WO2023025663A1 - Double volant amortisseur - Google Patents

Double volant amortisseur Download PDF

Info

Publication number
WO2023025663A1
WO2023025663A1 PCT/EP2022/073121 EP2022073121W WO2023025663A1 WO 2023025663 A1 WO2023025663 A1 WO 2023025663A1 EP 2022073121 W EP2022073121 W EP 2022073121W WO 2023025663 A1 WO2023025663 A1 WO 2023025663A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
primary
mass flywheel
primary flywheel
extension
Prior art date
Application number
PCT/EP2022/073121
Other languages
English (en)
Inventor
Benjamin LAPORTE
Matthieu Malley
Nicola SAVASTANO
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Publication of WO2023025663A1 publication Critical patent/WO2023025663A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13142Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by the method of assembly, production or treatment
    • F16F15/1315Multi-part primary or secondary masses, e.g. assembled from pieces of sheet steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • F16F2226/048Welding

Definitions

  • the invention relates to the field of motor vehicle transmissions and relates more particularly to a dual mass flywheel.
  • Ignition engines do not generate a constant torque and exhibit acyclicity caused by successive explosions in their cylinders. These acyclisms generate vibrations which are likely to be transmitted to the gearbox and thus cause particularly undesirable shocks, noise and noise pollution.
  • a double damped flywheel comprises a primary flywheel intended to be fixed at the end of an engine shaft, a secondary flywheel, coaxial with the primary flywheel, and elastic members interposed between the primary flywheel and the secondary flywheel to transmit a torque and dampen acyclisms of rotation between the primary flywheel and the secondary flywheel.
  • the primary flywheel comprises a radially oriented annular portion which has holes in an internal zone through which screws pass intended to secure the primary flywheel to the nose of the engine shaft.
  • the primary flywheel also comprises an axially oriented cylindrical skirt extending axially from the outer periphery of the radially oriented annular portion as well as an annular cover which is welded against the axially oriented cylindrical skirt.
  • the annular cover defines with the radially oriented annular portion and the axially oriented cylindrical skirt, an annular chamber in which the elastic members are housed.
  • the elastic members bear, on the one hand, against support lugs of the primary flywheel and, on the other hand, against support lugs of an annular web, the latter being housed between the cover and the portion annular radial orientation of the primary flywheel and fixed to the secondary flywheel.
  • the secondary flywheel has a radially inner zone which has holes through which pass rivets securing the secondary flywheel to the annular web.
  • the secondary flywheel is produced in a similar manner, that is to say by machining a casting or a stamped sheet formed in one piece.
  • the primary and secondary flywheels have different zones with different thicknesses, the thickness being chosen according to the functionality of the zone.
  • the axially oriented cylindrical skirt of the primary flywheel may have a greater thickness than the radially oriented annular portion in order to increase the moment of inertia to mass ratio of the primary flywheel.
  • the internal zone of the radially oriented annular portion may be thicker than the rest in order to reinforce the resistance of said internal zone which secures the primary flywheel to the engine shaft and thus undergoes the most important constraints.
  • the invention provides a double mass flywheel comprising a primary flywheel intended to be fixed to an engine shaft and a secondary flywheel, the primary flywheel and the secondary flywheel being movable in rotation the one with respect to the other around an axis of rotation X, the double mass flywheel further comprising elastic members configured to transmit a torque between the primary flywheel and the secondary flywheel and dampen rotational acyclics, the double mass flywheel being remarkable in that at least one of the primary flywheel and the flywheel secondary comprises a first element and a second element which are made of sheet metal and have different thicknesses and/or materials, the first element and the second element being arranged end to end and fixed to each other by welding.
  • At least one of the primary and secondary flywheels of the dual mass flywheel is made by joining together two elements of different thicknesses and/or materials, which facilitates the manufacture of said steering wheel and lighten it.
  • welding covers joints made with or without the addition of material.
  • such a dual mass flywheel may include one or more of the following characteristics.
  • the primary flywheel comprises an annular portion of radial orientation, a cylindrical skirt of axial orientation projecting axially from an outer periphery of the annular portion of radial orientation and a cover fixed against an edge free from the axially oriented cylindrical skirt, the radially oriented annular portion comprising a zone equipped with orifices intended to receive fixing members for fixing the primary flywheel to an engine shaft.
  • the orifices are made in an internal zone of the radially oriented portion.
  • the radially oriented annular portion, the axially oriented cylindrical skirt and the cover together form an annular chamber in which the elastic members are housed.
  • the dual mass flywheel comprises an annular web which is housed between the cover and the radially oriented annular portion of the primary flywheel and which is fixed to the secondary flywheel, the elastic members being in support of on the one hand, against support sectors of the primary flywheel and, on the other hand, against support tabs of the annular web.
  • the first element and the second element belong to the primary flywheel, the first element being arranged inside and in the extension in a radial direction of the second element, the first element forming the zone equipped with orifices of the radially oriented annular portion.
  • the first element forming the zone equipped with orifices of the radially oriented annular portion has a thickness greater than that of the second element, which makes it possible to reinforce the resistance of said zone which secures the primary flywheel to the engine shaft and thus undergoes the greatest stresses.
  • the first element forming the zone equipped with orifices of the radially oriented annular portion is made of a material, such as steel, having a higher resistance than that of the material in which is realized the second element.
  • the first element comprises cutouts distributed around the X axis and arranged to reduce the rigidity of the first element.
  • the first element forms a flexible portion of the primary flywheel making it possible to dampen the excitations in the axial direction.
  • the cutouts are regularly distributed around the X axis so as not to generate unbalance.
  • the cutouts can also be irregularly distributed around the X axis.
  • the first element has a thickness such that it forms a flexible portion of the primary flywheel making it possible to dampen the excitations in the axial direction.
  • the cutouts are optional.
  • the primary flywheel comprises a third element which forms at least a part of the axially oriented cylindrical skirt, the second element and the third element being made of sheet metal and having thicknesses and/or materials different, the third element and the second element being arranged end-to-end and fixed to each other by a weld.
  • the third element which forms at least a part of the cylindrical skirt of axial orientation has a thickness greater than that of the second element. This makes it possible to increase the moment of inertia to mass ratio of the primary flywheel.
  • the third element which forms at least part of the cylindrical skirt of axial orientation is made of a material having a higher density than that of the material in which the first and the second element.
  • the second element comprises a first portion extending radially and a second portion extending axially, the first portion being arranged in the extension in a radial direction of the first element and the second portion being arranged in the extension in a radial direction of the third element.
  • the third element comprises a first portion extending radially and a second portion extending axially, the first portion being arranged in the extension in a radial direction of the second element.
  • the first element and the second element belong to the primary flywheel, the first element forming at least part of the annular portion of radial orientation and the second element forming at least part of the cylindrical skirt axial orientation.
  • the second element forming at least a part of the axially oriented cylindrical skirt has a thickness greater than that of the first element, which makes it possible to increase the moment of inertia to mass ratio of the primary flywheel.
  • the second element which forms at least part of the cylindrical skirt of axial orientation is made of a material having a higher density than that of the material in which the first element is made.
  • the second element comprises a first portion extending radially and a second portion extending axially, the first portion of the second element being arranged outside the first element in the extension along a direction radial of the first element.
  • the first element and the second element belong to the secondary flywheel, the double damping flywheel comprising an annular web comprising support tabs cooperating with the elastic members, the first element being arranged inside and in the extension in a radial direction of the second element and being equipped with orifices traversed by rivets ensuring the attachment of the secondary flywheel to the annular web.
  • the first element equipped with orifices traversed by rivets has a thickness greater than that of the second element, which makes it possible to reinforce the area of the secondary flywheel ensuring its attachment to the annular veil.
  • the first element equipped with holes through which rivets pass is made of a material, such as steel, having a higher resistance than that of the material in which the second element is made.
  • the secondary flywheel further comprises a third element which is arranged radially outside the second element and in the extension in a radial direction of the second element, the second element and the third element being made of sheet metal and having different thicknesses and/or materials, the third element and the second element being arranged end-to-end and fixed to each other by welding.
  • the third element has a thickness greater than that of the first element, which makes it possible to increase the moment of inertia to mass ratio of the secondary flywheel.
  • the third element is made of a material having a higher density than that of the material in which the first and second elements are made.
  • the first element and the second element are each made of a material chosen from among steel, aluminum, aluminum alloys, magnesium, magnesium alloys, tungsten and tungsten alloys.
  • the third element is made of a material chosen from among steel, aluminum, aluminum alloys, magnesium, magnesium alloys, tungsten and tungsten alloys.
  • the first element and the second element have a thickness of between 2 and 10 mm.
  • the third element has a thickness of between 2 and 10 mm.
  • the first element and the second have different thicknesses, the element among the first and the second element which has the greatest thickness being equipped with a peripheral shoulder against which the edge of the other element. This makes it possible in particular to facilitate the welding operations and to reinforce the mechanical strength of the junction.
  • the invention relates to a method of manufacturing an aforementioned dual mass flywheel, comprising a step of shaping the first element and the second element and a step of welding the first element and the second end-to-end element.
  • the first element and the second element are welded to each other end-to-end before being jointly shaped. This makes it possible in particular to simplify the welding operations.
  • the welding step is carried out by laser welding.
  • the shaping step is a stamping step.
  • the first element and the second element are cut, advantageously by a die-cut.
  • Figure 1 is a sectional view of a dual mass flywheel according to one embodiment.
  • Figure 2 is a partial sectional view of the primary flywheel of the dual mass flywheel of Figure 1.
  • Figure 3 is a partial sectional view of the secondary flywheel of the dual mass flywheel of Figure 1.
  • Figure 4 is a partial sectional view of a primary flywheel according to a second embodiment.
  • Figure 5 is a partial sectional view of a primary flywheel according to a third embodiment.
  • Figure 6 is a partial sectional view of a primary flywheel according to a fourth embodiment.
  • Figure 7 is a partial sectional view of a primary flywheel according to a fifth embodiment.
  • Figure 8 is a partial sectional view of a primary flywheel according to a sixth embodiment.
  • Figure 9 is a partial sectional view of a primary flywheel according to a seventh embodiment.
  • Figure 10 is a perspective view of part of the primary flywheel of Figure 9.
  • the dual mass flywheel 1 comprises a primary flywheel 2 intended to be fixed at the end of an engine shaft, that is to say the crankshaft of a combustion engine, not shown, and a secondary flywheel 3.
  • the primary flywheel 2 and the secondary flywheel 3 are rotatable around the axis of rotation X and are, moreover, rotatable relative to each other, around said axis X.
  • the primary flywheel 2 comprises an annular portion of radial orientation 4 and a cylindrical skirt of axial orientation 5 which extends axially from the outer periphery of the annular portion of radial orientation 4.
  • the primary flywheel 2 also comprises a lid 6, annular, which is welded against the free edge of the cylindrical skirt of axial orientation 5.
  • the lid 6 defines with the annular portion of radial orientation 4 and the cylindrical skirt of axial orientation 5, an annular chamber 7 .
  • the double damped flywheel 1 also comprises elastic members 8 which make it possible to transmit a torque between the primary flywheel 2 and the secondary flywheel 3 and to dampen rotational acyclisms.
  • the elastic members 8 are, for example, curved coil springs which are housed in the annular chamber 7 provided in the primary flywheel 2.
  • Each of the elastic members 8 extends circumferentially between two support legs, not shown, of a annular web 9 which is integral in rotation with the secondary flywheel 3 and two support sectors, not shown, provided on the primary flywheel 2.
  • Each support sector carried by the primary flywheel 2 is, for example, constituted by a boss formed in the radially oriented annular portion 4 and by a boss formed in the cover 6.
  • each of the elastic members 8 bears, at a first end, against a support sector carried by the primary flywheel 2 and , at a second end, against a support tab provided on the annular web 9, so as to ensure the transmission of torque between the primary flywheel 2 and the secondary flywheel 3.
  • the annular chamber 7 in which the elastic members 8 are housed is filled with a lubricating agent, preferably grease in order to limit the friction between the elastic members 8 and the primary flywheel 2.
  • a lubricating agent preferably grease in order to limit the friction between the elastic members 8 and the primary flywheel 2.
  • the double damping flywheel 1 is equipped with sealing means arranged on either side of the annular web 9 and ensuring the sealing of the annular chamber 7, on the one hand, between the annular web 9 and the radially oriented annular portion 4 of the primary flywheel 2, and, on the other hand, between the annular web 9 and the cover 6.
  • the sealing means comprise two washers sealing 10, 11 which extend on either side of the annular web 9.
  • Each sealing washer 10, 11 is formed by an elastically deformable sheet mounted axially prestressed.
  • Each sealing washer 10, 11 is, on the one hand, riveted close to its radially internal edge on the annular web 9 and is, on the other hand, resting against a plastic washer 12, 13 positioned between the external edge of said sealing washer 10, 11 and cover 6 or radially oriented annular portion 4 of primary flywheel 2.
  • the dual damped flywheel 1 advantageously comprises a friction device, not shown, also called a hysteresis device, which is capable of exerting a resisting friction torque during relative rotation between the primary flywheel 2 and the secondary flywheel 3.
  • a friction device not shown, also called a hysteresis device, which is capable of exerting a resisting friction torque during relative rotation between the primary flywheel 2 and the secondary flywheel 3.
  • the torque is transmitted between the primary flywheel 2 and the secondary flywheel 3 by the elastic members 8 while the friction device makes it possible to dissipate the energy accumulated in the elastic members 8 so as to dampen the vibes.
  • the dual mass flywheel 1 comprises a hub 14 which is integral in rotation with the secondary flywheel 3 and the annular web 9.
  • the hub 14 has internal splines intended to cooperate with splines complementary to a torque transmission device, such as a double clutch or a torque converter for example, which is able to transmit the torque from the double mass flywheel 1 to the wheels of the vehicle, for example via an input shaft of a gearbox.
  • the hub 14 comprises a flange 15 which is sandwiched between the annular web 9 and the secondary flywheel 3.
  • the annular web 9, the hub 14 and the secondary flywheel 3 are fixed to each other. to the others by rivets 16 passing through orifices made in the three aforementioned elements.
  • the secondary flywheel 3 is intended to be fixed to a cover of a clutch mechanism and comprises a flat annular surface intended to form a bearing surface for a friction lining of a clutch disc.
  • the radially oriented annular portion 4 and the axially oriented cylindrical skirt 5 consist of a first, a second and a third separate elements 17, 18, 19 which are made of sheet metal and are welded to each other by welds 24, 25.
  • the first element 17 forms a radially internal zone of the radially oriented annular portion 5. It has holes 20 intended for the passage of screws allowing the primary flywheel 2 to be fixed to the motor shaft.
  • the second element 18 comprises a first portion extending radially in the extension of the first element 17 and a second portion extending axially in the extension of the third element 19.
  • the first element 17 is arranged radially inside the first portion of the second element 18 and extends in the continuity of the first portion of the second element 18.
  • the first element 17 and the second element 18 are welded and joined together, that is to say joined end to end. end. Thus, the outer peripheral edge of the first element 17 is placed against the inner peripheral edge of the second element 18.
  • the outer peripheral edge of the first element 17 and the inner peripheral edge of the second element 17 are fixed to each other by the welding 24.
  • the third element 19 extends axially and in the continuity of the second portion of the second element 18.
  • the second element 18 and the third element 19 are welded and joined to each other, it is to say joined end to end.
  • the front edge of the second element 18 is placed against the rear edge of the third element 19.
  • the front edge of the second element 18 and the rear edge of the third element 19 are fixed to each other by a weld 25.
  • the weld 25 extends continuously over 360° all around the axis X.
  • the weld 25 is discontinuous.
  • the first element 17 has a thickness greater than that of the second element 18, which makes it possible to reinforce the zone of the primary flywheel 2 ensuring its attachment to the motor shaft.
  • the third element 19 has a thickness greater than that of the second element 18, which makes it possible to increase the moment of inertia of the primary flywheel 2.
  • the first, second and third elements 17, 18, 19 are made of different materials. It is for example possible to use different types of steel and/or different types of metals.
  • the element likely to undergo the greatest stresses, here the first element 17, is made of high-strength steel while the other element(s), here the second and third elements 18, 19 are made of lower strength steel.
  • other metallic materials than steel can be used, for example an aluminum alloy, such as an alloy of aluminum and iron, in magnesium or magnesium alloy, tungsten or tungsten alloy.
  • the aforementioned materials are chosen according to their density and the constraints linked to the inertia and to the mass of the primary flywheel to be produced.
  • three flat sheets intended to form the first, the second and the third elements 17, 18, 19 are welded to each other, for example by laser welding, then the assembly thus produced is shaped by a stamping process.
  • the sheets 17, 18, 19 can also be welded by other welding processes, such as cold welding processes, designated by the acronym CMT, arc welding processes designated by the acronyms TIG, MIG and resistance welding processes designated by the acronym ERW.
  • the stamping process is carried out hot in order to facilitate shaping and confer final mechanical strength on the primary flywheel 2.
  • the secondary flywheel 3 consists of a first element 21, a second element 22 and a third element 23 which are distinct are made of sheet metal and are welded edge-to-edge to each other by weld beads 26, 27.
  • the first element 21 is arranged radially inside the second element and is equipped with orifices, one of which is shown in Figure 1, crossed by rivets 16 ensuring the attachment of the secondary flywheel 3 to the annular web 9.
  • the first element 21 has a thickness greater than that of the second element 22, so as to reinforce the zone of the secondary flywheel 3 ensuring its attachment to the annular web 9.
  • the third element 23 is disposed radially outside the second element 22.
  • the third element 23 has a thickness greater than that of the second element 22, which makes it possible to increase the ratio ort moment of inertia on mass of the secondary flywheel 3.
  • the first, second and third elements 21, 22, 23 are made of different materials.
  • Figure 4 illustrates a primary flywheel 2 according to another alternative embodiment.
  • This alternative embodiment differs from that illustrated in FIG. 2 in that the third element 19 also forms part of the annular portion of radial orientation 4.
  • the third element 19 comprises a first portion of radial orientation and a second portion of axial orientation. The first portion extends radially in the continuity of the second element 18 and is joined and welded to said second element 18.
  • Figure 5 partially illustrates a primary flywheel 2 according to yet another alternative embodiment.
  • the radially oriented annular portion 4 as well as the axially oriented cylindrical skirt 5 consist only of a first and a second distinct elements 17, 18.
  • the second element 18 constitutes an outer zone of the radially oriented annular portion 4 as well as the entirety of the axially oriented cylindrical skirt 5.
  • the second element 18 has a thickness less than that of the first element 17. This is advantageous for producing a primary flywheel 2 having a low mass.
  • FIG. 6 partially illustrates a primary flywheel 2 according to another alternative embodiment.
  • This alternative embodiment differs from that described above in relation to FIG. 4 only in that the third element 19 has a thickness less than that of the second element 18. This also makes it possible to obtain a primary flywheel 2 having a low mass.
  • the element 17 which has the greatest thickness has a peripheral shoulder 28 against which is placed the edge of the other element 18. This makes it possible in particular to facilitate the operations of welding the two elements 17, 18 to each other and to reinforce the mechanical strength at the junction between the two elements 17, 18. If, in the embodiment shown, such a junction is made between the first element 17 and the second element 18 of the primary flywheel 2, it is also possible to make it between the second element 18 and the third element 19 of the primary flywheel or between two of the first, second and third elements 21, 22, 23 of the secondary steering wheel 3.
  • Figures 9 and 10 partially show a primary flywheel 2 according to another alternative embodiment.
  • the annular portion of radial orientation 4 as well as the cylindrical skirt of axial orientation 5 consist only of a first and a second distinct elements 17, 18.
  • the first element 17 has a thickness less than that of the second element 18.
  • the first element 17 here forms a flexible portion of the primary flywheel 2 which is intended to dampen the excitations in the axial direction.
  • the first element 17 has cutouts 29 regularly distributed around the axis X and to reduce the rigidity of the first element 17. It will also be noted that in the variant represents , the first element 17 comprises several series of cutouts which are each located on different diameters. [77] Although the invention has been described in connection with several particular embodiments, it is quite obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described as well as their combinations if these fall within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

L'invention concerne un double volant amortisseur (1) comprenant un volant primaire (2) destiné à être fixé à un arbre moteur et un volant secondaire (3), le volant primaire (2) et le volant secondaire (3) étant mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X, le double volant amortisseur (1) comprenant en outre des organes élastiques (8) configurés pour transmettre un couple entre le volant primaire (2) et le volant secondaire (3) et amortir les acyclismes de rotation, le double volant amortisseur (1) étant caractérisé en ce que au moins l'un parmi le volant primaire (2) et le volant secondaire (3) comporte un premier élément (17, 21) et un deuxième élément (18, 22) qui sont réalisés en tôle et présentent des épaisseurs et/ou des matériaux différents, le premier élément (17, 21) et le deuxième élément (18, 22) étant disposés bout à bout et fixés l'un à l'autre par une soudure (24, 26).

Description

Description
Titre de l'invention : Double volant amortisseur
Domaine technique
[1] L’invention se rapporte au domaine des transmissions pour véhicule automobile et concerne plus particulièrement un double volant amortisseur.
Arrière-plan technologique
[2] Les moteurs à explosions ne génèrent pas un couple constant et présentent des acyclismes provoqués par les explosions se succédant dans leurs cylindres. Ces acyclismes génèrent des vibrations qui sont susceptibles de se transmettre à la boîte de vitesses et d’engendrer ainsi des chocs, bruits et nuisances sonores, particulièrement indésirables.
[3] Afin de diminuer les effets indésirables des vibrations et améliorer le confort de conduite des véhicules automobiles, certaines transmissions de véhicule automobile sont équipées d’un double volant amortisseur. Un double volant amortisseur comporte un volant primaire destiné à être fixé en bout d’un arbre moteur, un volant secondaire, coaxial au volant primaire, et des organes élastiques interposés entre le volant primaire et le volant secondaire pour transmettre un couple et amortir les acyclismes de rotation entre le volant primaire et le volant secondaire.
[4] Le volant primaire comporte une portion annulaire d’orientation radiale qui présente dans une zone interne des orifices au travers desquels passent des vis destinées à assurer la fixation du volant primaire au nez de l’arbre moteur. Le volant primaire comporte également une jupe cylindrique d’orientation axiale s’étendant axialement depuis la périphérie externe de la portion annulaire d’orientation radiale ainsi qu’un couvercle annulaire qui est soudé contre la jupe cylindrique d’orientation axiale. Le couvercle annulaire définit avec la portion annulaire d’orientation radiale et la jupe cylindrique d’orientation axiale, une chambre annulaire dans laquelle sont logés les organes élastiques. Les organes élastiques sont en appui, d’une part, contre des pattes d’appui du volant primaire et, d’autre part, contre des pattes d’appui d’un voile annulaire, ce dernier étant logé entre le couvercle et la portion annulaire d’orientation radiale du volant primaire et fixé au volant secondaire.
[5] Le volant secondaire comporte une zone radialement interne qui présente des orifices au travers desquels passent des rivets assurant la fixation du volant secondaire au voile annulaire. [6] Il est connu de réaliser la portion annulaire d’orientation radiale ainsi que la jupe cylindrique d’orientation axiale du volant primaire d’un seul tenant. Ces parties du volant primaire sont réalisées en usinant une pièce de fonderie ou plus couramment en usinant une tôle emboutie en acier. Le volant secondaire est réalisé de manière similaire, c’est-à- dire en usinant une pièce de fonderie ou une tôle emboutie formée d’un seul tenant.
[7] Un tel procédé de fabrication des volants primaire et secondaire n’est pas satisfaisant. En effet, les volants primaire et secondaire comportent différentes zones présentant des épaisseurs différentes, l’épaisseur étant choisie en fonction de la fonctionnalité de la zone. A titre d’exemple, la jupe cylindrique d’orientation axiale du volant primaire peut présenter une épaisseur supérieure à la portion annulaire d’orientation radiale afin d’augmenter le rapport moment d’inertie sur masse du volant primaire. De même, il peut également être avantageux que la zone interne de la portion annulaire d’orientation radiale soit plus épaisse que le reste afin de renforcer la résistance de ladite zone interne qui assure la fixation du volant primaire à l’arbre moteur et subit ainsi les contraintes les plus importantes. La réalisation d’un volant ayant de telles variations d’épaisseur nécessite de nombreuses opérations d’usinage et conduit à des pertes de matière importantes, ce qui a notamment pour effet d’impacter négativement le bilan économique et environnemental des opérations de fabrication du double volant amortisseur. En outre, compte-tenu des contraintes précitées, un tel procédé de fabrication d’un volant ne permet pas de limiter au strict nécessaire l’épaisseur de certaines zones du volant, notamment dans ses zones non fonctionnelles. Ce procédé ne permet donc pas de limiter de manière optimale la masse du double volant moteur ainsi réalisé, ce qui impacte négativement les émissions de dioxyde de carbone des véhicules automobiles équipés d’un tel double volant amortisseur.
Résumé
[8] Une idée à la base de l’invention est donc de proposer un double volant amortisseur ainsi qu’un procédé de fabrication d’un tel double volant amortisseur qui permettent de résoudre les inconvénients précités.
[9] Pour ce faire, selon un premier aspect, l’invention fournit un double volant amortisseur comprenant un volant primaire destiné à être fixé à un arbre moteur et un volant secondaire, le volant primaire et le volant secondaire étant mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X, le double volant amortisseur comprenant en outre des organes élastiques configurés pour transmettre un couple entre le volant primaire et le volant secondaire et amortir les acyclismes de rotation, le double volant amortisseur étant remarquable en ce que au moins l'un parmi le volant primaire et le volant secondaire comporte un premier élément et un deuxième élément qui sont réalisés en tôle et présentent des épaisseurs et/ou des matériaux différents, le premier élément et le deuxième élément étant disposés bout à bout et fixés l'un à l'autre par une soudure.
[10] Ainsi, au moins l’un des volants primaire et secondaire du double volant amortisseur est réalisé en raboutant l’un à l’autre deux éléments d’épaisseurs et/ou de matériaux différents, ce qui permet de faciliter la fabrication dudit volant et de l’alléger.
[11] Au sens du présent document, le terme « soudure » couvre les jonctions réalisées avec ou sans apport de matière.
[12] Selon des modes de réalisation, un tel double volant amortisseur peut comporter une ou plusieurs des caractéristiques suivantes.
[13] Selon un mode de réalisation, le volant primaire comporte une portion annulaire d'orientation radiale, une jupe cylindrique d'orientation axiale faisant saillie axialement depuis une périphérie externe de la portion annulaire d'orientation radiale et un couvercle fixé contre un bord libre de la jupe cylindrique d'orientation axiale, la portion annulaire d'orientation radiale comprenant une zone équipée d'orifices destinés à recevoir des organes de fixation pour la fixation du volant primaire à un arbre moteur. Dans un exemple préféré, les orifices sont réalisés dans une zone interne de la portion d'orientation radiale.
[14] Selon un mode de réalisation, la portion annulaire d'orientation radiale, la jupe cylindrique d'orientation axiale et le couvercle forment ensemble une chambre annulaire dans laquelle sont logés les organes élastiques.
[15] Selon un mode de réalisation, le double volant amortisseur comporte un voile annulaire qui est logé entre le couvercle et la portion annulaire d'orientation radiale du volant primaire et qui est fixé au volant secondaire, les organes élastiques étant en appui d'une part, contre des secteurs d'appui du volant primaire et, d'autre part, contre des pattes d'appui du voile annulaire.
[16] Selon un mode de réalisation, le premier élément et le deuxième élément appartiennent au volant primaire, le premier élément étant disposé à l'intérieur et dans le prolongement selon une direction radiale du deuxième élément, le premier élément formant la zone équipée d'orifices de la portion annulaire d'orientation radiale.
[17] De manière avantageuse, dans un tel mode de réalisation, le premier élément formant la zone équipée d'orifices de la portion annulaire d'orientation radiale présente une épaisseur supérieure à celle du deuxième élément, ce qui permet de renforcer la résistance de ladite zone qui assure la fixation du volant primaire à l'arbre moteur et subit ainsi les contraintes les plus importantes. [18] De manière alternative ou complémentaire, le premier élément formant la zone équipée d'orifices de la portion annulaire d'orientation radiale est réalisé dans un matériau, tel qu’un acier, présentant une résistance supérieure à celle du matériau dans lequel est réalisé le deuxième élément.
[19] Selon un mode de réalisation, le premier élément comporte des découpes réparties autour de l'axe X et agencées pour diminuer la rigidité du premier élément. Ainsi, le premier élément forme une portion flexible du volant primaire permettant d'amortir les excitations dans la direction axiale. Selon un mode de réalisation avantageux, les découpes sont régulièrement réparties autour de l’axe X afin de ne pas générer de balourd. Toutefois, selon un autre mode de réalisation, les découpes peuvent également être irrégulièrement réparties autour de l’axe X.
[20] Selon un mode de réalisation alternatif, le premier élément présente une épaisseur telle qu’il forme une portion flexible du volant primaire permettant d'amortir les excitations dans la direction axiale. Dans un tel cas, les découpes sont optionnelles.
[21] Selon un mode de réalisation, le volant primaire comporte un troisième élément qui forme au moins une partie de la jupe cylindrique d'orientation axiale, le deuxième élément et le troisième élément étant réalisés en tôle et présentant des épaisseurs et/ou matériaux différents, le troisième élément et le deuxième élément étant disposés bout-à-bout et fixés l'un à l'autre par une soudure.
[22] Selon un mode de réalisation, le troisième élément qui forme au moins une partie de la jupe cylindrique d'orientation axiale présente une épaisseur supérieure à celle du deuxième élément. Ceci permet d'augmenter le rapport moment d'inertie sur masse du volant primaire.
[23] Selon un mode de réalisation alternatif ou complémentaire, le troisième élément qui forme au moins une partie de la jupe cylindrique d'orientation axiale est réalisé dans un matériau présentant une densité supérieure à celle du matériau dans lequel est réalisé le premier et le deuxième élément.
[24] Selon un mode de réalisation, le deuxième élément comporte une première portion s'étendant radialement et une deuxième portion s'étendant axialement, la première portion étant disposée dans le prolongement selon une direction radiale du premier élément et la deuxième portion étant disposée dans le prolongement selon une direction radiale du troisième élément. [25] Selon un mode de réalisation, le troisième élément comporte une première portion s'étendant radialement et une deuxième portion s'étendant axialement, la première portion étant disposée dans le prolongement selon une direction radiale du deuxième élément.
[26] Selon un mode de réalisation, le premier élément et le deuxième élément appartiennent au volant primaire, le premier élément formant au moins une partie de la portion annulaire d'orientation radiale et le deuxième élément formant au moins une partie de la jupe cylindrique d'orientation axiale.
[27] Selon un mode de réalisation, le deuxième élément formant au moins une partie de la jupe cylindrique d'orientation axiale présente une épaisseur supérieure à celle du premier élément, ce qui permet d'augmenter le rapport moment d'inertie sur masse du volant primaire.
[28] Selon un mode de réalisation alternatif ou complémentaire, le deuxième élément qui forme au moins une partie de la jupe cylindrique d'orientation axiale est réalisé dans un matériau présentant une densité supérieure à celle du matériau dans lequel est réalisé le premier élément.
[29] Selon un mode de réalisation, le deuxième élément comporte une première portion s'étendant radialement et une deuxième portion s'étendant axialement, la première portion du deuxième élément étant disposée à l'extérieur du premier élément dans le prolongement selon une direction radiale du premier élément.
[30] Selon un mode de réalisation, le premier élément et le deuxième élément appartiennent au volant secondaire, le double volant amortisseur comportant un voile annulaire comportant des pattes d'appui coopérant avec les organes élastiques, le premier élément étant disposé à l'intérieur et dans le prolongement selon une direction radiale du deuxième élément et étant équipé d'orifices traversés par des rivets assurant la fixation du volant secondaire au voile annulaire.
[31] Selon un mode de réalisation, le premier élément équipé des orifices traversés par des rivets présente une épaisseur supérieure à celle du deuxième élément, ce qui permet de renforcer la zone du volant secondaire assurant sa fixation au voile annulaire.
[32] De manière alternative ou complémentaire, le premier élément équipé des orifices traversés par des rivets est réalisé dans un matériau, tel qu’un acier, présentant une résistance supérieure à celle du matériau dans lequel est réalisé le deuxième élément.
[33] Selon un mode de réalisation, le volant secondaire comporte en outre un troisième élément qui est disposé radialement à l'extérieur du deuxième élément et dans le prolongement selon une direction radiale du deuxième élément, le deuxième élément et le troisième élément étant réalisés en tôle et présentant des épaisseurs et/ou des matériaux différents, le troisième élément et le deuxième élément étant disposés bout-à- bout et fixés l'un à l'autre par une soudure.
[34] Selon un mode de réalisation avantageux, le troisième élément présente une épaisseur supérieure à celle du premier élément ce qui permet d'augmenter le rapport moment d'inertie sur masse du volant secondaire.
[35] Selon un mode de réalisation alternatif ou complémentaire, le troisième élément est réalisé dans un matériau présentant une densité supérieure à celle du matériau dans lequel sont réalisés le premier et le deuxième éléments.
[36] Selon un mode de réalisation, le premier élément et le deuxième élément sont chacun réalisés dans un matériau choisi parmi l’acier, l’aluminium, les alliages d’aluminium, le magnésium, les alliages de magnésium, le tungstène et les alliages de tungstène.
[37] Selon un mode de réalisation, le troisième élément est réalisé dans un matériau choisi parmi l’acier, l’aluminium, les alliages d’aluminium, le magnésium, les alliages de magnésium, le tungstène et les alliages de tungstène.
[38] Selon un mode de réalisation, le premier élément et le deuxième élément présentent une épaisseur comprise entre 2 et 10 mm. Selon un mode de réalisation, le troisième élément présente une épaisseur comprise entre 2 et 10 mm.
[39] Selon un mode de réalisation, le premier élément et le deuxième présentent des épaisseurs différentes, l’élément parmi le premier et le deuxième élément qui présente l’épaisseur la plus importante étant équipé d’un épaulement périphérique contre lequel est disposé le bord de l’autre élément. Ceci permet notamment de faciliter les opérations de soudage et de renforcer la résistance mécanique de la jonction.
[40] Selon un mode de réalisation, l’invention vise un procédé de fabrication d'un double volant amortisseur précité, comprenant une étape de mise en forme du premier élément et du deuxième élément et une étape de soudage du premier élément et du deuxième élément bout-à-bout.
[41] Selon un mode de réalisation avantageux, le premier élément et le deuxième élément sont soudés l'un à l'autre bout-à-bout avant d'être conjointement mis en forme. Ceci permet notamment de simplifier les opérations de soudage.
[42] Selon un mode de réalisation, l’étape de soudage est réalisée par soudage laser.
[43] Selon un mode de réalisation, l’étape de mise en forme est une étape d’emboutissage. [44] Selon un mode de réalisation, le premier élément et le deuxième élément sont découpés, avantageusement par une découpe à la presse.
Brève description des figures
[45] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
[46] La figure 1 est une vue en coupe d’un double volant amortisseur selon un mode de réalisation.
[47] La figure 2 est une vue partielle en coupe du volant primaire du double volant amortisseur de la figure 1.
[48] La figure 3 est une vue partielle en coupe du volant secondaire du double volant amortisseur de la figure 1.
[49] La figure 4 est une vue partielle en coupe d’un volant primaire selon une deuxième variante de réalisation.
[50] La figure 5 est une vue partielle en coupe d’un volant primaire selon une troisième variante de réalisation.
[51] La figure 6 est une vue partielle en coupe d’un volant primaire selon une quatrième variante de réalisation.
[52] La figure 7 est une vue partielle en coupe d’un volant primaire selon une cinquième variante de réalisation.
[53] La figure 8 est une vue partielle en coupe d’un volant primaire selon une sixième variante de réalisation.
[54] La figure 9 est une vue partielle en coupe d’un volant primaire selon une septième variante de réalisation.
[55] La figure 10 est une vue en perspective d’une partie du volant primaire de la figure 9.
Description des modes de réalisation
[56] Dans la description et les revendications, on utilisera, les termes "externe" et "interne" ainsi que les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments du double volant amortisseur. Par convention, l'orientation "radiale" est dirigée orthogonalement à l'axe X de rotation du double volant amortisseur déterminant l'orientation "axiale" et, de l'intérieur vers l'extérieur en s'éloignant dudit axe, l'orientation "circonférentielle" est dirigée orthogonalement à l'axe du dispositif et orthogonalement à la direction radiale. Les termes "externe" et "interne" sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'axe X de rotation du dispositif, un élément proche de l'axe est ainsi qualifié d'interne par opposition à un élément externe situé radialement en périphérie.
[57] En relation avec la figure 1 , on observe un double volant amortisseur 1 selon un premier mode de réalisation. Le double volant amortisseur 1 comprend un volant primaire 2 destiné à être fixé au bout d’un arbre moteur, c’est-à-dire le vilebrequin d’un moteur à combustion, non représenté, et un volant secondaire 3.
[58] Le volant primaire 2 et le volant secondaire 3 sont mobiles en rotation autour de l’axe de rotation X et sont, en outre, mobiles en rotation l’un par rapport à l’autre, autour dudit axe X.
[59] Le volant primaire 2 comporte une portion annulaire d’orientation radiale 4 et une jupe cylindrique d’orientation axiale 5 qui s’étend axialement depuis la périphérie externe de la portion annulaire d’orientation radiale 4. Le volant primaire 2 comporte également un couvercle 6, annulaire, qui est soudé contre le bord libre de la jupe cylindrique d’orientation axiale 5. Le couvercle 6 définit avec la portion annulaire d’orientation radiale 4 et la jupe cylindrique d’orientation axiale 5, une chambre annulaire 7.
[60] Le double volant amortisseur 1 comporte également des organes élastiques 8 qui permettent de transmettre un couple entre le volant primaire 2 et le volant secondaire 3 et d’amortir les acyclismes de rotation. Les organes élastiques 8 sont, par exemple, des ressorts hélicoïdaux courbes qui sont logés dans la chambre annulaire 7 ménagée dans le volant primaire 2. Chacun des organes élastiques 8 s’étend circonférentiellement entre deux pattes d’appui, non illustrées, d’un voile annulaire 9 qui est solidaire en rotation du volant secondaire 3 et deux secteurs d'appui, non illustrés, ménagés sur le volant primaire 2. Chaque secteur d’appui porté par le volant primaire 2 est, par exemple, constitué par un bossage formé dans la portion annulaire d’orientation radiale 4 et par un bossage formé dans le couvercle 6. Ainsi, en fonctionnement, chacun des organes élastiques 8 prend appui, à une première extrémité, contre un secteur d’appui porté par le volant primaire 2 et, à une seconde extrémité, contre une patte d’appui ménagée sur le voile annulaire 9, de sorte à assurer la transmission du couple entre le volant primaire 2 et le volant secondaire 3.
[61] La chambre annulaire 7 dans laquelle sont logés les organes élastiques 8 est remplie d’un agent lubrifiant, de préférence de la graisse afin de limiter le frottement entre les organes élastiques 8 et le volant primaire 2. Afin d’éviter les fuites de lubrifiant vers l’extérieur de la chambre annulaire 7, le double volant amortisseur 1 est équipé de moyens d’étanchéité disposés de part et d’autre du voile annulaire 9 et assurant l’étanchéité de la chambre annulaire 7, d’une part, entre le voile annulaire 9 et la portion annulaire d’orientation radiale 4 du volant primaire 2, et, d’autre part, entre le voile annulaire 9 et le couvercle 6. Dans le mode de réalisation représenté, les moyens d’étanchéité comportent deux rondelles d’étanchéité 10, 11 qui s’étendent de part et d’autre du voile annulaire 9. Chaque rondelle d’étanchéité 10, 11 est formée par une tôle élastiquement déformable montée précontrainte axialement. Chaque rondelle d’étanchéité 10, 11 est, d’une part, rivetée à proximité de son bord radialement interne sur le voile annulaire 9 et est, d’autre part, en appui contre une rondelle plastique 12, 13 positionnée entre le bord externe de ladite rondelle d’étanchéité 10, 11 et le couvercle 6 ou la portion annulaire d’orientation radiale 4 du volant primaire 2.
[62] Par ailleurs, le double volant amortisseur 1 comporte avantageusement, un dispositif de frottement, non représenté, également appelé dispositif d’hystérésis, qui est apte à exercer un couple résistant de frottement lors d’une rotation relative entre le volant primaire 2 et le volant secondaire 3. Ainsi, le couple est transmis entre le volant primaire 2 et le volant secondaire 3 par les organes élastiques 8 tandis que le dispositif de frottement permet de dissiper l’énergie accumulée dans les organes élastiques 8 de manière à amortir les vibrations.
[63] Dans le mode de réalisation de la figure 1 , le double volant amortisseur 1 comporte un moyeu 14 qui est solidaire en rotation du volant secondaire 3 et du voile annulaire 9. Le moyeu 14 présente des cannelures internes destinées à coopérer avec des cannelures complémentaires d'un dispositif de transmission de couple, tel qu'un double embrayage ou un convertisseur de couple par exemple, qui est apte à transmettre le couple du double volant amortisseur 1 vers les roues du véhicule, par exemple via un arbre d’entrée d’une boîte de vitesses. Dans le mode de réalisation représenté, le moyeu 14 comporte un flasque 15 qui est pris en sandwich entre le voile annulaire 9 et le volant secondaire 3. En outre, le voile annulaire 9, le moyeu 14 et le volant secondaire 3 sont fixés les uns aux autres par des rivets 16 traversant des orifices ménagés dans les trois éléments précités.
[64] Dans un autre mode de réalisation non représenté, le volant secondaire 3 est destiné à être fixé à un couvercle d’un mécanisme d’embrayage et comporte une surface annulaire plane destinée à former une surface d’appui pour une garniture de friction d’un disque d’embrayage.
[65] Comme représenté sur les figures 1 et 2, la portion annulaire d’orientation radiale 4 ainsi que la jupe cylindrique d’orientation axiale 5 sont constitués d’un premier, d’un deuxième et d’un troisième éléments distincts 17, 18, 19 qui sont réalisés en tôle et sont soudés les uns aux autres par des soudures 24, 25.
[66] Le premier élément 17 forme une zone radialement interne de la portion annulaire d’orientation radiale 5. Il comporte des orifices 20 destinés au passage de vis permettant de fixer le volant primaire 2 à l’arbre moteur. Le deuxième élément 18 comporte une première portion s’étendant radialement dans le prolongement du premier élément 17 et une deuxième portion s’étendant axialement dans le prolongement du troisième élément 19. Le premier élément 17 est disposé radialement à l’intérieur de la première portion du deuxième élément 18 et s’étend dans la continuité de la première portion du deuxième élément 18. Le premier élément 17 et le second élément 18 sont soudés et raboutés l’un à l’autre, c’est à-dire réunis bout à bout. Ainsi, le bord périphérique externe du premier élément 17 est disposé contre le bord périphérique interne du deuxième élément 18. Le bord périphérique externe du premier élément 17 et le bord périphérique interne du deuxième élément 17 sont fixés l’un à l’autre par la soudure 24.
[67] Par ailleurs, le troisième élément 19 s’étend axialement et dans la continuité de la deuxième portion du deuxième élément 18. Le deuxième élément 18 et le troisième élément 19 sont soudés et raboutés l’un à l’autre, c’est à-dire réunis bout à bout. En d’autres termes, le bord avant du deuxième élément 18 est disposé contre le bord arrière du troisième élément 19. Le bord avant du deuxième élément 18 et le bord arrière du troisième élément 19 sont fixés l’un à l’autre par une soudure 25. Selon un mode de réalisation, la soudure 25 s’étend en continue sur 360° tout autour de l’axe X. Selon un autre mode de réalisation, la soudure 25 est discontinue.
[68] Le premier élément 17 présente une épaisseur supérieure à celle du deuxième élément 18, ce qui permet de renforcer la zone du volant primaire 2 assurant sa fixation à l’arbre moteur. Par ailleurs, le troisième élément 19 présente une épaisseur supérieure à celle du deuxième élément 18, ce qui permet d’augmenter le moment d’inertie du volant primaire 2. De manière alternative ou complémentaire, il est également possible de prévoir que les premier, deuxième et troisième éléments 17, 18, 19 soient réalisés dans des matériaux différents. Il est par exemple possible d’utiliser différents types d’acier et/ou différents types de métaux. Ainsi, selon une variante de réalisation, l’élément susceptible de subir les plus fortes contraintes, ici le premier élément 17, est réalisé avec un acier haute résistance tandis que le ou les autres éléments, ici le deuxième et le troisième éléments 18, 19 sont réalisés dans un acier à plus basse résistance. Selon une variante alternative ou complémentaire, d’autres matériaux métalliques que l’acier peuvent être utilisés, par exemple un alliage d’aluminium, tel qu’un alliage d’aluminium et de fer, en magnésium ou en alliage de magnésium, en tungstène ou en alliage de tungstène. Les matériaux précités sont choisis en fonction de leur densité et des contraintes liées à l’inertie et à la masse du volant primaire à réaliser.
[69] Selon un mode de réalisation avantageux, trois tôles planes destinées à former le premier, le deuxième et le troisième éléments 17, 18, 19 sont soudées les unes aux autres, par exemple par soudage laser, puis l’ensemble ainsi réalisé est mis en forme par un procédé d’emboutissage. De manière alternative, les tôles 17, 18, 19 peuvent également être soudées par d’autres procédés de soudage, tel que les procédés de soudage à froid, désignés par le sigle CMT, les procédés de soudage à l’arc désignés par les sigles TIG, MIG et les procédés de soudage par résistance désigné par le sigle ERW. De manière avantageuse, le procédé d’emboutissage est réalisé à chaud afin de faciliter la mise en forme et conférer la résistance mécanique finale au volant primaire 2.
[70] En relation, avec les figures 1 et 3, on décrit la structure du volant secondaire 3. Le volant secondaire 3 est constitué d’un premier élément 21 , d’un deuxième élément 22 et d’un troisième élément 23 distincts qui sont réalisés en tôle et sont soudées bord-à-bord les uns aux autres par des cordons de soudure 26, 27. Le premier élément 21 est disposé radialement à l’intérieur du deuxième élément et est équipé d’orifices, dont un est représenté sur la figure 1, traversés par des rivets 16 assurant la fixation du volant secondaire 3 au voile annulaire 9. Le premier élément 21 présente une épaisseur supérieure à celle du deuxième élément 22, de manière à renforcer la zone du volant secondaire 3 assurant sa fixation au voile annulaire 9. Par ailleurs, le troisième élément 23 est disposé radialement à l’extérieur du deuxième élément 22. Dans l’exemple représenté, le troisième élément 23 présente une épaisseur supérieure à celle du deuxième élément 22, ce qui permet d’augmenter le rapport moment d’inertie sur masse du volant secondaire 3. De manière alternative ou complémentaire, il est également possible de prévoir que les premier, deuxième et troisième éléments 21 , 22, 23 soient réalisés dans des matériaux différents.
[71] La figure 4 illustre un volant primaire 2 selon une autre variante de réalisation. Cette variante de réalisation diffère de celle illustrée sur la figure 2 en ce que le troisième élément 19 forme également une partie de la portion annulaire d’orientation radiale 4. Pour ce faire, le troisième élément 19 comporte une première portion d’orientation radiale et une deuxième portion d’orientation axiale. La première portion s’étend radialement dans la continuité du deuxième élément 18 et est raboutée et soudée audit deuxième élément 18. [72] La figure 5 illustre partiellement un volant primaire 2 selon encore une autre variante de réalisation. Dans ce mode de réalisation, la portion annulaire d’orientation radiale 4 ainsi que la jupe cylindrique d’orientation axiale 5 ne sont constituées que d’un premier et d’un deuxième éléments 17, 18 distincts. Ainsi, le deuxième élément 18 constitue une zone externe de la portion annulaire d’orientation radiale 4 ainsi que l’intégralité de la jupe cylindrique d’orientation axiale 5. Le deuxième élément 18 présente une épaisseur inférieure à celle du premier élément 17. Ceci est avantageux pour réaliser un volant primaire 2 ayant une faible masse.
[73] La figure 6 illustre partiellement un volant primaire 2 selon une autre variante de réalisation. Cette variante de réalisation ne diffère de celle décrite ci-dessus en relation avec la figure 4 qu’en ce que le troisième élément 19 présente une épaisseur inférieure à celle du deuxième élément 18. Ceci permet également d’obtenir un volant primaire 2 ayant une faible masse.
[74] Selon des variantes de réalisation, comme représenté sur les figures 7 et 8, à la jonction entre deux éléments 17, 18, l’élément 17 qui présente l’épaisseur la plus importante présente un épaulement périphérique 28 contre lequel est disposé le bord de l’autre élément 18. Ceci permet notamment de faciliter les opérations de soudage des deux éléments 17, 18 l’un à l’autre et de renforcer la résistance mécanique à la jonction entre les deux éléments 17, 18. Si, dans le mode de réalisation représenté, une telle jonction est réalisée entre le premier élément 17 et le deuxième élément 18 du volant primaire 2, il est également possible de la réaliser entre le deuxième élément 18 et le troisième élément 19 du volant primaire ou entre deux des premier, deuxième et troisième éléments 21 , 22, 23 du volant secondaire 3.
[75] Les figures 9 et 10 représentent partiellement un volant primaire 2 selon une autre variante de réalisation. Dans ce mode de réalisation, la portion annulaire d’orientation radiale 4 ainsi que la jupe cylindrique d’orientation axiale 5 ne sont constituées que d’un premier et d’un deuxième éléments 17, 18 distincts. En outre, le premier élément 17 présente une épaisseur inférieure à celle du deuxième élément 18. Le premier élément 17 forme ici une portion flexible du volant primaire 2 qui est destinée à amortir les excitations dans la direction axiale.
[76] Pour ce faire, comme représenté sur la figure 10, le premier élément 17 comporte des découpes 29 régulièrement réparties autour de l’axe X et permettant de diminuer la rigidité du premier élément 17. On notera en outre que dans la variante représente, le premier élément 17 comporte plusieurs séries de découpes qui sont chacune implantés sur des diamètres différents. [77] Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
[78] L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
[79] Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

Revendications
[Revendication 1] Double volant amortisseur (1) comprenant un volant primaire (2) destiné à être fixé à un arbre moteur et un volant secondaire (3), le volant primaire (2) et le volant secondaire (3) étant mobiles en rotation l’un par rapport à l’autre autour d’un axe de rotation X, le double volant amortisseur (1) comprenant en outre des organes élastiques (8) configurés pour transmettre un couple entre le volant primaire (2) et le volant secondaire (3) et amortir les acyclismes de rotation, le double volant amortisseur (1) étant caractérisé en ce que au moins l’un parmi le volant primaire (2) et le volant secondaire (3) comporte un premier élément (17, 21) et un deuxième élément (18, 22) qui sont réalisés en tôle et présentent des épaisseurs et/ou des matériaux différents, le premier élément (17, 21) et le deuxième élément (18, 22) étant disposés bout à bout et fixés l’un à l’autre par une soudure (24, 26).
[Revendication 2] Double volant amortisseur (1) selon la revendication 1 , dans lequel le volant primaire (2) comporte une portion annulaire d’orientation radiale (4), une jupe cylindrique d’orientation axiale (5) faisant saillie axialement depuis une périphérie externe de la portion annulaire d’orientation radiale (4) et un couvercle (6) fixé contre un bord libre de la jupe cylindrique d’orientation axiale (5), la portion annulaire d’orientation radiale (4) comprenant une zone équipée d’orifices destinés à recevoir des organes de fixation pour la fixation du volant primaire (2) à un arbre moteur.
[Revendication 3] Double volant amortisseur (1) selon la revendication 2, dans lequel le premier élément (17) et le deuxième élément (18) appartiennent au volant primaire (2), le premier élément (17) étant disposé à l’intérieur et dans le prolongement selon une direction radiale du deuxième élément (18), le premier élément (17) formant la zone équipée d’orifices de la portion annulaire d’orientation radiale (4).
[Revendication 4] Double volant amortisseur (1) selon la revendication 3, dans lequel le premier élément (17) comporte des découpes (29) réparties autour de l’axe X et agencées pour diminuer la rigidité du premier élément (17).
[Revendication 5] Double volant amortisseur (1) selon la revendication 3 ou 4, dans lequel le volant primaire (2) comporte un troisième élément (19) qui forme au moins une partie de la jupe cylindrique d’orientation axiale (5), le deuxième élément (18) et le troisième élément (19) étant réalisés en tôle et présentant des épaisseurs et/ou matériaux différents, le troisième élément (19) et le deuxième élément (18) étant disposés bout- à-bout et fixés l’un à l’autre par une soudure (25).
[Revendication 6] Double volant amortisseur (1) selon la revendication 5, dans lequel le deuxième élément (18) comporte une première portion s’étendant radialement et une deuxième portion s’étendant axialement, la première portion étant disposée dans le prolongement selon une direction radiale du premier élément (17) et la deuxième portion étant disposée dans le prolongement selon une direction radiale du troisième élément (19).
[Revendication 7] Double volant amortisseur (1) selon la revendication 5, dans lequel le troisième élément (19) comporte une première portion s’étendant radialement et une deuxième portion s’étendant axialement, la première portion étant disposée dans le prolongement selon une direction radiale du deuxième élément (18).
[Revendication 8] Double volant amortisseur (1) selon la revendication 2, dans lequel le premier élément (17) et le deuxième élément (18) appartiennent au volant primaire (2), le premier élément formant au moins une partie de la portion annulaire d’orientation radiale (4) et le deuxième élément (18) formant au moins une partie de la jupe cylindrique d’orientation axiale (5).
[Revendication 9] Double volant amortisseur (1) selon la revendication 8, dans lequel le deuxième élément (18) comporte une première portion s’étendant radialement et une deuxième portion s’étendant axialement, la première portion du deuxième élément (18) étant disposée à l’extérieur du premier élément (17) dans le prolongement selon une direction radiale du premier élément (17).
[Revendication 10] Double volant amortisseur (1) selon la revendication 1 ou 2, dans lequel le premier élément (21) et le deuxième élément (22) appartiennent au volant secondaire (3), le double volant amortisseur (1) comportant un voile annulaire (9) comportant des pattes d’appui coopérant avec les organes élastiques (8), le premier élément (21) étant disposé à l’intérieur et dans le prolongement selon une direction radiale du deuxième élément (22) et étant équipé d’orifices traversés par des rivets (16) assurant la fixation du volant secondaire (3) au voile annulaire (9).
[Revendication 11] Double volant amortisseur (1) selon la revendication 9 ou 10, dans lequel le volant secondaire (3) comporte en outre un troisième élément (23) qui est disposé radialement à l’extérieur du deuxième élément (22) et dans le prolongement selon une direction radiale du deuxième élément (22), le deuxième élément (22) et le troisième élément (23) étant réalisés en tôle et présentant des épaisseurs et/ou des matériaux différents, le troisième élément (23) et le deuxième élément (22) étant disposés bout-à-bout et fixés l’un à l’autre par une soudure (27).
[Revendication 12] Double volant amortisseur (1) selon l’une quelconque des revendications 1 à 11 , dans lequel le premier élément (17) et le deuxième élément (18) présentent des épaisseurs différentes, l’élément parmi le premier et le deuxième élément qui présente l’épaisseur la plus importante étant équipé d’un épaulement périphérique (28) contre lequel est disposé le bord de l’autre élément. 16
[Revendication 13] Procédé de fabrication d’un double volant amortisseur (1 ) selon l’une quelconque des revendications 1 à 12, comprenant une étape de mise en forme du premier élément (17, 21) et du deuxième élément (18, 22) et une étape de soudage du premier élément (17, 21) et du deuxième élément (18, 22) bout-à-bout.
[Revendication 14] Procédé de fabrication selon la revendication 13, dans lequel le premier élément (17, 21) et le deuxième élément (18, 22) sont soudés l’un à l’autre bout-à-bout avant d’être conjointement mis en forme.
[Revendication 15] Procédé de fabrication selon la revendication 14 ou 15, dans lequel l’étape de soudage est réalisée par soudage laser.
PCT/EP2022/073121 2021-08-24 2022-08-18 Double volant amortisseur WO2023025663A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2108843 2021-08-24
FR2108843A FR3126465B1 (fr) 2021-08-24 2021-08-24 Double volant amortisseur

Publications (1)

Publication Number Publication Date
WO2023025663A1 true WO2023025663A1 (fr) 2023-03-02

Family

ID=80122620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/073121 WO2023025663A1 (fr) 2021-08-24 2022-08-18 Double volant amortisseur

Country Status (2)

Country Link
FR (1) FR3126465B1 (fr)
WO (1) WO2023025663A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2288652A (en) * 1994-04-22 1995-10-25 Fichtel & Sachs Ag Dual-mass flywheel assembly
DE19825249A1 (de) * 1998-06-05 1999-12-09 Mannesmann Sachs Ag Torsionsschwingungsdämpfer und Verfahren zur Herstellung von Komponenten desselben
US20010025762A1 (en) * 2000-01-31 2001-10-04 Mannesmann Sachs Ag Torsional vibration damper
DE10164994B4 (de) * 2001-02-26 2014-06-05 Zf Friedrichshafen Ag Zweimassenschwungrad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2288652A (en) * 1994-04-22 1995-10-25 Fichtel & Sachs Ag Dual-mass flywheel assembly
DE19825249A1 (de) * 1998-06-05 1999-12-09 Mannesmann Sachs Ag Torsionsschwingungsdämpfer und Verfahren zur Herstellung von Komponenten desselben
US20010025762A1 (en) * 2000-01-31 2001-10-04 Mannesmann Sachs Ag Torsional vibration damper
DE10164994B4 (de) * 2001-02-26 2014-06-05 Zf Friedrichshafen Ag Zweimassenschwungrad

Also Published As

Publication number Publication date
FR3126465A1 (fr) 2023-03-03
FR3126465B1 (fr) 2023-11-10

Similar Documents

Publication Publication Date Title
FR3039240A1 (fr) Double volant amortisseur comportant une rondelle d'obturation apte a assurer l'etancheite du volant primaire
WO2015092216A1 (fr) Ensemble de transmission equipe d'un amortisseur pendulaire s'etendant radialement a l'exterieur d'un dispositif d'embrayage
EP1564435A1 (fr) Dispositif de butée axiale de volant d'inertie
WO2004065807A2 (fr) Volant d'inertie flexible pour dispositif de transmission de couple
FR2754034A1 (fr) Double volant amortisseur, notamment pour vehicule automobile, comportant des moyens perfectionnes d'amortissement par friction des vibrations
WO2023025663A1 (fr) Double volant amortisseur
FR3068420B1 (fr) Dispositif rotatif equipe d'une cible
WO2018193214A1 (fr) Dispositif rotatif equipe d'une cible et procede de fabrication d'un tel dispositif
FR2698937A1 (fr) Volant d'inertie à deux masses.
EP3282143A1 (fr) Amortisseur de vibrations comportant un suiveur de came a roulement
FR3124835A1 (fr) Bouclier multicouche pour dispositif d’amortissement pendulaire
FR3086718A1 (fr) Double volant amortisseur, en particulier pour vehicule automobile
FR2907863A1 (fr) Disque de friction d'embrayage
FR3122712A1 (fr) Composant d'arret axial pour organe du roulement et procede de fabrication d’un limiteur de couple comprenant un tel composant d'arret axial
FR3070455B1 (fr) Flanc de couvercle pour mecanisme d'embrayage, couvercle obtenu a partir dudit flanc et procede de fabrication de ce couvercle
WO2017046547A1 (fr) Amortisseur de torsion
FR3055035A1 (fr) Amortisseur de torsion et dispositif de transmission de couple comprenant un tel systeme
WO1998036188A1 (fr) Moyeu pour preamortisseur notamment pour vehicule automobile et dispositif amortisseur de torsion comportant un tel moyeu
EP4240988A1 (fr) Dispositif pour une chaine de transmission de vehicule automobile
FR3127792A1 (fr) Module d'amortissement avec garnitures preassemblees et procede de fabrication d’un tel module d'amortissement
FR3065772A1 (fr) Amortisseur de torsion et vehicule automobile
EP4163515A1 (fr) Volant d'inertie assemble avec deux materiaux
FR3066003A1 (fr) Amortisseur de torsion, vehicule automobile et procede de montage associes
EP1248919A1 (fr) Dispositif de transmission de couple, en particulier pour vehicule automobile
WO2022123044A1 (fr) Module pre-amortisseur avec moyens de verrouillage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22765885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE