WO2023029572A1 - Méthode de préparation de nitrure d'aluminium - Google Patents

Méthode de préparation de nitrure d'aluminium Download PDF

Info

Publication number
WO2023029572A1
WO2023029572A1 PCT/CN2022/092488 CN2022092488W WO2023029572A1 WO 2023029572 A1 WO2023029572 A1 WO 2023029572A1 CN 2022092488 W CN2022092488 W CN 2022092488W WO 2023029572 A1 WO2023029572 A1 WO 2023029572A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
positive electrode
aluminum
reaction
solid
Prior art date
Application number
PCT/CN2022/092488
Other languages
English (en)
Chinese (zh)
Inventor
蔡海兵
刘卫
刘勇奇
李长东
巩勤学
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Priority to DE112022002488.7T priority Critical patent/DE112022002488T5/de
Priority to HU2400178A priority patent/HUP2400178A1/hu
Priority to ES202390236A priority patent/ES2970593A2/es
Priority to GB2318477.3A priority patent/GB2621958A/en
Publication of WO2023029572A1 publication Critical patent/WO2023029572A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0056Scrap treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0073Leaching or slurrying with acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of recovery and reuse of waste lithium batteries, in particular to a preparation method of aluminum nitride.
  • lithium batteries are widely used in new energy vehicles, 3C consumer products, and energy storage batteries.
  • 3C refers to computers, communications, and consumer electronics. Electronic products The abbreviation of the three types of electronic products.
  • the existing dry process processes waste lithium batteries, and the recovered battery powder contains a large amount of valuable metals, and the investment cost for later cleaning is relatively high, and the waste residue after the existing process is directly piled up as solid waste, causing environmental pollution and waste of resources .
  • incineration and crushing and sorting are the most commonly used methods to deal with waste lithium batteries; incineration has high energy consumption, long process and low metal recovery rate.
  • the battery powder produced by the incineration method has high impurity content, and the post-processing cost is too high.
  • due to the low melting point of the positive electrode current collector metal aluminum it is easy to melt during heat treatment and will penetrate into the battery powder, making it difficult to separate valuable metals, which is not conducive to industrial production.
  • the crushing and separation process is simple, the production environment is harsh, the dust is scattered, and the equipment is prone to failure.
  • the copper-aluminum mixture of the product has a high content of nickel and cobalt, which is difficult to effectively recover and is not conducive to production.
  • ammonia and aluminum are mainly directly subjected to nitriding reaction, and then crushed and classified to obtain aluminum nitride powder, or fully mixed with alumina and carbon, and then reduced in an electric furnace at 1700°C to obtain nitriding. aluminum.
  • the metallic aluminum needs to be crushed to the micron level, which is extremely dangerous; during the reaction process, the pipeline may not be tightly sealed when nitrogen gas is filled, resulting in a violent reaction between the internal aluminum powder and the air, which is extremely unsafe and not conducive to the process Production.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention provides a method for preparing aluminum nitride, which combines physical and chemical methods, can meet the industrial production requirements of environmental friendliness, low energy consumption, and high resource recovery, and has a safe process and can prepare high-purity aluminum nitride .
  • the present invention adopts the following technical solutions:
  • a preparation method of aluminum nitride comprising the following steps:
  • step (2) The aluminum hydroxide precipitation described in step (2) is mixed with the graphite material described in step (3) to granulate, and then the copper nitrate described in step (3) is added to mix and roast to obtain aluminum nitride and copper oxide.
  • the waste positive electrode powder is disassembled and crushed from waste lithium batteries to obtain broken positive and negative current collectors and separator paper, and then the broken positive current collectors are pyrolyzed and sieved to obtain Metal aluminum and waste cathode powder.
  • the crushing is shear crushing, and the sieve mesh aperture is selected to be 1 cm to 5 cm.
  • the pyrolysis temperature is 400-600° C.
  • the pyrolysis time is 0.5-1 h.
  • the sieving screen is selected from 5 to 20 mesh.
  • the mass concentration of the sodium hydroxide solution is 10-30 g/L.
  • the liquid-solid ratio of the sodium hydroxide solution and the spent positive electrode powder is 1: (1-3) L/g.
  • step (1) further includes performing wet leaching of the positive electrode powder to recover valuable metals.
  • the acid is one of hydrochloric acid and nitric acid; when the acid is hydrochloric acid, after the solid-liquid separation in step (2), aluminum hydroxide precipitation and sodium chloride solution are obtained .
  • the mass fraction of the hydrochloric acid is 20-50%.
  • the sodium chloride solution is electrolyzed to produce sodium hydroxide, which is returned to step (1) for use.
  • the electrolysis voltage of the sodium chloride solution is selected as 220V.
  • the liquid-solid ratio of the water washing is 1: (1-2) L/g, and the washing time is 10-30 minutes.
  • the sieve used for the sieving is 5-10 mesh.
  • the mass fraction of the nitric acid is 30-50%.
  • the mass ratio of the aluminum hydroxide to the graphite material is (2-3):(1-2).
  • the mass ratio of copper nitrate to aluminum hydroxide is (1-3):1.
  • the particle diameter of the granulated particles is 0.5-2.0 mm.
  • Granulation after mixing aluminum hydroxide and graphite material is more conducive to the reaction: it is because the mixed material reacts directly, and the reactants are packed tightly, which is easy to cause incomplete reaction, poor gas circulation and small contact surface; after granulation , can improve its bulkiness, large contact surface, better gas circulation, and more conducive to complete reaction.
  • the calcination is carried out in three stages, the temperature of the first stage of calcination is 200-400°C, and the time of the first stage of calcination is 0.5-2h; the temperature of the second stage of calcination is 1000-1200°C. °C, the time of the second stage of calcination is 1 ⁇ 3h; the temperature of the third stage of calcination is 1400 ⁇ 1600°C, and the time of the third stage of calcination is 5 ⁇ 8h.
  • the calcination process also includes adding a catalyst for catalysis, and the catalyst is platinum wire.
  • the present invention uses a combination of physics and chemistry to process waste lithium batteries.
  • the waste lithium batteries are disassembled to obtain positive and negative current collectors and diaphragm paper.
  • the diaphragm paper can be sold directly, and then the positive and negative current collectors are broken separately to obtain positive and negative current collectors.
  • Negative current collector crushed material pyrolyze and sieve the positive current collector crushed material to obtain metal aluminum and waste positive electrode powder.
  • the low-temperature section is used to decompose copper nitrate into copper oxide and nitrogen dioxide, and the carbon monoxide produced by part of the carbon reacts with nitrogen dioxide to generate nitrogen, and platinum wire is added in the furnace body as a catalyst.
  • Alumina is decomposed into alumina powder, and graphite, alumina and nitrogen are synthesized into aluminum nitride powder in the high temperature section, which also reduces the subsequent carbon removal process.
  • the reaction process In the process of synthesizing aluminum nitride of the present invention, no additional delivery of nitrogen is needed, and the reaction process is in a self-sufficient state, so that the reaction is more stable, and the purity of the formed aluminum nitride is high.
  • the method of the invention directly treats the positive and negative electrodes separately, which reduces the difficulty of subsequent impurity removal.
  • the chemical dissolution method is used instead of physical crushing, and it is more beneficial to the removal of impurities in the positive electrode powder, because on the one hand, the aluminum source is obtained from the positive electrode powder, and on the other hand, the impurity metal aluminum is removed from the positive electrode powder.
  • the method of the present invention does not produce waste residue and waste water as a whole, has relatively stable reaction, simple operation process, high resource recovery rate, and can be put into production later.
  • Fig. 1 is the process flow chart of embodiment 1 of the present invention.
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) at a mass ratio of 1:2, put them into the pelletizer, the size of the sphere is 1mm, and mix the copper nitrate solution and aluminum hydroxide by The mass ratio is 2:1 and the sphere is put into the same tube furnace respectively, and a small amount of platinum wire is put into the furnace.
  • the high-temperature roasting design is divided into three stages. At 1000°C, keep warm for 2 hours, and the three stages are as follows: the temperature is controlled at 1400°C, and the holding time is 6 hours, and finally aluminum nitride powder and copper oxide are obtained.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum, copper oxide and aluminum nitride are sold directly, and the positive electrode powder can enter the wet process. leach.
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) at a mass ratio of 1:2, put them into the pelletizer, the size of the sphere is 1mm, and mix the copper nitrate solution and aluminum hydroxide by The mass ratio is 3:1 and the sphere is put into the same tubular furnace respectively, and a small amount of platinum wire is put into the furnace.
  • the high-temperature roasting design is divided into three stages. At 1000°C, keep warm for 2 hours, and the three stages are as follows: the temperature is controlled at 1400°C, and the holding time is 6 hours, and finally aluminum nitride powder and copper oxide are obtained.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum, copper oxide and aluminum nitride are sold directly, and the positive electrode powder can enter the wet process. leach.
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) at a mass ratio of 1:1, put them into the pelletizer, the size of the sphere is 1mm, and mix the copper nitrate solution and aluminum hydroxide by The mass ratio is 2:1 and the sphere is put into the same tube furnace respectively, and a small amount of platinum wire is put into the furnace.
  • the high-temperature roasting design is divided into three stages. Control at 1200°C, keep warm for 2h; the third stage is; the temperature is controlled at 1600°C, keep warm for 6h, and finally remove carbon at 500°C under air circulation, keep warm for 1h to obtain aluminum nitride powder.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum, copper oxide and aluminum nitride are sold directly, and the positive electrode powder can enter the wet process. leach.
  • the preparation method of this comparative example aluminum nitride powder comprises the following steps:
  • step (6) Mix the graphite material in step (5) with the aluminum hydroxide precipitate in step (4) in a mass ratio of 1:2, put them into the pelletizer, the size of the spheres is 1mm, put the spheres into the tube furnace, Sufficient nitrogen is filled, and the high-temperature roasting design is divided into three stages.
  • the first stage is: the temperature is controlled at 200°C, and the heat preservation is 1h; the second stage is: the temperature is controlled at 1000°C, and the heat preservation is 2h; After 6 hours, aluminum nitride powder is finally obtained.
  • the separator paper, metal copper, metal aluminum, positive electrode powder and aluminum nitride powder are obtained.
  • the separator paper, metal copper, metal aluminum and aluminum nitride are sold directly, and the positive electrode powder can be wet leached.
  • Nitric acid Copper requires additional processing.
  • the copper oxide heated by copper nitrate is highly feasible to be reduced to metallic copper, the product has good purity, high selling value, and strong recyclability.
  • the copper nitrate solution in the comparative example is not treated, and the impurity content of the substance is high, the direct sale value is low, additional processing is required, and it is toxic, harmful and explosive, and it is easy to cause a particularly large hidden danger if it is not handled in time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne le domaine du recyclage de batteries au lithium usagées. L'invention concerne une méthode de préparation de nitrure d'aluminium. La méthode de préparation comprend les étapes suivantes consistant à : ajouter une solution d'hydroxyde de sodium à une poudre d'électrode positive usagée pour réaction, et effectuer une séparation solide-liquide pour obtenir une solution d'aluminate de sodium et une poudre d'électrode positive ; ajouter de l'acide à la solution d'aluminate de sodium pour réaction, effectuer une séparation solide-liquide, et extraire une phase solide pour obtenir un précipité d'hydroxyde d'aluminium ; effectuer un lavage à l'eau et un tamisage sur un collecteur de courant négatif, effectuer une séparation solide-liquide, extraire une phase solide et ajouter de l'acide nitrique pour réaction, et effectuer une séparation solide-liquide pour obtenir un matériau de graphite et du nitrate de cuivre ; mélanger le précipité d'hydroxyde d'aluminium avec le matériau de graphite, granuler le mélange, puis ajouter du nitrate de cuivre pour mélange, et effectuer une réaction de calcination pour obtenir du nitrure d'aluminium et de l'oxyde de cuivre. Selon la présente invention, de l'azote n'a pas besoin d'être additionnellement transporté dans le procédé de synthèse de nitrure d'aluminium, et un état d'auto-suffisance est toujours maintenu dans le procédé de réaction, de telle sorte que la réaction est plus stable, et la pureté du nitrure d'aluminium généré est élevée.
PCT/CN2022/092488 2021-08-31 2022-05-12 Méthode de préparation de nitrure d'aluminium WO2023029572A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022002488.7T DE112022002488T5 (de) 2021-08-31 2022-05-12 Herstellungsverfahren von aluminiumnitrid
HU2400178A HUP2400178A1 (hu) 2021-08-31 2022-05-12 Eljárás alumínium-nitrid elõállítására
ES202390236A ES2970593A2 (es) 2021-08-31 2022-05-12 Metodo de preparacion del nitruro de aluminio
GB2318477.3A GB2621958A (en) 2021-08-31 2022-05-12 Preparation method for aluminum nitride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111014201.3 2021-08-31
CN202111014201.3A CN113753867B (zh) 2021-08-31 2021-08-31 一种氮化铝的制备方法

Publications (1)

Publication Number Publication Date
WO2023029572A1 true WO2023029572A1 (fr) 2023-03-09

Family

ID=78792168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092488 WO2023029572A1 (fr) 2021-08-31 2022-05-12 Méthode de préparation de nitrure d'aluminium

Country Status (6)

Country Link
CN (1) CN113753867B (fr)
DE (1) DE112022002488T5 (fr)
ES (1) ES2970593A2 (fr)
GB (1) GB2621958A (fr)
HU (1) HUP2400178A1 (fr)
WO (1) WO2023029572A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753867B (zh) * 2021-08-31 2023-09-12 湖南邦普循环科技有限公司 一种氮化铝的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082149A (zh) * 2016-06-15 2016-11-09 潮州三环(集团)股份有限公司 氮化铝粉体的制备方法
CN106882773A (zh) * 2017-03-06 2017-06-23 昆明理工大学 一种制备氮化铝的方法
WO2017134779A1 (fr) * 2016-02-03 2017-08-10 イーメックス株式会社 Film mince de nitrure d'aluminium, procédé de formation d'un film mince de nitrure d'aluminium, et matériau d'électrode
CN111020194A (zh) * 2019-11-16 2020-04-17 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法
CN111129632A (zh) * 2019-11-22 2020-05-08 深圳清华大学研究院 废旧三元锂离子电池正负极混合材料回收方法
CN113753867A (zh) * 2021-08-31 2021-12-07 湖南邦普循环科技有限公司 一种氮化铝的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243906A (ja) * 1990-09-26 1992-09-01 Lonza Ag α−窒化ケイ素粉末の製造方法
US5260397A (en) * 1990-10-09 1993-11-09 Jensen James A Thermoset polymeric precursor for aluminum nitride
TW434184B (en) * 1997-11-24 2001-05-16 Nat Science Council Method for production of aluminum nitride powder
JP3911554B2 (ja) * 2000-12-13 2007-05-09 独立行政法人産業技術総合研究所 球状窒化アルミニウムフィラー及びその製造方法
JP2003225573A (ja) * 2002-01-31 2003-08-12 National Institute For Materials Science 酸化亜鉛系光触媒とその製造方法
CN1173879C (zh) * 2002-02-07 2004-11-03 山东大学 水热条件下制备氮化物超微粉和氮化物晶体的方法
CN101428771A (zh) * 2008-11-25 2009-05-13 中南大学 一种微波碳热还原降温催化煅烧制备AlN粉末的方法
CN103981381B (zh) * 2014-05-15 2017-05-17 厦门理工学院 一种溶胶法制备纳米氧化铝弥散强化铜基复合材料的方法
CN103979507A (zh) * 2014-06-04 2014-08-13 天津纳德科技有限公司 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
CN106669673B (zh) * 2015-11-11 2019-05-21 中国石油化工股份有限公司 一种co还原脱硝催化剂的制备方法
CN107903069A (zh) * 2017-12-29 2018-04-13 苏州图纳新材料科技有限公司 氮化铝粉体及其制备方法
CN109879257A (zh) * 2018-11-11 2019-06-14 淄博市新阜康特种材料有限公司 一种氮化铝粉体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134779A1 (fr) * 2016-02-03 2017-08-10 イーメックス株式会社 Film mince de nitrure d'aluminium, procédé de formation d'un film mince de nitrure d'aluminium, et matériau d'électrode
CN106082149A (zh) * 2016-06-15 2016-11-09 潮州三环(集团)股份有限公司 氮化铝粉体的制备方法
CN106882773A (zh) * 2017-03-06 2017-06-23 昆明理工大学 一种制备氮化铝的方法
CN111020194A (zh) * 2019-11-16 2020-04-17 银隆新能源股份有限公司 一种从废旧钛酸锂正负极粉合成钛铝合金的方法
CN111129632A (zh) * 2019-11-22 2020-05-08 深圳清华大学研究院 废旧三元锂离子电池正负极混合材料回收方法
CN113753867A (zh) * 2021-08-31 2021-12-07 湖南邦普循环科技有限公司 一种氮化铝的制备方法

Also Published As

Publication number Publication date
CN113753867A (zh) 2021-12-07
GB202318477D0 (en) 2024-01-17
ES2970593A2 (es) 2024-05-29
DE112022002488T5 (de) 2024-03-07
GB2621958A (en) 2024-02-28
HUP2400178A1 (hu) 2024-06-28
CN113753867B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
Peng et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system
CN108550939B (zh) 一种从废旧锂电池中选择性回收锂并制备碳酸锂的方法
CN106129511A (zh) 一种从废旧锂离子电池材料中综合回收有价金属的方法
CN101508471B (zh) 四氧化三钴生产工艺
CN109852807A (zh) 一种废旧锂离子电池的氧化处理方法
CN108265178B (zh) 一种钴镍冶金废水渣的处理方法
CN112340759A (zh) 一种利用二次铝灰制备聚合氯化铝并回收硅单质的方法
CN108330298A (zh) 一种从多金属云母矿石中提取铷、铯、锂、钾的方法
CN109628744B (zh) 一种从含钨硬质合金废料中回收钨和钴的方法
CN106222456A (zh) 一种从废旧镍氢电池中回收稀土并转型的方法
WO2023029572A1 (fr) Méthode de préparation de nitrure d'aluminium
WO2024040910A1 (fr) Procédé de récupération de métaux de valeur à partir d'une batterie lithium-ion usagée
CN113233482A (zh) 一种二次铝灰资源化利用方法
CN111333046A (zh) 一种基于盐酸循环的废磷酸铁锂正极的资源化回收方法及***
CN101148268A (zh) 一种利用含钨的锡炉渣或钨锡中矿分离提取钨酸钙和锡渣的方法
CN110714124A (zh) 从钨废料回收渣中提取钴的方法
Liu et al. Oriented conversion of spent LiCoO2-lithium battery cathode materials to high-value products via thermochemical reduction with common ammonium oxalate
CN109593965A (zh) 一种从铝基石油精炼废催化剂中回收有价元素的方法
CN105936979A (zh) 一种用于含铅废弃物的铅回收剂及其应用方法
CN116553502A (zh) 一种有效回收废旧磷酸铁锂电池正极材料的方法
CN115852152A (zh) 一种协同处理电池黑粉与镍钴氢氧化物的方法
WO2023029575A1 (fr) Procédé d'élimination du fluorure de cuivre d'un lixiviat de poudre pour batterie
CN115149134A (zh) 高温氯化焙烧废旧锂电池的方法、设备和应用
CN114540622A (zh) 一种锂电子电池正极材料中提取金属元素的方法
CN113981230A (zh) 一种镍钴渣浸出处理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318477

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220512

WWE Wipo information: entry into national phase

Ref document number: P202390236

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002488

Country of ref document: DE