WO2022087820A1 - 触控面板及触控显示装置 - Google Patents

触控面板及触控显示装置 Download PDF

Info

Publication number
WO2022087820A1
WO2022087820A1 PCT/CN2020/123971 CN2020123971W WO2022087820A1 WO 2022087820 A1 WO2022087820 A1 WO 2022087820A1 CN 2020123971 W CN2020123971 W CN 2020123971W WO 2022087820 A1 WO2022087820 A1 WO 2022087820A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gap
touch
hole
electrodes
Prior art date
Application number
PCT/CN2020/123971
Other languages
English (en)
French (fr)
Inventor
王领然
颜俊
高文辉
宋江
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/123971 priority Critical patent/WO2022087820A1/zh
Priority to CN202080002511.0A priority patent/CN114679912A/zh
Priority to US17/617,401 priority patent/US11947762B2/en
Publication of WO2022087820A1 publication Critical patent/WO2022087820A1/zh
Priority to US18/585,315 priority patent/US20240192819A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a touch panel and a touch display device.
  • the structure of the touch panel in the touch display device includes, for example, a single glass (One Glass Solution, OGS) touch panel, an on-cell touch panel, and an in-cell touch panel panel.
  • OGS One Glass Solution
  • a touch panel which has a touch area; the touch panel includes a base substrate and a touch function layer disposed on the base substrate.
  • the touch function layer includes a plurality of first touch units extending along a first direction and a plurality of second touch units extending along a second direction; each first touch unit includes a plurality of first touch units extending along the first direction the first touch electrodes arranged in the direction and connected in series with each other, each second touch unit includes a plurality of second touch electrodes arranged along the second direction and connected in series with each other; the first touch electrodes are connected to the The second touch electrodes are insulated from each other. The first direction and the second direction intersect.
  • the base substrate has at least two installation holes located in the touch control area, the touch function layer is hollowed out at the positions of the at least two installation holes; there is a gap between two adjacent installation holes area.
  • the first touch electrodes located in the gap area form a first gap electrode and a second gap electrode which are arranged along the first direction and are electrically connected to each other.
  • the second touch electrodes located in the gap region form third gap electrodes and fourth gap electrodes that are arranged along the second direction and are electrically connected to each other.
  • the third gap electrode is located between the first gap electrode and the second gap electrode.
  • the contour of the first gap electrode and/or the second gap electrode is at least partially different from the contour of the first touch electrode located in the non-gap region.
  • the contour of the third gap electrode and/or the fourth gap electrode is at least partially different from the contour of the second touch electrode located in the non-gap region.
  • the third gap electrode is embedded in the entire interior of the electrode formed by the electrical connection between the first gap electrode and the second gap electrode.
  • the mutual capacitance value between the first gap electrode and the second gap electrode, and the third gap electrode and the fourth gap electrode is C1;
  • the mutual capacitance value between the first touch electrode and the second touch electrode inside is C2;
  • the ratio of C1 to C2 ranges from 0.75 to 0.8.
  • the distance between two adjacent mounting holes on both sides of the gap area ranges from 900 ⁇ m to 1200 ⁇ m.
  • the ratio of the sum of the areas of the third gap electrode and the fourth gap electrode to the sum of the areas of the first gap electrode and the second gap electrode ranges from 1.2 to 1.4. .
  • the ratio of the area of the second touch electrode to the first touch electrode in the non-gap area ranges from 0.9 to 1.
  • an edge of at least one of the third gap electrode and the fourth gap electrode has at least one branch, the edge being proximate to the first gap electrode and the second gap electrode In at least one case, the at least one branch extends into the gap electrode close to the edge where the branch is located.
  • the edges of the branches are folded.
  • the mutually adjacent contour shapes of the third gap electrode and the first gap electrode are complementary, and the mutually adjacent contour shapes of the third gap electrode and the second gap electrode are complementary.
  • the outline of the third gap electrode has protrusions of various shapes, and the protrusions of various shapes include wavy protrusions, rectangular protrusions, trapezoidal protrusions and triangular protrusions at least two of them.
  • the third gap electrode includes a first part, a second part and a third part that communicate as a whole, along the second direction, and from the third gap electrode to the direction of the fourth gap electrode, the The first part, the second part and the third part are arranged in sequence.
  • the average size of the first portion and the third portion along the first direction is smaller than the average size of the second portion along the first direction.
  • the contour of the first part near the first gap electrode and the contour near the second gap electrode both have the wave-shaped protrusions.
  • two adjacent mounting holes located on both sides of the gap area are a first mounting hole and a second mounting hole respectively, and the first mounting hole and the second mounting hole are along the first mounting hole.
  • the first gap electrode is adjacent to a side of the first installation hole close to the gap area
  • the second gap electrode is adjacent to a side of the second installation hole close to the gap area.
  • the area around the first installation hole and the second installation hole and not the gap area is the hole edge area.
  • the area other than the gap area and the hole edge area in the touch control area is a normal area.
  • the first touch electrodes and the second touch electrodes comprise metal mesh structures.
  • the line width of the metal grid of at least one of the first gap electrode, the second gap electrode, the third gap electrode and the fourth gap electrode is larger than that of the touch electrodes located in the normal area The line weight of the metal grid.
  • the line width of the metal mesh of at least one of the first gap electrode, the second gap electrode, the third gap electrode, and the fourth gap electrode is in the range of 3.8 ⁇ m ⁇ 5.2 ⁇ m; the line width of the metal grids of the touch electrodes located in the normal area ranges from 2.8 ⁇ m to 4.2 ⁇ m.
  • the first gap electrode includes: a first main sub-electrode, and a first compensation sub-electrode disposed close to the first mounting hole; the first main sub-electrode is a metal mesh structure, and the first sub-electrode is a metal mesh structure.
  • a compensation sub-electrode is a planar electrode, and the first main sub-electrode is electrically connected to the first compensation sub-electrode; and/or, the second gap electrode includes: a second main sub-electrode, and is installed close to the second sub-electrode
  • the second compensator electrode is provided with holes; the second main sub-electrode is a metal mesh structure, the second compensator electrode is a planar electrode, and the second main sub-electrode is electrically connected to the second compensator electrode.
  • the sum of the areas of the third gap electrode and the fourth gap electrode, and the area of the metal grid of the first main sub-electrode, the area of the first compensation sub-electrode, the area of the second main sub-electrode is less than 1.3 and greater than or equal to 1.
  • each touch electrode located in the hole edge region forms a hole edge electrode.
  • the hole-side electrodes include: main sub-electrodes, and compensating sub-electrodes arranged near the corresponding installation holes; the main sub-electrodes are metal mesh structures, the compensating sub-electrodes are planar electrodes, and the main sub-electrodes are connected to the compensating sub-electrodes. Electrodes are electrically connected.
  • two second touch electrodes located on both sides of the first installation hole along the second direction respectively form a first hole an edge electrode and a second hole edge electrode; the first hole edge electrode, the third gap electrode, the fourth gap electrode and the second hole edge electrode are electrically connected in sequence.
  • the two second touch electrodes located on both sides of the second installation hole along the second direction form a third hole side electrode and a fourth hole respectively The side electrode; the third hole side electrode and the fourth hole side electrode are electrically connected through a first connection wire, and the first connection wire extends along the outline of the second installation hole.
  • the first hole edge electrode, the third gap electrode, the fourth gap electrode and the second hole edge electrode are electrically connected to form a whole, which is connected with the third hole edge electrode and the fourth hole edge electrode.
  • the whole formed by the electrical connection between the electrode and the first connecting wire is insulated from each other.
  • the first touch control unit located on the side of the first installation hole away from the second installation hole The electrodes form fifth hole-side electrodes; the first touch electrodes located on the side of the second mounting hole away from the first mounting holes form sixth hole-side electrodes.
  • the fifth hole edge electrode and the first gap electrode are electrically connected through a second connection wire, and the second connection wire extends along the outline of the first mounting hole.
  • the sixth hole side electrode and the second gap electrode are electrically connected through a third connection wire, and the third connection wire extends along the outline of the second mounting hole.
  • each of the second touch units further includes a plurality of bridge structures, and along the second direction, each adjacent two of the second touch electrodes are electrically connected by a bridge structure.
  • the third gap electrode and the fourth gap electrode are electrically connected through a bridge structure in the gap region.
  • the center of any bridge structure not located in the gap area and the center of the bridge structure for connecting the third gap electrode and the fourth gap electrode The connecting line intersects the second direction.
  • the touch function layer includes a touch electrode layer, an insulating layer and a bridge structure layer stacked on the base substrate, and the insulating layer is located between the touch electrode layer and the bridge. Between the structural layers, the bridging structural layer is located on the side of the touch electrode layer close to or away from the base substrate.
  • the first touch electrodes and the second touch electrodes are disposed in the touch electrode layer, and along the first direction, each adjacent two first touch electrodes are directly electrically connected, Along the second direction, every two adjacent second touch electrodes are arranged independently of each other.
  • a plurality of via holes in the insulating layer There are a plurality of via holes in the insulating layer, a plurality of bridge structures included in each of the second touch control units are disposed in the bridge structure layer, and along the second direction, every two adjacent The second touch electrodes pass through different via holes and are respectively electrically connected to a bridge structure.
  • the bridge structure for connecting the third gap electrode and the fourth gap electrode is a gap bridge structure, and the third gap electrode and the fourth gap electrode pass through different via holes in the insulating layer, respectively is electrically connected to the gap bridge structure.
  • the gap bridging structure has a hollow portion.
  • the touch electrode layer includes a third hole-side electrode, a fourth hole-side electrode, a fifth hole-side electrode and a sixth hole-side electrode, and the third hole-side electrode and the first hole-side electrode
  • the four-hole side electrodes are electrically connected through a first connecting wire
  • the fifth hole-side electrode and the first gap electrode are electrically connected through a second connecting wire
  • the sixth hole-side electrode is electrically connected to the second
  • the gap electrodes are electrically connected by a third connecting wire:
  • the first connection wires are arranged in the bridge structure layer, and the first connection wires pass through different via holes in the insulating layer to be electrically connected to the third hole side electrode and the fourth hole side electrode respectively. connection; the second connection wire is arranged in the touch electrode layer, and the second connection wire is directly electrically connected with the fifth hole edge electrode and the first gap electrode.
  • the third connection wire is disposed in the touch electrode layer, and the third connection wire is directly electrically connected to the sixth hole side electrode and the second gap electrode.
  • the touch function layer further includes: light blocking parts arranged around the installation hole in sequence along the radial direction of the installation hole and in a direction from the center of the installation hole to the edge, at least A connecting wire, a first signal shielding part and an electrode wire; the light blocking part, the connecting wire, the first signal shielding part and the electrode wire all extend along the outline of the mounting hole.
  • the light blocking portion extends along the edge of the mounting hole to form a closed-loop structure, and the light blocking portion is configured to block light passing through the mounting hole from entering a peripheral area of the mounting hole.
  • the connecting wires are configured to electrically connect two adjacent first touch electrodes arranged along the first direction, or electrically connect two adjacent second touch electrodes arranged along the second direction.
  • the electrode lines are configured to electrically connect an edge of the first touch electrode or the second touch electrode close to the mounting hole.
  • the first signal shielding portion is at least disposed between the adjacent connecting wires and the electrode wires, and the first signal shielding portion is configured to prevent crosstalk between the electrical signals transmitted on the adjacent connecting wires and the electrode wires. .
  • a plurality of the connecting wires are disposed between the light blocking portion and the first signal shielding portion, and a second signal shielding portion is disposed between two adjacent connecting wires; the The outline of the mounting hole of the second signal shielding portion extends.
  • the second signal shielding portion is configured to prevent crosstalk between electrical signals transmitted on two adjacent connecting wires.
  • a touch display device including the touch panel according to any of the above embodiments.
  • FIG. 1 is a top view of a touch panel according to some embodiments
  • Fig. 2 is a kind of partial enlarged view of the area shown in dashed-line box C' in Fig. 1;
  • FIG. 3 is a cross-sectional view of a touch panel along section line AA' in FIG. 2 according to some embodiments;
  • FIG. 4 is a top view of a touch electrode layer in a touch function layer according to some embodiments.
  • FIG. 5 is a top view of a bridge structure layer in a touch functional layer according to some embodiments.
  • FIG. 6 is another partial enlarged view of the area shown in the dotted box C' in FIG. 1;
  • FIG. 7 is a cross-sectional view of a touch panel along section line BB' in FIG. 6 according to some embodiments;
  • FIG. 8 is another top view of the touch electrode layer in the touch function layer according to some embodiments.
  • FIG 9 is another top view of the bridge structure layer in the touch function layer according to some embodiments.
  • FIG. 10 is a partial enlarged view of a hole edge region and a gap region of a touch panel according to some embodiments
  • 11A is a structural diagram of a branch on a fourth gap electrode according to some embodiments.
  • 11B is a structural diagram of a branch on a fourth gap electrode according to some embodiments.
  • FIG. 12 is a structural diagram of the metal mesh of the touch electrodes in the area indicated by the dotted frame F in FIG. 9;
  • 13A is a structural diagram of a metal grid of touch electrodes in a gap region according to some embodiments.
  • FIG. 13B is a structural diagram of a first portion of a third gap electrode in a gap region according to some embodiments.
  • 14A is a simplified top view of a hole edge region and a gap region of a touch panel according to some embodiments
  • 14B is a detailed top view of a hole edge region and a gap region of a touch panel according to some embodiments.
  • Fig. 15 is a partial enlarged view of the metal mesh structure in the area shown by the dotted box E1 in Fig. 14B;
  • 16 is a structural diagram of compensation sub-electrodes in a gap region of a touch panel according to some embodiments.
  • Fig. 17 is a partial enlarged view of the area shown by the dotted box E2 in Fig. 14B;
  • Fig. 18 is a partial enlarged view of the area shown in the dotted box E3 in Fig. 14B;
  • FIG. 19 is a structural diagram of a metal grid of touch electrodes in a gap region of a touch panel according to some embodiments.
  • 20 is a structural diagram of a gap bridge structure in a bridge structure layer in a gap region of a touch panel according to some embodiments
  • 21 is a structural diagram of a hole edge region of a touch panel according to some embodiments.
  • 22 is another structural diagram of a hole edge region of a touch panel according to some embodiments.
  • 23A-23D are various structural diagrams of a blocking aperture of a touch panel according to some embodiments.
  • FIG. 24 is a cross-sectional view of a touch display device according to some embodiments.
  • 25 is another cross-sectional view of a touch display device according to some embodiments.
  • 26A is a simplified top view of a gap region of a related art touch panel
  • FIG. 26B is a specific top view of the gap region of the touch panel of the related art.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions "electrically connected” and “connected” and their derivatives may be used.
  • the term “point connection” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • AMOLED Active Matrix Organic Light-Emitting Diode
  • Active Matrix Organic Light Emitting Diode Active Matrix Organic Light Emitting Diode
  • the technology of fabricating a touch structure (Flexible Metal Layer On Cell, FMLOC) directly on the packaging layer of an OLED (Organic Light-Emitting Diode, organic light emitting diode) display panel can prepare a lighter and thinner touch panel, and This technology can be applied to folded and rolled OLED display devices.
  • FMLOC Flexible Metal Layer On Cell
  • OLED Organic Light-Emitting Diode, organic light emitting diode
  • the touch panel 100 ′ generally includes a plurality of touch electrodes (including a first touch electrode 11 ′ and a second touch electrode 21 ′) evenly distributed, and adjacent different touch electrodes Mutual capacitance can be generated between the touch electrodes (ie between the first touch electrode 11' and the second touch electrode 21'), and the mutual capacitance value of these touch electrodes will change after being touched, so that by detecting the mutual capacitance value, Determining the variation of the mutual capacitance value can be used to judge the touch position.
  • a plurality of touch electrodes including a first touch electrode 11 ′ and a second touch electrode 21 ′
  • Mutual capacitance can be generated between the touch electrodes (ie between the first touch electrode 11' and the second touch electrode 21'), and the mutual capacitance value of these touch electrodes will change after being touched, so that by detecting the mutual capacitance value, Determining the variation of the mutual capacitance value can be used to judge the touch position.
  • the inventors of the present disclosure found that the technical solution of punching holes (the mounting holes H' as shown in FIGS. 26A and 26B ) inside the OLED display panel integrated with the touch control structure will destroy the touch control at the punching position in the OLED display panel.
  • the distance M' between the two mounting holes H' ranges from 900 ⁇ m to 1200 ⁇ m, exemplarily, The distance M' between the two mounting holes H' ranges from 1000 ⁇ m to 1100 ⁇ m, for example, the distance M’ is 1000 ⁇ m, 1050 ⁇ m, 1071 ⁇ m, 1071.8 ⁇ m, 1072 ⁇ m, 1090 ⁇ m or 1100 ⁇ m. Because the distance M' between the two mounting holes H' is relatively close, the integrity of the touch electrodes at the gap region G' between the two mounting holes H' cannot be guaranteed, so that the touch electrodes located in the gap region G' cannot be guaranteed.
  • the contour perimeter of the touch electrodes in the normal area is smaller than the contour perimeter of the touch electrodes in the normal area, so that the facing area of the touch electrodes located in the gap area G' is smaller than the facing area of the touch electrodes in the normal area, so that the facing area of the touch electrodes located in the gap area G' is smaller than that of the normal area.
  • the mutual capacitance values that can be generated between the touch electrodes in the gap region G' and the touch electrodes in the normal region after being touched are quite different.
  • the scribed line may Jitter, such as bending or even disconnection, occurs in the gap region G', resulting in poor linearity of the scribe lines of the touch panel 100'.
  • some embodiments of the present disclosure provide a touch panel 100 .
  • the touch panel 100 has a touch area T; the touch panel 100 may further have a border area B located around the touch area T.
  • the touch panel 100 can be superposed with a display panel to form a touch display device, and a mounting hole can be provided in the display panel to set functional devices such as a camera.
  • the touch area T of the touch panel 100 overlaps with the display area AA (also known as the active display area, the English name is Active Area) in the display panel, and the touch area T has at least two mounting holes H,
  • the at least two mounting holes H correspond to the mounting holes in the display panel for arranging functional devices such as cameras.
  • the area between two adjacent installation holes H among the above-mentioned at least two installation holes H may be referred to as a gap area G (refer to the area between the two installation holes H shown in FIG. 1 . dot-filled area).
  • the area around the mounting hole H can be called the hole edge area KB (the area filled with grids around the mounting hole H1 and the mounting hole H2 as shown in FIG. 1 ).
  • the hole edge area described in this paper The area KB does not include the area located around the mounting hole H and belongs to the gap area G, but includes the area located around the mounting hole H and does not belong to the gap area G.
  • the area other than the above-mentioned gap area G and hole edge area KB may be referred to as normal area C.
  • the distance M between two adjacent mounting holes H located on both sides of the gap region G ranges from 900 ⁇ m to 1200 ⁇ m;
  • the size range of the two mounting holes H) ranges from 900 ⁇ m to 1200 ⁇ m.
  • the distance M between two adjacent mounting holes H on both sides of the gap region G ranges from 1000 ⁇ m to 1100 ⁇ m, for example, the distance M is 1000 ⁇ m, 1050 ⁇ m, 1071 ⁇ m, 1071.8 ⁇ m, 1072 ⁇ m, 1090 ⁇ m or 1100 ⁇ m.
  • the touch area T is only provided with two mounting holes H as an example for illustration.
  • the number of mounting holes provided in the touch area T may be three or three Above, it can be set according to the specific situation.
  • the setting position, size and shape of the mounting hole H shown in FIG. 1 are only for illustration. Those skilled in the art should understand that the specific setting position, size and shape of the mounting hole H in the embodiment of the present disclosure are not limited to this. Adjust accordingly according to the position, size and shape of the camera and other functional devices.
  • the relative sizes of the touch area T and the frame area B shown in FIG. 1 are for illustration only, and are not specifically limited. In some embodiments, when the touch panel 100 is applied to a full-screen display device, the touch panel 100 may not be provided with the border area B.
  • FIG. 2 shows a top-view structure of the touch electrodes in the partial area C′ of the normal area C of the touch panel 100 in FIG. 1
  • FIG. 3 shows FIG. 2 The cross-sectional structure of the middle touch panel 100 along the cross-sectional line AA'.
  • the touch panel 100 includes a base substrate 1 and a touch function layer 2 disposed on the base substrate 1 .
  • the touch function layer 2 includes a plurality of first touch units 10 extending along the first direction X and a plurality of second touch units 20 extending along the second direction Y, and each first touch unit
  • the unit 10 includes a plurality of first touch electrodes 11 arranged along the first direction X and connected in series with each other
  • each second touch unit 20 includes a plurality of second touch electrodes arranged along the second direction Y and connected in series with each other twenty one.
  • Each second touch unit 20 further includes a plurality of bridging structures (eg, the first bridging structures 21A shown in FIG. 2 ), and along the second direction Y, each adjacent second touch electrodes 21 pass through one
  • the bridge structure is electrically connected to insulate the first touch electrodes 11 and the second touch electrodes 21 from each other.
  • first direction X and the second direction Y are arranged to intersect, for example, the first direction X and the second direction Y may be perpendicular to each other.
  • first direction X may be the horizontal direction of the touch display device
  • second direction Y may be the vertical direction of the touch display device
  • first direction X may be the row direction of the pixel arrangement of the touch display device
  • the two directions Y may be the column directions of the pixel arrangement of the touch display device.
  • the shapes of the first touch electrodes 11 and the second touch electrodes 21 shown in FIG. 2 are rhombus or approximately rhombus.
  • substantially rhombus-shaped means that the shape of the touch electrodes (ie, the first touch electrodes 11 and the second touch electrodes 21 ) is in the shape of a rhombus as a whole, but is not limited to a standard rhombus, such as the touch electrodes
  • the boundary of is allowed to be non-linear (eg zigzag), and in the following embodiments, the shape of the touch electrodes involved is a rhombus as a whole, but its boundary is zigzag.
  • the electrode pattern shapes of the first touch electrodes 11 and the second touch electrodes 21 in the embodiments of the present disclosure are not limited to a rhombus or a roughly rhombus, for example, they may also be rectangular, elongated, or the like.
  • the electrodes 11 form a first gap electrode 111 and a second gap electrode 112 which are arranged along the first direction X and are electrically connected to each other; in the second touch unit 20 passing through the gap area G, the second touch electrode located in the gap area G 21 forms a third gap electrode 211 and a fourth gap electrode 212 which are arranged along the second direction Y and are electrically connected to each other.
  • the third gap electrode 211 is located between the first gap electrode 111 and the second gap electrode 112, so that the two sides of the third gap electrode 211 are connected to the first gap electrode 111 and the second gap electrode 112. relative to each other, thereby producing mutual capacitance.
  • the gap area G is used for setting There are a first gap electrode 111, a second gap electrode 112, a third gap electrode 211 and a fourth gap electrode 212.
  • the third gap electrode 211 is located between the first gap electrode 111 and the second gap electrode 112 , so that the two sides of the third gap electrode 211 in the gap region G are opposite to the first gap electrode 111 and the second gap electrode 112 , increasing the contour circumference of the first touch electrode 11 and the second touch electrode 21 in this region long, thereby increasing the facing area between the first touch electrodes 11 and the second touch electrodes 21 .
  • the contour perimeter of the first touch electrode 11 and the second touch electrode 21 in this region is increased, so that the first touch electrode 11 and the second touch electrode 21 are increased.
  • the facing area between the touch electrodes 21 further increases the mutual capacitance value between the first touch electrodes 11 and the second touch electrodes 21 , and improves the linearity of the scribe lines that appear in the gap region G of the touch panel 100 . Poor degree problem.
  • the outline perimeters of the first touch electrodes 11 and the second touch electrodes 21 are increased by 32% to 36%, for example, by 32%, 33%, 34%, 35% or 36%.
  • the facing area between the first touch electrodes 11' and the second touch electrodes 21' is S'.
  • the first gap The facing area between the electrode 111 and the second gap electrode 112 and the third gap electrode 211 and the fourth gap electrode 212 that is, the facing area S between the first touch electrode 11 and the second touch electrode 21, S is greater than S', and the ratio of S to S' ranges from 1.1 to 1.5, such as 1.1, 1.2, 1.3, 1.4 or 1.5.
  • the mutual capacitance value between the first touch electrode 11' and the second touch electrode 21', and the first touch electrode 11' and the second touch electrode 21 in the non-gap region is in the range of 0.35 to 0.4.
  • the mutual capacitance value between the first gap electrode 111 and the second gap electrode 112, and the third gap electrode 211 and the fourth gap electrode 212 is C1.
  • the mutual capacitance value between the first touch electrodes 11 and the second touch electrodes 21 in the non-gap area is C2, and the ratio of C1 to C2 ranges from 0.75 to 0.8, such as 0.75, 0.76, 0.77, 0.79 or 0.8.
  • the mutual capacitance value between the first touch electrode 11 and the second touch electrode 21 located in the gap region increases , and is closer to the mutual capacitance value between the first touch electrodes 11 and the second touch electrodes 21 in the non-gap area, thereby improving the poor linearity of the scribe lines appearing in the gap area G of the touch panel 100 question.
  • the ratio of the sum of the areas of the third gap electrode 211 and the fourth gap electrode 212 to the sum of the areas of the first gap electrode 111 and the second gap electrode 112 ranges from 1.2 to 1.4, for example, it may be 1.2, 1.24, 1.3, 1.36 or 1.4.
  • the area in the gap region G is The area of the first touch electrode 11 increases, and the area of the second touch electrode 21 decreases, reaching the sum of the areas of the first gap electrode 111 and the second gap electrode 112 , and the third gap electrode 211 and the fourth gap electrode.
  • the effect of reducing the difference between the sums of the areas of 212 is beneficial to increase the facing area of the first touch electrodes 11 and the second touch electrodes 21 in the gap region G.
  • the ratio of the sum of the areas of the first gap electrode 111 and the second gap electrode 112 to the sum of the areas of the third gap electrode 211 and the fourth gap electrode 212 is 1.2. That is, the sum of the areas of the first gap electrode 111 and the second gap electrode 112 is close to the sum of the areas of the third gap electrode 211 and the fourth gap electrode 212 .
  • the first touch control in the gap region G is achieved.
  • the areas of the electrodes 11 and the second touch electrodes 21 are similar in size, which is beneficial to further increase the facing area of the first touch electrodes 11 and the second touch electrodes 21 .
  • the ratio of the areas of the second touch electrodes 21 to the first touch electrodes 11 in the non-gap area ranges from 0.9 to 1, such as 0.9, 0.92, 0.95, 0.98 or 1. That is, in the non-gap area, the areas of the second touch electrodes 21 and the first touch electrodes 11 are similar in size, or approximately equal, or equal.
  • the two adjacent mounting holes H located on both sides of the gap area G are the first mounting hole H1 and the second mounting hole H2, and the first mounting hole H1 and the second mounting hole are respectively H2 is arranged along the first direction X.
  • the first gap electrode 111 is adjacent to the side of the first mounting hole H1 close to the gap region G
  • the second gap electrode 112 is adjacent to the side of the second mounting hole H2 close to the gap region G.
  • the first gap electrode 111 and the second gap electrode 112 are electrically connected to form an integral electrode, and the third gap electrode 211 is embedded in the first gap electrode 111 and the second gap electrode 112 is electrically connected
  • the entire interior of the formed electrodes can further increase the contour perimeters of the first touch electrodes 11 and the second touch electrodes 21 in the gap region G, thereby increasing the distance between the first touch electrodes 11 and the second touch electrodes 21 .
  • the contour shapes of the third gap electrode 211 and the first gap electrode 111 are complementary to each other, and the contour shapes of the third gap electrode 211 and the second gap electrode 212 are complementary to each other.
  • the facing area between the first touch electrodes 11 and the second touch electrodes 21 further increases the mutual capacitance value between the first touch electrodes 11 and the second touch electrodes 21 .
  • the mutual capacitance value in the present disclosure can be increased by 60% to 170%, for example, by 60%, 80%, 100%, 115%, 130%, 160% or 170%.
  • the contours of the first gap electrodes 111 and/or the second gap electrodes 112 are at least partially different from the contours of the first touch electrodes 11 located in the non-gap regions.
  • FIG. 10 shows the contours of the first gap electrodes 111 and the second gap electrodes 112 , which are at least partially different from the contours of the first touch electrodes 11 located in the non-gap area.
  • the contours of the first gap electrodes 111 and the second gap electrodes 112 both have wavy and rectangular protrusions, while the contours of the first touch electrodes 11 located in the non-gap area have stepped protrusions.
  • the average size of the first gap electrode 111 along the second direction Y gradually decreases along the first direction X; and/or the size of the second gap electrode 112 along the second direction Y The average size, gradually decreasing in the direction opposite to the first direction X.
  • the contour of the third gap electrode 211 and/or the fourth gap electrode 212 is at least partially different from the contour of the second touch electrode 21 located in the non-gap area.
  • FIG. 10 shows the contours of the third gap electrodes 211 and the fourth gap electrodes 212 , which are at least partially different from the contours of the second touch electrodes 21 located in the non-gap area.
  • the outline of the third gap electrode 211 has various shapes of protrusions, and the various shapes of protrusions include at least two of wavy protrusions, rectangular protrusions, trapezoidal protrusions and triangular protrusions;
  • the contours of the fourth gap electrodes 212 have wavy and rectangular protrusions, while the contours of the second touch electrodes 21 located in the non-gap regions have stepped protrusions.
  • the height of the protrusions of the outline of the third gap electrode 211 ranges from 280 ⁇ m to 400 ⁇ m, for example, the heights are 280 ⁇ m, 300 ⁇ m, 320 ⁇ m, 350 ⁇ m, 360 ⁇ m or 390 ⁇ m, 400 ⁇ m;
  • the width ranges from 260 ⁇ m to 300 ⁇ m, for example, the width is 260 ⁇ m, 270 ⁇ m, 280 ⁇ m, 290 ⁇ m or 300 ⁇ m.
  • the third gap electrode 211 includes a first portion 211A, a second portion 211B and a third portion 211C that are communicated as a whole, along the second direction Y, and formed by the third gap electrode 211 Pointing in the direction of the fourth gap electrode 212, the first portion 211A, the second portion 211B and the third portion 211C are arranged in this order.
  • the average size of the first portion 211A and the third portion 211C along the first direction X is smaller than the average size of the second portion 211B along the first direction X.
  • the overall size of the third gap electrode 211 along the first direction X tends to change from small to large and then to small. Changing from small to large is conducive to increasing the contour perimeter of the third gap electrode 211 , and changing the size from large to small is conducive to bridging with the fourth gap electrode 212 .
  • the contour of the first part 211A near the first gap electrode 111 and the contour near the second gap electrode 112 both have wave-shaped protrusions.
  • the wave-shaped protrusions include a plurality of triangular protrusions, for example, the plurality of triangular protrusions include: along the second direction Y, the third gap electrodes 211 are arranged in order from the direction of the fourth gap electrode 212.
  • the heights of the plurality of triangular protrusions along the first direction X range from 89.3 ⁇ m to 91.2 ⁇ m, such as 89.3 ⁇ m, 90.7 ⁇ m, 91.0 ⁇ m or 91.2 ⁇ m, etc.;
  • the length ranges from 180.0 ⁇ m to 206.9 ⁇ m, such as 180.0 ⁇ m, 192.0 ⁇ m, 200.7 ⁇ m, 202.8 ⁇ m or 206.9 ⁇ m, etc.
  • the average size of the fourth gap electrode 212 along the first direction X first decreases and then increases along the second direction Y.
  • an edge of at least one of the third gap electrode 211 and the fourth gap electrode 212 has at least one branch S, and the edge is close to the first gap electrode 11 and the second gap electrode 11 .
  • the at least one branch S protrudes into the gap electrode where its edge is close, that is, the branch S protrudes into the first gap electrode 111 and/or the second gap electrode 112 .
  • the facing area between the first gap electrode 111 , the second gap electrode 112 , the third gap electrode 211 and the fourth gap electrode 212 can be increased, so that the first touch electrode 11 and the The mutual capacitance value between the second touch electrodes 21 is further increased, which further improves the problem of poor linearity of the scribe lines appearing in the gap region G of the touch panel 100 .
  • the third gap electrode 211 is provided with at least one branch S close to the edge of the first gap electrode 111, and the at least one branch S extends into the interior of the first gap electrode 111.
  • the third gap electrode 211 is provided with one branch S near the edge of the first gap electrode 111 ; in other embodiments, the third gap electrode 211 can also be provided with two branches near the edge of the first gap electrode 111 . or two or more branches S.
  • the third gap electrode 211 is provided with at least one branch S near the edge of the second gap electrode 112 , and the at least one branch S extends into the inside of the second gap electrode 112 .
  • one branch S is provided on the edge of the third gap electrode 211 near the second gap electrode 112 ; in other embodiments, two branches S can be provided on the edge of the third gap electrode 211 near the second gap electrode 112 . or two or more branches S.
  • Both the edge of the third gap electrode 211 close to the first gap electrode 111 and the edge of the third gap electrode 211 close to the second gap electrode 112 may be provided with the branch S, or only one of them may be provided with the branch S.
  • the third gap electrode 211 is close to the edge of the first gap electrode 111 .
  • the number of branches S provided by the third gap electrode 211 close to the edge of the second gap electrode 112 may be equal; and, further, these branches S may be symmetrically arranged along the bisector of the second direction Y relative to the third gap electrode 211 , which is beneficial to improve the accuracy of touch position detection.
  • the fourth gap electrode 212 is provided with a branch S close to the edge of the first gap electrode 111 , and the branch S extends into the interior of the first gap electrode 111 ; the fourth gap electrode 212 is close to the edge of the second gap electrode 112 A branch S is provided, the branch S extending into the inside of the second gap electrode 112 .
  • the fourth gap electrode 212 is provided with at least one branch S near the edge of the first gap electrode 111 , and the at least one branch S extends into the interior of the first gap electrode 111 .
  • one branch S is provided on the edge of the fourth gap electrode 212 near the first gap electrode 111 ; in other embodiments, two branches S can be provided on the edge of the fourth gap electrode 212 near the first gap electrode 111 . or two or more branches S.
  • the fourth gap electrode 212 is provided with at least one branch S near the edge of the second gap electrode 112 , and the at least one branch S extends into the inside of the second gap electrode 112 .
  • one branch S is provided on the edge of the fourth gap electrode 212 near the second gap electrode 112 ; in other embodiments, two branches S can be provided on the edge of the fourth gap electrode 212 near the second gap electrode 112 . or two or more branches S.
  • the edge of the fourth gap electrode 212 close to the first gap electrode 111 and the edge of the third gap electrode 211 close to the second gap electrode 112 may both be provided with the branch S, or only one of them may be provided with the branch S.
  • the fourth gap electrode 212 when the fourth gap electrode 212 is close to the first gap electrode 111 , when the fourth gap electrode 212 is close to the first gap electrode 111
  • the number of branches S provided on the edge and the edge of the fourth gap electrode 212 close to the second gap electrode 112 may be equal; and further, these branches S may be symmetrical with respect to the bisector of the fourth gap electrode 212 along the second direction Y
  • the setting is beneficial to improve the accuracy of touch position detection.
  • the edges of the branches S provided in the third gap electrode 211 and the fourth gap electrode 212 may be in the shape of a broken line.
  • the zigzag branch S can further increase the facing area between adjacent gap electrodes, so that the mutual capacitance value between the first touch electrodes 11 and the second touch electrodes 21 in the gap region G is further increased, and the touch control is improved. Linearity of the scribe lines in the gap region G of the panel 100 .
  • the shape and position of the branch S of the third gap electrode 211 and the fourth gap electrode 212 shown in FIG. 11A and FIG. 11B are only for illustration, and the shape and position of the branch S are not specifically limited herein. S can be set at any position of the third gap electrode 211 and the fourth gap electrode 212 close to the edges of the first gap electrode 111 and the second gap electrode 112, as long as the facing area between adjacent gap electrodes can be increased. .
  • the touch electrodes adopt a metal mesh structure.
  • the metal mesh structure has The touch electrodes have low resistance and high sensitivity, which can improve the touch sensitivity of the touch panel 100 .
  • the touch electrodes using the metal mesh structure have high mechanical strength and can reduce the weight of the touch panel 100 .
  • the display device can be made lighter and thinner.
  • the touch electrodes of the metal mesh structure include each of the first touch electrodes 11 and each of the second touch electrodes 21 in the touch panel 100 .
  • the first touch electrodes 11 include the first touch electrodes 11 in the normal region C, the first touch electrodes 11 in the gap region G for forming the first gap electrodes 111 and the second gap electrodes 112 , and holes In the side region KB, the first touch electrodes 11 for forming hole side electrodes are formed.
  • the second touch electrodes 21 include the second touch electrodes 21 in the normal region C, the second touch electrodes 21 in the gap region G for forming the third gap electrodes 211 and the fourth gap electrodes 212 , and the hole edge region
  • the second touch electrode 21 in the KB is used to form the hole edge electrode.
  • the first touch electrodes 11 and the second touch electrodes 21 adopt a metal mesh structure.
  • the metal meshes WD of the first touch electrodes 11 and the second touch electrodes 21 are disposed in the touch electrode layer 2A, the metal meshes WD of the first touch electrodes 11 and the metal meshes WD of the second touch electrodes 21 disconnected, so that the first touch electrodes 11 and the second touch electrodes 21 are insulated from each other.
  • the metal meshes WD in FIG. 12 are filled with different patterns to distinguish different touch electrodes.
  • the metal meshes WD of the first touch electrodes 11 and the second touch electrodes 21 can be made of the same material. Formed using the same process.
  • the first gap electrode 111 , the second gap electrode 112 , the third gap electrode 211 and the fourth gap electrode 212 adopt a metal mesh structure.
  • the line width of the metal mesh WD in the gap region G can be made larger than the line width of the metal mesh WD in the normal region C, so that the first touch electrodes 11 and The electrode area of the second touch electrodes 21 is compensated to increase the area of the electrodes transmitting touch signals in the first touch electrodes 11 and the second touch electrodes 21 in the gap region G, so that the first touch electrodes 11 and the The mutual capacitance value between the two touch electrodes 21 is increased, so that the problem of poor linearity of the scribe lines in the gap region G of the touch panel 100 can be further improved.
  • the mesh area of the metal mesh WD located in the gap region G is smaller than that of the metal mesh WD located in the gap region G.
  • the area of the mesh of the metal mesh WD in the normal area C is smaller.
  • the line width of the metal mesh WD in the normal region C is 2.8 ⁇ m ⁇ 4.2 ⁇ m, for example, 2.8 ⁇ m, 3.0 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m, 4.0 ⁇ m or 4.2 ⁇ m.
  • the line width of the metal mesh WD in the gap region G is 3.8 ⁇ m ⁇ 5.2 ⁇ m, for example, 3.8 ⁇ m, 4.0 ⁇ m, 4.5 ⁇ m, 4.8 ⁇ m, 5.0 ⁇ m or 5.2 ⁇ m.
  • each touch electrode located in the hole edge region KB forms a hole edge electrode K.
  • a part of the side electrode K is missing at the position of the mounting hole H, so the area of a single hole side electrode K is smaller than that of a single touch electrode located in the normal area C.
  • each touch-control electrode located in the hole-side region KB is formed.
  • the hole-side electrodes K are distributed around the mounting hole H with a plurality of hole-side electrodes K.
  • the hole edge region KB since the area of the hole edge electrode K is smaller than that of the touch electrodes in the normal region C, the mutual capacitance value generated by the hole edge electrode K in the hole edge region KB is the same as that in the normal region C. There are differences in the mutual capacitance values that the touch electrodes can generate.
  • the scribed line may vibrate, for example, bend or even break, resulting in poor linearity of the scribe on the touch panel 100 .
  • the line width of the metal meshes WD of the hole edge electrodes K in the hole edge region KB is larger than the line width of the metal meshes WD of the touch electrodes in the normal region C, so that the line width of the metal meshes WD of the touch electrodes in the normal region C can be
  • the electrode area of the hole edge electrode K in the hole edge area KB is compensated, and the area of the electrode transmitting the touch signal in the hole edge electrode K in the hole edge area KB is increased, so that the hole edge electrode K in the hole edge area KB can The generated mutual capacitance value is increased, so that the problem of poor linearity of the scribe lines occurring in the hole edge region KB of the touch panel 100 can be improved.
  • the line width of the metal mesh WD in the hole edge region KB can be made equal to the line width of the metal mesh WD in the gap region G.
  • the positions of the gap electrodes are close to the corresponding mounting holes H
  • a compensation sub-electrode is provided, the compensation sub-electrode is a planar electrode, and the compensation sub-electrode is electrically connected with other parts of the gap electrode. It should be noted that the so-called “corresponding mounting hole” refers to the mounting hole H to which the gap electrode is closest.
  • the electrode area of the gap electrodes for transmitting touch signals can be increased, thereby increasing the mutual capacitance value between the gap electrodes in the gap region G.
  • the compensation sub-electrodes are disposed closest to the mounting hole H, so that when the touch panel 100 is applied to a display device, it can be avoided that the planar compensation sub-electrodes are arranged to block light and affect the display effect.
  • the first gap electrode 111 includes: a first main sub-electrode 111S and a first compensation sub-electrode MD1 disposed close to the first mounting hole H1 .
  • the first main sub-electrode 111S is a metal mesh structure
  • the first compensation sub-electrode MD1 is a planar electrode
  • the first main sub-electrode 111S is electrically connected to the first compensation sub-electrode MD1.
  • the second gap electrode 112 includes: a second main sub-electrode 112S, and a second compensation sub-electrode MD2 disposed near the second mounting hole H2.
  • the second main sub-electrode 112S is a metal mesh structure
  • the second compensation sub-electrode MD2 is a planar electrode
  • the second main sub-electrode 112S is electrically connected to the second compensation sub-electrode MD2.
  • FIG. 16 only shows the case where compensation sub-electrodes are provided in both the first gap electrode 111 and the second gap electrode 112 , but the embodiment of the present disclosure is not limited thereto.
  • a compensation sub-electrode may be provided in the first gap electrode 111, and no compensation sub-electrode is provided in the second gap electrode 112; or a compensation sub-electrode may not be provided in the first gap electrode 111, and the second Compensation sub-electrodes are provided in the gap electrodes 112 .
  • the ratio to the sum of the areas of the second compensating sub-electrode MD2 is less than 1.3 and greater than or equal to 1, for example, the ratio may be 1, 1.05, 1.1, 1.15 or 1.2.
  • the first main sub-electrode 111S is electrically connected to the first compensation sub-electrode MD1
  • the second main sub-electrode 112S is electrically connected to the second compensation sub-electrode MD2, thereby further increasing the area of the first gap electrode 111 and the second gap electrode 112, and reducing the first gap electrode 111 and the second gap electrode 112.
  • the difference between the sum of the areas of the gap electrodes 111 and the second gap electrodes 112 and the sum of the areas of the third gap electrodes 211 and the fourth gap electrodes 212 is beneficial to increase the first touch in the gap region G The facing area of the electrode 11 and the second touch electrode 21 .
  • the ratio of the area of the cells ranges from 65% to 100%, for example, 65%, 70%, 80%, 90% or 100%.
  • the area of the metal mesh of the first main sub-electrode 111S ranges from 8.0 ⁇ 10 6 ⁇ m 2 to 1.0 ⁇ 10 7 ⁇ m 2 , For example, 8.0 ⁇ 10 6 ⁇ m 2 , 8.5 ⁇ 10 6 ⁇ m 2 , 9.0 ⁇ 10 6 ⁇ m 2 , 9.04 ⁇ 10 6 ⁇ m 2 or 1.0 ⁇ 10 7 ⁇ m 2 ; the area range of the planar electrode of the first compensator electrode MD1 2.0 ⁇ 10 5 ⁇ m 2 to 4.0 ⁇ 10 5 ⁇ m 2 , for example, 2.0 ⁇ 10 5 ⁇ m 2 , 2.5 ⁇ 10 5 ⁇ m 2 , 3.0 ⁇ 10 5 ⁇ m 2 , 3.8 ⁇ 10 5 ⁇ m 2 or 4.0 ⁇ 10 5 ⁇ m 2 .
  • the area of the metal mesh of the second main sub-electrode 112S included in the second gap electrode 112 is the same as the surface of the second compensation sub-electrode MD2
  • the sum of the areas of the shape electrodes accounts for the area of the metal meshes of the second touch electrodes 21 in the normal region C, and the ratio ranges from 65% to 100%, for example, 65%, 70%, 80%, 90% or 100%. %.
  • the area of the metal mesh of the second main sub-electrode 112S ranges from 7.0 ⁇ 10 6 ⁇ m 2 to 9.0 ⁇ 10 6 ⁇ m 2 , For example, it is 7.0 ⁇ 10 6 ⁇ m 2 , 7.76 ⁇ 10 6 ⁇ m 2 , 8.0 ⁇ 10 6 ⁇ m 2 or 9.0 ⁇ 10 6 ⁇ m 2 ;
  • the area range of the planar electrode of the second compensator electrode MD2 is 2.0 ⁇ 10 5 ⁇ m 2 ⁇ 3.0 ⁇ 10 5 ⁇ m 2 , for example, 2.0 ⁇ 10 5 ⁇ m 2 , 2.3 ⁇ 10 5 ⁇ m 2 , 2.5 ⁇ 10 5 ⁇ m 2 , 2.8 ⁇ 10 5 ⁇ m 2 or 3.0 ⁇ 10 5 ⁇ m 2 .
  • the area of the metal mesh of the first main sub-electrode 111S refers to the area of the area surrounded by the outline of the metal mesh of the first main sub-electrode 111S; similarly, the metal mesh of the second main sub-electrode 112S The same is true for the area of the grid.
  • the hole-side electrodes K located in the hole-side region KB include: main sub-electrodes, and compensation sub-electrodes disposed near the corresponding mounting holes H. As shown in FIG. It should be noted that the so-called “corresponding mounting hole” refers to the mounting hole H to which the hole-side electrode K is closest.
  • the main and sub-electrodes of the hole-side electrode K can be a metal mesh structure, and the compensation sub-electrodes of the hole-side electrode K can be planar electrodes. Compensating the area can increase the mutual capacitance value between the hole-side electrodes K in the hole-side region KB, thereby further improving the touch position sensing accuracy in the hole-side region KB and improving the linearity of the scribe.
  • the electrode area of the touch unit extending along the long side is larger than the electrode area of the touch unit extending along the short side, so that The mutual capacitance value generated between the touch unit extending along the long side direction and the touch unit extending along the short side direction will be affected, thereby affecting the accuracy of touch position sensing.
  • the touch electrodes of the touch unit extending in the longitudinal direction are provided with dummy electrodes that are disconnected from the touch electrodes, and the dummy electrodes are not electrically connected to the touch electrodes, so the touch electrodes are not transmitted.
  • control signals so that the area of the electrodes used for signal transmission in the touch unit extending along the long side is reduced, so that the area of the electrodes used for signal transmission in the touch unit extending along the long side is the same as the area along the short side.
  • the difference between the electrode areas for transmitting signals in the touch unit extending in the direction is reduced, and the two can even be made equal or approximately equal. Therefore, in the touch units with different extension directions in the touch panel 100, the difference between the electrode areas for transmitting signals and the mutual capacitance value between the different touch units can be avoided, thereby improving the sensitivity of touch position sensing. precision.
  • the first direction X is the short side direction
  • the second direction Y is the long side direction
  • the extended second touch electrodes 21 are provided with dummy electrodes DM that are disconnected from the metal grid WD for transmitting signals.
  • the dummy electrode DM can also adopt a metal mesh structure, for example, to ensure the display uniformity of the display device using the touch panel 100 .
  • the first direction X is the long side direction
  • the second direction Y is the short side direction
  • the first touch electrodes 11 extending along the first direction X
  • a dummy electrode DM disconnected from the metal mesh WD for transmitting signals is provided.
  • the first mounting hole H1 is far from the second mounting hole in the first touch unit 10
  • the first touch electrodes 11 on one side of H2 form fifth hole side electrodes 113
  • the first touch electrodes 11 on the side of the second mounting hole H2 away from the first mounting hole H1 form sixth hole side electrodes 114 .
  • the two second touch electrodes 21 located on both sides of the first mounting hole H1 along the second direction Y form a first hole side electrode 213 and a second hole, respectively Edge electrodes 214 .
  • the two second touch electrodes 21 located on both sides of the second mounting hole H2 along the second direction Y form a third hole edge electrode 215 and a fourth hole, respectively Edge electrodes 216 .
  • the first hole side electrode 213 , the third gap electrode 211 , the fourth gap electrode 212 and the second hole side electrode 214 are electrically connected in sequence, so as to extend along the second direction Y
  • the second touch unit 20 is electrically connected.
  • the first hole edge electrode 213 and the third gap electrode 211 may be directly electrically connected, for example, the two may be formed into an integrated structure.
  • the fourth gap electrode 212 and the second hole side electrode 214 may be directly electrically connected, for example, the two may be formed into an integrated structure.
  • the third hole edge electrode 215 and the fourth hole edge electrode 216 are electrically connected through the first connection wire L1, and the first connection wire L1 extends along the contour of the second mounting hole H2, so that the The second touch units 20 extending along the second direction Y are electrically connected.
  • the first gap electrode 111 and the fifth hole side electrode 113 are electrically connected through a second connection wire L2, and the second connection wire L2 extends along the outline of the first mounting hole H1; as shown in FIG. 14B
  • the second gap electrode 112 and the sixth hole side electrode 114 are electrically connected through a third connection wire L3, and the third connection wire L3 extends along the outline of the second mounting hole H2, so that the The first touch unit 10 extending in the direction X is electrically connected.
  • the arrangement positions of the first connection wires L1 and the third connection wires L3 intersect. Therefore, referring to FIG. 3 again, the first connection wires L1 and the third connection wires L3 are located at the touch function layer at least at the intersections.
  • one of the first connecting wire L1 and the third connecting wire L3 is located in the touch electrode layer 2A in the touch functional layer 2, and the other is located in the touch functional layer 2
  • the bridging structure layer 2C in the layer 2 and the first connecting wire L1 and the third connecting wire L3 are separated by the insulating layer 2B in the touch function layer 2 at the intersection position to prevent the first connecting wire L1 and the third connecting wire L3.
  • the touch signal transmitted over the crosstalk occurs.
  • the first connection wire L1 is disposed in the bridge structure layer 2C, and the first connection wire L1 is electrically connected to the third hole side electrode 215 and the fourth hole side electrode 216 through different via holes 2BK in the insulating layer 2B, respectively;
  • the third connection wire L3 is disposed in the touch electrode layer 2A, and the third connection wire L3 is directly electrically connected to the sixth hole side electrode 114 and the second gap electrode 112 .
  • the first connecting wire L1 is disposed in the touch electrode layer 2A, the first connecting wire L1 is directly electrically connected to the third hole-side electrode 215 and the fourth hole-side electrode 216 ; the third connecting wire L3 is disposed in the bridge structure. In the layer 2C, the third connecting wire L3 is electrically connected to the sixth hole side electrode 114 and the second gap electrode 112 through different via holes 2BK in the insulating layer 2B, respectively.
  • the second connection wires L2 may be disposed in the touch electrode layer 2A or in the bridging structure layer 2C.
  • the second connection wire L2 is directly electrically connected to the fifth hole side electrode 113 and the first gap electrode 111 .
  • the second connection wire L2 is electrically connected to the first gap electrode 111 and the fifth hole side electrode 113 respectively through different via holes 2BK in the insulating layer 2B.
  • the first hole-side electrode 213, the third hole-side electrode 211, the fourth hole-side electrode 212 and the second hole-side electrode 214 are electrically connected to form a whole, which is connected with the third hole-side electrode 215, the fourth hole-side electrode 216 and the first connecting wire
  • the whole formed by the electrical connection of L1 is insulated from each other, so that the different touch units to which they belong are insulated from each other.
  • the first gap electrode 111 and the second gap electrode 112 are electrically connected, the third gap electrode 211 and the fourth gap electrode 212 are electrically connected, and the first gap electrode 111 and the second gap electrode 111 are electrically connected There is an intersection at the position where the electrode 112 is electrically connected to the third gap electrode 211 and the fourth gap electrode 212. Since the first gap electrode 111 and the second gap electrode 112 are electrically connected to form the entirety belonging to the first touch unit 10, the first The whole formed by the electrical connection of the three gap electrodes 211 and the fourth gap electrodes 212 belongs to the second touch unit 20 .
  • the signals transmitted by the first touch unit 10 and the second touch unit 20 are different, so the first gap electrodes 111 and The whole formed by the electrical connection of the second gap electrode 112 and the whole formed by electrical connection with the third gap electrode 211 and the fourth gap electrode 212 need to be insulated.
  • the third gap electrode 211 and the fourth gap electrode 212 are electrically connected through a bridge structure in the gap region G.
  • the center D1 of any bridge structure (the first bridge structure 21A) located in the non-gap area and the bridge for connecting the third gap electrode 211 and the fourth gap electrode 212
  • the connection line F of the center D2 of the structure crosses the second direction Y, so that the third gap electrode 211 and the fourth gap electrode 212 are electrically connected.
  • any bridge located in the non-gap area In the second touch unit 20 passing through the gap area G, any bridge located in the non-gap area
  • the touch function layer 2 includes a touch electrode layer 2A, an insulating layer 2B and a bridging structure layer 2C stacked on the base substrate 1 , and the insulating layer 2B is located on the touch electrode layer. Between 2A and the bridge structure layer 2C, the bridge structure layer 2C is located on the side of the touch electrode layer 2A close to or away from the base substrate 1 .
  • FIG. 3 shows the case where the bridge structure layer 2C is located on the side of the touch electrode layer 2A away from the base substrate 1 .
  • the first touch electrodes 11 and the second touch electrodes 21 are disposed in the touch electrode layer 2A, and along the first direction X, each adjacent first touch electrodes 11 are directly electrically connected. , along the second direction Y, every two adjacent second touch electrodes 21 are arranged independently of each other.
  • the insulating layer 2B has a plurality of via holes 2BK therein.
  • a plurality of bridging structures (ie, the first bridging structures 21A) included in each second touch unit 20 are disposed in the bridging structure layer 2C.
  • every two adjacent second touch electrodes 21 pass through different via holes 2BK in the insulating layer 2B, and are respectively electrically connected to one first bridge structure 21A, thereby The second touch electrodes 21 included in the second touch unit 20 are electrically connected along the second direction Y.
  • the bridging structure layer 2C is located on the side of the touch electrode layer 2A away from the base substrate 1 for illustration, but the embodiments of the present disclosure are not limited thereto. In other embodiments, in the touch function layer 2 of the touch panel 100 , the bridge structure layer 2C is located on the side of the touch electrode layer 2A close to the base substrate 1 .
  • any two first touch electrodes 11 in the first touch unit 10 are directly electrically connected, and any two second touch electrodes 21 in the second touch unit 20 can be electrically connected through a first bridge structure 21A.
  • each of the first bridge structures 21A may extend along the second direction Y, so as to connect the two second touch electrodes 21 on both sides thereof.
  • any two adjacent second touch electrodes 21 in the second touch unit 20 may be directly electrically connected, and the first Any two adjacent first touch electrodes 11 in the touch unit 10 are electrically connected through a second bridge structure 11A disposed in the bridge structure layer 2C'.
  • the first touch electrodes 11 and the second touch electrodes 21 are disposed in the touch electrode layer 2A′, along the second direction Y, every two adjacent second touch electrodes
  • the control electrodes 21 are directly electrically connected; along the first direction X, every two adjacent first touch electrodes 11 are arranged independently of each other.
  • the insulating layer 2B has a plurality of via holes 2BK therein.
  • a plurality of bridge structures (second bridge structures 11A) included in each of the first touch units 20 are disposed in the bridge structure layer 2C′.
  • every two adjacent first touch electrodes 11 pass through different via holes 2BK and are respectively electrically connected to one second bridge structure 11A, thereby realizing the first touch control.
  • the cells 10 are electrically connected along the first direction X.
  • each second bridge structure 11A may extend along the first direction X, so as to connect the two first touch electrodes 11 on both sides thereof.
  • the bridge structure layer 2C′ is located on the side of the touch electrode layer 2A′ close to the base substrate 1 for illustration, but the embodiments of the present disclosure are not limited thereto. In other embodiments, in the touch function layer 2 of the touch panel 100 , the bridge structure layer 2C′ is located on the side of the touch electrode layer 2A′ away from the base substrate 1 .
  • FIG. 2 to FIG. 9 only show the arrangement and connection structure of the touch electrodes in the partial area C' of the normal area C.
  • the other regions except the partial region C' also adopt the same arrangement and connection structure of the touch electrodes as the partial region C'.
  • the structures of the touch panel 100 shown in FIG. 3 and FIG. 7 are only for illustration. When the touch electrode layer is closer to the base substrate 1 than the bridging structure layer, there is a gap between the touch electrode layer and the base substrate 1 .
  • Other film layers such as insulating layers, planarization layers, etc., may also be included; when the bridge structure layer is closer to the base substrate 1 than the touch electrode layer, the bridge structure layer and the base substrate 1 may also include Other film layers, such as insulating layers, planarization layers, etc., are not described in detail here.
  • the base substrate 1 in the touch panel 100 may be a blank substrate.
  • the touch function layer 2 can be directly fabricated on a blank substrate to form the touch panel 100, and then the touch panel 100 and the display panel can be combined fit.
  • the base substrate 1 in the touch panel 100 may also be a substrate on which some functional devices, pixel circuits or films are fabricated.
  • the touch control structure is integrated on the display panel using the FMLOC technology
  • the touch function layer 2 can be directly fabricated on the encapsulation layer of the display panel.
  • the pixel circuit, the film layer of the light-emitting device and the The entire substrate of the encapsulation layer is regarded as the base substrate 1 of the touch panel 100 .
  • the first gap electrode 111 and the second gap electrode 112 are directly electrically connected, and the third gap electrode 211 and the fourth gap electrode 212 pass through the via holes opened in the insulating layer 2B
  • the 2BK is electrically connected to the gap bridge structure 20A provided in the bridge structure layer 2C, thereby realizing the electrical connection of the third gap electrode 211 and the fourth gap electrode 212 .
  • the gap bridge A plurality of vias 2BK are provided at the positions where the structure 20A and the third gap electrode 211 are electrically connected, so that the gap bridge structure 20A and the third gap electrode 211 are electrically connected through a plurality of vias 2BK, thereby increasing the distance between the two. Contact area, so as to achieve the effect of improving the conductivity of the electrical connection between the two.
  • the plurality of via holes 2BK for electrically connecting the gap bridging structure 20A and the third gap electrode 211 may be arranged in one row (as shown in FIGS. 19 and 20 ), or in multiple rows.
  • the gap bridge structure A plurality of via holes 2BK are provided at the positions where the 20A is electrically connected to the fourth gap electrode 212, so that the gap bridge structure 20A and the fourth gap electrode 212 are electrically connected through a plurality of via holes 2BK to increase the contact between the two area, so as to achieve the effect of improving the conductivity of the electrical connection between the two.
  • the plurality of vias 2BK for electrically connecting the gap bridge structure 20A and the fourth gap electrode 212 may be arranged in one row (as shown in FIGS. 19 and 20 ), or in multiple rows.
  • the first gap electrode 111 and the second gap electrode 112 are directly electrically connected, and the third gap electrode 211 and the fourth gap electrode 212 are electrically connected through the gap bridge structure 20A as an example for illustration.
  • the third gap electrode 211 and the fourth gap electrode 212 may also be directly electrically connected, and the first gap electrode 111 and the second gap electrode 112 may be electrically connected through the gap bridge structure 20A.
  • the shape of the gap bridge structure 20A can be arbitrarily set as required.
  • a structure formed by electrical connection between the first gap electrode 111 and the second gap electrode 112 is a structure formed by electrical connection with the third gap electrode 211 and the fourth gap electrode 212
  • a hollow portion 20A' is provided at the intersection position for directly electrically connecting the orthographic projection of the conductive pattern of the first gap electrode 111 and the second gap electrode 112 on the base substrate 1, It at least partially overlaps with the orthographic projection of the hollow portion 20A' of the gap bridging structure 20A on the base substrate 1 .
  • the arrangement of the hollow portion 20A′ can reduce the overlapping area of the part where the gap bridge structure 20A is connected to the first gap electrode 111 and the second gap electrode 112 , thereby reducing the gap bridge structure 20A and the first gap electrode 111 and the second gap electrode 112 .
  • FIG. 21 shows a partially enlarged structure of the area shown by the dashed box E2 in FIG. 14B
  • FIG. 22 shows a partially enlarged structure of the area shown by the dashed box E3 in FIG. 14B
  • the touch function layer 2 further includes: a light blocking part D, at least one connecting wire L, a signal shielding part P and an electrode line X.
  • the light blocking portion D is arranged on the edge of the mounting hole H, and extends along the edge of the mounting hole H to form a closed-loop structure, which can prevent the light passing through the mounting hole H from entering the area around the mounting hole H.
  • the area around the mounting hole H is the area where image display needs to be performed, so the light blocking part D prevents the light passing through the mounting hole H from entering the area around the mounting hole H, This part of the light can be prevented from entering the display area and affecting the display quality.
  • the light-blocking portion D is a single-layer closed-loop structure, that is, the light-blocking portion D includes a complete ring structure, which is simple in structure and easy to manufacture.
  • the light blocking part D may also be a double-layer closed-loop structure, that is, the light blocking part D includes a complete two-circle structure, which increases the blocking area of the light blocking part D, thereby helping to improve the blocking effect.
  • the shading effect of the light part D may also be a double-layer closed-loop structure, that is, the light blocking part D includes a complete two-circle structure, which increases the blocking area of the light blocking part D, thereby helping to improve the blocking effect.
  • the shading effect of the light part D may also be a double-layer closed-loop structure, that is, the light blocking part D includes a complete two-circle structure, which increases the blocking area of the light blocking part D, thereby helping to improve the blocking effect.
  • the shading effect of the light part D may also be a double-layer closed-loop structure, that is, the light blocking part D includes a complete two-circle structure, which increases the blocking area of the light blocking part D, thereby helping to improve the blocking effect.
  • the light blocking portion D may also be a single-layer and double-layer alternate annular structure.
  • the light blocking portion D includes an inner ring structure D1 and an outer ring structure that are both intermittently arranged. D2, along the direction of the edge of the mounting hole H, the overlapping part of the inner ring structure D1 and the outer ring structure D2 forms a double-layer structure, and the non-overlapping part forms a single-layer structure.
  • the inner ring structure D1 and the outer ring structure D2 do not overlap, in this case, as shown in FIG. 23D , along the direction of the edge of the mounting hole H, the light blocking portion D is a single-layer annular structure.
  • the width of the light blocking portion D ranges from 60 ⁇ m to 100 ⁇ m, for example, 60 ⁇ m, 68 ⁇ m, 80 ⁇ m, 90 ⁇ m, 92 ⁇ m or 100 ⁇ m.
  • the ratio of the width of the light blocking portion D to the line width of the metal mesh WD located in the gap region G ranges from 15 to 25. For example 15, 17, 20, 23 or 25.
  • the ratio of the width of the light blocking portion D to the line width of the metal mesh WD located in the gap region G ranges from 12 to 20.
  • 12 to 20 For example 12, 13.6, 16, 18, 18.4 or 20.
  • the at least one connecting wire L is disposed on the side of the light blocking portion D away from the mounting hole H, and extends along the contour of the mounting hole H.
  • the connecting wires L are used to electrically connect two adjacent first touch electrodes 11 arranged along the first direction X, or electrically connect two adjacent second touch electrodes 21 arranged along the second direction Y.
  • the at least one connection wire L includes at least one of the above-mentioned first connection wire L1 , second connection wire L2 and third connection wire L3 .
  • FIG. 21 takes as an example that a connecting wire L is provided on the side of the light blocking portion D away from the second mounting hole H2 for illustration.
  • FIG. 22 takes as an example that three connecting wires L are arranged on the side of the light blocking portion D away from the first mounting hole H1 for illustration.
  • FIG. 21 and FIG. 22 show the case where the connection wire L includes a first connection wire L1, a second connection wire L2 and a third connection wire L3.
  • the first connection wire L1, the second connection wire L2 and the The arrangement position of the third connecting wire L3 in the touch functional layer 2 and the manner in which the third connecting wire L3 is electrically connected to the touch electrodes can be referred to the above corresponding embodiments, and details are not repeated here.
  • the width of the connecting wires L ranges from 20 ⁇ m to 60 ⁇ m, for example, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m or 60 ⁇ m.
  • the ratio of the width of the connecting wire L to the line width of the metal mesh WD located in the gap region G ranges from 5 to 15, for example 5, 7.5, 10, 12.5 or 15.
  • the ratio of the width of the connecting wire L to the line width of the metal mesh WD located in the gap region G ranges from 4 to 12, for example 4, 6, 8, 9, 10 or 12.
  • electrode lines X are provided on the edges of the touch electrodes close to the mounting holes H.
  • the electrode lines X are electrically connected to the touch electrodes and extend along the outline of the mounting holes H.
  • the electrodes Line X is a planar electrode, and its width can be greater than the width of the grid line of the metal grid of the touch electrode. In this way, when it is necessary to electrically connect the touch electrodes and the connecting wires L, the electrode wires X can be used to realize the electrical connection between the touch electrodes and the connecting wires L.
  • This connection method is different from directly connecting the touch electrodes of the metal mesh structure with the connecting wires L.
  • the connection method in which the connection wires L are electrically connected can improve the electrical conductivity between the touch electrodes and the connection wires L, thereby increasing the transmission rate of touch signals.
  • the electrode lines X can be made of the same material as the touch electrodes and arranged in the same layer, so that the electrode lines X can be directly electrically connected to the touch electrodes.
  • the touch electrodes and the connecting wires L to be connected are in different layers, the touch electrodes are directly electrically connected to the electrode lines X by arranging electrode lines, and the electrode lines X are connected to the electrodes through the via holes 2BK.
  • the connection wires L are electrically connected, so that the electrical connection between the touch electrodes and the connection wires L can be realized. Therefore, compared with the touch electrodes of the metal grid structure that are electrically connected to the connecting wires L through the via holes, the connecting wires L of the planar electrode structure are electrically connected to the connecting wires L through the via holes 2BK, which can improve the electrical connection of the touch electrodes.
  • the alignment accuracy of the electrode lines X and the via holes 2BK improves the electrical conductivity of the electrical connection between the touch electrodes and the connection wires L.
  • a first electrode line X1 is provided on the edge of the second gap electrode 112 close to the second mounting hole H2, the first electrode line X1 is electrically connected to the second gap electrode 112, and the first electrode line
  • the X1 and the third connecting wire L3 are electrically connected to the bridge structure in the bridge structure layer 2C through the via hole 2BK opened in the insulating layer 2B, so as to realize the electrical connection between the second gap electrode 112 and the sixth hole edge electrode 114 .
  • the edge of the fourth hole side electrode 216 close to the second mounting hole H2 is provided with a second electrode line X2, the second electrode line X2 is electrically connected to the fourth hole side electrode 216, and the second electrode line X2 is directly electrically connected to the first connection wire L1. connection, so that the third hole-side electrode 215 and the fourth hole-side electrode 216 can be electrically connected.
  • the fifth hole side electrode 113 is provided with a third electrode line X3 near the edge of the first mounting hole H1, the third electrode line X3 is electrically connected to the fifth hole side electrode 113, and the third electrode line X3 is electrically connected to the fifth hole side electrode 113.
  • the line X3 is directly electrically connected to the second connecting wire L2, so as to realize the electrical connection between the fifth hole edge electrode 113 and the first gap electrode 111.
  • connection method of the electrode line X and the connecting wire L in FIG. 21 and FIG. 22 is only for illustration, and the electrical connection method of the two can refer to the settings in the above-mentioned embodiment in which the touch electrodes are electrically connected through the connecting wire L.
  • the electrical connection between the touch electrodes and the connecting wires L can be regarded as the electrical connection between the electrode wires X electrically connected with the touch electrodes and the connecting wires, and thus will not be repeated here.
  • the width of the electrode lines X ranges from 20 ⁇ m to 60 ⁇ m, for example, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m or 60 ⁇ m.
  • the ratio of the width of the electrode line X to the line width of the metal mesh WD located in the gap region G ranges from 5 to 15, for example 5, 7.5, 10, 12.5 or 15.
  • the ratio of the width of the electrode line X to the line width of the metal mesh WD located in the gap region G ranges from 4 to 12, for example 4, 6, 8, 10 or 12.
  • the touch function layer 2 further includes a signal shielding portion P, and the signal shielding portion P is arranged between the connecting wires L and the electrode wires X, or between different connecting wires L; the signal shielding portion P is installed along the The contour of the hole H extends.
  • the signal shielding portion P is used to prevent crosstalk from occurring between the connecting wires L and the electrode wires X that transmit different touch signals on both sides of the signal shielding portion P, or between different connecting wires.
  • the so-called "different touch signals” refer to the TX signal and the RX signal; wherein, one of the TX signal and the RX signal is transmitted on the first touch unit, and the other is transmitted on the second touch transmission on the unit).
  • the signal shielding portion P may not be connected to other conductive structures in the touch panel, or may be grounded, or connected to a low voltage signal, so as to shield different touch signals on both sides thereof.
  • a first shielding portion P1 is respectively provided, and the first shielding portion P1 is provided.
  • the signal shielding portion P1 can prevent crosstalk of different touch signals transmitted on the first electrode line X1 and the first connecting wire L1, and the second electrode line X2 and the third connecting wire L3 respectively.
  • the hole-side electrode K at the upper right position of the first mounting hole H1 is the seventh hole-side electrode 217
  • the hole-side electrode K at the lower left position of the first mounting hole H1 is the eighth hole.
  • the edge electrode 218, the seventh hole edge electrode 217 and the eighth hole edge electrode 218 are electrically connected through a fourth connection wire L4.
  • a fourth connection wire L4 On this basis, as shown in FIG.
  • a first signal shielding portion P1 is provided to prevent transmission on the third electrode wire X3 and the fourth connection wire L4
  • the touch signal is crosstalk; there are two connecting wires, the fourth connecting wire L4 and the second connecting wire L2, between the first signal shielding part P1 and the light blocking part D, because the fourth connecting wire L4 and the second connecting wire L2 Therefore, a second signal shielding portion P2 is provided between the fourth connection wire L4 and the second connection wire L2 to prevent touch signals transmitted on the fourth connection wire L4 and the second connection wire L2 Signal crosstalk occurs.
  • the width of the signal shielding portion P ranges from 10 ⁇ m to 50 ⁇ m, for example, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m.
  • the ratio of the width of the signal shielding portion P to the line width of the metal mesh WD located in the gap region G ranges from 2.5 to 12.5, For example 2.5, 5, 7.5, 10 or 12.5.
  • the ratio of the width of the signal shielding portion P to the line width of the metal mesh WD located in the gap region G ranges from 2 to 10. For example 2, 4, 6, 8 or 10.
  • the touch display device 1000 may be an electroluminescence display device or a photoluminescence display device.
  • the electroluminescence display device may be an organic electroluminescence display device (Organic Light-Emitting Diode, OLED for short) or a quantum dot electroluminescence display device (Quantum Dot). Light Emitting Diodes, referred to as QLED).
  • the touch display device 1000 is a photoluminescence display device
  • the photoluminescence display device may be a quantum dot photoluminescence display device.
  • the main structure of the electroluminescence display device includes the electroluminescence display panels 400 arranged in sequence, as in some of the above embodiments.
  • the electroluminescence display panel 400 includes a display substrate 401 and an encapsulation layer 402 for encapsulating the display substrate 401 .
  • the encapsulation layer 402 may be an encapsulation film or an encapsulation substrate.
  • the touch function layer 2 of the touch panel 100 is directly disposed on the encapsulation layer 402 , so that the electroluminescent display panel 400 can be regarded as the base substrate 1 of the touch panel 100 .
  • this structure is conducive to realizing the thinning of the display device.
  • the touch function layer 2 of the touch panel 100 is disposed on the base substrate 1 , and the base substrate 1 is attached to the encapsulation layer 402 through the second optical adhesive 700 .
  • the material of the base substrate 1 may be, for example, polyethylene terephthalate (PET for short), polyimide (PI for short), cycloolefin polymer (Cyclo Olefin Polymer, COP for short), and the like.
  • each sub-pixel of the above-mentioned display substrate 401 includes a light-emitting device and a driving circuit disposed on the substrate 310 , and the driving circuit includes a plurality of thin film transistors 111 .
  • the light emitting device includes an anode 311 , a light emitting functional layer 312 and a cathode 313 , and the anode 311 is electrically connected to the drain of the thin film transistor 111 serving as a driving transistor among the plurality of thin film transistors 111 .
  • the display substrate 401 further includes a pixel defining layer 314, the pixel defining layer 314 includes a plurality of opening regions, and one light emitting device is disposed in one opening region.
  • the light-emitting functional layer 312 includes a light-emitting layer.
  • the light-emitting functional layer 312 includes, in addition to the light-emitting layer, an electron transport layer (election transporting layer, referred to as ETL), an electron injection layer (election injection layer, abbreviated as EIL), and a hole transport layer (hole transporting layer). layer, HTL for short) and one or more layers of hole injection layer (HIL).
  • the display substrate 401 further includes a flat layer 315 provided between the thin film transistor 111 and the anode 311 .
  • the touch display device 1000 may be a top emission display device.
  • the anode 311 close to the substrate 310 is opaque, and the cathode 313 away from the substrate 310 is opaque.
  • Transparent or semi-transparent; the touch display device 1000 can also be a bottom emission display device, in this case, the anode 311 close to the substrate 310 is transparent or semi-transparent, and the cathode 313 far from the substrate 310 is opaque; touch display
  • the device 1000 may also be a double-sided light-emitting display device, in which case, the anode 311 close to the substrate 310 and the cathode 313 away from the substrate 310 are both transparent or translucent.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板,具有触控区域;触控面板包括衬底基板和设置在衬底基板上的触控功能层。触控功能层包括多个第一触控单元和多个第二触控单元;每个第一触控单元包括多个沿第一方向排列且相互串接的第一触控电极,每个第二触控单元包括多个沿第二方向排列且相互串接的第二触控电极;第一触控电极与第二触控电极相互绝缘。衬底基板具有位于触控区域的至少两个安装孔,相邻两个安装孔之间具有间隙区域。经过间隙区域的第一触控单元中,位于间隙区域内的第一触控电极形成第一间隙电极和第二间隙电极。经过间隙区域的第二触控单元中,位于间隙区域内的第二触控电极形成第三间隙电极和第四间隙电极。第三间隙电极位于第一间隙电极与第二间隙电极之间。

Description

触控面板及触控显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种触控面板及触控显示装置。
背景技术
随着电子产品的不断发展,具有触控功能和显示功能的触控显示装置,可以实现简易灵活的人机交互,因而得到广泛应用。触控显示装置中触控面板的结构例如包括:单片玻璃式(One Glass Solution,OGS)触控面板、表嵌式(On-Cell)触控面板和内嵌式(In-Cell)触控面板。
发明内容
一方面,提供一种触控面板,具有触控区域;所述触控面板包括衬底基板和设置在所述衬底基板上的触控功能层。所述触控功能层包括沿第一方向延伸的多个第一触控单元和沿第二方向延伸的多个第二触控单元;每个第一触控单元包括多个沿所述第一方向排列且相互串接的第一触控电极,每个第二触控单元包括多个沿所述第二方向排列且相互串接的第二触控电极;所述第一触控电极与所述第二触控电极相互绝缘。所述第一方向和所述第二方向相交叉。
其中,所述衬底基板具有位于所述触控区域的至少两个安装孔,所述触控功能层在所述至少两个安装孔的位置处镂空;相邻两个安装孔之间具有间隙区域。
经过所述间隙区域的第一触控单元中,位于所述间隙区域内的第一触控电极形成沿所述第一方向排列且相互电连接的第一间隙电极和第二间隙电极。经过所述间隙区域的第二触控单元中,位于所述间隙区域内的第二触控电极形成沿所述第二方向排列且相互电连接的第三间隙电极和第四间隙电极。沿所述第一方向,所述第三间隙电极位于所述第一间隙电极与所述第二间隙电极之间。
在一些实施例中,所述第一间隙电极和/或所述第二间隙电极的轮廓,与位于非所述间隙区域内的第一触控电极的轮廓至少部分不相同。所述第三间隙电极和/或所述第四间隙电极的轮廓,与位于非所述间隙区域内的第二触控电极的轮廓至少部分不相同。所述第三间隙电极嵌入所述第一间隙电极和所述第二间隙电极电连接所形成的电极的整体的内部。
在一些实施例中,所述第一间隙电极和所述第二间隙电极,与,所述第三间隙电极和所述第四间隙电极之间的互容值为C1;位于非所述间隙区域内 的第一触控电极与第二触控电极之间的互容值为C2;C1与C2的比值范围为0.75~0.8。
在一些实施例中,位于所述间隙区域两侧的相邻两个安装孔之间的距离范围为900μm~1200μm。
在一些实施例中,所述第三间隙电极与所述第四间隙电极的面积之和,与,所述第一间隙电极与所述第二间隙电极的面积之和的比例范围为1.2~1.4。
在一些实施例中,非间隙区域内的第二触控电极与第一触控电极的面积的比值范围为0.9~1。
在一些实施例中,所述第三间隙电极和所述第四间隙电极中的至少一者的边缘具有至少一个分支,所述边缘靠近所述第一间隙电极和所述第二间隙电极中的至少一者,所述至少一个分支伸入其所在的边缘所靠近的间隙电极内。
在一些实施例中,所述分支的边缘呈折线状。
在一些实施例中,所述第三间隙电极与所述第一间隙电极的相互靠近的轮廓形状互补,且所述第三间隙电极与所述第二间隙电极的相互靠近的轮廓形状互补。
在一些实施例中,所述第三间隙电极的轮廓具有多种形状的凸起,所述多种形状的凸起包括波浪形的凸起、矩形的凸起、梯形的凸起以及三角形的凸起中的至少两种。
所述第三间隙电极包括连通成一整体的第一部、第二部和第三部,沿所述第二方向,且由所述第三间隙电极指向所述第四间隙电极的方向,所述第一部、所述第二部和所述第三部依次布置。所述第一部和所述第三部的沿所述第一方向的平均尺寸,均小于所述第二部的沿所述第一方向的平均尺寸。
在一些实施例中,所述第一部的靠近所述第一间隙电极的轮廓和靠近所述第二间隙电极的轮廓均具有所述波浪形的凸起。
在一些实施例中,位于所述间隙区域两侧的相邻两个安装孔分别为第一安装孔和第二安装孔,所述第一安装孔和所述第二安装孔沿所述第一方向排列。所述第一间隙电极与所述第一安装孔靠近所述间隙区域的一侧相邻,所述第二间隙电极与所述第二安装孔靠近所述间隙区域的一侧相邻。
其中,所述触控区域中,所述第一安装孔和所述第二安装孔周边且非所述间隙区域的区域为孔边区域。所述触控区域中除所述间隙区域和所述孔边区域以外的区域为正常区域。
在一些实施例中,所述第一触控电极和所述第二触控电极包括金属网格 结构。所述第一间隙电极、所述第二间隙电极、所述第三间隙电极和所述第四间隙电极中的至少一者的金属网格的线宽大于位于所述正常区域的触控电极的金属网格的线宽。
在一些实施例中,所述第一间隙电极、所述第二间隙电极、所述第三间隙电极和所述第四间隙电极中的至少一者的金属网格的线宽的范围为3.8μm~5.2μm;位于所述正常区域的触控电极的金属网格的线宽的范围为2.8μm~4.2μm。
在一些实施例中,所述第一间隙电极包括:第一主子电极,以及靠近所述第一安装孔设置的第一补偿子电极;所述第一主子电极为金属网格结构,所述第一补偿子电极为面状电极,所述第一主子电极与所述第一补偿子电极电连接;和/或,所述第二间隙电极包括:第二主子电极,以及靠近所述第二安装孔设置的第二补偿子电极;所述第二主子电极为金属网格结构,所述第二补偿子电极为面状电极,所述第二主子电极与所述第二补偿子电极电连接。
在一些实施例中,第三间隙电极和第四间隙电极的面积之和,与,所述第一主子电极的金属网格的面积、所述第一补偿子电极的面积、所述第二主子电极的金属网格的面积与所述第二补偿子电极的面积之和的比例小于1.3,大于或等于1。
在一些实施例中,经过所述第一安装孔和所述第二安装孔的各触控单元中,位于所述孔边区域的每个触控电极形成孔边电极。所述孔边电极包括:主子电极,以及靠近相应安装孔设置的补偿子电极;所述主子电极为金属网格结构,所述补偿子电极为面状电极,所述主子电极与所述补偿子电极电连接。
在一些实施例中,经过所述第一安装孔的第二触控单元中,位于所述第一安装孔沿所述第二方向的两侧的两个第二触控电极分别形成第一孔边电极和第二孔边电极;所述第一孔边电极、所述第三间隙电极、所述第四间隙电极和所述第二孔边电极依次电连接。经过所述第二安装孔的第二触控单元中,位于所述第二安装孔沿所述第二方向的两侧的两个第二触控电极分别形成第三孔边电极和第四孔边电极;所述第三孔边电极和所述第四孔边电极之间通过第一连接导线电连接,所述第一连接导线沿所述第二安装孔的轮廓延伸。
所述第一孔边电极、所述第三间隙电极、所述第四间隙电极和所述第二孔边电极电连接形成的整体,与所述第三孔边电极、所述第四孔边电极和所述第一连接导线电连接形成的整体相互绝缘。
在一些实施例中,经过所述第一安装孔和所述第二安装孔的第一触控单 元中,位于所述第一安装孔远离所述第二安装孔的一侧的第一触控电极形成第五孔边电极;位于所述第二安装孔远离所述第一安装孔的一侧的第一触控电极形成第六孔边电极。所述第五孔边电极与所述第一间隙电极之间通过第二连接导线电连接,所述第二连接导线沿所述第一安装孔的轮廓延伸。所述第六孔边电极与所述第二间隙电极之间通过第三连接导线电连接,所述第三连接导线沿所述第二安装孔的轮廓延伸。
在一些实施例中,每个所述第二触控单元还包括多个桥接结构,沿所述第二方向,每相邻两个所述第二触控电极之间通过一个桥接结构电连接。所述第三间隙电极和所述第四间隙电极之间通过位于所述间隙区域内的一个桥接结构电连接。经过所述间隙区域的第二触控单元中,位于非所述间隙区域内的任一桥接结构的中心与用于连接所述第三间隙电极和所述第四间隙电极的桥接结构的中心的连线,与所述第二方向相交叉。
在一些实施例中,所述触控功能层包括层叠设置于所述衬底基板上的触控电极层、绝缘层和桥接结构层,所述绝缘层位于所述触控电极层与所述桥接结构层之间,所述桥接结构层位于所述触控电极层靠近或远离所述衬底基板的一侧。所述第一触控电极和所述第二触控电极设置于所述触控电极层中,沿所述第一方向,每相邻两个所述第一触控电极之间直接电连接,沿所述第二方向,每相邻两个所述第二触控电极相互独立设置。
所述绝缘层中具有多个过孔,每个所述第二触控单元所包括的多个桥接结构设置于所述桥接结构层中,沿所述第二方向,每相邻两个所述第二触控电极穿过不同过孔,分别与一个桥接结构电连接。
用于连接所述第三间隙电极和所述第四间隙电极的桥接结构为间隙桥接结构,所述第三间隙电极和所述第四间隙电极穿过所述绝缘层中的不同过孔,分别与所述间隙桥接结构电连接。
在一些实施例中,所述间隙桥接结构具有镂空部。用于直接电连接所述第一间隙电极和所述第二间隙电极的导电图案在所述衬底基板上的正投影,与所述间隙桥接结构的镂空部在所述衬底基板上的正投影至少部分重叠。
在一些实施例中,在所述触控电极层包括第三孔边电极、第四孔边电极、第五孔边电极和第六孔边电极,且所述第三孔边电极和所述第四孔边电极之间通过第一连接导线电连接,所述第五孔边电极与所述第一间隙电极之间通过第二连接导线电连接,所述第六孔边电极与所述第二间隙电极之间通过第三连接导线电连接的情况下:
所述第一连接导线设置于所述桥接结构层中,所述第一连接导线穿过所 述绝缘层中不同的过孔分别与所述第三孔边电极和所述第四孔边电极电连接;所述第二连接导线设置于所述触控电极层中,所述第二连接导线直接与所述第五孔边电极和所述第一间隙电极电连接。所述第三连接导线设置于所述触控电极层中,所述第三连接导线直接与所述第六孔边电极和所述第二间隙电极电连接。
在一些实施例中,所述触控功能层还包括:沿所述安装孔的径向且由所述安装孔的中心指向边缘的方向,依次设置在所述安装孔周边的挡光部、至少一条连接导线、第一信号屏蔽部和电极线;所述挡光部、所述连接导线、所述第一信号屏蔽部和所述电极线均沿所述安装孔的轮廓延伸。
其中,所述挡光部沿着所述安装孔的边缘延伸形成闭环结构,所述挡光部被配置为阻挡经过所述安装孔的光线进入所述安装孔周边的区域。所述连接导线被配置为,电连接沿所述第一方向排列的相邻两个第一触控电极,或者电连接沿所述第二方向排列的相邻两个第二触控电极。所述电极线被配置为,电连接所述第一触控电极或者所述第二触控电极的靠近所述安装孔的边缘。所述第一信号屏蔽部至少设置于相邻的连接导线与电极线之间,所述第一信号屏蔽部被配置为防止所述相邻的连接导线与电极线上所传输的电信号发生串扰。
在一些实施例中,所述挡光部与所述第一信号屏蔽部之间设置有多条所述连接导线,相邻两条所述连接导线之间设置有第二信号屏蔽部;所述第二信号屏蔽部所述安装孔的轮廓延伸。所述第二信号屏蔽部被配置为,防止相邻两条所述连接导线上所传输的电信号发生串扰。
另一方面,提供一种触控显示装置,包括如上面任一实施例所述的触控面板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的触控面板的俯视图;
图2为图1中的虚线框C'所示区域的一种局部放大图;
图3为根据一些实施例的触控面板沿图2中的剖面线AA'的截面图;
图4为根据一些实施例的触控功能层中触控电极层的一种俯视图;
图5为根据一些实施例的触控功能层中桥接结构层的一种俯视图;
图6为在图1中虚线框C'所示区域的另一种局部放大图;
图7为根据一些实施例的触控面板沿图6中的剖面线BB'的截面图;
图8为根据一些实施例的触控功能层中触控电极层的另一种俯视图;
图9为根据一些实施例的触控功能层中桥接结构层的另一种俯视图;
图10为根据一些实施例的触控面板的孔边区域和间隙区域的局部放大图;
图11A为根据一些实施例的第四间隙电极上的分支的结构图;
图11B为根据一些实施例的第四间隙电极上的分支的结构图;
图12为图9中的虚线框F所示区域中触控电极的金属网格的结构图;
图13A为根据一些实施例的间隙区域中触控电极的金属网格的结构图;
图13B为根据一些实施例的间隙区域中第三间隙电极的第一部的结构图;
图14A为根据一些实施例的触控面板的孔边区域和间隙区域的简化俯视图;
图14B为根据一些实施例的触控面板的孔边区域和间隙区域的具体俯视图;
图15为图14B中虚线框E1所示区域中金属网格结构的局部放大图;
图16为根据一些实施例的触控面板的间隙区域中补偿子电极的结构图;
图17为图14B中虚线框E2所示区域的局部放大图;
图18为图14B中虚线框E3所示区域局部放大图;
图19为根据一些实施例的触控面板的间隙区域中触控电极的金属网格的结构图;
图20为根据一些实施例的触控面板的间隙区域中桥接结构层中的间隙桥接结构的结构图;
图21为根据一些实施例的触控面板的孔边区域的一种结构图;
图22为根据一些实施例的触控面板的孔边区域的另一种结构图;
图23A~图23D为根据一些实施例的触控面板的挡光圈的各结构图;
图24为根据一些实施例的触控显示装置的一种截面图;
图25为根据一些实施例的触控显示装置的另截面图;
图26A为相关技术的触控面板的间隙区域的简化俯视图;
图26B为相关技术的触控面板的间隙区域的具体俯视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“点连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所 述的值。
如本文所使用的那样,“近似”或“大致”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着AMOLED(Active Matrix Organic Light-Emitting Diode,有源矩阵有机发光二极管)显示装置的迅速发展,全面屏、窄边框、高分辨率、卷曲穿戴、折叠等成为未来AMOLED的重要发展方向。
其中,直接在OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板的封装层上制作触控结构(Flexible Metal Layer On Cell,FMLOC)的技术,能够制备更轻更薄的触控面板,且该技术可以应用于折叠及卷曲的OLED显示装置中。
同时,为了有效利用屏幕空间,提高屏占比(即实际用于显示图像的显示区域的面积占显示面板整个正面的面积的比例),在OLED显示面板中通过打孔技术来放置摄像头等功能器件,这种技术被称为AA Hole(Active Area Hole)技术。
如图26A和图26B所示,触控面板100'一般包括均匀分布的多个触控电极(包括第一触控电极11'和第二触控电极21'),相邻的不同触控电极之间(即第一触控电极11'和第二触控电极21'之间)能够产生互容,这些触控电极在被触摸后互容值会发生变化,从而通过侦测互容值,确定互容值的变化量可进行触摸位置的判断。
本公开的发明人发现,在集成了触控结构的OLED显示面板内部打孔(如图26A和图26B所示的安装孔H')的技术方案会破坏OLED显示面板中打孔位置处触控结构的触控电极的完整性,尤其是在OLED显示面板中设置两个安装孔H'的情况下,两个安装孔H'之间的距离M'范围是900μm~1200 μm,示例性地,两个安装孔H'之间的距离M'范围是1000μm~1100μm,例如距离M'是1000μm、1050μm、1071μm、1071.8μm、1072μm、1090μm或1100μm。因为两个安装孔H'之间的距离M'较近,所以这两个安装孔H'之间的间隙区域G'处的触控电极的完整性得不到保证,使得位于间隙区域G'处的触控电极的轮廓周长小于正常区域的触控电极轮廓周长,进而导致位于间隙区域G'处的触控电极的正对面积小于正常区域的触控电极的正对面积,使得位于间隙区域G'处的触控电极与正常区域的触控电极在被触摸后的所能产生互容值有较大差异。当手指在触控面板100'上划线经过这两个安装孔H'之间的间隙区域G'时,由于间隙区域G'的触控电极的互容值较小,划线的线条可能会在间隙区域G'出现抖动,例如弯曲,甚至断线,就造成了触控面板100'划线的线性度不好。
基于此,如图1所示,本公开的一些实施例提供一种触控面板100。触控面板100具有触控区域T;触控面板100还可具有位于触控区域T周边的边框区域B。
触控面板100可与显示面板叠加形成触控显示装置,显示面板中可设置安装孔来设置摄像头等功能器件。在此情况下,触控面板100的触控区域T与显示面板中的显示区域AA(又称有效显示区,英文名称为Active Area)相重叠,触控区域T具有至少两个安装孔H,该至少两个安装孔H对应于显示面板中用于设置摄像头等功能器件的安装孔。
在本文的描述中,上述至少两个安装孔H中的相邻两个安装孔H之间的区域可称为间隙区域G(可参考图1中所示出的两个安装孔H之间的点状填充的区域)。在安装孔H周边的区域可称为孔边区域KB(如图1中所示出的安装孔H1和安装孔H2周边网格填充的区域),需要注意的是,本文中所述的孔边区域KB不包括位于安装孔H周边且属于间隙区域G的区域,而是包括位于安装孔H周边且不属于间隙区域G的区域。触控区域T中,除上述间隙区域G和孔边区域KB以外的区域可称为正常区域C。
在一些实施例中,如图1所示,位于间隙区域G两侧的相邻两个安装孔H之间的距离M范围为900μm~1200μm;即间隙区域G沿第一方向X(即相邻两个安装孔H的排列方向)的尺寸范围为900μm~1200μm。
示例性地,位于间隙区域G两侧的相邻两个安装孔H之间的距离M范围为1000μm~1100μm,例如距离M为1000μm、1050μm、1071μm、1071.8μm、1072μm、1090μm或1100μm。
需要说明的是,图1中仅以触控区域T设置有两个安装孔H为例进行示意,然而本公开实施例中触控区域T中所设置的安装孔数量可以是三个或三个以上,其可以视具体情况进行设置。
图1中示出的安装孔H的设置位置、大小及形状仅作为示意,本领域技术人员应当明白,本公开实施例中安装孔H具体设置的位置、大小及形状并不仅限于此,其可以依据摄像头等功能器件设置的位置、大小及形状进行相应调整。
图1中示出的触控区域T以及边框区域B的相对大小仅作为示意,并不对此做具体限定。在一些实施例中,当触控面板100应用于全面屏显示装置中时,触控面板100也可以不设置边框区域B。
在一些实施例中,请参考图2和图3,图2示出了图1中触控面板100的正常区域C的局部区域C'中触控电极的俯视结构,图3示出了图2中触控面板100沿截面线AA'的截面结构。触控面板100包括衬底基板1,以及设置在衬底基板1上的触控功能层2。
如图2所示,触控功能层2包括沿第一方向X延伸的多个第一触控单元10和沿第二方向Y延伸的多个第二触控单元20,每个第一触控单元10包括多个沿第一方向X排列且相互串接的第一触控电极11,每个第二触控单元20包括多个沿第二方向Y排列且相互串接的第二触控电极21。沿第一方向X,每相邻两个第一触控电极11之间直接电连接。每个第二触控单元20还包括多个桥接结构(例如,图2示出的第一桥接结构21A),沿第二方向Y,每相邻两个第二触控电极21之间通过一个桥接结构电连接,以使第一触控电极11与第二触控电极21相互绝缘。
其中,第一方向X与第二方向Y交叉设置,例如第一方向X与第二方向Y可以相互垂直。例如,第一方向X可以是触控显示装置的横向方向,第二方向Y可以是触控显示装置的纵向方向;或者,第一方向X可以是触控显示装置的像素排列的行方向,第二方向Y可以是触控显示装置的像素排列的列方向。
需要说明的是,本公开的多个附图中仅以第一方向X为横向方向,第二方向Y为纵向方向为例进行示意,在本公开中,通过将附图进行90度旋转所得到的技术方案亦在本公开的保护范围之内。
图2中示出的第一触控电极11和第二触控电极21的形状为菱形或大致为菱形。其中,“大致为菱形”是指,触控电极(即第一触控电极11和第二触 控电极21)的形状整体上呈菱形形状,但是并不局限为标准的菱形,例如触控电极的边界允许是非直线形的(例如锯齿形),又如在后面的实施例中,所涉及的触控电极的形状整体呈菱形,但是其边界呈锯齿形。
并且,本公开实施例中第一触控电极11和第二触控电极21的电极图案形状不限于菱形或大致的菱形,例如还可以为矩形、长条形等。
图10示出了图1中的触控面板100的间隙区域G和孔边区域KB的局部放大结构,经过间隙区域G的第一触控单元10中,位于间隙区域G内的第一触控电极11形成沿第一方向X排列且相互电连接的第一间隙电极111和第二间隙电极112;经过间隙区域G的第二触控单元20中,位于间隙区域G内的第二触控电极21形成沿第二方向Y排列且相互电连接的第三间隙电极211和第四间隙电极212。其中,沿第一方向X,第三间隙电极211位于第一间隙电极111与第二间隙电极112之间,这样,第三间隙电极211的两侧与第一间隙电极111和第二间隙电极112相对,从而均可产生互容。
相较于图26A和图26B示出的电极布置结构,本公开上述实施例提供的触控面板100中,在两个安装孔H之间的距离S不变的情况下,通过间隙区域G设置有第一间隙电极111、第二间隙电极112、第三间隙电极211和第四间隙电极212,沿第一方向X,第三间隙电极211位于第一间隙电极111与第二间隙电极112之间,使得在间隙区域G内第三间隙电极211的两侧与第一间隙电极111和第二间隙电极112相对,增加了该区域内第一触控电极11和第二触控电极21的轮廓周长,从而增加了第一触控电极11和第二触控电极21之间的正对面积。
可见,通过在间隙区域G内采用上面所述的电极布置结构,增加了该区域内第一触控电极11和第二触控电极21的轮廓周长,从而第一触控电极11和第二触控电极21之间的正对面积,进而增大了第一触控电极11和第二触控电极21之间互容值,改善了触控面板100在间隙区域G出现的划线的线性度差的问题。
相较于图26A和图26B所示的电极布置结构,第一触控电极11和第二触控电极21的轮廓周长增加32%~36%,例如增加32%、33%、34%、35%或36%。
在间隙区域G'内,第一触控电极11'和第二触控电极21'之间的正对面积为S',本公开的上述电极布置结构中,在间隙区域G内,第一间隙电极111和第二间隙电极112,与第三间隙电极211和第四间隙电极212之间的正对面积,即第一触控电极11和第二触控电极21之间的正对面积S,有S大于S',且S与S'的比值范围为1.1~1.5,例如可为1.1、1.2、1.3、1.4或 1.5。
在间隙区域G'内,第一触控电极11'与第二触控电极21'之间的互容值,与位于非间隙区域内的第一触控电极11'与第二触控电极21'之间的互容值的比值范围为0.35~0.4。本公开的上述电极布置结构中,第一间隙电极111和第二间隙电极112,与,第三间隙电极211和第四间隙电极212之间的互容值为C1。位于非间隙区域内的第一触控电极11与第二触控电极21之间的互容值为C2,且C1与C2的比值范围为0.75~0.8,例如为0.75、0.76、0.77、0.79或0.8。可见,相较于图26A和图26B所示的电极布置结构,本公开的上述电极布置结构,位于间隙区域内的第一触控电极11和第二触控电极21之间互容值增大,且更接近于非间隙区域内的第一触控电极11与第二触控电极21之间的互容值,从而改善了触控面板100在间隙区域G出现的划线的线性度差的问题。
在一些实施例中,第三间隙电极211与第四间隙电极212的面积之和,与,第一间隙电极111与第二间隙电极112的面积之和的比例范围为1.2~1.4,例如可为1.2、1.24、1.3、1.36或1.4。
通过调整第一间隙电极111与第二间隙电极112的面积之和,与,第三间隙电极211与第四间隙电极212的面积之和的比例关系,使得相对于相关技术,间隙区域G中的第一触控电极11的面积增加,第二触控电极21的面积减小,达到第一间隙电极111和第二间隙电极112的面积之和,与,第三间隙电极211和第四间隙电极212的面积之和之间的差异缩小的效果,这样有利于增大间隙区域G中的第一触控电极11和第二触控电极21的正对面积。
示例性地,如图10所示,第一间隙电极111与第二间隙电极112的面积之和,与,第三间隙电极211与第四间隙电极212的面积之和的比例为1.2。即第一间隙电极111和第二间隙电极112的面积之和,接近于,第三间隙电极211和第四间隙电极212的面积之和。
通过使得第一间隙电极111和第二间隙电极112的面积之和,接近于,第三间隙电极211和第四间隙电极212的面积之和的效果,从而使得在间隙区域G内第一触控电极11和第二触控电极21的面积大小相接近,这样有利于进一步增大第一触控电极11和第二触控电极21的正对面积。
在一些实施例中,非间隙区域内的第二触控电极21与第一触控电极11的面积的比值范围为0.9~1,例如0.9、0.92、0.95、0.98或1。即,在非间隙区域内,第二触控电极21与第一触控电极11的面积大小相接近,或近似相等,或相等。
在一些实施例中,如图10所示,位于间隙区域G两侧的相邻两个安装孔H分别为第一安装孔H1和第二安装孔H2,第一安装孔H1和第二安装孔H2沿第一方向X排列。第一间隙电极111与第一安装孔H1靠近间隙区域G的一侧相邻,第二间隙电极112与第二安装孔H2靠近间隙区域G的一侧相邻。
在一些实施例中,如图10所示,第一间隙电极111与第二间隙电极112电连接形成一个整体的电极,第三间隙电极211嵌入第一间隙电极111和第二间隙电极112电连接所形成的电极的整体的内部,可进一步增加间隙区域G内第一触控电极11和第二触控电极21的轮廓周长,从而增加第一触控电极11和第二触控电极21之间的正对面积。
在一些实施例中,如图10所示,第三间隙电极211与第一间隙电极111的相互靠近的轮廓形状互补,且第三间隙电极211与第二间隙电极212的相互靠近的轮廓形状互补,可进一步提高第一间隙电极111和第二间隙电极112,与,第三间隙电极211和第四间隙电极212之间的正对面积,从而提高第一触控电极11和第二触控电极21之间的正对面积,进而增大了第一触控电极11和第二触控电极21之间互容值。例如,相较相关技术,本公开中互容值可提高60%~170%,例如提高60%、80%、100%、115%、130%、160%或170%。
在一些实施例中,第一间隙电极111和/或第二间隙电极112的轮廓,与位于非间隙区域内的第一触控电极11的轮廓至少部分不相同。
示例性地,图10中示出了第一间隙电极111和第二间隙电极112的轮廓,均与位于非间隙区域内的第一触控电极11的轮廓至少部分不相同。例如,第一间隙电极111和第二间隙电极112的轮廓均具有波浪状和矩形等形状的凸起,而位于非间隙区域内的第一触控电极11的轮廓具有台阶状的凸起。
在一些实施例中,如图10所示,第一间隙电极111沿第二方向Y的平均尺寸,沿着第一方向X逐渐减小;和/或第二间隙电极112沿第二方向Y的平均尺寸,沿着与第一方向X相反的方向逐渐减小。
在一些实施例中,第三间隙电极211和/或第四间隙电极212的轮廓,与位于非间隙区域内的第二触控电极21的轮廓至少部分不相同。
示例性地,图10中示出了第三间隙电极211和第四间隙电极212的轮廓,均与位于非间隙区域内的第二触控电极21的轮廓至少部分不相同。例如,第三间隙电极211的轮廓具有多种形状的凸起,多种形状的凸起包括波浪形的凸起、矩形的凸起、梯形的凸起以及三角形的凸起中的至少两种;第四间隙电极212的轮廓具有波浪状和矩形等形状的凸起,而位于非间隙区域内的第二触控电极21的轮廓具有台阶状的凸起。
示例性地,第三间隙电极211的轮廓的凸起的高度范围为280μm~400μm,例如高度为280μm、300μm、320μm、350μm、360μm或390μm、400μm;第三间隙电极211的轮廓的凸起的宽度范围为260μm~300μm,例如宽度为260μm、270μm、280μm、290μm或300μm。
在一些实施例中,如图13A所示,第三间隙电极211包括连通成一整体的第一部211A、第二部211B和第三部211C,沿第二方向Y,且由第三间隙电极211指向第四间隙电极212的方向,第一部211A、第二部211B和第三部211C依次布置。第一部211A和第三部211C的沿第一方向X的平均尺寸,均小于第二部211B的沿第一方向X的平均尺寸。
即沿第二方向Y,且由第三间隙电极211指向第四间隙电极212的方向,第三间隙电极211的沿第一方向X的尺寸整体呈由小变大再变小的趋势,其中尺寸由小变大有利于增大第三间隙电极211的轮廓周长,尺寸由大再变小有利于与第四间隙电极212进行桥接。
示例性地,如图13B所示,第一部211A的靠近第一间隙电极111的轮廓和靠近第二间隙电极112的轮廓均具有波浪形的凸起。其中,波浪形的凸起包括多个三角形的凸起,例如,多个三角形的凸起包括:沿第二方向Y,且由第三间隙电极211指向第四间隙电极212的方向依次排列的第一凸起211A1、第二凸起211A2和第三凸起211A3。多个三角形的凸起沿第一方向X的高度范围为89.3μm~91.2μm,例如89.3μm、90.7μm、91.0μm或91.2μm等;多个三角形的凸起沿第二方向Y的底边的长度范围为180.0μm~206.9μm,例如180.0μm、192.0μm、200.7μm、202.8μm或206.9μm等。
在一些实施例中,如图10所示,第四间隙电极212沿第一方向X的平均尺寸,沿着第二方向Y先减小后增大。
在一些实施例中,如图11A和图11B所示,第三间隙电极211和第四间隙电极212中的至少一者的边缘具有至少一个分支S,所述边缘靠近第一间隙电极11和第二间隙电极112中的至少一者,所述至少一个分支S伸入其所在的边缘所靠近的间隙电极内,即分支S伸入第一间隙电极111和/或第二间隙电极112内。
通过上述设置方式,可使第一间隙电极111、第二间隙电极112、第三间隙电极211和第四间隙电极212之间的正对面积提高,使得间隙区域G中第一触控电极11和第二触控电极21之间的互容值进一步增大,进一步改善了触控面板100在间隙区域G出现的划线的线性度差的问题。
示例性地,第三间隙电极211靠近第一间隙电极111的边缘设置有至少 一个分支S,该至少一个分支S伸入第一间隙电极111内部。如图11A所示,第三间隙电极211靠近第一间隙电极111的边缘设置有一个分支S;在其他的实施例中,第三间隙电极211靠近第一间隙电极111的边缘也可设置两个或两个以上分支S。
示例性地,第三间隙电极211靠近第二间隙电极112的边缘设置有至少一个分支S,该至少一个分支S伸入第二间隙电极112内部。如图11A所示,第三间隙电极211靠近第二间隙电极112的边缘设置有一个分支S;在其他的实施例中,第三间隙电极211靠近第二间隙电极112的边缘也可设置两个或两个以上分支S。
第三间隙电极211靠近第一间隙电极111的边缘和第三间隙电极211靠近第二间隙电极112的边缘可以均设置分支S,也可以只有其中一者设置分支S。
如图11A所示,在第三间隙电极211靠近第一间隙电极111和第二间隙电极112的边缘均设置有至少一个分支S的情况下,第三间隙电极211靠近第一间隙电极111的边缘和第三间隙电极211靠近第二间隙电极112的边缘所设置的分支S的数量可相等;并且,进一步的,这些分支S可以相对于第三间隙电极211沿第二方向Y的平分线对称设置,有利于提高触摸位置检测的准确度。
如图11B所示,第四间隙电极212靠近第一间隙电极111的边缘设置有一个分支S,该分支S伸入第一间隙电极111内部;第四间隙电极212靠近第二间隙电极112的边缘设置有一个分支S,该分支S伸入第二间隙电极112内部。
示例性地,第四间隙电极212靠近第一间隙电极111的边缘设置有至少一个分支S,该至少一个分支S伸入第一间隙电极111内部。如图11B所示,第四间隙电极212靠近第一间隙电极111的边缘设置有一个分支S;在其他的实施例中,第四间隙电极212靠近第一间隙电极111的边缘也可设置两个或两个以上分支S。
示例性地,第四间隙电极212靠近第二间隙电极112的边缘设置有至少一个分支S,该至少一个分支S伸入第二间隙电极112内部。如图11B所示,第四间隙电极212靠近第二间隙电极112的边缘设置有一个分支S;在其他的实施例中,第四间隙电极212靠近第二间隙电极112的边缘也可设置两个或两个以上分支S。
第四间隙电极212靠近第一间隙电极111的边缘和第三间隙电极211靠 近第二间隙电极112的边缘可以均设置分支S,也可以只有其中一者设置分支S。
如图11B所示,在第四间隙电极212靠近第一间隙电极111和第二间隙电极112的边缘均设置有至少一个分支S的情况下,在第四间隙电极212靠近第一间隙电极111的边缘和第四间隙电极212靠近第二间隙电极112的边缘所设置的分支S的数量可相等;并且,进一步的,这些分支S可以相对于第四间隙电极212沿第二方向Y的平分线对称设置,有利于提高触摸位置检测的准确度。
在一些实施例中,如图11A和图11B所示,第三间隙电极211和第四间隙电极212中设置的分支S的边缘可呈折线状。折线状的分支S能够进一步增加相邻间隙电极之间的正对面积,使得间隙区域G中第一触控电极11和第二触控电极21之间的互容值进一步增大,提高触控面板100的间隙区域G内划线的线性度。
需要说明的是,图11A和图11B中示出的第三间隙电极211和第四间隙电极212的分支S的形状和位置仅作为示意,本文并不对分支S的形状和位置做具体限定,分支S可以设置在第三间隙电极211和第四间隙电极212靠近第一间隙电极111和第二间隙电极112的边缘的任意位置,只要能够使得相邻的间隙电极之间的正对面积增加即可。
在一些实施例中,在触控面板100中,触控电极采用金属网格结构,相比于采用ITO(Indium Tin Oxide,氧化铟锡)形成面状电极作为触控电极,金属网格结构的触控电极的电阻小、灵敏度较高,能够提高触控面板100的触控灵敏度。且采用金属网格结构的触控电极、机械强度高,能减小触控面板100的重量,在触控面板100应用于显示装置中时,能够实现显示装置的轻薄化。
需要说明的是,上述金属网格结构的触控电极包括,触控面板100中的各第一触控电极11和各第二触控电极21。其中,第一触控电极11包括,正常区域C中的第一触控电极11,间隙区域G中用于形成第一间隙电极111和第二间隙电极112的第一触控电极11,以及孔边区域KB中用于形成孔边电极的第一触控电极11。第二触控电极21包括,正常区域C中的第二触控电极21,间隙区域G中用于形成第三间隙电极211和第四间隙电极212的第二触控电极21,以及孔边区域KB中用于形成孔边电极的第二触控电极21。
在一些实施例中,如图12所示,第一触控电极11和第二触控电极21采用金属网格结构。第一触控电极11和第二触控电极21的金属网格WD设置 于触控电极层2A中,第一触控电极11的金属网格WD与第二触控电极21的金属网格WD断开,从而使得第一触控电极11和第二触控电极21相互绝缘。
需要说明的是,图12中金属网格WD做不同的图案填充,是为了区分不同的触控电极,第一触控电极11和第二触控电极21的金属网格WD可以采用相同材料,采用相同的工艺制程形成。
如图13A所示,在间隙区域G中,第一间隙电极111、第二间隙电极112、第三间隙电极211和第四间隙电极212采用金属网格结构。在一些实施例中,可使位于间隙区域G的金属网格WD的线宽大于正常区域C中的金属网格WD的线宽,从而能够对位于间隙区域G中的第一触控电极11和第二触控电极21的电极面积进行补偿,增大间隙区域G中第一触控电极11和第二触控电极21中传输触控信号的电极的面积,使得第一触控电极11和第二触控电极21之间的互容值增大,从而能够进一步改善触控面板100在间隙区域G出现的划线的线性度差的问题。
需要说明的是,在位于间隙区域G的金属网格WD的线宽大于正常区域C中的金属网格WD的线宽的情况下,位于间隙区域G的金属网格WD的网孔的面积小于正常区域C中的金属网格WD的网孔的面积。
示例性地,正常区域C中的金属网格WD的线宽为2.8μm~4.2μm,例如为2.8μm、3.0μm、3.5μm、3.8μm、4.0μm或4.2μm。间隙区域G的金属网格WD的线宽为3.8μm~5.2μm,例如为3.8μm、4.0μm、4.5μm、4.8μm、5.0μm或5.2μm。
在一些实施例中,如图14B所示,经过第一安装孔H1和第二安装孔H2的各触控单元中,位于孔边区域KB的每个触控电极形成孔边电极K,由于孔边电极K的一部分在安装孔H的位置处缺失,因此单个孔边电极K的面积小于位于正常区域C的单个触控电极的面积。
需要说明的是,图14B中仅示出部分孔边电极K作为示意,应当理解的是,经过至少两个安装孔H的各触控单元中,位于孔边区域KB的每个触控电极形成孔边电极K,在安装孔H的周边分布有多个孔边电极K。在孔边区域KB中,由于孔边电极K的面积小于正常区域C中的触控电极的面积,所以孔边区域KB中的孔边电极K所能产生的互容值与正常区域C中的触控电极所能产生的互容值存在差异。当手指在触控面板100上划线经过该孔边区域KB时,划线的线条可能会出现抖动,例如弯曲,甚至断线,就造成了触控面板100划线的线性度不好。
基于此,在一些实施例中,在孔边区域KB中的孔边电极K的金属网格WD的线宽大于正常区域C中的触控电极的金属网格WD的线宽,从而能够对位于孔边区域KB中的孔边电极K的电极面积进行补偿,增大孔边区域KB中孔边电极K中传输触控信号的电极的面积,使得孔边区域KB中的孔边电极K所能产生的互容值增大,从而能够改善触控面板100在孔边区域KB出现的划线的线性度差的问题。
进一步的,可以使孔边区域KB中的金属网格WD的线宽等于间隙区域G中的金属网格WD的线宽。
在一些实施例中,在间隙区域G中,间隙电极(间隙电极包括第一间隙电极111、第二间隙电极112、第三间隙电极211以及第四间隙电极212)中靠近相应安装孔H的位置设置有补偿子电极,补偿子电极为面状电极,补偿子电极与间隙电极的其他部分电连接。需要说明的是,所谓“相应安装孔”指的是,间隙电极所最靠近的安装孔H。
通过设置补偿子电极能够增加间隙电极传输触控信号的电极面积,从而增加间隙区域G中间隙电极之间的互容值。
且补偿子电极在最靠近安装孔H设置,当触控面板100应用于显示装置中时,可以避免设置面状的补偿子电极阻挡光线而对显示效果造成影响。
示例性地,如图16所示,第一间隙电极111包括:第一主子电极111S以及靠近第一安装孔H1设置的第一补偿子电极MD1。其中,第一主子电极111S为金属网格结构,第一补偿子电极MD1为面状电极,第一主子电极111S与第一补偿子电极MD1电连接。
第二间隙电极112包括:第二主子电极112S,以及靠近第二安装孔H2设置的第二补偿子电极MD2。其中,第二主子电极112S为金属网格结构,第二补偿子电极MD2为面状电极,第二主子电极112S与第二补偿子电极MD2电连接。
需要说明的是,图16中仅示出第一间隙电极111和第二间隙电极112中均设置补偿子电极的情形,然而本公开实施例并不仅限于此。在其他一些实施例中,还可以是第一间隙电极111中设置补偿子电极,第二间隙电极112中不设置补偿子电极;也可以是第一间隙电极111中不设置补偿子电极,第二间隙电极112中设置补偿子电极。
第三间隙电极211和第四间隙电极212的面积之和,与,第一主子电极111S的金属网格的面积、第一补偿子电极MD1的面积、第二主子电极112S的金属网格的面积与第二补偿子电极MD2的面积之和的比例小于1.3,大于 或等于1,例如比例可为1、1.05、1.1、1.15或1.2。
通过第一主子电极111S与第一补偿子电极MD1电连接,第二主子电极112S与第二补偿子电极MD2电连接,进一步增加第一间隙电极111和第二间隙电极112的面积,缩小第一间隙电极111和第二间隙电极112的面积之和,与,第三间隙电极211和第四间隙电极212的面积之和之间的差值,有利于增大间隙区域G中的第一触控电极11和第二触控电极21的正对面积。
第一间隙电极111包括的第一主子电极111S的金属网格的面积与第一补偿子电极MD1的面状电极的面积之和,占位于正常区域C中的第一触控电极11的金属网格的面积的比例范围为65%~100%,例如为65%、70%、80%、90%或100%。
在第一间隙电极111包括第一主子电极111S和第一补偿子电极MD1的情况下,第一主子电极111S的金属网格的面积范围为8.0×10 6μm 2~1.0×10 7μm 2,例如为8.0×10 6μm 2、8.5×10 6μm 2、9.0×10 6μm 2、9.04×10 6μm 2或1.0×10 7μm 2;第一补偿子电极MD1的面状电极的面积范围为2.0×10 5μm 2~4.0×10 5μm 2,例如为2.0×10 5μm 2、2.5×10 5μm 2、3.0×10 5μm 2、3.8×10 5μm 2或4.0×10 5μm 2
在第二间隙电极112包括第二主子电极112S和第二补偿子电极MD2的情况下,第二间隙电极112包括的第二主子电极112S的金属网格的面积与第二补偿子电极MD2的面状电极的面积之和,占正常区域C中的第二触控电极21的金属网格的面积的比例范围为65%~100%,例如为65%、70%、80%、90%或100%。
在第二间隙电极112包括第二主子电极112S和第二补偿子电极MD2的情况下,第二主子电极112S的金属网格的面积范围为7.0×10 6μm 2~9.0×10 6μm 2,例如为7.0×10 6μm 2、7.76×10 6μm 2、8.0×10 6μm 2或9.0×10 6μm 2;第二补偿子电极MD2的面状电极的面积范围为2.0×10 5μm 2~3.0×10 5μm 2,例如为2.0×10 5μm 2、2.3×10 5μm 2、2.5×10 5μm2、2.8×10 5μm 2或3.0×10 5μm 2
需要说明的是,“第一主子电极111S的金属网格的面积”是指,第一主子电极111S的金属网格的轮廓所围成的区域的面积;同理,第二主子电极112S的金属网格的面积亦是如此。
在一些实施例中,位于孔边区域KB内的孔边电极K包括:主子电极,以及靠近相应安装孔H设置的补偿子电极。需要说明的是,所谓“相应安装孔”指的是,孔边电极K所最靠近的安装孔H。
孔边电极K的主子电极可以为金属网格结构,孔边电极K的补偿子电极可为面状电极,主子电极与补偿子电极电连接,从而能够对孔边电极K传输触控信号的电极面积进行补偿,能够增大孔边区域KB的孔边电极K之间的互容值,从而能够进一步提高孔边区域KB的触摸位置感测的精度,提高划线的线性度。
在触控面板100为长方形的情况下,由于长边和短边的长度存在差异,因此沿长边方向延伸的触控单元的电极面积大于沿短边方向延伸的触控单元的电极面积,这样会影响沿长边方向延伸的触控单元与沿短边方向延伸的触控单元的之间所产生的互容值,进而影响触摸位置感测的精度。
基于此,在一些实施例中,沿长边方向延伸的触控单元的触控电极中设置有与触控电极断开的虚设电极,虚设电极与触控电极不进行电连接,因此不传输触控信号,从而使得沿长边方向延伸的触控单元中用于传输信号的电极面积减小,这样就使得沿长边方向延伸的触控单元中用于传输信号的电极面积,与沿短边方向延伸的触控单元中用于传输信号的电极面积之间的差异缩小,甚至可以使二者相等或近似相等。从而可以避免触控面板100中不同延伸方向的触控单元中,用于传输信号的电极面积之间存在差异而影响不同触控单元之间的互容值的问题,进而提高触摸位置感测的精度。
示例性地,如图10、图12和图14B所示,在触控面板100为长方形,第一方向X为短边方向,第二方向Y为长边方向的情况下,沿第二方向Y延伸的第二触控电极21中设置有与用于传输信号的金属网格WD断开的虚设电极DM。虚设电极DM例如也可以采用金属网格结构,以保证应用触控面板100的显示装置的显示均一性。
在另一些实施例中,在触控面板100为长方形,第一方向X为长边方向,第二方向Y为短边方向的情况下,沿第一方向X延伸的第一触控电极11中设置有与用于传输信号的金属网格WD断开的虚设电极DM。
下面参照图14B介绍孔边区域KB和间隙区域G中触控电极的连接关系。
在一些实施例中,如图14B所示,沿第一方向X,经过第一安装孔H1和第二安装孔H2的第一触控单元10中,位于第一安装孔H1远离第二安装孔H2的一侧的第一触控电极11形成第五孔边电极113,位于第二安装孔H2远离第一安装孔H1的一侧的第一触控电极11形成第六孔边电极114。
经过第一安装孔H1的第二触控单元20中,位于第一安装孔H1沿第二方向Y的两侧的两个第二触控电极21分别形成第一孔边电极213和第二孔边 电极214。经过第二安装孔H2的第二触控单元20中,位于第二安装孔H2沿第二方向Y的两侧的两个第二触控电极21分别形成第三孔边电极215和第四孔边电极216。
在一些实施例中,如图14B所示,第一孔边电极213、第三间隙电极211、第四间隙电极212和第二孔边电极214依次电连接,从而能够使得沿第二方向Y延伸的第二触控单元20电连接。
其中,如图15所示,第一孔边电极213和第三间隙电极211之间可直接电连接,例如二者可形成为一体结构。
如图14B所示,第四间隙电极212和第二孔边电极214之间可直接电连接,例如二者可形成为一体结构。
如图14B和图17所示,第三孔边电极215和第四孔边电极216之间通过第一连接导线L1电连接,第一连接导线L1沿第二安装孔H2的轮廓延伸,从而能够使得沿第二方向Y延伸的第二触控单元20电连接。
如图14B和图18所示,第一间隙电极111和第五孔边电极113之间通过第二连接导线L2电连接,第二连接导线L2沿第一安装孔H1的轮廓延伸;如图14B和图17所示,第二间隙电极112和第六孔边电极114之间通过第三连接导线L3电连接,第三连接导线L3沿第二安装孔H2的轮廓延伸,从而能够使得沿第一方向X延伸的第一触控单元10电连接。
基于上述结构,第一连接导线L1和第三连接导线L3的设置位置存在交叉,从而,请再次参见图3,第一连接导线L1和第三连接导线L3至少在交叉位置处位于触控功能层2中的不同层,即在交叉位置处,第一连接导线L1和第三连接导线L3中的一者位于触控功能层2中的触控电极层2A,另一者位于触控功能层2中的桥接结构层2C,并且第一连接导线L1和第三连接导线L3在交叉位置处利用触控功能层2中的绝缘层2B隔开,以防止第一连接导线L1和第三连接导线L3上传输的触控信号发生串扰。
示例性地,第一连接导线L1设置于桥接结构层2C中,第一连接导线L1穿过绝缘层2B中不同过孔2BK分别与第三孔边电极215和第四孔边电极216电连接;第三连接导线L3设置于触控电极层2A中,第三连接导线L3直接与第六孔边电极114和第二间隙电极112电连接。
示例性地,第一连接导线L1设置于触控电极层2A中,第一连接导线L1直接与第三孔边电极215和第四孔边电极216电连接;第三连接导线L3设置于桥接结构层2C中,第三连接导线L3穿过绝缘层2B中不同过孔2BK分别与第六孔边电极114和第二间隙电极112电连接。
在一些实施例中,第二连接导线L2可以设置于触控电极层2A中或者设置在桥接结构层2C中。在第二连接导线L2设置于触控电极层2A中的情况下,第二连接导线L2直接与第五孔边电极113和第一间隙电极111电连接。在第二连接导线L2设置于桥接结构层2C中的情况下,第二连接导线L2穿过绝缘层2B中不同过孔2BK分别与第一间隙电极111和第五孔边电极113电连接。
第一孔边电极213、第三间隙电极211、第四间隙电极212和第二孔边电极214电连接形成的整体,与第三孔边电极215、第四孔边电极216和第一连接导线L1电连接形成的整体相互绝缘,从而使得它们各自所属的不同触控单元之间相互绝缘。
如图19所示,在间隙区域G中,第一间隙电极111与第二间隙电极112电连接,第三间隙电极211和第四间隙电极212电连接,在第一间隙电极111与第二间隙电极112电连接和第三间隙电极211和第四间隙电极212电连接的位置处存在交叉,由于第一间隙电极111与第二间隙电极112电连接形成的整体属于第一触控单元10,第三间隙电极211和第四间隙电极212电连接形成的整体属于第二触控单元20,第一触控单元10与第二触控单元20上所传输的信号不同,因此第一间隙电极111与第二间隙电极112电连接形成的整体,与第三间隙电极211和第四间隙电极212电连接形成的整体需要进行绝缘设置。
在一些实施例中,参见图14A,第三间隙电极211和第四间隙电极212之间通过位于间隙区域G内的一个桥接结构电连接。经过间隙区域G的第二触控单元20中,位于非间隙区域内的任一桥接结构(第一桥接结构21A)的中心D1与用于连接第三间隙电极211和第四间隙电极212的桥接结构(间隙桥接结构20A)的中心D2的连线F,与第二方向Y相交叉,使第三间隙电极211与第四间隙电极212电连接。
相较于图26A中的桥接结构21A'均沿第二方向Y'排布,本公开的上述实施例,经过间隙区域G的第二触控单元20中,位于非间隙区域内的任一桥接结构(第一桥接结构21A)的中心D1与用于连接第三间隙电极211和第四间隙电极212的桥接结构(间隙桥接结构20A)的中心D2的连线F,与第二方向Y相交叉,可实现第三间隙电极211与第四间隙电极212的电连接的同时,满足在间隙区域G内采用上面所述的电极布置结构的设计。
在一些实施例中,如图3所示,触控功能层2包括层叠设置于衬底基板1上的触控电极层2A、绝缘层2B和桥接结构层2C,绝缘层2B位于触控电极 层2A和桥接结构层2C之间,桥接结构层2C位于触控电极层2A靠近或远离衬底基板1的一侧。图3示出了桥接结构层2C位于触控电极层2A远离衬底基板1的一侧的情况。
如图4所示,第一触控电极11和第二触控电极21设置于触控电极层2A中,沿第一方向X,每相邻两个第一触控电极11之间直接电连接,沿第二方向Y,每相邻两个第二触控电极21相互独立设置。
如图3所示,绝缘层2B中具有多个过孔2BK。
如图5所示,每个第二触控单元20所包括的多个桥接结构(即第一桥接结构21A)设置于桥接结构层2C中。如图2和图3所示,沿第二方向Y,每相邻两个第二触控电极21穿过绝缘层2B中的不同过孔2BK,分别与一个第一桥接结构21A电连接,从而实现第二触控单元20所包括的各第二触控电极21沿第二方向Y电连接。
需要说明的是,图2~图5中仅以桥接结构层2C位于触控电极层2A远离衬底基板1的一侧为例进行示意,然而本公开实施例不限于此。在另一些实施例中,触控面板100的触控功能层2中,桥接结构层2C位于触控电极层2A靠近衬底基板1的一侧。
对于第一触控单元10中的任意两个第一触控电极11直接电连接,第二触控单元20中的任意两个第二触控电极21可通过一个第一桥接结构21A电连接的情况,如图5所示,每个第一桥接结构21A可以沿第二方向Y延伸,以便于连接其两侧的两个第二触控电极21。
在另一些实施例中,如图6~图9所示,触控面板100中,也可以是第二触控单元20中的任意相邻两个第二触控电极21直接电连接,第一触控单元10中的任意相邻两个第一触控电极11通过设置在桥接结构层2C'中的一个第二桥接结构11A电连接。
示例性地,如图7和图8所示,第一触控电极11和第二触控电极21设置于触控电极层2A'中,沿第二方向Y,每相邻两个第二触控电极21直接电连接;沿第一方向X,每相邻两个第一触控电极11之间相互独立设置。
如图7所示,绝缘层2B中具有多个过孔2BK。如图9所示,每个第一触控单元20所包括的多个桥接结构(第二桥接结构11A)设置于桥接结构层2C'中。如图6和图7所示,沿第一方向X,每相邻两个第一触控电极11穿过不同过孔2BK,分别与一个第二桥接结构11A电连接,从而实现第一触控单元10沿第一方向X电连接。
在上述实施例中,每个第二桥接结构11A可以沿第一方向X延伸,以便 于连接其两侧的两个第一触控电极11。
需要说明的是,图6~图9中仅以桥接结构层2C'位于触控电极层2A'靠近衬底基板1的一侧为例进行示意,然而本公开实施例不限于此。在另一些实施例中,触控面板100的触控功能层2中,桥接结构层2C'位于触控电极层2A'远离衬底基板1的一侧。
在本公开的上述各实施例中,通过使触控电极层中,第一触控电极11和第二触控电极21这两种触控电极中的一种触控电极之间直接电连接,另一种触控电极之间通过桥接结构和绝缘层2B中的过孔2BK所形成的跨桥结构电连接,在形成沿第一方向X和第二方向Y的多个触控单元的同时,保证了第一触控电极11与第二触控电极21保持相互绝缘。
需要说明的是,触控面板100的触控区域T中,图2~图9中仅示出了正常区域C的局部区域C'中触控电极的布置和连接结构,在正常区域C中,除局部区域C'以外的其他区域也采用和局部区域C'相同的触控电极的布置和连接结构。
图3和图7中示出的触控面板100的结构仅作为示意,在触控电极层相对于桥接结构层更靠近衬底基板1的情况下,触控电极层与衬底基板1之间还可以包括其他膜层,例如,绝缘层、平坦化层等;在桥接结构层相对于触控电极层更靠近衬底基板1的情况下,桥接结构层与衬底基板1之间还可以包括其他膜层,例如,绝缘层、平坦化层等,此处不进行详细介绍。
需要说明的是,触控面板100中的衬底基板1,可以是空白的基板。例如,在触控面板100采用On-Cell形式与显示面板集成的情况下,可以直接在一块空白的基板上制作触控功能层2以形成触控面板100,然后将触控面板100与显示面板贴合。
触控面板100中的衬底基板1,还可以是制作了一些功能器件、像素电路或者薄膜的基板。例如,在采用FMLOC技术在显示面板上集成触控结构的情况下,可以将触控功能层2直接制作在显示面板的封装层上,此时可以将制作了像素电路、发光器件的膜层以及封装层的基板的整体视作触控面板100的衬底基板1。
在一些实施例中,如图19和图20所示,第一间隙电极111与第二间隙电极112直接电连接,第三间隙电极211和第四间隙电极212通过绝缘层2B中开设的过孔2BK与设置在桥接结构层2C中的间隙桥接结构20A电连接,从而实现第三间隙电极211和第四间隙电极212的电连接。
在此基础上,示例性地,为了提高第三间隙电极211与间隙桥接结构20A 电连接的电导率,减少信号在间隙桥接结构20A与第三间隙电极211之间传输的损耗,可以在间隙桥接结构20A与第三间隙电极211电连接的位置处设置多个过孔2BK,以使间隙桥接结构20A与第三间隙电极211之间通过多个过孔2BK电连接,增大二者之间的接触面积,从而达到提高二者之间电连接的电导率的效果。
进一步的,用于电连接间隙桥接结构20A与第三间隙电极211的多个过孔2BK,可以排列成一排(图19和图20中示出了这种情况),或者排列成多排。
与上述实施例相类似的,为了提高第四间隙电极212与间隙桥接结构20A电连接的电导率,减少信号在间隙桥接结构20A与第四间隙电极212之间传输的损耗,可以在间隙桥接结构20A与第四间隙电极212电连接的位置处设置多个过孔2BK,以使间隙桥接结构20A与第四间隙电极212之间通过多个过孔2BK电连接,增大二者之间的接触面积,从而达到提高二者之间电连接的电导率的效果。
进一步的,用于电连接间隙桥接结构20A与第四间隙电极212的多个过孔2BK,可以排列成一排(图19和图20中示出了这种情况),或者排列成多排。
需要说明的是,图19和图20中以第一间隙电极111与第二间隙电极112直接电连接,第三间隙电极211和第四间隙电极212通过间隙桥接结构20A电连接为例进行示意,然而本公开实施例不限于此。在一些其他的实施例中,还可以是第三间隙电极211和第四间隙电极212直接电连接,第一间隙电极111与第二间隙电极112通过间隙桥接结构20A电连接。
应当理解的是,间隙桥接结构20A的形状可以根据需要进行任意设置。
在一些实施例中,如图19和图20所示,在第一间隙电极111和第二间隙电极112电连接形成的结构,与第三间隙电极211和第四间隙电极212电连接形成的结构的交叉位置处,间隙桥接结构20A在该交叉位置处设置有镂空部20A',用于直接电连接第一间隙电极111和第二间隙电极112的导电图案在衬底基板1上的正投影,与间隙桥接结构20A的镂空部20A'在衬底基板1上的正投影至少部分重叠。
在上述实施例中,镂空部20A'的设置,可以减小间隙桥接结构20A与第一间隙电极111和第二间隙电极112相连接的部分的重叠面积,从而可以减小间隙桥接结构20A与第一间隙电极111和第二间隙电极112相连接的部分产生的寄生电容。
图21示出了图14B中虚线框E2所示区域的局部放大结构,图22示出了图14B中虚线框E3所示区域的局部放大结构。在一些实施例中,如图21和图22所示,触控功能层2还包括:挡光部D、至少一条连接导线L、信号屏蔽部P和电极线X。
其中,挡光部D设置在安装孔H的边缘,沿着安装孔H的边缘延伸形成闭环结构,能够防止经过安装孔H的光线进入安装孔H周边的区域。由于在触控面板100余显示面板集成在一起的情况下,安装孔H周边的区域为需要进行图像显示的区域,因此挡光部D防止经过安装孔H的光线进入安装孔H周边的区域,可以避免这部分光线进入显示区域而影响显示品质。
示例性地,如图23A所示,挡光部D为单层的闭环结构,即挡光部D包括完整的一圈结构,其结构简单且便于制备。
示例性地,如图23B所示,挡光部D也可以为双层的闭环结构,即挡光部D包括完整的两圈结构,提高了挡光部D的遮挡面积,从而有利于提高挡光部D的遮光效果。
示例性地,如图23C所示,挡光部D还可以为单、双层交替的环状结构,在此情况下,挡光部D包括均为间断设置的内圈结构D1和外圈结构D2,沿安装孔H的边缘的方向,内圈结构D1和外圈结构D2交叠的部分形成双层结构,不交叠的部分形成单层结构。或者,内圈结构D1与外圈结构D2不交叠,在此情况下,如图23D所示,沿安装孔H的边缘的方向,挡光部D为单层的环状结构。
在一些实施例中,挡光部D的宽度范围为60μm~100μm,例如为60μm、68μm、80μm、90μm、92μm或100μm。
示例性地,在位于间隙区域G的金属网格WD的线宽为4μm的情况下,挡光部D的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为15~25,例如为15、17、20、23或25。
示例性地,在位于间隙区域G的金属网格WD的线宽为5μm的情况下,挡光部D的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为12~20,例如为12、13.6、16、18、18.4或20。
所述至少一条连接导线L设置于挡光部D远离安装孔H的一侧,沿着安装孔H的轮廓延伸。连接导线L用于电连接沿第一方向X排列的相邻两个第一触控电极11,或者电连接沿第二方向Y排列的相邻两个第二触控电极21。所述至少一条连接导线L包括上面所述的第一连接导线L1、第二连接导线L2以及第三连接导线L3中的至少一者。
图21中以在挡光部D远离第二安装孔H2的一侧设置一条连接导线L为例进行示意。图22中以在挡光部D远离第一安装孔H1的一侧设置三条连接导线L为例进行示意。
需要说明的是,图21和图22中示出了连接导线L包括第一连接导线L1、第二连接导线L2和第三连接导线L3的情形,第一连接导线L1、第二连接导线L2和第三连接导线L3在触控功能层2中的设置位置,以及其与触控电极实现电连接的方式可参见上面相应的实施例,此处不再赘述。
在一些实施例中,连接导线L的宽度范围为20μm~60μm,例如为20μm、30μm、40μm、50μm或60μm。
示例性地,在位于间隙区域G的金属网格WD的线宽为4μm的情况下,连接导线L的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为5~15,例如为5、7.5、10、12.5或15。
示例性地,在位于间隙区域G的金属网格WD的线宽为5μm的情况下,连接导线L的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为4~12,例如为4、6、8、9、10或12。
在一些实施例中,如图21和图22所示,在触控电极靠近安装孔H的边缘设置有电极线X,电极线X与触控电极电连接,沿安装孔H的轮廓延伸,电极线X为面状电极,其宽度可大于触控电极的金属网格的网格线的宽度。这样,在需要将触控电极与连接导线L电连接时,可以采用电极线X实现触控电极与连接导线L的电连接,这种连接方式相对于直接将金属网格结构的触控电极与连接导线L进行电连接的连接方式,能够提高触控电极与连接导线L之间的电导率,从而触控信号的传输速率。
电极线X可以与触控电极的材料相同且同层设置,这样电极线X可以与触控电极直接进行电连接。
在此基础上,在触控电极与其所要连接的连接导线L分别处于不同层的的情况下,通过设置电极线,使触控电极与电极线X直接电连接,电极线X通过过孔2BK与连接导线L电连接,可以实现触控电极与连接导线L之间的电连接。因此,相对于金属网格结构的触控电极通过过孔与连接导线L进行电连接,面状电极结构连接导线L通过过孔2BK与连接导线L进行电连接,可以提高触控电极所连接的电极线X与过孔2BK的对准精度,从而提高触控电极与连接导线L之间的电连接的电导率。
示例性地,如图21所示,在第二间隙电极112靠近第二安装孔H2的边缘设置有第一电极线X1,第一电极线X1与第二间隙电极112电连接,第一 电极线X1与第三连接导线L3通过绝缘层2B中开设的过孔2BK与桥接结构层2C中的桥接结构电连接,从而实现第二间隙电极112与第六孔边电极114电连接。第四孔边电极216靠近第二安装孔H2的边缘设置有第二电极线X2,第二电极线X2与第四孔边电极216电连接,第二电极线X2直接与第一连接导线L1电连接,从而可以实现第三孔边电极215和第四孔边电极216电连接。
示例性地,如图22所示,第五孔边电极113靠近第一安装孔H1的边缘设置有第三电极线X3,第三电极线X3与第五孔边电极113电连接,第三电极线X3直接与第二连接导线L2电连接,从而实现第五孔边电极113和第一间隙电极111电连接。
需要说明的是,图21和图22中电极线X与连接导线L的连接方式仅作为示意,二者电连接的方式可参见上述触控电极通过连接导线L实现电连接的实施例中的设置方式,触控电极与连接导线L电连接可视为与触控电极电连接的电极线X与连接导线电连接,因此此处不再赘述。
在一些实施例中,电极线X的宽度范围为20μm~60μm,例如为20μm、30μm、40μm、50μm或60μm。
示例性地,在位于间隙区域G的金属网格WD的线宽为4μm的情况下,电极线X的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为5~15,例如为5、7.5、10、12.5或15。
示例性地,在位于间隙区域G的金属网格WD的线宽为5μm的情况下,电极线X的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为4~12,例如为4、6、8、10或12。
在一些实施例中,触控功能层2还包括信号屏蔽部P,信号屏蔽部P设置于连接导线L与电极线X之间,或者设置于不同连接导线L之间;信号屏蔽部P沿安装孔H的轮廓延伸。信号屏蔽部P用于防止位于信号屏蔽部P两侧,传输不同的触控信号的连接导线L和电极线X之间或者不同连接导线之间发生串扰。需要说明的是,所谓“不同的触控信号”是指,TX信号和RX信号;其中,TX信号和RX信号中的一者在第一触控单元上传输,另一者在第二触控单元上传输)。
示例性地,信号屏蔽部P可以不与触控面板内的其他导电结构相连,或者可以接地,又或者接入一低电压信号,以实现屏蔽其两侧不同触控信号的作用。
示例性地,如图21所示,第一电极线X1与第一连接导线L1之间,以及第二电极线X2与第三连接导线L3之间,分别设置有第一屏蔽部P1,第一信 号屏蔽部P1能够防止第一电极线X1与第一连接导线L1,以及第二电极线X2与第三连接导线L3上分别传输的不同的触控信号的发生串扰。
示例性地,如图14B所示,第一安装孔H1的右上位置处的孔边电极K为第七孔边电极217,第一安装孔H1的左下位置处的孔边电极K为第八孔边电极218,第七孔边电极217和第八孔边电极218之间通过第四连接导线L4电连接。在此基础上,如图22所示,在第三电极线X3与第四连接导线L4之间,设置有第一信号屏蔽部P1,以防止第三电极线X3与第四连接导线L4上传输的触控信号发生串扰;第一信号屏蔽部P1与挡光部D之间设置有第四连接导线L4和第二连接导线L2两条连接导线,由于第四连接导线L4和第二连接导线L2上传输不同的触控信号,因此在第四连接导线L4和第二连接导线L2之间设置有第二信号屏蔽部P2,以防止第四连接导线L4和第二连接导线L2上传输的触控信号发生串扰。
在一些实施例中,信号屏蔽部P的宽度范围为10μm~50μm,例如为10μm、20μm、30μm、40μm或50μm。
示例性地,在位于间隙区域G的金属网格WD的线宽为4μm的情况下,信号屏蔽部P的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为2.5~12.5,例如为2.5、5、7.5、10或12.5。
示例性地,在位于间隙区域G的金属网格WD的线宽为5μm的情况下,信号屏蔽部P的宽度与位于间隙区域G的金属网格WD的线宽的比值范围为2~10,例如为2、4、6、8或10。
如图24和图25所示,本公开的一些实施例提供一种触控显示装置1000,触控显示装置1000可以为电致发光显示装置或光致发光显示装置。在触控显示装置1000为电致发光显示装置的情况下,电致发光显示装置可以为有机电致发光显示装置(Organic Light-Emitting Diode,简称OLED)或量子点电致发光显示装置(Quantum Dot Light Emitting Diodes,简称QLED)。在触控显示装置1000为光致发光显示装置的情况下,光致发光显示装置可以为量子点光致发光显示装置。
如图24和图25所示,在触控显示装置1000为电致发光显示装置的情况下,电致发光显示装置的主要结构包括依次设置的电致发光显示面板400、如上面一些实施例中所述的触控面板100、偏光片500、第一光学胶(Optically Clear Adhesive,简称OCA)600和盖板玻璃300。
其中,电致发光显示面板400包括显示用基板401和用于封装显示用基板401的封装层402。此处,封装层402可以为封装薄膜,也可以为封装基板。
在一些实施例中,如图23所示,触控面板100的触控功能层2直接设置在封装层402上,这样可以将电致发光显示面板400视作触控面板100的衬底基板1,这种结构有利于实现显示装置的轻薄化。
在另一些实施例中,如图25所示,触控面板100的触控功能层2设置在衬底基板1上,衬底基板1通过第二光学胶700贴附在封装层402上。衬底基板1的材料例如可以是聚对苯二甲酸乙二酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、环烯烃聚合物(Cyclo Olefin Polymer,简称COP)等。
如图24和图25所示,上述的显示用基板401的每个亚像素包括设置在衬底310上的发光器件和驱动电路,驱动电路包括多个薄膜晶体管111。发光器件包括阳极311、发光功能层312以及阴极313,阳极311和多个薄膜晶体管111中作为驱动晶体管的薄膜晶体管111的漏极电连接。
显示用基板401还包括像素界定层314,像素界定层314包括多个开口区,一个发光器件设置在一个开口区中。
在一些实施例中,发光功能层312包括发光层。在另一些实施例中,发光功能层312除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)以及空穴注入层(hole injection layer,简称HIL)中的一层或多层。
如图23所示,显示用基板401还包括设置在薄膜晶体管111和阳极311之间的平坦层315。
当触控显示装置1000为电致发光显示装置时,触控显示装置1000可以是顶发射型显示装置,在此情况下,靠近衬底310的阳极311呈不透明,远离衬底310的阴极313呈透明或半透明;触控显示装置1000也可以是底发射型显示装置,在此情况下,靠近衬底310的阳极311呈透明或半透明,远离衬底310的阴极313呈不透明;触控显示装置1000也可以为双面发光型显示装置,在此情况下,靠近衬底310的阳极311和远离衬底310的阴极313均呈透明或半透明。
上述触控显示装置1000所能实现的有益效果与上述实施例中的触控面板100所能达到的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的 保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种触控面板,具有触控区域;所述触控面板包括:
    衬底基板;
    设置在所述衬底基板上的触控功能层,所述触控功能层包括沿第一方向延伸的多个第一触控单元和沿第二方向延伸的多个第二触控单元;每个第一触控单元包括多个沿所述第一方向排列且相互串接的第一触控电极,每个第二触控单元包括多个沿所述第二方向排列且相互串接的第二触控电极;所述第一触控电极与所述第二触控电极相互绝缘;所述第一方向和所述第二方向相交叉;
    其中,所述衬底基板具有位于所述触控区域的至少两个安装孔,所述触控功能层在所述至少两个安装孔的位置处镂空;相邻两个安装孔之间具有间隙区域;经过所述间隙区域的第一触控单元中,位于所述间隙区域内的第一触控电极形成沿所述第一方向排列且相互电连接的第一间隙电极和第二间隙电极;经过所述间隙区域的第二触控单元中,位于所述间隙区域内的第二触控电极形成沿所述第二方向排列且相互电连接的第三间隙电极和第四间隙电极;沿所述第一方向,所述第三间隙电极位于所述第一间隙电极与所述第二间隙电极之间。
  2. 根据权利要求1所述的触控面板,其中,所述第一间隙电极和/或所述第二间隙电极的轮廓,与位于非所述间隙区域内的第一触控电极的轮廓至少部分不相同;
    所述第三间隙电极和/或所述第四间隙电极的轮廓,与位于非所述间隙区域内的第二触控电极的轮廓至少部分不相同;
    所述第三间隙电极嵌入所述第一间隙电极和所述第二间隙电极电连接所形成的电极的整体的内部。
  3. 根据权利要求1或2所述的触控面板,其中,所述第一间隙电极和所述第二间隙电极,与,所述第三间隙电极和所述第四间隙电极之间的互容值为C1;
    位于非所述间隙区域内的第一触控电极与第二触控电极之间的互容值为C2;
    C1与C2的比值范围为0.75~0.8。
  4. 根据权利要求1~3中任一项所述的触控面板,其中,位于所述间隙区域两侧的相邻两个安装孔之间的距离范围为900μm~1200μm。
  5. 根据权利要求1~4中任一项所述的触控面板,其中,所述第三间隙电极与所述第四间隙电极的面积之和,与,所述第一间隙电极与所述第二间隙 电极的面积之和的比例范围为1.2~1.4。
  6. 根据权利要求1-4中任一项所述的触控面板,其中,非间隙区域内的第二触控电极与第一触控电极的面积的比值范围为0.9~1。
  7. 根据权利要求1~6中任一项所述的触控面板,其中,所述第三间隙电极和所述第四间隙电极中的至少一者的边缘具有至少一个分支,所述边缘靠近所述第一间隙电极和所述第二间隙电极中的至少一者,所述至少一个分支伸入其所在的边缘所靠近的间隙电极内。
  8. 根据权利要求7所述的触控面板,其中,所述分支的边缘呈折线状。
  9. 根据权利要求1~8中任一项所述的触控面板,其中,所述第三间隙电极与所述第一间隙电极的相互靠近的轮廓形状互补,且所述第三间隙电极与所述第二间隙电极的相互靠近的轮廓形状互补。
  10. 根据权利要求9所述的触控面板,其中,所述第三间隙电极的轮廓具有多种形状的凸起,所述多种形状的凸起包括波浪形的凸起、矩形的凸起、梯形的凸起以及三角形的凸起中的至少两种;
    所述第三间隙电极包括连通成一整体的第一部、第二部和第三部,沿所述第二方向,且由所述第三间隙电极指向所述第四间隙电极的方向,所述第一部、所述第二部和所述第三部依次布置;
    所述第一部和所述第三部的沿所述第一方向的平均尺寸,均小于所述第二部的沿所述第一方向的平均尺寸。
  11. 根据权利要求10所述的触控面板,其中,所述第一部的靠近所述第一间隙电极的轮廓和靠近所述第二间隙电极的轮廓均具有所述波浪形的凸起。
  12. 根据权利要求1~11中任一项所述的触控面板,其中,位于所述间隙区域两侧的相邻两个安装孔分别为第一安装孔和第二安装孔,所述第一安装孔和所述第二安装孔沿所述第一方向排列;
    所述第一间隙电极与所述第一安装孔靠近所述间隙区域的一侧相邻,所述第二间隙电极与所述第二安装孔靠近所述间隙区域的一侧相邻;
    其中,所述触控区域中,所述第一安装孔和所述第二安装孔周边且非所述间隙区域的区域为孔边区域;所述触控区域中除所述间隙区域和所述孔边区域以外的区域为正常区域。
  13. 根据权利要求12所述的触控面板,其中,所述第一触控电极和所述第二触控电极包括金属网格结构;
    所述第一间隙电极、所述第二间隙电极、所述第三间隙电极和所述第四 间隙电极中的至少一者的金属网格的线宽大于位于所述正常区域的触控电极的金属网格的线宽。
  14. 根据权利要求13所述的触控面板,其中,所述第一间隙电极、所述第二间隙电极、所述第三间隙电极和所述第四间隙电极中的至少一者的金属网格的线宽的范围为3.8μm~5.2μm;位于所述正常区域的触控电极的金属网格的线宽的范围为2.8μm~4.2μm。
  15. 根据权利要求12~14中任一项所述的触控面板,其中,所述第一间隙电极包括:第一主子电极,以及靠近所述第一安装孔设置的第一补偿子电极;所述第一主子电极为金属网格结构,所述第一补偿子电极为面状电极,所述第一主子电极与所述第一补偿子电极电连接;和/或,
    所述第二间隙电极包括:第二主子电极,以及靠近所述第二安装孔设置的第二补偿子电极;所述第二主子电极为金属网格结构,所述第二补偿子电极为面状电极,所述第二主子电极与所述第二补偿子电极电连接。
  16. 根据权利要求15所述的触控面板,其中,第三间隙电极和第四间隙电极的面积之和,与,所述第一主子电极的金属网格的面积、所述第一补偿子电极的面积、所述第二主子电极的金属网格的面积与所述第二补偿子电极的面积之和的比例小于1.3,大于或等于1。
  17. 根据权利要求12~16中任一项所述的触控面板,其中,经过所述第一安装孔和所述第二安装孔的各触控单元中,位于所述孔边区域的每个触控电极形成孔边电极;
    所述孔边电极包括:主子电极,以及靠近相应安装孔设置的补偿子电极;所述主子电极为金属网格结构,所述补偿子电极为面状电极,所述主子电极与所述补偿子电极电连接。
  18. 根据权利要求12~17中任一项所述的触控面板,其中,经过所述第一安装孔的第二触控单元中,位于所述第一安装孔沿所述第二方向的两侧的两个第二触控电极分别形成第一孔边电极和第二孔边电极;所述第一孔边电极、所述第三间隙电极、所述第四间隙电极和所述第二孔边电极依次电连接;
    经过所述第二安装孔的第二触控单元中,位于所述第二安装孔沿所述第二方向的两侧的两个第二触控电极分别形成第三孔边电极和第四孔边电极;所述第三孔边电极和所述第四孔边电极之间通过第一连接导线电连接,所述第一连接导线沿所述第二安装孔的轮廓延伸;
    所述第一孔边电极、所述第三间隙电极、所述第四间隙电极和所述第二孔边电极电连接形成的整体,与所述第三孔边电极、所述第四孔边电极和所 述第一连接导线电连接形成的整体相互绝缘。
  19. 根据权利要求12~18中任一项所述的触控面板,其中,经过所述第一安装孔和所述第二安装孔的第一触控单元中,位于所述第一安装孔远离所述第二安装孔的一侧的第一触控电极形成第五孔边电极;位于所述第二安装孔远离所述第一安装孔的一侧的第一触控电极形成第六孔边电极;
    所述第五孔边电极与所述第一间隙电极之间通过第二连接导线电连接,所述第二连接导线沿所述第一安装孔的轮廓延伸;
    所述第六孔边电极与所述第二间隙电极之间通过第三连接导线电连接,所述第三连接导线沿所述第二安装孔的轮廓延伸。
  20. 根据权利要求1~19中任一项所述的触控面板,其中,每个所述第二触控单元还包括多个桥接结构,沿所述第二方向,每相邻两个所述第二触控电极之间通过一个桥接结构电连接;所述第三间隙电极和所述第四间隙电极之间通过位于所述间隙区域内的一个桥接结构电连接;经过所述间隙区域的第二触控单元中,位于非所述间隙区域内的任一桥接结构的中心与用于连接所述第三间隙电极和所述第四间隙电极的桥接结构的中心的连线,与所述第二方向相交叉。
  21. 根据权利要求20所述的触控面板,其中,所述触控功能层包括层叠设置于所述衬底基板上的触控电极层、绝缘层和桥接结构层;所述绝缘层位于所述触控电极层与所述桥接结构层之间,所述桥接结构层位于所述触控电极层靠近或远离所述衬底基板的一侧;
    所述第一触控电极和所述第二触控电极设置于所述触控电极层中;沿所述第一方向,每相邻两个所述第一触控电极之间直接电连接;沿所述第二方向,每相邻两个所述第二触控电极相互独立设置;
    所述绝缘层中具有多个过孔;
    每个所述第二触控单元所包括的多个桥接结构设置于所述桥接结构层中,沿所述第二方向,每相邻两个所述第二触控电极穿过不同过孔,分别与一个桥接结构电连接;
    用于连接所述第三间隙电极和所述第四间隙电极的桥接结构为间隙桥接结构,所述第三间隙电极和所述第四间隙电极穿过所述绝缘层中的不同过孔,分别与所述间隙桥接结构电连接。
  22. 根据权利要求21所述的触控面板,其中,所述间隙桥接结构具有镂空部;
    用于直接电连接所述第一间隙电极和所述第二间隙电极的导电图案在所 述衬底基板上的正投影,与所述间隙桥接结构的镂空部在所述衬底基板上的正投影至少部分重叠。
  23. 根据权利要求21或22所述的触控面板,其中,在所述触控电极层包括第三孔边电极、第四孔边电极、第五孔边电极和第六孔边电极,且所述第三孔边电极和所述第四孔边电极之间通过第一连接导线电连接,所述第五孔边电极与所述第一间隙电极之间通过第二连接导线电连接,所述第六孔边电极与所述第二间隙电极之间通过第三连接导线电连接的情况下,
    所述第一连接导线设置于所述桥接结构层中,所述第一连接导线穿过所述绝缘层中不同的过孔分别与所述第三孔边电极和所述第四孔边电极电连接;
    所述第二连接导线设置于所述触控电极层中,所述第二连接导线直接与所述第五孔边电极和所述第一间隙电极电连接;
    所述第三连接导线设置于所述触控电极层中,所述第三连接导线直接与所述第六孔边电极和所述第二间隙电极电连接。
  24. 根据权利要求1~23中任一项所述的触控面板,其中,所述触控功能层还包括:沿所述安装孔的径向且由所述安装孔的中心指向边缘的方向,依次设置在所述安装孔周边的挡光部、至少一条连接导线、第一信号屏蔽部和电极线;所述挡光部、所述连接导线、所述第一信号屏蔽部和所述电极线均沿所述安装孔的轮廓延伸;
    其中,所述挡光部沿着所述安装孔的边缘延伸形成闭环结构,所述挡光部被配置为阻挡经过所述安装孔的光线进入所述安装孔周边的区域;
    所述连接导线被配置为,电连接沿所述第一方向排列的相邻两个第一触控电极,或者电连接沿所述第二方向排列的相邻两个第二触控电极;
    所述电极线被配置为,电连接所述第一触控电极或者所述第二触控电极的靠近所述安装孔的边缘;
    所述第一信号屏蔽部至少设置于相邻的连接导线与电极线之间,所述第一信号屏蔽部被配置为防止所述相邻的连接导线与电极线上所传输的电信号发生串扰。
  25. 根据权利要求24所述的触控面板,其中,所述挡光部与所述第一信号屏蔽部之间设置有多条所述连接导线,相邻两条所述连接导线之间设置有第二信号屏蔽部;所述第二信号屏蔽部所述安装孔的轮廓延伸;
    所述第二信号屏蔽部被配置为,防止相邻两条所述连接导线上所传输的电信号发生串扰。
  26. 一种触控显示装置,包括如权利要求1~25中任一项所述的触控面板。
PCT/CN2020/123971 2020-10-27 2020-10-27 触控面板及触控显示装置 WO2022087820A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/123971 WO2022087820A1 (zh) 2020-10-27 2020-10-27 触控面板及触控显示装置
CN202080002511.0A CN114679912A (zh) 2020-10-27 2020-10-27 触控面板及触控显示装置
US17/617,401 US11947762B2 (en) 2020-10-27 2020-10-27 Touch panel and touch display apparatus
US18/585,315 US20240192819A1 (en) 2020-10-27 2024-02-23 Touch Panel and Touch Display Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123971 WO2022087820A1 (zh) 2020-10-27 2020-10-27 触控面板及触控显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/617,401 A-371-Of-International US11947762B2 (en) 2020-10-27 2020-10-27 Touch panel and touch display apparatus
US18/585,315 Continuation US20240192819A1 (en) 2020-10-27 2024-02-23 Touch Panel and Touch Display Apparatus

Publications (1)

Publication Number Publication Date
WO2022087820A1 true WO2022087820A1 (zh) 2022-05-05

Family

ID=81383440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123971 WO2022087820A1 (zh) 2020-10-27 2020-10-27 触控面板及触控显示装置

Country Status (3)

Country Link
US (2) US11947762B2 (zh)
CN (1) CN114679912A (zh)
WO (1) WO2022087820A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246419A1 (zh) * 2022-06-20 2023-12-28 京东方科技集团股份有限公司 显示面板及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240184411A1 (en) * 2021-09-09 2024-06-06 Chengdu Boe Optoelectronics Technology Co., Ltd. Touch Control Panel, Touch Control Display Panel, and Touch Control Display Apparatus
KR20230068546A (ko) * 2021-11-11 2023-05-18 엘지디스플레이 주식회사 표시 장치
CN115421618B (zh) * 2022-11-04 2023-03-10 惠科股份有限公司 触控膜层和触控显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634471A (zh) * 2018-12-17 2019-04-16 厦门天马微电子有限公司 一种触控显示面板及触控显示装置
US10503293B2 (en) * 2015-12-23 2019-12-10 Samsung Display Co., Ltd. Display device
CN110750177A (zh) * 2019-10-29 2020-02-04 武汉天马微电子有限公司 触控显示面板及触控显示装置
CN110837314A (zh) * 2019-10-11 2020-02-25 武汉华星光电半导体显示技术有限公司 触控感应装置及触控显示面板
CN111488086A (zh) * 2020-04-08 2020-08-04 合肥鑫晟光电科技有限公司 一种触控显示装置及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538288B1 (en) * 2008-03-31 2009-05-26 Mildex Optical Inc. Touch panel
TWI529585B (zh) * 2014-10-17 2016-04-11 晨星半導體股份有限公司 內嵌式觸控顯示面板
CN105204683A (zh) * 2015-09-18 2015-12-30 京东方科技集团股份有限公司 触控基板及其制作方法和显示装置
KR102598230B1 (ko) 2018-08-13 2023-11-03 삼성디스플레이 주식회사 표시 장치
KR102602670B1 (ko) 2018-10-05 2023-11-17 삼성디스플레이 주식회사 입력 감지 유닛을 포함하는 표시 장치
KR102582641B1 (ko) 2018-11-30 2023-09-26 삼성디스플레이 주식회사 전자 패널 및 이를 포함하는 전자 장치
CN111625112A (zh) * 2019-02-28 2020-09-04 松下液晶显示器株式会社 内嵌式触控面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10503293B2 (en) * 2015-12-23 2019-12-10 Samsung Display Co., Ltd. Display device
CN109634471A (zh) * 2018-12-17 2019-04-16 厦门天马微电子有限公司 一种触控显示面板及触控显示装置
CN110837314A (zh) * 2019-10-11 2020-02-25 武汉华星光电半导体显示技术有限公司 触控感应装置及触控显示面板
CN110750177A (zh) * 2019-10-29 2020-02-04 武汉天马微电子有限公司 触控显示面板及触控显示装置
CN111488086A (zh) * 2020-04-08 2020-08-04 合肥鑫晟光电科技有限公司 一种触控显示装置及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246419A1 (zh) * 2022-06-20 2023-12-28 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN114679912A (zh) 2022-06-28
US20240192819A1 (en) 2024-06-13
US20220308702A1 (en) 2022-09-29
US11947762B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2022087820A1 (zh) 触控面板及触控显示装置
US11086439B2 (en) Display panel with metal mesh units and display apparatus
US10761660B2 (en) Touch display device having touch display panel capable of preventing short circuit of adjacent tough lines
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
US9977272B2 (en) In-cell touch display panel structure using conductive wires to connect with sensing electrodes
US10845933B2 (en) Display device including touch electrode and method for manufacturing the same
JP2022512355A (ja) 透明な表示パネル、ディスプレイ及びマスク板
WO2018032996A1 (zh) 内嵌式透明触控显示面板及其制造方法、驱动方法
WO2020029372A1 (zh) 一种触摸屏及oled显示面板
TWI780362B (zh) 觸控面板及觸控顯示裝置
WO2016045252A1 (zh) 触摸屏及其制造方法、触摸显示装置
US20160077628A1 (en) Touch screen, method for producing touch screen, touch display device
US20220357816A1 (en) Touch structure, touch display structure, and touch display device
US20240012523A1 (en) Self-capacitance touch panel and touch display panel
WO2022227461A1 (zh) 显示面板及其制作方法和显示装置
US20210397305A1 (en) Transparent touch display device
WO2022062879A1 (zh) 触控基板及显示面板
US20210072853A1 (en) Touch display panel and manufacturing method thereof
US20170102818A1 (en) Touch panel
CN113467650B (zh) 触控显示面板及显示装置
WO2022047704A1 (zh) 触控面板及触控显示装置
US20240019952A1 (en) Display substrate and touch-control display device
US20200174605A1 (en) Display panel
US11520435B2 (en) Touch structure and display apparatus
US20230168757A1 (en) Touch Panel and Preparation Method thereof, and Display Touch Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20958985

Country of ref document: EP

Kind code of ref document: A1