WO2023021885A1 - Electrolytic solution for capacitor and capacitor - Google Patents

Electrolytic solution for capacitor and capacitor Download PDF

Info

Publication number
WO2023021885A1
WO2023021885A1 PCT/JP2022/027385 JP2022027385W WO2023021885A1 WO 2023021885 A1 WO2023021885 A1 WO 2023021885A1 JP 2022027385 W JP2022027385 W JP 2022027385W WO 2023021885 A1 WO2023021885 A1 WO 2023021885A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
group
ium
capacitors
capacitor
Prior art date
Application number
PCT/JP2022/027385
Other languages
French (fr)
Japanese (ja)
Inventor
直人 和田
和之 金本
亮太 永松
晴香 前多
茉初 中山
Original Assignee
カーリットホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カーリットホールディングス株式会社 filed Critical カーリットホールディングス株式会社
Priority to JP2023542262A priority Critical patent/JPWO2023021885A1/ja
Publication of WO2023021885A1 publication Critical patent/WO2023021885A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials

Definitions

  • the present invention relates to an electrolytic solution for capacitors and a capacitor using the same.
  • electrolytes for capacitors have been prepared by dissolving organic acids, inorganic acids, or their salts in organic solvents as electrolytes.
  • the surface of aluminum foil is anodized.
  • a chemically formed foil having an oxide film formed as a dielectric by is used as the anode electrode, the cathode electrode is arranged so as to face the anode electrode, and the separator is interposed between the two electrodes to hold the electrolytic solution. an electrolytic capacitor is formed.
  • Patent Document 1 silicon dioxide
  • Patent Document 2 phosphate ester
  • Patent Document 3 porous polyimide fine particles
  • an object of the present invention is to provide an electrolytic solution for capacitors having a high spark voltage, and a capacitor using the same, which has high withstand voltage performance and low equivalent series resistance.
  • the zwitterionic compound has one or more anion sites selected from the group consisting of sulfonate anions, carboxylate anions, phosphate anions, and anions represented by the following formula (1), [ 1] or electrolyte solution for capacitors according to [2].
  • Z is an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogenated aryl group having 6 to 15 carbon atoms, or represents a halogen, * represents a bond)
  • the zwitterionic compound has one or more cationic sites selected from the group consisting of ammonium ions, imidazolium ions, pyrazolium ions, pyridinium ions, and piperidinium ions [1] to [3] ] Electrolyte for capacitors.
  • the zwitterionic compound is one or more compounds selected from the group consisting of compounds represented by the following general formulas (2) to (6): Electrolyte solution for capacitors according to any one of the above.
  • R 1 to R 20 are each independently an organic group optionally having one or both of a primary amino group and a secondary amino group, or a hydrogen atom, and adjacent The Rs may be linked to each other to form an alkylene group having 2 to 6 carbon atoms, and X 1 to X 5 are a sulfonate anion, a carboxylate anion, a phosphate anion, or an anion represented by formula (1). represents a group with 0 to 15 carbon atoms containing any of
  • the zwitterionic compound is 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-methyl-3-(4-sulfonatobutyl)-1H-imidazole-3- ium, 1-ethyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-ethyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-butyl-3-ium (3-sulfonatopropyl)-1H-imidazol-3-ium, 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-hexyl-3-(3-sulfonatopropyl)- 1H-imidazol-3-ium, 1-hexyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, trimethyl
  • a capacitor containing the electrolytic solution according to any one of [1] to [8].
  • the electrolytic solution for capacitors of the present invention has a high spark voltage, and by using it, it is possible to obtain a capacitor with excellent withstand voltage performance and equivalent series resistance.
  • a zwitterionic compound is a compound that has a cation site and an anion site in the same molecule, and the cation site and the anion site are each bonded to any atom in the molecule by a covalent bond.
  • a zwitterionic compound is represented by, for example, X + -AY - and has a cation site (X + ) and an anion site (Y ⁇ ) in the same molecule.
  • A is a linking group that covalently connects the cationic site (X + ) and the anionic site (Y ⁇ ).
  • the linking group A is usually a single bond or an organic group having 1 to 20 carbon atoms.
  • the cation site and the anion site are present in the same molecule by covalent bonding, so the diffusion of ions due to the electric field near the electrode is difficult to occur. It is presumed that the withstand voltage characteristics and equivalent series resistance of the capacitor are improved.
  • the zwitterionic compound that can be used in the present invention is not particularly limited, and known zwitterionic compounds can be used.
  • the anion moiety in the zwitterion compound examples include halogen ion, sulfonate anion, carboxylate anion, phosphate anion, phosphate ester anion, phosphonate anion, carbonate anion, sulfate anion, hydroxy anion, and the following formula: Any anion or the like can be used.
  • the zwitterionic compound is sulfonate anion (SO 3 ⁇ ), carboxylate anion (COO ⁇ ), phosphate anions (PO 3 ⁇ ), and anions represented by the following formula (1).
  • Z is an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogenated aryl group having 6 to 15 carbon atoms, or a halogen and * represents a bond.
  • Z is preferably an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or halogen.
  • the leftmost sulfur atom in the formula (1) forms a covalent bond with any atom in the zwitterionic compound.
  • the sulfonate anion is preferable as the anion site of the zwitterionic compound.
  • the zwitterionic compound contains a sulfonate anion, the spark voltage characteristics of the electrolytic solution and the withstand voltage characteristics and equivalent series resistance of the capacitor using the electrolytic solution tend to be improved.
  • Examples of cationic sites in zwitterionic compounds include imidazolium ions, ammonium ions, pyridinium ions, sulfonium ions, piperidinium ions, and pyrazolium ions which may have substituents.
  • the group consisting of imidazolium ions, pyridinium ions, and pyrazolium ions from the viewpoint of improving the spark voltage characteristics of the electrolyte and the withstand voltage characteristics and equivalent series resistance of capacitors using the electrolyte. It is preferred to have one or more cationic sites selected from
  • the zwitterionic compound of the present invention preferably contains at least one of the compounds represented by the following formulas (2) to (6).
  • R 1 to R 20 are hydrogen, which may be the same or different, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a hydroxyl group;
  • the Rs may be linked together to form an alkylene group having 2 to 6 carbon atoms.
  • R 1 to R 20 which may be the same or different, are hydrogen, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a hydroxyl group.
  • adjacent Rs may be linked to form an alkylene group having 2 to 6 carbon atoms.
  • X 1 to X 5 are preferably groups having 0 to 15 carbon atoms containing any one of sulfonate anion, carboxylate anion, phosphate anion, and anion represented by formula (1).
  • X 1 to X 5 are more preferably organic groups having 1 to 10 carbon atoms containing sulfonate anions, and sulfonatoalkyl groups having 1 to 5 carbon atoms. (—(CH 2 )n—SO 3 —; n is an integer of 1 to 5) is more preferred.
  • the zwitterionic compounds used in the present invention are 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-methyl-3-(4-sulfonatobutyl)-1H-imidazole-3 -ium, 1-ethyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-ethyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-butyl-3 -(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-hexyl-3-(3-sulfonatopropyl) -1H-imidazol-3-ium, 1-hexyl-3-(4-sulfonatobutyl)-1H-imidazol-3-
  • the content of the zwitterionic compound in the electrolytic solution for capacitors of the present invention is preferably 0.001 to 70% by mass, more preferably 0.005 to 60% by mass, and particularly preferably 0.01 to 50% by mass.
  • Colloidal silica is a colloid of SiO 2 or its hydrate, which has a particle size of 1 to 300 nm and does not have a fixed structure. It can be obtained by dialysis after allowing dilute hydrochloric acid to act on the silicate. As the particle size becomes smaller, gelation progresses more easily, but as the particle size becomes larger, gelation becomes more difficult.
  • the particle size of colloidal silica used in the present invention is preferably 10 to 50 nm, more preferably 10 to 30 nm.
  • Colloidal silica is almost insoluble in water or organic solvents, and can generally be used in the form of a colloidal solution dispersed in a suitable dispersion solvent and added to the electrolytic solution.
  • the colloidal silica used in the present invention may be sodium-stable colloidal silica, acidic colloidal silica, or ammonia-stable colloidal silica.
  • the sodium-stable colloidal silica has an ONa group on the surface of the colloidal silica.
  • Acidic colloidal silica is colloidal silica in which the surface of colloidal silica has OH groups from which Na has been removed.
  • Ammonia-stabilized colloidal silica is made from OH groups by removing Na, and then is stabilized by containing ammonia. colloidal silica.
  • acidic colloidal silica or ammonia-stable colloidal silica having a low sodium ion content is preferred.
  • the content of colloidal silica in the electrolytic solution is 0.01 to 20% by mass, more preferably 0.05 to 15% by mass, and particularly preferably 0.1 to 10% by mass. Within this range, the pretreatment of the anode metal with the pretreatment agent improves the withstand voltage characteristics of the capacitor.
  • the colloidal silica may have any average particle size, preferably 1 to 100 nm, more preferably 10 to 50 nm, and particularly preferably 10 to 30 nm. By adjusting the average particle size to the above range, it is possible to obtain an electrolytic solution having excellent dispersibility in a solvent.
  • the shape of the colloidal silica may be any of a spherical type, a chain type, and a ring type in which colloidal silica aggregates into a ring and is dispersed in a solvent.
  • Silicone-based surfactants include compounds having a siloxane bond (Si—O—Si) in the main skeleton and also having a Si—C bond, and specifically include dimethyl silicone, methylphenyl silicone, chlorophenyl silicone, alkyl modified silicone, fluorine-modified silicone, amino-modified silicone, alcohol-modified silicone, phenol-modified silicone, carboxy-modified silicone, epoxy-modified silicone, fatty acid ester-modified silicone, polyether-modified silicone and the like.
  • the molecular weight of the silicone-based surfactant is preferably 100 to 100,000. By using a silicone-based surfactant having a molecular weight within this range, it is possible to prevent the colloidal silica from losing its charge balance, so that a capacitor having higher withstand voltage characteristics can be obtained.
  • Alkyl-modified silicone is modified silicone having an alkyl group having 6 or more carbon atoms, a 2-phenylpropyl group, or the like, alcohol-modified silicone is modified silicone having an alcoholic hydroxyl group, and epoxy-modified silicone is glycidyl.
  • Amino-modified silicone is a modified silicone having an amino group such as an aminopropyl group or an N-(2-aminoethyl)aminopropyl group, and a fatty acid ester silicone.
  • a modified silicone having a fatty acid ester group is a modified silicone having a fatty acid ester group
  • a polyether-modified silicone is a modified silicone having a polyoxyalkylene group (e.g., polyoxyethylene group, polyoxypropylene group, polyoxyethyleneoxypropylene group, etc.) is.
  • the silicone-based surfactants can be used alone or in combination of two or more.
  • polyether-modified silicone is particularly preferred from the viewpoint of preventing gelation of the electrolytic solution.
  • Polyether-modified silicones include pendant-type polymers, ABA-type polymers, (AB)n-type polymers, branched-type polymers, etc. Among these, pendant-type polymers and ABA-type polymers are preferred.
  • the pendant type is typically a compound represented by general formula (A), and the ABA type is typically a compound represented by general formula (B).
  • R A or R B in the compounds represented by the above general formulas (A) and (B) represents an alkyl group having 1 to 20 carbon atoms, and Y or Z is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. indicates a group.
  • m is an integer from 0 to 1,000, and n or P is an integer from 1 to 1,000.
  • a, b, c, and d are each independently an integer of 0 to 100;
  • the content ratio (mass ratio) of the colloidal silica and the silicone-based surfactant in the electrolytic solution for a capacitor may be any mass ratio, but 0.01 to 10% of the silicone-based surfactant is contained per 1 part of the colloidal silica. is preferred, more preferably 0.05 to 5.0, and particularly preferably 0.1 to 2.0. By setting the content within this range, a capacitor having excellent voltage resistance can be obtained.
  • a protic polar solvent or an aprotic polar solvent can be used as the organic solvent used in the electrolytic solution for capacitors, and may be used alone or in combination of two or more.
  • Protic polar solvents include monohydric alcohols (methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, benzyl alcohol, etc.), polyhydric alcohols and oxyalcohol compounds ( ethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, etc.) and the like.
  • monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, benzyl alcohol, etc.
  • polyhydric alcohols and oxyalcohol compounds ethylene glycol, propylene glycol, glycerin, methyl cellosolv
  • Aprotic polar solvents include ⁇ -butyrolactone, ⁇ -valerolactone, amides (N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, hexamethylphosphoricamide, etc.), sulfolane-based (sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, etc.), chain sulfone-based (dimethylsulfone, ethylmethylsulfone, ethylisopropylsulfone), cyclic amides (N-methyl-2-pyrrolidone, etc.), carbonates (ethylene carbonate, propylene carbonate, isobutylene carbonate, etc.), nitriles (acetonitrile, etc
  • solvents water, methanol, ethanol, butanol, isopropyl alcohol, ethylene glycol, polyethylene glycol, gamma-butyrolactone, and sulfolane are particularly preferred.
  • the electrolytic solution for capacitors of the present invention may contain additives.
  • additives include polyethylene glycol, polyvinyl alcohol, phosphoric acid compounds of dibutyl phosphate or phosphorous acid, boric acid, mannite, boric acid and mannite, complex compounds such as sorbit, boric acid and ethylene glycol, glycerin and other complex compounds.
  • Boron compounds such as complex compounds with alcohols, o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol and other nitro compounds. .
  • the amount of the additive added is preferably 0.1 to 10% by mass, more preferably 0.5 to 5.0% by mass. If it is less than 0.1% by mass, sufficient spark voltage may not be obtained, and if it exceeds 10% by mass, the electrical conductivity may decrease.
  • the electrolytic solution of the present invention can be produced by mixing the above-mentioned essential components and optionally added optional components according to a conventional method.
  • a capacitor of the present invention is characterized by using the above-described electrolyte for capacitors.
  • An example of an aluminum electrolytic capacitor will be explained below.
  • an aluminum electrolytic capacitor In an aluminum electrolytic capacitor, a chemically processed foil is used as the anode electrode, and a cathode electrode is arranged to face the anode electrode.
  • a capacitor is formed by interposing a separator and holding an electrolytic solution there.
  • the capacitor of the present invention includes a hybrid electrolytic capacitor (hereinafter referred to as "hybrid capacitor”) using a solid electrolyte and an electrolytic solution as the electrolyte material of the electrolytic capacitor.
  • hybrid capacitor a hybrid electrolytic capacitor using a solid electrolyte and an electrolytic solution as the electrolyte material of the electrolytic capacitor.
  • the conductive polymer used in the solid electrolyte of the hybrid capacitor is preferably a dopant-doped polymer.
  • the monomer compound used for producing the polymer is not particularly limited, and for example, pyrroles, thiophenes, anilines and the like can be used.
  • a thiophene compound represented by 7) is more preferable.
  • R 21 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and each X represents an oxygen atom or a sulfur atom, which may be the same or different.
  • thiophene compound represented by the general formula (7) examples include 3,4-ethylenedioxythiophene, methyl-3,4-ethylenedioxythiophene, ethyl-3,4-ethylenedioxythiophene, propyl-3,4-ethylenedioxythiophene, butyl-3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, methyl-3,4-propylenedioxythiophene, ethyl-3,4-propylenedioxythiophene oxythiophene, propyl-3,4-propylenedioxythiophene, 3,4-ethylenedithiathiophene, methyl-3,4-ethylenedithiathiophene, ethyl-3,4-ethylenedithiathiophene, propyl-3,4 -ethylenedithiathiophene, 3,4-propylenedithiathiophene, methyl-3,4-
  • 3,4-ethylenedioxythiophene, methyl-3,4-ethylenedioxythiophene, and ethyl-3,4-ethylenedioxythiophene are particularly preferred because of their excellent electrical properties in electrolytic capacitors.
  • the conductive polymer that can be used in the present invention can be obtained by chemically oxidatively polymerizing a monomer compound such as the thiophene compound represented by the above general formula (7) in the presence of the above dopant.
  • a known oxidizing agent for chemical oxidative polymerization for example, a known oxidizing agent described in JP-A-2010-31160 can be used.
  • the dopant may have a functional group that can cause chemical oxidation doping to the polymer, and preferred examples include a sulfate ester group, a phosphate ester group, a phosphoric acid group, a carboxyl group, and a sulfo group.
  • a sulfate ester group, a phosphate ester group, a phosphoric acid group, a carboxyl group, and a sulfo group are more preferable, and the sulfo group is particularly preferable, from the point of the doping effect.
  • dopants include halogen ions such as iodine, bromine, and chlorine; halide ions such as hexafluorophosphorus, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, and perchloric acid; cyclic sulfonate ions such as alkyl-substituted organic sulfonate ions and camphorsulfonate ions; Alternatively, disulfonic acid ions, 2-naphthalenesulfonic acid, alkyl-substituted or unsubstituted ions of naphthalenesulfonic acid substituted with 1 to 4 sulfonic acid groups such as 2-naphthalenesulfonic acid, 1,7-naphthalenedisulfonic acid, anthracenesulfonic acid ion, anthraquinonesulfonic acid ion , alkyl-substituted or unsubsti
  • Example 1 An electrolytic solution was prepared by dissolving 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium as a zwitterionic compound in ethylene glycol to a concentration of 1 mol/L.
  • Example 2 An electrolytic solution was prepared in the same manner as in Example 1, except that 1-methyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium was used as the zwitterionic compound.
  • Example 3 An electrolytic solution was prepared in the same manner as in Example 1, except that 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium was used as the zwitterionic compound.
  • Example 4 An electrolytic solution was prepared in the same manner as in Example 1, except that 1-methyl-2-(3-sulfonatopropyl)-1H-pyrazol-2-ium was used as the zwitterionic compound.
  • Example 5 An electrolytic solution was prepared in the same manner as in Example 1, except that 1-(3-sulfonatopropyl)pyridin-1-ium was used as the zwitterionic compound.
  • Example 6 An electrolytic solution was prepared in the same manner as in Example 1, except that 1-methyl-1-(3-sulfonatopropyl)piperidin-1-ium was used as the zwitterionic compound.
  • Example 7 In the production of the electrolytic solution, 5 parts by weight of polyether-modified silicone ("Silwet L-7657", molecular weight 5000, manufactured by Momentive) and colloidal silica (manufactured by Nissan Chemical Industries, Ltd.) are added to 90 parts by weight of the electrolytic solution.
  • An electrolytic solution was prepared in the same manner as in Example 1, except that 5 parts by weight of Snowtex N-40, aqueous dispersion, solid content 40%, average particle size 20 to 30 nm, pH 9.0 to 10) was added.
  • Electrolytic capacitors were produced by the following method using the respective electrolytic solutions obtained in Examples 1 to 7 and Comparative Example 1. Each obtained electrolytic capacitor was subjected to a heat resistance test at 125° C. for 5000 hours, and then a current of 5 mA/cm 2 and a voltage of 1000 V were applied at 25° C., and the voltage-time rising curve was first spiked. Alternatively, the value at which scintillation was observed was taken as the withstand voltage. Equivalent series resistance (ESR) at 100 kHz was also measured using Precision LCR Meter E4980A manufactured by Agilent Technologies.
  • a capacitor element was formed by winding an anode foil and a cathode foil through a separator.
  • An anode tab and a cathode tab are connected to the anode foil and the cathode foil, respectively.
  • These anode tabs and cathode tabs are made of high-purity aluminum and consist of a flat part connected to each foil and a round bar part that is continuous with the flat part. It is connected.
  • Each foil and electrode tab are mechanically connected by stitching, ultrasonic welding, or the like.
  • the capacitor element thus configured was impregnated with each capacitor electrolytic solution.
  • the capacitor element impregnated with the electrolytic solution is housed in a bottomed cylindrical outer case made of aluminum, and a butyl rubber sealing member having a through hole for leading out a lead wire is inserted into the open end of the outer case, Further, the electrolytic capacitor was sealed by crimping the ends of the exterior case to obtain an aluminum electrolytic capacitor.
  • a capacitor element was formed by winding an anode foil and a cathode foil with a separator interposed therebetween.
  • An anode tab and a cathode tab are connected to the anode foil and the cathode foil, respectively.
  • These anode tabs and cathode tabs are made of high-purity aluminum and consist of a flat part connected to each foil and a round bar part that is continuous with the flat part. It is connected.
  • Each foil and electrode tab are mechanically connected by stitching, ultrasonic welding, or the like.
  • the electrolytic solution of the present invention has a high spark voltage, so it is extremely useful as an electrolytic solution for capacitors.

Abstract

Provided are: [A] a capacitor electrolytic solution characterized by including a zwitterion compound; [B] a capacitor electrolytic solution having a higher sparking voltage than the capacitor electrolytic solution [A], the capacitor electrolytic solution [B] being characterized in that the zwitterion compound is dissolved in one or more selected from the group consisting of water, ethylene glycol, polyethylene glycol, gamma‐butyrolactone, and sulfolane; and a capacitor that uses the same and has high voltage resistance performance and low equivalent series resistance.

Description

コンデンサ用電解液及びコンデンサElectrolyte for capacitors and capacitors
 本発明は、コンデンサ用電解液とそれを用いたコンデンサに関する。 The present invention relates to an electrolytic solution for capacitors and a capacitor using the same.
 従来、コンデンサ用電解液としては、有機溶媒に有機酸や無機酸又はそれらの塩を電解質として溶解させたものが用いられており、例えば、アルミ電解コンデンサの場合、アルミ箔の表面に陽極酸化処理によって酸化皮膜を誘電体として形成させた化成箔を陽極側電極に用い、当該陽極側電極に対向させて陰極側電極を配置し、両極間にセパレータを介在させ、そこにこの電解液を保持させて電解コンデンサが形成される。 Conventionally, electrolytes for capacitors have been prepared by dissolving organic acids, inorganic acids, or their salts in organic solvents as electrolytes. For example, in the case of aluminum electrolytic capacitors, the surface of aluminum foil is anodized. A chemically formed foil having an oxide film formed as a dielectric by is used as the anode electrode, the cathode electrode is arranged so as to face the anode electrode, and the separator is interposed between the two electrodes to hold the electrolytic solution. an electrolytic capacitor is formed.
 電解コンデンサの耐電圧は、電解コンデンサ用電解液の性能に起因していることが知られている。そのため、電解コンデンサ用電解液の火花電圧を向上させる添加剤が種々検討されている。例えば、二酸化ケイ素(特許文献1)、リン酸エステル(特許文献2)、多孔性ポリイミド微粒子(特許文献3)等が知られている。 It is known that the withstand voltage of electrolytic capacitors is due to the performance of the electrolyte for electrolytic capacitors. Therefore, various additives for improving the spark voltage of electrolytes for electrolytic capacitors have been studied. For example, silicon dioxide (Patent Document 1), phosphate ester (Patent Document 2), porous polyimide fine particles (Patent Document 3), and the like are known.
特開平05-6839号公報JP-A-05-6839 特開2001-155968号公報JP-A-2001-155968 特開2009-283581号公報JP 2009-283581 A
 前記の添加剤を用いても前記電解液を使用したコンデンサの耐電圧特性及び等価直列抵抗が不十分であることが本発明者らの検討により判明した。
 したがって、本発明は、高い火花電圧を有するコンデンサ用電解液、これを用いた高い耐電圧性能及び低い等価直列抵抗を備えたコンデンサを提供することを目的とする。
The present inventors have found that the withstand voltage characteristics and equivalent series resistance of the capacitor using the electrolyte are insufficient even when the additive is used.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrolytic solution for capacitors having a high spark voltage, and a capacitor using the same, which has high withstand voltage performance and low equivalent series resistance.
 本発明者らは、鋭意検討した結果、以下の内容の本発明を完成した。 As a result of intensive studies, the inventors completed the present invention with the following contents.
[1]双性イオン化合物を含むことを特徴とするコンデンサ用電解液。 [1] An electrolytic solution for a capacitor, containing a zwitterionic compound.
[2]前記双性イオン化合物が、水、エチレングリコール、ポリエチレングリコール、ガンマブチロラクトン、スルホランからなる群から選ばれる1種または2種以上に溶解していることを特徴とする[1]に記載のコンデンサ用電解液。 [2] The zwitterionic compound according to [1], wherein the zwitterionic compound is dissolved in one or more selected from the group consisting of water, ethylene glycol, polyethylene glycol, gamma-butyrolactone, and sulfolane. Electrolyte for capacitors.
[3]前記双性イオン化合物が、スルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、及び下記式(1)で表されるアニオンからなる群から選択される1種以上のアニオン部位を有する、[1]又は[2]に記載のコンデンサ用電解液。 [3] The zwitterionic compound has one or more anion sites selected from the group consisting of sulfonate anions, carboxylate anions, phosphate anions, and anions represented by the following formula (1), [ 1] or electrolyte solution for capacitors according to [2].
Figure JPOXMLDOC01-appb-C000003
(式(1)において、Zは炭素数1~15のアルキル基、炭素数1~15のハロゲン化アルキル基、炭素数6~15のアリール基、炭素数6~15のハロゲン化アリール基、又はハロゲンを表し、*は結合手を表す)
Figure JPOXMLDOC01-appb-C000003
(In formula (1), Z is an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogenated aryl group having 6 to 15 carbon atoms, or represents a halogen, * represents a bond)
[4]前記双性イオン化合物が、アンモニウムイオン、イミダゾリウムイオン、ピラゾリウムイオン、ピリジニウムイオン、及びピペリジニウムイオンからなる群から選択される1種以上のカチオン部位を有する、[1]~[3]のいずれかにコンデンサ用電解液。 [4] The zwitterionic compound has one or more cationic sites selected from the group consisting of ammonium ions, imidazolium ions, pyrazolium ions, pyridinium ions, and piperidinium ions [1] to [3] ] Electrolyte for capacitors.
[5]前記双性イオン化合物が、下記一般式(2)~(6)で表される化合物からなる群から選ばれる1種以上の化合物であることを特徴とする[1]~[4]のいずれかに記載のコンデンサ用電解液。 [5] [1] to [4], wherein the zwitterionic compound is one or more compounds selected from the group consisting of compounds represented by the following general formulas (2) to (6): Electrolyte solution for capacitors according to any one of the above.
Figure JPOXMLDOC01-appb-C000004
(式(2)~(6)中、R~R20は、それぞれ独立して一級アミノ基及び二級アミノ基の一方又は両方を有していてもよい有機基または水素原子であり、隣接するR同士は連結し、炭素数2~6のアルキレン基を形成しても良く、X~Xはスルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、又は式(1)で表されるアニオンのいずれかを含有する炭素数0~15の基を表す)
Figure JPOXMLDOC01-appb-C000004
(In formulas (2) to (6), R 1 to R 20 are each independently an organic group optionally having one or both of a primary amino group and a secondary amino group, or a hydrogen atom, and adjacent The Rs may be linked to each other to form an alkylene group having 2 to 6 carbon atoms, and X 1 to X 5 are a sulfonate anion, a carboxylate anion, a phosphate anion, or an anion represented by formula (1). represents a group with 0 to 15 carbon atoms containing any of
[6]前記双性イオン化合物の分子量が、50~500であることを特徴とする[1]~[5]のいずれかに記載のコンデンサ用電解液。 [6] The electrolytic solution for capacitors according to any one of [1] to [5], wherein the zwitterionic compound has a molecular weight of 50 to 500.
[7]前記双性イオン化合物が、1-メチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-メチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-エチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-エチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-ブチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-ブチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-ヘキシル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-ヘキシル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、トリメチルグリシン、リン酸2-(メタクリロイルオキシ)エチル-2-(トリメチルアンモニオ)エチル、1-(3-スルホナトプロピル)ピリジン-1-イウム、1-メチル-2-(3-スルホナトプロピル)-1H-ピラゾール-2-イウム、1-メチル-1-(3-スルホナトプロピル)ピペリジン-1-イウムからなる群より選ばれた1種以上の化合物である[1]又は[2]のいずれかに記載のコンデンサ用電解液。 [7] The zwitterionic compound is 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-methyl-3-(4-sulfonatobutyl)-1H-imidazole-3- ium, 1-ethyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-ethyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-butyl-3-ium (3-sulfonatopropyl)-1H-imidazol-3-ium, 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-hexyl-3-(3-sulfonatopropyl)- 1H-imidazol-3-ium, 1-hexyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, trimethylglycine, 2-(methacryloyloxy)ethyl-2-(trimethylammonio)ethyl phosphate, 1-(3-sulfonatopropyl)pyridin-1-ium, 1-methyl-2-(3-sulfonatopropyl)-1H-pyrazol-2-ium, 1-methyl-1-(3-sulfonatopropyl) The electrolytic solution for capacitors according to either [1] or [2], which is one or more compounds selected from the group consisting of piperidin-1-ium.
[8]さらに、コロイダルシリカとシリコーン系界面活性剤を含むことを特徴とする[1]~[7]のいずれかに記載のコンデンサ用電解液。 [8] The electrolytic solution for a capacitor according to any one of [1] to [7], further comprising colloidal silica and a silicone surfactant.
[1]~[8]のいずれかに記載の電解液を含むコンデンサ。 A capacitor containing the electrolytic solution according to any one of [1] to [8].
 本発明のコンデンサ用電解液は、高い火花電圧を有し、これを用いることにより、優れた耐電圧性能及び等価直列抵抗を備えたコンデンサを得ることが可能なものである。 The electrolytic solution for capacitors of the present invention has a high spark voltage, and by using it, it is possible to obtain a capacitor with excellent withstand voltage performance and equivalent series resistance.
 本発明のコンデンサ用電解液について説明する。 The electrolytic solution for capacitors of the present invention will be explained.
<双性イオン化合物>
 双性イオン化合物とは、同一分子内にカチオン部位とアニオン部位とを有し、カチオン部位とアニオン部位はそれぞれ共有結合により分子内のいずれかの原子と結合している化合物である。双性イオン化合物は、例えば、X-A-Yなどで表され、同一分子内にカチオン部位(X)と、アニオン部位(Y)とを有する。Aは、カチオン部位(X)とアニオン部位(Y)を共有結合で結ぶ連結基である。なお、連結基Aは通常、単結合又は炭素数1~20の有機基である。
<Zwitterionic compound>
A zwitterionic compound is a compound that has a cation site and an anion site in the same molecule, and the cation site and the anion site are each bonded to any atom in the molecule by a covalent bond. A zwitterionic compound is represented by, for example, X + -AY - and has a cation site (X + ) and an anion site (Y ) in the same molecule. A is a linking group that covalently connects the cationic site (X + ) and the anionic site (Y ). Incidentally, the linking group A is usually a single bond or an organic group having 1 to 20 carbon atoms.
 双性イオン化合物は、カチオン部位とアニオン部位が共有結合により同一分子内に存在するため、電極近傍の電場によるイオンの拡散が生じ難く、これにより、電解液の火花電圧特性、電解液を使用したコンデンサの耐電圧特性及び等価直列抵抗が良好になるものと推察される。 In the zwitterion compound, the cation site and the anion site are present in the same molecule by covalent bonding, so the diffusion of ions due to the electric field near the electrode is difficult to occur. It is presumed that the withstand voltage characteristics and equivalent series resistance of the capacitor are improved.
 本発明で使用することができる双性イオン化合物は、特に限定されず、公知の双性イオン化合物を使用することが可能である。 The zwitterionic compound that can be used in the present invention is not particularly limited, and known zwitterionic compounds can be used.
 双性イオン化合物におけるアニオン部位としては、例えば、ハロゲンイオン、スルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、リン酸エステルアニオン、ホスホン酸アニオン、炭酸エステルアニオン、硫酸エステルアニオン、ヒドロキシアニオン、下記式で表されるアニオンなどであればよい。中でも、電解液の火花電圧特性、電解液を使用したコンデンサの耐電圧特性及び等価直列抵抗を良好とする観点から、双性イオン化合物は、スルホン酸アニオン(SO )、カルボン酸アニオン(COO)、リン酸アニオン(PO )、及び下記式(1)で表されるアニオンからなる群から選択される一種以上のアニオン部位を有することが好ましい。 Examples of the anion moiety in the zwitterion compound include halogen ion, sulfonate anion, carboxylate anion, phosphate anion, phosphate ester anion, phosphonate anion, carbonate anion, sulfate anion, hydroxy anion, and the following formula: Any anion or the like can be used. Among them, from the viewpoint of improving the spark voltage characteristics of the electrolytic solution, the withstand voltage characteristics and the equivalent series resistance of the capacitor using the electrolytic solution, the zwitterionic compound is sulfonate anion (SO 3 ), carboxylate anion (COO ), phosphate anions (PO 3 ), and anions represented by the following formula (1).
Figure JPOXMLDOC01-appb-I000005
 式(1)において、Zは炭素数1~15のアルキル基、炭素数1~15のハロゲン化アルキル基、炭素数6~15のアリール基、炭素数6~15のハロゲン化アリール基、又はハロゲンを表し、*は結合手を表す。中でもZは、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、ハロゲンであることが好ましい。なお、式(1)における紙面の一番左の硫黄原子が双性イオン化合物中のいずれかの原子と共有結合を形成する。
Figure JPOXMLDOC01-appb-I000005
In formula (1), Z is an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogenated aryl group having 6 to 15 carbon atoms, or a halogen and * represents a bond. Among them, Z is preferably an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or halogen. The leftmost sulfur atom in the formula (1) forms a covalent bond with any atom in the zwitterionic compound.
 双性イオン化合物のアニオン部位としては、上記例示したアニオン部位の中でも、スルホン酸アニオンが好ましい。双性イオン化合物がスルホン酸アニオンを含む場合には、電解液の火花電圧特性、電解液を使用したコンデンサの耐電圧特性及び等価直列抵抗が良好となる傾向がある。 Among the anion sites exemplified above, the sulfonate anion is preferable as the anion site of the zwitterionic compound. When the zwitterionic compound contains a sulfonate anion, the spark voltage characteristics of the electrolytic solution and the withstand voltage characteristics and equivalent series resistance of the capacitor using the electrolytic solution tend to be improved.
 双性イオン化合物におけるカチオン部位としては、例えば、置換基を有してもよいイミダゾリウムイオン、アンモニウムイオン、ピリジニウムイオン、スルホニウムイオン、ピペリジニウムイオン、ピラゾリウムイオンなどが挙げられる。中でも、電解液の火花電圧特性、電解液を使用したコンデンサの耐電圧特性及び等価直列抵抗を良好とする観点から、双性イオン化合物が、イミダゾリウムイオン、ピリジニウムイオン、及びピラゾリウムイオンからなる群から選択される一種以上のカチオン部位を有することが好ましい。 Examples of cationic sites in zwitterionic compounds include imidazolium ions, ammonium ions, pyridinium ions, sulfonium ions, piperidinium ions, and pyrazolium ions which may have substituents. Among them, the group consisting of imidazolium ions, pyridinium ions, and pyrazolium ions, from the viewpoint of improving the spark voltage characteristics of the electrolyte and the withstand voltage characteristics and equivalent series resistance of capacitors using the electrolyte. It is preferred to have one or more cationic sites selected from
 本発明の双性イオン化合物としては、下記式(2)~(6)で表される少なくともいずれかの化合物を含むことが好ましい。これらの双性イオン化合物を用いることにより、電解液の火花電圧特性、電解液を使用したコンデンサの耐電圧特性及び等価直列抵抗が向上しやすくなる。 The zwitterionic compound of the present invention preferably contains at least one of the compounds represented by the following formulas (2) to (6). By using these zwitterionic compounds, the spark voltage characteristics of the electrolytic solution, the withstand voltage characteristics and the equivalent series resistance of the capacitor using the electrolytic solution are likely to be improved.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記式(2)~(6)中、R~R20は、それぞれ同一でも異なっても良い水素、炭素数1~18のアルキル基、炭素数1~18のアルコキシ基又は水酸基であり、隣接するR同士は連結し、炭素数2~6のアルキレン基を形成しても良い。
 前記式(2)~(6)中、R~R20は、それぞれ同一でも異なっても良い水素、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又は水酸基であることが好ましく、隣接するR同士は連結し、炭素数2~6のアルキレン基を形成しても良い。
 X~Xはスルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、又は式(1)で表されるアニオンのいずれかを含有する炭素数0~15の基であることが好ましい。
中でも、前記式(2)~(6)中、X~Xはスルホン酸アニオンを含有する炭素数1~10の有機基であることがより好ましく、炭素数1~5のスルホナトアルキル基(-(CH)n-SO-;nは1~5の整数)であることがさらに好ましい。
In the above formulas (2) to (6), R 1 to R 20 are hydrogen, which may be the same or different, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a hydroxyl group; The Rs may be linked together to form an alkylene group having 2 to 6 carbon atoms.
In the above formulas (2) to (6), R 1 to R 20 , which may be the same or different, are hydrogen, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a hydroxyl group. Preferably, adjacent Rs may be linked to form an alkylene group having 2 to 6 carbon atoms.
X 1 to X 5 are preferably groups having 0 to 15 carbon atoms containing any one of sulfonate anion, carboxylate anion, phosphate anion, and anion represented by formula (1).
Among them, in the above formulas (2) to (6), X 1 to X 5 are more preferably organic groups having 1 to 10 carbon atoms containing sulfonate anions, and sulfonatoalkyl groups having 1 to 5 carbon atoms. (—(CH 2 )n—SO 3 —; n is an integer of 1 to 5) is more preferred.
 本発明に用いられる双性イオン化合物は、1-メチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-メチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-エチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-エチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-ブチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-ブチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-ヘキシル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-ヘキシル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、トリメチルグリシン、リン酸2-(メタクリロイルオキシ)エチル-2-(トリメチルアンモニオ)エチル、1-(3-スルホナトプロピル)ピリジニウム、1-メチル-2-(3-スルホナトプロピル)-1H-ピラゾール-2-イウム、1-メチル-1-(3-スルホナトプロピル)ピペリジン-1-イウムを例示することができる。 The zwitterionic compounds used in the present invention are 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-methyl-3-(4-sulfonatobutyl)-1H-imidazole-3 -ium, 1-ethyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-ethyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-butyl-3 -(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-hexyl-3-(3-sulfonatopropyl) -1H-imidazol-3-ium, 1-hexyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, trimethylglycine, 2-(methacryloyloxy)ethyl-2-(trimethylammonio)ethyl phosphate , 1-(3-sulfonatopropyl)pyridinium, 1-methyl-2-(3-sulfonatopropyl)-1H-pyrazol-2-ium, 1-methyl-1-(3-sulfonatopropyl)piperidine-1 - can be exemplified by ium.
 本発明のコンデンサ用電解液における双性イオン化合物の含有量は、0.001~70質量%が好ましく、0.005~60質量%がより好ましく、0.01~50質量%が特に好ましい。 The content of the zwitterionic compound in the electrolytic solution for capacitors of the present invention is preferably 0.001 to 70% by mass, more preferably 0.005 to 60% by mass, and particularly preferably 0.01 to 50% by mass.
<コロイダルシリカ>
 コロイダルシリカとは、SiO又はその水和物のコロイドで、粒径が1~300nmで一定の構造をもたないものである。ケイ酸塩に希塩酸を作用させた後に、透析で得ることができる。粒径が小さくなるほどゲル化は進行しやすくなるが、粒径が大きくなるほどゲル化しにくくなる。本発明に用いるコロイダルシリカの粒径は、10~50nmが好ましく挙げられ、より好ましくは10~30nmが好ましく挙げられる。該粒径のコロイダルシリカを用いることで、ゲル状になりにくく、電解液に含有させた時にも安定に分散した状態を維持することができる。
<Colloidal silica>
Colloidal silica is a colloid of SiO 2 or its hydrate, which has a particle size of 1 to 300 nm and does not have a fixed structure. It can be obtained by dialysis after allowing dilute hydrochloric acid to act on the silicate. As the particle size becomes smaller, gelation progresses more easily, but as the particle size becomes larger, gelation becomes more difficult. The particle size of colloidal silica used in the present invention is preferably 10 to 50 nm, more preferably 10 to 30 nm. By using colloidal silica having such a particle size, it is difficult to form a gel, and it is possible to maintain a stably dispersed state even when the colloidal silica is contained in the electrolytic solution.
 コロイダルシリカは、水又は有機溶媒にほとんど溶解せず、一般に適当な分散溶媒中に分散させたコロイド溶液として電解液に添加した状態で用いることができる。 Colloidal silica is almost insoluble in water or organic solvents, and can generally be used in the form of a colloidal solution dispersed in a suitable dispersion solvent and added to the electrolytic solution.
 本発明に用いるコロイダルシリカは、ナトリウム安定型コロイダルシリカでも、酸性コロイダルシリカでも、アンモニア安定型コロイダルシリカでもよい。
 ナトリウム安定型コロイダルシリカは、コロイダルシリカの表面がONa基となっている。酸性コロイダルシリカは、コロイダルシリカの表面が、Naを除去したOH基となっているコロイダルシリカであり、アンモニア安定型コロイダルシリカは、Naを除去してOH基にした後、アンモニアを含有させて安定化させたコロイダルシリカである。
 これらの中でも、ナトリウムイオンの含有量が少ない酸性コロイダルシリカ又はアンモニア安定型コロイダルシリカが好ましく挙げられる。
The colloidal silica used in the present invention may be sodium-stable colloidal silica, acidic colloidal silica, or ammonia-stable colloidal silica.
The sodium-stable colloidal silica has an ONa group on the surface of the colloidal silica. Acidic colloidal silica is colloidal silica in which the surface of colloidal silica has OH groups from which Na has been removed. Ammonia-stabilized colloidal silica is made from OH groups by removing Na, and then is stabilized by containing ammonia. colloidal silica.
Among these, acidic colloidal silica or ammonia-stable colloidal silica having a low sodium ion content is preferred.
 電解液中におけるコロイダルシリカの含有量は、0.01~20質量%、より好ましくは0.05~15質量%が挙げられ、特に好ましくは0.1~10質量%が挙げられる。該範囲では、前処理剤を用いた陽極金属の前処理により、コンデンサの耐電圧特性が向上する。 The content of colloidal silica in the electrolytic solution is 0.01 to 20% by mass, more preferably 0.05 to 15% by mass, and particularly preferably 0.1 to 10% by mass. Within this range, the pretreatment of the anode metal with the pretreatment agent improves the withstand voltage characteristics of the capacitor.
 コロイダルシリカの平均粒径は、いずれのものでもよく、好ましくは1~100nmであり、より好ましくは10~50nmであり、特に好ましくは10~30nmである。前記平均粒径にすることで、溶媒における分散性に優れた電解液を得ることができる。 The colloidal silica may have any average particle size, preferably 1 to 100 nm, more preferably 10 to 50 nm, and particularly preferably 10 to 30 nm. By adjusting the average particle size to the above range, it is possible to obtain an electrolytic solution having excellent dispersibility in a solvent.
 コロイダルシリカの形状は、球状タイプ、鎖状タイプ、コロイダルシリカが環状に凝集して溶媒に分散した環状タイプのいずれであってもよい。 The shape of the colloidal silica may be any of a spherical type, a chain type, and a ring type in which colloidal silica aggregates into a ring and is dispersed in a solvent.
<シリコーン系界面活性剤>
 シリコーン系界面活性剤は、シロキサン結合(Si-O-Si)を主骨格にもつとともにSi-Cの結合をも有する化合物を含み、具体的には、ジメチルシリコーン、メチルフェニルシリコーン、クロロフェニルシリコーン、アルキル変性シリコーン、フッ素変性シリコーン、アミノ変性シリコーン、アルコール変性シリコーン、フェノール変性シリコーン、カルボキシ変性シリコーン、エポキシ変性シリコーン、脂肪酸エステル変性シリコーン、ポリエーテル変性シリコーン等が挙げられる。
<Silicone surfactant>
Silicone-based surfactants include compounds having a siloxane bond (Si—O—Si) in the main skeleton and also having a Si—C bond, and specifically include dimethyl silicone, methylphenyl silicone, chlorophenyl silicone, alkyl modified silicone, fluorine-modified silicone, amino-modified silicone, alcohol-modified silicone, phenol-modified silicone, carboxy-modified silicone, epoxy-modified silicone, fatty acid ester-modified silicone, polyether-modified silicone and the like.
 シリコーン系界面活性剤の分子量は、100~100000が好ましく挙げられる。該範囲の分子量のシリコーン系界面活性剤を用いることで、コロイダルシリカの電荷バランスが崩れるのを防止することができるため、より高い耐電圧特性を有したコンデンサを得ることができる。 The molecular weight of the silicone-based surfactant is preferably 100 to 100,000. By using a silicone-based surfactant having a molecular weight within this range, it is possible to prevent the colloidal silica from losing its charge balance, so that a capacitor having higher withstand voltage characteristics can be obtained.
 アルキル変性シリコーンとは、炭素数6以上のアルキル基や2-フェニルプロピル基等を有する変性シリコーンであり、アルコール変性シリコーンとは、アルコール性水酸基を有する変性シリコーンであり、エポキシ変性シリコーンとは、グリシジル基又は脂環式エポキシ基等を有する変性シリコーンであり、アミノ変性シリコーンとは、アミノプロピル基やN-(2-アミノエチル)アミノプロピル基等のアミノ基を有する変性シリコーンであり、脂肪酸エステルシリコーンとは、脂肪酸のエステル基を有する変性シリコーンであり、ポリエーテル変性シリコーンとは、ポリオキシアルキレン基(例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシエチレンオキシプロピレン基等)を有する変性シリコーンである。 Alkyl-modified silicone is modified silicone having an alkyl group having 6 or more carbon atoms, a 2-phenylpropyl group, or the like, alcohol-modified silicone is modified silicone having an alcoholic hydroxyl group, and epoxy-modified silicone is glycidyl. Amino-modified silicone is a modified silicone having an amino group such as an aminopropyl group or an N-(2-aminoethyl)aminopropyl group, and a fatty acid ester silicone. is a modified silicone having a fatty acid ester group, and a polyether-modified silicone is a modified silicone having a polyoxyalkylene group (e.g., polyoxyethylene group, polyoxypropylene group, polyoxyethyleneoxypropylene group, etc.) is.
 シリコーン系界面活性剤は、単独又は2種類以上併用して用いることができる。これらの中でも特に、電解液のゲル化を防止する点より、ポリエーテル変性シリコーンが好ましく挙げられる。 The silicone-based surfactants can be used alone or in combination of two or more. Among these, polyether-modified silicone is particularly preferred from the viewpoint of preventing gelation of the electrolytic solution.
 ポリエーテル変性シリコーンには、ペンダント型ポリマー、ABA型ポリマー、(AB)n型ポリマー、枝分かれ型ポリマー等が挙げられるが、これらの中でもペンダント型ポリマー又はABA型ポリマーが好ましく挙げられる。 Polyether-modified silicones include pendant-type polymers, ABA-type polymers, (AB)n-type polymers, branched-type polymers, etc. Among these, pendant-type polymers and ABA-type polymers are preferred.
  ペンダント型は典型的には一般式(A)で表される化合物であり、ABA型は典型的には一般式(B)で表される化合物である。 The pendant type is typically a compound represented by general formula (A), and the ABA type is typically a compound represented by general formula (B).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(A)、(B)で表される化合物中のR又はRは、炭素数1~20のアルキル基を示し、Y又はZは、水素原子又は炭素数1~10のアルキル基を示す。mは0から1000の整数であり、n又はPは1~1000の整数である。a、b、c、dはそれぞれ独立に0~100の整数である。 R A or R B in the compounds represented by the above general formulas (A) and (B) represents an alkyl group having 1 to 20 carbon atoms, and Y or Z is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. indicates a group. m is an integer from 0 to 1,000, and n or P is an integer from 1 to 1,000. a, b, c, and d are each independently an integer of 0 to 100;
 コンデンサ用電解液中のコロイダルシリカとシリコーン系界面活性剤の含有比(質量比)は、任意の質量比でよいが、コロイダルシリカ1に対し、シリコーン系界面活性剤を0.01~10含有させることが好ましく挙げられ、0.05~5.0含有させることがより好ましく挙げられ、0.1~2.0含有させることが特に好ましく挙げられる。該範囲にすることで、優れた耐電圧性を有するコンデンサを得ることができる。 The content ratio (mass ratio) of the colloidal silica and the silicone-based surfactant in the electrolytic solution for a capacitor may be any mass ratio, but 0.01 to 10% of the silicone-based surfactant is contained per 1 part of the colloidal silica. is preferred, more preferably 0.05 to 5.0, and particularly preferably 0.1 to 2.0. By setting the content within this range, a capacitor having excellent voltage resistance can be obtained.
<有機溶媒>
 コンデンサ用電解液に用いる有機溶媒としては、プロトン性極性溶媒又は非プロトン性極性溶媒を用いることができ、単独で用いても2種類以上混合して用いてもよい。
<Organic solvent>
A protic polar solvent or an aprotic polar solvent can be used as the organic solvent used in the electrolytic solution for capacitors, and may be used alone or in combination of two or more.
 プロトン性極性溶媒としては、一価アルコール類(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類及びオキシアルコール化合物類(エチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール等)等が挙げられる。 Protic polar solvents include monohydric alcohols (methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, benzyl alcohol, etc.), polyhydric alcohols and oxyalcohol compounds ( ethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, etc.) and the like.
 非プロトン性の極性溶媒としては、γ-ブチロラクトン、γ-バレロラクトン、アミド系(N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、ヘキサメチルホスホリックアミド等)、スルホラン系(スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等)、鎖状スルホン系(ジメチルスルホン、エチルメチルスルホン、エチルイソプロピルスルホン)、環状アミド系(N-メチル-2-ピロリドン等)、カーボネイト類(エチレンカーボネイト、プロピレンカーボネイト、イソブチレンカーボネイト等)、ニトリル系(アセトニトリル等)、スルホキシド系(ジメチルスルホキシド等)、2-イミダゾリジノン系〔1,3-ジアルキル-2-イミダゾリジノン(1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノン等)、1,3,4-トリアルキル-2-イミダゾリジノン(1,3,4-トリメチル-2-イミダゾリジノン等)〕等が挙げられる。 Aprotic polar solvents include γ-butyrolactone, γ-valerolactone, amides (N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, hexamethylphosphoricamide, etc.), sulfolane-based (sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, etc.), chain sulfone-based (dimethylsulfone, ethylmethylsulfone, ethylisopropylsulfone), cyclic amides (N-methyl-2-pyrrolidone, etc.), carbonates (ethylene carbonate, propylene carbonate, isobutylene carbonate, etc.), nitriles (acetonitrile, etc.), sulfoxides (dimethyl sulfoxide, etc.), 2-imidazolidinone [1,3-dialkyl-2-imidazolidinone (1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1 ,3-di(n-propyl)-2-imidazolidinone etc.), 1,3,4-trialkyl-2-imidazolidinone (1,3,4-trimethyl-2-imidazolidinone etc.)] etc. are mentioned.
 前記溶媒の中でも特に、水、メタノール、エタノール、ブタノール、イソプロピルアルコール、エチレングリコール、ポリエチレングリコール、ガンマブチロラクトン、スルホランが、好ましく挙げられる。 Among the solvents, water, methanol, ethanol, butanol, isopropyl alcohol, ethylene glycol, polyethylene glycol, gamma-butyrolactone, and sulfolane are particularly preferred.
<添加剤>
 本発明のコンデンサ用電解液には、添加剤を含有してもよい。添加剤としては、ポリエチレングリコール、ポリビニルアルコール、ジブチルリン酸又は亜リン酸のリン酸化合物、ホウ酸、マンニット、ホウ酸とマンニット、ソルビット等の錯化合物やホウ酸とエチレングリコール、グリセリン等の多価アルコールとの錯化合物等のホウ素化合物、o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール等のニトロ化合物が挙げられる。
<Additive>
The electrolytic solution for capacitors of the present invention may contain additives. Examples of additives include polyethylene glycol, polyvinyl alcohol, phosphoric acid compounds of dibutyl phosphate or phosphorous acid, boric acid, mannite, boric acid and mannite, complex compounds such as sorbit, boric acid and ethylene glycol, glycerin and other complex compounds. Boron compounds such as complex compounds with alcohols, o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol and other nitro compounds. .
 上記添加剤の添加量は0.1~10質量%が好ましく、0.5~5.0質量%がより好ましい。0.1質量%未満では十分な火花電圧が得られない場合があり、10質量%を超えると電導度が低下する場合がある。 The amount of the additive added is preferably 0.1 to 10% by mass, more preferably 0.5 to 5.0% by mass. If it is less than 0.1% by mass, sufficient spark voltage may not be obtained, and if it exceeds 10% by mass, the electrical conductivity may decrease.
 本発明の電解液は、上記必須成分及び必要に応じ添加される任意成分を常法に従って混合することにより製造することができる。 The electrolytic solution of the present invention can be produced by mixing the above-mentioned essential components and optionally added optional components according to a conventional method.
<コンデンサ>
 本発明のコンデンサは、上述したコンデンサ用電解液を用いてなることを特徴とする。以下にアルミ電解コンデンサを例にとり説明する。
<Condenser>
A capacitor of the present invention is characterized by using the above-described electrolyte for capacitors. An example of an aluminum electrolytic capacitor will be explained below.
 アルミ電解コンデンサは、アルミ箔の表面に陽極酸化処理によって酸化皮膜を誘電体として形成させた化成箔を陽極側電極に用い、当該陽極側電極に対向させて陰極側電極を配置し、両極間にセパレータを介在させ、そこに電解液を保持させてコンデンサを形成させたものである。 In an aluminum electrolytic capacitor, a chemically processed foil is used as the anode electrode, and a cathode electrode is arranged to face the anode electrode. A capacitor is formed by interposing a separator and holding an electrolytic solution there.
 本発明のコンデンサは、電解コンデンサの電解質材料として固体電解質と電解液を用いたハイブリッド型の電解コンデンサ(以下、「ハイブリッドコンデンサ」と称する)を含む。 The capacitor of the present invention includes a hybrid electrolytic capacitor (hereinafter referred to as "hybrid capacitor") using a solid electrolyte and an electrolytic solution as the electrolyte material of the electrolytic capacitor.
[固体電解質]
 ハイブリッドコンデンサの固体電解質に用いられる導電性高分子は、好ましくはドーパントをドープした重合体である。重合体を製造するのに用いるモノマー化合物としては、特に制限されるものではなく、例えば、ピロール類、チオフェン類、アニリン類等を用いることができるが、導電性に優れることから、下記一般式(7)で表されるチオフェン化合物であることがより好ましい。
[Solid electrolyte]
The conductive polymer used in the solid electrolyte of the hybrid capacitor is preferably a dopant-doped polymer. The monomer compound used for producing the polymer is not particularly limited, and for example, pyrroles, thiophenes, anilines and the like can be used. A thiophene compound represented by 7) is more preferable.
一般式(7)
Figure JPOXMLDOC01-appb-C000008
general formula (7)
Figure JPOXMLDOC01-appb-C000008
 上記一般式(7)中、R21は水素原子又は炭素数1~6の直鎖又は分岐状のアルキル基を示し、Xはそれぞれ同一でも異なっていても良い酸素原子又は硫黄原子を示す。 In general formula (7) above, R 21 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and each X represents an oxygen atom or a sulfur atom, which may be the same or different.
 上記一般式(7)で表されるチオフェン化合物として、具体的には、3,4-エチレンジオキシチオフェン、メチル-3,4-エチレンジオキシチオフェン、エチル-3,4-エチレンジオキシチオフェン、プロピル-3,4-エチレンジオキシチオフェン、ブチル-3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、メチル-3,4-プロピレンジオキシチオフェン、エチル-3,4-プロピレンジオキシチオフェン、プロピル-3,4-プロピレンジオキシチオフェン、3,4-エチレンジチアチオフェン、メチル-3,4-エチレンジチアチオフェン、エチル-3,4-エチレンジチアチオフェン、プロピル-3,4-エチレンジチアチオフェン、3,4-プロピレンジチアチオフェン、メチル-3,4-プロピレンジチアチオフェン、エチル-3,4-プロピレンジチアチオフェン、プロピル-3,4-プロピレンジチアチオフェン等が挙げられる。 Specific examples of the thiophene compound represented by the general formula (7) include 3,4-ethylenedioxythiophene, methyl-3,4-ethylenedioxythiophene, ethyl-3,4-ethylenedioxythiophene, propyl-3,4-ethylenedioxythiophene, butyl-3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, methyl-3,4-propylenedioxythiophene, ethyl-3,4-propylenedioxythiophene oxythiophene, propyl-3,4-propylenedioxythiophene, 3,4-ethylenedithiathiophene, methyl-3,4-ethylenedithiathiophene, ethyl-3,4-ethylenedithiathiophene, propyl-3,4 -ethylenedithiathiophene, 3,4-propylenedithiathiophene, methyl-3,4-propylenedithiathiophene, ethyl-3,4-propylenedithiathiophene, propyl-3,4-propylenedithiathiophene and the like. be done.
 これらの中でも特に電解コンデンサにおける電気特性に優れる点より、3,4-エチレンジオキシチオフェン、メチル-3,4-エチレンジオキシチオフェン、エチル-3,4-エチレンジオキシチオフェンが特に好ましく挙げられる。 Among these, 3,4-ethylenedioxythiophene, methyl-3,4-ethylenedioxythiophene, and ethyl-3,4-ethylenedioxythiophene are particularly preferred because of their excellent electrical properties in electrolytic capacitors.
 本発明に用いることができる導電性高分子は、上記一般式(7)で表されるチオフェン化合物等のモノマー化合物を、上記ドーパントの存在下で化学酸化重合することによって得ることができる。化学酸化重合のための酸化剤は例えば特開2010-31160号公報記載の公知の酸化剤を用いることができる。 The conductive polymer that can be used in the present invention can be obtained by chemically oxidatively polymerizing a monomer compound such as the thiophene compound represented by the above general formula (7) in the presence of the above dopant. As an oxidizing agent for chemical oxidative polymerization, for example, a known oxidizing agent described in JP-A-2010-31160 can be used.
 該ドーパントとしては、高分子への化学酸化ドープが起こりうる官能基を有していればよく、硫酸エステル基、リン酸エステル基、リン酸基、カルボキシル基、スルホ基等が好ましく挙げられる。これらの中でも、ドープ効果の点より、硫酸エステル基、カルボキシル基、スルホ基がより好ましく挙げられ、スルホ基が特に好ましく挙げられる。 The dopant may have a functional group that can cause chemical oxidation doping to the polymer, and preferred examples include a sulfate ester group, a phosphate ester group, a phosphoric acid group, a carboxyl group, and a sulfo group. Among these, the sulfate ester group, the carboxyl group, and the sulfo group are more preferable, and the sulfo group is particularly preferable, from the point of the doping effect.
 ドーパントとして、例えば、ヨウ素、臭素、塩素等のハロゲンイオン、ヘキサフルオロリン、ヘキサフルオロヒ素、ヘキサフルオロアンチモン、テトラフルオロホウ素、過塩素酸等のハロゲン化物イオン、又はメタンスルホン酸、ドデシルスルホン酸等のアルキル置換有機スルホン酸イオン、カンファースルホン酸イオン等の環状スルホン酸イオン、又はベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ポリスチレンスルホン酸、ベンゼンジスルホン酸等のアルキル置換もしくは無置換のベンゼンモノもしくはジスルホン酸イオン、2-ナフタレンスルホン酸、1,7-ナフタレンジスルホン酸等のスルホン酸基を1~4個置換したナフタレンスルホン酸のアルキル置換もしくは無置換イオン、アントラセンスルホン酸イオン、アントラキノンスルホン酸イオン、アルキルビフェニルスルホン酸、ビフェニルジスルホン酸等のアルキル置換もしくは無置換のビフェニルスルホン酸イオン、ポリスチレンスルホン酸、ナフタレンスルホン酸ホルマリン縮合体等の高分子スルホン酸イオン等、またはモリブドリン酸、タングストリン酸、タングストモリブドリン酸等のヘテロポリ酸イオン、メトキシベンゼンスルホン酸、エトキシベンゼンスルホン酸、キシレンスルホン酸が挙げられる。これらの中でも、ポリスチレンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ポリスチレンスルホン酸、メトキシベンゼンスルホン酸、エトキシベンゼンスルホン酸、キシレンスルホン酸から選ばれる少なくとも一種がより好ましく挙げられ、パラトルエンスルホン酸、ポリスチレンスルホン酸が特に好ましく挙げられる。 Examples of dopants include halogen ions such as iodine, bromine, and chlorine; halide ions such as hexafluorophosphorus, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, and perchloric acid; cyclic sulfonate ions such as alkyl-substituted organic sulfonate ions and camphorsulfonate ions; Alternatively, disulfonic acid ions, 2-naphthalenesulfonic acid, alkyl-substituted or unsubstituted ions of naphthalenesulfonic acid substituted with 1 to 4 sulfonic acid groups such as 2-naphthalenesulfonic acid, 1,7-naphthalenedisulfonic acid, anthracenesulfonic acid ion, anthraquinonesulfonic acid ion , alkyl-substituted or unsubstituted biphenylsulfonic acid ions such as alkylbiphenylsulfonic acid and biphenyldisulfonic acid, polymeric sulfonic acid ions such as polystyrenesulfonic acid, naphthalenesulfonic acid formalin condensate, etc., or molybdophosphoric acid, tungstophosphoric acid, tungs heteropolyacid ions such as tomolybdophosphate, methoxybenzenesulfonic acid, ethoxybenzenesulfonic acid, and xylenesulfonic acid; Among these, more preferably at least one selected from polystyrenesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, polystyrenesulfonic acid, methoxybenzenesulfonic acid, ethoxybenzenesulfonic acid, and xylenesulfonic acid, paratoluenesulfonic acid, Particular preference is given to polystyrene sulfonic acid.
 以下、発明を実施例等に基づき説明する。なお、本発明は、実施例等により、なんら限定されるものではない。 The invention will be explained below based on examples. In addition, the present invention is not limited at all by the examples and the like.
 (実施例1)
 双性イオン化合物として1-メチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウムを、エチレングリコールに1mol/Lになるように溶解し電解液を調製した。
(Example 1)
An electrolytic solution was prepared by dissolving 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium as a zwitterionic compound in ethylene glycol to a concentration of 1 mol/L.
 (実施例2)
 双性イオン化合物として1-メチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウムを用いたこと以外は、実施例1と同様にして電解液を調製した。
(Example 2)
An electrolytic solution was prepared in the same manner as in Example 1, except that 1-methyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium was used as the zwitterionic compound.
 (実施例3)
 双性イオン化合物として1-ブチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウムを用いたこと以外は、実施例1と同様にして電解液を調製した。
(Example 3)
An electrolytic solution was prepared in the same manner as in Example 1, except that 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium was used as the zwitterionic compound.
 (実施例4)
 双性イオン化合物として1-メチル-2-(3-スルホナトプロピル)-1H-ピラゾール-2-イウムを用いたこと以外は、実施例1と同様にして電解液を調製した。
(Example 4)
An electrolytic solution was prepared in the same manner as in Example 1, except that 1-methyl-2-(3-sulfonatopropyl)-1H-pyrazol-2-ium was used as the zwitterionic compound.
 (実施例5)
 双性イオン化合物として1-(3-スルホナトプロピル)ピリジン-1-イウムを用いたこと以外は、実施例1と同様にして電解液を調製した。
(Example 5)
An electrolytic solution was prepared in the same manner as in Example 1, except that 1-(3-sulfonatopropyl)pyridin-1-ium was used as the zwitterionic compound.
 (実施例6)
 双性イオン化合物として1-メチル-1-(3-スルホナトプロピル)ピペリジン-1-イウムを用いたこと以外は、実施例1と同様にして電解液を調製した。
(Example 6)
An electrolytic solution was prepared in the same manner as in Example 1, except that 1-methyl-1-(3-sulfonatopropyl)piperidin-1-ium was used as the zwitterionic compound.
 (実施例7)
 前記電解液の製造において、電解液90質量部に対して、ポリエーテル変性シリコーン(モメンティブ社製、「Silwet  L-7657」、分子量5000)を5質量部、及びコロイダルシリカ(日産化学工業社製、スノーテックスN-40、水分散液、固形分40%、平均粒径20~30nm、pH9.0~10)5質量部を加えた以外は、実施例1と同様にして電解液を調製した。
(Example 7)
In the production of the electrolytic solution, 5 parts by weight of polyether-modified silicone ("Silwet L-7657", molecular weight 5000, manufactured by Momentive) and colloidal silica (manufactured by Nissan Chemical Industries, Ltd.) are added to 90 parts by weight of the electrolytic solution. An electrolytic solution was prepared in the same manner as in Example 1, except that 5 parts by weight of Snowtex N-40, aqueous dispersion, solid content 40%, average particle size 20 to 30 nm, pH 9.0 to 10) was added.
 (比較例1)
 双性イオン化合物の代わりに1-ヘキシル-3-メチルイミダゾリウムテトラフルオロボラートを用いた以外は、実施例1と同様にして電解液を調製した。
(Comparative example 1)
An electrolytic solution was prepared in the same manner as in Example 1, except that 1-hexyl-3-methylimidazolium tetrafluoroborate was used instead of the zwitterionic compound.
<火花電圧の評価>
 電解液に、25℃で5mA/cmの定電流を印加し、電圧-時間カーブを調べることで火花電圧を測定した。電圧の上昇カーブを始めにスパーク又はシンチレーションが観測された電圧を火花電圧(V)とした。
<Evaluation of spark voltage>
A constant current of 5 mA/cm 2 was applied to the electrolyte solution at 25° C., and the spark voltage was measured by examining the voltage-time curve. The spark voltage (V) was defined as the voltage at which spark or scintillation was observed starting from the rising voltage curve.
<耐電圧・等価直列抵抗の評価>
 実施例1~7及び比較例1で得られた各電解液を用いて下記方法により電解コンデンサを作製した。得られた各電解コンデンサについて、125℃で5000時間耐熱性試験を実施した後、電流5mA/cm、電圧1000Vを、それぞれ25℃の条件下で印加して電圧-時間の上昇カーブではじめにスパイクあるいはシンチレーションが観測された値を耐電圧とした。また、アジレント・テクノロジー株式会社製プレシジョンLCRメーターE4980Aを使用して、100kHzにおける等価直列抵抗(ESR)を測定した。
<Evaluation of withstand voltage and equivalent series resistance>
Electrolytic capacitors were produced by the following method using the respective electrolytic solutions obtained in Examples 1 to 7 and Comparative Example 1. Each obtained electrolytic capacitor was subjected to a heat resistance test at 125° C. for 5000 hours, and then a current of 5 mA/cm 2 and a voltage of 1000 V were applied at 25° C., and the voltage-time rising curve was first spiked. Alternatively, the value at which scintillation was observed was taken as the withstand voltage. Equivalent series resistance (ESR) at 100 kHz was also measured using Precision LCR Meter E4980A manufactured by Agilent Technologies.
<電解コンデンサの作製>
 まず、コンデンサ素子は陽極箔と、陰極箔をセパレータを介して巻回して形成した。陽極箔、陰極箔には陽極タブ、陰極タブがそれぞれ接続されている。これらの陽極タブ、陰極タブは高純度のアルミニウムよりなり、それぞれの箔と接続する平坦部と平坦部と連続した丸棒部より構成され、丸棒部にはそれぞれ陽極リード線、陰極リード線が接続されている。なお、それぞれの箔と電極タブはステッチ法や超音波溶接等により機械的に接続されている。
<Production of electrolytic capacitor>
First, a capacitor element was formed by winding an anode foil and a cathode foil through a separator. An anode tab and a cathode tab are connected to the anode foil and the cathode foil, respectively. These anode tabs and cathode tabs are made of high-purity aluminum and consist of a flat part connected to each foil and a round bar part that is continuous with the flat part. It is connected. Each foil and electrode tab are mechanically connected by stitching, ultrasonic welding, or the like.
 このように構成したコンデンサ素子に、各コンデンサ用電解液を含浸した。この電解液を含浸したコンデンサ素子を、有底筒状のアルミニウムよりなる外装ケースに収納し、外装ケースの開口端部に、リード線を導出する貫通孔を有するブチルゴム製の封口体を挿入し、さらに外装ケースの端部を加締めることにより電解コンデンサの封口を行い、アルミ電解コンデンサを得た。 The capacitor element thus configured was impregnated with each capacitor electrolytic solution. The capacitor element impregnated with the electrolytic solution is housed in a bottomed cylindrical outer case made of aluminum, and a butyl rubber sealing member having a through hole for leading out a lead wire is inserted into the open end of the outer case, Further, the electrolytic capacitor was sealed by crimping the ends of the exterior case to obtain an aluminum electrolytic capacitor.
 評価結果を以下に示す。
Figure JPOXMLDOC01-appb-I000009
 
The evaluation results are shown below.
Figure JPOXMLDOC01-appb-I000009
 以上のとおり、実施例においては、高い火花電圧を有するコンデンサ用電解液、これを用いた優れた耐電圧特性及び低い等価直列抵抗を備えたコンデンサを得ることができた。 As described above, in the examples, it was possible to obtain an electrolytic solution for a capacitor with a high spark voltage, and a capacitor with excellent withstand voltage characteristics and low equivalent series resistance using the same.
<ハイブリッドコンデンサの作製>
 まず、コンデンサ素子は陽極箔と、陰極箔を、セパレータを介して巻回して形成した。陽極箔、陰極箔には陽極タブ、陰極タブがそれぞれ接続されている。これらの陽極タブ、陰極タブは高純度のアルミニウムよりなり、それぞれの箔と接続する平坦部と平坦部と連続した丸棒部より構成され、丸棒部にはそれぞれ陽極リード線、陰極リード線が接続されている。なお、それぞれの箔と電極タブはステッチ法や超音波溶接等により機械的に接続されている。
<Fabrication of hybrid capacitor>
First, a capacitor element was formed by winding an anode foil and a cathode foil with a separator interposed therebetween. An anode tab and a cathode tab are connected to the anode foil and the cathode foil, respectively. These anode tabs and cathode tabs are made of high-purity aluminum and consist of a flat part connected to each foil and a round bar part that is continuous with the flat part. It is connected. Each foil and electrode tab are mechanically connected by stitching, ultrasonic welding, or the like.
 このように構成したコンデンサ素子に、ALDRICH製ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホナート)水分散液を含浸後、155℃で30分乾燥して、固体電解質層を形成した。
固体電解質層を形成した素子に、実施例1~7及び比較例1より得られた電解液を含浸後、有底筒状のアルミニウムよりなる外装ケースに収納し、外装ケースの開口端部に、リード線を導出する貫通孔を有するブチルゴム製の封口体を挿入し、さらに外装ケースの端部を加締めることにより封口を行い、ハイブリッドコンデンサを得た。
After impregnating the thus-configured capacitor element with an aqueous dispersion of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) manufactured by ALDRICH, it is dried at 155° C. for 30 minutes to form a solid electrolyte layer. bottom.
After impregnating the element on which the solid electrolyte layer was formed with the electrolytic solutions obtained in Examples 1 to 7 and Comparative Example 1, it was housed in a bottomed cylindrical outer case made of aluminum, and at the open end of the outer case, A sealing member made of butyl rubber having a through-hole for leading out a lead wire was inserted, and the end portion of the exterior case was crimped for sealing, thereby obtaining a hybrid capacitor.
<ハイブリッドコンデンサの評価>
 実施例1~7及び比較例1の電解液を用いて得られたハイブリッドコンデンサについて、アジレント・テクノロジー株式会社製プレシジョンLCRメーターE4980Aを使用して、120Hzにおける静電容量(μF)およびtanδを測定し、100kHzにおける等価直列抵抗(ESR)を測定した。また、株式会社アドバンテスト製直流電圧・電流源/モニタR6243を使用して、ハイブリッドコンデンサの両電極に直流電圧を印加し、0.2V/秒の速度で昇圧させて、60秒経過後の電流値を測定し、その電流を漏れ電流値、電流が0.5Aになったときの電圧を測定し、その電圧を耐電圧とした。
測定結果を表1に示す。
<Evaluation of hybrid capacitor>
For the hybrid capacitors obtained using the electrolyte solutions of Examples 1 to 7 and Comparative Example 1, the capacitance (μF) and tan δ at 120 Hz were measured using Precision LCR Meter E4980A manufactured by Agilent Technologies. , the equivalent series resistance (ESR) at 100 kHz was measured. In addition, using a DC voltage/current source/monitor R6243 manufactured by Advantest Co., Ltd., a DC voltage was applied to both electrodes of the hybrid capacitor, and the voltage was increased at a rate of 0.2 V / second, and the current value after 60 seconds was measured, the current was measured as a leakage current value, and the voltage when the current reached 0.5 A was measured, and the voltage was taken as the withstand voltage.
Table 1 shows the measurement results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以上のとおり、実施例においては、優れた耐電圧特性及び低い等価直列抵抗を備えたハイブリッドコンデンサを得ることができた。 As described above, in the example, it was possible to obtain a hybrid capacitor with excellent withstand voltage characteristics and low equivalent series resistance.
 本発明の電解液は、高い火花電圧を有すため、コンデンサ用の電解液として極めて有用なものである。 The electrolytic solution of the present invention has a high spark voltage, so it is extremely useful as an electrolytic solution for capacitors.

Claims (10)

  1.  双性イオン化合物を含むことを特徴とするコンデンサ用電解液。 An electrolytic solution for capacitors characterized by containing a zwitterionic compound.
  2.  前記双性イオン化合物が、水、エチレングリコール、ポリエチレングリコール、ガンマブチロラクトン、スルホランからなる群から選ばれる1種または2種以上に溶解していることを特徴とする請求項1に記載のコンデンサ用電解液。 2. The electrolyte for a capacitor according to claim 1, wherein said zwitterionic compound is dissolved in one or more selected from the group consisting of water, ethylene glycol, polyethylene glycol, gamma-butyrolactone and sulfolane. liquid.
  3.  前記双性イオン化合物が、スルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、及び下記式(1)で表されるアニオンからなる群から選択される1種以上のアニオン部位を有する、請求項1又は2に記載のコンデンサ用電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Zは炭素数1~15のアルキル基、炭素数1~15のハロゲン化アルキル基、炭素数6~15のアリール基、炭素数6~15のハロゲン化アリール基、又はハロゲンを表し、*は結合手を表す)
    1 or 2, wherein the zwitterionic compound has one or more anion sites selected from the group consisting of sulfonate anions, carboxylate anions, phosphate anions, and anions represented by the following formula (1): 3. The electrolytic solution for capacitors according to 2 above.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), Z is an alkyl group having 1 to 15 carbon atoms, a halogenated alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogenated aryl group having 6 to 15 carbon atoms, or represents a halogen, * represents a bond)
  4.  前記双性イオン化合物が、アンモニウムイオン、イミダゾリウムイオン、ピラゾリウムイオン、ピリジニウムイオン、及びピペリジニウムイオンからなる群から選択される1種以上のカチオン部位を有する、請求項1~3のいずれかにコンデンサ用電解液。 Any one of claims 1 to 3, wherein the zwitterionic compound has one or more cationic sites selected from the group consisting of ammonium ions, imidazolium ions, pyrazolium ions, pyridinium ions, and piperidinium ions. Electrolyte for capacitors.
  5.  前記双性イオン化合物が、下記一般式(2)~(6)で表される化合物からなる群から選ばれる1種以上の化合物であることを特徴とする請求項1~4のいずれかに記載のコンデンサ用電解液。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)~(6)中、R~R20は、それぞれ独立して一級アミノ基及び二級アミノ基の一方又は両方を有していてもよい有機基または水素原子であり、隣接するR同士は連結し、炭素数2~6のアルキレン基を形成しても良く、X~Xはスルホン酸アニオン、カルボン酸アニオン、リン酸アニオン、又は式(1)で表されるアニオンのいずれかを含有する炭素数0~15の基を表す)
    5. The zwitterionic compound according to any one of claims 1 to 4, wherein the zwitterionic compound is one or more compounds selected from the group consisting of compounds represented by the following general formulas (2) to (6). electrolyte for capacitors.
    Figure JPOXMLDOC01-appb-C000002
    (In formulas (2) to (6), R 1 to R 20 are each independently an organic group optionally having one or both of a primary amino group and a secondary amino group, or a hydrogen atom, and adjacent The Rs may be linked to each other to form an alkylene group having 2 to 6 carbon atoms, and X 1 to X 5 are a sulfonate anion, a carboxylate anion, a phosphate anion, or an anion represented by formula (1). represents a group with 0 to 15 carbon atoms containing any of
  6.  前記双性イオン化合物の分子量が、50~500であることを特徴とする請求項1~5のいずれかに記載のコンデンサ用電解液。 The electrolytic solution for a capacitor according to any one of claims 1 to 5, wherein the zwitterionic compound has a molecular weight of 50 to 500.
  7.  前記双性イオン化合物が、1-メチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-メチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-エチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-エチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-ブチル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-ブチル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、1-ヘキシル-3-(3-スルホナトプロピル)-1H-イミダゾール-3-イウム、1-ヘキシル-3-(4-スルホナトブチル)-1H-イミダゾール-3-イウム、トリメチルグリシン、リン酸2-(メタクリロイルオキシ)エチル-2-(トリメチルアンモニオ)エチル、1-(3-スルホナトプロピル)ピリジン-1-イウム、1-メチル-2-(3-スルホナトプロピル)-1H-ピラゾール-2-イウム、1-メチル-1-(3-スルホナトプロピル)ピペリジン-1-イウムからなる群より選ばれた1種以上の化合物である請求項1又は2のいずれかに記載のコンデンサ用電解液。 The zwitterionic compound is 1-methyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-methyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1 -ethyl-3-(3-sulfonatopropyl)-1H-imidazol-3-ium, 1-ethyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-butyl-3-(3- sulfonatopropyl)-1H-imidazol-3-ium, 1-butyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, 1-hexyl-3-(3-sulfonatopropyl)-1H-imidazole -3-ium, 1-hexyl-3-(4-sulfonatobutyl)-1H-imidazol-3-ium, trimethylglycine, 2-(methacryloyloxy)ethyl-2-(trimethylammonio)ethyl phosphate, 1-( 3-sulfonatopropyl)pyridin-1-ium, 1-methyl-2-(3-sulfonatopropyl)-1H-pyrazol-2-ium, 1-methyl-1-(3-sulfonatopropyl)piperidine-1 - The electrolytic solution for capacitors according to any one of claims 1 or 2, which is one or more compounds selected from the group consisting of -ium.
  8.  さらに、コロイダルシリカとシリコーン系界面活性剤を含むことを特徴とする請求項1~7のいずれかに記載のコンデンサ用電解液。 The electrolytic solution for a capacitor according to any one of claims 1 to 7, further comprising colloidal silica and a silicone-based surfactant.
  9.  請求項1~8のいずれかに記載の電解液を含むコンデンサ。 A capacitor containing the electrolytic solution according to any one of claims 1 to 8.
  10.  前記コンデンサ用電解液が、ハイブリッドコンデンサ用電解液である請求項1~8のいずれかに記載のコンデンサ用電解液。 The electrolytic solution for capacitors according to any one of claims 1 to 8, wherein the electrolytic solution for capacitors is an electrolytic solution for hybrid capacitors.
PCT/JP2022/027385 2021-08-20 2022-07-12 Electrolytic solution for capacitor and capacitor WO2023021885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023542262A JPWO2023021885A1 (en) 2021-08-20 2022-07-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134989 2021-08-20
JP2021-134989 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023021885A1 true WO2023021885A1 (en) 2023-02-23

Family

ID=85240553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027385 WO2023021885A1 (en) 2021-08-20 2022-07-12 Electrolytic solution for capacitor and capacitor

Country Status (2)

Country Link
JP (1) JPWO2023021885A1 (en)
WO (1) WO2023021885A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684704A (en) * 1992-09-07 1994-03-25 Matsushita Electric Ind Co Ltd Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using its
WO2008056776A1 (en) * 2006-11-10 2008-05-15 Nagoya Industrial Science Research Institute Mesoionic compound, ionic liquid composed of mesoionic compound, and method for producing mesoionic compound
WO2014208607A1 (en) * 2013-06-28 2014-12-31 カーリットホールディングス株式会社 Electrolysis solution for electrolytic capacitor, and electrolytic capacitor
JP2016134445A (en) * 2015-01-16 2016-07-25 三洋化成工業株式会社 Electrolyte, electrolytic solution containing the same, and electrochemical element using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684704A (en) * 1992-09-07 1994-03-25 Matsushita Electric Ind Co Ltd Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using its
WO2008056776A1 (en) * 2006-11-10 2008-05-15 Nagoya Industrial Science Research Institute Mesoionic compound, ionic liquid composed of mesoionic compound, and method for producing mesoionic compound
WO2014208607A1 (en) * 2013-06-28 2014-12-31 カーリットホールディングス株式会社 Electrolysis solution for electrolytic capacitor, and electrolytic capacitor
JP2016134445A (en) * 2015-01-16 2016-07-25 三洋化成工業株式会社 Electrolyte, electrolytic solution containing the same, and electrochemical element using the same

Also Published As

Publication number Publication date
JPWO2023021885A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
KR102206425B1 (en) Electrolysis solution for electrolytic capacitor, and electrolytic capacitor
US9589734B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006108650A (en) Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP4379156B2 (en) Aluminum electrolytic capacitor
JP6403006B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2945890B2 (en) Electric double layer capacitor
JP2016171257A (en) Method for manufacturing electrolytic capacitor
WO2023021885A1 (en) Electrolytic solution for capacitor and capacitor
JP4243736B2 (en) Electrolyte material and electrolyte
JP4707538B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2009182275A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP3872182B2 (en) Electric double layer capacitor
JP3176611B2 (en) Electrolyte for electrolytic capacitors
WO2015087963A1 (en) Electrolyte solution, and electrochemical device
JP6247077B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
WO2023013368A1 (en) Method for producing solid electrolytic capacitor
WO2014103002A1 (en) Electrolytic solution for electrolytic capacitors, and electrolytic capacitor
KR102132241B1 (en) Gel electrolyte for supercapacitor and method of preparing the same
WO2023171344A1 (en) Solid electrolyte capacitor and method for manufacturing same
JP2007194311A (en) Electric double-layer capacitor
JP2023022751A (en) Method for manufacturing solid electrolytic capacitor
JP2008085240A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
KR101583525B1 (en) electrolytic solution for supercapacitor and supercapacitor use the same
JP2002217063A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542262

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE