WO2023029572A1 - 一种氮化铝的制备方法 - Google Patents

一种氮化铝的制备方法 Download PDF

Info

Publication number
WO2023029572A1
WO2023029572A1 PCT/CN2022/092488 CN2022092488W WO2023029572A1 WO 2023029572 A1 WO2023029572 A1 WO 2023029572A1 CN 2022092488 W CN2022092488 W CN 2022092488W WO 2023029572 A1 WO2023029572 A1 WO 2023029572A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
positive electrode
aluminum
reaction
solid
Prior art date
Application number
PCT/CN2022/092488
Other languages
English (en)
French (fr)
Inventor
蔡海兵
刘卫
刘勇奇
李长东
巩勤学
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Priority to DE112022002488.7T priority Critical patent/DE112022002488T5/de
Priority to GB2318477.3A priority patent/GB2621958A/en
Priority to ES202390236A priority patent/ES2970593A2/es
Publication of WO2023029572A1 publication Critical patent/WO2023029572A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0056Scrap treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0073Leaching or slurrying with acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of recovery and reuse of waste lithium batteries, in particular to a preparation method of aluminum nitride.
  • lithium batteries are widely used in new energy vehicles, 3C consumer products, and energy storage batteries.
  • 3C refers to computers, communications, and consumer electronics. Electronic products The abbreviation of the three types of electronic products.
  • the existing dry process processes waste lithium batteries, and the recovered battery powder contains a large amount of valuable metals, and the investment cost for later cleaning is relatively high, and the waste residue after the existing process is directly piled up as solid waste, causing environmental pollution and waste of resources .
  • incineration and crushing and sorting are the most commonly used methods to deal with waste lithium batteries; incineration has high energy consumption, long process and low metal recovery rate.
  • the battery powder produced by the incineration method has high impurity content, and the post-processing cost is too high.
  • due to the low melting point of the positive electrode current collector metal aluminum it is easy to melt during heat treatment and will penetrate into the battery powder, making it difficult to separate valuable metals, which is not conducive to industrial production.
  • the crushing and separation process is simple, the production environment is harsh, the dust is scattered, and the equipment is prone to failure.
  • the copper-aluminum mixture of the product has a high content of nickel and cobalt, which is difficult to effectively recover and is not conducive to production.
  • ammonia and aluminum are mainly directly subjected to nitriding reaction, and then crushed and classified to obtain aluminum nitride powder, or fully mixed with alumina and carbon, and then reduced in an electric furnace at 1700°C to obtain nitriding. aluminum.
  • the metallic aluminum needs to be crushed to the micron level, which is extremely dangerous; during the reaction process, the pipeline may not be tightly sealed when nitrogen gas is filled, resulting in a violent reaction between the internal aluminum powder and the air, which is extremely unsafe and not conducive to the process Production.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention provides a method for preparing aluminum nitride, which combines physical and chemical methods, can meet the industrial production requirements of environmental friendliness, low energy consumption, and high resource recovery, and has a safe process and can prepare high-purity aluminum nitride .
  • the present invention adopts the following technical solutions:
  • a preparation method of aluminum nitride comprising the following steps:
  • step (2) The aluminum hydroxide precipitation described in step (2) is mixed with the graphite material described in step (3) to granulate, and then the copper nitrate described in step (3) is added to mix and roast to obtain aluminum nitride and copper oxide.
  • the waste positive electrode powder is disassembled and crushed from waste lithium batteries to obtain broken positive and negative current collectors and separator paper, and then the broken positive current collectors are pyrolyzed and sieved to obtain Metal aluminum and waste cathode powder.
  • the crushing is shear crushing, and the sieve mesh aperture is selected to be 1 cm to 5 cm.
  • the pyrolysis temperature is 400-600° C.
  • the pyrolysis time is 0.5-1 h.
  • the sieving screen is selected from 5 to 20 mesh.
  • the mass concentration of the sodium hydroxide solution is 10-30 g/L.
  • the liquid-solid ratio of the sodium hydroxide solution and the spent positive electrode powder is 1: (1-3) L/g.
  • step (1) further includes performing wet leaching of the positive electrode powder to recover valuable metals.
  • the acid is one of hydrochloric acid and nitric acid; when the acid is hydrochloric acid, after the solid-liquid separation in step (2), aluminum hydroxide precipitation and sodium chloride solution are obtained .
  • the mass fraction of the hydrochloric acid is 20-50%.
  • the sodium chloride solution is electrolyzed to produce sodium hydroxide, which is returned to step (1) for use.
  • the electrolysis voltage of the sodium chloride solution is selected as 220V.
  • the liquid-solid ratio of the water washing is 1: (1-2) L/g, and the washing time is 10-30 minutes.
  • the sieve used for the sieving is 5-10 mesh.
  • the mass fraction of the nitric acid is 30-50%.
  • the mass ratio of the aluminum hydroxide to the graphite material is (2-3):(1-2).
  • the mass ratio of copper nitrate to aluminum hydroxide is (1-3):1.
  • the particle diameter of the granulated particles is 0.5-2.0 mm.
  • Granulation after mixing aluminum hydroxide and graphite material is more conducive to the reaction: it is because the mixed material reacts directly, and the reactants are packed tightly, which is easy to cause incomplete reaction, poor gas circulation and small contact surface; after granulation , can improve its bulkiness, large contact surface, better gas circulation, and more conducive to complete reaction.
  • the calcination is carried out in three stages, the temperature of the first stage of calcination is 200-400°C, and the time of the first stage of calcination is 0.5-2h; the temperature of the second stage of calcination is 1000-1200°C. °C, the time of the second stage of calcination is 1 ⁇ 3h; the temperature of the third stage of calcination is 1400 ⁇ 1600°C, and the time of the third stage of calcination is 5 ⁇ 8h.
  • the calcination process also includes adding a catalyst for catalysis, and the catalyst is platinum wire.
  • the present invention uses a combination of physics and chemistry to process waste lithium batteries.
  • the waste lithium batteries are disassembled to obtain positive and negative current collectors and diaphragm paper.
  • the diaphragm paper can be sold directly, and then the positive and negative current collectors are broken separately to obtain positive and negative current collectors.
  • Negative current collector crushed material pyrolyze and sieve the positive current collector crushed material to obtain metal aluminum and waste positive electrode powder.
  • the low-temperature section is used to decompose copper nitrate into copper oxide and nitrogen dioxide, and the carbon monoxide produced by part of the carbon reacts with nitrogen dioxide to generate nitrogen, and platinum wire is added in the furnace body as a catalyst.
  • Alumina is decomposed into alumina powder, and graphite, alumina and nitrogen are synthesized into aluminum nitride powder in the high temperature section, which also reduces the subsequent carbon removal process.
  • the reaction process In the process of synthesizing aluminum nitride of the present invention, no additional delivery of nitrogen is needed, and the reaction process is in a self-sufficient state, so that the reaction is more stable, and the purity of the formed aluminum nitride is high.
  • the method of the invention directly treats the positive and negative electrodes separately, which reduces the difficulty of subsequent impurity removal.
  • the chemical dissolution method is used instead of physical crushing, and it is more beneficial to the removal of impurities in the positive electrode powder, because on the one hand, the aluminum source is obtained from the positive electrode powder, and on the other hand, the impurity metal aluminum is removed from the positive electrode powder.
  • the method of the present invention does not produce waste residue and waste water as a whole, has relatively stable reaction, simple operation process, high resource recovery rate, and can be put into production later.
  • Fig. 1 is the process flow chart of embodiment 1 of the present invention.
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) at a mass ratio of 1:2, put them into the pelletizer, the size of the sphere is 1mm, and mix the copper nitrate solution and aluminum hydroxide by The mass ratio is 2:1 and the sphere is put into the same tube furnace respectively, and a small amount of platinum wire is put into the furnace.
  • the high-temperature roasting design is divided into three stages. At 1000°C, keep warm for 2 hours, and the three stages are as follows: the temperature is controlled at 1400°C, and the holding time is 6 hours, and finally aluminum nitride powder and copper oxide are obtained.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum, copper oxide and aluminum nitride are sold directly, and the positive electrode powder can enter the wet process. leach.
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) at a mass ratio of 1:2, put them into the pelletizer, the size of the sphere is 1mm, and mix the copper nitrate solution and aluminum hydroxide by The mass ratio is 3:1 and the sphere is put into the same tubular furnace respectively, and a small amount of platinum wire is put into the furnace.
  • the high-temperature roasting design is divided into three stages. At 1000°C, keep warm for 2 hours, and the three stages are as follows: the temperature is controlled at 1400°C, and the holding time is 6 hours, and finally aluminum nitride powder and copper oxide are obtained.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum, copper oxide and aluminum nitride are sold directly, and the positive electrode powder can enter the wet process. leach.
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) at a mass ratio of 1:1, put them into the pelletizer, the size of the sphere is 1mm, and mix the copper nitrate solution and aluminum hydroxide by The mass ratio is 2:1 and the sphere is put into the same tube furnace respectively, and a small amount of platinum wire is put into the furnace.
  • the high-temperature roasting design is divided into three stages. Control at 1200°C, keep warm for 2h; the third stage is; the temperature is controlled at 1600°C, keep warm for 6h, and finally remove carbon at 500°C under air circulation, keep warm for 1h to obtain aluminum nitride powder.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum, copper oxide and aluminum nitride are sold directly, and the positive electrode powder can enter the wet process. leach.
  • the preparation method of this comparative example aluminum nitride powder comprises the following steps:
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) in a mass ratio of 1:2, put them into the pelletizer, the size of the spheres is 1mm, put the spheres into the tube furnace, Sufficient nitrogen is filled, and the high-temperature roasting design is divided into three stages.
  • the first stage is: the temperature is controlled at 200°C, and the heat preservation is 1h; the second stage is: the temperature is controlled at 1000°C, and the heat preservation is 2h; After 6 hours, aluminum nitride powder is finally obtained.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum and aluminum nitride are sold directly, and the positive electrode powder can be wet leached.
  • Nitric acid Copper requires additional processing.
  • the copper oxide heated by copper nitrate is highly feasible to be reduced to metallic copper, the product has good purity, high selling value, and strong recyclability.
  • the copper nitrate solution in the comparative example is not treated, and the impurity content of the substance is high, the direct sale value is low, additional processing is required, and it is toxic, harmful and explosive, and it is easy to cause a particularly large hidden danger if it is not handled in time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于废旧锂电池回收再利用领域,公开一种氮化铝的制备方法,该制备方法包括以下步骤:向废旧正极粉中加入氢氧化钠溶液反应,固液分离,得到偏铝酸钠溶液和正极粉;向偏铝酸钠溶液中加入酸反应,固液分离,取固相得到氢氧化铝沉淀;将负集流体进行水洗,筛分,固液分离,取固相加入硝酸反应,固液分离,得到石墨料和硝酸铜;将氢氧化铝沉淀与石墨料混合造粒,再加入硝酸铜进行混合,焙烧反应,得到氮化铝和氧化铜。本发明合成氮化铝过程中无须额外输送氮气,在反应过程中都是一个自给自足状态,使得反应更稳定,生成氮化铝的纯度高。

Description

一种氮化铝的制备方法 技术领域
本发明涉及废旧锂电池回收再利用领域,特别是涉及一种氮化铝的制备方法。
背景技术
随着国家生态环保的提倡,越来越多的新能源在崛起,特别是锂电池行业。由于锂电池具有高能量密度、高工作电压、长循环寿命、大充放电倍率等优势,被广泛应用于新能源汽车、3C消费类产品以及储能电池领域,其中3C是指计算机、通讯和消费电子产品三类电子产品的简称。后期随着锂电池的使用,必然会出现大量电池报废,处理这些废旧锂电池就变得不可或缺。现有干法工艺处理废旧锂电池,回收的电池粉中含有大量的有价金属,后期除杂投入成本较大,且现有工艺处理后的废渣直接当固废堆积,造成环境污染及资源浪费。
目前处理废旧锂电池最常用的是焚烧法、破碎分选法;焚烧法能耗高,流程长,金属回收率低。特别地,采用焚烧法产出的电池粉杂质含量高,后期处理成本过高。其中正极集流体金属铝由于熔点较低,热处理过程极易熔融,会渗入电池粉中,造成有价金属分离困难,不利于工业生产。破碎分选法工艺虽然简单,但生产环境恶劣,粉尘飘散,设备极易故障,产品铜铝混合料中镍钴含量高,不易有效回收,不利于生产。目前在制备氮化铝工艺中主要将氨和铝直接进行氮化反应,经粉碎、分级制得氮化铝粉末,或者将氧化铝和炭充分混合,在电炉中于1700℃还原制得氮化铝。工艺中需要将金属铝破碎至微米级别,危险性极高;在反应过程中,充入氮气时管道有可能出现密封不严,造成内部铝粉与空气发生剧烈反应,极不安全,不利于工艺生产。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提供一种氮化铝的制备方法,该方法结合物理与化学方法,能满足环境友好、低能耗、资源高回收的工业生产需求,工艺安全并制备得到高纯度的氮化铝。
为实现上述目的,本发明采用以下技术方案:
一种氮化铝的制备方法,包括以下步骤:
(1)向废旧正极粉中加入氢氧化钠溶液反应,固液分离,得到偏铝酸钠溶液和正 极粉;
(2)向所述偏铝酸钠溶液中加入酸反应,固液分离,得到氢氧化铝沉淀;
(3)将负集流体进行水洗,筛分,固液分离,取固相加入硝酸反应,固液分离,得到石墨料和硝酸铜;
(4)将步骤(2)所述氢氧化铝沉淀与步骤(3)所述石墨料混合造粒,再加入步骤(3)所述硝酸铜进行混合,焙烧,得到氮化铝和氧化铜。
优选地,步骤(1)中,所述废旧正极粉是由废旧锂电池进行拆分、破碎,得到正负集流体破碎料及隔膜纸,再将正集流体破碎料进行热解、筛分,得到金属铝与废旧正极粉。
进一步优选地,所述破碎为剪切破碎,筛网孔径选用1cm~5cm。
进一步优选地,所述热解的温度为400~600℃,热解的时间为0.5~1h。
进一步优选地,所述筛分筛网选用5~20目。
优选地,步骤(1)中,所述氢氧化钠溶液的质量浓度为10~30g/L。
优选地,步骤(1)中,所述氢氧化钠溶液和废旧正极粉的液固比为1:(1-3)L/g。
优选地,步骤(1)中,还包括将所述正极粉进行湿法浸出回收有价金属。
优选地,步骤(2)中,所述酸为盐酸、硝酸中的一种;当所述酸为盐酸时,步骤(2)所述固液分离后,得到氢氧化铝沉淀和氯化钠溶液。
进一步优选地,所述盐酸的质量分数为20~50%。
进一步优选地,将所述氯化钠溶液进行电解,生产氢氧化钠,返回步骤(1)中使用。
更优选地,所述氯化钠溶液的电解电压选220V。
优选地,步骤(3)中,所述水洗的液固比1:(1-2)L/g,水洗的时间为10~30min。
优选地,步骤(3)中,所述筛分的筛网选用5~10目。
优选地,步骤(3)中,所述硝酸的质量分数为30~50%。
优选地,步骤(4)中,所述氢氧化铝与石墨料的质量比为(2~3):(1~2)。
优选地,步骤(4)中,所述硝酸铜与氢氧化铝质量比为(1~3):1。
优选地,步骤(4)中,所述造粒后的颗粒的粒径为0.5~2.0mm。
将氢氧化铝与石墨料混合后造粒更有利于反应进行:是由于混合后的物料直接反应,反应物堆积紧密,易造成反应不完全,气体流通性差,接触面小;将其造粒后,可提高其蓬松度,接触面大,气体流通性较好,更有利于反应完全进行。
优选地,步骤(4)中,所述焙烧分三段进行,第一段焙烧的温度为200~400℃,第一段焙烧的时间为0.5~2h;第二段焙烧的温度为1000~1200℃,第二段焙烧的时间为1~3h;第三段焙烧的温度为1400~1600℃,第三段焙烧的时间为5~8h。
优选地,步骤(4)中,所述焙烧过程中,还包括加入催化剂进行催化,所述催化剂为铂丝。
本发明各个步骤的的反应方程式:
1.偏铝酸钠的形成:2Al+2H 2O+2NaOH=2NaAlO 2+3H 2↑;
2.氢氧化铝的形成,盐酸不过量:HCl+NaAlO 2+H 2O=Al(OH) 3↓+NaCl;
3.硝酸铜的形成:H 2NO 3(稀)+Cu=Cu(NO 3) 2+NO↑+H 2O;
4.氯化钠电解反应:2NaCl+2H 2O=2NaOH+H 2↑+Cl 2↑(电解);
5.硝酸铜加热分解反应:2Cu(NO 3) 2=2CuO+4NO 2↑+O 2↑;
6.氮气的形成:C+O 2=CO 2(燃烧),2C+O 2=2CO(不充分燃烧),C+CO 2=2CO(高温),4CO+2NO 2==N 2+4CO 2(铂丝催化);
7.氧化铝的形成:2Al(OH) 3=Al 2O 3+3H 2O(高温);
8.铜的还原反应:CuO+CO=Cu+CO 2(高温);
9.氮化铝合成反应:Al 2O 3+3C+N 2=2AlN+3CO。
本发明的处理原理:
本发明利用物理与化学相结合的方法处理废旧锂电池,先将废旧锂电池拆分分别得到正负集流体及隔膜纸,隔膜纸可直接售出,再将正负集流体分别破碎,得到正负集流体破碎料;将正集流体破碎料进行热解、筛分,得到金属铝与废旧正极粉。
废旧正极粉中加入氢氧化钠进行除杂,氢氧化钠与铝反应生成偏铝酸钠溶液,过滤分离出纯净正极粉,滤液中加入少量稀盐酸,不过量,反应生成氢氧化铝沉淀与氯化钠溶液。再次过滤分离出的氢氧化铝与石墨料混合制氮化铝,氯化钠溶液电解制氢氧化钠,循环使用,金属铝直接售出。将负集流体破碎料进行水洗、筛分、压滤,得到金属铜与石墨粉,金属铜直接售卖。石墨粉中加入稀硝酸除杂,反应生成硝酸铜,过滤分离出硝 酸铜溶液与石墨料,石墨料与氢氧化铝混合造球,与硝酸铜分别进入管式炉中高温焙烧,得到氮化铝粉体。
在高温合成氮化铝阶段:利用低温段将硝酸铜分解成氧化铜与二氧化氮,部分碳产生的一氧化碳与二氧化氮反应生成氮气,并在炉体内加入铂丝作为催化剂,中温段将氢氧化铝分解成氧化铝粉末,高温段将石墨与氧化铝及氮气合成氮化铝粉体,还减少了后续的除碳工序。
本发明的有益效果如下:
本发明合成氮化铝过程中无须额外输送氮气,在反应过程中都是一个自给自足状态,使得反应更稳定,生成氮化铝的纯度高。本发明的方法直接将正负极分开处理,降低了后续除杂难度。对于氧化铝的制备采用化学溶解法取代了物理破碎,且对正极粉中的杂质去除更有利,因为一方面从正极粉中获取了铝源,另一方面是给正极粉除去了杂质金属铝,更有利于后续正极粉进入湿法浸出时,因此更有利于除杂。本发明的方法整体无废渣废水产生,反应较稳定,操作过程简单,资源回收率高,后期可投入生产。
附图说明
图1为本发明实施例1的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例氮化铝的制备方法,包括以下步骤:
(1)取单体废旧锂电池进行拆分,分别得到隔膜纸、正集流体与负集流体;
(2)将正负集流体分别破碎,破碎机选用剪切式破碎,筛网孔径选用1cm,破碎时间为2min,得到正集流体破碎料;
(3)将正集流体破碎料放入马沸炉中,温度控制在450℃,保温1h,最后过筛得到金属铝与正极粉,筛网选用10目,测得正极粉中杂质含量Al为11.34%,Cu为0.01%,金属铝中Ni为0.26%,Co为0.12%;
(4)取正极粉300g,加入15g/L的氢氧化钠300ml,液固比为1:1,搅拌速度300r/min,搅拌20min,过滤,滤渣进入湿法浸出,滤液加入质量分数为50%的盐酸,不要过量,直至沉淀产生,当沉淀开始溶解时停止加盐酸,然后过滤,得到氢氧化铝沉淀与氯化钠溶液,氯化钠溶液进行电解,生产氢氧化钠供步骤(1)使用;
(5)取负集流体破碎料500g加水按液固比1:1水洗,搅拌速度200r/min,水洗时间为5min,筛分得到金属铜与石墨浆料,石墨浆料压滤、滤渣中测得杂质铜含量为9.82%、铝含量为0.03%,渣中加入质量分数为50%的硝酸100ml,搅拌反应10min,直至杂质铜全部溶解,压滤分离,分别得到硝酸铜溶液与石墨料,金属铜可直接售出;
(6)将步骤(5)的石墨料与步骤(4)的氢氧化铝沉淀按质量比为1:2混合,投入造球机内,球体大小为1mm,将硝酸铜溶液与氢氧化铝按质量比2:1与球体分别放入同一管式炉内,炉内放入少量铂丝,高温焙烧设计分三段进行,一段为:温度控制在200℃,保温1h,二段为:温度控制在1000℃,保温2h,三段为:其温度控制在1400℃,保温时间6h,最后得到氮化铝粉体与氧化铜。
经上述步骤处理得到隔膜纸、金属铜、金属铝、正极粉料及氮化铝粉体,其中隔膜纸、金属铜、金属铝、氧化铜及氮化铝直接售出,正极粉料可进入湿法浸出。
实施例2
本实施例氮化铝的制备方法,包括以下步骤:
(1)取废旧锂电池进行拆分,分别得到隔膜纸、正集流体与负集流体;
(2)将正负集流体分别破碎,破碎机选用剪切式破碎,筛网孔径选用1cm,破碎时间为2min;
(3)将正集流体破碎料放入马沸炉中,温度控制在450℃,保温1h,最后过筛得到金属铝与正极粉,筛网选用10目,测得正极粉中杂质含量Al为11.34%,Cu为0.01%,金属铝中Ni为0.26%,Co为0.12%;
(4)取正极粉250g加入10g/L的氢氧化钠200ml,液固比为1:1.2,搅拌速度300r/min,搅拌20min,过滤,滤渣进入湿法浸出,滤液加入质量分数为40%的盐酸,不要过量,直至沉淀产生,当沉淀开始溶解时停止加盐酸,然后过滤,得到氢氧化铝沉淀与氯化钠溶液,氯化钠溶液进行电解,生产氢氧化钠供步骤(1)使用;
(5)取负集流体破碎料800g,加水按液固比1:1水洗,搅拌速度200r/min,水洗时间为5min,筛分得到金属铜与石墨浆料,石墨浆料压滤、滤渣中测得杂质铜含量为 9.18%、铝含量为0.02%,渣中加入质量分数为40%的硝酸150ml,搅拌反应10min,直至杂质铜全部溶解,压滤分离,分别得到硝酸铜溶液与石墨料,金属铜可直接售出;
(6)将步骤(5)的石墨料与步骤(4)的氢氧化铝沉淀按质量比为1:2混合,投入造球机内,球体大小为1mm,将硝酸铜溶液与氢氧化铝按质量比3:1与球体分别放入同一管式炉内,炉内放入少量铂丝,高温焙烧设计分三段进行,一段为:温度控制在200℃,保温1h,二段为:温度控制在1000℃,保温2h,三段为:其温度控制在1400℃,保温时间6h,最后得到氮化铝粉体与氧化铜。
经上述步骤处理得到隔膜纸、金属铜、金属铝、正极粉料及氮化铝粉体,其中隔膜纸、金属铜、金属铝、氧化铜及氮化铝直接售出,正极粉料可进入湿法浸出。
实施例3
本实施例氮化铝的制备方法,包括以下步骤:
(1)取废旧锂电池进行拆分,分别得到隔膜纸、正集流体与负集流体;
(2)将正负集流体分别破碎,破碎机选用剪切式破碎,筛网孔径选用1cm,破碎时间为2min;
(3)将正集流体破碎料放入马沸炉中,温度控制在450℃,保温1h,最后过筛得到金属铝与正极粉,筛网选用10目,测得正极粉中杂质含量Al为11.34%,Cu为0.01%,金属铝中Ni为0.26%,Co为0.12%;
(4)取正极粉500g,加入20g/L的氢氧化钠300ml,液固比为1:1.7,搅拌速度300r/min,搅拌20min,过滤,滤渣进入湿法浸出,滤液加入质量分数为50%的盐酸,不要过量,直至沉淀产生,当沉淀开始溶解时停止加盐酸,然后过滤,得到氢氧化铝沉淀与氯化钠溶液,氯化钠溶液进行电解,生产氢氧化钠供步骤(1)使用;
(5)取负集流体破碎料1000g,加水按液固比为1:1水洗,搅拌速度200r/min,水洗时间为5min,筛分得到金属铜与石墨浆料,石墨浆料压滤、滤渣中测得杂质铜含量为10.08%、铝含量为0.04%,渣中加入质量分数为40%的硝酸200ml,搅拌反应10min,直至杂质铜全部溶解,压滤分离,分别得到硝酸铜溶液与石墨料,金属铜可直接售出;
(6)将步骤(5)的石墨料与步骤(4)的氢氧化铝沉淀按质量比为1:1混合,投入造球机内,球体大小为1mm,将硝酸铜溶液与氢氧化铝按质量比为2:1与球体分别放入同一管式炉内,炉内放入少量铂丝,高温焙烧设计分三段进行,一段为:温度控制在200℃,保温1h;二段为:温度控制在1200℃,保温2h;三段为;其温度控制在1600℃,保温时间6h,最后取出在空气流通下的500℃下除碳,保温1h,得到氮化铝粉体。
经上述步骤处理得到隔膜纸、金属铜、金属铝、正极粉料及氮化铝粉体,其中隔膜纸、金属铜、金属铝、氧化铜及氮化铝直接售出,正极粉料可进入湿法浸出。
对比例1
本对比例氮化铝粉体的制备方法,包括以下步骤:
(1)取废旧锂电池进行拆分,分别得到隔膜纸、正集流体与负集流体;
(2)将正负集流体分别破碎,破碎机选用剪切式破碎,筛网孔径选用1cm,破碎时间为2min;
(3)将正集流体破碎料放入马沸炉中,温度控制在450℃,保温1h,最后过筛得到金属铝与正极粉,筛网选用10目,测得正极粉中杂质含量Al为11.34%,Cu为0.01%,金属铝中Ni为0.26%,Co为0.12%;
(4)取正极粉250g加入10g/L的氢氧化钠200ml,液固比为1:1.2,搅拌速度300r/min,搅拌20min,过滤,滤渣进入湿法浸出,滤液加入质量分数为40%的盐酸,不要过量,直至沉淀产生;当沉淀开始溶解时停止加稀盐酸,然后过滤,得到氢氧化铝沉淀与氯化钠溶液,氯化钠溶液进行电解,生产氢氧化钠供前端使用;
(5)取负集流体破碎料800g,加水按液固比1:1水洗,搅拌速度200r/min,水洗时间为5min,筛分得到金属铜与石墨浆料,石墨浆料压滤、滤渣中测得杂质铜含量为9.18%、铝含量为0.02%,渣中加入质量分数为40%的硝酸100ml,搅拌反应10min,直至杂质铜全部溶解,压滤分离,分别得到硝酸铜溶液与石墨料,金属铜可直接售出;
(6)将步骤(5)的石墨料与步骤(4)的氢氧化铝沉淀按质量比为1:2混合,投入造球机内,球体大小为1mm,将球体放入管式炉内,充入充足氮气,高温焙烧设计分三段进行,一段为:温度控制在200℃,保温1h,二段为:温度控制在1000℃,保温2h;三段为:其温度控制在1400℃,保温时间6h,最后得到氮化铝粉体。
经上述步骤处理得到隔膜纸、金属铜、金属铝、正极粉料及氮化铝粉体,其中隔膜纸、金属铜、金属铝及氮化铝直接售出,正极粉料可进入湿法浸出,硝酸铜需额外进行加工处理。
元素含量检测结果:
使用使用ICP(电感耦合等离子光谱分析)对本发明各实施例和对比例制备的氮化铝产品中的关键元素含量进行了检测,结果见下表1
表1 实施例和对比例制备的氮化铝产品中的元素含量
Figure PCTCN2022092488-appb-000001
由表中数据可知该工艺所产出产品纯度高,可行性强,杂质含量少;对比例中可得出原料配比还是受氮气影响,前期碳就已经完全燃烧带走,造成后期氮气与氧化铝反应,且反应不完全,杂质含量高,该工艺剩余硝酸铜需额外加工处理。
表2 氧化铜的成分含量
Figure PCTCN2022092488-appb-000002
由表2可得出,由硝酸铜加热得氧化铜再还原成金属铜可行性高,产品纯度较好,售出价值高,可回收利用性强。对比例中硝酸铜溶液未作处理,该物质杂质含量高,直接售出价值低,需额外加工处理,且有毒有害易爆,不及时处理易造成特别大的隐患。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种氮化铝的制备方法,其特征在于,包括以下步骤:
    (1)向废旧正极粉中加入氢氧化钠溶液反应,固液分离,得到偏铝酸钠溶液和正极粉;
    (2)向所述偏铝酸钠溶液中加入酸反应,固液分离,得到氢氧化铝沉淀;
    (3)将负集流体进行水洗,筛分,固液分离,取固相加入硝酸反应,固液分离,得到石墨料和硝酸铜;
    (4)将步骤(2)所述氢氧化铝沉淀与步骤(3)所述石墨料混合造粒,再加入步骤(3)所述硝酸铜进行混合,焙烧反应,得到氮化铝和氧化铜。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述废旧正极粉是由废旧锂电池进行拆分、破碎,得到正负集流体破碎料及隔膜纸,再将正集流体破碎料进行热解、筛分,得到金属铝与废旧正极粉。
  3. 根据权利要求2所述的制备方法,其特征在于,所述热解的温度为400~600℃,热解的时间为0.5~1h。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述氢氧化钠溶液和废旧正极粉的液固比为1:(1-3)L/g。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述酸为盐酸、硝酸中的一种;当所述酸为盐酸时,步骤(2)所述固液分离后,得到氢氧化铝沉淀和氯化钠溶液。
  6. 根据权利要求5所述的制备方法,其特征在于,将所述氯化钠溶液进行电解,生产氢氧化钠,返回步骤(1)中使用。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述硝酸的质量分数为30~50%。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述硝酸铜与氢氧化铝的质量比为(1-3):1。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述焙烧分三段进行,第一段焙烧的温度为200~400℃,第一段焙烧的时间为0.5~2h;第二段焙烧的温度 为1000~1200℃,第二段焙烧的时间为1~3h;第三段焙烧的温度为1400~1600℃,第三段焙烧的时间为5~8h。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述焙烧反应过程中还包括加入催化剂进行催化;所述催化剂为铂丝。
PCT/CN2022/092488 2021-08-31 2022-05-12 一种氮化铝的制备方法 WO2023029572A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022002488.7T DE112022002488T5 (de) 2021-08-31 2022-05-12 Herstellungsverfahren von aluminiumnitrid
GB2318477.3A GB2621958A (en) 2021-08-31 2022-05-12 Preparation method for aluminum nitride
ES202390236A ES2970593A2 (es) 2021-08-31 2022-05-12 Metodo de preparacion del nitruro de aluminio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111014201.3 2021-08-31
CN202111014201.3A CN113753867B (zh) 2021-08-31 2021-08-31 一种氮化铝的制备方法

Publications (1)

Publication Number Publication Date
WO2023029572A1 true WO2023029572A1 (zh) 2023-03-09

Family

ID=78792168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092488 WO2023029572A1 (zh) 2021-08-31 2022-05-12 一种氮化铝的制备方法

Country Status (5)

Country Link
CN (1) CN113753867B (zh)
DE (1) DE112022002488T5 (zh)
ES (1) ES2970593A2 (zh)
GB (1) GB2621958A (zh)
WO (1) WO2023029572A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753867B (zh) * 2021-08-31 2023-09-12 湖南邦普循环科技有限公司 一种氮化铝的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082149A (zh) * 2016-06-15 2016-11-09 潮州三环(集团)股份有限公司 氮化铝粉体的制备方法
CN106882773A (zh) * 2017-03-06 2017-06-23 昆明理工大学 一种制备氮化铝的方法
WO2017134779A1 (ja) * 2016-02-03 2017-08-10 イーメックス株式会社 窒化アルミニウム薄膜、窒化アルミニウム薄膜の形成方法、及び、電極材料
CN111020194A (zh) * 2019-11-16 2020-04-17 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法
CN111129632A (zh) * 2019-11-22 2020-05-08 深圳清华大学研究院 废旧三元锂离子电池正负极混合材料回收方法
CN113753867A (zh) * 2021-08-31 2021-12-07 湖南邦普循环科技有限公司 一种氮化铝的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243906A (ja) * 1990-09-26 1992-09-01 Lonza Ag α−窒化ケイ素粉末の製造方法
US5260397A (en) * 1990-10-09 1993-11-09 Jensen James A Thermoset polymeric precursor for aluminum nitride
TW434184B (en) * 1997-11-24 2001-05-16 Nat Science Council Method for production of aluminum nitride powder
JP3911554B2 (ja) * 2000-12-13 2007-05-09 独立行政法人産業技術総合研究所 球状窒化アルミニウムフィラー及びその製造方法
JP2003225573A (ja) * 2002-01-31 2003-08-12 National Institute For Materials Science 酸化亜鉛系光触媒とその製造方法
CN1173879C (zh) * 2002-02-07 2004-11-03 山东大学 水热条件下制备氮化物超微粉和氮化物晶体的方法
CN101428771A (zh) * 2008-11-25 2009-05-13 中南大学 一种微波碳热还原降温催化煅烧制备AlN粉末的方法
CN103981381B (zh) * 2014-05-15 2017-05-17 厦门理工学院 一种溶胶法制备纳米氧化铝弥散强化铜基复合材料的方法
CN103979507A (zh) * 2014-06-04 2014-08-13 天津纳德科技有限公司 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
CN106669673B (zh) * 2015-11-11 2019-05-21 中国石油化工股份有限公司 一种co还原脱硝催化剂的制备方法
CN107903069A (zh) * 2017-12-29 2018-04-13 苏州图纳新材料科技有限公司 氮化铝粉体及其制备方法
CN109879257A (zh) * 2018-11-11 2019-06-14 淄博市新阜康特种材料有限公司 一种氮化铝粉体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134779A1 (ja) * 2016-02-03 2017-08-10 イーメックス株式会社 窒化アルミニウム薄膜、窒化アルミニウム薄膜の形成方法、及び、電極材料
CN106082149A (zh) * 2016-06-15 2016-11-09 潮州三环(集团)股份有限公司 氮化铝粉体的制备方法
CN106882773A (zh) * 2017-03-06 2017-06-23 昆明理工大学 一种制备氮化铝的方法
CN111020194A (zh) * 2019-11-16 2020-04-17 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法
CN111129632A (zh) * 2019-11-22 2020-05-08 深圳清华大学研究院 废旧三元锂离子电池正负极混合材料回收方法
CN113753867A (zh) * 2021-08-31 2021-12-07 湖南邦普循环科技有限公司 一种氮化铝的制备方法

Also Published As

Publication number Publication date
CN113753867A (zh) 2021-12-07
DE112022002488T5 (de) 2024-03-07
GB202318477D0 (en) 2024-01-17
CN113753867B (zh) 2023-09-12
GB2621958A (en) 2024-02-28
ES2970593A2 (es) 2024-05-29

Similar Documents

Publication Publication Date Title
Peng et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system
CN108550939B (zh) 一种从废旧锂电池中选择性回收锂并制备碳酸锂的方法
CN106129511A (zh) 一种从废旧锂离子电池材料中综合回收有价金属的方法
JP2018538445A (ja) ケイ酸塩鉱物からのリチウムの回収
CN101508471B (zh) 四氧化三钴生产工艺
CN108265178B (zh) 一种钴镍冶金废水渣的处理方法
CN112340759A (zh) 一种利用二次铝灰制备聚合氯化铝并回收硅单质的方法
CN108330298A (zh) 一种从多金属云母矿石中提取铷、铯、锂、钾的方法
CN109628744B (zh) 一种从含钨硬质合金废料中回收钨和钴的方法
WO2023029572A1 (zh) 一种氮化铝的制备方法
CN106222456A (zh) 一种从废旧镍氢电池中回收稀土并转型的方法
CN113233482A (zh) 一种二次铝灰资源化利用方法
CN111333046A (zh) 一种基于盐酸循环的废磷酸铁锂正极的资源化回收方法及***
CN101148268A (zh) 一种利用含钨的锡炉渣或钨锡中矿分离提取钨酸钙和锡渣的方法
CN110714124A (zh) 从钨废料回收渣中提取钴的方法
Liu et al. Oriented conversion of spent LiCoO2-lithium battery cathode materials to high-value products via thermochemical reduction with common ammonium oxalate
CN105936979A (zh) 一种用于含铅废弃物的铅回收剂及其应用方法
WO2024040910A1 (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN115852152A (zh) 一种协同处理电池黑粉与镍钴氢氧化物的方法
CN109593965A (zh) 一种从铝基石油精炼废催化剂中回收有价元素的方法
WO2023029575A1 (zh) 电池粉浸出液中除氟铜的方法
CN115149134A (zh) 高温氯化焙烧废旧锂电池的方法、设备和应用
CN113981230A (zh) 一种镍钴渣浸出处理的方法
CN114032396A (zh) 一种低温无害化湿法处理铝灰的方法
CN111268747B (zh) 一种基于盐酸再生循环的废旧三元电池正极材料的资源化回收方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318477

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220512

WWE Wipo information: entry into national phase

Ref document number: P202390236

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002488

Country of ref document: DE