12.
  • a touch branch 12 includes: a first branch body 12A and at least one first protrusion 12B located on the edge of the first branch body 12A.
  • the touch branch on the second touch electrode 20 is the second touch branch 22
  • the second touch branch 22 includes: a second branch body 22A and at least one second protrusion 22B located on the edge of the second branch body 22A.
  • FIG. 3 is illustrated by taking the first touch branch including 8 first protrusions as an example
  • FIG. 4 is illustrated by taking the second touch branch including 8 second protrusions as an example.
  • the at least two first touch branches 12 are spaced apart from each other, and the at least two second touch branches
  • the touch control branches 22 are arranged at intervals; at least the first touch control branch 12 is located between the adjacent second touch control branches 22 , and at least one second touch control branch 22 is located between the adjacent first touch control branches 12 .
  • first grooves are formed between adjacent first touch branches, and the second touch branches fit into the first grooves.
  • the mutual fitting between the second touch branch and the first groove means that when the part area of the first touch branch close to the second touch branch is raised, the second touch branch is close to the first touch branch.
  • the corresponding area of the first touch branch is a groove, and when the partial area on the side of the first touch branch close to the second touch branch is a groove, the corresponding area of the second touch branch close to the first touch branch is a protrusion.
  • Matching the edges of the second touch branch with the edges of two adjacent first touch branches can increase the interaction area between the sensing electrode and the driving electrode, increase the mutual capacitance, and greatly improve the weak ground parameter of the touch panel.
  • the semaphore optimizes the touch performance of the touch panel.
  • a second groove is formed between adjacent second touch branches, and the first touch branch and the second groove are fitted together.
  • the interfitting of the first touch branch and the second groove means that when the partial area of the second touch branch close to the first touch branch is raised, the first The corresponding area of the touch branch close to the second touch branch is a groove.
  • the first touch branch is close to the second touch branch.
  • the corresponding region is convex. Matching the edges of the second touch branch with the edges of two adjacent first touch branches can increase the interaction area between the sensing electrode and the driving electrode, increase the mutual capacitance, and greatly improve the weak ground parameter of the touch panel.
  • the semaphore optimizes the touch performance of the touch panel.
  • the maximum distance D1 between adjacent first touch branches may be greater than the maximum width W2 of the second touch branches.
  • the maximum distance D2 between adjacent second touch branches may be greater than the maximum width W1 of the first touch branches.
  • the edge of the first touch branch 12 can be jagged, which can increase the interaction area between the first touch structure and the second touch structure, increase the mutual capacitance value, and improve the touch panel.
  • the semaphore of the weak ground parameter optimizes the touch performance of the touch panel.
  • the edge of the second touch branch 22 can be jagged, which can increase the interaction area between the first touch structure and the second touch structure, increase the mutual capacitance value, and improve the touch panel.
  • the semaphore of the weak ground parameter optimizes the touch performance of the touch panel.
  • the shape of the first branch body 12A may include a rectangle.
  • the shape of the second branch body 22A may include a rectangle.
  • the shape of the first protrusion 12B may be rectangular, triangular or wavy.
  • the shapes of the second protrusions 22B are all rectangular, triangular or wavy.
  • the first touch branch 12 and the first touch electrode 10 may be integrally formed.
  • the integrated structure of the first touch branch and the first touch electrode can simplify the manufacturing process of the touch panel.
  • the second touch branch 22 and the second touch electrode 20 may be integrally formed.
  • the integrated structure of the second touch branch and the second touch electrode can simplify the manufacturing process of the touch panel.
  • the length h1 of the first touch branch 12 is about 450 microns to 600 microns.
  • the length h2 of the second touch branch 22 is about 450 microns to 600 microns.
  • a touch panel provided by an exemplary embodiment includes: a buffer layer 32 , a bridging layer 33 , an insulating layer 34 , a touch layer 35 and a protective layer 36 stacked on a glass substrate 31 in sequence.
  • the touch layer 35 includes: a plurality of first touch electrodes 10, a plurality of first connection parts 11 and a plurality of second touch electrodes 20; a plurality of first touch electrodes 10 and a plurality of first connection parts 11 are arranged alternately And connected in sequence, a plurality of second touch electrodes 20 are arranged at intervals.
  • the bridging layer includes: a plurality of second connecting parts 21 .
  • the touch layer 35 includes: a plurality of second touch electrodes 20 and a plurality of second connection parts 21 and a plurality of first touch electrodes 10; a plurality of second touch electrodes 20 and a plurality of second connection parts 21 Alternately arranged and connected in sequence, a plurality of first touch electrodes 10 are arranged at intervals; the bridging layer includes: a plurality of first connecting parts 11 .
  • the touch layer 35 includes: a plurality of first touch electrodes 10 and a plurality of first connecting parts 11 and a plurality of second touch electrodes 20; a plurality of first touch electrodes 10 and a plurality of A plurality of first connecting parts 11 are arranged alternately and connected in sequence, and a plurality of second touch electrodes 20 are arranged at intervals.
  • the bridging layer includes: a plurality of second connection parts 21 is taken as an example for description.
  • the material for making the bridging layer 33 and the touch layer 35 can be metal, such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo). Any one or more of these metals, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Mo/Cu/Mo, etc. .
  • the buffer layer 32 and the insulating layer 34 can use any one or more of silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride (SiON), which can be Single layer, multilayer or composite layer.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • SiON silicon oxynitride
  • the protective layer 36 may be a glass cover.
  • FIG. 5A is a schematic structural diagram of a second connecting part provided in an exemplary embodiment
  • FIG. 5B is a structure of a first connecting part provided in an exemplary embodiment. Schematic diagram one. As shown in FIG.
  • each second connection portion may include: two first connection structures 211 arranged symmetrically with respect to the first symmetry axis, and each first connection structure 211 may include: a first pad portion 212 and a second pad portion 212.
  • a connection bridge 213 the first pad portion 212 is configured to connect to the adjacent second touch electrode through a via hole on the insulating layer, and the first connection bridge 213 is configured to connect to the first pad portion 212 .
  • the first axis of symmetry extends along the second direction.
  • the first pad portion 212 may be disposed at both ends of the first connection bridge 213 .
  • the first connecting bridge 213 may be a closed-loop structure formed by multiple first connecting wires, or may be an open-loop structure formed by multiple connecting wires nested sequentially from small to large.
  • FIG. 5A illustrates by taking an example that the first connecting bridge may be a closed-loop structure formed by a plurality of first connecting wires.
  • the first pad portion 212 located at the end of the first connecting bridge 213 may include 2 to 4 pads, and multiple pads may be arranged in a line shape, a triangle shape or a square shape .
  • each first connection part 11 includes: a first sub-connection part 111 and a second sub-connection part 112 connected to each other.
  • the first sub-connection portion 111 and the second sub-connection portion 112 are respectively located on the first touch branch of the two first touch electrodes connected to the first connection portion 11 .
  • the first connection part 11 may further include: a first sub-connection structure 113 located at the first sub-connection part 111 and the second sub-connection part 112 .
  • the first sub-connection part 111 , the second sub-connection part 112 and the first sub-connection structure 113 are integrally formed.
  • the length l1 of the first sub-connection part 111 along the third direction and the length l2 of the second sub-connection part 112 along the third direction may both be smaller than the length of the first touch branch 12 half.
  • FIG. 6A is a schematic structural diagram of the first connecting part provided by an exemplary embodiment.
  • 6B is a second structural schematic diagram of the second connection part provided by an exemplary embodiment.
  • each first connection portion may include: two second connection structures 114 arranged symmetrically with respect to the second axis of symmetry.
  • Each second connection structure 114 may include: a second pad portion 115 and a second connection bridge 116; the second pad portion 115 is configured to be connected to an adjacent first touch electrode through a via hole on the insulating layer, and The two connecting bridges 116 are configured to connect to the second pad portion 115 .
  • the second axis of symmetry extends along the first direction.
  • the second pad portion 115 may be disposed at both ends of the second connection bridge 116 .
  • the second pad part 115 located at the end of the second connection bridge 116 may include 2 to 4 pads, and multiple pads may be arranged in a line shape, a triangle shape or a square shape .
  • the second connecting bridge may be a closed-loop structure formed by multiple second connecting wires, or may be an open-loop structure formed by multiple connecting wires nested sequentially from small to large.
  • FIG. 6A illustrates by taking an example that the second connecting bridge may be a closed-loop structure formed by a plurality of second connecting wires.
  • each second connection part includes: a third sub-connection part 214 and a fourth sub-connection part 215 connected to each other.
  • the third sub-connection portion 214 and the fourth sub-connection portion 215 are respectively located on the second touch branch 22 of the two second touch electrodes connected by the second connection portion.
  • the length l3 of the third sub-connection part 214 along the third direction and the length l4 of the fourth sub-connection part 215 along the third direction are less than half of the length of the second touch branch.
  • the second connection part may further include a second sub-connection structure 216 located between the third sub-connection part 214 and the fourth sub-connection part 215 .
  • the third sub-connection part 214 , the fourth sub-connection part 215 and the second sub-connection structure 216 are integrally formed.
  • the first touch electrode 10, the second touch electrode 20, the first connection part 11, the second connection part 21 and the touch branch all include: a plurality of grid patterns; wherein, the The mesh pattern is a polygon formed of metal lines.
  • the first touch electrode 10, the second touch electrode 20, the first connection part 11, the second connection part 21 and the touch branches all include: a plurality of grid patterns. Since the metal material has better ductility and is not easy to break, the use of the metal grid can improve the bending performance of the touch panel, making the touch panel more suitable for realizing the flexible touch function, and can also reduce the cost.
  • Fig. 7-1 to Fig. 7-5 are structural schematic diagrams of several kinds of metal grids.
  • the metal grid includes a plurality of grid patterns, and the grid patterns are polygons composed of metal wires.
  • the metal grid is spliced by repeating and continuously setting the grid pattern.
  • the shape of the grid pattern surrounded by the metal wires may be a rhombus, as shown in FIG. 7-1 .
  • the shape of the grid pattern surrounded by the metal wires may be a triangle, as shown in FIG. 7-2.
  • the shape of the grid pattern surrounded by the metal wires may be a rectangle, as shown in FIG. 7-3 .
  • the shape of the grid pattern surrounded by the metal wires may be hexagonal, as shown in FIG. 7-4.
  • the shape of the grid pattern surrounded by metal wires may be a combination of various shapes, such as a combination of pentagons and hexagons, as shown in Figure 7-5.
  • the shape of the grid pattern surrounded by the metal wires may include any one or more of triangles, squares, rectangles, rhombuses, trapezoids, pentagons and hexagons.
  • the grid pattern surrounded by the metal wires may be in a regular shape or an irregular shape, and the sides of the grid pattern may be straight lines or curves, which is not limited in the present disclosure.
  • FIG. 8 is an enlarged schematic diagram II of area A in FIG. 1
  • FIG. 9 is an enlarged schematic diagram III of area A in FIG. 1
  • FIG. 10 is an enlarged schematic diagram IV of area A in FIG. 1
  • FIG. 11 is An enlarged schematic view of the area A in Figure 15.
  • the first touch electrode 10 may be a planar electrode, or may include: a plurality of first electrodes 110 extending along the fourth direction and a plurality of first electrodes 110 extending along the fifth direction. Two electrodes 120 .
  • both the first electrodes 110 and the second electrodes 120 include: a plurality of grid patterns, and a plurality of virtual regions 300 are defined between the plurality of first electrodes and the plurality of second electrodes.
  • the fourth direction intersects with the fifth direction, and both the fourth direction and the fifth direction are different from the first direction and the second direction, and the third direction may be the same as the fourth direction or the fifth direction, and this disclosure makes no limited.
  • the second touch electrode 20 may be a planar electrode, or may include: a plurality of third electrodes 210 extending along the fifth direction and a plurality of fourth electrodes 220 extending along the fourth direction .
  • both the third electrodes 210 and the fourth electrodes 220 include: a plurality of grid patterns, and a plurality of dummy regions 300 are defined between the plurality of third electrodes and the plurality of fourth electrodes. 2, 8 and 9 are based on the fact that the first touch electrode 10 includes: a plurality of first electrodes 110 and a plurality of second electrodes 120, and the second touch electrode includes: a plurality of third electrodes 210 and a plurality of fourth electrodes
  • the electrode 220 is described as an example. FIG.
  • FIG. 10 takes the first touch electrode 10 as a planar electrode
  • the second touch electrode includes: a plurality of third electrodes 210 and a plurality of fourth electrodes 220 as an example for illustration.
  • FIG. 11 is illustrated by taking the first touch electrode 10 as an example comprising: a plurality of first electrodes 110 and a plurality of second electrodes 120
  • the second touch electrode 20 is a planar electrode.
  • the width of the first border electrodes is smaller than the width of the first non-border electrodes, and the width of the second border electrodes The width is smaller than the width of the second non-border electrode.
  • the first boundary electrode is the first electrode close to the second touch electrode
  • the second non-boundary electrode is the first electrode on the side away from the second touch electrode of the first boundary electrode
  • the second boundary electrode is close to the second touch electrode.
  • the second electrode of the touch electrode, the second non-border electrode is the second electrode located on the side of the second border electrode away from the second touch electrode.
  • the width of the third border electrodes is smaller than the width of the third non-border electrodes, and the width of the fourth border electrodes The width is smaller than the width of the fourth non-border electrode; wherein, the third border electrode is a third electrode close to the first touch electrode, and the third non-border electrode is a third electrode located on the side of the third border electrode away from the first touch electrode. Electrodes; the fourth boundary electrode is a fourth electrode close to the first touch electrode, and the fourth non-boundary electrode is a fourth electrode located on a side of the fourth boundary electrode away from the first touch electrode.
  • the first electrode 110 and the second electrode 120 forming the dummy region 300 are respectively provided with a first branch segment 13 and a second branch segment 14 .
  • the first branch section 13 and the second branch section 14 located in the same virtual area 300 may be spaced apart from each other, or may be connected to each other.
  • FIG. 8 is illustrated by taking the first branch segment 13 and the second branch segment 14 located in the same virtual area 300 as an example to be spaced apart from each other.
  • FIG. 9 illustrates the connection between the first branch section 13 and the second branch section 14 located in the same virtual area as an example.
  • both the first branch segment 13 and the second branch segment 14 may include a plurality of grid patterns
  • the shapes of the first branch section 13 and the second branch section 14 may include: a cross or a square.
  • the area of the virtual area in the touch panel provided with the first branch section 13 and the second branch section 14 is smaller than that in the touch panel without the first branch section 13 and the second branch section 14 The area of the virtual region of .
  • the third electrode 210 and the fourth electrode 220 forming the dummy region 300 are respectively provided with a third branch segment 23 and a fourth branch segment 24 .
  • the third branch section 23 and the fourth branch section 24 located in the same virtual area may be spaced apart from each other, or may be connected to each other.
  • FIG. 8 is illustrated by taking the arrangement of the third branch section 23 and the fourth branch section 24 located in the same virtual area 300 at intervals as an example.
  • FIG. 9 illustrates the connection between the third branch section 23 and the fourth branch section 24 located in the same virtual area as an example.
  • both the third branch segment 23 and the fourth branch segment 24 may include a plurality of grid patterns
  • the shapes of the third branch section 23 and the fourth branch section 24 may include: cross shape or square shape.
  • the area of the virtual area in the touch panel provided with the third branch section 23 and the fourth branch section 24 is smaller than that in the touch panel without the third branch section 23 and the fourth branch section 24 The area of the virtual region of .
  • the touch panel may further include: a metal structure disposed on the same layer as the touch electrodes.
  • the metal structure is located in the virtual area, and the metal structure includes: a plurality of grid patterns. The metal structure has no voltage when touch is realized.
  • Fig. 12 is a schematic structural diagram of a touch panel provided by an exemplary embodiment. As shown in FIG. 12 , the touch panel provided by an exemplary embodiment may further include: multiple first touch wires 102 and multiple second touch wires 202 located on the touch layer.
  • the first touch wire 102 is connected to the first touch structure 101 , and different first touch wires 102 are connected to different first touch structures 101 .
  • the second touch wire 202 is connected to the second touch structure 201 , and different second touch wires 202 are connected to different second touch structures 201 .
  • the first touch wire and the first touch electrode may be integrally formed.
  • the second touch wire and the second touch electrode may be integrally formed.
  • the first touch wire 102 may be connected to the first end and the second end of the first touch structure.
  • the second touch wire 202 may be connected to one end of the second touch structure.
  • the first touch structure as a driving electrode and the second touch structure as a sensing electrode as an example
  • a driving signal is input to the first first touch structure
  • Each second touch structure receives signals in turn, and inputs a driving signal to the second first touch structure
  • each second touch structure receives signals in turn, and so on, until a driving signal is input to the last first touch structure .
  • the touch of the human finger will cause the mutual capacitance of the first touch structure and the second touch structure to change, and the position of the finger can be judged according to the change of the mutual capacitance of the first touch structure and the second touch structure.
  • touch panel 1 refers to the touch panel whose edge of the first touch branch is not zigzag, and the length of the first touch branch is less than 400 microns
  • touch panel 2 and touch panel 3 refer to the first The edge of the touch branch is jagged, and the touch panel with the length of the first touch branch is greater than 400 microns
  • the first touch branch includes the first branch segment, the second branch segment, and the third branch segment in the virtual area and the fourth branch section, wherein the length of the touch branch of the touch panel 3 is greater than the length of the touch branch of the touch panel 2, and the number of protrusions of the touch branch of the touch panel 3 is greater than that of the touch panel 2
  • the number of protrusions of the control branch wherein the touch branch includes: a first touch branch and a second touch branch.
  • the first branch segment and the second branch segment located in the same virtual area are spaced apart from each other, and the third branch segment and the fourth branch segment located in the same virtual area are spaced apart from each other.
  • the first branch segment and the second branch segment located in the same virtual area in the touch panel 3 are connected to each other, and the third branch segment and the fourth branch segment located in the same virtual area are connected to each other.
  • TX/RX refers to the number of driving electrodes TX and the number of sensing electrodes RX
  • Cm1 is the mutual capacitance value between the driving electrodes TX and sensing electrodes RX before the touch occurs
  • Cm2 is the driving electrode TX and sensing electrodes RX after the touch occurs
  • ⁇ Cm is the change in mutual capacitance before and after touch
  • ⁇ Cm
  • ⁇ Cm/Cm1 is the change in mutual capacitance before and after touch and the driving electrode TX before touch
  • CpTx is the capacitance value of the parasitic capacitance between the driving electrode and the electrode layer in the display panel
  • CpRx is the capacitance value of the parasitic capacitance between the sensing electrode and the electrode layer in the display panel
  • CfTx is the capacitance value between the driving electrode and the touch object
  • CfRx is the capacitance value between the
  • a weak ground means that the device including the touch panel and the human body have no common ground.
  • the Retransmission effect is obvious, and it is more difficult for the charge to be transferred to the ground, resulting in a small change in the collected mutual capacitance value, which makes it difficult to accurately identify the touch. Therefore, in the weakly grounded state The touch performance is poor. The larger the weak ground parameter, the better the touch performance.
  • touch panel 1 has 39 driving electrodes and 34 sensing electrodes as an example, while touch panel 2 has 40 driving electrodes and 17 sensing electrodes.
  • touch panel 1 has 39 driving electrodes and 34 sensing electrodes as an example, while touch panel 2 has 40 driving electrodes and 17 sensing electrodes.
  • the sum of the numbers of the sensing electrodes and the driving electrodes of the touch panel 1 is greater than the sum of the numbers of the sensing electrodes and the driving electrodes of the touch panel 2 .
  • the sum of the numbers of the sensing electrodes and the driving electrodes of the touch panel 1 is greater than the sum of the numbers of the sensing electrodes and the driving electrodes of the touch panel 2, because the first touch branch and the second touch branch of the touch panel 2 The edge is jagged, and the length of the first touch branch and the length of the second touch branch are greater than the threshold length, therefore, Cm1 and Cm2 of the touch panel 2 are greater than Cm1 and Cm2 of the touch panel 1, verifying the disclosure
  • the setting of the first touch branch and the second touch branch increases the interaction area between the sensing electrode and the driving electrode, and increases the mutual capacitance.
  • ⁇ Cm of the touch panel 2 is greater than ⁇ Cm of the touch panel 1
  • ⁇ Cm/Cm1 of the touch panel 2 is smaller than ⁇ Cm/Cm1 of the touch panel 1
  • the CpTx and CpRx of the touch panel 2 are both greater than the CpTx and CpRx of the touch panel 1
  • the CfTx and CfRx of the touch panel 2 are both smaller than the CfTx and CfRx of the touch panel 1
  • the LGM of the touch panel 2 is larger than the LGM of the touch panel 1 .
  • the Rtx and Rrx of the touch panel 2 are both smaller than the Rtx and Rrx of the touch panel 1. Compared with the touch panel 1, the resistance of the sensing electrode and the driving electrode of the touch panel 2 is smaller, which reduces the load of the touch panel and can Improve the touch performance of the touch panel.
  • the touch panel 1 and the touch panel 3 both take 39 driving electrodes and 34 sensing electrodes as examples. Since the edges of the first touch branch and the second touch branch of the touch panel 3 are jagged, and the lengths of the first touch branch and the second touch branch are greater than the threshold length, therefore, the touch panel 3 Both Cm1 and Cm2 are larger than Cm1 and Cm2 of the touch panel 1 , which proves that the setting of the first touch branch and the second touch branch in the present disclosure increases the interaction area between the sensing electrodes and the driving electrodes, and increases the mutual capacitance value.
  • ⁇ Cm of the touch panel 3 is greater than ⁇ Cm of the touch panel 1
  • ⁇ Cm/Cm1 of the touch panel 3 is smaller than ⁇ Cm/Cm1 of the touch panel 1
  • the CpTx and CpRx of the touch panel 3 are both greater than the CpTx and CpRx of the touch panel 1
  • the CfTx and CfRx of the touch panel 3 are both smaller than the CfTx and CfRx of the touch panel 1
  • the LGM of the touch panel 3 is larger than the LGM of the touch panel 1 .
  • the Rtx and Rrx of the touch panel 3 are both smaller than the Rtx and Rrx of the touch panel 1. Compared with the touch panel 1, the touch panel 3 has a smaller resistance of the sensing electrode and the driving electrode, which reduces the load of the touch panel and can Improve the touch performance of the touch panel.
  • touch panel 3 has 39 driving electrodes and 34 sensing electrodes as an example, and touch panel 3 has 40 driving electrodes and 17 sensing electrodes.
  • the sum of the numbers of the sensing electrodes and the driving electrodes of the touch panel 3 is greater than the sum of the numbers of the sensing electrodes and the driving electrodes of the touch panel 2 .
  • Both Cm1 and Cm2 of the touch panel 2 are greater than Cm1 and Cm2 of the touch panel 3 .
  • ⁇ Cm of the touch panel 2 is greater than ⁇ Cm of the touch panel 3
  • ⁇ Cm/Cm1 of the touch panel 2 is smaller than ⁇ Cm/Cm1 of the touch panel 3 .
  • Both CpTx and CpRx of the touch panel 3 are greater than CpTx and CpRx of the touch panel 2
  • CfTx and CfRx of the touch panel 3 are both smaller than CfTx and CfRx of the touch panel 2
  • the LGM of the touch panel 2 is larger than the LGM of the touch panel 3
  • Both Rtx and Rrx of the touch panel 3 are smaller than Rtx and Rrx of the touch panel 2 .
  • the touch panel 3 has lower resistances of the sensing electrodes and the driving electrodes, which reduces the load of the touch panel and improves the touch performance of the touch panel.
  • the LGM, Cm1, and Cm2 of the touch panel are not proportional to the sum of the sensing electrodes and the driving electrodes in the touch panel, that is, the greater the sum of the sensing electrodes and the driving electrodes in the touch panel, the greater the touch panel
  • the LGM, Cm1 and Cm2 of the larger The greater the sum of the numbers of the sensing electrodes and the driving electrodes in the touch panel, the greater the CfTx, CfRx, CfTx and CfRx of the touch panel.
  • the smaller the virtual area in the touch panel the smaller the LGM of the touch panel.
  • Table 2 shows the simulation results 2 of various touch parameters of different touch panels.
  • the touch panel 4 to the touch panel 9 are the edges of the first touch branch and the edge of the second touch branch are jagged, and the length of the first touch branch and the length of the second touch branch are greater than the threshold length of the touch panel.
  • Touch panel 4 is the touch panel provided in FIG. 8
  • touch panel 5 and touch panel 6 are the touch panels provided in FIG. 9
  • touch panel 7 is the touch panel provided in FIG.
  • the control panel 9 is the touch panel provided in FIG. 10 .
  • the difference between the touch panel 5 and the touch panel 4 is that the virtual area in the touch panel 5 is smaller than the virtual area in the touch panel 4, and the first touch branch in the touch panel 5
  • the length is greater than the length of the first touch branch in the touch panel 4
  • the length of the second touch branch in the touch panel 5 is greater than the length of the second touch branch in the touch panel 4
  • the difference between the touch panel 6 and the touch panel 5 is that the virtual area in the touch panel 6 is smaller than the virtual area in the touch panel 5 .
  • the touch panel 7 differs in that the virtual area in the touch panel 7 is larger than the virtual area in the touch panel 5, and the virtual area in the touch panel 7 is square.
  • the difference between the touch panel 8 and the touch panel 6 is that the sensing electrodes in the touch panel 8 do not include dummy areas.
  • the touch panel 9 is different in that the length of the first touch branch of the touch panel 9 is less than the length of the first touch branch of the touch panel 8, and the second touch panel 9 is shorter than the length of the first touch branch of the touch panel 8.
  • the length of the touch branch is smaller than the length of the second touch branch of the touch panel 8 .
  • the touch panel 4 to the touch panel 9 are all described with 40 driving electrodes and 17 sensing electrodes, and the manufacturing material of the touch objects is copper.
  • the Cm1 and Cm2 of the touch panel 5 are greater than the Cm1 and Cm2 of the touch panel 4 .
  • ⁇ Cm of the touch panel 5 is greater than ⁇ Cm of the touch panel 4
  • ⁇ Cm/Cm1 of the touch panel 5 is smaller than ⁇ Cm/Cm1 of the touch panel 4 .
  • CpTx and CpRx of the touch panel 5 are greater than CpTx and CpRx of the touch panel 4
  • CfTx and CfRx of the touch panel 5 are greater than CfTx and CfRx of the touch panel 4 .
  • the LGM of the touch panel 5 is larger than the LGM of the touch panel 5 .
  • Both Rtx and Rrx of the touch panel 5 are greater than Rtx and Rrx of the touch panel 4 .
  • the smaller the virtual area in the touch panel the longer the length of the first touch branch and the second touch branch, and the longer the Cm1, Cm2, ⁇ Cm, CpTx, CpRx, CfTx, CfRx, LGM, Rtx and Rrx of the touch panel. big.
  • the Cm1 and Cm2 of the touch panel 6 are smaller than the Cm1 and Cm2 of the touch panel 5 .
  • ⁇ Cm of the touch panel 6 is greater than ⁇ Cm of the touch panel 5
  • ⁇ Cm/Cm1 of the touch panel 6 is greater than ⁇ Cm/Cm1 of the touch panel 5 .
  • CpTx and CpRx of the touch panel 6 are greater than CpTx and CpRx of the touch panel 5
  • CfTx and CfRx of the touch panel 6 are greater than CfTx and CfRx of the touch panel 5 .
  • the LGM of the touch panel 6 is smaller than the LGM of the touch panel 5 .
  • Both Rtx and Rrx of the touch panel 6 are smaller than Rtx and Rrx of the touch panel 5 .
  • the smaller the virtual area in the touch panel the smaller the Cm1, Cm2, LGM, Rtx, and Rrx of the touch panel, and the larger ⁇ Cm, ⁇ Cm/Cm1, CpTx, CpRx, CfTx, and CfRx.
  • the Cm1 and Cm2 of the touch panel 7 are smaller than the Cm1 and Cm2 of the touch panel 5 .
  • ⁇ Cm of the touch panel 7 is greater than ⁇ Cm of the touch panel 5
  • ⁇ Cm/Cm1 of the touch panel 7 is greater than ⁇ Cm/Cm1 of the touch panel 5 .
  • Both CpTx and CpRx of the touch panel 7 are smaller than CpTx and CpRx of the touch panel 5
  • CfTx and CfRx of the touch panel 7 are both smaller than CfTx and CfRx of the touch panel 5 .
  • the LGM of the touch panel 7 is larger than the LGM of the touch panel 5 .
  • Both Rtx and Rrx of the touch panel 7 are smaller than Rtx and Rrx of the touch panel 5 .
  • the larger the virtual area in the touch panel the larger Cm1, Cm2, CpTx, CpRx, CfTx, and CfRx, and the smaller ⁇ Cm, ⁇ Cm/Cm1, LGM, Rtx, and Rrx.
  • the Cm1 and Cm2 of the touch panel 8 are greater than the Cm1 and Cm2 of the touch panel 6 .
  • ⁇ Cm of the touch panel 8 is greater than ⁇ Cm of the touch panel 6
  • ⁇ Cm/Cm1 of the touch panel 8 is greater than ⁇ Cm/Cm1 of the touch panel 6 .
  • the CpTx of the touch panel 8 is less than the CpTx of the touch panel 6, the CpRx of the touch panel 8 is greater than the CpRx of the touch panel 6, the CfTx of the touch panel 8 is equal to the CfTx of the touch panel 6, and the CfRx of the touch panel 8 is greater than the touch panel 6.
  • Control Panel 6's CfRx The LGM of the touch panel 8 is smaller than the LGM of the touch panel 6 .
  • Rtx of the touch panel 8 is greater than Rtx of the touch panel 6
  • Rrx of the touch panel 8 is less than Rrx of the touch panel 6 .
  • a touch panel in which one electrode does not include a dummy area has a smaller LGM than a touch panel in which both electrodes include a dummy area.
  • the Cm1 and Cm2 of the touch panel 9 are smaller than the Cm1 and Cm2 of the touch panel 8 .
  • ⁇ Cm of the touch panel 9 is smaller than ⁇ Cm of the touch panel 8
  • ⁇ Cm/Cm1 of the touch panel 9 is smaller than ⁇ Cm/Cm1 of the touch panel 8 .
  • CpTx and CpRx of the touch panel 9 are greater than or equal to CpTx and CpRx of the touch panel 8
  • CfTx and CfRx of the touch panel 9 are both equal to CfTx and CfRx of the touch panel 8 .
  • the LGM of the touch panel 9 is smaller than the LGM of the touch panel 8 .
  • Both Rtx and Rrx of the touch panel 9 are smaller than Rtx and Rrx of the touch panel 8 .
  • FIG. 13 is a schematic structural diagram of the touch display panel provided by the embodiment of the present disclosure.
  • the touch display panel provided by the embodiment of the present disclosure includes: a display panel 100 and a touch panel 200 .
  • the touch panel 200 may be located on the light emitting side of the display panel 100 or on the backlight side opposite to the light emitting side.
  • FIG. 13 is illustrated by taking the touch panel located on the light emitting side of the display panel as an example.
  • the display panel may be a liquid crystal display (LCD) panel, or may be an organic light emitting diode (OLED) display panel, or may be a plasma display panel (PDP), or may be an electrophoretic display (EPD) ) panel, or it could be a quantum dot light emitting diode (QLED) display panel.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • PDP plasma display panel
  • EPD electrophoretic display
  • QLED quantum dot light emitting diode
  • FIG. 14 is a schematic plan view of a display panel.
  • the display panel may include a plurality of pixel units arranged regularly.
  • each pixel unit may include 3 sub-pixels, or may include 4 sub-pixels, or may include multiple sub-pixels.
  • the 3 sub-pixels include a first sub-pixel emitting light of the first color, a second sub-pixel emitting light of the second color, and a third sub-pixel emitting light of the third color.
  • the 4 sub-pixels include a first sub-pixel emitting light of the first color, a second sub-pixel emitting light of the second color, a third sub-pixel emitting light of the third color, and a second sub-pixel emitting light of the fourth color.
  • the fourth subpixel of the ray When the pixel unit includes 3 sub-pixels, the 3 sub-pixels include a first sub-pixel emitting light of the first color, a second sub-pixel emitting light of the second color, and a third sub-pixel emitting light of the third color.
  • the pixel unit 50 shown in FIG. 12 includes four sub-pixels, namely a first sub-pixel 51, a second sub-pixel 52, a third sub-pixel 53, and a fourth sub-pixel 54.
  • the shapes of the four sub-pixels are It is a square, arranged in a square way.
  • the first sub-pixel 51 and the fourth sub-pixel 54 are green sub-pixels emitting green (G) light
  • the second sub-pixel 52 is a red sub-pixel emitting red (R) light
  • the second sub-pixel 52 is a red sub-pixel emitting red (R) light
  • the three sub-pixels 53 are blue sub-pixels that emit blue (B) light, forming a pixel unit 50 arranged in an RGGB square.
  • the first sub-pixel 51 may be a green sub-pixel
  • the second sub-pixel 52 may be a red sub-pixel
  • the third sub-pixel 53 may be a blue sub-pixel
  • the fourth sub-pixel 54 may be a white sub-pixel.
  • the sub-pixels form a pixel unit 50 arranged in an RGBW square.
  • the pixel unit may include red sub-pixels, green sub-pixels, blue sub-pixels, cyan sub-pixels, magenta sub-pixels, yellow sub-pixels and white sub-pixels.
  • the four sub-pixels included in the pixel unit 50 may adopt various shapes and be arranged in various ways.
  • 15-1 to 15-3 are structural schematic diagrams of several pixel units.
  • the four sub-pixels can be rectangular and arranged side by side. From left to right, they are: R sub-pixel, G sub-pixel, B sub-pixel and G sub-pixel, as shown in Figure 15-1.
  • the four sub-pixels can be arranged in parallel in a pentagonal and hexagonal shape, with two pentagonal G sub-pixels located in the middle of the pixel unit, and hexagonal R sub-pixels and hexagonal B sub-pixels.
  • the pixels are located on both sides of the G sub-pixel, as shown in Figure 15-2.
  • the 3 rectangular sub-pixels may be arranged in parallel in the horizontal direction, or may be arranged in parallel in the vertical direction, as shown in FIG. 15-3 Show.
  • the shape of the sub-pixels can be any one or more of triangles, squares, rectangles, rhombuses, trapezoids, parallelograms, pentagons, hexagons and other polygons, and the arrangement can be It is X-shaped, cross-shaped or character-shaped, etc., which is not limited in the present disclosure.
  • the display panel includes a driving circuit layer 62 disposed on a flexible substrate 61, a light emitting structure layer 63 disposed on the driving circuit layer 62, and a light emitting structure layer disposed on the light emitting structure layer 63.
  • the encapsulation layer 64 is a schematic cross-sectional structure diagram of a display panel, illustrating the structure of two sub-pixels when the display panel is an OLED display panel. As shown in FIG. 16, on a plane perpendicular to the display panel, the display panel includes a driving circuit layer 62 disposed on a flexible substrate 61, a light emitting structure layer 63 disposed on the driving circuit layer 62, and a light emitting structure layer disposed on the light emitting structure layer 63.
  • the encapsulation layer 64 is a schematic cross-sectional structure diagram of a display panel, illustrating the structure of two sub-pixels when the display panel is an OLED display panel.
  • the display panel includes a driving circuit layer 62 disposed on a flexible substrate 61,
  • the touch panel can be disposed on the encapsulation layer 64 to form a touch structure on thin film encapsulation (Touch on Thin Film Encapsulation, Touch on TFE for short) structure.
  • the display panel may include other film layers, and other film layers may be disposed between the touch panel and the encapsulation layer, which is not limited in the present disclosure.
  • the flexible substrate 61 may include a stacked first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer and a second inorganic material layer, the first flexible material layer and the
  • the material of the second flexible material layer can adopt materials such as polyimide (PI), polyethylene terephthalate (PET) or through the polymer soft film of surface treatment, the first inorganic material layer and the second inorganic material
  • the material of the layer can be silicon nitride (SiNx) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate, and the material of the semiconductor layer can be amorphous silicon (a-si).
  • the driving circuit layer 62 may include transistors and storage capacitors constituting a pixel circuit.
  • the pixel circuit may be a 3T1C, 4T1C, 5T1C, 5T2C, 6T1C or 7T1C structure.
  • each sub-pixel includes a transistor and a storage capacitor as an example.
  • the driving circuit layer 62 of each sub-pixel may include: a first insulating layer disposed on a flexible substrate, an active layer disposed on the first insulating layer, and a second insulating layer covering the active layer.
  • the active layer can be made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si ), polysilicon (p-Si), hexathiophene or polythiophene and other materials, the present disclosure is applicable to transistors manufactured based on oxide (Oxide) technology, silicon technology or organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polysilicon
  • hexathiophene or polythiophene and other materials the present disclosure is applicable to transistors manufactured based on oxide (Oxide) technology, silicon technology or organic technology.
  • the first insulating layer, the second insulating layer, the third insulating layer and the fourth insulating layer may use silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride (SiON) Any one or more of them can be single layer, multilayer or composite layer.
  • the first insulating layer can be called the buffer (Buffer) layer, which is used to improve the water and oxygen resistance of the substrate
  • the second insulating layer and the third insulating layer can be called the gate insulating (GI) layer
  • the fourth insulating layer can be called It is the interlayer insulating (ILD) layer.
  • the first metal layer, the second metal layer and the third metal layer can use metal materials such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum Any one or more of (Mo), or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum-niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al /Ti etc.
  • metal materials such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum-niobium alloy
  • organic materials may be used for the planar layer, and indium tin oxide (ITO) or indium zinc oxide (IZO) may be used for the transparent conductive film.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the light-emitting structure layer 63 may include an anode, a pixel definition layer, an organic light-emitting layer, and a cathode. It is arranged on the anode and the flat layer, the pixel definition layer is provided with a pixel opening, the pixel opening exposes the anode, the organic light-emitting layer is arranged in the pixel opening, the cathode is arranged on the organic light-emitting layer, and the organic light-emitting layer is applied with a voltage between the anode and the cathode. Under the action, light of the corresponding color is emitted.
  • the anode can be made of a transparent conductive material.
  • the pixel definition layer may use polyimide, acrylic or polyethylene terephthalate.
  • the organic light-emitting layer may include a stacked hole injection layer (Hole Injection Layer, referred to as HIL), a hole transport layer (Hole Transport Layer, referred to as HTL), an electron blocking layer (Electron Block Layer) , referred to as EBL), light emitting layer (Emitting Layer, referred to as EML), hole blocking layer (Hole Block Layer, referred to as HBL), electron transport layer (Electron Transport Layer, referred to as ETL) and electron injection layer (Electron Injection Layer, referred to as EIL) ).
  • HIL stacked hole injection layer
  • HTL hole transport layer
  • EML electron blocking layer
  • EML light emitting layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the hole injection layers of all sub-pixels may be a common layer connected together
  • the electron injection layers of all sub-pixels may be a common layer connected together
  • the hole transport layers of all sub-pixels may be a common layer connected together. It can be a common layer connected together
  • the electron transport layer of all sub-pixels can be a common layer connected together
  • the hole blocking layer of all sub-pixels can be a common layer connected together
  • the light-emitting layers of adjacent sub-pixels can be There is a small amount of overlap, or may be isolated, and the electron blocking layers of adjacent sub-pixels may have a small amount of overlap, or may be isolated.
  • the cathode can use any one or more of magnesium (Mg), silver (Ag), aluminum (Al), copper (Cu) and lithium (Li), or can use the above-mentioned An alloy made of any one or more of the metals.
  • the encapsulation layer 64 may include a stacked first encapsulation layer, a second encapsulation layer and a third encapsulation layer, the first encapsulation layer and the third encapsulation layer may use inorganic materials, and the second encapsulation layer Organic materials can be used, and the second encapsulation layer is arranged between the first encapsulation layer and the third encapsulation layer, which can ensure that external water vapor cannot enter the light-emitting structure layer 63 .
  • the display panel and the touch panel are integrated together, which has the advantages of thinness and foldability, and can meet product requirements such as flexible folding and narrow frame.
  • the display panel substrate includes a light-emitting region P1 and a non-light-emitting region P2.
  • the light-emitting region P1 includes a plurality of sub-pixels arranged periodically, and the non-light-emitting region P2 includes Subpixel edges between pixels.
  • the display panel includes: a display area and a non-light-emitting area, the display area includes a light-emitting area and a first non-light-emitting area, the non-display area includes: a second non-light-emitting area, and the non-light-emitting area is composed of the first non-light-emitting area and the second non-light-emitting area .
  • the touch panel includes a plurality of metal grids composed of metal wires, and at least one sub-pixel is included on the substrate in the area enclosed by the orthographic projection of the metal wires on the substrate.
  • the orthographic projection of the sub-pixel edge on the substrate includes the orthographic projection of the metal line on the substrate.
  • the area enclosed by the orthographic projection of the metal line on the substrate contains the orthographic projection of at least one sub-pixel on the substrate, and the orthographic projection of the edge of the sub-pixel on the substrate contains metal
  • the orthographic projection of the lines on the substrate can ensure that the touch panel does not affect the display of the display panel.
  • the organic light-emitting layer emits light in the pixel opening area defined by the pixel definition layer
  • the pixel opening area is the light-emitting area P1
  • the area outside the pixel opening is the non-light-emitting area P2
  • the non-light-emitting area P2 Located at the periphery of the light-emitting area P1.
  • each light-emitting area P1 is called a sub-pixel (sub pixel), such as a red sub-pixel, a blue sub-pixel or a green sub-pixel
  • each non-light-emitting area P2 is called a sub-pixel edge, such as A red-green sub-pixel edge between a red sub-pixel and a green sub-pixel, and a blue-green sub-pixel edge between a blue sub-pixel and a green sub-pixel.
  • the light-emitting area of the display panel includes a plurality of sub-pixels arranged periodically, and the non-light-emitting area of the display structure layer includes sub-pixel edges located between adjacent sub-pixels.
  • the touch panel is the touch panel provided by any one of the foregoing embodiments, and its implementation principle and effect are also similar, so details will not be repeated here.
  • Fig. 17 is a schematic structural diagram of a touch display panel provided by an exemplary embodiment.
  • the display panel in the touch display panel may further include: a pad area located in a non-display area.
  • the touch panel may include: a first touch wire 102 connected to the first touch structure 101 and a second touch wire 202 connected to the second touch structure 201 .
  • the pad area includes: a first pad electrode 103 and a second pad electrode 203 .
  • Each first touch structure is connected to the first pad electrode through the first touch wire
  • each second touch structure is connected to the second pad electrode through the second touch wire.
  • the display panel may further include: a touch driving chip located in the non-display area.
  • the touch driving chip may be located on a side of the pad area close to the display area.
  • the first touch control structure is connected to the touch driving chip through the first pad electrode
  • the second touch control structure is connected to the touch driving chip through the second pad electrode
  • An embodiment of the present disclosure also provides a touch display device, including: a touch display panel.
  • the touch display device may be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • the touch display panel is the touch display panel provided by any one of the above-mentioned embodiments, and its implementation principle and effect are similar, so details will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板、触控显示面板和触控显示装置,其中,触控面板包括:多个沿第一方向延伸的第一触控结构和多个沿第二方向延伸的第二触控结构,第一触控结构包括:多个第一触控电极和多个第一连接部,第二触控结构包括:多个第二触控电极和多个第二连接部;第一触控电极和第二触控电极同层设置,第一连接部或第二连接部与第一触控电极同层设置;触控面板还包括:位于触控电极的边缘的至少一个触控分支,每个触控分支的延伸方向与触控分支所在的触控电极的边缘的延伸方向相交,触控分支的延伸方向不同于第一方向和第二方向,触控电极包括:第一触控电极,和/或第二触控电极;触控分支的长度大于与第一触控电极同层设置的连接部沿第三方向的长度。

Description

触控面板、触控显示面板和触控显示装置 技术领域
本公开实施例涉及但不限于触控技术领域,具体涉及一种触控面板、触控显示面板和触控显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有自发光、广视角、高对比度、低耗电、极高反应速度等优点,随着显示技术的不断发展,以OLED为发光器件、由薄膜晶体管(Thin Film Transistor,简称TFT)进行信号控制的柔性显示装置(Flexible Display)已成为目前显示领域的主流产品。
受柔性折叠、窄边框等产品需求的限制,可触控的OLED显示器件中设置有触控面板,其中,触控面板采用柔性多层覆盖表面式(Flexible Multi Layer On Cell,简称FMLOC)结构形式,触控面板设置在OLED背板的封装层上,具有轻薄、可折叠等优点。基于降低电阻、提高灵敏度等考虑,触控面板中的驱动电极(Tx)和感应电极(Rx)采用金属网格(Metal Mesh)形式。相对于采用透明导电材料(如Indium Tin Oxide,简称ITO)形成触控电极,金属网格具有电阻小、厚度小和反应速度快等优点。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开提供了一种触控面板,包括:多个沿第一方向延伸的第一触控结构和多个沿第二方向延伸的第二触控结构,多个第一触控结构沿第二方向排布,多个第二触控结构沿第一方向排布;所述第一触控结构包括:多个第一触控电极和多个第一连接部,所述第二触控结构包括:多个第二触控电极和多个第二连接部,所述第一方向和所述第二方向相交;所述第一触 控电极和所述第二触控电极同层设置,所述第一连接部或所述第二连接部与所述第一触控电极同层设置;
所述触控面板还包括:位于触控电极的边缘的至少一个触控分支,每个所述触控分支的延伸方向与所述触控分支所在的所述触控电极的边缘的延伸方向相交,所述触控分支的延伸方向不同于所述第一方向和所述第二方向,所述触控电极包括:所述第一触控电极,和/或所述第二触控电极;
所述触控分支的长度大于与所述第一触控电极同层设置的连接部沿第三方向的长度,所述第三方向与部分触控分支的延伸方向相同,且与所述第一方向和所述第二方向相交。
在一些可能的实现方式中,所述触控分支包括:分支主体以及位于所述分支主体边缘的至少一个凸起;
当所述触控分支的数量为至少两个时,至少两个触控分支相互间隔设置,且至少两个触控分支位于所述触控电极的两侧。
在一些可能的实现方式中,所述分支主体的长度大于所述触控分支所在的触控电极沿所述触控分支的延伸方向的长度的一半。
在一些可能的实现方式中,所述分支主体包括:相对设置的第一侧和第二侧以及相对设置的第三侧和第四侧;所述第三侧与所述触控分支所在的触控电极连接;
所述至少一个凸起位于所述分支主体的所述第一侧和所述第二侧;
位于所述分支主体的所述第一侧的所述凸起与位于所述分支主体的所述第二侧的所述凸起交错设置。
在一些可能的实现方式中,靠近所述触控分支所在的所述触控电极的所述凸起的宽度大于远离所述触控分支所在的所述触控电极的所述凸起的宽度。
在一些可能的实现方式中,当触控电极包括:所述第一触控电极和所述第二触控电极时,所述第一触控电极上的触控分支为第一触控分支,所述第一触控分支包括:第一分支主体以及位于所述第一分支主体边缘的至少一个第一凸起;所述第二触控电极上的触控分支为第二触控分支,所述第二触控 分支包括:第二分支主体以及位于所述第二分支主体边缘的至少一个第二凸起;
当所述第一触控分支和所述第二触控分支的数量均为至少两个时,至少两个第一触控分支相互间隔设置,至少两个第二触控分支相互间隔设置;至少一个第一触控分支位于相邻的第二触控分支之间,至少一个第二触控分支位于相邻的第一触控分支之间;
相邻的第一触控分支之间的最大间距大于所述第二触控分支的最大宽度;
相邻的第二触控分支之间的最大间距大于所述第一触控分支的最大宽度。
在一些可能的实现方式中,相邻的所述第一触控分支之间形成第一凹槽,所述第二触控分支与所述第一凹槽相互嵌合;
相邻的所述第二触控分支之间形成第二凹槽,所述第一触控分支与所述第二凹槽相互嵌合。
在一些可能的实现方式中,所述第一分支主体的形状和所述第二分支主体的形状均包括:矩形;
所述第一凸起的形状和所述第二凸起的形状均包括:矩形、三角形或者波浪形。
在一些可能的实现方式中,所述第一触控分支与所述第一触控电极为一体成型结构;
所述第二触控分支与所述第二触控电极为一体成型结构。
在一些可能的实现方式中,包括:依次叠设的缓冲层、桥接层、绝缘层、触控层和保护层;
所述触控层包括:多个所述第一触控电极和多个所述第一连接部以及多个所述第二触控电极;多个所述第一触控电极和多个所述第一连接部交替设置且依次连接,多个所述第二触控电极间隔设置;
所述桥接层包括:多个所述第二连接部,每个所述第二连接部包括:相对于第一对称轴对称设置的两个第一连接结构,每个所述第一连接结构包括:第一焊盘部和第一连接桥;所述第一焊盘部配置为通过所述绝缘层上的过孔 与相邻的第二触控电极连接,所述第一连接桥配置为连接所述第一焊盘部,所述第一对称轴沿第二方向延伸。
在一些可能的实现方式中,所述第一连接桥为由多个第一连接走线构成的闭环结构。
在一些可能的实现方式中,包括:依次叠设的缓冲层、桥接层、绝缘层、触控层和保护层;
所述触控层包括:多个所述第二触控电极和多个所述第二连接部以及多个所述第一触控电极;多个所述第二触控电极和多个所述第二连接部交替设置且依次连接,多个所述第一触控电极间隔设置;
所述桥接层包括:多个所述第一连接部,每个所述第一连接部包括:相对于第二对称轴对称设置的两个第二连接结构,每个所述第二连接结构包括:第二焊盘部和第二连接桥;所述第二焊盘部配置为通过所述绝缘层上的过孔与相邻的第一触控电极连接,所述第二连接桥配置为连接所述第一焊盘部,所述第二对称轴沿第一方向延伸。
在一些可能的实现方式中,所述第二连接桥为由多个第二连接走线构成的闭环结构。
在一些可能的实现方式中,每个所述第一连接部包括:第一子连接部、第一子连接结构和第二子连接部;
所述第一子连接部和所述第二子连接部分别位于所述第一连接部连接的两个第一触控电极中的所述第一触控分支上,所述第一子连接结构位于所述第一子连接部和所述第二子连接部之间;
所述第一子连接部沿所述第三方向的长度和所述第二子连接部沿所述第三方向的长度均小于所述第一触控分支的长度的一半。
在一些可能的实现方式中,每个所述第二连接部包括:相互连接的第三子连接部、第二子连接结构和第四子连接部;
所述第三子连接部和所述第四子连接部分别位于所述第二连接部连接的两个第二触控电极中的所述第二触控分支上,所述第二子连接结构位于所述 第三子连接部和所述第四子连接部之间;
所述第三子连接部沿所述第三方向的长度和所述第四子连接部沿所述第三方向的长度均小于所述第二触控分支的长度的一半。
在一些可能的实现方式中,所述第一触控电极、所述第二触控电极、所述第一连接部、所述第二连接部和所述触控分支均包括:多个网格图案;其中,所述网格图案是由金属线构成的多边形。
在一些可能的实现方式中,所述第一触控电极为面状电极;
或者,
所述第一触控电极包括:多个沿第四方向延伸的第一电极和多个沿第五方向延伸的第二电极;所述第一电极和所述第二电极均包括:多个网格图案,多个所述第一电极和多个所述第二电极之间限定了多个虚拟区域;
所述第四方向和所述第五方向相交,且所述第四方向和所述第五方向均不同于所述第一方向和所述第二方向。
在一些可能的实现方式中,当所述第一触控电极包括:多个沿所述第四方向延伸的所述第一电极和多个沿所述第五方向延伸的所述第二电极时,第一边界电极的宽度小于第一非边界电极的宽度,第二边界电极的宽度小于第二非边界电极的宽度;
其中,所述第一边界电极为靠近所述第二触控电极的第一电极,所述第二非边界电极为位于所述第一边界电极远离所述第二触控电极一侧的第一电极;所述第二边界电极为靠近所述第二触控电极的第二电极,所述第二非边界电极为位于所述第二边界电极远离所述第二触控电极一侧的第二电极。
在一些可能的实现方式中,形成所述虚拟区域的所述第一电极和所述第二电极上分别设置有第一分支段和第二分支段;
位于同一虚拟区域内的所述第一分支段和所述第二分支段之间相互间隔设置,或者相互连接;
所述第一分支段和所述第二分支段均包括多个网格图案;
所述第一分支段和所述第二分支段的形状包括:十字形或者方形。
在一些可能的实现方式中,所述第二触控电极为面状电极;
或者,
所述第二触控电极包括:多个沿第五方向延伸的第三电极和多个沿第四方向延伸的;所述第三电极和所述第四电极均包括:多个网格图案,多个所述第三电极和多个所述第四电极之间限定了多个虚拟区域;
所述第四方向和所述第五方向相交,且所述第四方向和所述第五方向均不同于所述第一方向和所述第二方向。
在一些可能的实现方式中,当所述第二触控电极包括:多个沿所述第五方向延伸的所述第三电极和多个沿所述第四方向延伸的所述第四电极时,第三边界电极的宽度小于第三非边界电极的宽度,第四边界电极的宽度小于第四非边界电极的宽度;
其中,所述第三边界电极为靠近所述第一触控电极的第三电极,所述第三非边界电极为位于所述第三边界电极远离所述第一触控电极一侧的第三电极;所述第四边界电极为靠近所述第一触控电极的第四电极,所述第四非边界电极为位于所述第四边界电极远离所述第一触控电极一侧的第四电极。
在一些可能的实现方式中,形成虚拟区域的第三电极和第四电极上分别设置有第三分支段和第四分支段;
位于同一虚拟区域内的所述第三分支段和所述第四分支段之间相互间隔设置,或者相互连接;
所述第三分支段和所述第四分支段均包括多个网格图案;
所述第三分支段和所述第四分支段的形状包括:十字形或者方形。
在一些可能的实现方式中,还包括:与所述触控电极同层设置的金属结构;
所述金属结构位于所述虚拟区域内,所述金属结构包括:多个网格图案。
在一些可能的实现方式中,所述第一触控分支的长度约为450微米至600微米;
所述第二触控分支的长度约为450微米至600微米。
第二方面,本公开还提供了一种触控显示面板,包括:显示面板和上述触控面板;
所述触控面板位于所述显示面板的出光侧或者与所述出光侧相对设置的背光侧;
所述显示面板包括基底,基底包括:发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边缘;所述触控面板包括多个由金属线构成的金属网格;
所述金属线在所述基底上的正投影所围成的区域内包含至少一个子像素在所述基底上的正投影,所述子像素边缘在所述基底上的正投影包含所述金属线在所述基底上的正投影。
第三方面,本公开还提供了一种触控显示装置,包括:上述触控显示面板。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1A为本公开实施例提供的触控面板的结构示意图;
图1B为图1A沿B-B向的截面图;
图1C为图1A沿C-C向的截面图;
图2为图1中A区域的放大示意图一;
图3为一种示例性实施例提供的第一触控分支的结构示意图;
图4为一种示例性实施例提供的第二触控分支的结构示意图;
图5A为一种示例性实施例提供的第二连接部的结构示意图一;
图5B为一种示例性实施例提供的第一连接部的结构示意图一;
图6A为一种示例性实施例提供的第一连接部的结构示意图二;
图6B为一种示例性实施例提供的第二连接部的结构示意图二;
图7-1到图7-5为几种金属网格的结构示意图;
图8为图1中A区域的放大示意图二;
图9为图1中A区域的放大示意图三;
图10为图1中A区域的放大示意图四;
图11为图1中A区域的放大示意图五;
图12为一种示例性实施例提供的触控面板的结构示意图;
图13为本公开实施例提供的触控显示面板的结构示意图;
图14为一种显示面板的平面结构示意图;
图15-1至15-3为几种像素单元的结构示意图;
图16为一种显示面板的剖面结构示意图;
图17为一种示例性实施例提供的触控显示面板的结构示意图。
具体实施方式
在附图中,有时为了明确起见,夸大表示了各构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构 造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
折叠OLED显示器件便捷的使用体检与炫酷的外形设计令人印象深刻。然而,折叠产品的触控设计面临技术挑战。由于折叠OLED堆叠结构的特殊与多变,使折叠OLED显示器件中的触控结构已满足不了新产品的需求。折叠OLED显示器件的堆叠结构的厚度与介电常数的变化,使得折叠OLED显示器件中的触控结构的触控参数的信号量较小,导致触控面板的触控性能的恶化。
图1A为本公开实施例提供的触控面板的结构示意图,图1B为图1A沿B-B向的截面图,图1C为图1A沿C-C向的截面图,图2为图1中A区域的放大示意图一。如图1和图2所示,本公开实施例提供的一种触控面板,包括:多个沿第一方向D1延伸的第一触控结构101和多个沿第二方向D2延伸的第二触控结构201,多个第一触控结构101沿第二方向D2排布,多个第二触控结构201沿第一方向D1排布。在一种示例性实施例中,第一触控结构101可以包括:多个第一触控电极10和多个第一连接部11,第二触控结构201可以包括:多个第二触控电极20和多个第二连接部21。第一方向D1和第二方向D2相交。第一触控电极10和第二触控电极20同层设置,第一连接部11或第二连接部21与第一触控电极10同层设置。图1至图2是以第一连接部与第一触控电极同层设置为例进行说明的。
触控面板还可以包括:位于触控电极的边缘的至少一个触控分支。每个触控分支的延伸方向与触控分支所在的触控电极的边缘的延伸方向相交,触控分支的延伸方向不同于第一方向D1和第二方向D2。其中,触控电极包括:第一触控电极10,和/或第二触控电极20。触控分支的长度大于与第一触控电极同层设置的连接部沿第三方向的长度。其中,第三方向可以与部分触控分支的延伸方向相同,且与所述第一方向和所述第二方向相交。如图2所示,触控分支的长度可以为h1或h2,图2中与第一触控电极同层设置的连接部沿第三方向的长度为第一连接部的长度为L。图2是以触控电极为第一触控电极和第二触控电极为例进行说明的。
在一种示例性实施例中,多个第一触控电极10、多个第二触控电极20 可以通过同一次构图工艺形成。第一连接部11和第二连接部21异层设置。
在一种示例性实施例中,第一触控电极10和第二触控电极20可以同层同材料设置,且图案相同,可以改善不同层金属网格由于线宽等差异产生相互干涉导致的消影不良和光学摩尔纹问题,具有较好的消影效果。
在一种示例性实施例中,第一触控电极10和第二触控电极20可以与第一连接部11同层设置。第一触控电极10和第一连接部11可以为相互连接的一体结构,或者多个第一触控电极10、多个第二触控电极20和多个第二连接部21可以同层设置,第二触控电极20和第二连接部21可以为相互连接的一体结构。
在一种示例性实施例中,第一触控结构101可以是驱动电极(Tx),第二触控结构201可以是感应电极(Rx),或者,第一触控结构101可以是感应电极(Rx),第二触控结构201可以是驱动电极(Tx),本公开对此不做任何限定。
在一种示例性实施例中,第一触控电极10和第二触控电极20可以具有菱形状,例如可以是正菱形,或者是横长的菱形,或者是纵长的菱形。示例性地,第一触控电极10和第二触控电极20可以具有三角形、正方形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,本公开在此不做限定。图1A和图2是以第一触控电极10和第二触控电极20为菱形状为例进行说明的。
在一种示例性实施例中,第一触控结构101和第二触控结构201的数量可以根据触控精度设置。
本公开实施例提供的触控面板包括:多个沿第一方向延伸的第一触控结构和多个沿第二方向延伸的第二触控结构,第一触控结构包括:多个第一触控电极和多个第一连接部,第二触控结构包括:多个第二触控电极和多个第二连接部;第一触控电极和第二触控电极同层设置,第一连接部或第二连接部与第一触控电极同层设置;触控面板还包括:位于触控电极的边缘的至少一个触控分支,每个触控分支的延伸方向与触控分支所在的触控电极的边缘的延伸方向相交,触控分支的延伸方向不同于第一方向和第二方向,触控电极包括:第一触控电极,和/或第二触控电极;触控分支的长度大于与第一触 控电极同层设置的连接部沿第三方向的长度,第三方向与部分触控分支的延伸方向相同,且与第一方向和第二方向相交。本公开通过使得触控分支的长度大于与第一触控电极同层设置的连接部的长度,可以增大第一触控结构和第二触控结构的交互面积,增加互容值,提升了触控面板的弱接地参数的信号量,优化了触控面板的触控性能。
在一种示例性实施例中,触控分支可以包括:分支主体以及位于分支主体边缘的至少一个凸起。
在一种示例性实施例中,当触控分支的数量为至少两个时,至少两个触控分支相互间隔设置,且至少两个触控分支位于触控电极的两侧。
在一种示例性实施例中,分支主体的长度大于触控分支所在的触控电极沿所述触控分支的延伸方向的长度的一半。本公开中分支主体的长度大于触控分支所在的触控电极沿所述触控分支的延伸方向的长度的一半可以使得触控分支的长度较长,增大第一触控结构和第二触控结构的交互面积,增加互容值。
在一种示例性实施例中,分支主体包括:相对设置的第一侧和第二侧以及相对设置的第三侧和第四侧;第三侧与触控分支所在的触控电极连接;至少一个凸起位于分支主体的第一侧和第二侧。位于分支主体的第一侧的凸起与位于分支主体的第二侧的凸起交错设置。本公开位于分支主体的第一侧的凸起与位于分支主体的第二侧的凸起交错设置可以增加触控分支结构的稳定性以及可靠性。
在一种示例性实施例中,靠近触控分支所在的触控电极的凸起的宽度大于远离触控分支所在的触控电极的凸起的宽度。本公开中靠近触控电极的凸起的宽度大于远离触控电极的凸起的宽度可以增大触控分支的表面积,增大了第一触控结构和第二触控结构的交互面积,增加了触控面板的互容值。
在一种示例性实施例中,当触控电极包括:第一触控电极时,第一触控电极上的触控分支为第一触控分支,第一触控分支可以包括:第一分支主体以及位于第一分支主体边缘的至少一个第一凸起。
在一种示例性实施例中,当第一触控分支的数量为至少两个时,至少两 个第一触控分支相互间隔设置,且相邻第一触控分支之间的最大间距约为100微米至150微米。
在一种示例性实施例中,当触控电极包括:第二触控电极时,第二触控电极上的触控分支为第二触控分支,第二触控分支可以包括:第二分支段主体以及位于第二分支段主体边缘的至少一个第二凸起。
在一种示例性实施例中,当第二触控分支的数量为至少两个时,至少两个第二触控分支相互间隔设置,且相邻第二触控分支之间的最大间距约为100微米至150微米。
在一种示例性实施例中,图3为一种示例性实施例提供的第一触控分支的结构示意图,图4为一种示例性实施例提供的第二触控分支的结构示意图。如图2至图4所示,当触控电极包括:第一触控电极10和第二触控电极20时,第一触控电极10上的触控分支为第一触控分支12,第一触控分支12包括:第一分支主体12A以及位于第一分支主体12A边缘的至少一个第一凸起12B。第二触控电极20上的触控分支为第二触控分支22,第二触控分支22包括:第二分支主体22A以及位于第二分支主体22A边缘的至少一个第二凸起22B。图3是以第一触控分支包括8个第一凸起为例进行说明的,图4是以第二触控分支包括8个第二凸起为例进行说明的。
在一种示例性实施例中,当第一触控分支12和第二触控分支22的数量均为至少两个时,至少两个第一触控分支12相互间隔设置,至少两个第二触控分支22相互间隔设置;至少第一触控分支12位于相邻的第二触控分支22之间,至少一个第二触控分支22位于相邻的第一触控分支12之间。
在一种示例性实施例中,相邻的第一触控分支之间形成第一凹槽,第二触控分支与第一凹槽相互嵌合。第二触控分支与第一凹槽相互嵌合指的是当第一触控分支靠近第二触控分支的一侧的部分区域为凸起时,第二触控分支靠近第一触控分支的对应区域为凹槽,当第一触控分支靠近第二触控分支的一侧的部分区域为凹槽时,第二触控分支靠近第一触控分支的对应区域为凸起。第二触控分支的边缘与相邻两个第一触控分支的边缘相匹配可以增大感应电极和驱动电极的交互面积,增加互容值,大大地提升了触控面板的弱接地参数的信号量,优化了触控面板的触控性能。
在一种示例性实施例中,相邻的第二触控分支之间形成第二凹槽,第一触控分支与第二凹槽相互嵌合。在一种示例性实施例中,第一触控分支与第二凹槽相互嵌合指的是当第二触控分支靠近第一触控分支的一侧的部分区域为凸起时,第一触控分支靠近第二触控分支的对应区域为凹槽,当第二触控分支靠近第一触控分支的一侧的部分区域为凹槽时,第一触控分支靠近第二触控分支的对应区域为凸起。第二触控分支的边缘与相邻两个第一触控分支的边缘相匹配可以增大感应电极和驱动电极的交互面积,增加互容值,大大地提升了触控面板的弱接地参数的信号量,优化了触控面板的触控性能。
在一种示例性实施例中,相邻的第一触控分支之间的最大间距D1可以大于第二触控分支的最大宽度W2。
在一种示例性实施例中,相邻的第二触控分支之间的最大间距D2可以大于第一触控分支的最大宽度W1。
在一种示例性实施例中,第一触控分支12为边缘可以为锯齿状,可以增大第一触控结构和第二触控结构的交互面积,增加互容值,提升了触控面板的弱接地参数的信号量,优化了触控面板的触控性能。
在一种示例性实施例中,第二触控分支22为边缘可以为锯齿状,可以增大第一触控结构和第二触控结构的交互面积,增加互容值,提升了触控面板的弱接地参数的信号量,优化了触控面板的触控性能。
在一种示例性实施例中,第一分支主体12A的形状可以包括矩形。
在一种示例性实施例中,第二分支主体22A的形状可以包括矩形。
在一种示例性实施例中,第一凸起12B的形状可以为矩形、三角形或者波浪形。
在一种示例性实施例中,第二凸起22B的形状均为矩形、三角形或者波浪形。
在一种示例性实施例中,第一触控分支12与第一触控电极10可以为一体成型结构。第一触控分支与第一触控电极为一体成型结构可以简化触控面板的制作工艺。
在一种示例性实施例中,第二触控分支22与第二触控电极20可以为一体成型结构。第二触控分支与第二触控电极为一体成型结构可以简化触控面板的制作工艺。
在一种示例性实施例中,第一触控分支12的长度h1约为450微米至600微米。
在一种示例性实施例中,第二触控分支22的长度h2约为450微米至600微米。
如图1B和1C所示,一种示例性实施例提供的触控面板包括:依次叠设在玻璃基板31上的缓冲层32、桥接层33、绝缘层34、触控层35和保护层36。触控层35包括:多个第一触控电极10和多个第一连接部11以及多个第二触控电极20;多个第一触控电极10和多个第一连接部11交替设置且依次连接,多个第二触控电极20间隔设置。桥接层包括:多个第二连接部21。或者,触控层35包括:多个第二触控电极20和多个第二连接部21以及多个第一触控电极10;多个第二触控电极20和多个第二连接部21交替设置且依次连接,多个第一触控电极10间隔设置;桥接层包括:多个第一连接部11。图1B和1C所示是以触控层35包括:多个第一触控电极10和多个第一连接部11以及多个第二触控电极20;多个第一触控电极10和多个第一连接部11交替设置且依次连接,多个第二触控电极20间隔设置。桥接层包括:多个第二连接部21为例进行说明的。
在一种示例性实施例中,桥接层33和触控层35的制作材料可以为金属,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Mo/Cu/Mo等。
在一种示例性实施例中,缓冲层32、绝缘层34可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。
在一种示例性实施例中,保护层36可以为玻璃盖板。
当触控层35包括:多个第一触控电极10和多个第一连接部11以及多个 第二触控电极20;多个第一触控电极10和多个第一连接部11交替设置且依次连接,多个第二触控电极20间隔设置。桥接层包括:多个第二连接部21时,图5A为一种示例性实施例提供的第二连接部的结构示意图一,图5B为一种示例性实施例提供的第一连接部的结构示意图一。如图5A所示,每个第二连接部可以包括:相对于第一对称轴对称设置的两个第一连接结构211,每个第一连接结构211可以包括:第一焊盘部212和第一连接桥213;第一焊盘部212配置为通过绝缘层上的过孔与相邻的第二触控电极连接,第一连接桥213配置为连接第一焊盘部212。第一对称轴沿第二方向延伸。
在一种示例性实施例中,第一焊盘部212可以设置在第一连接桥213的两端。
在一种示例性实施例中,第一连接桥213可以为由多个第一连接走线构成的闭环结构,或者可以由多个从小到大依次套设的连接走线构成的开环结构。图5A是以第一连接桥可以为由多个第一连接走线构成的闭环结构为例进行说明的。
在一种示例性实施例中,位于第一连接桥213端部的第一焊盘部212可以包括2个到4个焊盘,多个焊盘可以形成线形状、三角形状或正方形状排布。
如图5B所示,每个第一连接部11包括:相互连接的第一子连接部111、第二子连接部112。其中,第一子连接部111和第二子连接部112分别位于第一连接部11连接的两个第一触控电极中的第一触控分支上。
在一种示例性实施例中,第一连接部11还可以包括:位于第一子连接部111和第二子连接部112的第一子连接结构113。第一子连接部111、第二子连接部112和第一子连接结构113为一体成型结构。
在一种示例性实施例中,第一子连接部111沿第三方向的长度l 1和第二子连接部112沿第三方向的长度l 2可以均小于第一触控分支12的长度的一半。
当触控层35包括:多个第二触控电极20和多个第二连接部21以及多个第一触控电极10;多个第二触控电极20和多个第二连接部21交替设置且依 次连接,多个第一触控电极10间隔设置;桥接层包括:多个第一连接部11时,图6A为一种示例性实施例提供的第一连接部的结构示意图二,图6B为一种示例性实施例提供的第二连接部的结构示意图二。如图6A所示,每个第一连接部可以包括:相对于第二对称轴对称设置的两个第二连接结构114。每个第二连接结构114可以包括:第二焊盘部115和第二连接桥116;第二焊盘部115配置为通过绝缘层上的过孔与相邻的第一触控电极连接,第二连接桥116配置为连接第二焊盘部115。其中,第二对称轴沿第一方向延伸。
在一种示例性实施例中,第二焊盘部115可以设置在第二连接桥116的两端。
在一种示例性实施例中,位于第二连接桥116端部的第二焊盘部115可以包括2个到4个焊盘,多个焊盘可以形成线形状、三角形状或正方形状排布。
在一种示例性实施例中,第二连接桥可以为由多个第二连接走线构成的闭环结构,或者可以由多个从小到大依次套设的连接走线构成的开环结构。图6A是以第二连接桥可以为由多个第二连接走线构成的闭环结构为例进行说明的。
如图6B所示,每个第二连接部包括:相互连接的第三子连接部214和第四子连接部215。第三子连接部214和第四子连接部215分别位于第二连接部连接的两个第二触控电极中的第二触控分支22上。
在一种示例性实施例中,第三子连接部214沿第三方向的长度l 3和第四子连接部215沿第三方向的长度l 4均小于第二触控分支的长度的一半。
在一种示例性实施例中,第二连接部还可以包括位于与第三子连接部214和第四子连接部215之间的第二子连接结构216。第三子连接部214、第四子连接部215和第二子连接结构216为一体成型结构。
在一种示例性实施例中,第一触控电极10、第二触控电极20、第一连接部11、第二连接部21和触控分支均包括:多个网格图案;其中,所述网格图案是由金属线构成的多边形。
在一种示例性实施例中,第一触控电极10、第二触控电极20、第一连接 部11、第二连接部21和触控分支均包括:多个网格图案。由于金属材料具有更好的延展性,不易断裂,采用金属网格,可以提高触控面板的弯折性能,使得触控面板更适合实现柔性触控功能,另外还可以降低成本。
在一种示例性实施例中,图7-1到图7-5为几种金属网格的结构示意图。如图5所示,金属网格包括多个网格图案,网格图案是由金属线构成的多边形。或者说,金属网格是由网格图案重复且连续设置拼接而成。在一种示例性实施例中,金属线围成的网格图案的形状可以为菱形,如图7-1所示。或者,金属线围成的网格图案的形状可以为三角形,如图7-2所示。或者,金属线围成的网格图案的形状可以为矩形,如图7-3所示。或者,金属线围成的网格图案的形状可以为六边形,如图7-4所示。或者,金属线围成的网格图案的形状可以为多种形状的组合,如五边形和六边形的组合,如图7-5所示。或者,金属线围成的网格图案的形状可以包括三角形、正方形、矩形、菱形、梯形、五边形和六边形中的任意一种或多种。示例性地,金属线围成的网格图案可以为规则的形状,或者为不规则的形状,网格图案的边可以为直线,或者可以为曲线,本公开在此不做限定。
在一种示例性实施例中,图8为图1中A区域的放大示意图二,图9图1中A区域的放大示意图三,图10为图1中A区域的放大示意图四,图11为图1中A区域的放大示意图五。如图2、图8至图11所示,第一触控电极10可以为面状电极,或者可以包括:多个沿第四方向延伸的第一电极110和多个沿第五方向延伸的第二电极120。其中,第一电极110和第二电极120均包括:多个网格图案,多个第一电极和多个第二电极之间限定了多个虚拟区域300。其中,第四方向和第五方向相交,且第四方向和第五方向均不同于第一方向和第二方向,第三方向可以与第四方向或者第五方向相同,本公开对此不作任何限定。
在一种示例性实施例中,第二触控电极20可以为面状电极,或者可以包括:多个沿第五方向延伸的第三电极210和多个沿第四方向延伸的第四电极220。其中,第三电极210和第四电极220均包括:多个网格图案,多个第三电极和多个第四电极之间限定了多个虚拟区域300。图2、图8和图9是以第一触控电极10包括:多个第一电极110和多个第二电极120,第二触控电极 包括:多个第三电极210和多个第四电极220为例进行说明的。图10是以第一触控电极10为面状电极,第二触控电极包括:多个第三电极210和多个第四电极220为例进行说明的。图11是以第一触控电极10包括:多个第一电极110和多个第二电极120,第二触控电极20为面状电极为例进行说明的。
在一种示例性实施例中,当第一触控电极包括:多个第一电极和多个第二电极时,第一边界电极的宽度小于第一非边界电极的宽度,第二边界电极的宽度小于第二非边界电极的宽度。其中,第一边界电极为靠近第二触控电极的第一电极,第二非边界电极为位于第一边界电极远离第二触控电极一侧的第一电极;第二边界电极为靠近第二触控电极的第二电极,第二非边界电极为位于第二边界电极远离第二触控电极一侧的第二电极。
在一种示例性实施例中,当第二触控电极包括:多个第三电极和多个第四电极时,第三边界电极的宽度小于第三非边界电极的宽度,第四边界电极的宽度小于第四非边界电极的宽度;其中,第三边界电极为靠近第一触控电极的第三电极,第三非边界电极为位于第三边界电极远离第一触控电极一侧的第三电极;第四边界电极为靠近第一触控电极的第四电极,第四非边界电极为位于第四边界电极远离第一触控电极一侧的第四电极。
在一种示例性实施例中,如图8和9所示,形成虚拟区域300的第一电极110和第二电极120上分别设置有第一分支段13和第二分支段14。位于同一虚拟区域300内的第一分支段13和第二分支段14之间可以相互间隔设置,或者可以相互连接。图8是以位于同一虚拟区域300内的第一分支段13和第二分支段14之间相互间隔设置为例进行说明的。图9是以位于同一虚拟区域内的第一分支段13和第二分支段14之间相互连接为例进行说明的。
在一种示例性实施例中,第一分支段13和第二分支段14均可以包括多个网格图案;
在一种示例性实施例中,第一分支段13和第二分支段14的形状可以包括:十字形或者方形。
在一种示例性实施例中,设置有第一分支段13和第二分支段14的触控面板中的虚拟区域的面积小于没有第一分支段13和第二分支段14的触控面 板中的虚拟区域的面积。
在一种示例性实施例中,如图8和9所示,形成虚拟区域300的第三电极210和第四电极220上分别设置有第三分支段23和第四分支段24。位于同一虚拟区域内的第三分支段23和第四分支段24之间可以相互间隔设置,或者可以相互连接。图8是以位于同一虚拟区域300内的第三分支段23和第四分支段24之间相互间隔设置为例进行说明的。图9是以位于同一虚拟区域内的第三分支段23和第四分支段24之间相互连接为例进行说明的。
在一种示例性实施例中,第三分支段23和第四分支段24均可以包括多个网格图案;
在一种示例性实施例中,第三分支段23和第四分支段24的形状可以包括:十字形或者方形。
在一种示例性实施例中,设置有第三分支段23和第四分支段24的触控面板中的虚拟区域的面积小于没有第三分支段23和第四分支段24的触控面板中的虚拟区域的面积。
在一种示例性实施例中,触控面板还可以包括:与触控电极同层设置的金属结构。其中,金属结构位于虚拟区域内,金属结构包括:多个网格图案。金属结构在实现触控时没有电压。
图12为一种示例性实施例提供的触控面板的结构示意图。如图12所示,一种示例性实施例提供的触控面板还可以包括:位于触控层的多条第一触控走线102和多条第二触控走线202。
在一种示例性实施例中,第一触控走线102与第一触控结构101连接,不同第一触控走线102连接不同第一触控结构101。
在一种示例性实施例中,第二触控走线202与第二触控结构201连接,不同第二触控走线202连接不同第二触控结构201。
在一种示例性实施例中,第一触控走线与第一触控电极可以为一体成型结构。
在一种示例性实施例中,第二触控走线与第二触控电极可以为一体成型 结构。
在一种示例性实施例中,第一触控走线102可以与第一触控结构的第一端和第二端连接。
在一种示例性实施例中,第二触控走线202可以与第二触控结构的一端连接。
在一种示例性实施例中,以第一触控结构为驱动电极,第二触控结构为感应电极为例,当触控面板工作时,向第一个第一触控结构输入驱动信号,每个第二触控结构依次接收信号,向第二个第一触控结构输入驱动信号,每个第二触控结构依次接收信号,依次类推,直至向最后一个第一触控结构输入驱动信号。人手指的触控会导致第一触控结构和第二触控结构的互电容发生变化,根据第一触控结构和第二触控结构的互电容变化来判断手指的位置。
以触控面板设置在显示面板上为例,表1为不同触控面板的各项触控参数的仿真结果一。其中,触控面板1指的第一触控分支的边缘不为锯齿形,且第一触控分支的长度小于400微米的触控面板,触控面板2和触控面板3指的是第一触控分支的边缘为锯齿状,且第一触控分支的长度大于400微米的触控面板,第一触控分支中包括虚拟区域中包括第一分支段、第二分支段、第三分支段和第四分支段,其中,触控面板3的触控分支的长度大于触控面板2的触控分支的长度,触控面板3的触控分支的凸起的数量大于触控面板2的触控分支的凸起的数量,其中,触控分支包括:第一触控分支和第二触控分支。触控面板2中的位于同一虚拟区域的第一分支段和第二分支段之间相互间隔设置,位于同一虚拟区域的第三分支段和第四分支段之间相互间隔设置。触控面板3中的位于同一虚拟区域的第一分支段和第二分支段之间相互连接,位于同一虚拟区域的第三分支段和第四分支段之间相互连接。
表1
触控面板 1 2 3
TX/RX 39/34 40/17 39/34
Cm1(皮法) 0.721 1.260 1.115
Cm2(皮法) 0.648 1.168 1.024
ΔCm(皮法) 0.073 0.092 0.091
ΔCm/Cm1 10.12% 7.33% 8.16%
CpTx(皮法) 6.536 10.979 410.449
CpRx(皮法) 6.3 10.840 189.774
CfTx(皮法) 0.406 0.353 0.382
CfRx(皮法) 0.395 0.351 0.381
LGM 0.365 0.524 0.477
Rtx(欧姆) 38.63 18.81 18.102
Rrx(欧姆) 38 18.49 17.223
TX/RX指的驱动电极TX的数量和感应电极RX的数量,Cm1为发生触控前驱动电极TX与感应电极RX之间的互容值,Cm2为发生触控后驱动电极TX与感应电极RX之间的互容值,ΔCm为触控前后的互容值的变化量,ΔCm=|Cm2-Cm1|,ΔCm/Cm1为触控前后的互容值的变化量与发生触控前驱动电极TX与感应电极RX之间的互容值的比值,CpTx为驱动电极与显示面板中电极层之间的寄生电容的电容值,CpRx为感应电极与显示面板中电极层之间的寄生电容的电容值,CfTx为驱动电极与触控物之间的电容值,CfRx为感应电极与触控物之间的电容值,Rtx为驱动电极TX的电阻,Rrx为感应电极RX的电阻,LGM为弱接地参数(Low Ground Mass),弱接地参数LGM=ΔCm/CfTx+ΔCm/CfRx。表1中的参数均是以触控物的制作材料为铜进行仿真得到的。
在一种示例性实施例中,弱接地是指包括触控面板的装置和人体没有共地。在弱接地状态下,回传(Retransmission)效应明显,电荷转移至大地的难度增加,导致采集到的互容值变化量较小,从而导致难以对触控进行准确识别,因此,弱接地状态下的触控性能较差。弱接地参数越大,触控性能越好。
如表1所示,触控面板1和触控面板2相比,触控面板1是以39个驱动电极,34个感应电极为例,触控面板2是以40个驱动电极,17个感应电极为例,触控面板1的感应电极和驱动电极的数量之和大于触控面板2的感应 电极和驱动电极的数量之和。虽然触控面板1的感应电极和驱动电极的数量之和大于触控面板2的感应电极和驱动电极的数量之和,但是由于触控面板2的第一触控分支和第二触控分支的边缘为锯齿状,且第一触控分支的长度和第二触控分支的长度大于阈值长度,因此,触控面板2的Cm1和Cm2均大于触控面板1的Cm1和Cm2,验证了本公开对于第一触控分支和第二触控分支的设置增大了感应电极和驱动电极的交互面积,增加了互容值。触控面板2的ΔCm大于触控面板1的ΔCm,触控面板2的ΔCm/Cm1小于触控面板1的ΔCm/Cm1。触控面板2的CpTx和CpRx均大于触控面板1的CpTx和CpRx,触控面板2的CfTx和CfRx均小于触控面板1的CfTx和CfRx。触控面板2的LGM大于触控面板1的LGM。本公开对于第一触控分支和第二触控分支的设置增大了触控面板的弱接地参数的信号量,提升了触控面板的触控性能。触控面板2的Rtx和Rrx均小于触控面板1的Rtx和Rrx,触控面板2与触控面板1相比,感应电极和驱动电极的电阻较小,减少了触控面板的负载,可以提升触控面板的触控性能。
如表1所示,触控面板1和触控面板3都是以39个驱动电极,34个感应电极为例。由于触控面板3的第一触控分支和第二触控分支的边缘为锯齿状,且第一触控分支的长度和第二触控分支的长度大于阈值长度,因此,触控面板3的Cm1和Cm2均大于触控面板1的Cm1和Cm2,验证了本公开对于第一触控分支和第二触控分支的设置增大了感应电极和驱动电极的交互面积,增加了互容值。触控面板3的ΔCm均大于触控面板1的ΔCm,触控面板3的ΔCm/Cm1小于触控面板1的ΔCm/Cm1。触控面板3的CpTx和CpRx均大于触控面板1的CpTx和CpRx,触控面板3的CfTx和CfRx均小于触控面板1的CfTx和CfRx。触控面板3的LGM大于触控面板1的LGM。本公开对于第一触控分支和第二触控分支的设置增大了触控面板的弱接地参数的信号量,提升了触控面板的触控性能。触控面板3的Rtx和Rrx均小于触控面板1的Rtx和Rrx,触控面板3与触控面板1相比,感应电极和驱动电极的电阻较小,减少了触控面板的负载,可以提升触控面板的触控性能。
如表1所示,触控面板2和触控面板3相比,触控面板3是以39个驱动电极,34个感应电极为例,触控面板3是以40个驱动电极,17个感应电极 为例,触控面板3的感应电极和驱动电极的数量之和大于触控面板2的感应电极和驱动电极的数量之和。触控面板2的Cm1和Cm2均大于触控面板3的Cm1和Cm2。触控面板2的ΔCm大于触控面板3的ΔCm,触控面板2的ΔCm/Cm1小于触控面板3的ΔCm/Cm1。触控面板3的CpTx和CpRx均大于触控面板2的CpTx和CpRx,触控面板3的CfTx和CfRx均小于触控面板2的CfTx和CfRx。触控面板2的LGM大于触控面板3的LGM。触控面板3的Rtx和Rrx均小于触控面板2的Rtx和Rrx。触控面板3与触控面板2相比,感应电极和驱动电极的电阻较小,减少了触控面板的负载,可以提升触控面板的触控性能。触控面板的LGM、Cm1和Cm2与触控面板中的感应电极和驱动电极的数量之和不成正比,即并不是触控面板中的感应电极和驱动电极的数量之和越大,触控面板的LGM、Cm1和Cm2就越大。触控面板中的感应电极和驱动电极的数量之和越大,触控面板的CfTx、CfRx、CfTx和CfRx就越大。触控面板中的虚拟区域的越小,触控面板的LGM越小。触控分支的长度越长,触控分支的凸起的数量越多,ΔCm/Cm1越大,LGM越大。
以触控面板设置在显示面板上为例,表2为不同触控面板的各项触控参数的仿真结果二。其中,触控面板4至触控面板9均为第一触控分支的边缘和第二触控分支的边缘为锯齿状,且第一触控分支的长度和第二触控分支的长度大于阈值长度的触控面板。触控面板4为图8提供的触控面板,触控面板5和触控面板6为图9提供的触控面板,触控面板7为图2提供的触控面板,触控面板8和触控面板9为图10提供的触控面板。其中,触控面板5与触控面板4相比,不同之处在于,触控面板5中的虚拟区域小于触控面板4中的虚拟区域,且触控面板5中的第一触控分支的长度大于触控面板4中的第一触控分支的长度,触控面板5中的第二触控分支的长度大于触控面板4中的第二触控分支的长度。触控面板6和触控面板5相比,不同之处在于,触控面板6中的虚拟区域小于触控面板5中的虚拟区域。触控面板7和触控面板5相比,不同之处在于,触控面板7中的虚拟区域大于触控面板5中的虚拟区域,且触控面板7中的虚拟区域为方形。触控面板8和触控面板6相比,不同之处在于,触控面板8中的感应电极不包括虚拟区域。触控面板9和触控面板8相比,不同之处在于,触控面板9的第一触控分支的长度小于 触控面板8的第一触控分支的长度,触控面板9的第二触控分支的长度小于触控面板8的第二触控分支的长度。
表2
触控面板 4 5 6 7 8 9
TX/RX 40/17 40/17 40/17 40/17 40/17 40/17
Cm1(皮法) 1.010 1.260 1.248 1.245 1.250 1.206
Cm2(皮法) 0.932 1.168 1.151 1.148 1.152 1.112
ΔCm(皮法) 0.078 0.092 0.097 0.096 0.098 0.094
ΔCm/Cm1 7.72% 7.33% 7.81% 7.74% 7.84% 7.76%
CpTx(皮法) 10.226 10.979 11.648 10.924 11.646 11.646
CpRx(皮法) 9.956 10.840 11.513 10.790 12.122 12.125
CfTx(皮法) 0.328 0.353 0.376 0.348 0.376 0.376
CfRx(皮法) 0.347 0.351 0.375 0.347 0.398 0.398
LGM 0.463 0.524 0.519 0.554 0.507 0.484
Rtx(欧姆) 17.32 18.81 16.08 16.75 16.15 15.17
Rrx(欧姆) 16.75 18.49 15.53 16.22 13.90 13.01
如表2所示,触控面板4至触控面板9均是以40个驱动电极,17个感应电极,且触控物的制作材料为铜进行防止进行说明的。
如表2所示,触控面板5与触控面板4相比,触控面板5的Cm1和Cm2均大于触控面板4的Cm1和Cm2。触控面板5的ΔCm大于触控面板4的ΔCm,触控面板5的ΔCm/Cm1小于触控面板4的ΔCm/Cm1。触控面板5的CpTx和CpRx均大于触控面板4的CpTx和CpRx,触控面板5的CfTx和CfRx均大于触控面板4的CfTx和CfRx。触控面板5的LGM大于触控面板5的LGM。触控面板5的Rtx和Rrx均大于触控面板4的Rtx和Rrx。触控面板中的虚拟区域越小,第一触控分支和第二触控分支的长度越长,触控面板的Cm1、Cm2、ΔCm、CpTx、CpRx、CfTx、CfRx、LGM、Rtx和Rrx越大。
如表2所示,触控面板6与触控面板5相比,触控面板6的Cm1和Cm2均小于触控面板5的Cm1和Cm2。触控面板6的ΔCm大于触控面板5的ΔCm,触控面板6的ΔCm/Cm1大于触控面板5的ΔCm/Cm1。触控面板6的CpTx和CpRx均大于触控面板5的CpTx和CpRx,触控面板6的CfTx和CfRx均大于触控面板5的CfTx和CfRx。触控面板6的LGM小于触控面板5的LGM。触控面板6的Rtx和Rrx均小于触控面板5的Rtx和Rrx。触控面板中的虚拟区域越小,触控面板的Cm1、Cm2、LGM、Rtx和Rrx越小,ΔCm、ΔCm/Cm1、CpTx、CpRx、CfTx和CfRx越大。
如表2所示,触控面板7与触控面板5相比,触控面板7的Cm1和Cm2均小于触控面板5的Cm1和Cm2。触控面板7的ΔCm大于触控面板5的ΔCm,触控面板7的ΔCm/Cm1大于触控面板5的ΔCm/Cm1。触控面板7的CpTx和CpRx均小于触控面板5的CpTx和CpRx,触控面板7的CfTx和CfRx均小于触控面板5的CfTx和CfRx。触控面板7的LGM大于触控面板5的LGM。触控面板7的Rtx和Rrx均小于触控面板5的Rtx和Rrx。触控面板中的虚拟区域越大,Cm1、Cm2、CpTx、CpRx、CfTx和CfRx越大,ΔCm、ΔCm/Cm1、LGM、Rtx和Rrx越小。
如表2所示,触控面板8与触控面板6相比,触控面板8的Cm1和Cm2均大于触控面板6的Cm1和Cm2。触控面板8的ΔCm大于触控面板6的ΔCm,触控面板8的ΔCm/Cm1大于触控面板6的ΔCm/Cm1。触控面板8的CpTx小于触控面板6的CpTx,触控面板8的CpRx大于触控面板6的CpRx,触控面板8的CfTx等于触控面板6的CfTx,触控面板8的CfRx大于触控面板6的CfRx。触控面板8的LGM小于触控面板6的LGM。触控面板8的Rtx大于触控面板6的Rtx,触控面板8的Rrx小于触控面板6的Rrx。其中一个电极不包括虚拟区域的触控面板比两个电极均包括虚拟区域的触控面板的LGM小。
如表2所示,触控面板9与触控面板8相比,触控面板9的Cm1和Cm2均小于触控面板8的Cm1和Cm2。触控面板9的ΔCm小于触控面板8的ΔCm,触控面板9的ΔCm/Cm1小于触控面板8的ΔCm/Cm1。触控面板9的CpTx和CpRx大于或者等于触控面板8的CpTx和CpRx,触控面板9的CfTx和 CfRx均等于触控面板8的CfTx和CfRx。触控面板9的LGM小于触控面板8的LGM。触控面板9的Rtx和Rrx均小于触控面板8的Rtx和Rrx。触控面板中的第一触控分支的长度和第二触控分支的长度越小,Cm1、Cm2、ΔCm、ΔCm/Cm1、CpTx、CpRx、LGM、Rtx和Rrx越小。
本公开实施例还提供一种触控显示面板,图13为本公开实施例提供的触控显示面板的结构示意图。如图13所示,本公开实施例提供的触控显示面板,包括:显示面板100和触控面板200。
在一种示例性实施例中,触控面板200可以位于显示面板100的出光侧或者与出光侧相对设置的背光侧。图13是以触控面板位于显示面板的出光侧为例进行说明的。
在一种示例性实施例中,显示面板可以是液晶显示(LCD)面板,或者可以是有机发光二极管(OLED)显示面板,或者可以是等离子体显示面板(PDP),或者可以是电泳显示(EPD)面板,或者可以是量子点发光二极管(QLED)显示面板。
图14为一种显示面板的平面结构示意图。在平行于显示面板的平面上,显示面板可以包括规则排布的多个像素单元。
在一种示例性实施例中,每个像素单元可以包括3个子像素,或者可以包括4个子像素,或者可以包括多个子像素。当像素单元包括3个子像素时,3个子像素包括出射第一颜色光线的第一子像素、出射第二颜色光线的第二子像素和出射第三颜色光线的第三子像素。当像素单元包括4个子像素时,4个子像素包括出射第一颜色光线的第一子像素、出射第二颜色光线的第二子像素、出射第三颜色光线的第三子像素和出射第四颜色光线的第四子像素。作为一种示例性说明,图12所示像素单元50包括4个子像素,分别为第一子像素51、第二子像素52第三子像素53和第四子像素54,4个子像素的形状均为正方形,采用正方形(Square)方式排列。
在一种示例性实施例中,第一子像素51和第四子像素54为出射绿色(G)光线的绿色子像素,第二子像素52为出射红色(R)光线的红色子像素,第三子像素53为出射蓝色(B)光线的蓝色子像素,形成RGGB正方形排列的 像素单元50。在一些可能的实现方式中,第一子像素51可以是绿色子像素,第二子像素52可以是红色子像素,第三子像素53可以是蓝色子像素,第四子像素54可以是白色(W)子像素,形成RGBW正方形排列的像素单元50。
在一种示例性实施例中,像素单元可以包括红色子像素、绿色子像素、蓝色子像素、青色子像素、品红色子像素、黄色子像素和白色子像素。
在一种示例性实施例中,像素单元50所包括的4个子像素可以采用多种形状,以多种方式进行排列。图15-1至15-3为几种像素单元的结构示意图。4个子像素可以采用矩形状,以并列方式排列,从左到右分别为:R子像素、G子像素、B子像素和G子像素,如图15-1所示。或者,4个子像素可以分别采用五边形和六边形状,以并列方式排列,2个五边形的G子像素位于像素单元的中部,六边形的R子像素和六边形的B子像素分别位于G子像素的两侧,如图15-2所示。在一种示例性实施例中,当像素单元50包括3个子像素时,3个矩形状的子像素可以以水平方向并列方式排列,或者可以以竖直方向并列方式排列,如图15-3所示。
在一种示例性实施例中,子像素的形状可以是三角形、正方形、矩形、菱形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,排列方式可以是X形、十字形或品字形等,本公开在此不做限定。
图16为一种显示面板的剖面结构示意图,示意了显示面板为OLED的显示面板时两个子像素的结构。如图16所示,在垂直于显示面板的平面上,显示面板包括设置在柔性基底61上的驱动电路层62、设置在驱动电路层62上的发光结构层63以及设置在发光结构层63上的封装层64。
在一种示例性实施中,触控面板可以设置在封装层64上,形成触控结构在薄膜封装上(Touch on Thin Film Encapsulation,简称Touch on TFE)的结构。
在一种示例性实施例中,显示面板可以包括其它膜层,触控面板与封装层之间可以设置其它膜层,本公开在此不做限定。
在一种示例性实施例中,柔性基底61可以包括叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性 材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,半导体层的材料可以采用非晶硅(a-si)。
在一种示例性实施例中,驱动电路层62可以包括构成像素电路的晶体管和存储电容。
在一种示例性实施例中,像素电路可以是3T1C、4T1C、5T1C、5T2C、6T1C或7T1C结构。
图15中以每个子像素包括一个晶体管和一个存储电容为例进行示意。在一种示例性实施例中,每个子像素的驱动电路层62可以包括:设置在柔性基底上的第一绝缘层,设置在第一绝缘层上的有源层,覆盖有源层的第二绝缘层,设置在第二绝缘层上的第一金属层,第一金属层包括:栅电极和第一电容电极,覆盖栅电极和第一电容电极的第三绝缘层,设置在第三绝缘层上的第二金属层,第二金属层包括:第二电容电极,覆盖第二电容电极的第四绝缘层,第四绝缘层上开设有过孔,过孔暴露出有源层,设置在第四绝缘层上的第三金属层,第三金属层包括:源电极和漏电极,源电极和漏电极分别通过过孔与有源层连接以及覆盖前述结构的平坦层。其中,有源层、栅电极、源电极和漏电极组成晶体管,第一电容电极和第二电容电极组成存储电容。
在一种示例性实施例中,有源层可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩或聚噻吩等材料,本公开适用于基于氧化物(Oxide)技术、硅技术或有机物技术制造的晶体管。
在一种示例性实施例中,第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第一绝缘层可称之为缓冲(Buffer)层,用于提高基底的抗水氧能力,第二绝缘层和第三绝缘层可称之为栅绝缘(GI)层,第四绝缘层可称之为层间绝缘(ILD)层。
在一种示例性实施例中,第一金属层、第二金属层和第三金属层可以采 用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。
一种示例性实施例中,平坦层可以采用有机材料,透明导电薄膜可以采用氧化铟锡(ITO)或氧化铟锌(IZO)。
在一种示例性实施例中,发光结构层63可以包括阳极、像素定义层、有机发光层和阴极,阳极设置在平坦层上,通过平坦层上开设的过孔与漏电极连接,像素定义层设置在阳极和平坦层上,像素定义层上设置有像素开口,像素开口暴露出阳极,有机发光层设置在像素开口内,阴极设置在有机发光层上,有机发光层在阳极和阴极施加电压的作用下出射相应颜色的光线。
在一种示例性实施例中,阳极可以采用透明导电材料。
在一种示例性实施例中,像素定义层可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯。
在一种示例性实施例中,有机发光层可以包括叠设的空穴注入层(Hole Injection Layer,简称HIL)、空穴传输层(Hole Transport Layer,简称HTL)、电子阻挡层(Electron Block Layer,简称EBL)、发光层(Emitting Layer,简称EML)、空穴阻挡层(Hole Block Layer,简称HBL)、电子传输层(Electron Transport Layer,简称ETL)和电子注入层(Electron Injection Layer,简称EIL)。
在一种示例性实施例中,所有子像素的空穴注入层可以是连接在一起的共通层,所有子像素的电子注入层可以是连接在一起的共通层,所有子像素的空穴传输层可以是连接在一起的共通层,所有子像素的电子传输层可以是连接在一起的共通层,所有子像素的空穴阻挡层可以是连接在一起的共通层,相邻子像素的发光层可以有少量的交叠,或者可以是隔离的,相邻子像素的电子阻挡层可以有少量的交叠,或者可以是隔离的。
在一种示例性实施例中,阴极可以采用镁(Mg)、银(Ag)、铝(Al)、铜(Cu)和锂(Li)中的任意一种或更多种,或可以采用上述金属中任意一种或多种制成的合金。
在一种示例性实施例中,封装层64可以包括叠设的第一封装层、第二封装层和第三封装层,第一封装层和第三封装层可采用无机材料,第二封装层可采用有机材料,第二封装层设置在第一封装层和第三封装层之间,可以保证外界水汽无法进入发光结构层63。
在一种示例性实施例中,显示面板和触控面板集成在一起,具有轻薄、可折叠等优点,可以满足柔性折叠、窄边框等产品需求。
在一种示例性实施例中,如图16所示,显示面板基底包括发光区域P1和非发光区域P2,发光区域P1包括周期性排布的多个子像素,非发光区域P2包括位于相邻子像素之间的子像素边缘。显示面板包括:显示区域和非显示区域,显示区域包括发光区域和第一非发光区域,非显示区域包括:第二非发光区域,非发光区域由第一非发光区域和第二非发光区域构成。
在一种示例性实施例中,触控面板包括多个由金属线构成的金属网格,金属线在所述基底上的正投影所围成的区域内包含至少一个子像素在所述基底上的正投影,子像素边缘在基底上的正投影包含金属线在所述基底上的正投影。
在一种示例性实施例中,金属线在所述基底上的正投影所围成的区域内包含至少一个子像素在所述基底上的正投影,子像素边缘在基底上的正投影包含金属线在所述基底上的正投影可以保证触控面板不影响显示面板的显示。
在一种示例性实施例中,由于有机发光层是在像素定义层所限定的像素开口区域出射光线,因而像素开口区域为发光区域P1,像素开口以外区域为非发光区域P2,非发光区域P2位于发光区域P1的***。本公开示例性实施例中,将每个发光区域P1称为子像素(sub pixel),如红色子像素、蓝色子像素或绿色子像素,每个不发光区域P2称为子像素边缘,如红色子像素与绿色子像素之间的红绿子像素边缘、蓝色子像素与绿色子像素之间的蓝绿子像素边缘。这样,显示面板的发光区域包括周期性排布的多个子像素,显示结构层的非发光区域包括位于相邻子像素之间的子像素边缘。
触控面板为前述任一个实施例提供的触控面板,实现原理和实现效果也类似,在此不再赘述。
图17为一种示例性实施例提供的触控显示面板的结构示意图。如图17所示,一种示例性实施例提供触控显示面板中的显示面板还可以包括:位于非显示区域的焊盘区域。触控面板可以包括:与第一触控结构101连接的第一触控走线102和与第二触控结构201连接的第二触控走线202。其中,焊盘区域包括:第一焊盘电极103和第二焊盘电极203。每个第一触控结构通过第一触控走线连接到第一焊盘电极,每个第二触控结构通过第二触控走线连接到第二焊盘电极。
在一种示例性实施例中,显示面板还可以包括:位于非显示区域的触控驱动芯片。其中,触控驱动芯片可以位于焊盘区域靠近显示区域的一侧。
在一种示例性实施例中,第一触控结构通过第一焊盘电极连接到触控驱动芯片,第二触控结构通过第二焊盘电极连接到触控驱动芯片。
本公开实施例还提供了一种触控显示装置,包括:触控显示面板。
在一种示例性实施例中,触控显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
触控显示面板为前述任一个实施例提供的触控显示面板,实现原理和实现效果乐类似,在此不再赘述。
本公开中的附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
为了清晰起见,在用于描述本公开的实施例的附图中,层或微结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (26)

  1. 一种触控面板,包括:多个沿第一方向延伸的第一触控结构和多个沿第二方向延伸的第二触控结构,多个第一触控结构沿第二方向排布,多个第二触控结构沿第一方向排布;所述第一触控结构包括:多个第一触控电极和多个第一连接部,所述第二触控结构包括:多个第二触控电极和多个第二连接部,所述第一方向和所述第二方向相交;所述第一触控电极和所述第二触控电极同层设置,所述第一连接部或所述第二连接部与所述第一触控电极同层设置;
    所述触控面板还包括:位于触控电极的边缘的至少一个触控分支,每个所述触控分支的延伸方向与所述触控分支所在的所述触控电极的边缘的延伸方向相交,所述触控分支的延伸方向不同于所述第一方向和所述第二方向,所述触控电极包括:所述第一触控电极,和/或所述第二触控电极;
    所述触控分支的长度大于与所述第一触控电极同层设置的连接部沿第三方向的长度,所述第三方向与部分触控分支的延伸方向相同,且与所述第一方向和所述第二方向相交。
  2. 根据权利要求1所述的触控面板,其中,所述触控分支包括:分支主体以及位于所述分支主体边缘的至少一个凸起;
    当所述触控分支的数量为至少两个时,至少两个触控分支相互间隔设置,且至少两个触控分支位于所述触控电极的两侧。
  3. 根据权利要求2所述的触控面板,其中,所述分支主体的长度大于所述触控分支所在的触控电极沿所述触控分支的延伸方向的长度的一半。
  4. 根据权利要求2所述的触控面板,其中,所述分支主体包括:相对设置的第一侧和第二侧以及相对设置的第三侧和第四侧;所述第三侧与所述触控分支所在的触控电极连接;
    所述至少一个凸起位于所述分支主体的所述第一侧和所述第二侧;
    位于所述分支主体的所述第一侧的所述凸起与位于所述分支主体的所述第二侧的所述凸起交错设置。
  5. 根据权利要求4所述的触控面板,其中,靠近所述触控分支所在的所述触控电极的所述凸起的宽度大于远离所述触控分支所在的所述触控电极的所述凸起的宽度。
  6. 根据权利要求2至5任一项所述的触控面板,其中,当触控电极包括:所述第一触控电极和所述第二触控电极时,所述第一触控电极上的触控分支为第一触控分支,所述第一触控分支包括:第一分支主体以及位于所述第一分支主体边缘的至少一个第一凸起;所述第二触控电极上的触控分支为第二触控分支,所述第二触控分支包括:第二分支主体以及位于所述第二分支主体边缘的至少一个第二凸起;
    当所述第一触控分支和所述第二触控分支的数量均为至少两个时,至少两个第一触控分支相互间隔设置,至少两个第二触控分支相互间隔设置;至少一个第一触控分支位于相邻的第二触控分支之间,至少一个第二触控分支位于相邻的第一触控分支之间;
    相邻的第一触控分支之间的最大间距大于所述第二触控分支的最大宽度;
    相邻的第二触控分支之间的最大间距大于所述第一触控分支的最大宽度。
  7. 根据权利要求6所述的触控面板,其中,相邻的所述第一触控分支之间形成第一凹槽,所述第二触控分支与所述第一凹槽相互嵌合;
    相邻的所述第二触控分支之间形成第二凹槽,所述第一触控分支与所述第二凹槽相互嵌合。
  8. 根据权利要求6所述的触控面板,其中,所述第一分支主体的形状和所述第二分支主体的形状均包括:矩形;
    所述第一凸起的形状和所述第二凸起的形状均包括:矩形、三角形或者波浪形。
  9. 根据权利要求6所述的触控面板,其中,所述第一触控分支与所述第一触控电极为一体成型结构;
    所述第二触控分支与所述第二触控电极为一体成型结构。
  10. 根据权利要求1至9任一项所述的触控面板,包括:依次叠设的缓 冲层、桥接层、绝缘层、触控层和保护层;
    所述触控层包括:多个所述第一触控电极和多个所述第一连接部以及多个所述第二触控电极;多个所述第一触控电极和多个所述第一连接部交替设置且依次连接,多个所述第二触控电极间隔设置;
    所述桥接层包括:多个所述第二连接部,每个所述第二连接部包括:相对于第一对称轴对称设置的两个第一连接结构,每个所述第一连接结构包括:第一焊盘部和第一连接桥;所述第一焊盘部配置为通过所述绝缘层上的过孔与相邻的第二触控电极连接,所述第一连接桥配置为连接所述第一焊盘部,所述第一对称轴沿第二方向延伸。
  11. 根据权利要求10所述的触控面板,其中,所述第一连接桥为由多个第一连接走线构成的闭环结构。
  12. 根据权利要求1至9任一项所述的触控面板,包括:依次叠设的缓冲层、桥接层、绝缘层、触控层和保护层;
    所述触控层包括:多个所述第二触控电极和多个所述第二连接部以及多个所述第一触控电极;多个所述第二触控电极和多个所述第二连接部交替设置且依次连接,多个所述第一触控电极间隔设置;
    所述桥接层包括:多个所述第一连接部,每个所述第一连接部包括:相对于第二对称轴对称设置的两个第二连接结构,每个所述第二连接结构包括:第二焊盘部和第二连接桥;所述第二焊盘部配置为通过所述绝缘层上的过孔与相邻的第一触控电极连接,所述第二连接桥配置为连接所述第一焊盘部,所述第二对称轴沿第一方向延伸。
  13. 根据权利要求12所述的触控面板,其中,所述第二连接桥为由多个第二连接走线构成的闭环结构。
  14. 根据权利要求10所述的触控面板,其中,每个所述第一连接部包括:第一子连接部、第一子连接结构和第二子连接部;
    所述第一子连接部和所述第二子连接部分别位于所述第一连接部连接的两个第一触控电极中的所述第一触控分支上,所述第一子连接结构位于所述 第一子连接部和所述第二子连接部之间;
    所述第一子连接部沿所述第三方向的长度和所述第二子连接部沿所述第三方向的长度均小于所述第一触控分支的长度的一半。
  15. 根据权利要求12所述的触控面板,其中,每个所述第二连接部包括:相互连接的第三子连接部、第二子连接结构和第四子连接部;
    所述第三子连接部和所述第四子连接部分别位于所述第二连接部连接的两个第二触控电极中的所述第二触控分支上,所述第二子连接结构位于所述第三子连接部和所述第四子连接部之间;
    所述第三子连接部沿所述第三方向的长度和所述第四子连接部沿所述第三方向的长度均小于所述第二触控分支的长度的一半。
  16. 根据权利要求1至6任一项所述的触控面板,其中,所述第一触控电极、所述第二触控电极、所述第一连接部、所述第二连接部和所述触控分支均包括:多个网格图案;其中,所述网格图案是由金属线构成的多边形。
  17. 根据权利要求16所述的触控面板,其中,所述第一触控电极为面状电极;
    或者,
    所述第一触控电极包括:多个沿第四方向延伸的第一电极和多个沿第五方向延伸的第二电极;所述第一电极和所述第二电极均包括:多个网格图案,多个所述第一电极和多个所述第二电极之间限定了多个虚拟区域;
    所述第四方向和所述第五方向相交,且所述第四方向和所述第五方向均不同于所述第一方向和所述第二方向。
  18. 根据权利要求17所述的触控面板,其中,当所述第一触控电极包括:多个沿所述第四方向延伸的所述第一电极和多个沿所述第五方向延伸的所述第二电极时,第一边界电极的宽度小于第一非边界电极的宽度,第二边界电极的宽度小于第二非边界电极的宽度;
    其中,所述第一边界电极为靠近所述第二触控电极的第一电极,所述第二非边界电极为位于所述第一边界电极远离所述第二触控电极一侧的第一电 极;所述第二边界电极为靠近所述第二触控电极的第二电极,所述第二非边界电极为位于所述第二边界电极远离所述第二触控电极一侧的第二电极。
  19. 根据权利要求18所述的触控面板,其中,形成所述虚拟区域的所述第一电极和所述第二电极上分别设置有第一分支段和第二分支段;
    位于同一虚拟区域内的所述第一分支段和所述第二分支段之间相互间隔设置,或者相互连接;
    所述第一分支段和所述第二分支段均包括多个网格图案;
    所述第一分支段和所述第二分支段的形状包括:十字形或者方形。
  20. 根据权利要求16所述的触控面板,其中,所述第二触控电极为面状电极;
    或者,
    所述第二触控电极包括:多个沿第五方向延伸的第三电极和多个沿第四方向延伸的第四电极;所述第三电极和所述第四电极均包括:多个网格图案,多个所述第三电极和多个所述第四电极之间限定了多个虚拟区域;
    所述第四方向和所述第五方向相交,且所述第四方向和所述第五方向均不同于所述第一方向和所述第二方向。
  21. 根据权利要求20所述的触控面板,其中,当所述第二触控电极包括:多个沿所述第五方向延伸的所述第三电极和多个沿所述第四方向延伸的所述第四电极时,第三边界电极的宽度小于第三非边界电极的宽度,第四边界电极的宽度小于第四非边界电极的宽度;
    其中,所述第三边界电极为靠近所述第一触控电极的第三电极,所述第三非边界电极为位于所述第三边界电极远离所述第一触控电极一侧的第三电极;所述第四边界电极为靠近所述第一触控电极的第四电极,所述第四非边界电极为位于所述第四边界电极远离所述第一触控电极一侧的第四电极。
  22. 根据权利要求21所述的触控面板,其中,形成所述虚拟区域的所述第三电极和所述第四电极上分别设置有第三分支段和第四分支段;
    位于同一虚拟区域内的所述第三分支段和所述第四分支段之间相互间隔 设置,或者相互连接;
    所述第三分支段和所述第四分支段均包括多个网格图案;
    所述第三分支段和所述第四分支段的形状包括:十字形或者方形。
  23. 根据权利要求17至22任一项所述的触控面板,还包括:与所述触控电极同层设置的金属结构;
    所述金属结构位于所述虚拟区域内,所述金属结构包括:多个网格图案。
  24. 根据权利要求3所述的触控面板,其中,所述第一触控分支的长度约为450微米至600微米;
    所述第二触控分支的长度约为450微米至600微米。
  25. 一种触控显示面板,包括:显示面板和如权利要求1至24任一项所述的触控面板;
    所述触控面板位于所述显示面板的出光侧或者与所述出光侧相对设置的背光侧;
    所述显示面板包括基底,所述基底包括:发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边缘;所述触控面板包括多个由金属线构成的金属网格;
    所述金属线在所述基底上的正投影所围成的区域内包含至少一个子像素在所述基底上的正投影,所述子像素边缘在所述基底上的正投影包含所述金属线在所述基底上的正投影。
  26. 一种触控显示装置,包括:如权利要求25所述的触控显示面板。
PCT/CN2021/117463 2021-09-09 2021-09-09 触控面板、触控显示面板和触控显示装置 WO2023035188A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/789,219 US20240184411A1 (en) 2021-09-09 2021-09-09 Touch Control Panel, Touch Control Display Panel, and Touch Control Display Apparatus
PCT/CN2021/117463 WO2023035188A1 (zh) 2021-09-09 2021-09-09 触控面板、触控显示面板和触控显示装置
CN202180002489.4A CN116113914A (zh) 2021-09-09 2021-09-09 触控面板、触控显示面板和触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117463 WO2023035188A1 (zh) 2021-09-09 2021-09-09 触控面板、触控显示面板和触控显示装置

Publications (1)

Publication Number Publication Date
WO2023035188A1 true WO2023035188A1 (zh) 2023-03-16

Family

ID=85507102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117463 WO2023035188A1 (zh) 2021-09-09 2021-09-09 触控面板、触控显示面板和触控显示装置

Country Status (3)

Country Link
US (1) US20240184411A1 (zh)
CN (1) CN116113914A (zh)
WO (1) WO2023035188A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180224967A1 (en) * 2017-02-09 2018-08-09 Solomon Systech Limited Touch Sensor
CN110764660A (zh) * 2019-09-26 2020-02-07 武汉华星光电半导体显示技术有限公司 触控电极层及触控显示装置
CN111796719A (zh) * 2020-07-13 2020-10-20 京东方科技集团股份有限公司 触控结构和触控显示面板
CN112506381A (zh) * 2020-12-25 2021-03-16 武汉华星光电半导体显示技术有限公司 触控组件及触控显示装置
CN113031829A (zh) * 2021-04-29 2021-06-25 京东方科技集团股份有限公司 触控电极结构、触控面板、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9519383B2 (en) * 2012-08-06 2016-12-13 Stmicroelectronics Asia Pacific Pte Ltd ITO pattern for capacitive touchscreen applications
KR102446437B1 (ko) * 2017-09-18 2022-09-23 삼성디스플레이 주식회사 입력감지유닛 및 이를 포함하는 표시모듈
KR20210054654A (ko) * 2019-11-05 2021-05-14 삼성디스플레이 주식회사 표시 장치
WO2022027404A1 (en) * 2020-08-06 2022-02-10 Boe Technology Group Co., Ltd. Touch control structure, display panel, display apparatus, and method of fabricating touch control structure
WO2022087820A1 (zh) * 2020-10-27 2022-05-05 京东方科技集团股份有限公司 触控面板及触控显示装置
KR20230014112A (ko) * 2021-07-20 2023-01-30 삼성디스플레이 주식회사 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180224967A1 (en) * 2017-02-09 2018-08-09 Solomon Systech Limited Touch Sensor
CN110764660A (zh) * 2019-09-26 2020-02-07 武汉华星光电半导体显示技术有限公司 触控电极层及触控显示装置
CN111796719A (zh) * 2020-07-13 2020-10-20 京东方科技集团股份有限公司 触控结构和触控显示面板
CN112506381A (zh) * 2020-12-25 2021-03-16 武汉华星光电半导体显示技术有限公司 触控组件及触控显示装置
CN113031829A (zh) * 2021-04-29 2021-06-25 京东方科技集团股份有限公司 触控电极结构、触控面板、显示装置

Also Published As

Publication number Publication date
CN116113914A (zh) 2023-05-12
US20240184411A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
WO2022057491A1 (zh) 显示基板及其制备方法、显示装置
WO2018205649A1 (zh) Oled触控显示面板和触控显示装置
CN114003143B (zh) 触控显示面板和触控显示装置
US11442574B2 (en) Touch structure and touch display panel
WO2022062879A9 (zh) 触控基板及显示面板
US20240211083A1 (en) Touch panel and manufacturing method therefor, and display touch device
US11989382B2 (en) Touch structure, display panel and electronic device
US11417715B2 (en) Array substrate, display screen and display device
WO2021237720A1 (zh) 显示面板、触控结构和显示装置
WO2021237723A1 (zh) 显示面板、触控结构和显示装置
WO2023142358A1 (zh) 触控结构、触控显示面板及显示装置
WO2023035188A1 (zh) 触控面板、触控显示面板和触控显示装置
CN215814106U (zh) 触控基板、显示面板及电子设备
WO2021237722A1 (zh) 显示面板、触控结构和显示装置
WO2023273388A1 (zh) 触控基板、显示面板及电子设备
US20240168593A1 (en) Touch-Control Electrode Structure, Display Panel, and Electronic Device
WO2023159516A1 (zh) 显示基板及显示装置
WO2023184402A1 (zh) 显示基板及其制作方法、显示面板
WO2023185630A9 (zh) 显示基板
WO2023097599A1 (zh) 显示基板及电子设备
WO2023246378A1 (zh) 触控显示结构及显示装置
US20230315237A1 (en) Touch structure, display panel, and electronic device
WO2022222615A1 (zh) 触控基板、显示面板及电子设备
CN115268708A (zh) 一种触控面板及触控显示装置
CN115843193A (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17789219

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE