WO2023026447A1 - 灌流状態検出方法、灌流状態検出装置及び医療装置 - Google Patents

灌流状態検出方法、灌流状態検出装置及び医療装置 Download PDF

Info

Publication number
WO2023026447A1
WO2023026447A1 PCT/JP2021/031424 JP2021031424W WO2023026447A1 WO 2023026447 A1 WO2023026447 A1 WO 2023026447A1 JP 2021031424 W JP2021031424 W JP 2021031424W WO 2023026447 A1 WO2023026447 A1 WO 2023026447A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
perfusion state
flow rate
perfusion
conduit
Prior art date
Application number
PCT/JP2021/031424
Other languages
English (en)
French (fr)
Inventor
尚英 鶴田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2021/031424 priority Critical patent/WO2023026447A1/ja
Priority to JP2023543591A priority patent/JPWO2023026447A5/ja
Publication of WO2023026447A1 publication Critical patent/WO2023026447A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems

Definitions

  • the present invention relates to a perfusion state detection method, a perfusion state detection device, and a medical device that can be used as a device for recovering calculus in a subject.
  • a calculus recovery device that crushes calculus using laser light and recovers the crushed calculus fragments.
  • a technique has been proposed in which a laser beam is emitted from a laser probe inserted through a treatment instrument channel of an endoscope to finely pulverize a calculus.
  • crushed stones crushed stones are grasped with forceps and extracted outside the body.
  • Japanese Patent Application Laid-Open No. 2018-166725 discloses a technique for estimating whether or not the suction line is clogged by monitoring the time change of the suction pressure of the suction line.
  • An object of the present invention is to provide a perfusion state detection method, a perfusion state detection device, and a medical device that can prevent the aspiration tube from becoming clogged.
  • a perfusion state detection method includes: driving a pump to flow a liquid through a duct inserted into a living body; measuring the flow rate of the liquid flowing through the duct; detecting a perfusion state of the duct based on the relationship between any two of a flow rate of the liquid flowing through the duct and a pressure in the duct; Control the flow of liquids.
  • a perfusion state detection device includes a pump for causing a liquid to flow through a duct inserted into a living body, a flow meter for measuring the flow rate of the liquid flowing through the duct, a drive output to the pump, a detection circuit for detecting the perfusion state of the duct based on the relationship between any two of the flow rate of the liquid flowing through the duct and the pressure in the duct; and a processor for controlling the flow of liquid in the conduit.
  • a perfusion state detection device includes a water supply conduit inserted into a living body for supplying a liquid to the living body, a water supply pump for flowing the liquid into the water supply conduit, an aspiration pipeline inserted into the living body for aspirating liquid from the living body; a suction pump for aspirating the liquid from the living body via the aspiration pipeline; and aspiration of the aspiration pipeline a flow meter provided in a flow path for measuring the flow rate of the liquid flowing in the suction flow path; a valve for causing reverse jetting by a water hammer action in the suction flow path; and a processor, wherein the processor comprises detects the perfusion state of the suction line based on the relationship between any two of the drive output to the suction pump, the flow rate of the liquid flowing through the suction line, and the suction pressure in the suction line; Based on the detection result of the perfusion state, the opening and closing of the valve is controlled to cause the reverse injection in the suction line.
  • a medical device comprises an endoscope, a pump for causing a liquid to flow through a duct inserted through the endoscope inserted into a living body, and measuring the flow rate of the liquid flowing through the duct.
  • a detection circuit that detects the perfusion state of the conduit based on the relationship between any two of the drive output to the pump, the flow rate of the liquid flowing through the conduit, and the pressure in the conduit;
  • a processor for controlling the flow of liquid in the conduit based on the perfusion state detection result.
  • FIG. 1 is a schematic configuration diagram showing a medical system including a medical device according to a first embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a medical device including a perfusion state detection device
  • FIG. 4 is an explanatory diagram for explaining a distal end portion of an endoscope insertion section
  • FIG. 4 is an explanatory diagram for explaining a distal end portion of an endoscope insertion section
  • 4 is an explanatory diagram for explaining detection of a perfusion state by a perfusion state detection circuit 14
  • FIG. 4 is a flow chart for explaining perfusion control of the medical device 10.
  • FIG. It is an explanatory view for explaining operation of a modification.
  • FIG. 9 is a flow chart for explaining the operation in the modified example; 9 is a flowchart for explaining the operation of another modified example; FIG. 4 is a block diagram showing a second embodiment of the present invention; FIG. FIG. 10 is an explanatory diagram for explaining a perfusion state detection method of the perfusion state detection circuit 14 in the second embodiment; 4 is a flowchart for explaining perfusion control of the medical device 10A; FIG. 11 is a block diagram showing another modified example; FIG. 11 is a block diagram showing another modified example; 15 is a flowchart for explaining the operation of the modification of FIG. 14; FIG. 3 is a block diagram showing a third embodiment of the invention; FIG. 11 is an explanatory diagram for explaining a perfusion state detection method of a perfusion state detection circuit 14 in the third embodiment;
  • FIG. 1 is a schematic configuration diagram showing a medical system including a medical device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a medical device including a perfusion state detection device.
  • the perfusion state is detected based on the relationship between the flow rate of the suction line for discharging the calculus from the body and the pump drive output, thereby making it possible to detect early that a calculus has been caught. It is.
  • a medical system 1 including a medical device 10 will be described with reference to FIG.
  • the medical system 1 includes a medical device 10, an endoscope 20, a laser device 30, a video processor 40, a light source device 45, and a monitor 50.
  • the endoscope 20 has an elongated insertion portion 21 and an operation portion 22 .
  • the endoscope 20 has an insertion section 21 inserted into an organ of a subject, such as a kidney, images the organ, and outputs an imaging signal.
  • the insertion section 21 has, for example, a flexible section 21a on the proximal side, a curved section (not shown) on the distal side of the flexible section 21a, and a rigid distal section 26 (see FIG. 3) on the distal side of the curved section.
  • An operating section 22 provided with various buttons for operating the endoscope 20 is provided on the proximal end side of the insertion section 21 .
  • the bending portion is bent by operating the operation portion 22 .
  • One end of the universal cord 23 is connected to the operation unit 22 , and the other end of the universal cord 23 is connected to the video processor 40 and the light source device 45 .
  • the endoscope 20, the video processor 40, and the light source device 45 are interconnected by the universal cord 23, and various signals and illumination light are transmitted.
  • the video processor 40 controls the entire medical system 1.
  • the video processor 40 receives an imaging signal from the endoscope 20 via the universal cord 23 and obtains an image signal by performing signal processing on the input imaging signal.
  • Video processor 40 outputs the image signal to monitor 50 .
  • Monitor 50 displays an image based on the image signal output from processor 40 .
  • the light source device 45 has, for example, a white LED or the like, and emits illumination light. Illumination light emitted by the light source device 45 is guided to the rigid distal end portion 26 via a light guide (not shown) inserted through the universal cord 23 and the insertion portion 21 .
  • the operation part 22 is provided with a water supply tube mounting base 24 and a T-tube mounting base 25 .
  • a water supply tube 61 connected to a tank 60 is connected to the water supply tube attachment cap 24 .
  • the water supply tube 61 is inserted through the insertion section 21 to the distal end of the rigid distal end portion 26 .
  • the operation part 22 has an opening communicating with a suction channel 27 (see FIG. 3) provided in the insertion part 21, and a T-tube fitting base 25 is provided in this opening.
  • a T-tube 70 is attached to the T-tube attachment cap 25 .
  • the T-tube 70 is provided with a laser fiber attachment port 71 .
  • a fiber attachment portion 31 a of the laser fiber 31 connected to the laser device 30 is attached to the laser fiber attachment port 71 .
  • the laser fiber 31 can be inserted into the suction channel 27 via the tee 70 and the tee fitting ferrule 25 .
  • the T-tube 70 is provided with a drain pipe 72 .
  • a tube attachment portion 63 of the suction tube 62 a is attached to the drain mouthpiece 72 .
  • the T-tube 70 is provided with a cock 73, which allows the water sucked from the suction channel 27 to flow toward the suction tube 62a and prevent it from flowing toward the laser fiber attachment port 71 side.
  • the suction tube 62a is connected to the secondary strainer 64b via the primary strainer 64a and the suction tube 62b.
  • the secondary strainer 64b is connected to a drain tank 66 via a suction tube 62c.
  • the suction tubes 62a, 62b, and 62c may be referred to as the suction tubes 62 without distinction.
  • the suction tube 62a, the suction tube 62b, and the suction tube 62c may be connected without the primary strainer 64a and the secondary strainer 64b.
  • the medical device 10 is provided with a water pump 12a and a suction pump 12b.
  • the water pump 12a and the suction pump 12b may be configured by, for example, tube pumps.
  • the water pump 12a supplies the liquid filled in the tank 60 to the internal organs of the body via the water tube 61 .
  • the suction pump 12b is connected to the suction tube 62a via a suction tube 62c, a secondary strainer 64b, a suction tube 62b and a primary strainer 64a, and the negative pressure of the suction tube 62c by the suction pump 12b is , is transmitted to the suction tube 62a.
  • the liquid sucked from internal organs by the suction pump 12b passes through the suction channel 27, the suction tube 62a, the primary strainer 64a, the suction tube 62b, the secondary strainer 64a and the suction tube 62c, and flows into the drainage tank 66. discharged to Note that the primary strainer 64a and the secondary strainer 64b are sometimes referred to as the strainer 64 without distinction.
  • FIGS. 3 and 4 are explanatory diagrams for explaining the distal end portion of the insertion portion of the endoscope.
  • the rigid distal end portion 26 of the insertion portion 21 has an illumination window (not shown) in which the distal end surface of the light guide faces, and an observation window (not shown) for guiding an optical image of the subject to the light receiving surface of an imaging device (not shown). is placed.
  • a tip opening 61 a of a water supply tube 61 is arranged on the tip surface of the hard tip portion 26 . 3 and 4 indicate that the liquid is discharged from the tip opening 61a of the water supply tube 61. As shown in FIG.
  • the liquid (physiological saline) stored in the tank 60 is sent from the distal end surface of the rigid distal end portion 26 to the internal organs of the body via the water feeding tube 61 inserted into the insertion portion 21. .
  • a tip opening 27 a of the suction channel 27 is arranged on the tip surface of the rigid tip 26 .
  • the suction tube 27 and the suction tube 62 may be used as a suction line to drain the organ to the outside.
  • the laser fiber 31 inserted from the T-tube 70 is passed through the suction channel 27 and placed in the suction channel 27 with the distal end protruding from the distal end surface of the rigid distal end portion 26. .
  • the laser fiber 31 is composed of a core/clad 35 and a jacket 36 covering the core/clad 35 .
  • the laser device 30 irradiates laser light from the tip of the laser fiber 31 via the laser fiber 31 .
  • the laser fiber 31 When calculi are collected, as shown in FIG. 3, the laser fiber 31 is inserted into the aspiration channel 27, and the tip of the laser fiber 31 protrudes from the tip opening 27a.
  • Obtain an endoscopic image That is, illumination light guided by a light guide (not shown) illuminates the subject through an illumination window (not shown) at the distal end surface of the rigid distal end portion 26 . Reflected light from the subject passes through an observation window (not shown) and is received by the imaging device.
  • the imaging device acquires an imaging signal based on the optical image of the subject and outputs it to the video processor 40 via a cable (not shown) in the insertion section 21 and the universal cord 23 .
  • the video processor 40 displays an endoscopic image based on the imaging signal on the monitor 50 .
  • the operator allows the operator to observe the state inside the organ in which the rigid distal end portion 26 is placed on the monitor 50 .
  • the operator directs the tip of the laser fiber 31 toward the calculus in the organ while viewing the endoscopic image, and operates the laser device 30 to irradiate the calculus with laser light.
  • the calculus is pulverized into relatively small pulverized pieces.
  • liquid is discharged from the organ while water is being fed into the organ by the action of the water pump 12a and the suction pump 12b.
  • the calculus in the organ is sucked into the suction channel 27 through the clearance between the laser fiber 31 inserted in the suction channel 27 and the inner surface of the suction channel 27, and passes through the T-tube 70. is discharged into the suction tube 62a.
  • the laser fiber 31 is pulled out from the laser fiber attachment port 71 . This removes the laser fiber 31 from the suction channel 27 as shown in FIG. Thereafter, the calculi are expelled out of the body via the relatively wide suction channel 27 .
  • the calculus since the calculus is recovered while the laser fiber 31 is inserted into the suction channel 27, the calculus passes through a relatively narrow drainage channel between the laser fiber 31 and the inner surface of the suction channel 27. , and calculi are likely to be caught between the suction channel 27 and the laser fiber 31 .
  • the suction channel 27 is a relatively narrow drainage channel, and even if suction is performed with the laser fiber 31 removed from the suction channel 27 as shown in FIG. There is Once a calculus is caught, subsequent calculi are likely to be caught starting from the caught calculus, eventually leading to blockage of the suction channel 27 . For example, if such occlusion of the suction channel 27 occurs during retrieval of intrarenal stones, an increase in intrarenal pelvic pressure may be of concern.
  • the medical device 10 includes a control circuit 11, a suction pump 12b, a flow meter 13, a perfusion state detection circuit 14 and an electromagnetic valve 15.
  • the control circuit 11, the flowmeter 13, and the perfusion state detection circuit 14 constitute a perfusion state detection device.
  • the control circuit 11 and the perfusion state detection circuit 14 may be configured by a processor using a CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), or the like.
  • the control circuit 11 and the perfusion state detection circuit 14 may operate according to a program stored in a memory (not shown), or may implement part or all of their functions with hardware electronic circuits. good.
  • the control circuit 11 and the perfusion state detection circuit 14 may be configured by one processor, or may be configured by a plurality of processors.
  • the function of the perfusion state detection circuit 14 may be implemented by the control circuit 11 .
  • the control circuit 11 controls each part of the medical device 10 .
  • the control circuit 11 generates a drive output for driving the suction pump 12b and outputs it to the suction pump 12b.
  • the suction pump 12 b operates based on the drive output to generate a predetermined suction pressure in the suction channel formed by the suction channel 27 and the suction tube 62 .
  • the suction pump 12b has a flow rate substantially proportional to the drive output. Liquid can flow into the suction line. That is, in this case, the flow rate of the suction conduit increases or decreases in proportion to the drive output.
  • a flow meter 13 is provided in the middle of the suction pipe line by the suction tube 62 from the strainer 64 to the suction pump 12b.
  • the flow meter 13 measures the flow rate of the liquid flowing through the suction channel of the suction tube 62 and outputs the measurement result to the control circuit 11 and the perfusion state detection circuit 14 .
  • a user such as an operator can set the flow rate through the suction channel using an input device (not shown).
  • the flow rate of the suction line may be set to a predetermined flow rate.
  • control circuit 11 changes the drive output for the suction pump 12b based on the measurement result of the flow meter 13 in order to maintain the set flow rate (set flow rate).
  • Perform feedback control such as D (differential) control.
  • the drive output to the suction pump 12b also increases in response to the decrease in the flow rate due to the increase in the channel resistance. and the flow rate is maintained at the set flow rate.
  • the drive output to the pump 12b reaches the upper limit, the flow rate drops below the set flow rate, and finally the flow rate is blocked. state may be.
  • the perfusion state detection circuit 14 early detects calculus catching from the perfusion state. That is, the perfusion state detection circuit 14 is provided with not only the measurement result of the flow rate from the flowmeter 13 but also the drive output or information about the drive output (hereinafter simply referred to as drive output) from the control circuit 11 .
  • the perfusion state detection circuit 14 is controlled by the control circuit 11, and based on the drive output from the control circuit 11 and the measurement result of the flow rate from the flow meter 13, feeds and aspirates water into the organ via the water feed tube 61.
  • the state of perfusion (hereinafter referred to as perfusion state) is detected based on the channel 27 and drainage through the suction line by the suction tube 62 .
  • FIG. 5 shows the perfusion state detection circuit. 14 is an explanatory diagram for explaining detection of a perfusion state by 14; FIG. In FIG. 5, the drive output V (V) for the suction pump 12b is plotted on the horizontal axis, and the flow rate F (mL/min) of the liquid flowing through the suction pipe is plotted on the vertical axis. The relationship with the flow rate F is shown. As described above, when the line resistance of the suction line is constant, the flow rate F also changes in proportion to the increase or decrease in the drive output to the suction pump 12b.
  • a straight line 81 in FIG. 5 indicates a VF characteristic curve for the channel resistance of the suction channel (hereinafter referred to as initial channel resistance) in a normal perfusion state.
  • the line resistance of the suction line is considered to be the initial conduit resistance in normal conditions. That is, in this case, it is considered that there is no increase in channel resistance due to calculus or the like being caught in the suction channel.
  • the perfusion state detection circuit 14 obtains the relationship between the drive output V obtained from the output of the control circuit 11 and the flow rate F obtained from the output of the flow meter 13 .
  • the perfusion state detection circuit 14 detects a range within a predetermined distance (hereinafter referred to as a first determination threshold) from a straight line 81 indicating that the line resistance of the suction line is in a normal state, that is, Regarding the normal determination range 82 in FIG. 5, it is determined that the change in the pipeline resistance is within the normal range.
  • a first determination threshold a range within a predetermined distance (hereinafter referred to as a first determination threshold) from a straight line 81 indicating that the line resistance of the suction line is in a normal state, that is, Regarding the normal determination range 82 in FIG. 5, it is determined that the change in the pipeline resistance is within the normal range.
  • the normality determination range 82 takes into consideration fluctuations in channel resistance caused by normal bending of the insertion portion 21 and the like.
  • the range of the normality determination range 82 that is, the size of the first determination threshold can be changed as appropriate. By appropriately setting the first determination threshold value, it is possible to adjust the degree of stuckness determined as
  • the perfusion state detection circuit 14 determines whether or not the obtained characteristic value of drive output V - flow rate F is within the normal determination range 82 . It should be noted that the channel resistance of the suction channel increases not only when a calculus is caught, but also when the suction channel is buckled and a foreign object sticks to the tip opening. The perfusion state detection circuit 14 can also detect abnormal perfusion states in such cases.
  • the perfusion state detection circuit 14 may read from a memory (not shown) a first determination threshold for determining whether or not it is within the normal determination range 82 .
  • a user such as an operator may be able to set and change the first determination threshold using an input device (not shown).
  • perfusion abnormality determination is performed by combining the driving output V and the flow rate F. Therefore, the perfusion abnormality determination is not subject to complicated interference of flow, and the aspiration line is not affected by calculus or the like. It is also possible to detect perfusion abnormalities such as partial blockage due to
  • the suction tube 62 has a bypass section that branches in the middle of the flow path between the flow meter 13 and the suction pump 12b, and the electromagnetic valve 15 is connected to the end of this bypass section.
  • the solenoid valve 15 opens the suction tube 62 to the atmosphere in the fully open state, and closes the bypass portion in the fully closed state.
  • the perfusion state detection circuit 14 controls the opening/closing of the electromagnetic valve 15 based on the determination result of whether the characteristic value of the drive output V-flow rate F is within the normal determination range 82 or not. That is, the perfusion state detection circuit 14 fully closes the electromagnetic valve when it determines that there is no abnormality in perfusion (pipe line resistance), and when it determines that there is an abnormality in perfusion (pipe line resistance). returns the solenoid valve 15 to the fully closed state after momentarily opening the solenoid valve 15 .
  • a water hammer phenomenon occurs when the solenoid valve 15 is momentarily fully opened and then returned to a fully closed state.
  • the valve that causes such a water hammer phenomenon is not limited to the electromagnetic valve 15, and various valves can be employed. Due to the water hammer phenomenon caused by the opening and closing of the solenoid valve 15, a reverse injection of the fluid in the suction pipe occurs. As a result, the calculus caught in the suction channel is released from the suction channel by the pressure of the liquid due to the reverse injection, and the calculus caught in the suction channel is eliminated.
  • the perfusion state detection circuit 14 may output warning information indicating that the suction duct may be blocked when it determines that the duct resistance is abnormal.
  • the monitor 50 may display a warning display based on this warning information.
  • FIG. 6 is a flow chart for explaining perfusion control of the medical device 10.
  • the control circuit 11 maintains the flow rate F at the set flow rate by PID-controlling the drive output V to the suction pump 12b.
  • the control circuit 11 also performs PID control for maintaining the set flow rate of the water pump 12a.
  • the control circuit 11 executes the processes after step S2 in parallel with the control of step S1.
  • the processing after step S2 is performed by the perfusion state detection circuit 14 under the control of the control circuit 11.
  • FIG. The flowmeter 13 measures the flow rate F of the liquid flowing through the suction channel and outputs the measurement result to the control circuit 11 and the perfusion state detection circuit 14 .
  • the control circuit 11 performs PID control of the driving output V based on the measurement result of the flow rate F (S1).
  • the control circuit 11 provides the perfusion state detection circuit 14 with a drive output V to be set for the suction pump 12b.
  • the flow rate F and the drive output V are input to the perfusion state detection circuit 14 (S2).
  • step S3 the perfusion state detection circuit 14 calculates the distance L between the normal VF function on the VF plane indicated by the straight line 81 in FIG. .
  • the perfusion state detection circuit 14 determines whether or not the distance L exceeds the first determination threshold (step S4).
  • the coordinate values on the VF plane of the drive output V and the flow rate F obtained by the perfusion state detection circuit 14 are indicated by circled number 1 in FIG.
  • the set flow rate shall be the set flow rate shown in FIG.
  • the control circuit 11 feedback-controls the driving output V based on the measurement result of the flow meter 13 (S1). With this control, if there is no change in the channel resistance of the suction channel, the drive output V-flow rate F takes coordinate values on the straight line 81 in FIG. 5 in accordance with the change in the set flow rate.
  • the channel resistance of the suction channel increases from the initial channel resistance due to the normal bending operation of the insertion portion 21 or the like. Then, as indicated by circled number 2 in FIG. 5, the flow rate F decreases if the drive output V does not change. However, due to the feedback control by the control circuit 11, the drive output V rises, and the flow rate F returns to the set flow rate, as indicated by circled number 3 in FIG. 5, regardless of the change in the conduit resistance. When the channel resistance increases due to the normal bending operation of the insertion portion 21, the channel resistance may return to the original initial channel resistance. In this case, the control circuit 11 performs feedback control. , the driving output V and the flow rate F return to the coordinate values of the circled number 1.
  • the perfusion state detection circuit 14 detects when the relationship between the driving output V and the flow rate F deviates from the normal determination range 82, that is, when the coordinates of the driving output V - the flow rate F and the straight line 81 If the distance L exceeds the first determination threshold, it is determined that there is an abnormality in perfusion, that is, that a calculus is caught (YES determination in S4). When the perfusion state detection circuit 14 determines that the distance L is within the first determination threshold value (NO determination in S4), the process returns from step S4 to step S2.
  • the perfusion state detection circuit 14 determines in step S5 that a calculus has been caught in the aspiration line. to decide.
  • the driving output V - flow rate F will be the coordinates of the circled number 1 to the circled number 6 in FIG. Position may change. Even in such a case, the perfusion state detection circuit 14 can quickly determine that a calculus has been caught from the occurrence of such a problem.
  • the flow rate does not return to the set flow rate even when the drive output V reaches the maximum value due to the PID control by the control circuit 11, and the drive output V-flow rate F becomes the coordinate position of the circled number 7 in FIG. . Even in this case, the perfusion state detection circuit 14 can determine that a calculus is caught before the aspiration line is completely blocked.
  • the perfusion state detection circuit 14 outputs warning information indicating the possibility of blockage in the next step S6.
  • the perfusion state detection circuit 14 fully opens the solenoid valve 15 in the next step S7 to open the suction line to the atmosphere, waits for a set time in step S8, and returns the solenoid valve 15 to the fully closed state in step S9. . Then, a water hammer phenomenon occurs and reverse injection occurs in the suction pipe. As a result, the calculus caught in the suction channel is released, and the calculus caught in the suction channel is eliminated.
  • step S10 the perfusion state detection circuit 14 waits for a predetermined time until the channel resistance is no longer affected by the reverse injection, and then returns to step S2 to continue detecting the perfusion state. Thereafter, similar operations are repeated.
  • the perfusion state is detected based on the relationship between the driving output V and the flow rate F.
  • the suction pump is PID-controlled, the flow rate setting value is constant. Then, it is possible to simply compare the driving output V of the pump with a predetermined threshold value and detect an abnormality in the perfusion state depending on whether the driving output V exceeds the predetermined threshold value.
  • the electromagnetic valve 15 which opens the suction pipe to the atmosphere, is opened and then closed to cause reverse injection. It is also possible to provide a valve in the middle so that the reverse injection is caused by closing the valve and then returning it to the open state.
  • FIG. 7 is an explanatory diagram for explaining the operation of the modification.
  • the hardware configuration of this modification is the same as that of the first embodiment, and the method of detecting an abnormality in the perfusion state is also the same as that of the first embodiment.
  • the suction duct is opened to the atmosphere at predetermined intervals to cause reverse injection due to water hammer action.
  • FIG. 7 shows the control in this modified example, with time on the horizontal axis and flow rate F on the vertical axis.
  • FIG. 8 is a flowchart for explaining the operation in this modified example.
  • the same steps as in FIG. 6 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the perfusion state detection circuit 14 determines whether or not periodic reverse injection is set. For example, the control circuit 11 sets a mode in which periodic reverse injection is performed (periodic reverse injection ON) and a mode in which periodic reverse injection is not performed (periodic reverse injection OFF) according to an operator's operation or a predetermined sequence. It is possible. It is now assumed that periodic reverse injection OFF is set. Based on the NO determination in step S11, the perfusion state detection circuit 14 proceeds to step S15 and performs perfusion state detection and warning processing. The processing in step S15 is the same as steps S2 to S6 in FIG.
  • the perfusion state detection circuit 14 determines whether or not the detection results of the drive output V and the flow rate F have departed from the normal determination range 82, that is, the normal VF characteristic curve (straight line 81) on the VF plane.
  • An abnormality in the perfusion state is detected by determining whether or not the distance L between the measured drive output V and the coordinates of the flow rate F exceeds the first determination threshold.
  • the perfusion state detection circuit 14 determines whether or not an abnormality in the perfusion state has been detected in the next step S16. If the perfusion state detection circuit 14 does not detect an abnormality in the perfusion state (NO determination in step S16), the process returns to step S11. As shown in the first perfusion state detection period in FIG. 7, steps S11, S15, and S16 are repeated when no calculus is caught in the suction channel. In this case, the PID control by the control circuit 11 maintains the flow rate F at the set flow rate, as shown in FIG.
  • step S11 periodic reverse injection is set to ON.
  • step S12 determines whether or not the reverse injection timing has come.
  • the periodic reverse injection is performed at a predetermined cycle, and the perfusion state detection circuit 14 recognizes the timing of the reverse injection depending on whether or not the predetermined cycle has been reached.
  • the periodic reverse injection is set to ON, the first reverse injection is performed immediately thereafter.
  • step S13 the perfusion state detection circuit 14 proceeds to step S13 due to the YES determination in step S12, and performs reverse injection.
  • the reverse injection in step S13 is the same processing as steps S7 to S9 in FIG.
  • FIG. 7 shows that the suction pipe is opened to the atmosphere and reverse injection is performed by opening the solenoid valve for a short period of time.
  • the execution of reverse injection causes the flow rate F to momentarily become negative.
  • a negative flow rate F means that the liquid flows in the reverse direction through the aspiration line. This may release the catching of the calculus.
  • the perfusion state detection circuit 14 waits for a specified time in the next step S14, and then detects the perfusion state in step S15. As shown in FIG. 7, the flow rate is significantly different from the set flow rate due to the reverse injection, and until the influence of the reverse injection is removed, the perfusion state cannot be detected correctly even if the driving output V and the flow rate F are used. Can not. Therefore, the perfusion state detection circuit 14 detects the perfusion state after the flow rate has returned to the set flow rate due to the effect of the reverse injection becoming sufficiently small. If no abnormality in the perfusion state is detected, the process returns from step S16 to step S11, and the same process is repeated.
  • step S15 it is assumed that a calculus or the like is caught in the suction pipeline. Then, it is assumed that an abnormality in the perfusion state is detected as a result of the perfusion state detection in step S15. In this case, the perfusion state detection circuit 14 shifts the process from step S16 to step S17 to perform reverse injection.
  • the reverse injection in step S17 is also the same processing as steps S7 to S9 in FIG.
  • the perfusion state detection circuit 14 determines whether reverse injection has been performed a specified number of times. If the reverse injection does not reach the prescribed number of times, the perfusion state detection circuit 14 returns the process to step S17 to continue the reverse injection.
  • the example of FIG. 7 shows that the flow rate F in the perfusion state detection period has decreased relatively significantly from the set flow rate, and as a result, an abnormality in the perfusion state has been detected, and as a result, reverse injection has been performed three times. there is If the specified number of times is set to 3, the perfusion state detection circuit 14 returns the process to step S14 when the reverse injection is completed 3 times. In this way, the same processing is repeated thereafter.
  • the example of FIG. 7 shows that three consecutive reverse injections were performed twice.
  • the reverse injection is continuously executed a specified number of times in steps S17 and S18. .
  • the number of consecutive reverse injections may be changed between when the periodic reverse injection is ON and when the periodic reverse injection is OFF.
  • FIG. 9 is a flow chart for explaining the operation of another modification.
  • the hardware configuration of this modification is the same as that of the first embodiment, and the method of detecting an abnormality in the perfusion state is also the same as that of the first embodiment.
  • the water supply amount is reduced.
  • FIG. 9 the same steps as in FIG. 6 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the perfusion state detection circuit 14 detects an abnormality in the perfusion state as a result of a calculus being caught in the suction channel, reverse injection is performed in steps S7 to S9. As a result, there is a possibility that the stuck stone will be removed, but if the flow rate F of the suction line decreases during the period until the stuck stone is completely removed, the water volume in the organ will increase and the pressure inside the organ will increase. It may rise. Therefore, in this modified example, when the perfusion state detection circuit 14 detects an abnormality in the perfusion state, the amount of water supplied by the water pump 12a is reduced to suppress the increase in internal organ pressure.
  • Step S21 is a process of reducing the output of the water pump 12a when the distance L exceeds the first determination threshold and an abnormality in the perfusion state is detected.
  • the control circuit 11 controls the water pump 12a to reduce its output when the perfusion state detection circuit 14 provides a detection result indicating an abnormality in the perfusion state. As a result, the amount of liquid supplied to the organ is reduced, preventing the organ internal pressure from rising.
  • step S4 If the perfusion state detection circuit 14 determines that the perfusion state has returned to normal (NO determination in step S4), the control circuit 11 returns the output of the water pump 12a to the original user set value in step S22. After that, the process returns to step S2.
  • modified example of FIG. 9 shows an example applied to the first embodiment of FIG. 6, it can also be applied to the modified example of FIG.
  • FIG. 10 is a block diagram showing a second embodiment of the invention.
  • the same components as those in FIG. 2 are given the same reference numerals, and the description thereof is omitted.
  • This embodiment enables early detection of calculus hooking by detecting the state of perfusion based on the relationship between the flow rate and the suction pressure flowing through the suction channel.
  • the medical device 10A of this embodiment differs from the medical device 10 of FIG. 2 in that a pressure gauge 16 is added and the output of the pressure gauge 16 is supplied to the perfusion state detection circuit 14 instead of the drive output V.
  • Other configurations are the same as those of the first embodiment.
  • This embodiment differs from the first embodiment in the method of detecting the perfusion state.
  • the pressure gauge 16 measures the pressure inside the suction line and outputs the measurement result to the perfusion state detection circuit 14 .
  • FIG. 11 is an explanatory diagram for explaining the perfusion state detection method of the perfusion state detection circuit 14 in the second embodiment.
  • the suction pressure P (kPa) by the suction pump 12b is taken on the horizontal axis
  • the flow rate F (mL/min) of the liquid flowing through the suction channel is taken on the vertical axis.
  • the relationship with the flow rate F is shown.
  • the line resistance of the suction line is constant
  • the flow rate F also changes in proportion to the increase or decrease in the suction pressure P by the suction pump 12b.
  • a straight line 85 in FIG. 11 indicates the PF characteristic curve at the initial line resistance under normal perfusion conditions.
  • the line resistance of the suction line is considered to be the initial conduit resistance in normal conditions. That is, in this case, it is considered that there is no increase in channel resistance due to calculus or the like being caught in the suction channel.
  • the perfusion state detection circuit 14 obtains the relationship between the suction pressure P obtained from the output of the pressure gauge 16 and the flow rate F obtained from the output of the flow meter 13 .
  • a range within a predetermined distance (hereinafter referred to as a second determination threshold value) from a straight line 85 indicating that the channel resistance of the suction channel is in a normal state, that is, a normal determination range 86 in FIG. Regarding , it is determined that the change in pipeline resistance is within the normal range.
  • the normality determination range 86 takes into consideration fluctuations in channel resistance caused by normal bending of the insertion portion 21 and the like.
  • the range of the normality determination range 86 that is, the size of the second determination threshold can be changed as appropriate. By appropriately setting the second determination threshold value, it is possible to adjust the degree of stuckness determined as abnormal.
  • the perfusion state detection circuit 14 determines whether the obtained characteristic value of suction pressure P-flow rate F is within the normal determination range 86 or not.
  • the perfusion state detection circuit 14 may read a second determination threshold for determining whether or not the normal determination range 86 is included from a memory (not shown).
  • a user such as an operator may be able to set and change the second determination threshold using an input device (not shown).
  • the suction pressure P and the flow rate F are combined to determine perfusion abnormality. It is also possible to detect perfusion abnormalities as small as blockage.
  • FIG. 12 is a flow chart for explaining perfusion control of the medical device 10A.
  • the same steps as in FIG. 6 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the flow of FIG. 12 differs from the flow of FIG. 6 in that steps S31 and S32 are employed instead of steps S3 and S4, respectively.
  • the coordinate values of the aspiration pressure P and the flow rate F obtained by the perfusion state detection circuit 14 on the PF plane are indicated by circled number 1 in FIG.
  • the set flow rate shall be the set flow rate shown in FIG.
  • the control circuit 11 feedback-controls the suction pressure P based on the measurement result of the flow meter 13 (step S1 in FIG. 12). With this control, if there is no change in the channel resistance of the suction channel, the suction pressure P-flow rate F takes coordinate values on the straight line 85 in FIG. 11 in accordance with the change in the set flow rate.
  • the channel resistance of the suction channel increases from the initial channel resistance due to the normal bending operation of the insertion portion 21 or the like. Then, as indicated by circled number 2 in FIG. 11, the flow rate F decreases if the suction pressure P does not change. However, due to feedback control by the control circuit 11, the suction pressure P rises (negative pressure increases), and the flow rate F returns to the set flow rate, as indicated by the circled number 3 in FIG. 11, regardless of the change in the pipeline resistance. . When the channel resistance increases due to the normal bending operation of the insertion portion 21, the channel resistance may return to the original initial channel resistance. In this case, the control circuit 11 performs feedback control. , the suction pressure P and the flow rate F return to the coordinate values of the circled number 1.
  • the increase in initial duct resistance is caused by calculus being caught in the aspiration duct, the number of calculi that are caught first may increase, so the duct resistance will increase. It may rise further. Then, the flow rate F decreases as indicated by circled number 4 in FIG. 11, and the suction pressure P rises (circled number 5) by the feedback control of the control circuit 11 to maintain the set flow rate.
  • the perfusion state detection circuit 14 calculates the distance L between the coordinates of the suction pressure P-flow rate F and the straight line 85 in step S31 of FIG.
  • the perfusion state detection circuit 14 detects when the relationship between the suction pressure P and the flow rate F deviates from the normal determination range 86, that is, when the distance L between the coordinates of the suction pressure P and the flow rate F and the straight line 85 is the second value. If the determination threshold value is exceeded, it is determined that an abnormality has occurred in perfusion, that is, that a calculus has been caught (determination of YES in S32). When the perfusion state detection circuit 14 determines that the distance L is within the second determination threshold value (NO determination in S32), the process returns from step S32 to step S2.
  • the perfusion state detection circuit 14 determines in step S5 that a calculus is caught in the aspiration duct. . If the flow rate does not return to the set flow rate even with PID control, or if many calculi are caught in a short period of time, suction pressure P - flow rate F will be the coordinates of circled numbers 1 to 6 in FIG. Position may change. Even in such a case, the perfusion state detection circuit 14 can quickly determine that a calculus has been caught from the occurrence of such a problem.
  • the suction pressure P may not return to the set flow rate, and the suction pressure P-flow rate F may become the coordinate position of the circled number 7 in FIG. .
  • the perfusion state detection circuit 14 can determine that a calculus is caught before the aspiration line is completely blocked.
  • the processing when the perfusion state detection circuit 14 detects an abnormality in the perfusion state, such as when a calculus is caught, is the same as in the first embodiment.
  • FIGS. 7, 8 and 9 may be applied to this embodiment.
  • FIG. 13 is a block diagram showing another modification.
  • the same components as those in FIG. 11 are assigned the same reference numerals, and descriptions thereof are omitted.
  • FIG. 13 employs a medical device 10B in which the pressure gauge 16 is omitted from the medical device 10A, and uses a pressure gauge 16A provided outside the medical device 10B to detect the suction pressure of the suction duct. be.
  • FIG. 14 is a block diagram showing another modification.
  • This modification combines the first and second embodiments to detect an abnormality in the perfusion state based on the relationship between the drive output V and the flow rate F, and detect an abnormality in the perfusion state based on the relationship between the suction pressure P and the flow rate F. It does both.
  • the medical device 10C of FIG. 14 supplies the perfusion state detection circuit 14 with the flow rate F from the flow meter 13, the drive output V from the control circuit 11, and the suction pressure P from the pressure gauge 16, which is the same as in FIGS. 10 medical devices 10, 10A.
  • the perfusion state detection circuit 14 uses the relationship of drive output V-flow rate F to detect an abnormality in the perfusion state, and also uses the relationship of suction pressure P-flow rate F to detect an abnormality in the perfusion state.
  • FIG. 15 is a flow chart for explaining the operation of the modified example of FIG.
  • the same steps as in FIGS. 6 and 12 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the flow meter 13 measures the flow rate F of the liquid flowing through the suction channel and outputs the measurement result to the control circuit 11 and the perfusion state detection circuit 14 .
  • the control circuit 11 provides the perfusion state detection circuit 14 with a drive output V to be set for the suction pump 12b.
  • the pressure gauge 16 measures the suction pressure P of the suction line and supplies it to the perfusion state detection circuit 14 .
  • the flow rate F, the drive output V and the suction pressure P are input to the perfusion state detection circuit 14 (step S41 in FIG. 15).
  • step S42 the perfusion state detection circuit 14 calculates the distance L1 between the normal VF function on the VF plane indicated by the straight line 81 in FIG. 5 and the acquired drive output V and flow rate F coordinates. Also, the distance L2 between the normal PF function on the PF plane indicated by the straight line 85 in FIG. 11 and the coordinate values of the acquired suction pressure P and flow rate F is calculated.
  • the perfusion state detection circuit 14 determines whether the distance L1 has exceeded the first determination threshold and determines whether the distance L2 has exceeded the second determination threshold. The perfusion state detection circuit 14 determines that an abnormality in the perfusion state has occurred when the distance L1 exceeds the first determination threshold and/or the distance L2 exceeds the second determination threshold (step S43). YES determination), and the process proceeds to step S5. Further, when the distance L1 is within the first determination threshold and the distance L2 is within the second determination threshold, the perfusion state detection circuit 14 determines that there is no abnormality in the perfusion state ( NO determination in step S43), and the process returns to step S41.
  • both the detection result of the perfusion state abnormality detection based on the relationship between the drive output V and the flow rate F and the detection result of the perfusion state abnormality detection based on the relationship between the suction pressure P and the flow rate F are used. , an abnormality in the perfusion state is determined, and even if the calculus is slightly caught, it is possible to detect the calculus at an early stage.
  • FIG. 16 is a block diagram showing a third embodiment of the invention.
  • the same components as those in FIG. 14 are given the same reference numerals, and descriptions thereof are omitted.
  • this embodiment by detecting the state of perfusion based on the relationship between the suction pressure of the suction line for discharging the calculus from the body and the drive output to the suction pump 12b, it is detected early that a calculus has been caught. It is possible.
  • the medical device 10D in this embodiment differs from the medical device 10A in FIG. 10 in that the flow meter 13 is omitted and the control circuit 11 does not perform PID control.
  • Other configurations are the same as those of the modification of FIG. This embodiment differs from the above embodiments in the method of detecting the perfusion state.
  • FIG. 17 is an explanatory diagram for explaining the perfusion state detection method of the perfusion state detection circuit 14 in the third embodiment.
  • 17 shows the relationship between the suction pressure P and the drive output V on a PV plane in which the horizontal axis indicates the suction pressure P (kPa) by the suction pump 12b and the vertical axis indicates the drive output V (V) for the suction pump 12b.
  • the control circuit 11 does not perform PID control that feeds back the flow rate of the liquid flowing through the suction channel, and outputs a driving output V set by the user to the suction pump 12b.
  • a straight line 91 in FIG. 17 indicates the PV characteristic curve at the initial line resistance under normal perfusion conditions.
  • the channel resistance of the suction channel is considered to be the initial conduit resistance in normal conditions. That is, in this case, it is considered that there is no increase in channel resistance due to calculus or the like being caught in the suction channel.
  • the perfusion state detection circuit 14 obtains the relationship between the suction pressure P obtained from the output of the pressure gauge 16 and the drive output V obtained from the output of the control circuit 11 .
  • a range within a predetermined distance (hereinafter referred to as a third determination threshold value) from a straight line 91 indicating that the channel resistance of the suction channel is in a normal state, that is, a normal determination range 92 in FIG. Regarding , it is determined that the change in pipeline resistance is within the normal range.
  • the normality determination range 92 takes into consideration fluctuations in channel resistance caused by normal bending of the insertion portion 21 and the like.
  • the range of the normality determination range 92 that is, the size of the third determination threshold can be changed as appropriate.
  • the perfusion state detection circuit 14 determines whether the obtained characteristic value of suction pressure P-drive output V is within the normal determination range 92 or not.
  • the perfusion state detection circuit 14 may read a third determination threshold for determining whether or not the normal determination range 92 is included from a memory (not shown).
  • a user such as an operator may be able to set and change the third determination threshold using an input device (not shown).
  • the suction pressure P and the drive output V are combined to determine perfusion abnormality. It is also possible to detect perfusion abnormalities such as partial blockage.
  • an abnormality in the perfusion state is detected by the same flow as in each of the above embodiments.
  • the set flow rate shall be the set flow rate shown in FIG.
  • the control circuit 11 does not perform PID control, and the drive output V for the suction pump 12b is the user set value.
  • the drive output V for obtaining the set flow rate is set at the initial pipeline resistance.
  • the channel resistance of the suction channel increases from the initial channel resistance due to the normal bending operation of the insertion portion 21 or the like. Then, the suction pressure P rises (the negative pressure increases), as indicated by circled number 2 in FIG.
  • the channel resistance may return to the original initial channel resistance.
  • the drive output V returns to the coordinate value of the circled number 1.
  • the perfusion state detection circuit 14 calculates the distance L between the coordinates of the suction pressure P - the drive output V and the straight line 91 .
  • the perfusion state detection circuit 14 detects when the relationship between the suction pressure P and the drive output V deviates from the normal determination range 92, that is, when the distance L between the coordinates of the suction pressure P and the drive output V and the straight line 91 If the determination threshold value of 3 is exceeded, it is determined that an abnormality has occurred in perfusion, that is, that a calculus has been caught.
  • the perfusion state detection circuit 14 determines that the distance L is within the third determination threshold, it determines that the perfusion state is normal.
  • the processing when the perfusion state detection circuit 14 detects an abnormality in the perfusion state, such as when a calculus is caught, is the same as in the above embodiments.
  • the perfusion state is detected based on the relationship between the suction pressure P and the drive output V.
  • the suction pressure P can be simply Abnormal perfusion conditions can also be detected by comparing with a predetermined threshold and depending on whether the aspiration pressure P exceeds the predetermined threshold. Further, even when the suction pump is PID-controlled, it is possible to detect the perfusion state based on the relationship between the suction pressure P and the drive output V.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components of all components shown in the embodiments may be deleted. Furthermore, components across different embodiments may be combined as appropriate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

医療装置は、生体内に挿入された管路に液体を流すためにポンプを駆動し、前記管路に流れる液体の流量を計測し、前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における吸引圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出し、前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御する。

Description

灌流状態検出方法、灌流状態検出装置及び医療装置
 本発明は、被検体内の結石を回収する装置として利用可能な灌流状態検出方法、灌流状態検出装置及び医療装置に関する。
 従来、結石を体内から回収するための装置として、レーザ光を利用して結石を粉砕し、破砕された結石片を回収する結石回収装置が開発されている。例えば、内視鏡の処置具チャンネルに挿通されたレーザプローブからレーザ光を照射して、結石を細かく粉砕する技術が提案されている。この提案では、粉砕された結石(砕石)は鉗子によって把持され、体外に摘出される。
 また、送水および吸引を行って結石を回収する結石治療システムもある。このシステムでは、結石は、吸引管を経由して水とともに灌流されて体外に回収される。しかしながら、結石が吸引管に引っ掛かってしまうことがある。そうすると、引っ掛かった結石を起点に、後続の結石が引っ掛かり、最終的に吸引管の閉塞に至ることがある。
 そこで、日本国特開2018ー166725号公報においては、吸引ラインの吸引圧の時間変化を監視することで、吸引ラインの閉塞の有無を推定する技術が開示されている。
 しかしながら、日本国特開2018ー166725号公報の技術では、吸引ラインに閉塞が生じた後、閉塞の有無が判定されるまでの間に比較的大きな時間差を有する。
特開2018ー166725号公報
 本発明は、吸引管が閉塞に至ることを防止することができる灌流状態検出方法、灌流状態検出装置及び医療装置を提供することを目的とする。
 本発明の一態様による灌流状態検出方法は、生体内に挿入された管路に液体を流すためにポンプを駆動し、前記管路に流れる液体の流量を計測し、前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出し、前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御する。
 本発明の一態様による灌流状態検出装置は、生体内に挿入された管路に液体を流すためのポンプと、前記管路に流れる液体の流量を計測する流量計と、前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出する検出回路と、前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御するプロセッサとを具備する。
 また、本発明の他の態様による灌流状態検出装置は、生体内に挿入され前記生体内に液体を供給するための送水管路と、前記送水管路に前記液体を流すための送水ポンプと、前記生体内に挿入され前記生体内から液体を吸引するための吸引管路と、前記生体内から前記吸引管路を経由して前記液体を吸引するための吸引ポンプと、前記吸引管路の吸引流路に設けられ、前記吸引流路に流れる前記液体の流量を計測する流量計と、前記吸引管路に水撃作用による逆噴射を生じさせるためのバルブと、プロセッサと、を備え、前記プロセッサは、前記吸引ポンプに対する駆動出力、前記吸引管路に流れる液体の流量及び前記吸引管路における吸引圧力のうちのいずれか2つの関係に基づいて、前記吸引管路の灌流状態を検出し、前記灌流状態の検出結果に基づいて、前記バルブの開閉を制御して前記吸引管路に前記逆噴射を生じさせる。
 本発明の一態様による医療装置は、内視鏡と、生体内に挿入された前記内視鏡に挿通された管路に液体を流すためのポンプと、前記管路に流れる液体の流量を計測する流量計と、前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出する検出回路と、前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御するプロセッサとを具備する。
 本発明によれば、吸引管が閉塞に至ることを防止することができるという効果を有する。
本発明の第1の実施形態に係る医療装置を含む医療システムを示す概略構成図である。 灌流状態検出装置を含む医療装置の構成を示すブロック図である。 内視鏡挿入部の先端部を説明するための説明図である。 内視鏡挿入部の先端部を説明するための説明図である。 灌流状態検出回路14による灌流状態の検出を説明するための説明図である。 医療装置10の灌流制御を説明するためのフローチャートである。 変形例の動作を説明するための説明図である。 変形例における動作を説明するためのフローチャートである。 他の変形例の動作を説明するためのフローチャートである。 本発明の第2の実施形態を示すブロック図である。 第2の実施形態における灌流状態検出回路14の灌流状態の検出手法を説明するための説明図である。 医療装置10Aの灌流制御を説明するためのフローチャートである。 他の変形例を示すブロック図である。 他の変形例を示すブロック図である。 図14の変形例の動作を説明するためのフローチャートである。 本発明の第3の実施形態を示すブロック図である。 第3の実施形態における灌流状態検出回路14の灌流状態の検出手法を説明するための説明図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。
(第1の実施形態)
 図1は本発明の第1の実施形態に係る医療装置を含む医療システムを示す概略構成図である。また、図2は灌流状態検出装置を含む医療装置の構成を示すブロック図である。本実施形態は、結石を体外に排出するための吸引管路に流れる流量とポンプ駆動出力との関係に基づいて灌流の状態を検出することにより、結石が引っ掛かったことを早期に検出可能とするものである。
 図1を参照して医療装置10を含む医療システム1について説明する。
 図1に示すように、医療システム1は、医療装置10と、内視鏡20と、レーザ装置30と、ビデオプロセッサ40と、光源装置45と、モニタ50と、を具備する。内視鏡20は、細長の挿入部21及び操作部22を有する。内視鏡20は、挿入部21が被検体の臓器、例えば腎臓の中に挿入され、臓器を撮像して撮像信号を出力する。
 挿入部21は、例えば、基端側に軟性部21aが構成され、軟性部21aの先端側に図示しない湾曲部、湾曲部の先端側に硬性先端部26(図3参照)が連設される。挿入部21の基端側には、内視鏡20を操作するための各種ボタン類が設けられた操作部22が配設される。なお、操作部22の操作によって、湾曲部は湾曲するようになっている。
 操作部22にはユニバーサルコード23の一端が接続され、ユニバーサルコード23の他端は、ビデオプロセッサ40及び光源装置45に接続される。ユニバーサルコード23によって、内視鏡20とビデオプロセッサ40及び光源装置45とが相互に接続され、各種信号や照明光が伝送される。
 ビデオプロセッサ40は医療システム1の全体を制御する。ビデオプロセッサ40は、内視鏡20からユニバーサルコード23を経由して撮像信号が入力され、入力された撮像信号に対する信号処理によって画像信号を得る。ビデオプロセッサ40は、画像信号をモニタ50に出力する。モニタ50は、プロセッサ40が出力する画像信号に基づく画像を表示する。
 光源装置45は、例えば白色LED等を有し、照明光を出射する。光源装置45が出射する照明光は、ユニバーサルコード23および挿入部21に挿通されたライトガイド(不図示)を経由して硬性先端部26に導光される。
 操作部22には、送水チューブ取付け口金24及びT字管取付け口金25が設けられている。送水チューブ取付け口金24には、タンク60に接続された送水チューブ61が接続される。送水チューブ61は、挿入部21内において、硬性先端部26の先端まで挿通される。
 また、操作部22は、挿入部21内に設けられた吸引チャンネル27(図3参照)に連通した開口部を有し、この開口部にT字管取付け口金25が設けられる。T字管取付け口金25には、T字管70が取り付けられる。T字管70にはレーザ用ファイバ取付け口71が設けられる。レーザ用ファイバ取付け口71には、レーザ装置30に接続されたレーザ用ファイバ31のファイバ取付け部31aが取り付けられる。レーザ用ファイバ31は、T字管70及びT字管取付け口金25を経由して吸引チャンネル27内に挿通可能である。
 また、T字管70には、排水口金72が設けられている。排水口金72には、吸引チューブ62aのチューブ取付け部63が取り付けられる。T字管70には、コック73が設けられており、コック73は、吸引チャンネル27から吸引された水を吸引チューブ62a側に流し、レーザ用ファイバ取付け口71側に流れることを阻止する。
 吸引チューブ62aは、1次ストレイナー64a及び吸引チューブ62bを経由して、2次ストレイナー64bに接続される。2次ストレイナー64bは、吸引チューブ62cを経由して排水タンク66に接続される。なお、吸引チューブ62a,62b,62cを区別せずに、吸引チューブ62ということもある。また、1次ストレイナー64aや2次ストレイナー64bは無く、吸引チューブ62aと吸引チューブ62bと吸引チューブ62cとが連結されていても良い。
 医療装置10には、送水ポンプ12a及び吸引ポンプ12bが設けられている。送水ポンプ12a及び吸引ポンプ12bは、例えば、チューブポンプにより構成してもよい。送水ポンプ12aは、タンク60に充填されている液体を送水チューブ61を経由して体内の臓器に供給する。また、吸引ポンプ12bは、吸引チューブ62c、2次ストレイナー64b、吸引チューブ62b及び1次ストレイナー64aを経由して吸引チューブ62aに接続されており、吸引ポンプ12bによる吸引チューブ62cの負圧は、吸引チューブ62aに伝達される。即ち、吸引ポンプ12bによって、体内の臓器から吸引した液体が吸引チャンネル27、吸引チューブ62a、1次ストレイナー64a、吸引チューブ62b、2次ストレイナー64a及び吸引チューブ62cを経由して、排水タンク66に排出される。なお、1次ストレイナー64a、2次ストレイナー64bを区別せずに、ストレイナー64ということもある。
 図3及び図4は内視鏡挿入部の先端部を説明するための説明図である。
 挿入部21の硬性先端部26は、先端面にライトガイドの先端面が臨む照明窓(不図示)と、図示しない撮像素子の受光面に被写体光学像を導くための観察窓(不図示)とが配置される。本実施形態においては、硬性先端部26の先端面には、送水チューブ61の先端開口部61aが配置される。図3及び図4の先端開口部61aに示した矢印は、送水チューブ61の先端開口部61aから液体が吐出されることを示している。送水ポンプ12aによって、タンク60に貯留されている液体(生理食塩水)が挿入部21内に挿通された送水チューブ61を経由して、硬性先端部26の先端面から体内の臓器に送水される。
 また、硬性先端部26の先端面には、吸引チャンネル27の先端開口部27aが配置される。図3及び図4の先端開口部27aに示した矢印は、体内の臓器内の液体が吸引チャンネル27によって吸引されることを示している。吸引ポンプ12bによって、体内の臓器内の液体は、吸引チャンネル27、吸引チューブ62a、1次ストレイナー64a、吸引チューブ62b、2次ストレイナー64b及び吸引チューブ62cを経由して排水タンク66に排出される。
 なお、本実施形態では、吸引管路として、吸引チャンネル27及び吸引チューブ62を用いる例を示したが、吸引チャンネル27中に吸引チューブを挿通し、この吸引チューブをT字管70を経由して外部に延設することにより、この吸引チューブを吸引管路として用いて、臓器から外部に排水を行ってもよい。
 図3の例では、T字管70から挿入されたレーザ用ファイバ31は、吸引チャンネル27内を挿通され、先端が硬性先端部26の先端面から突出した状態で吸引チャンネル27内に配置される。なお、レーザ用ファイバ31は、コア・クラッド35とコア・クラッド35を被覆するジャケット36により構成される。レーザ装置30は、レーザ用ファイバ31を経由してレーザ光をレーザ用ファイバ31の先端から照射する。
 結石の回収時には、図3に示すように、レーザ用ファイバ31を吸引チャンネル27内に挿通し、レーザ用ファイバ31の先端を先端開口部27aから突出した状態で、内視鏡20により臓器内の内視鏡画像を得る。即ち、図示しないライトガイドによって導光された照明光は、硬性先端部26先端面の図示しない照明窓から被写体に照明される。被写体の反射光は、図示しない観察窓を通過して撮像素子に受光される。撮像素子は、被写体光学像に基づく撮像信号を取得して、挿入部21内の図示しないケーブル及びユニバーサルコード23を経由してビデオプロセッサ40に出力する。ビデオプロセッサ40は、撮像信号に基づく内視鏡画像をモニタ50に表示する。これにより、術者は、モニタ50において、硬性先端部26が配置された臓器内の様子を観察することができる。術者は、内視鏡画像を見ながら、レーザ用ファイバ31の先端を臓器内の結石に向け、レーザ装置30を操作して結石にレーザを照射する。レーザが照射されたことにより、結石は粉砕されて、比較的小さい粉砕片となる。
 本実施形態においては、図3に示す状態において、送水ポンプ12a及び吸引ポンプ12bの作用により、臓器内に送水を行いながら臓器内から液体を排出する。この灌流作用によって、臓器内の結石は吸引チャンネル27内に挿通されたレーザ用ファイバ31と吸引チャンネル27の内面との間の隙間から、吸引チャンネル27内に吸い込まれ、T字管70を経由して吸引チューブ62aに排出される。
 レーザ用ファイバ31によるレーザ照射が終了すると、レーザ用ファイバ取付け口71からレーザ用ファイバ31を引き抜く。これにより、図4に示すように、吸引チャンネル27からレーザ用ファイバ31が除去される。以後、結石は、比較的幅広の吸引チャンネル27を経由して体外に排出される。
 ところで、吸引チャンネル27内にレーザ用ファイバ31を挿通した状態で結石の回収が行われることから、結石はレーザ用ファイバ31と吸引チャンネル27の内面との間の比較的狭い排水路を通過することになり、結石が吸引チャンネル27とレーザ用ファイバ31との間に引っ掛かりやすい。なお、吸引チャンネル27は比較的狭い排水路であり、図4のように、吸引チャンネル27からレーザ用ファイバ31が除去された状態で吸引が行われた場合でも、結石が吸引チャンネル27に引っ掛かることがある。一旦結石が引っ掛かると、引っ掛かった結石を起点に、後続の結石が引っ掛かり、最終的に吸引チャンネル27が閉塞に至りやすい。例えば、腎臓内の結石の回収中にこのような吸引チャンネル27の閉塞が起こると、腎盂内圧の上昇が懸念される場合がある。
 そこで、本実施形態においては、灌流の状態を監視し結石が引っ掛かったことを早期に検出することを可能にする。
(医療装置10の構成)
 図2において、医療装置10は、制御回路11、吸引ポンプ12b、流量計13、灌流状態検出回路14及び電磁弁15を含む。制御回路11、流量計13及び灌流状態検出回路14によって灌流状態検出装置が構成される。図2においては、図1の1次ストレイナー64a及び2次ストレイナー64bは、ストレイナー64として示しており、吸引チューブ62a,62b,62cは、吸引チューブ62として示してある。
 制御回路11及び灌流状態検出回路14は、CPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)等を用いたプロセッサによって構成されていてもよい。制御回路11及び灌流状態検出回路14は、図示しないメモリに記憶されたプログラムに従って動作するものであってもよいし、ハードウェアの電子回路で機能の一部又は全部を実現するものであってもよい。なお、制御回路11及び灌流状態検出回路14は、1つのプロセッサによって構成されていてもよく、複数のプロセッサによって構成されていてもよい。制御回路11によって灌流状態検出回路14の機能を実現してもよい。
 制御回路11は、医療装置10の各部を制御する。制御回路11は、吸引ポンプ12bを駆動するための駆動出力を発生して吸引ポンプ12bに出力する。吸引ポンプ12bは、駆動出力に基づいて動作することで、吸引チャンネル27及び吸引チューブ62による吸引管路内に所定の吸引圧力を生じさせる。例えば、吸引チャンネル27及び吸引チューブ62による吸引管路(以下、これらを単に吸引管路という)の管路抵抗が一定であるものとすると、吸引ポンプ12bは、駆動出力に略々比例した流量の液体を吸引管路に流すことが可能である。即ち、この場合には、駆動出力に比例して、吸引管路の流量は増減する。
 ストレイナー64から吸引ポンプ12bまでの吸引チューブ62による吸引管路途中には、流量計13が設けられている。流量計13は、吸引チューブ62による吸引流路に流れる液体の流量を測定して、測定結果を制御回路11及び灌流状態検出回路14に出力する。なお、吸引管路に流れる流量は、術者等のユーザが図示しない入力装置を用いて設定することができるようになっている。あるいは、制御回路11において、吸引管路に流れる流量を所定の流量に設定するようになっていてもよい。
 本実施形態においては、制御回路11は、設定された流量(設定流量)を維持するために、流量計13の計測結果に基づいて吸引ポンプ12bに対する駆動出力を変更するP(比例)I(積分)D(微分)制御等のフィードバック制御を実施する。このフィードバック制御により、吸引管路の管路抵抗が多少変動したとしても、吸引管路の流量をユーザの設定流量に維持することができる。この結果、臓器内の圧力を一定にした状態で灌流が可能となる。
 しかしながら、吸引チャンネル27等の吸引管路内において結石が引っ掛かることにより管路抵抗が上昇した場合においても、管路抵抗の上昇による流量低下に対して、吸引ポンプ12bに対する駆動出力も増大することになり、流量は設定流量に維持される。ところが、結石の引っ掛かりが多くなり、管路抵抗が上昇し過ぎた場合には、ポンプ12bに対する駆動出力が上限に達し、流量が設定流量よりも低下してしまい、最終的には流量0の閉塞状態となる可能性がある。
 そこで、本実施形態においては、灌流状態検出回路14は、灌流の状態から結石の引っ掛かりを早期に検出する。即ち、灌流状態検出回路14には、流量計13からの流量の測定結果だけでなく、制御回路11からの駆動出力又は駆動出力に関する情報(以下、単に駆動出力という)が与えられる。灌流状態検出回路14は、制御回路11に制御されて、制御回路11からの駆動出力と流量計13からの流量の測定結果とに基づいて、送水チューブ61を経由した臓器内への送水と吸引チャンネル27及び吸引チューブ62による吸引管路を経由した排水とに基づく灌流の状態(以下、灌流状態という)を検出する。灌流状態検出回路14は、この検出結果に基づいて、例えば、結石が吸引管路に引っ掛かっているか否か等の灌流状態に異常が生じているか否かの判定を行う
 図5は灌流状態検出回路14による灌流状態の検出を説明するための説明図である。図5は横軸に吸引ポンプ12bに対する駆動出力V(V)をとり、縦軸に吸引管路に流れる液体の流量F(mL/min)をとったV-F平面上において、駆動出力Vと流量Fとの関係を示すものである。上述したように、吸引管路の管路抵抗が一定の場合には、吸引ポンプ12bに対する駆動出力の増減に比例して流量Fも変化する。図5の直線81は灌流状態が正常な状態における吸引管路の管路抵抗(以下、初期管路抵抗という)の場合のV-F特性曲線を示している。
 即ち、制御回路11の出力により得た駆動出力Vと流量計13の出力により得た流量FとによるV-F特性が、直線81の特性に一致する場合には、吸引管路の管路抵抗は正常状態における初期管路抵抗であると考えられる。即ち、この場合には、吸引管路内に結石等が引っ掛かったことによる管路抵抗の増加は生じていないと考えられる。このような灌流状態の検出のために、灌流状態検出回路14は、制御回路11の出力により得た駆動出力Vと流量計13の出力により得た流量Fとの関係を求める。
 本実施形態においては、灌流状態検出回路14は、吸引管路の管路抵抗が正常状態であることを示す直線81から所定の距離(以下、第1の判定閾値という)以内の範囲、即ち、図5の正常判定範囲82については、管路抵抗の変化は正常の範囲であると判定する。なお、正常判定範囲82は、挿入部21の正常な湾曲等に起因する管路抵抗の変動を考慮したものである。正常判定範囲82の範囲、即ち、第1の判定閾値の大きさについては、適宜設定変更可能である。第1の判定閾値を適宜設定することで、異常と判定する引っ掛かりの程度を調整することが可能である。
 灌流状態検出回路14は、求めた駆動出力V-流量Fの特性値が正常判定範囲82内に含まれるか否かを判定する。なお、吸引管路の管路抵抗は、結石の引っ掛かりだけでなく、吸引管路の座屈や先端開口部への異物の吸い付き等によっても増加する。灌流状態検出回路14は、このような場合における灌流状態の異常も検出できる。
 灌流状態検出回路14は、正常判定範囲82内に含まれるか否かを判定するための第1の判定閾値を図示しないメモリから読み込むようになっていてもよい。術者等のユーザは、この第1の判定閾値を図示しない入力装置によって設定及び変更することが可能になっていてもよい。
 流量の測定結果を単独で用いて灌流異常判定を行った場合には、吸引ポンプ12bのフィードバック制御により略完全閉塞になるまで吸引管路の閉塞が進行してからでないと灌流異常の検知はできないことが考えられる。これに対し、本実施形態では、駆動出力Vと流量Fとを組み合わせて灌流異常判定を行うようになっており、灌流異常判定が流動の複雑な干渉を受けることなく、吸引管路が結石等により一部だけ塞がれた程度の灌流異常についても検知可能である。
 吸引チューブ62は、流量計13と吸引ポンプ12bとの間の流路途中で分岐するバイパス部を有し、このバイパス部の終端に電磁弁15が接続される。電磁弁15は、全開状態では、吸引チューブ62を電磁弁15において大気開放し、全閉状態ではバイパス部を閉塞する。灌流状態検出回路14は、駆動出力V-流量Fの特性値が正常判定範囲82内に含まれるか否かの管路抵抗の異常の判定結果に基づいて、電磁弁15の開閉を制御する。即ち、灌流状態検出回路14は、灌流(管路抵抗)に異常が生じていないと判定した場合には電磁弁を全閉状態とし、灌流(管路抵抗)に異常が生じたと判定した場合には、電磁弁15を一瞬全開状態とした後全閉状態に戻す。
 電磁弁15を一瞬全開状態とした後全閉状態に戻すことによって、水撃(water hammer)現象が発生する。なお、このような水撃現象を生じさせる弁としては、電磁弁15に限らず、各種弁を採用することができる。電磁弁15の開閉によって生じた水撃現象により、吸引管路内の流体への逆噴射が発生する。この結果、吸引管路に引っ掛かっている結石は、逆噴射による液体の圧力によって、吸引管路から外れて、吸引管路における結石の引っ掛かりが解消される。
 なお、灌流状態検出回路14は、管路抵抗に異常が生じたと判定した場合には、吸引管路が閉塞する可能性が生じたことを示す警告情報を出力するようになっていてもよい。例えば、モニタ50は、この警告情報に基づく警告表示を表示するようになっていてもよい。
 次に、このように構成された実施形態の動作について図5及び図6を参照して説明する。図6は医療装置10の灌流制御を説明するためのフローチャートである。
 図6のステップS1において、制御回路11は、吸引ポンプ12bに対する駆動出力VをPID制御することで流量Fを設定流量に維持する。なお、制御回路11は送水ポンプ12aについても設定流量を維持するためのPID制御を行う。本実施形態においては、制御回路11は、ステップS1の制御と並列に、ステップS2以降の処理を実施する。なお、ステップS2以降の処理は制御回路11に制御されて灌流状態検出回路14が実施する。流量計13は、吸引管路に流れる液体の流量Fを計測して計測結果を制御回路11及び灌流状態検出回路14に出力する。制御回路11は、流量Fの計測結果に基づいて駆動出力VをPID制御する(S1)。制御回路11は、吸引ポンプ12bに設定する駆動出力Vを灌流状態検出回路14に与える。灌流状態検出回路14には、流量F及び駆動出力Vが入力される(S2)。
 灌流状態検出回路14は、ステップS3において、図5の直線81にて示すV-F平面における正常時のV-F関数と取得した駆動出力V及び流量Fの座標値との距離Lを算出する。灌流状態検出回路14は、距離Lが第1の判定閾値を超えたか否かを判定する(ステップS4)。
 いま、例えば、灌流状態検出回路14において取得される駆動出力V及び流量FのV-F平面における座標値が図5の丸数字1にて示されるものとする。なお、設定流量は、図5に示す設定流量であるものとする。制御回路11は、この設定流量を維持するために、流量計13の計測結果に基づいて駆動出力Vをフィードバック制御する(S1)。この制御により、吸引管路の管路抵抗に変化がなければ、設定流量の変化に応じて、駆動出力V-流量Fは、図5の直線81上の座標値をとる。
 ここで、例えば、挿入部21の通常の湾曲動作等の理由から吸引管路の管路抵抗が初期管路抵抗から上昇するものとする。そうすると、図5の丸数字2に示すように、駆動出力Vが変化しなければ、流量Fが低下する。しかし、制御回路11によるフィードバック制御によって、駆動出力Vが上昇し、管路抵抗の変化に拘わらず、図5の丸数字3に示すように、流量Fは設定流量に戻る。挿入部21の通常の湾曲動作等に起因して管路抵抗が上昇した場合には、管路抵抗は元の初期管路抵抗に戻ることがあり、この場合には、制御回路11によるフィードバック制御によって、駆動出力V及び流量Fは、丸数字1の座標値に戻る。
 しかし、初期管路抵抗の上昇が、吸引管路内での結石の引っ掛かり等に起因する場合には、その後最初に引っ掛かった結石を起点に引っかかる結石が増えることがあることから、管路抵抗が更に上昇することがある。そうすると、図5の丸数字4に示すように流量Fは低下し、制御回路11のフィードバック制御によって駆動出力Vが上昇し(丸数字5)、設定流量が維持される。
 本実施形態においては、灌流状態検出回路14は、駆動出力V-流量Fの関係が正常判定範囲82を逸脱することになった場合、即ち、駆動出力V-流量Fの座標と直線81との距離Lが第1の判定閾値を超えた場合には、灌流に異常が生じた、即ち、結石の引っ掛かりが発生したものと判定する(S4のYES判定)。なお、灌流状態検出回路14は、距離Lが第1の判定閾値以内であるものと判定した場合(S4のNO判定)には、処理をステップS4からステップS2に戻す。
 即ち、図5の例では、駆動出力V-流量Fの座標値が丸数字4,5になると、灌流状態検出回路14は、ステップS5において、吸引管路への結石の引っ掛かりが発生したものと判断する。なお、PID制御によっても流量が設定流量に復帰しない場合や、多くの結石が短時間に引っ掛かった場合等においては、駆動出力V-流量Fは、図5の丸数字1から丸数字6の座標位置に変化することがある。このような場合でも、灌流状態検出回路14は、このような不具合の発生から短時間に結石の引っ掛かりと判断することが可能である。
 なお、制御回路11によるPID制御により駆動出力Vが最大値になった場合でも流量が設定流量に戻らず、駆動出力V-流量Fが図5の丸数字7の座標位置になることも考えられる。この場合においても、灌流状態検出回路14は、吸引管路が完全な閉塞状態となる前に、結石の引っ掛かりが発生したものと判断することが可能である。
 灌流状態検出回路14は、次のステップS6において、閉塞の可能性があることを示す警告情報を出力する。灌流状態検出回路14は、次のステップS7において電磁弁15を全開状態にして吸引管路を大気開放し、ステップS8で設定時間待機した後、ステップS9において、電磁弁15を全閉状態に戻す。そうすると、水撃現象が生じて吸引管路に逆噴射が発生する。これにより、吸引管路に引っ掛かっていた結石が外れて、吸引管路内の結石の引っ掛かりが解消される。
 灌流状態検出回路14は、次のステップS10おいて、管路抵抗に逆噴射の影響がなくなるまでの所定時間待機した後、処理をステップS2に戻して、灌流状態の検出を継続する。以後、同様の動作が繰り返される。
 このように本実施形態においては、結石を体外に排出するための吸引管路に流れる流量とポンプ駆動出力との関係に基づいて灌流の状態を検出することにより、結石が引っ掛かったことを早期に検出可能にすることができる。即ち、吸引管路の閉塞に至る前の結石の軽微な引っ掛かりを早期に検出することができ、その状態を解消するための対策を講じることが可能となる。例えば、本実施形態においては、灌流状態の異常を検出すると、吸引管路を大気開放することで水撃作用による逆噴射を発生させて、吸引管路に引っ掛かった結石を外すことが可能である。これにより、吸引管路が閉塞してしまうことを確実に防止することができる。
 なお、第1の実施形態においては、駆動出力Vと流量Fとの関係に基づいて灌流状態を検出する例を示したが、吸引ポンプをPID制御していることから、流量の設定値が一定ならば、単にポンプの駆動出力Vを所定の閾値と比較し、駆動出力Vが所定の閾値を超えたか否かよって、灌流状態の異常を検出することも可能である。
 また、図2では、吸引管路を大気開放する電磁弁15を開状態にした後閉状態にすることによって逆噴射を生じさせたが、通常状態では開状態のバルブを吸引管路の流路途中に設け、当該バルブを閉状態にした後開状態に戻すことによって逆噴射を生じさせるように構成することも可能である。
(変形例)
 図7は変形例の動作を説明するための説明図である。本変形例のハードウェア構成は第1の実施形態と同様であり、灌流状態の異常を検出する手法も第1の実施形態と同様である。本変形例では、吸引管路の閉塞を予防するために、所定間隔で吸引管路を大気開放し、水撃作用による逆噴射を生じさせる。図7は横軸に時間をとり縦軸に流量Fをとって、本変形例における制御を示している。
 図8はこの変形例における動作を説明するためのフローチャートである。図8において、図6と同一の手順については同一符号を付して説明を省略する。
 図8のステップS11において、灌流状態検出回路14は定期的逆噴射が設定されているか否かを判定する。例えば、制御回路11は、術者の操作又は所定のシーケンスに従って、定期的逆噴射を行うモード(定期的逆噴射ON)と定期的逆噴射を行わないモード(定期的逆噴射OFF)とを設定可能である。いま、定期的逆噴射OFFが設定されているものとする。灌流状態検出回路14は、ステップS11のNO判定により、ステップS15に移行して、灌流状態検出及び警告処理を行う。ステップS15の処理は、図6のステップS2~S6と同じ処理である。即ち、灌流状態検出回路14は、駆動出力V及び流量Fの検出結果が正常判定範囲82を脱したか否か、即ち、V-F平面における正常時のV-F特性曲線(直線81)と計測した駆動出力V-流量Fの座標との距離Lが第1の判定閾値を超えたか否かを判定することで、灌流状態の異常を検出する。
 灌流状態検出回路14は、次のステップS16において灌流状態の異常を検出したか否かを判定する。灌流状態検出回路14は、灌流状態の異常を検出していない場合には(ステップS16のNO判定)、処理をステップS11に戻す。図7の最初の灌流状態検出期間において示すように、吸引管路に結石が引っ掛かっていない状態においては、ステップS11,S15,S16が繰り返される。この場合には、制御回路11によるPID制御によって、図7に示すように、流量Fは設定流量に維持される。
 次に、図7に示すように、定期的逆噴射ONに設定されるものとする。そうすると、灌流状態検出回路14は、ステップS11のYES判定により、処理をステップS12に移行して、逆噴射のタイミングになったか否かを判定する。例えば、定期的逆噴射は所定の周期で実施されるようになっており、灌流状態検出回路14は、所定の周期になったか否かによって逆噴射のタイミングを認識する。図7に示すように、定期的逆噴射ONに設定されると、その直後に最初の逆噴射が実施される。
 即ち、灌流状態検出回路14は、ステップS12のYES判定によりステップS13に移行して、逆噴射を実施する。ステップS13の逆噴射は、図6のステップS7~S9と同じ処理である。なお、図7では、電磁弁の状態が短時間だけ開になることで、吸引管路が大気開放されて逆噴射が行われることを示している。図7に示すように、逆噴射の実行によって、流量Fは、一瞬負となる。負の流量Fは、吸引管路を液体が通常とは逆方向に流れることを意味する。これにより、結石の引っ掛かりが解除されることがある。
 灌流状態検出回路14は、次のステップS14において、規定時間待機した後、ステップ15において灌流状態の検出を行う。図7に示すように、逆噴射によって流量が設定流量から著しく離間しており、逆噴射の影響を脱するまで期間は、駆動出力V及び流量Fを用いても灌流状態を正しく検出することはできない。そこで、灌流状態検出回路14は、逆噴射の影響が十分に小さくなって流量が設定流量に戻った後、灌流状態検出を行うのである。灌流状態の異常が検出されない場合には、ステップS16から処理をステップS11に戻して、同様の処理が繰り返される。
 ここで、吸引管路に結石等の引っ掛かりが生じるものとする。そうすると、ステップS15の灌流状態検出の結果、灌流状態の異常が検出されるものとする。この場合には、灌流状態検出回路14は、ステップS16から処理をステップS17に移行して、逆噴射を行う。ステップS17の逆噴射も、図6のステップS7~S9と同じ処理である。
 灌流状態検出回路14は、次のステップS18において、逆噴射が規定回数行われたか否かを判定する。逆噴射が規定回数に到達しない場合には、灌流状態検出回路14は、処理をステップS17に戻して、逆噴射を継続する。図7の例では、灌流状態検出期間における流量Fが設定流量よりも比較的大きく低下したことによって、灌流状態の異常が検出され、この結果、3回の逆噴射が行われたことを示している。規定回数として3回が設定されている場合には、灌流状態検出回路14は、3回の逆噴射が終了すると、ステップS14に処理を戻す。こうして、以後同様の処理が繰り返される。図7の例では、3回の連続逆噴射が、2回行われたことを示している。
 なお、図8のフローでは、定期的逆噴射OFF時においても、ステップS16において灌流状態の異常と判定された場合には、ステップS17,S18により、規定回数だけ連続して逆噴射が実行される。定期的逆噴射ON時と定期的逆噴射OFF時とで、逆噴射の連続回数を変更するようになっていてもよい。
 このように本変形例では、定常的に逆噴射を実行することで、吸引管路の閉塞を効果的に防止することができる。また、定常的な逆噴射によっても結石の引っ掛かりが外れない場合には、連続的な逆噴射が行われるようになっており、吸引管路の閉塞を確実に防止することが可能である。
(変形例)
 図9は他の変形例の動作を説明するためのフローチャートである。本変形例のハードウェア構成は第1の実施形態と同様であり、灌流状態の異常を検出する手法も第1の実施形態と同様である。本変形例では、灌流状態の異常を検出すると、送水量を低下させるものである。図9において図6と同一の手順については同一符号を付して説明を省略する。
 吸引管路に結石が引っ掛かった結果、灌流状態検出回路14において灌流状態に異常が生じたことが検出されると、ステップS7~S9において、逆噴射が行われる。これにより、結石の引っ掛かりが除去される可能性があるが、完全に石の引っ掛かりが除去されるまでの期間において吸引管路の流量Fが低下すると、臓器内の水量が増加して臓器内圧が上昇する可能性もある。そこで、本変形例では、灌流状態検出回路14において灌流状態に異常が生じたことが検出されると、送水ポンプ12aによる送水量を低下させて、臓器内圧の上昇を抑制するものである。
 図9のフローは、ステップS21,S22の処理を追加した点が図6のフローと異なる。ステップS21は、距離Lが第1の判定閾値を超えて、灌流状態の異常が検出された場合に、送水ポンプ12aの出力を低下させる処理である。制御回路11は、灌流状態検出回路14により灌流状態の異常を示す検出結果が与えられると、送水ポンプ12aを制御してその出力を低下させる。これにより、臓器内に供給される液体の送水量が低下し、臓器内圧が上昇することが防止される。
 なお、灌流状態検出回路14により灌流状態が正常に戻ったものと判定された場合(ステップS4のNO判定)には、制御回路11は、ステップS22において送水ポンプ12aの出力を元のユーザ設定値にした後、処理をステップS2に戻す。
 このように本変形例によれば、臓器内圧が上昇することを防止することができる。
 なお、図9の変形例は図6の第1実施形態に適用した例を示したが、図8の変形例に適用することも可能である。
(第2実施形態)
 図10は本発明の第2の実施形態を示すブロック図である。図10において図2と同一の構成要素には同一符号を付して説明を省略する。本実施形態は、吸引管路に流れる流量と吸引圧力との関係に基づいて灌流の状態を検出することにより、結石が引っ掛かったことを早期に検出可能とするものである。
 本実施形態における医療装置10Aは、圧力計16を追加すると共に、灌流状態検出回路14に駆動出力Vに代えて圧力計16の出力を供給する点が図2の医療装置10と異なる。他の構成は第1の実施形態と同様である。本実施形態は、灌流状態を検出する手法が第1の実施形態と異なる。圧力計16は、吸引管路内の圧力を計測して、計測結果を灌流状態検出回路14に出力する。
 図11は第2の実施形態における灌流状態検出回路14の灌流状態の検出手法を説明するための説明図である。図11は横軸に吸引ポンプ12bによる吸引圧力P(kPa)をとり、縦軸に吸引管路に流れる液体の流量F(mL/min)をとったP-F平面上において、吸引圧力Pと流量Fとの関係を示すものである。吸引管路の管路抵抗が一定の場合には、吸引ポンプ12bによる吸引圧力Pの増減に比例して流量Fも変化する。図11の直線85は灌流状態が正常な状態における初期管路抵抗でのP-F特性曲線を示している。
 即ち、圧力計16の出力により得た吸引圧力Pと流量計13の出力により得た流量FとによるP-F特性が、直線85の特性に一致する場合には、吸引管路の管路抵抗は正常状態における初期管路抵抗であると考えられる。即ち、この場合には、吸引管路内に結石等が引っ掛かったことによる管路抵抗の増加は生じていないと考えられる。このような灌流状態の検出のために、灌流状態検出回路14は、圧力計16の出力により得た吸引圧力Pと流量計13の出力により得た流量Fとの関係を求める。
 本実施形態においては、吸引管路の管路抵抗が正常状態であることを示す直線85から所定の距離(以下、第2の判定閾値という)以内の範囲、即ち、図11の正常判定範囲86については、管路抵抗の変化は正常の範囲であると判定する。なお、正常判定範囲86は、挿入部21の正常な湾曲等に起因する管路抵抗の変動を考慮したものである。正常判定範囲86の範囲、即ち、第2の判定閾値の大きさについては、適宜設定変更可能である。第2の判定閾値を適宜設定することで、異常と判定する引っ掛かりの程度を調整することが可能である。
 灌流状態検出回路14は、求めた吸引圧力P-流量Fの特性値が正常判定範囲86内に含まれるか否かを判定する。なお、灌流状態検出回路14は、正常判定範囲86内に含まれるか否かを判定するための第2の判定閾値を図示しないメモリから読み込むようになっていてもよい。術者等のユーザは、この第2の判定閾値を図示しない入力装置によって設定及び変更することが可能になっていてもよい。
 本実施形態においても、吸引圧力Pと流量Fとを組み合わせて灌流異常判定を行うようになっており、灌流異常判定が流動の複雑な干渉を受けることなく、吸引管路が結石等により一部だけ塞がれた程度の灌流異常についても検知可能である。
 次に、このように構成された実施形態の動作について図11及び図12を参照して説明する。図12は医療装置10Aの灌流制御を説明するためのフローチャートである。図12において図6と同一の手順には同一符号を付して説明を省略する。図12のフローは、ステップS3,S4にそれぞれ代えてステップS31,S32を採用した点が図6のフローと異なる。
 いま、例えば、灌流状態検出回路14において取得される吸引圧力P及び流量FのP-F平面における座標値が図11の丸数字1にて示されるものとする。なお、設定流量は、図11に示す設定流量であるものとする。制御回路11は、この設定流量を維持するために、流量計13の計測結果に基づいて吸引圧力Pをフィードバック制御する(図12のステップS1)。この制御により、吸引管路の管路抵抗に変化がなければ、設定流量の変化に応じて、吸引圧力P-流量Fは、図11の直線85上の座標値をとる。
 ここで、例えば、挿入部21の通常の湾曲動作等の理由から吸引管路の管路抵抗が初期管路抵抗から上昇するものとする。そうすると、図11の丸数字2に示すように、吸引圧力Pが変化しなければ、流量Fが低下する。しかし、制御回路11によるフィードバック制御によって、吸引圧力Pが上昇(負圧が増加)し、管路抵抗の変化に拘わらず、図11の丸数字3に示すように、流量Fは設定流量に戻る。挿入部21の通常の湾曲動作等に起因して管路抵抗が上昇した場合には、管路抵抗は元の初期管路抵抗に戻ることがあり、この場合には、制御回路11によるフィードバック制御によって、吸引圧力P及び流量Fは、丸数字1の座標値に戻る。
 しかし、初期管路抵抗の上昇が、吸引管路内での結石の引っ掛かり等に起因する場合には、その後最初に引っ掛かった結石を起点に引っかかる結石が増えることがあることから、管路抵抗が更に上昇することがある。そうすると、図11の丸数字4に示すように流量Fは低下し、制御回路11のフィードバック制御によって吸引圧力Pが上昇し(丸数字5)、設定流量が維持される。
 本実施形態においては、灌流状態検出回路14は、図11のステップS31において、吸引圧力P-流量Fの座標と直線85との距離Lを算出する。灌流状態検出回路14は、吸引圧力P-流量Fの関係が正常判定範囲86を逸脱することになった場合、即ち、吸引圧力P-流量Fの座標と直線85との距離Lが第2の判定閾値を超えた場合には、灌流に異常が生じた、即ち、結石の引っ掛かりが発生したものと判定する(S32のYES判定)。なお、灌流状態検出回路14は、距離Lが第2の判定閾値以内であるものと判定した場合(S32のNO判定)には、処理をステップS32からステップS2に戻す。
 図11の例では、吸引圧力P-流量Fの座標値が丸数字4,5になると、灌流状態検出回路14は、ステップS5において、吸引管路への結石の引っ掛かりが発生したものと判断する。なお、PID制御によっても流量が設定流量に復帰しない場合や、多くの結石が短時間に引っ掛かった場合等においては、吸引圧力P-流量Fは、図11の丸数字1から丸数字6の座標位置に変化することがある。このような場合でも、灌流状態検出回路14は、このような不具合の発生から短時間に結石の引っ掛かりと判断することが可能である。
 なお、制御回路11によるPID制御により吸引圧力Pが最大値になった場合でも流量が設定流量に戻らず、吸引圧力P-流量Fが図11の丸数字7の座標位置になることも考えられる。この場合においても、灌流状態検出回路14は、吸引管路が完全な閉塞状態となる前に、結石の引っ掛かりが発生したものと判断することが可能である。
 灌流状態検出回路14において、結石の引っ掛かりが発生した場合等の灌流状態の異常を検出した場合の処理は、第1の実施形態と同様である。
 このように本実施形態においては、結石を体外に排出するための吸引管路に流れる流量と吸引圧力との関係に基づいて灌流の状態を検出することにより、結石が引っ掛かったことを早期に検出可能にすることが可能である。他の効果は、第1の実施形態と同様である。
 なお、本実施形態に図7、図8及び図9の変形例を適用してもよい。
 また、第2の実施形態においては、吸引圧力Pと流量Fとの関係に基づいて灌流状態を検出する例を示したが、吸引ポンプをPID制御していることから、流量の設定値が一定ならば、単に吸引圧力Pを所定の閾値と比較し、吸引圧力Pが所定の閾値を超えたか否かよって、灌流状態の異常を検出することも可能である。
(変形例)
 図13は他の変形例を示すブロック図である。図13において図11と同一の構成要素には同一符号を付して説明を省略する。
 図13の例は、医療装置10Aから圧力計16を省略した医療装置10Bを採用すると共に、医療装置10Bの外部に設けた圧力計16Aを用いて、吸引管路の吸引圧力を検出するものである。
 他の構成、作用及び効果は、図10の実施形態と同様である。
(変形例)
 図14は他の変形例を示すブロック図である。図14において、図2及び図10と同一の構成要素には同一符号を付して説明を省略する。本変形例は、第1及び第2の実施形態を組み合わせて、駆動出力V-流量Fの関係に基づく灌流状態の異常検出と、吸引圧力P-流量Fの関係に基づく灌流状態の異常検出との両方を行うものである。
 図14の医療装置10Cは、灌流状態検出回路14に、流量計13からの流量F、制御回路11からの駆動出力V及び圧力計16からの吸引圧力Pを供給する点が、図2及び図10の医療装置10,10Aと異なる。灌流状態検出回路14は、駆動出力V-流量Fの関係を用いて灌流状態の異常検出を行うと共に、吸引圧力P-流量Fの関係を用いて灌流状態の異常検出を行う。
 次に、このように構成された実施形態の動作について図15を参照して説明する。図15は図14の変形例の動作を説明するためのフローチャートである。図15において、図6及び図12と同一の手順には同一符号を付して説明を省略する。
 流量計13は、吸引管路に流れる液体の流量Fを計測して計測結果を制御回路11及び灌流状態検出回路14に出力する。制御回路11は、吸引ポンプ12bに設定する駆動出力Vを灌流状態検出回路14に与える。また、圧力計16は、吸引管路の吸引圧力Pを計測して灌流状態検出回路14に与える。こうして、灌流状態検出回路14には、流量F、駆動出力V及び吸引圧力Pが入力される(図15のステップS41)。
 灌流状態検出回路14は、ステップS42において、図5の直線81にて示すV-F平面における正常時のV-F関数と取得した駆動出力V及び流量Fの座標値との距離L1を算出すると共に、図11の直線85にて示すP-F平面における正常時のP-F関数と取得した吸引圧力P及び流量Fの座標値との距離L2を算出する。
 灌流状態検出回路14は、距離L1が第1の判定閾値を超えたか否かを判定すると共に、距離L2が第2の判定閾値を超えたか否かを判定する。灌流状態検出回路14は、距離L1が第1の判定閾値を超えるか及び/又は距離L2が第2の判定閾値を超えた場合には、灌流状態の異常が発生したものと判定(ステップS43のYES判定)し、処理をステップS5に移行する。また、灌流状態検出回路14は、距離L1が第1の判定閾値以内であり、且つ距離L2が第2の判定閾値以内である場合には、灌流状態に異常が発生していないものと判定(ステップS43のNO判定)し、処理をステップS41に戻す。
 他の作用は図6及び図12のフローと同様である。
 このように、本変形例では、駆動出力V-流量Fの関係に基づく灌流状態の異常検出と、吸引圧力P-流量Fの関係に基づく灌流状態の異常検出との両方の検出結果を用いて、灌流状態の異常を判定しており、結石の引っ掛かりがより軽微であっても、その引っ掛かりを早期に検出することが可能である。
(第3の実施形態)
 図16は本発明の第3の実施形態を示すブロック図である。図16において図14と同一の構成要素には同一符号を付して説明を省略する。本実施形態は、結石を体外に排出するための吸引管路の吸引圧力と吸引ポンプ12bに対する駆動出力との関係に基づいて灌流の状態を検出することにより、結石が引っ掛かったことを早期に検出可能とするものである。
 本実施形態における医療装置10Dは、流量計13を省略し、制御回路11がPID制御を行わない点が図10の医療装置10Aと異なる。他の構成は図14の変形例と同様である。本実施形態は、灌流状態を検出する手法が上記各実施形態と異なる。
 図17は第3の実施形態における灌流状態検出回路14の灌流状態の検出手法を説明するための説明図である。図17は横軸に吸引ポンプ12bによる吸引圧力P(kPa)をとり、縦軸に吸引ポンプ12bに対する駆動出力V(V)をとったP-V平面上において、吸引圧力Pと駆動出力Vとの関係を示すものである。本実施形態においては、制御回路11は、吸引管路に流れる液体の流量をフィードバックするPID制御を行っておらず、ユーザ設定による駆動出力Vを吸引ポンプ12bに出力するようになっている。
 吸引管路の管路抵抗が一定の場合には、吸引ポンプ12bに対する駆動出力Vの増減に比例して吸引ポンプ12bによる吸引圧力Pも変化する。図17の直線91は灌流状態が正常な状態における初期管路抵抗でのP-V特性曲線を示している。
 即ち、圧力計16の出力により得た吸引圧力Pと制御回路11の出力に基づく駆動出力VとによるP-V特性が、直線91の特性に一致する場合には、吸引管路の管路抵抗は正常状態における初期管路抵抗であると考えられる。即ち、この場合には、吸引管路内に結石等が引っ掛かったことによる管路抵抗の増加は生じていないと考えられる。このような灌流状態の検出のために、灌流状態検出回路14は、圧力計16の出力により得た吸引圧力Pと制御回路11の出力により得た駆動出力Vとの関係を求める。
 本実施形態においては、吸引管路の管路抵抗が正常状態であることを示す直線91から所定の距離(以下、第3の判定閾値という)以内の範囲、即ち、図17の正常判定範囲92については、管路抵抗の変化は正常の範囲であると判定する。なお、正常判定範囲92は、挿入部21の正常な湾曲等に起因する管路抵抗の変動を考慮したものである。正常判定範囲92の範囲、即ち、第3の判定閾値の大きさについては、適宜設定変更可能である。第3の判定閾値を適宜設定することで、異常と判定する引っ掛かりの程度を調整することが可能である。
 灌流状態検出回路14は、求めた吸引圧力P-駆動出力Vの特性値が正常判定範囲92内に含まれるか否かを判定する。なお、灌流状態検出回路14は、正常判定範囲92内に含まれるか否かを判定するための第3の判定閾値を図示しないメモリから読み込むようになっていてもよい。術者等のユーザは、この第3の判定閾値を図示しない入力装置によって設定及び変更することが可能になっていてもよい。
 本実施形態においても、吸引圧力Pと駆動出力Vとを組み合わせて灌流異常判定を行うようになっており、灌流異常判定が流動の複雑な干渉を受けることなく、吸引管路が結石等により一部だけ塞がれた程度の灌流異常についても検知可能である。
 このように構成された実施形態においては、上記各実施形態と同様のフローによって、灌流状態の異常が検出される。
 いま、例えば、灌流状態検出回路14において取得される吸引圧力P及び駆動出力VのP-V平面における座標値が図17の丸数字1にて示されるものとする。なお、設定流量は、図17に示す設定流量であるものとする。制御回路11は、PID制御を行っておらず、吸引ポンプ12bに対する駆動出力Vはユーザ設定値となる。図17の例では、例えば、初期管路抵抗において、設定流量を得るための駆動出力Vが設定されているものとする。
 ここで、例えば、挿入部21の通常の湾曲動作等の理由から吸引管路の管路抵抗が初期管路抵抗から上昇するものとする。そうすると、図17の丸数字2に示すように、吸引圧力Pが上昇(負圧が増加)する。なお、挿入部21の通常の湾曲動作等に起因して管路抵抗が上昇した場合には、管路抵抗は元の初期管路抵抗に戻ることがあり、この場合には、吸引圧力P及び駆動出力Vは、丸数字1の座標値に戻る。
 しかし、初期管路抵抗の上昇が、吸引管路内での結石の引っ掛かり等に起因する場合には、その後最初に引っ掛かった結石を起点に引っかかる結石が増えることがあることから、管路抵抗が更に上昇することがある。そうすると、図17の丸数字3に示すように、吸引圧力Pは更に上昇する。
 本実施形態においては、灌流状態検出回路14は、吸引圧力P-駆動出力Vの座標と直線91との距離Lを算出する。灌流状態検出回路14は、吸引圧力P-駆動出力Vの関係が正常判定範囲92を逸脱することになった場合、即ち、吸引圧力P-駆動出力Vの座標と直線91との距離Lが第3の判定閾値を超えた場合には、灌流に異常が生じた、即ち、結石の引っ掛かりが発生したものと判定する。なお、灌流状態検出回路14は、距離Lが第3の判定閾値以内であるものと判定した場合には、灌流状態は正常であるものと判定する。
 灌流状態検出回路14において、結石の引っ掛かりが発生した場合等の灌流状態の異常を検出した場合の処理は、上記各実施形態と同様である。
 このように本実施形態においては、結石を体外に排出するための吸引管路の吸引圧力と駆動出力との関係に基づいて灌流の状態を検出することにより、結石が引っ掛かったことを早期に検出可能にすることが可能である。他の効果は、上記各実施形態と同様である。
 なお、第3の実施形態においては、吸引圧力Pと駆動出力Vとの関係に基づいて灌流状態を検出する例を示したが、駆動出力Vの設定値が一定ならば、単に吸引圧力Pを所定の閾値と比較し、吸引圧力Pが所定の閾値を超えたか否かよって、灌流状態の異常を検出することも可能である。また、吸引ポンプをPID制御する場合においても、吸引圧力Pと駆動出力Vとの関係に基づいて灌流状態を検出することが可能である。
 本発明は、上記各実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 例えば、上記各実施形態においては、吸引管路における灌流状態の異常を早期に検出する例について説明したが、本発明は、送水管路における灌流状態の異常の早期検出にも同様に適用可能である。

Claims (19)

  1.  生体内に挿入された管路に液体を流すためにポンプを駆動し、
     前記管路に流れる液体の流量を計測し、
     前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出し、
     前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御する
     ことを特徴とする灌流状態検出方法。
  2.  前記管路内の液体の流れを制御するために、前記管路に逆噴射を生じさせるか又は前記管路に流す液体の流量を低下させる
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  3.  前記管路に逆噴射を生じさせるために、前記管路に水撃作用を生じさせるためのバルブを開閉制御する
     ことを特徴とする請求項2に記載の灌流状態検出方法。
  4.  前記流量に基づいて前記ポンプの駆動出力を制御することにより、前記流量を一定にするフィードバック制御を行う
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  5.  前記バルブの閉状態において前記灌流状態が異常であることを示す検出結果が得られると、前記バルブを開状態にする
     ことを特徴とする請求項3に記載の灌流状態検出方法。
  6.  前記バルブの開状態において前記灌流状態が異常であることを示す検出結果が得られると、前記バルブを閉状態にする
     ことを特徴とする請求項3に記載の灌流状態検出方法。
  7.  前記灌流状態の検出は、
     前記駆動出力と前記流量との関係を示す駆動出力-流量平面において、前記管路の正常時の灌流状態における前記駆動出力と前記流量とによる前記駆動出力-流量平面上の座標と、実際の前記駆動出力と前記流量とによる前記駆動出力-流量平面上の座標との距離を求め、
     前記距離が第1の閾値を超えるか否かによって、前記灌流状態の異常を判定する手順を含む
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  8.  前記灌流状態の検出は、
     前記圧力と前記流量との関係を示す圧力-流量平面において、前記管路の正常時の灌流状態における前記圧力と前記流量とによる前記圧力-流量平面上の座標と、実際の前記吸圧力と前記流量とによる前記圧力-流量平面上の座標との距離を求め、
     前記距離が第2の閾値を超えるか否かによって、前記灌流状態の異常を判定する手順を含む
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  9.  前記灌流状態の検出は、
     前記圧力と前記駆動出力との関係を示す圧力-駆動出力平面において、前記管路の正常時の灌流状態における前記圧力と前記駆動出力とによる前記圧力-駆動出力平面上の座標と、実際の前記吸圧力と前記駆動出力とによる前記圧力-駆動出力平面上の座標との距離を求め、
     前記距離が第3の閾値を超えるか否かによって、前記灌流状態の異常を判定する手順を含む
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  10.  前記管路は、生体内に前記液体を供給する送水管路と、前記生体内から前記液体を排出する吸引管路とを有し、
     前記ポンプは、前記送水管路に前記液体を流すための送水ポンプと、前記生体内から前記吸引管路を経由して前記液体を排出するための吸引ポンプとを有し、
     前記吸引ポンプに対する駆動出力、前記吸引管路に流れる液体の流量及び前記吸引管路における吸引圧力のうちのいずれか2つの関係に基づいて、前記吸引管路の灌流状態を検出し、
     前記灌流状態の検出結果に基づいて、前記吸引管路に逆噴射を生じさせる
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  11.  前記管路は、生体内に前記液体を供給する送水管路と、前記生体内から前記液体を排出する吸引管路とを有し、
     前記ポンプは、前記送水管路に前記液体を流すための送水ポンプと、前記生体内から前記吸引管路を経由して前記液体を排出するための吸引ポンプとを有し、
     前記吸引ポンプに対する駆動出力、前記吸引管路に流れる液体の流量及び前記吸引管路における吸引圧力のうちのいずれか2つの関係に基づいて、前記吸引管路の灌流状態を検出し、
     前記灌流状態の検出結果に基づいて、前記送水管路に前記液体を流す前記送水ポンプの駆動出力を低下させる
     ことを特徴とする請求項1に記載の灌流状態検出方法。
  12.  生体内に挿入された管路に液体を流すためのポンプと、
     前記管路に流れる液体の流量を計測する流量計と、
     前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出する検出回路と、
     前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御するプロセッサと
     を具備することを特徴とする灌流状態検出装置。
  13.  生体内に挿入され前記生体内に液体を供給するための送水管路と、
     前記送水管路に前記液体を流すための送水ポンプと、
     前記生体内に挿入され前記生体内から液体を吸引するための吸引管路と、
     前記生体内から前記吸引管路を経由して前記液体を吸引するための吸引ポンプと、
     前記吸引管路の吸引流路に設けられ、前記吸引流路に流れる前記液体の流量を計測する流量計と、
     前記吸引管路に水撃作用による逆噴射を生じさせるためのバルブと、
     プロセッサと、を備え、
     前記プロセッサは、
     前記吸引ポンプに対する駆動出力、前記吸引管路に流れる液体の流量及び前記吸引管路における吸引圧力のうちのいずれか2つの関係に基づいて、前記吸引管路の灌流状態を検出し、
     前記灌流状態の検出結果に基づいて、前記バルブの開閉を制御して前記吸引管路に前記逆噴射を生じさせる
     ことを特徴とする灌流状態検出装置。
  14.  前記吸引管路は、バイパス部を有し、
     前記バルブは、前記バイパス部の終端に接続されて、前記吸引管路を開放することで前記逆噴射を生じさせる
     ことを特徴とする請求項13に記載の灌流状態検出装置。
  15.  前記プロセッサは、
     前記駆動出力と前記流量との関係を示す駆動出力-流量平面において、前記管路の正常時の灌流状態における前記駆動出力と前記流量とによる前記駆動出力-流量平面上の座標と、実際の前記駆動出力と前記流量とによる前記駆動出力-流量平面上の座標との距離を求め、
     前記距離が第1の閾値を超えるか否かによって、前記灌流状態の異常を判定する
     ことを特徴とする請求項13に記載の灌流状態検出装置。
  16.  前記プロセッサは、
     前記吸引圧力と前記流量との関係を示す吸引圧力-流量平面において、前記管路の正常時の灌流状態における前記吸引圧力と前記流量とによる前記吸引圧力-流量平面上の座標と、実際の前記吸圧力と前記流量とによる前記吸引圧力-流量平面上の座標との距離を求め、
     前記距離が第2の閾値を超えるか否かによって、前記灌流状態の異常を判定する
     ことを特徴とする請求項13に記載の灌流状態検出装置。
  17.  前記プロセッサは、
     前記吸引圧力と前記駆動出力との関係を示す吸引圧力-駆動出力平面において、前記管路の正常時の灌流状態における前記吸引圧力と前記駆動出力とによる前記吸引圧力-駆動出力平面上の座標と、実際の前記吸圧力と前記駆動出力とによる前記吸引圧力-駆動出力平面上の座標との距離を求め、
     前記距離が第3の閾値を超えるか否かによって、前記灌流状態の異常を判定する
     ことを特徴とする請求項13に記載の灌流状態検出装置。
  18.  前記プロセッサは、
     前記灌流状態に異常が発生したものと判定すると、
     前記送水管路に前記液体を流す前記送水ポンプの駆動出力を低下させる
     ことを特徴とする請求項13に記載の灌流状態検出装置。
  19.  内視鏡と、
     生体内に挿入された前記内視鏡に挿通された管路に液体を流すためのポンプと、
     前記管路に流れる液体の流量を計測する流量計と、
     前記ポンプに対する駆動出力、前記管路に流れる液体の流量及び前記管路における圧力のうちのいずれか2つの関係に基づいて、前記管路の灌流状態を検出する検出回路と、
     前記灌流状態の検出結果に基づいて、前記管路内の液体の流れを制御するプロセッサと
     を具備することを特徴とする医療装置。
PCT/JP2021/031424 2021-08-26 2021-08-26 灌流状態検出方法、灌流状態検出装置及び医療装置 WO2023026447A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/031424 WO2023026447A1 (ja) 2021-08-26 2021-08-26 灌流状態検出方法、灌流状態検出装置及び医療装置
JP2023543591A JPWO2023026447A5 (ja) 2021-08-26 灌流状態検出方法、灌流状態検出装置及び内視鏡システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031424 WO2023026447A1 (ja) 2021-08-26 2021-08-26 灌流状態検出方法、灌流状態検出装置及び医療装置

Publications (1)

Publication Number Publication Date
WO2023026447A1 true WO2023026447A1 (ja) 2023-03-02

Family

ID=85322947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031424 WO2023026447A1 (ja) 2021-08-26 2021-08-26 灌流状態検出方法、灌流状態検出装置及び医療装置

Country Status (1)

Country Link
WO (1) WO2023026447A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344299A (ja) * 2003-05-21 2004-12-09 Japan Science & Technology Agency 骨髄自動灌流採取方法およびその装置
JP2012177359A (ja) * 2011-02-28 2012-09-13 Nihon Univ 水撃発生装置
JP2014171775A (ja) * 2013-03-12 2014-09-22 Nippon Koden Corp 医療機器計測情報モニタ装置および医療機器計測情報モニタシステム
JP2015142603A (ja) * 2014-01-31 2015-08-06 株式会社ニデック 灌流吸引装置および灌流吸引制御プログラム
JP2018166725A (ja) * 2017-03-29 2018-11-01 株式会社ニデック 灌流吸引装置
JP2020531235A (ja) * 2017-08-28 2020-11-05 国▲華▼ 王 新型灌流抽出吸引システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344299A (ja) * 2003-05-21 2004-12-09 Japan Science & Technology Agency 骨髄自動灌流採取方法およびその装置
JP2012177359A (ja) * 2011-02-28 2012-09-13 Nihon Univ 水撃発生装置
JP2014171775A (ja) * 2013-03-12 2014-09-22 Nippon Koden Corp 医療機器計測情報モニタ装置および医療機器計測情報モニタシステム
JP2015142603A (ja) * 2014-01-31 2015-08-06 株式会社ニデック 灌流吸引装置および灌流吸引制御プログラム
JP2018166725A (ja) * 2017-03-29 2018-11-01 株式会社ニデック 灌流吸引装置
JP2020531235A (ja) * 2017-08-28 2020-11-05 国▲華▼ 王 新型灌流抽出吸引システム

Also Published As

Publication number Publication date
JPWO2023026447A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
US10076237B2 (en) Tissue resecting system
US20210085158A1 (en) Endoscope, endoscope system, insertion portion of endoscope, and calculus collecting method
US9066658B2 (en) Method and system for video based image detection/identification analysis for fluid and visualization control
US20230081712A1 (en) Automatic irrigation-coordinated lithotripsy
JP6741351B2 (ja) 内視鏡と共に使用することが可能な補助真空モジュール
JP5384548B2 (ja) 内視鏡送気システム
JP2008068081A (ja) 灌注/吸引システムの制御方法
WO2010010787A1 (ja) 内視鏡自動洗浄消毒装置
CN115334982A (zh) 内窥镜疏通***和方法
JP2015058120A (ja) 送気装置
US20240049952A1 (en) Devices, systems, and methods for treating kidney stones
WO2023026447A1 (ja) 灌流状態検出方法、灌流状態検出装置及び医療装置
JP6422394B2 (ja) 気腹システム
US20230285657A1 (en) Perfusion target internal pressure estimation method, perfusion system, and living body internal pressure estimation method
JP2016214516A (ja) 気腹システム
US20240049953A1 (en) Endoscope fluid control system, fluid control apparatus for endoscope, control method of endoscope fluid control system, and control method of fluid control apparatus for endoscope
CN117297515A (zh) 内窥镜流体控制***及控制装置、其控制方法
WO2023181983A1 (ja) 内視鏡管路の状態判定方法、内視鏡管路の状態判定装置、及び内視鏡洗浄消毒装置
JPH10276980A (ja) 内視鏡装置
US11963665B2 (en) Endoscope and endoscope system
KR102323451B1 (ko) 내시경을 이용한 공기압 자동 조절 장치
US20240032950A1 (en) Fluid perfusion apparatus and fluid perfusion method
US20220015614A1 (en) Systems and methods for synchronized suction-injection angioscope
JP2010063774A (ja) 内視鏡装置
CN117297764A (zh) 流体灌流装置及流体灌流方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE