WO2023030171A1 - 一种高性能铁基中熵合金及其热处理方法和应用 - Google Patents

一种高性能铁基中熵合金及其热处理方法和应用 Download PDF

Info

Publication number
WO2023030171A1
WO2023030171A1 PCT/CN2022/114978 CN2022114978W WO2023030171A1 WO 2023030171 A1 WO2023030171 A1 WO 2023030171A1 CN 2022114978 W CN2022114978 W CN 2022114978W WO 2023030171 A1 WO2023030171 A1 WO 2023030171A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy alloy
based medium
medium
performance iron
iron
Prior art date
Application number
PCT/CN2022/114978
Other languages
English (en)
French (fr)
Inventor
王志军
王健斌
吴庆峰
刘海龙
李俊杰
王锦程
Original Assignee
西北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西北工业大学 filed Critical 西北工业大学
Publication of WO2023030171A1 publication Critical patent/WO2023030171A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the invention relates to the technical field of metal materials, in particular to a high-performance iron-based medium-entropy alloy and its heat treatment method and application.
  • High-performance alloys play an irreplaceable role in both civil and national defense industries.
  • the strength and plasticity of an alloy are the main manifestations of its mechanical properties, so improving the strength and plasticity is an important goal of alloy design.
  • Medium-entropy alloys are a new type of structural material with a variety of elements as the matrix, which has a broad composition design space. Due to their outstanding mechanical properties such as high strength, high hardness, high wear resistance, and high corrosion resistance, medium-entropy alloys have shown broad prospects in theoretical research and industrial applications. Iron-based medium-entropy alloys that do not contain Co have relatively low cost and therefore have great application prospects.
  • the existing various nickel-iron-based medium-entropy alloys lack systematic exploration of the composition of the alloy, lack of effective regulation of the properties of the alloy, and cannot provide practical guidance for its practical application.
  • the existing high-entropy alloys mainly balance the strong plasticity of the alloy by adjusting the composition to form a dual-phase structure of FCC+BCC, and focus on the performance of the alloy in the as-cast state.
  • High-entropy alloys contain high content of expensive Co and Ni elements, and the application cost is high.
  • Iron-based medium-entropy alloys have a good balance between cost and performance.
  • changes in composition have a great impact on the mechanical properties of iron-based medium-entropy alloys, and there is a lack of systematic research.
  • the present invention provides a high-performance iron-based medium-entropy alloy and its heat treatment method and application.
  • the first object of the present invention is to provide a high-performance iron-based medium-entropy alloy, comprising the following molar percentage components:
  • the following molar percentages are included: Al: 15-17 at%, Cr: 10 at%, Fe: 36-49 at%, Ni: 26-36 at%.
  • mole percentage components are also included: Mo: 0-3 at%, W: 0-2 at%, Mn: 0-1 at%, Ti: 0-3 at%, C: 0-0.02 at%.
  • the second object of the present invention is to provide a heat treatment method for high-performance iron-based medium-entropy alloys, comprising the following steps:
  • the first heat-treated medium-entropy alloy ingot After applying a certain amount of deformation to the first heat-treated medium-entropy alloy ingot, it is kept at 1100-1250°C for 15-30 minutes, and then quenched to obtain a heat-treated high-performance iron-based medium-entropy alloy.
  • the amount of deformation is 20-40%.
  • the as-cast medium entropy alloy ingot is made according to the following steps:
  • the alloy components Al, Cr, Fe, Ni, Mo, W, Mn, Ti, C raw materials weighed according to the mole percentage of the elements are melted in a vacuum induction melting furnace or a vacuum arc. After the smelting is completed and completely cooled, an alloy ingot is obtained; then the alloy melt is cast into a mold to obtain a cast medium-entropy alloy ingot.
  • the temperature during smelting is 1500-1650°C.
  • the deformation is applied by cold rolling.
  • the quenching temperature is 1150-1250° C., and the temperature is kept for 15-120 minutes.
  • the high-performance iron-based medium-entropy alloy obtained in the present invention is used as a corrosion-resistant material in a corrosive environment.
  • the invention realizes the change of the phase composition of the as-cast alloy by adjusting the composition, and determines the effect of each alloy element on the phase selection by an orthogonal test method, and clarifies the phase selection rule of the iron-based medium entropy alloy for the first time.
  • Studies have shown that the increase of Al element content can increase the volume fraction of B2 phase, and the increase of Ni element content can increase the volume fraction of FCC phase.
  • the increase of Cr and Fe content can promote the formation of BCC phase. Using this law can realize the scientific guidance and performance prediction of alloy composition design.
  • the as-cast alloy has a very high yield strength, about 1.1GPa. After thermomechanical treatment, the strength of the alloy decreases, but the plasticity is greatly improved. Through the thermomechanical treatment method, the strong plasticity of the alloy is balanced, and combined with the design of the composition, iron-based medium-entropy alloy materials with different properties can be obtained.
  • the heat treatment process provided by the invention has low cost and simple process, and can further regulate and improve the properties of the iron-based medium entropy alloy.
  • Fig. 1 is the microstructure picture of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 1.
  • Fig. 2 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 1.
  • Example 3 is a microstructure picture of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 2.
  • Fig. 4 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 2.
  • Fig. 5 is a picture of the microstructure of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 3.
  • Fig. 6 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 3.
  • Fig. 7 is a picture of the microstructure of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 4.
  • Fig. 8 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 4.
  • Fig. 9 shows the surface XRD and interface secondary electron morphology of the high-performance iron-based medium-entropy alloy provided in Example 6 corroded in chloride molten salt for 10 days.
  • a high-performance iron-based medium-entropy alloy comprising the following components in molar percentages:
  • the Al, Cr, Fe and Ni raw materials used in the following examples are all industrial-grade pure raw materials with a purity of more than 99 wt%.
  • a high-performance iron-based medium-entropy alloy comprising the following components in molar percentages:
  • a heat treatment method for a high-performance iron-based medium-entropy alloy comprising the following steps:
  • Ultrasonic cleaning use the mechanical grinding method to remove the oxide scale on the surface of the Al, Cr, Fe, Ni alloy materials, then place them in different containers and add alcohol solution, ultrasonic cleaning, take out and dry the alcohol to obtain the ultrasonic treatment raw material;
  • S3 Melting: Put the raw materials mixed with S2 into the crucible of the vacuum non-consumable electric arc furnace, close the furnace door, evacuate to 3 ⁇ 10 -3 Pa and then backflush high-purity argon to 0.06 Mpa; after arcing , first melt the titanium ingot to absorb the residual oxygen in the furnace, then melt the raw materials mixed in S2, and turn on the electromagnetic stirring at the same time, the melting current is 180A, the stirring current is 1A, and the melting temperature is 1600°C. The time is 2 minutes; after the sample is smelted and completely cooled, it is turned over and smelted repeatedly 4 times, each time the alloy should be kept in the liquid state for 8 minutes, so that the elements are mixed evenly. After the smelting is completed, the alloy melt is cast into In the mould, the cast medium entropy alloy ingot is obtained;
  • the first heat-treated medium-entropy alloy ingot is cold-rolled with a thickness deformation of about 30%, it is kept at 1200°C for 20 minutes, and then quenched to obtain a heat-treated high-performance iron-based medium-entropy alloy.
  • a high-performance iron-based medium-entropy alloy comprising the following molar percentage components: Al: 17at%, Cr: 10at%, Fe: 36at%, Ni: 36at%, Mo: 1at%.
  • a high-performance iron-based medium-entropy alloy including the following molar percentage components: Al: 17at%, Cr: 10at%, Fe: 36at%, Ni: 36at%, Mo: 0.5at%, W: 0.5at%.
  • a high-performance iron-based medium-entropy alloy including the following molar percentage components: Al: 15at%, Cr: 10at%, Fe: 49at%, Ni: 26at%.
  • a high-performance iron-based medium-entropy alloy including the following molar percentage components: Al: 17at%, Cr: 10at%, Fe: 34.99at%, Ni: 36at%, Mo: 0.5at%, W: 0.5at% , Mn: 0.5at%, Ti: 0.5at%, C: 0.01at%.
  • the heat treatment method of the high-performance iron-based medium-entropy alloy of Examples 2-5 is basically the same as that of Example 1, except that the ratio of raw materials is changed to that of each embodiment.
  • the high-performance iron-based medium-entropy alloy prepared according to the above method is applied to the field of molten salt corrosion and high-temperature steam corrosion;
  • the field of molten salt corrosion includes nitrate or chloride salt.
  • High temperature steam corrosion includes chlorine or sulfur dioxide.
  • the high-performance iron-based medium-entropy alloy in the above-mentioned embodiment 2 as a corrosion-resistant material in a corrosive environment, as shown in Figure 9, the surface XRD and interface of the high-performance iron-based medium-entropy alloy corroded in chloride molten salt for 10 days Secondary electron morphology; the high-performance iron-based medium-entropy alloy forms an alumina layer during the corrosion process, which has an isolation effect on molten salts and a very good protection effect on the alloy.
  • Fig. 1 is the microstructure picture of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 1.
  • Figure 1 (a1) and Figure 1 (a2) are pictures of the microstructure of the as-cast medium-entropy alloy ingot at different magnifications
  • Figure 1 (b1) and Figure 1 (b2) are pictures of the microstructure of heat-treated high-performance iron-based medium-entropy alloys at different magnifications
  • Figure 1 (a1) and Figure 1 (a2) are the as-cast structure of Example 1. It can be seen that the alloy is composed of fine amplitude modulation structure containing BCC and B2.
  • Fig. 1 (b1) and Fig. 1 (b2) are the microstructures obtained by the thermomechanical treatment in Example 1, and it can be seen that the alloy transforms into a homogeneous biphasic microstructure.
  • Fig. 2 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 1.
  • the as-cast alloy provided by the present invention has a very high yield strength, which is about 1.1 GPa. After thermomechanical treatment, the strength of the alloy decreased, but the plasticity was greatly improved. Through the thermomechanical treatment method, the strong plasticity of the alloy is balanced, and combined with the design of the composition, iron-based medium-entropy alloy materials with different properties can be obtained.
  • Example 3 is a microstructure picture of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 2.
  • Fig. 3 (a1) and Fig. 3 (a2) are microstructure pictures of as-cast medium-entropy alloy ingots under different magnifications;
  • Figure 3 (b1) and Figure 3 (b2) are pictures of the microstructure of heat-treated high-performance iron-based medium-entropy alloys at different magnifications
  • Figure 3 (a1) and Figure 3 (a2) are the as-cast structure of Example 2, it can be seen that the alloy is composed of fine amplitude modulation structure containing FCC and B2.
  • Fig. 3(b1) and Fig. 3(b2) are the microstructures obtained by the thermomechanical treatment in Example 2, and it can be seen that the alloy transforms into a homogeneous two-phase equiaxed microstructure.
  • Fig. 4 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 2.
  • the as-cast alloy provided by the present invention has very high tensile strength, which is about 1.2GPa.
  • the strength of the alloy decreased, while the plasticity was improved to a certain extent.
  • the strong plasticity of the alloy is balanced, and combined with the design of the composition, iron-based medium-entropy alloy materials with different properties can be obtained.
  • Fig. 5 is a picture of the microstructure of the as-cast medium-entropy alloy ingot and heat-treated high-performance iron-based medium-entropy alloy provided in Example 3.
  • Figure 5 (a1) and Figure 5 (a2) are the microstructure pictures of the as-cast medium-entropy alloy ingot at different magnifications
  • Figure 5 (b1) and Figure 5 (b2) are pictures of the microstructure of heat-treated high-performance iron-based medium-entropy alloys at different magnifications
  • Figure 5(a1) and Figure 5(a2) are the as-cast structure of Example 3, and it can be seen that the alloy is composed of fine amplitude modulation structure containing FCC and B2.
  • Figure 5(b1) and Figure 5(b2) are the microstructures obtained by the thermomechanical treatment in Example 3, and it can be seen that the alloy transforms into a uniform two-phase equiaxed microstructure.
  • Fig. 6 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 3.
  • the as-cast alloy provided by the present invention has very high tensile strength, about 1.1 GPa. After thermomechanical treatment, the strength of the alloy decreased, but the plasticity was greatly improved. Through the thermomechanical treatment method, the strong plasticity of the alloy is balanced, and combined with the design of the composition, iron-based medium-entropy alloy materials with different properties can be obtained.
  • Fig. 7 is a picture of the microstructure of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 4.
  • Fig. 7 (a1) and Fig. 7 (a2) are microstructure pictures of as-cast medium-entropy alloy ingots under different magnifications;
  • Figure 7 (b1) and Figure 7 (b2) are pictures of the microstructure of heat-treated high-performance iron-based medium-entropy alloys at different magnifications
  • Figure 7(a1) and Figure 7(a2) are the as-cast structure of Example 4, and it can be seen that the alloy is composed of a fine amplitude-modulated structure containing BCC and B2.
  • Figure 7(b1) and Figure 7(b2) are the microstructures obtained by the thermomechanical treatment in Example 4, and it can be seen that the alloy transforms into a homogeneous two-phase equiaxed microstructure.
  • Fig. 8 is the stress-strain curve at room temperature of the as-cast medium-entropy alloy ingot and the heat-treated high-performance iron-based medium-entropy alloy provided in Example 4.
  • the as-cast alloy provided by the present invention has very high tensile strength, about 1.3GPa. After thermomechanical treatment, the strength of the alloy decreased, but the plasticity was greatly improved. Through the thermomechanical treatment method, the strong plasticity of the alloy is balanced, and combined with the design of the composition, iron-based medium-entropy alloy materials with different properties can be obtained.
  • the present invention realizes the change of the phase composition of the as-cast alloy by adjusting the composition, and determines the effect of each alloy element on the phase selection through the orthogonal test method, and clarifies the phase selection law of the iron-based medium entropy alloy for the first time.
  • Studies have shown that the increase of Al element content can increase the volume fraction of B2 phase, and the increase of Ni element content can increase the volume fraction of FCC phase.
  • the increase of Cr and Fe content can promote the formation of BCC phase. Using this law can realize the scientific guidance and performance prediction of alloy composition design.
  • the heat treatment process provided by the invention has low cost and simple process, and can further regulate and improve the properties of the iron-based medium entropy alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高性能铁基中熵合金及制备方法和应用,涉及金属材料技术领域,包括以下摩尔百分比的组分:Al:12-20at%,Cr:8-12at%,Fe:35-55at%,Ni:25-45at%。

Description

一种高性能铁基中熵合金及其热处理方法和应用 技术领域
本发明涉及金属材料技术领域,具体为一种高性能铁基中熵合金及其热处理方法和应用。
背景技术
高性能合金作为重要的结构材料,在民用和国防工业中均承担着不可替代的作用。合金的强度及塑性是其机械性能的主要体现,因此提高强度和塑性是合金设计的重要目标。中熵合金以多种元素作为基体,具有广阔的成分设计空间,是一种新型的结构材料。因具有高强度、高硬度、高耐磨、高耐蚀等杰出的机械性能,中熵合金在理论研究和工业应用方面均表现出广泛的前景。其中不含Co的铁基中熵合金具有较低的成本,因此具有较大的应用前景。
现有的多种镍铁基中熵合金对于合金的成分缺乏***的探究,对于合金的性能缺乏有效的调控,无法为其实际应用提供切实的指导。同样,现有高熵合金主要通过调控成分形成FCC+BCC的双相结构来平衡合金的强塑性,并且对于合金的性能着重于铸态。高熵合金中含有较高含量的昂贵Co、Ni元素,应用成本高。铁基中熵合金在成本和性能方面具有较好的平衡性,然而成分的变化对铁基中熵合金的力学性能有很大影响,并缺乏***的研究,各种合金元素对相选择过程起到的作用不清楚,合金成分的确定缺乏科学性和***性,造成合金的性能有较大的随机性。因此适当地选取合金元素及其含量,明确合金的相演化与组织规律,进而提高合金的力学性能是合金设计的重要问题。
技术问题
为了解决上述成分的变化对铁基中熵合金的力学性能有很大影响,并缺乏***的研究,各种合金元素对相选择过程起到的作用不清楚,合金成分的确定缺乏科学性和***性,造成合金的性能有较大的随机性的问题,本发明提供了一种高性能铁基中熵合金及其热处理方法和应用。
技术解决方案
本发明第一个目的是提供一种高性能铁基中熵合金,包括以下摩尔百分比的组分:
Al:12-20at%,Cr:8-12at%,Fe:35-55at%,Ni:25-45at%。
优选的,包括以下摩尔百分比的组分: Al:15~17at%,Cr:10at%,Fe:36~49at%,Ni:26~36at%。
优选的,还包括以下摩尔百分比的组分:Mo:0-3at%,W:0-2at%,Mn:0-1at%,Ti:0-3at%,C:0-0.02at%。
本发明第二个目的是提供一种高性能铁基中熵合金的热处理方法,包括以下步骤:
将铸态的中熵合金锭施加一定变形量后,于1100~1250℃保温15~30min,随后进行淬火,获得第一次热处理的中熵合金锭;
将第一次热处理的中熵合金锭再施加一定变形量后,于1100~1250℃保温15~30min,随后进行淬火,即得热处理的高性能铁基中熵合金。
优选的,所述变形量为20~40%。
优选的,铸态的中熵合金锭是按照以下步骤制得:
在惰性气氛条件下,将按照元素的摩尔百分比称取的合金组分Al、Cr、Fe、Ni、Mo、W、Mn、Ti、C原料,于真空感应熔炼炉或真空电弧中,进行熔炼,待熔炼完成并彻底冷却后,获得合金锭;然后将合金熔体浇铸到模具中,即得铸态的中熵合金锭。
更优选的,熔炼时的温度为1500~1650℃。
优选的,施加变形量采用冷轧的方式。
优选的,所述淬火温度为1150~1250℃,保温15~120min。
优选的,本发明获取的高性能铁基中熵合金作为耐腐蚀材料在腐蚀环境中的应用。
有益效果
本发明通过调整成分实现了铸态合金相组成的变化,并通过正交试验方法确定了各合金元素对相选择的作用,首次明确了铁基中熵合金的相选择规律。研究表明,Al元素含量的提高可以增加B2相的体积分数,而Ni元素含量的提高可以增加FCC相的体积分数,同时,Cr和Fe含量的增加对BCC相的形成由促进作用。利用该规律可以实现对合金成分设计的科学指导以及性能预测。
本发明将铸态合金具有很高的屈服强度,约为1.1GPa,经过热机械处理后,合金的强度有所下降,但塑性得到了大幅度的提升。通过热机械处理方法,合金的强塑性得到平衡,结合成分的设计,可以获得不同性能的铁基中熵合金材料。
本发明提供的热处理工艺成本低,过程简单,能够进一步调控和改善铁基中熵合金的性能。
附图说明
图1为实施例1提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
图2为实施例1提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
图3为实施例2提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
图4为实施例2提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
图5为实施例3提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
图6为实施例3提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
图7为实施例4提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
图8为实施例4提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
图9为实施例6提供的高性能铁基中熵合金在氯化物熔盐中腐蚀10d的表面XRD与界面二次电子形貌。
本发明的最佳实施方式
以下结合附图和具体实施方式对本发明进行详细的描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
一种高性能铁基中熵合金,包括以下摩尔百分比的组分:
Al:12-20at%,Cr:8-12at%,Fe:35-55at%,Ni:25-45at%,Mo:0-3at%,W:0-2at%,Mn:0-1at%,C:0-0.02at%。
下述各实施例中采用的Al、Cr、Fe和Ni原料均为纯度99 wt% 以上的工业级纯原料。
实施例1
一种高性能铁基中熵合金,包括以下摩尔百分比的组分:
Al:17at%,Cr:10at%,Fe:47at%,Ni:26at%。
一种高性能铁基中熵合金的热处理方法,包括以下步骤:
S1、超声清洗:将Al、Cr、Fe、Ni合金原料使用机械研磨方法去除元素表面的氧化皮,然后置于不同容器中并加入酒精溶液,超声清洗,取出后吹干酒精得到超声处理后的原料;
S2、配料:按照元素的摩尔百分比分别称量S1得到Al:3.5767g、Cr:4.0545g、Fe:20.4677g、Ni:11.9010g原料并混合;
S3:熔炼:将S2混合好的原料放入真空非自耗电弧炉的坩埚中,关闭炉门,抽真空至3×10 -3 Pa然后反冲高纯氩气至0.06 Mpa;起弧后,首先对钛锭进行熔炼以吸收炉内残留的氧气,然后对S2中混合好的原料进行熔炼,同时开启电磁搅拌,所述熔炼电流为180A,搅拌电流为1A,熔炼温度为1600℃,熔炼时间为2min;待样品熔炼完成并彻底冷却后,将其翻面,反复熔炼4次,每次应使合金在液态下保持8min,使得各元素混合均匀,熔炼完成后,将合金熔体浇铸到模具中,即得铸态的中熵合金锭;
S4、将中熵合金锭冷轧厚度变形量约为30%后,于1200℃保温20min,随后进行淬火,获得第一次热处理的中熵合金锭;
将第一次热处理的中熵合金锭再冷轧厚度变形量约为30%后,于1200℃保温20min,随后进行淬火,即得热处理的高性能铁基中熵合金。
实施例2
一种高性能铁基中熵合金,包括以下摩尔百分比的组分: Al:17at%,Cr:10at%,Fe:36at%,Ni:36at%,Mo:1at%。
实施例3
一种高性能铁基中熵合金,包括以下摩尔百分比的组分:Al:17at%,Cr:10at%,Fe:36at%,Ni:36at%,Mo:0.5at%,W:0.5at%。
实施例4
一种高性能铁基中熵合金,包括以下摩尔百分比的组分:Al:15at%,Cr:10at%,Fe:49at%,Ni:26at%。
实施例5
一种高性能铁基中熵合金,包括以下摩尔百分比的组分:Al:17at%,Cr:10at%,Fe:34.99at%,Ni:36at%,Mo:0.5at%,W:0.5at%,Mn:0.5at%,Ti:0.5at%,C:0.01at%。
实施例2-5的高性能铁基中熵合金的热处理方法,与实施例1基本相同,区别在于将原料配比改为各实施例的配比。
根据上述方法制备的高性能铁基中熵合金应用于熔盐腐蚀领域以及高温蒸汽腐蚀领域;熔盐腐蚀领域包括硝酸盐或氯盐。高温蒸汽腐蚀包括氯气或二氧化硫。
实施例6
针对上述实施例2的高性能铁基中熵合金作为耐腐蚀材料在腐蚀环境中的应用,如图9所示,高性能铁基中熵合金在氯化物熔盐中腐蚀10d的表面XRD与界面二次电子形貌;高性能铁基中熵合金在腐蚀过程中形成了氧化铝层,对熔盐起到了隔绝效果,对合金起到了非常好的保护作用。
为了说明本发明提供的一种高性能铁基中熵合金及热处理方法的各项性能,对实施例1~4提供的铸态的中熵合金锭及热处理后的高性能铁基中熵合金相关性能测试,见图1~8所示。
图1为实施例1提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
其中,图1(a1)和图1(a2)为不同放大倍数下的铸态的中熵合金锭微观组织图片;
图1(b1)和图1(b2)为不同放大倍数下的热处理的高性能铁基中熵合金微观组织图片;
图1(a1)和图1(a2)为实施例1的铸态组织,可以看到合金由包含BCC和B2的细密调幅组织构成。图1(b1)和图1(b2)为实施例1经过所述热机械处理得到的组织,可以看到合金转变为均匀的两相等轴组织。
图2为实施例1提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
从图2可知,本发明提供的铸态合金具有很高的屈服强度,约为1.1GPa。经过热机械处理后,合金的强度有所下降,但塑性得到了大幅度的提升。通过所述的热机械处理方法,合金的强塑性得到平衡,结合成分的设计,可以获得不同性能的铁基中熵合金材料。
图3为实施例2提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
其中,图3(a1)和图3(a2)为不同放大倍数下的铸态的中熵合金锭微观组织图片;
图3(b1)和图3(b2)为不同放大倍数下的热处理的高性能铁基中熵合金微观组织图片;
图3(a1)和图3(a2)为实施例2的铸态组织,可以看到合金由包含FCC和B2的细密调幅组织构成。图3(b1)和图3(b2)为实施例2经过所述热机械处理得到的组织,可以看到合金转变为均匀的两相等轴组织。
图4为实施例2提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
从图4可知,本发明提供的铸态合金具有很高的抗拉强度,约为1.2GPa。经过热机械处理后,合金的强度有所下降,同时塑性得到了一定的提升。通过所述的热机械处理方法,合金的强塑性得到平衡,结合成分的设计,可以获得不同性能的铁基中熵合金材料。
图5为实施例3提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
其中,图5(a1)和图5(a2)为不同放大倍数下的铸态的中熵合金锭微观组织图片;
图5(b1)和图5(b2)为不同放大倍数下的热处理的高性能铁基中熵合金微观组织图片;
图5(a1)和图5(a2)为实施例3的铸态组织,可以看到合金由包含FCC和B2的细密调幅组织构成。图5(b1)和图5(b2)为实施例3经过所述热机械处理得到的组织,可以看到合金转变为均匀的两相等轴组织。
图6为实施例3提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
从图6可知,本发明提供的铸态合金具有很高的抗拉强度,约为1.1GPa。经过热机械处理后,合金的强度有所下降,但塑性得到了较大的提升。通过所述的热机械处理方法,合金的强塑性得到平衡,结合成分的设计,可以获得不同性能的铁基中熵合金材料。
图7为实施例4提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的微观组织图片。
其中,图7(a1)和图7(a2)为不同放大倍数下的铸态的中熵合金锭微观组织图片;
图7(b1)和图7(b2)为不同放大倍数下的热处理的高性能铁基中熵合金微观组织图片;
图7(a1)和图7(a2)为实施例4的铸态组织,可以看到合金由包含BCC和B2的细密调幅组织构成。图7(b1)和图7(b2)为实施例4经过所述热机械处理得到的组织,可以看到合金转变为均匀的两相等轴组织。
图8为实施例4提供的铸态的中熵合金锭及热处理的高性能铁基中熵合金的在室温条件下的应力应变曲线。
从图8可知,本发明提供的铸态合金具有很高的抗拉强度,约为1.3GPa。经过热机械处理后,合金的强度有所下降,但塑性得到了较大的提升。通过所述的热机械处理方法,合金的强塑性得到平衡,结合成分的设计,可以获得不同性能的铁基中熵合金材料。
综上,本发明通过调整成分实现了铸态合金相组成的变化,并通过正交试验方法确定了各合金元素对相选择的作用,首次明确了铁基中熵合金的相选择规律。研究表明,Al元素含量的提高可以增加B2相的体积分数,而Ni元素含量的提高可以增加FCC相的体积分数,同时,Cr和Fe含量的增加对BCC相的形成有促进作用。利用该规律可以实现对合金成分设计的科学指导以及性能预测。
本发明提供的热处理工艺成本低,过程简单,能够进一步调控和改善铁基中熵合金的性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高性能铁基中熵合金,其特征在于,包括以下摩尔百分比的组分: Al:12-20at%,Cr:8-12at%,Fe:35-55at%,Ni:25-45at%。
  2. 根据权利要求1所述的高性能铁基中熵合金,其特征在于,包括以下摩尔百分比的组分: Al:15~17at%,Cr:10at%,Fe:36~49at%,Ni:26~36at%。
  3. 根据权利要求1或2所述的高性能铁基中熵合金,其特征在于,还包括以下摩尔百分比的组分:Mo:0-3at%,W:0-2at%,Mn:0-1at%,Ti:0-3at%,C:0-0.02at%。
  4. 一种权利要求3所述的高性能铁基中熵合金的热处理方法,其特征在于,包括以下步骤:
    将铸态的中熵合金锭施加一定变形量后,于1100~1250℃保温15~30min,随后进行淬火,获得第一次热处理的中熵合金锭;
    将第一次热处理的中熵合金锭再施加一定变形量后,于1100~1250℃保温15~30min,随后进行淬火,即得热处理的高性能铁基中熵合金。
  5. 根据权利要求4所述的高性能铁基中熵合金的热处理方法,其特征在于,所述变形量为20~40%。
  6. 根据权利要求4所述的高性能铁基中熵合金的制备方法,其特征在于,铸态的中熵合金锭是按照以下步骤制得:
    在惰性气氛条件下,将按照元素的摩尔百分比称取的合金组分Al、Cr、Fe、Ni、Mo、W、Mn、Ti、C原料,于真空感应熔炼炉或真空电弧中,进行熔炼,待熔炼完成并彻底冷却后,获得合金锭;然后将合金熔体浇铸到模具中,即得铸态的中熵合金锭。
  7. 根据权利要求6所述的高性能铁基中熵合金的热处理方法,其特征在于,熔炼时的温度为1500~1650℃。
  8. 根据权利要求4所述的高性能铁基中熵合金的热处理方法,其特征在于,施加变形量采用冷轧的方式。
  9. 根据权利要求4所述的高性能铁基中熵合金的热处理方法,其特征在于,所述淬火温度为1150~1250℃,保温15~120min。
  10. 权利要求1所述的一种高性能铁基中熵合金或权利要求4方法制备得到的高性能铁基中熵合金作为耐腐蚀材料在腐蚀环境中的应用。
PCT/CN2022/114978 2021-08-31 2022-08-26 一种高性能铁基中熵合金及其热处理方法和应用 WO2023030171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111014152.3 2021-08-31
CN202111014152.3A CN113684425B (zh) 2021-08-31 2021-08-31 一种高性能铁基中熵合金及其热处理方法

Publications (1)

Publication Number Publication Date
WO2023030171A1 true WO2023030171A1 (zh) 2023-03-09

Family

ID=78584476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114978 WO2023030171A1 (zh) 2021-08-31 2022-08-26 一种高性能铁基中熵合金及其热处理方法和应用

Country Status (2)

Country Link
CN (1) CN113684425B (zh)
WO (1) WO2023030171A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684425B (zh) * 2021-08-31 2022-06-24 西北工业大学 一种高性能铁基中熵合金及其热处理方法
CN114774785B (zh) * 2022-04-11 2023-01-17 郑州大学 一种铁基中熵合金
CN115627405B (zh) * 2022-10-21 2024-02-27 中国科学院金属研究所 一种耐液态铅铋腐蚀的高熵合金及其制备方法
CN115786793B (zh) * 2022-11-18 2023-12-08 广州大学 一种力学性能优异的轻质中熵合金及其制备方法
CN115976314A (zh) * 2022-12-30 2023-04-18 安徽工业大学 一种制备中熵奥氏体耐热钢的方法
CN116694978B (zh) * 2023-08-07 2023-11-07 太原理工大学 低成本耐热不锈中熵合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252083A (zh) * 2018-11-07 2019-01-22 安阳工学院 一种多相高熵合金及其制备方法
CN111074131A (zh) * 2019-12-26 2020-04-28 西北工业大学 一种共晶高熵合金的热机械处理方法
CN112251659A (zh) * 2020-06-19 2021-01-22 沈阳工业大学 一种AlCrFe2Ni2C0.24高熵合金及其制备方法
CN112662930A (zh) * 2020-07-21 2021-04-16 台州市黄岩海川模塑有限公司 一种高熵模具钢材料及其制备方法
CN113684425A (zh) * 2021-08-31 2021-11-23 西北工业大学 一种高性能铁基中熵合金及其热处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642363B (zh) * 2018-05-28 2020-04-28 西北工业大学 一种高强高塑共晶高熵合金及其制备方法
US20200109467A1 (en) * 2018-10-04 2020-04-09 City University Of Hong Kong High entropy alloy structure and a method of preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252083A (zh) * 2018-11-07 2019-01-22 安阳工学院 一种多相高熵合金及其制备方法
CN111074131A (zh) * 2019-12-26 2020-04-28 西北工业大学 一种共晶高熵合金的热机械处理方法
CN112251659A (zh) * 2020-06-19 2021-01-22 沈阳工业大学 一种AlCrFe2Ni2C0.24高熵合金及其制备方法
CN112662930A (zh) * 2020-07-21 2021-04-16 台州市黄岩海川模塑有限公司 一种高熵模具钢材料及其制备方法
CN113684425A (zh) * 2021-08-31 2021-11-23 西北工业大学 一种高性能铁基中熵合金及其热处理方法

Also Published As

Publication number Publication date
CN113684425A (zh) 2021-11-23
CN113684425B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023030171A1 (zh) 一种高性能铁基中熵合金及其热处理方法和应用
Xiong et al. Refractory high-entropy alloys: A focused review of preparation methods and properties
CN113025865B (zh) 一种AlCoCrFeNi系双相组织高熵合金制备方法
CN111826573B (zh) 一种无σ相析出倾向的沉淀强化型高熵合金及其制备方法
CN107739956B (zh) 一种Nb微合金化Ni-Co-Fe-Cr-Al高熵合金
WO2023093464A1 (zh) 一种高熵奥氏体不锈钢及其制备方法
US20230114417A1 (en) Steel for glass lining and production method therefor
CN111809120B (zh) 一种低膨胀合金及其制备方法
CN107587012B (zh) 一种轻质铸造Al-Si-Li合金材料及其制备方法
CN114351028B (zh) 一种(FeVCrMn)xTiy低活化高熵合金及其制备方法
CN111850375B (zh) 一种纳米析出强化型高强高塑性多元合金及其制备方法
CN113025875A (zh) 一种兼有高韧性和高抛光镜面塑料模具钢材料及制备方法
CN115233071B (zh) 一种Ni-Fe基高温中熵合金及其制备方法
CN114807718A (zh) 一种优异热稳定性共格纳米相强化中熵合金及制备方法
WO2019024274A1 (zh) 一种Ni-Al-RE三元共晶合金及其制备方法
CN114672716B (zh) 一种热处理态下高强韧性的CoCrNi2(V2B)x共晶高熵合金及其制备方法
KR20200066925A (ko) 고엔트로피 합금 및 그 제조방법
CN113584371A (zh) 一种具有桁架结构的析出强化型高熵合金及其制备方法
CN109266908B (zh) 一种低成本超高强Ti-Fe-Al-Cr-Si系钛合金及其制备方法
CN115725886B (zh) 一种g相析出强化高熵合金及其制备方法
CN116516230B (zh) 含有共晶组织的NiCoMnSn哈斯勒合金及其设计与制备方法
CN110714157B (zh) 一种耐蚀铸铁合金及其制备方法
Chen et al. A Novel Martensitic-Like Transformation Fe-Based Multi-principal Element Alloy
CN1007912B (zh) 高韧性马氏体时效钢
KR20240065912A (ko) 고엔트로피 합금 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE