WO2023017835A1 - Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet and multilayer film - Google Patents

Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet and multilayer film Download PDF

Info

Publication number
WO2023017835A1
WO2023017835A1 PCT/JP2022/030544 JP2022030544W WO2023017835A1 WO 2023017835 A1 WO2023017835 A1 WO 2023017835A1 JP 2022030544 W JP2022030544 W JP 2022030544W WO 2023017835 A1 WO2023017835 A1 WO 2023017835A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyisocyanate composition
less
adhesive resin
parts
Prior art date
Application number
PCT/JP2022/030544
Other languages
French (fr)
Japanese (ja)
Inventor
昌嗣 東
麗 武井
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2023541457A priority Critical patent/JPWO2023017835A1/ja
Priority to KR1020247003829A priority patent/KR20240028493A/en
Priority to CN202280055540.2A priority patent/CN117794973A/en
Publication of WO2023017835A1 publication Critical patent/WO2023017835A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners

Definitions

  • the present invention relates to polyisocyanate compositions, cured films, adhesive resin compositions, adhesive resin sheets, and laminated films.
  • plastic films and adhesives have been used in various fields due to their wide range of functions. Under such circumstances, applications are increasing not only for flat parts, but also for applications such as curved parts and parts with bending motion, which were rarely used before. For example, there are flexible displays, foldable displays, and lamination of automobile members, etc., and the demand has increased rapidly in recent years. Along with this, there is a demand for highly flexible films and pressure-sensitive adhesives that are tough and have good conformability, stretchability and bending resistance to curved surfaces and bends. For optical applications, high transparency, specifically haze value of 3.0% or less is also required at the same time.
  • an extensible polyurethane paint prepolymer comprising reacting an aliphatic diisocyanate or an alicyclic diisocyanate with a polycaprolactone diol and/or triol having a number average molecular weight of 500 or more and 1500 or less is disclosed.
  • Patent Document 2 a prepolymer obtained by reacting an aliphatic diisocyanate or an alicyclic diisocyanate with a polytetramethylene glycol having a number average molecular weight of 700 or more and 1500 or less, an aliphatic diisocyanate or an alicyclic diisocyanate and a number and a prepolymer obtained by reacting a polycaprolactone polyol having an average molecular weight of 500 or more and 1500 or less.
  • the present invention has been made in view of the above circumstances, and the cured film obtained by curing the polyisocyanate composition alone has good flexibility and transparency, and has excellent elongation and tensile breaking stress.
  • a polyisocyanate composition from which a film, a pressure-sensitive adhesive resin composition and a pressure-sensitive adhesive resin sheet having excellent adhesive strength, curability and transparency are obtained.
  • the present invention also provides a laminated film comprising the adhesive resin sheet.
  • the present invention includes the following aspects. (1) at least one diisocyanate selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates; at least one polyester polyol selected from the group consisting of a bifunctional polyester polyol (A) having a number average molecular weight Mn of 500 or more and a trifunctional or higher polyester polyol (B) having a number average molecular weight Mn of 500 or more; A polyisocyanate composition derived from The molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol is 1.5 or more and 30.0 or less, A polyisocyanate composition, wherein the weight average molecular weight of the polyisocyanate composition is 1400 or more and 800000 or less.
  • the content of the polyester polyol (A) is 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate;
  • a cured film having a thickness of 40 ⁇ m formed by coating on glass and storing it for 168 hours in an environment of 23° C. and 65% humidity has a Konig hardness of 60 times or less in an environment of 23° C.
  • the haze value measured with a haze meter is 3.0% or less when the cured film having a thickness of 40 ⁇ m is attached on a glass having a haze value of 0.1%.
  • the elongation in a tensile test measured at a speed of 20 mm / min is 140% or more
  • the stress at elongation of 140% is 25.0 MPa or less
  • the cured film according to (8), wherein the content of the polyisocyanate composition is 0.01 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyol.
  • An adhesive resin composition comprising the polyisocyanate composition according to any one of (1) to (7) and a crosslinkable functional group-containing polymer having a glass transition temperature of 0.0° C. or less. .
  • the crosslinkable functional group-containing polymer comprises a polymerizable (meth)acrylic monomer having a crosslinkable functional group and a (meth)acrylic acid ester monomer having 1 or more and 18 or less carbon atoms at the end of the ester group.
  • Tg glass transition temperature
  • the crosslinkable functional group-containing polymer has a weight average molecular weight of 1.0 ⁇ 10 5 or more and 5.0 ⁇ 10 6 or less.
  • the crosslinkable functional group is one or more selected from the group consisting of a hydroxyl group, an epoxy group, an oxetane group, a carboxy group, a vinyl group, and an amino group.
  • the film substrate is a polyester-based resin, an acetate-based resin, a polyethersulfone-based resin, a polycarbonate-based resin, a polyamide-based resin, a polyimide-based resin, a polyolefin-based resin, a (meth)acrylic-based resin, or a polyvinyl chloride-based resin.
  • (23) The laminated film according to (21) or (22), which is used for optical purposes.
  • the cured film obtained by curing the polyisocyanate composition alone has good flexibility and transparency, and has excellent elongation and tensile breaking stress. It is possible to provide a polyisocyanate composition from which a pressure-sensitive adhesive resin composition and a pressure-sensitive adhesive resin sheet having excellent strength, curability and transparency can be obtained. Further, the present invention can provide a laminated film comprising the adhesive resin sheet.
  • polyol means a compound having two or more hydroxy groups (--OH) in one molecule.
  • polyisocyanate means a reaction product in which a plurality of monomeric compounds having two or more isocyanate groups (--NCO) are combined.
  • (meth)acryl includes methacryl and acryl
  • (meth)acrylate includes methacrylate and acrylate.
  • the polyisocyanate composition of the present embodiment comprises a diisocyanate, a bifunctional polyester polyol (A) having a number average molecular weight of 500 or more (hereinafter simply referred to as “polyester polyol (A)”), and a number average molecular weight Mn of 500 or more. and at least one polyester polyol selected from the group consisting of trifunctional or higher polyester polyols (B) (hereinafter simply referred to as “polyester polyols (B)").
  • the polyisocyanate composition of the present embodiment is a reaction product of a diisocyanate and one or more of the above polyester polyols, and contains a polyisocyanate modified with one or more of the above polyester polyols.
  • Diisocyanate is at least one selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates.
  • the molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol (A) and/or the polyester polyol (B) is 1.5 or more and 30.0.
  • 2.0 or more and 25.0 or less are preferable, 2.1 or more and 23.0 or less are more preferable, 2.2 or more and 20.0 or less are more preferable, and 2.3 or more and 20.0 or less are more preferable.
  • the isocyanate group/hydroxyl molar ratio is, for example, the molar amount of hydroxyl groups in the polyester polyol (A) and/or polyester polyol (B) used in the production of the polyisocyanate composition, and the molar amount of the isocyanate groups in the diisocyanate. can be calculated.
  • the weight average molecular weight of the polyisocyanate composition of the present embodiment is 1400 or more, preferably 1500 or more, more preferably 2000 or more, further preferably 2500 or more, and 3000 or more. is particularly preferred. Although the upper limit of the weight average molecular weight of the polyisocyanate composition of the present embodiment is not particularly limited, it can be 800,000. The weight average molecular weight of the polyisocyanate composition of the present embodiment can be measured, for example, by gel permeation chromatography (hereinafter sometimes abbreviated as "GPC").
  • GPC gel permeation chromatography
  • the polyisocyanate composition of the present embodiment has a lower hardness than conventional cured films obtained by curing the polyisocyanate composition alone, and has good flexibility and transparency. Further, by using the polyisocyanate composition of the present embodiment, the stress at 140% elongation is lower than before, the elongation is higher than before, and the tensile breaking stress is higher than before. A cured film can be obtained. . Furthermore, by using the polyisocyanate composition of the present embodiment, an adhesive resin sheet having excellent adhesive strength, curability and transparency can be obtained.
  • a polyisocyanate has structural units derived from a diisocyanate and one or more of the polyester polyols in one molecule.
  • the polyisocyanate composition of the present embodiment is derived from diisocyanate, polyester polyol (A) and polyester polyol (B), diisocyanate, polyester polyol (A) and polyester polyol (A) in one molecule It may be a polyisocyanate having all structural units derived from B), a polyisocyanate having structural units derived from diisocyanate and polyester polyol (A) in one molecule, and a polyisocyanate derived from diisocyanate and polyester polyol (B) It may be a mixture with a polyisocyanate having structural units.
  • the polyisocyanate can have at least one structure selected from the group consisting of allophanate structure, uretdione structure, iminooxadiazinedione structure, isocyanurate structure, urea structure, urethane structure, and biuret structure. Among them, it is preferable to have at least one structure selected from the group consisting of a urethane structure, an allophanate structure, a biuret structure, a urea structure, a uretdione structure, and an isocyanurate structure.
  • a uretdione structure it more preferably has at least one structure selected from the group consisting of a uretdione structure, more preferably has at least one structure selected from the group consisting of a urethane structure, an allophanate structure, a urea structure, and a uretdione structure, and a urethane structure.
  • an allophanate structure, and a uretdione structure more preferably having at least one structure selected from the group consisting of a urethane structure and an allophanate structure, and having a urethane structure is particularly preferred.
  • Diisocyanate is at least one selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates.
  • Aliphatic diisocyanates include, but are not limited to, 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, ethyl (2,6-diisocyanato)hexanoate, 1,6-diisocyanate natohexane (hereinafter sometimes abbreviated as "HDI"), 1,9-diisocyanatononane, 1,12-diisocyanatododecane, 2,2,4- or 2,4,4-trimethyl-1 , 6-diisocyanatohexane, and the like. These aliphatic diisocyanates may be used alone or in combination of two or more.
  • Alicyclic diisocyanates include, but are not limited to, 1,3- or 1,4-bis(isocyanatomethyl)cyclohexane (hereinafter sometimes abbreviated as “hydrogenated XDI”), 1 , 3- or 1,4-diisocyanatocyclohexane, 3,5,5-trimethyl 1-isocyanato-3-(isocyanatomethyl)cyclohexane (hereinafter sometimes abbreviated as "IPDI”), 4-4' -diisocyanato-dicyclohexylmethane (hereinafter sometimes abbreviated as "hydrogenated MDI”), 2,5- or 2,6-diisocyanatomethylnorbornane, and the like. These alicyclic diisocyanates may be used singly or in combination of two or more.
  • any of these aliphatic diisocyanates and alicyclic diisocyanates may be used alone, or two or more of these aliphatic diisocyanates and alicyclic diisocyanates may be used in combination.
  • the mass ratio of the alicyclic polyisocyanate to the aliphatic diisocyanate is preferably 0/100 or more and 30/70 or less.
  • diisocyanates include 1,4-diisocyanatobutane, HDI, 1,5-pentamethylene diisocyanate (PDI), 1,7-diisocyanatoheptane, 1,8-diisocyanatooctane, IPDI, hydrogenated XDI or hydrogenated MDI is preferred, HDI, PDI or IPDI is more preferred, HDI or PDI is even more preferred, and HDI is particularly preferred.
  • isocyanate monomers may be used for the production of polyisocyanates.
  • Aromatics such as diphenylmethane-4,4'-diisocyanate (MDI), 1,5-naphthalene diisocyanate, tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), m-tetramethylxylylene diisocyanate (TMXDI) Diisocyanate.
  • NTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • HTI 1,3,6-hexamethylene triisocyanate
  • GTI bis(2-isocyanatoethyl) 2-isocyanatoglutarate
  • LTI lysine triisocyanate
  • polyester polyol (A) and polyester polyol (B) are bifunctional polyester polyol (diol) having a number average molecular weight of 500 or more.
  • the polyester polyol (B) is a polyester polyol having a number average molecular weight of 500 or more and a functionality of 3 or more.
  • the number average molecular weight of the polyester polyol (A) is 500 or more, preferably 800 or more, more preferably 1500 or more, even more preferably 1800 or more.
  • the number average molecular weight of the polyester polyol (A) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility.
  • the upper limit of the number average molecular weight of the polyester polyol (A) is not particularly limited. 6000 is preferable, 5000 is more preferable, and 4500 is even more preferable.
  • the number average molecular weight Mn of the polyester polyol (A) is, for example, a polystyrene-based number average molecular weight measured by GPC. When two or more polyester polyols (A) are mixed and used, the number average molecular weight of the mixture is calculated and used.
  • the polyester polyol (B) has a number average molecular weight of 500 or more, preferably 800 or more.
  • the number average molecular weight of the polyester polyol (B) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility.
  • the upper limit of the number average molecular weight of the polyester polyol (B) is not particularly limited. It can be 4000, preferably 3500, more preferably 3000, even more preferably 2500.
  • the number average molecular weight Mn of the polyester polyol (B) is, for example, a polystyrene-based number average molecular weight measured by GPC. When two or more polyester polyols (B) are mixed and used, the number average molecular weight of the mixture is calculated and used.
  • the polyester polyol (A) includes, for example, the following polyester polyols (1) or (2).
  • the dibasic acid include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and 1,4-cyclohexanedicarboxylic acid.
  • dihydric alcohol examples include ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol and the like.
  • bifunctional polycaprolactone polyol is preferable as the polyester polyol (A).
  • bifunctional polycaprolactone polyols include, for example, Daicel's product name "PLAXEL 210" (number average molecular weight: 1000, hydroxyl value: 112.8 mgKOH/g, acid value: 0.09 mgKOH/g), "PLAXEL 210CP” (number average molecular weight 1000, hydroxyl value 112.8 mgKOH/g, acid value 0.16 mgKOH/g), trade name “PLAXEL 212” (number average molecular weight 1250, hydroxyl value 90.8 mgKOH/g, acid value 0.09 mgKOH / g), trade name “Plaxel 212CP” (number average molecular weight 1250, hydroxyl value 90.2 mgKOH / g, acid value 0.14 mgKOH / g), “Plaxel 220” (number average molecular weight 2000, hydroxyl value 56.7 mgKOH / g , acid value 0.06 mgKOH / g), "Plaxel 220” (
  • the polyester polyol (B) may be a tri- or more functional polyester polyol, preferably a tri- to 10-functional polyester polyol, more preferably a tri- to 7-functional polyester polyol, and tri- to penta-functional. is more preferred, tri- to tetra-functional polyester polyols are particularly preferred, and tri-functional polyester polyols (triols) are most preferred.
  • Examples of the trifunctional polyester polyol (B) include the following polyester polyols (1) or (2).
  • the dibasic acid include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and 1,4-cyclohexanedicarboxylic acid.
  • the trihydric alcohol include trimethylolpropane, glycerin, pentaerythritol, 2-methylolpropanediol, and ethoxylated trimethylolpropane.
  • trifunctional polycaprolactone polyol is preferable as the trifunctional polyester polyol (B).
  • trifunctional polycaprolactone polyols include, for example, Daicel's product name "PLAXEL 305" (number average molecular weight: 550, hydroxyl value: 305.6 mgKOH/g, acid value: 0.50 mgKOH/g), "PLAXEL 308” (number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g), “Placcel 309” (number average molecular weight 900, hydroxyl value 187.3 mgKOH/g, acid value 0.20 mgKOH/g ), “Plaxel 312” (number average molecular weight 1250, hydroxyl value 136.1 mgKOH / g, acid value 0.38 mgKOH / g), “Plaxel 320” (number average molecular weight 2000, hydroxyl value 85.4 mgKOH / g, acid value 0 .29 mg KOH/g).
  • the content (preparation amount) of the polyester polyol (A) is preferably 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate. It is more preferably from 5 parts by mass to 800 parts by mass, even more preferably from 1 part by mass to 700 parts by mass, and even more preferably from 1 part by mass to 600 parts by mass.
  • the content of the polyester polyol (A) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility.
  • an adhesive resin sheet having excellent adhesive strength and curability can be obtained.
  • the content of the polyester polyol (A) is equal to or less than the above upper limit, the liquid state can be maintained without gelation during the production of the polyisocyanate composition, the elongation rate and breaking strength are high, and the adhesiveness The flexibility of the flexible resin sheet becomes better.
  • the content of polyester polyol (A) can be calculated, for example, from the blending amounts of diisocyanate and polyester polyol (A) during production of the polyisocyanate composition and the yield of the obtained polyisocyanate composition.
  • the content (charge amount) of the polyester polyol (B) is preferably 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate. It is more preferably from 5 parts by mass to 800 parts by mass, even more preferably from 1 part by mass to 700 parts by mass, and even more preferably from 1 part by mass to 600 parts by mass.
  • the content of the polyester polyol (B) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility.
  • an adhesive resin sheet having excellent adhesive strength and curability can be obtained.
  • the content of the polyester polyol (B) is the above upper limit or less, the liquid state can be maintained without gelation during the production of the polyisocyanate composition, and the flexibility when made into an adhesive resin sheet It will have better properties.
  • the content of the polyester polyol (B) can be calculated, for example, from the blending amounts of the diisocyanate and the polyester polyol (B) during production of the polyisocyanate composition and the yield of the resulting polyisocyanate composition.
  • polyester polyol (A) and polyester polyol (B) may be collectively referred to simply as polyester polyol.
  • polyester polyol (A) and polyester polyol (B) are used in combination
  • polyester polyol (A) and polyester polyol (B) can be used individually or as a mixture. When used as a mixture, they may be mixed before reacting with diisocyanate, or each polyester polyol may be reacted with diisocyanate alone to form polyisocyanate and then mixed.
  • a method for producing a polyisocyanate composition for example, a method of simultaneously reacting a diisocyanate, a polyester polyol (A), and a polyester polyol (B) to obtain a polyisocyanate composition; ), a diisocyanate, and a polyester polyol (B) are reacted to obtain a polyisocyanate composition; a diisocyanate and a polyester polyol (A) or a polyester polyol (B) and then further reacting the remaining polyester polyol to obtain a polyisocyanate composition.
  • the molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol (A) and the polyester polyol (B) is 1.5 or more and 30 or less, and 2.0 or more and 25 or less. preferably 2.1 or more and 23 or less, more preferably 2.2 or more and 20 or less, further preferably 2.3 or more and 20.0 or less, further preferably 2.4 or more and 20.0 or less, and 2.5 or more It is more preferably 20.0 or less, and most preferably 2.52 or more and 20.0 or less.
  • the reaction between the polyester polyol and the diisocyanate is carried out as follows.
  • the reaction temperature is generally room temperature (approximately 23° C.) or higher and 200° C. or lower, preferably 60° C. or higher and 180° C. or lower, and preferably 60° C. or higher and 170° C. or lower. If the reaction temperature is at least the above lower limit, the reaction time will be shorter. On the other hand, if it is at most the above upper limit, viscosity increase and gelation of the polyisocyanate due to undesirable side reactions can be further avoided, and the resulting polyisocyanate coloring can also be avoided.
  • the reaction may be carried out without a solvent, or may be carried out using any solvent inert to isocyanate groups. Also, if necessary, a known catalyst may be used to accelerate the reaction between the isocyanate group and the hydroxyl group.
  • the isocyanate group content (NCO group content) of the polyisocyanate composition of the present embodiment is 1.0% by mass or more with respect to the total mass of the polyisocyanate composition in a state where it does not substantially contain a solvent or diisocyanate. It is preferably 8.7% by mass or less, more preferably 1.5% by mass or more and 8.6% by mass or less, further preferably 2.0% by mass or more and 8.5% by mass or less, It is more preferably 2.5% by mass or more and 8.5% by mass or less, further preferably 2.7% by mass or more and 8.5% by mass or less, and 2.9% by mass or more and 8.5% by mass or less. is particularly preferred.
  • the NCO group content can be determined, for example, by reacting the isocyanate groups of the polyisocyanate composition with excess amine (such as dibutylamine) and back titrating the remaining amine with an acid such as hydrochloric acid.
  • excess amine such as dibutylamine
  • the average isocyanate functional group number of the polyisocyanate composition of the present embodiment is preferably 2.0 or more and 6.0 or less, and 2.1 or more and 5.9 or less, in terms of improving the curability and flexibility of the adhesive resin composition. is more preferred.
  • the average number of isocyanate functional groups of the polyisocyanate composition of the present embodiment can be measured using the method described in Examples below.
  • the polyisocyanate composition of the present embodiment is preferably liquid at 23°C from the viewpoint of handling such as blending.
  • the cured film 1 of the present embodiment is obtained by curing the above-described polyisocyanate composition alone.
  • the cured film 1 of this embodiment has low hardness and good flexibility and transparency.
  • the cured film 1 of the present embodiment is obtained by, for example, diluting or dissolving the above-described polyisocyanate composition with a solvent as necessary, using a coater or the like, coating it on the adherend, and optionally It can be produced by drying and curing with heat.
  • the cured film 1 of the present embodiment is obtained by coating only the above-described polyisocyanate composition on glass and storing it for 168 hours in an environment of 23 ° C. and 65% humidity, and the moisture in the air and the polyisocyanate composition
  • the Konig hardness of the cured film at 23 ° C. is 60 times or less, preferably 59 times or less, and 58 times or less. is more preferable.
  • the Konig hardness is equal to or less than the above upper limit value, the hardness is low and the flexibility is excellent.
  • the lower limit of the Konig hardness of the cured film is not particularly limited, but can be, for example, 3 times, 4 times, or 5 times.
  • the cured film 1 of the present embodiment is obtained by coating only the above-described polyisocyanate composition on glass and storing it for 168 hours in an environment of 23 ° C. and 65% humidity, and the moisture in the air and the polyisocyanate composition
  • the haze value measured with a haze meter is 3.0 ⁇ m when the cured film is adhered to glass having a haze value of 0.1%. It is preferably 0% or less, more preferably 2.9% or less, even more preferably 2.8% or less.
  • the haze value of the cured film is equal to or less than the above upper limit value, the transparency is more excellent.
  • the lower limit of the haze value of the cured film is not particularly limited, and is preferably as close to 0.0% as possible.
  • the polyisocyanate composition described above can also be used as a curing agent component of the resin composition. That is, the cured film 2 of the present embodiment is obtained by curing a resin composition containing the above-described polyisocyanate composition and polyol (preferably acrylic polyol).
  • the cured film 2 can function, for example, as an adhesive layer.
  • the content of the above-described polyisocyanate composition is preferably 0.01 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyol, and 0.05 parts by mass or more and 190 parts by mass or less. and more preferably 0.10 parts by mass or more and 180 parts by mass or less.
  • the molar ratio NCO/OH of the isocyanate groups of the polyisocyanate composition to the hydroxyl groups of the polyol is determined according to the required physical properties of the resin film, but is usually 0.01 or more and 50 or less.
  • the cured film 2 of the present embodiment is the above-described polyisocyanate composition, a glass transition temperature of 0 ° C. or higher and 100 ° C. or lower, a hydroxyl value of 10 mg KOH / g or higher and 400 mg KOH / g or lower, and a weight average molecular weight of and a polyol of 5.0 ⁇ 10 3 or more ⁇ 2.0 ⁇ 10 5 or less so that the molar ratio NCO/OH of the isocyanate groups of the polyisocyanate composition to the hydroxyl groups of the polyol is 1.
  • the cured film is cut into a width of 10 mm and a length of 100 mm.
  • a test piece consisting of the following is set in a tensile tester so that the gripper distance is 20 mm, and the elongation in the tensile test measured at a speed of 20 mm / min is 140% or more, and the stress at the elongation of 140% is It is preferably 25.0 MPa or less, and the tensile breaking stress is preferably 1.2 times or more the stress at elongation of 140%.
  • the elongation rate is preferably 140% or higher, more preferably 145% or higher, even more preferably 150% or higher, particularly preferably 155% or higher, and most preferably 160% or higher.
  • the upper limit of the elongation rate can be, for example, 5000%.
  • the stress at the elongation rate of 140% is preferably 25.0 MPa or less, more preferably 24.0 MPa or less, and even more preferably 23.0 MPa or less.
  • the lower limit of the stress at the elongation rate of 140% can be set to 0.01 MPa, for example.
  • the tensile breaking stress is preferably 1.2 times or more, more preferably 1.3 times or more, and even more preferably 1.4 times or more the stress at 140% elongation. , more preferably 1.5 times or more, even more preferably 1.6 times, and particularly preferably 1.7 times.
  • the upper limit of the ratio of the tensile breaking stress to the stress at the elongation of 140% can be, for example, 30 times.
  • the elongation is the lower limit or more
  • the stress at the elongation of 140% is the upper limit or less
  • the ratio of the tensile breaking stress to the stress at the elongation of 140% is the lower limit or more.
  • the adhesive resin composition of this embodiment contains the polyisocyanate composition described above and a crosslinkable functional group-containing polymer having a glass transition temperature of 0.0° C. or less.
  • the adhesive resin composition of the present embodiment can form an adhesive layer having higher flexibility than before, and has adhesive strength, holding power, curability, and transparency. It is possible to obtain a pressure-sensitive adhesive resin sheet having excellent properties, bending resistance, step conformability, impact resistance, and durability.
  • the glass transition temperature of the crosslinkable functional group-containing polymer is 0.0° C. or less, preferably ⁇ 75.0° C. or more and 0.0° C. or less, more preferably ⁇ 75.0° C. or more and ⁇ 5.0° C. or less, and— 75.0°C or higher and -7.0°C or lower is more preferable, and -75.0°C or higher and -10.0°C or lower is particularly preferable.
  • Tg of the crosslinkable functional group-containing polymer is within the above range, the adhesive strength of the cured product of the adhesive resin composition tends to be more excellent.
  • the glass transition temperature of the crosslinkable functional group-containing polymer is determined, for example, by removing the organic solvent and water in the solution in which the crosslinkable functional group-containing polymer is dissolved or dispersed, under reduced pressure, and then vacuum drying. A value measured using a DSC) measuring device at a heating rate of 5° C./min can be used as the glass transition temperature.
  • the weight average molecular weight Mw of the crosslinkable functional group-containing polymer is preferably 1.0 ⁇ 10 5 or more and 5.0 ⁇ 10 6 or less, and is 1.5 ⁇ 10 5 or more and 4.0 ⁇ 10 6 or less. is more preferably 2.0 ⁇ 10 5 or more and 3.0 ⁇ 10 6 or less, and particularly preferably 2.5 ⁇ 10 5 or more and 2.5 ⁇ 10 6 or less.
  • the weight-average molecular weight of the crosslinkable functional group-containing polymer is within the above range, the cured product of the adhesive resin composition has adhesive strength, holding power, flexibility, bending resistance, step conformability, impact resistance, and It tends to be more durable.
  • the weight-average molecular weight Mw of the polyol can be measured, for example, using the method described in Examples below.
  • the crosslinkable functional group-containing polymer may be a polymer containing a crosslinkable functional group capable of reacting with the isocyanate group of the polyisocyanate composition.
  • the crosslinkable functional group include hydroxyl group, thiol group, amino group, epoxy group, oxetane group, carboxy group, vinyl group, amino group, etc. Among them, hydroxyl group, epoxy group, carboxy group, vinyl group, Or an amino group is preferable, a hydroxyl group, an epoxy group, an oxetane group, a carboxy group, or an amino group is more preferable, a hydroxyl group, a carboxy group, or an amino group is more preferable, and a hydroxyl group is particularly preferable.
  • polyol is preferable as the crosslinkable functional group-containing polymer.
  • crosslinkable functional group-containing polymers include aliphatic hydrocarbon polyols, polyether polyols, polyester polyols, epoxy resins, fluorine-containing polyols, acrylic polymers, and urethane polymers.
  • the crosslinkable functional group-containing polymer is preferably an acrylic polymer or a urethane polymer.
  • aliphatic hydrocarbon polyol examples include hydroxyl-terminated polybutadiene and hydrogenated products thereof.
  • polyether polyol examples include those obtained by using any one of the following methods (1) to (3).
  • the polyhydric alcohol examples include glycerin and propylene glycol.
  • Examples of the alkylene oxide include ethylene oxide and propylene oxide.
  • Examples of the polyfunctional compound include ethylenediamine and ethanolamine.
  • polyester polyols examples include the following polyester polyols (1) or (2).
  • a polyester polyol resin obtained by a condensation reaction between a dibasic acid alone or a mixture of two or more kinds and a polyhydric alcohol alone or a mixture of two or more kinds.
  • a polycaprolactone polyol obtained by ring-opening polymerization of ⁇ -caprolactone with a polyhydric alcohol.
  • the dibasic acid include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and 1,4-cyclohexanedicarboxylic acid.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol, trimethylolpropane, glycerin, and pentaerythritol. , 2-methylolpropanediol, ethoxylated trimethylolpropane, and the like.
  • epoxy resins examples include novolac type epoxy resins, ⁇ -methylepichloro type epoxy resins, cyclic oxirane type epoxy resins, glycidyl ether type epoxy resins, glycol ether type epoxy resins, epoxy type aliphatic unsaturated compounds, and epoxidized fatty acid esters. , ester-type polycarboxylic acids, aminoglycidyl-type epoxy resins, halogenated-type epoxy resins, resorcinol-type epoxy resins, and resins obtained by modifying these epoxy resins with amino compounds, polyamide compounds, and the like.
  • fluorine-containing polyol examples include fluoroolefins, cyclohexyl vinyl ethers, hydroxyalkyls, and the like disclosed in Reference Document 1 (JP-A-57-34107) and Reference Document 2 (JP-A-61-275311). Copolymers such as vinyl ethers and monocarboxylic acid vinyl esters are included.
  • the acrylic polymer contains one or more polymerizable (meth)acrylic monomer units having a crosslinkable functional group.
  • the crosslinkable functional group preferably contains a hydroxyl group, a carboxyl group, an epoxy group, or a vinyl group, more preferably a hydroxyl group or a carboxyl group, and still more preferably a hydroxyl group.
  • the acrylic polymer may contain a single crosslinkable functional group, or may contain a combination of two or more different types of crosslinkable functional groups.
  • the acrylic polymer may be obtained by polymerizing a polymerizable (meth)acrylic monomer having a crosslinkable functional group alone, or a polymerizable (meth)acrylic monomer having different types of crosslinkable functional groups. may be obtained by combining two or more of the above and copolymerizing them.
  • the acrylic polymer can contain one or more polymerizable acrylic monomer units having no crosslinkable functional group in addition to polymerizable (meth)acrylic monomer units having a crosslinkable functional group.
  • the acrylic polymer polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups, or polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups and one It can be obtained by copolymerizing a polymerizable (meth)acrylic monomer having no crosslinkable functional group.
  • the acrylic polymer contains, in addition to a polymerizable (meth)acrylic monomer unit having a crosslinkable functional group, one or more (meth)acrylic acid ester monomer units having 1 to 18 carbon atoms at the end of the ester group. is preferred. That is, the acrylic polymer comprises at least one polymerizable (meth)acrylic monomer having a crosslinkable functional group and at least one (meth)acrylic acid ester monomer having at least 1 to 18 carbon atoms at the end of the ester group. It may be one that does not copolymerize with.
  • the (meth)acrylate monomer may or may not have a crosslinkable functional group, but preferably not.
  • the number of carbon atoms at the end of the ester group of the (meth)acrylate monomer is preferably 1 or more and 18 or less.
  • Examples of the polymerizable (meth)acrylic monomer having a crosslinkable functional group include the following (i) to (v). These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • (iii) (meth)acrylic acid esters having a polyvalent hydroxy group such as glycerol monoacrylate or methacrylic acid monoester, trimethylolpropane acrylic acid monoester or methacrylic acid monoester; (iv) unsaturated carboxylic acids such as acrylic acid and methacrylic acid; (v) (meth)acrylic acid esters having an epoxy group such as glycidyl methacrylate;
  • Examples of the (meth)acrylic acid ester monomer having 1 to 18 carbon atoms at the end of the ester group include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and (meth)acryl isopropyl acid, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, (meth)acrylate isopentyl acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth) acrylate, decyl (meth) acrylate,
  • the acrylic polymer can further contain monomer units other than the (meth)acrylic acid ester monomer. That is, the acrylic polymer polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups, or polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups. It is obtained by copolymerizing with one or more other monomers. Other monomers may or may not have a crosslinkable functional group, but preferably not.
  • Other monomers include, for example, the following (i) to (ii). These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • unsaturated amides such as (meth)acrylamide, N-methylolacrylamide, diacetoneacrylamide, dimethylaminopropylacrylamide;
  • styrene vinyl toluene, vinyl acetate, (meth)acrylonitrile, N-vinylpyrrolidone, N-vinylcaprolactam, acryloylmorpholine, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate.
  • JP-A-1-261409 Reference 3
  • JP-A-3-006273 A polymerizable UV-stable monomer disclosed in Reference 4) or the like may also be used.
  • polymerizable UV-stable monomer examples include 4-(meth)acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-(meth)acryloylamino-2,2,6 , 6-tetramethylpiperidine, 1-crotonoyl-4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 2-hydroxy-4-(3-methacryloxy-2-hydroxypropoxy)benzophenone and the like. be done.
  • an acrylic polymer can be obtained by solution-polymerizing the monomer components described above in the presence of a radical polymerization initiator such as a known peroxide or an azo compound, and diluting with an organic solvent or the like as necessary. can.
  • a radical polymerization initiator such as a known peroxide or an azo compound
  • a water-based acrylic polymer When obtaining a water-based acrylic polymer, it can be produced by a known method such as a method of solution-polymerizing an olefinic unsaturated compound and converting it into a water layer, or emulsion polymerization. In that case, water-solubility or water-dispersibility can be imparted by neutralizing acidic moieties such as carboxylic acid-containing monomers such as acrylic acid and methacrylic acid and sulfonic acid-containing monomers with amines or ammonia.
  • a known method such as a method of solution-polymerizing an olefinic unsaturated compound and converting it into a water layer, or emulsion polymerization.
  • water-solubility or water-dispersibility can be imparted by neutralizing acidic moieties such as carboxylic acid-containing monomers such as acrylic acid and methacrylic acid and sulfonic acid-containing monomers with amines or ammonia.
  • the content of the above-described polyisocyanate composition is 0.01 parts by mass or more and 20.00 parts by mass or less with respect to 100 parts by mass of the crosslinkable functional group-containing polymer. It is preferably 0.03 parts by mass or more and 15.00 parts by mass or less, and further preferably 0.05 parts by mass or more and 13.0 parts by mass or less.
  • the adhesive resin composition of this embodiment may further contain other additives.
  • Other additives include, for example, curing agents other than polyisocyanate compositions that can react with the crosslinkable functional group-containing polymer, curing catalysts, solvents, pigments (extender pigments, coloring pigments, metallic pigments, etc.), tackifying resins, Photopolymerization initiators, UV absorbers, light stabilizers, radical stabilizers, anti-yellowing agents that suppress coloring during the baking process, coating surface conditioners, flow control agents, pigment dispersants, antifoaming agents, thickeners, Examples include film-forming aids.
  • curing agent examples include melamine resins, urea resins, epoxy group-containing compounds or resins, carboxy group-containing compounds or resins, acid anhydrides, alkoxysilane group-containing compounds or resins, and hydrazide compounds.
  • the curing catalyst may be a basic compound or a Lewis acidic compound.
  • the basic compound include metal hydroxides, metal alkoxides, metal carboxylates, metal acetylacetinates, hydroxides of onium salts, onium carboxylates, halides of onium salts, metal salts of active methylene compounds, Examples include onium salts of active methylene compounds, aminosilanes, amines, phosphines, and the like.
  • the onium salt an ammonium salt, a phosphonium salt or a sulfonium salt is suitable.
  • the Lewis acidic compound include organic tin compounds, organic zinc compounds, organic titanium compounds, organic zirconium compounds, and the like.
  • the solvent examples include 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl -1-butanol, ethylene glycol diethyl ether, diethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether (DPDM), propylene glycol dimethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethanol, methanol , iso-propanol, 1-propanol, iso-butanol, 1-butanol, tert-butanol, 2-ethylhexanol, cyclohex
  • pigments extendender pigments, color pigments, metallic pigments, etc.
  • ultraviolet absorbers light stabilizers, radical stabilizers, anti-yellowing agents that suppress coloring during the baking process, coating surface conditioners, flow control agents, pigments
  • coating surface conditioners coating surface conditioners, flow control agents, pigments
  • pigments As the dispersant, antifoaming agent, thickener and film-forming aid, known ones can be appropriately selected and used.
  • the adhesive resin composition can be produced by a conventionally known method.
  • a Banbury mixer a single-screw extruder, a twin-screw extruder, a co-kneader, a melt-kneading method using a general kneader such as a multi-screw extruder, after dissolving or dispersing and mixing each component, using a coater or the like
  • a method such as removing the solvent by heating after coating on the scratched film is used.
  • the adhesive resin composition of this embodiment may be foamed in order to reduce weight, increase flexibility, and improve adhesion.
  • Foaming methods include chemical methods, physical methods, and the use of thermally expandable microballoons. Bubbles can be distributed inside the material by adding a chemical foaming agent such as an inorganic foaming agent or an organic foaming agent, or a physical foaming agent, or by adding thermally expandable microballoons.
  • hollow fillers (already inflated balloons) may be added to reduce weight, increase flexibility, and improve adhesion.
  • a tackifying resin may be added to the adhesive resin composition of the present embodiment to adjust adhesive strength.
  • tackifying resins include rosin-based tackifying resins, terpene-based tackifying resins, petroleum-based tackifying resins, and styrene-based tackifying resins. These tackifying resins may be used singly or in combination of two or more. Also, the softening point of the tackifier resin is preferably 90° C. or higher and 160° C. or lower.
  • the adhesive resin sheet of this embodiment is obtained by curing the adhesive resin composition described above with heat or light.
  • the adhesive resin sheet of the present embodiment is excellent in adhesiveness, bending resistance, holding power, curability, conformability to unevenness, impact resistance, durability, and transparency.
  • the thickness of the adhesive resin sheet (adhesive layer) of the present embodiment can be appropriately determined depending on the application, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, and 2 ⁇ m or more and 900 ⁇ m or less. is more preferably 3 ⁇ m or more and 800 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 700 ⁇ m or less.
  • the adhesive resin sheet of the present embodiment can be produced, for example, by applying an adhesive resin composition onto a substrate, drying it if necessary, and then curing it.
  • Examples of the method of applying the adhesive resin composition onto the substrate include a method of applying using an applicator, roll coater, knife coater, gravure coater, and the like.
  • drying is performed after the coating, for example, the obtained laminate is placed in a dryer or the like, for example, at a temperature of 50 ° C. or more and 150 ° C. or less, a heat drying method of drying for 1 minute or more and 30 minutes or less.
  • other drying methods include, for example, natural drying, hot air drying, infrared drying, and the like.
  • the substrate is not particularly limited, but for example, paper such as woodfree paper, coated paper, cast coated paper, thermal paper, inkjet paper; cloth such as woven fabric and nonwoven fabric; polyvinyl chloride, synthetic paper, polyethylene terephthalate (PET ), polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, polystyrene, polycarbonate, nylon, polyvinyl alcohol, ethylene-vinyl acetate copolymer, resin films such as polyimide; porous resin films such as porous polypropylene film; PET, polyolefin A metal foil is exemplified.
  • the base material may be one whose surface has been subjected to release treatment.
  • the heating temperature during curing can be from 70°C to 160°C, from 75°C to 155°C, and from 80°C to 150°C.
  • the adhesive resin sheet of the present embodiment is obtained by coating the adhesive resin composition on a polyethylene terephthalate film having a thickness of 38 ⁇ m and having undergone release treatment, drying at 135° C. for 3 minutes and curing, followed by curing at 23° C. and 50° C. % RH environment for 7 days, the adhesive resin sheet obtained by peeling off the release-treated polyethylene terephthalate film from a laminate having a 50 ⁇ m thick adhesive resin sheet was stored in a 23° C., 50% RH environment.
  • the gel fraction calculated by drying at 120°C for 2 hours is 20.0% by mass. It is preferably at least 99.9% by mass, more preferably at least 25.0% by mass and at most 99.9% by mass, further preferably at least 30.0% by mass and not more than 99.9% by mass. , 32.0% by mass or more and 99.9% by mass or less, and most preferably 35.0% by mass or more and 99.9% by mass or less.
  • the gel fraction referred to here is the percentage of the mass of the adhesive resin sheet dried after being immersed in ethyl acetate with respect to the mass of the adhesive resin sheet before being immersed in ethyl acetate.
  • the adhesive resin sheet of the present embodiment is obtained by coating the adhesive resin composition on a polyethylene terephthalate film having a thickness of 25 ⁇ m, drying it at 135° C. for 3 minutes and curing it, and then under an environment of 23° C. and 50% RH.
  • a laminate comprising an adhesive resin sheet with a thickness of 50 ⁇ m, a width of 20 mm, and a length of 100 mm stored for 7 days is attached to the SUS304BA plate that is the adherend, and is pressed back and forth with a 2 kg roller and cured at 23 ° C. for 30 minutes. After that, the 180 degree peel adhesive strength measured at 23 ° C.
  • a speed of 300 mm / min is preferably 0.05 N / 20 mm or more and 65.00 N / 20 mm or less, and 0.05 N / 20 mm or more and 64.50 N / 20 mm or less More preferably, 0.05 N/20 mm or more and 64.00 N/20 mm or less is more preferable, and 0.05 N/20 mm or more and 63.50 N/20 mm or less is particularly preferable, and 0.05 N/20 mm It is most preferable to be above 63.00 N/20 mm or below. When the 180-degree peel adhesive strength is equal to or higher than the above lower limit, the adhesive strength is excellent.
  • the adhesive resin sheet of the present embodiment is obtained by coating the adhesive resin composition on a polyethylene terephthalate film having a thickness of 38 ⁇ m and having undergone release treatment, drying at 135° C. for 3 minutes and curing, followed by curing at 23° C. and 50° C. % RH environment for 7 days, and an adhesive resin sheet having a thickness of 50 ⁇ m obtained by peeling from the polyethylene terephthalate film subjected to the peeling treatment was laminated on glass having a haze value of 0.1%,
  • the haze value measured with a haze meter is preferably 2.0% or less, more preferably 1.8% or less, even more preferably 1.6% or less, and 1.3% or less.
  • the content is 1.0% or less, most preferably 1.0% or less. It is excellent by transparency because a haze value is below the said upper limit.
  • the lower limit of the haze value of the adhesive resin sheet is not particularly limited, and is preferably as close to 0.0% as possible. .
  • the laminated film of this embodiment is obtained by laminating a film substrate on at least one side of the adhesive resin sheet described above.
  • the laminated film of the present embodiment is suitable for application to optical members, and is particularly preferably used for attachment to metal thin films and metal electrodes in optical applications.
  • metal thin films include thin films made of metals, metal oxides, and mixtures thereof, and are not particularly limited. Examples include thin films of ITO (indium tin oxide), ZnO, SnO, and CTO (cadmium tin oxide). be done. Although the thickness of the metal thin film is not particularly limited, it is about 10 to 200 nm.
  • a metal thin film such as ITO is usually provided on a transparent plastic film substrate such as a polyethylene terephthalate film (PET film) and used as a transparent conductive film.
  • PET film polyethylene terephthalate film
  • the metal electrode is not particularly limited as long as it is an electrode made of metal, metal oxide, or a mixture thereof. Examples include electrodes of ITO, silver, copper, and CNT (carbon nanotube).
  • a touch panel can be given as an example of a specific application of the laminated film of the present embodiment.
  • the pressure-sensitive adhesive sheet for a touch panel includes a transparent conductive film provided with a metal thin film such as ITO, a polymethyl methacrylate resin (PMMA) plate, a hard coat film, a glass lens, and the like. It is used for pasting together.
  • the touch panel is not particularly limited, but is used for, for example, mobile phones, tablet computers, personal digital assistants, and the like.
  • an optical member can be used as the film substrate of the laminated film of the present embodiment.
  • the adhesive resin composition is directly applied to the optical member, and the polymerization solvent and the like are removed by drying to obtain an adhesive optical member in which the adhesive resin sheet is formed on the optical member.
  • the adhesive resin sheet formed on the release-treated separator can be appropriately transferred to the optical member to obtain the adhesive optical member.
  • release-treated sheet used in the production of the adhesive optical member can be used as it is as a separator for the adhesive optical member, and the process can be simplified.
  • the adhesive layer is formed after forming an anchor layer on the surface of the optical member, or subjecting the surface of the optical member to various easy-adhesion treatments such as corona treatment and plasma treatment. can do. Further, the surface of the pressure-sensitive adhesive layer may be subjected to an easy-adhesion treatment.
  • the adhesive optical member can be used as a transparent conductive film with an adhesive layer by using a transparent conductive film as the optical member.
  • the transparent conductive film has a transparent conductive thin film, which is a metal thin film such as the above ITO, on one side of a transparent plastic film substrate.
  • the other surface of the transparent plastic film substrate has the laminated film of the present embodiment.
  • a transparent conductive thin film can be provided on the transparent plastic film substrate via an undercoat layer.
  • a plurality of undercoat layers can be provided.
  • An oligomer migration prevention layer can be provided between the transparent plastic film substrate and the adhesive resin sheet.
  • the transparent plastic film substrate is not particularly limited, but various transparent plastic films are used.
  • the plastic film is formed of one layer of film.
  • the materials include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth)acrylic resins.
  • polyvinyl chloride-based resins polyvinylidene chloride-based resins, polystyrene-based resins, polyvinyl alcohol-based resins, polyarylate-based resins, polyphenylene sulfide-based resins, triacetyl cellulose-based resins, and the like.
  • polyester-based resins polyimide-based resins and polyethersulfone-based resins.
  • the thickness of the film substrate is preferably 15 to 200 ⁇ m.
  • the surface of the film substrate is preliminarily subjected to sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, etching treatment such as oxidation, or undercoating treatment, and a transparent conductive thin film or undercoat is provided thereon. Adhesion of the layer to the film substrate may be improved. In addition, before providing the transparent conductive thin film or the undercoat layer, dust removal and cleaning may be performed by solvent cleaning, ultrasonic cleaning, or the like, if necessary.
  • the constituent material and thickness of the transparent conductive thin film are not particularly limited, and are as exemplified for the metal thin film above.
  • the undercoat layer can be formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material.
  • inorganic substances include NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.4). 3) Inorganic substances such as SiO 2 (1.46), LaF 3 (1.55), CeF 3 (1.63), Al 2 O 3 (1.63) , which is the refractive index of light].
  • SiO 2 , MgF 2 , A1 2 O 3 and the like are preferred, and SiO 2 is particularly preferred.
  • a composite oxide containing about 10 to 40 parts by weight of cerium oxide and about 0 to 20 parts by weight of tin oxide can be used with respect to indium oxide.
  • organic substances include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane-based polymers, and organic silane condensates. At least one of these organic substances is used. In particular, it is desirable to use a thermosetting resin composed of a mixture of a melamine resin, an alkyd resin and an organic silane condensate as the organic substance.
  • the thickness of the undercoat layer is not particularly limited, it is usually about 1 to 300 nm, preferably 5 to 300 nm, from the viewpoint of optical design and the effect of preventing oligomer generation from the film substrate. .
  • the adhesive layer-attached transparent conductive film is used in the formation of various devices such as touch panels, liquid crystal displays, and organic EL displays.
  • it can be preferably used as an electrode plate for a touch panel.
  • a touch panel is suitably used for various detection methods (for example, a resistive film method, a capacitive method, etc.).
  • a capacitive touch panel normally has a transparent conductive film with a transparent conductive thin film having a predetermined pattern formed over the entire display area.
  • the pressure-sensitive adhesive layer-attached transparent conductive film is appropriately laminated so that the pressure-sensitive adhesive layer and the patterned transparent conductive thin film face each other.
  • the adhesive optical member can be used as an optical film with an adhesive layer by using an optical film for an image display device as the optical member.
  • the optical film those used for forming image display devices such as liquid crystal display devices and organic EL display devices are used, and the type thereof is not particularly limited.
  • the optical film includes a polarizing plate.
  • a polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used.
  • the titration value obtained without the polyisocyanate sample was then taken as V1 ml. Then, the isocyanate group content (NCO %) (% by mass) of the polyisocyanate composition was calculated from the following formula. For the NCO%, a value calculated in a solvent-free state was adopted.
  • the number average molecular weight and weight average molecular weight are polystyrene-based number average molecular weight and weight average molecular weight measured by gel permeation chromatography (GPC) using the following equipment.
  • the average isocyanate functional group number (average NCO number) of the polyisocyanate composition was determined by the following formula.
  • Mn means number average molecular weight
  • NCO% the value calculated in “Physical Properties 1” was used.
  • Glass transition temperature Tg The glass transition temperature of the polyol for preparing the resin composition and the crosslinkable functional group-containing polymer is obtained by removing the organic solvent and moisture in the acrylic polyol solution or the crosslinkable functional group-containing polymer solution under reduced pressure, and then vacuum drying. A value measured using a differential scanning calorimeter (DSC) measuring apparatus at a heating rate of 5° C./min was used as the glass transition temperature.
  • DSC differential scanning calorimeter
  • the stress, elongation and ratio of tensile breaking stress to stress at 140% elongation were evaluated as good.
  • those having a large elongation rate, a low stress at an elongation rate of 140%, and a tensile breaking stress of 1.2 times or more of the stress at an elongation rate of 140% are evaluated to have better flex resistance. bottom.
  • adhesive resin composition X 1.0 parts by mass (solid content) of each polyisocyanate composition and ethyl acetate are added to 100 parts by mass of the solid content of the crosslinkable functional group-containing polymer (acrylic polymer) OH1 to give a solid content of 25 mass. % adhesive resin composition X was prepared.
  • adhesive resin composition Y 2.0 parts by mass (solid content) of each polyisocyanate composition and ethyl acetate are added to 100 parts by mass of the solid content of the crosslinkable functional group-containing polymer (acrylic polymer) OH2 to give a solid content of 25 mass. % adhesive resin composition Y was prepared.
  • Adhesive resin composition X or adhesive resin composition Y was applied on a polyethylene terephthalate (PET) film having a thickness of 25 ⁇ m using an applicator so that the thickness after drying was 50 ⁇ m, and dried at 135° C. for 3 minutes. After that, it was stored for 7 days under an environment of 23° C. and 50% RH to obtain an adhesive resin sheet for 180° peel adhesion measurement.
  • PET polyethylene terephthalate
  • Adhesive resin composition X or adhesive resin composition Y was coated on a peel-treated PET film having a thickness of 38 ⁇ m with an applicator so that the thickness after drying was 50 ⁇ m, and dried at 135 ° C. for 3 minutes. . After that, it was stored in an environment of 23° C. and 50% RH for 7 days to obtain an adhesive resin sheet for gel fraction measurement.
  • Adhesive resin composition X or adhesive resin composition Y is coated on a polyethylene terephthalate film having a thickness of 38 ⁇ m and has been subjected to release treatment, dried at 135° C. for 3 minutes and cured, and then cured in an environment of 23° C. and 50% RH.
  • a 50 ⁇ m-thick adhesive resin sheet obtained by peeling from the polyethylene terephthalate film subjected to the peeling treatment was stored for 7 days under a low temperature, and the haze value was 0.1%.
  • a laminate provided with the adhesive resin sheet for measurement was obtained.
  • the polyol for resin composition preparation had a glass transition temperature Tg of 29.5° C., a hydroxyl value of 139 mgKOH/g based on the resin solid content, and a weight average molecular weight Mw of 2.75 ⁇ 10 4 .
  • the reaction mixture was cooled to obtain an acrylic polymer OH2 having a solid content concentration of 42.2% by mass.
  • the acrylic polymer OH2 had a glass transition temperature of ⁇ 69.0° C. and a weight average molecular weight of 8.7 ⁇ 10 5 , which were measured without the solvent.
  • Example 1 Production of polyisocyanate composition PA-a1
  • the detection of the structure by NMR analysis is based on the total molar amount of allophanate groups, uretdione groups, iminooxadiazinedione groups, isocyanurate groups, urea groups, urethane groups, and biuret groups detected for individual bonds.
  • a ratio (mol %) of 1% or more was counted as the presence of the bond.
  • binding was counted by adopting the same method in the following examples.
  • Example 2 (Production of polyisocyanate composition PA-a2) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and polyester polyol A1: 135 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 8.7. The reaction was terminated when the yield reached 58.0% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a2.
  • the resulting polyisocyanate composition PA-a2 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these groups. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
  • Example 3 (Production of polyisocyanate composition PA-a3) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 0.5 parts by mass of 1,3-butanediol, and 125 parts by mass of polyester polyol A1. The temperature in the reactor was maintained at 160°C for 20 minutes and then lowered to 100°C while stirring the part (an amount that gives a molar ratio of the isocyanate groups of HDI to the hydroxyl groups of polyester polyol A1 of 9.4). The reaction was terminated when the yield reached 56.0% by mass.
  • a polyisocyanate composition PA-a3 After filtering the reaction solution, unreacted HDI was removed with a thin film distillation apparatus to obtain a polyisocyanate composition PA-a3.
  • the resulting polyisocyanate composition PA-a3 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest.
  • butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
  • Example 4 (Production of polyisocyanate composition PA-a4) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A2" ) (manufactured by Daicel Corporation, trade name “PLAXEL 230”, number average molecular weight 3000, hydroxyl value 37.6 mgKOH/g, acid value 0.07 mgKOH/g): 150 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A2 The temperature in the reactor was maintained at 100° C.
  • Example 5 (Production of polyisocyanate composition PA-a5) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A3" ) (manufactured by Daicel Corporation, trade name “PLAXEL 240”, number average molecular weight 4000, hydroxyl value 28.5 mgKOH/g, acid value 0.07 mgKOH/g): 200 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A3 The temperature in the reactor was maintained at 100° C.
  • Example 6 (Production of polyisocyanate composition PA-a6) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 0.8 parts by mass of 2-ethylhexanol, and 125 parts by mass of polyester polyol A1 ( The temperature in the reactor was kept at 100° C. while stirring the amount of the isocyanate groups of HDI to give a molar ratio of 9.4 for the isocyanate groups of the polyester polyol A1 to the hydroxyl groups. The reaction was terminated when the yield reached 56.0% by mass.
  • a polyisocyanate composition PA-a6 After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a6.
  • the resulting polyisocyanate composition PA-a6 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these bonds. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
  • Example 7 (Production of polyisocyanate composition PA-a7) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 0.5 parts by mass of 1,3-butanediol, and 118 parts by mass of polyester polyol A1. The temperature in the reactor was kept at 100° C. while stirring the part (the amount that the molar ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 is 10.0). The reaction was stopped when the yield reached 54.7% by mass.
  • Example 8 (Production of polyisocyanate composition PA-a8) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and trifunctional polycaprolactone polyol (hereinafter sometimes referred to as "polyester polyol B1"). ) (manufactured by Daicel Corporation, trade name “PLAXEL 308”, number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g): 37.5 parts by mass (HDI isocyanate for the hydroxyl group of polyester polyol B1 The temperature in the reactor was maintained at 100° C.
  • Example 9 to 12 (Production of polyisocyanate compositions PA-a9 to PA-a12) Each polyisocyanate composition was produced using the same method as in Example 8 except that the formulation shown in Table 2 was used. The resulting polyisocyanate composition was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, with the urethane groups having the highest molar proportion of these bonds. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
  • Example 13 (Production of polyisocyanate composition PA-a13) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 1,3-butanediol: 1.0 parts by mass, and polyester polyol A1: 115 parts by mass. The temperature in the reactor was maintained at 100° C. while stirring the part (the amount that the molar ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was 10.2). The reaction was terminated when the yield reached 53.0% by mass.
  • a polyisocyanate composition PA-a13 After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a13.
  • the resulting polyisocyanate composition PA-a13 was analyzed by H-NMR and C-NMR to confirm the presence of urethane bonds and allophanate bonds, and the molar ratio of urethane bonds was the largest among these bonds.
  • ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
  • Example 14 (Production of polyisocyanate composition PA-a14) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 1.5 parts by mass of 1,3-butanediol, and 112 parts by mass of polyester polyol A1. The temperature in the reactor was maintained at 100° C. while stirring the part (the amount that the molar ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was 10.5). The reaction was terminated when the yield reached 51.5% by mass.
  • polyisocyanate component PA-a14 a polyisocyanate component.
  • the resulting polyisocyanate composition PA-a14 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups. Among these bonds, the molar ratio of urethane groups was the largest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
  • Example 15 (Production of polyisocyanate composition PA-a15) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 2.0 parts by mass of 1,3-butanediol, and 130 parts by mass of polyester polyol A1. The temperature in the reactor was kept at 160°C for 20 minutes and then lowered to 100°C while stirring the part (an amount that gives a molar ratio of 9.1 for the isocyanate group of HDI to the hydroxyl group of polyester polyol A1). The reaction was terminated when the yield reached 56.3% by mass.
  • polyisocyanate component PA-a15 a polyisocyanate component PA-a15.
  • the resulting polyisocyanate composition PA-a15 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
  • Example 16 (Production of polyisocyanate composition PA-a16) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 2.5 parts by mass of 1,3-butanediol, and 135 parts by mass of polyester polyol A1. The temperature in the reactor was maintained at 160° C. for 20 minutes and then lowered to 100° C. while stirring the part (an amount that gives a molar ratio of the isocyanate groups of HDI to the hydroxyl groups of polyester polyol A1 of 8.7). The reaction was terminated when the yield reached 58.7% by mass.
  • polyisocyanate component PA-a16 for 120 minutes to obtain a polyisocyanate component PA-a16.
  • the resulting polyisocyanate composition PA-a16 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest.
  • ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
  • Example 17 (Production of polyisocyanate composition PA-a17) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A3" ) (manufactured by Daicel Corporation, trade name “PLAXEL 240”, number average molecular weight 4000, hydroxyl value 28.5 mgKOH/g, acid value 0.07 mgKOH/g): 215 parts by mass (the ratio of isocyanate groups of HDI to the hydroxyl groups of polyester polyol A3 The temperature in the reactor was maintained at 100° C.
  • Example 18 (Production of polyisocyanate composition PA-a18) A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and polyester polyol A1: 115 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was The temperature in the reactor was maintained at 100° C. while stirring the amount that gives a molar ratio of 10.2. The reaction was terminated when the yield reached 52.2% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition.
  • the obtained intermediate of the polyisocyanate composition was placed in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser under a nitrogen stream, and 100 parts by mass of 1,3-butanediol: 1.0 Parts by mass were added, and the temperature inside the reactor was maintained at 160° C. for 1 hour to obtain polyisocyanate component PA-a18.
  • the resulting polyisocyanate composition PA-a18 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
  • Example 19 (Production of polyisocyanate composition PA-a19) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and trifunctional polycaprolactone polyol (hereinafter sometimes referred to as "polyester polyol B1"). ) (manufactured by Daicel Corporation, trade name “PLAXEL 308”, number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g): 35.0 parts by mass (HDI isocyanate for the hydroxyl group of polyester polyol B1 The temperature in the reactor was maintained at 100° C.
  • polyester polyol B1 was added to 100 parts by mass of the obtained intermediate of the polyisocyanate composition in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser under a nitrogen stream.
  • 2-ethylhexyl acid phosphate (manufactured by Johoku Kagaku Kogyo Co., Ltd., trade name “JP508T”) was added at 90 mass ppm with respect to the resin content, and the temperature in the reactor was maintained at 95 ° C. for 120 minutes to obtain a polyisocyanate component PA. -a19 was obtained.
  • the resulting polyisocyanate composition PA-a19 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these groups.
  • ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
  • Example 20 (Production of polyisocyanate composition PA-a20) A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and trifunctional polycaprolactone polyol (hereinafter sometimes referred to as "polyester polyol B1").
  • the polyisocyanate was obtained by removing the unreacted HDI monomer with a thin-film distillation apparatus.
  • the resulting polyisocyanate had an isocyanate group content of 23.1% by mass and an average isocyanate functional group number of 3.4.
  • the resulting polyisocyanate composition PA-b4 was analyzed by H-NMR and C-NMR to confirm the presence of isocyanurate groups, and among these groups, the isocyanurate groups had the highest molar ratio.
  • the resulting polyisocyanate had an isocyanate group content of 23.4% by mass and an average isocyanate functional group number of 3.4.
  • the resulting polyisocyanate composition PA-b5 was analyzed by H-NMR and C-NMR to confirm the presence of biuret.
  • Tables 1 to 3 below show the physical properties of the polyisocyanate compositions obtained in Examples and Comparative Examples, and the results of evaluation by the methods described above.
  • Comparative Example 1 when the stress at the elongation rate of 140% was measured, the elongation rate was not elongated until the elongation rate was 140%, the breaking point stress was 73 MPa, and the measurement was impossible. bottom.
  • the comparative examples 4 and 5 are also the same.
  • each abbreviation means the following compounds.
  • A'1 Polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation, trade name "PTMG1000", number average molecular weight 1000
  • A'2 Polyether polyol, manufactured by Asahi Glass Co., Ltd., trade name "Excenol 2020”, number average molecular weight 2000
  • B3 trifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name “PLAXEL 305”, number average molecular weight 550
  • B'1 trimethylolpropane (TMP)
  • the polyisocyanate compositions PA-b1 to PA-b5 (Comparative Examples 1 to 5) derived from a diisocyanate and a polyol that does not have the above physical properties, the polyisocyanate composition
  • the hardness and transparency of the cured film 1 obtained by curing the product alone, the stress, elongation rate, and tensile breaking stress at 140% elongation when used as the cured film 2, and when used as an adhesive resin sheet A product excellent in all of adhesiveness, curability and transparency was not obtained.
  • the cured film obtained by curing the polyisocyanate composition alone has good flexibility and transparency, and has excellent elongation and tensile breaking stress. It is possible to provide a polyisocyanate composition from which an adhesive resin composition and an adhesive resin sheet having excellent adhesive strength, curability and transparency can be obtained. Further, the present invention can provide a laminated film comprising the adhesive resin sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention provides a polyisocyanate composition which is derived from at least one diisocyanate that is selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates, and at least one polyester polyol that is selected from the group consisting of (A) bifunctional polyester polyols having a number average molecular weight Mn of 500 or more and (B) tri- or higher functional polyester polyols having a number average molecular weight Mn of 500 or more, wherein: the molar ratio of the isocyanate groups in the diisocyanate to the hydroxy groups in the polyester polyol is 1.5 to 30.0; and the polyisocyanate composition has a weight average molecular weight of 1,400 to 800,000.

Description

ポリイソシアネート組成物、硬化膜、粘着性樹脂組成物、粘着性樹脂シート、及び積層フィルムPolyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet, and laminated film
 本発明は、ポリイソシアネート組成物、硬化膜、粘着性樹脂組成物、粘着性樹脂シート、及び積層フィルムに関する。 The present invention relates to polyisocyanate compositions, cured films, adhesive resin compositions, adhesive resin sheets, and laminated films.
 近年、プラスチックフィルムや粘接着剤は、幅広い機能を有することから様々な分野で用いられている。そのような状況下、フラットな部位への適用だけでなく、曲面部や折り曲げの動きがある部位のような、これまで少なかった用途への適用も増えてきている。例えば、フレキシブルディスプレイやフォルダブルディスプレイ、自動車の部材等の貼り合わせのようなものが挙げられ、近年急速に需要が拡大してきている。それに伴って、曲面や屈曲に対して追従性、伸縮性及び耐屈曲性が良好で且つ強靭な高柔軟性フィルムや粘接着剤が求められている。また、光学用途に関しては、高い透明性、具体的にはヘイズ値が3.0%以下であることも同時に求められる。 In recent years, plastic films and adhesives have been used in various fields due to their wide range of functions. Under such circumstances, applications are increasing not only for flat parts, but also for applications such as curved parts and parts with bending motion, which were rarely used before. For example, there are flexible displays, foldable displays, and lamination of automobile members, etc., and the demand has increased rapidly in recent years. Along with this, there is a demand for highly flexible films and pressure-sensitive adhesives that are tough and have good conformability, stretchability and bending resistance to curved surfaces and bends. For optical applications, high transparency, specifically haze value of 3.0% or less is also required at the same time.
 例えば、特許文献1には、脂肪族ジイソシアネート又は脂環族ジイソシアネートと数平均分子量500以上1500以下のポリカプロラクトンジオール及び/又はトリオールとを、反応させることを含む、伸展性を有するポリウレタン塗料用プレポリマーの製造方法が開示されている。また、特許文献2には、脂肪族ジイソシアネート又は脂環族ジイソシアネートと数平均分子量700以上1500以下のポリテトラメチレングリコールとを反応させて得られるプレポリマーと、脂肪族ジイソシアネート又は脂環族ジイソシアネートと数平均分子量500以上1500以下のポリカプロラクトンポリオールとを反応させて得られるプレポリマーと、の混合物が開示されている。 For example, in Patent Document 1, an extensible polyurethane paint prepolymer comprising reacting an aliphatic diisocyanate or an alicyclic diisocyanate with a polycaprolactone diol and/or triol having a number average molecular weight of 500 or more and 1500 or less is disclosed. Further, in Patent Document 2, a prepolymer obtained by reacting an aliphatic diisocyanate or an alicyclic diisocyanate with a polytetramethylene glycol having a number average molecular weight of 700 or more and 1500 or less, an aliphatic diisocyanate or an alicyclic diisocyanate and a number and a prepolymer obtained by reacting a polycaprolactone polyol having an average molecular weight of 500 or more and 1500 or less.
特開昭61-028518号公報JP-A-61-028518 特開平02-001718号公報JP-A-02-001718
 しかしながら、特許文献1や特許文献2等の記載の従来のポリエステルポリオール又はポリエーテルポリオールで変性したポリイソシアネートでは、柔軟性に改良の余地がある。また、これらの文献では、塗料用途での検討にとどまっており、粘接着剤への適用については具体的には検討されておらず、さらに、ポリイソシアネートの構造と透明性との関係性について全く着目されていない。 However, conventional polyisocyanates modified with polyester polyols or polyether polyols described in Patent Documents 1 and 2 have room for improvement in flexibility. In addition, in these documents, the study is limited to coating applications, and application to adhesive agents is not specifically studied, and furthermore, the relationship between the structure of polyisocyanate and transparency not paid attention to at all.
 本発明は、上記事情に鑑みてなされたものであって、ポリイソシアネート組成物単独を硬化してなる硬化膜の柔軟性及び透明性が良好で、且つ、伸び率、及び引張破断応力に優れる硬化膜、並びに、粘着力、硬化性及び透明性に優れる粘着性樹脂組成物及び粘着性樹脂シートが得られるポリイソシアネート組成物を提供する。また、本発明は上記粘着性樹脂シートを備える積層フィルムを提供する。 The present invention has been made in view of the above circumstances, and the cured film obtained by curing the polyisocyanate composition alone has good flexibility and transparency, and has excellent elongation and tensile breaking stress. Provided is a polyisocyanate composition from which a film, a pressure-sensitive adhesive resin composition and a pressure-sensitive adhesive resin sheet having excellent adhesive strength, curability and transparency are obtained. The present invention also provides a laminated film comprising the adhesive resin sheet.
 すなわち、本発明は、以下の態様を含む。
(1)脂肪族ジイソシアネート及び脂環族ジイソシアネートからなる群より選ばれる少なくとも1種のジイソシアネートと、
 数平均分子量Mnが500以上の2官能のポリエステルポリオール(A)及び数平均分子量Mnが500以上の3官能以上のポリエステルポリオール(B)からなる群より選ばれる少なくとも1種のポリエステルポリオールと、
から誘導されるポリイソシアネート組成物であって、
 前記ポリエステルポリオールの水酸基に対する前記ジイソシアネートのイソシアネート基のモル比が1.5以上30.0以下であり、
 前記ポリイソシアネート組成物の重量平均分子量が1400以上800000以下である、ポリイソシアネート組成物。
(2)前記ポリイソシアネート組成物の平均イソシアネート官能基数が2.0以上6.0以下である、(1)に記載のポリイソシアネート組成物。
(3)前記ポリイソシアネート組成物のイソシアネート基含有率が1.0質量%以上8.7質量%以下である、(1)又は(2)に記載のポリイソシアネート組成物。
(4)前記ジイソシアネート100質量部に対して、前記ポリエステルポリオール(A)の含有量が0.1質量部以上900質量部以下であり、
 前記ジイソシアネート100質量部に対して、前記ポリエステルポリオール(B)の含有量が0.1質量部以上900質量部以下である、(1)~(3)のいずれかに記載のポリイソシアネート組成物。
(5)前記ポリエステルポリオールがポリカプロラクトンポリオールである、(1)~(4)のいずれかに記載のポリイソシアネート組成物。
(6)ガラス上に塗工し、23℃、65%湿度環境下で168時間保管後に形成された膜厚40μmの硬化膜の、23℃環境下でのケーニッヒ硬度が60回以下である、(1)~(5)のいずれかに記載のポリイソシアネート組成物。
(7)膜厚40μmの前記硬化膜をヘイズ値が0.1%であるガラス上に貼り付けた状態で、ヘイズメーターで測定されたヘイズ値が3.0%以下である、(6)に記載のポリイソシアネート組成物。
(8)(1)~(5)のいずれかに記載のポリイソシアネート組成物と、ガラス転移温度が0℃以上100℃以下であるポリオールと、を、含む樹脂組成物の硬化膜であって、
 速度20mm/分で測定された引張試験における伸び率が140%以上であり、
 伸び率140%時の応力が25.0MPa以下であり、且つ、
 引張破断応力が前記伸び率140%時の応力の1.2倍以上である、硬化膜。
(9)前記ポリオール100質量部に対して、前記ポリイソシアネート組成物の含有量が0.01質量部以上200質量部以下である、(8)に記載の硬化膜。
(10)(1)~(7)のいずれか一項に記載のポリイソシアネート組成物と、ガラス転移温度が0.0℃以下の架橋性官能基含有ポリマーと、を含む、粘着性樹脂組成物。
(11)前記架橋性官能基含有ポリマーがアクリル系ポリマー又はウレタン系ポリマーである、(10)に記載の粘着性樹脂組成物。
(12)前記架橋性官能基含有ポリマーが、架橋性官能基を有する重合性(メタ)アクリルモノマーと、エステル基末端の炭素数が1以上18以下である(メタ)アクリル酸エステルモノマーと、を共重合してなり、且つ、ガラス転移温度Tgが-75.0℃以上0.0℃以下である、(10)又は(11)に記載の粘着性樹脂組成物。
(13)前記架橋性官能基含有ポリマーの重量平均分子量が1.0×10以上5.0×10以下である、(10)~(12)のいずれかに記載の粘着性樹脂組成物。
(14)前記架橋性官能基が、水酸基、エポキシ基、オキセタン基、カルボキシ基、ビニル基、及びアミノ基からなる群より選ばれる1種以上である、(10)~(13)のいずれかに記載の粘着性樹脂組成物。
(15)前記架橋性官能基含有ポリマー100質量部に対して、前記ポリイソシアネート組成物の含有量が0.01質量部以上20.00質量部以下である、(10)~(14)のいずれかに記載の粘着性樹脂組成物。
(16)(10)~(15)のいずれかに記載の粘着性樹脂組成物を熱又は光によって硬化させてなる、粘着性樹脂シート。
(17)前記粘着性樹脂シートの厚みが1μm以上1000μm以下である、(16に記載の粘着性樹脂シート。
(18)ゲル分率が20.0質量%以上99.9質量%以下である、(16)又は(17)に記載の粘着性樹脂シート。
(19)23℃、300mm/分の速度で測定された180度ピール粘着力が0.05N/20mm以上65.00N/20mm以下である、(16)~(18)のいずれかに記載の粘着性樹脂シート。
(20)厚み50μmの粘着性樹脂シートをヘイズ値が0.1%であるガラス上に貼り付けて、ヘイズメーターで測定されたヘイズ値が2.0%以下である、(16)~(19)のいずれかに記載の粘着性樹脂シート。
(21)(16)~(20)のいずれかに記載の粘着性樹脂シートの少なくとも片面にフィルム基材が積層されている、積層フィルム。
(22)前記フィルム基材が、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系、トリアセチルセルロース系樹脂からなる群から選ばれる少なくとも1つである、(21)に記載の積層フィルム。
(23)前記積層フィルムが光学用途に用いられる、(21)又は(22)に記載の積層フィルム。
That is, the present invention includes the following aspects.
(1) at least one diisocyanate selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates;
at least one polyester polyol selected from the group consisting of a bifunctional polyester polyol (A) having a number average molecular weight Mn of 500 or more and a trifunctional or higher polyester polyol (B) having a number average molecular weight Mn of 500 or more;
A polyisocyanate composition derived from
The molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol is 1.5 or more and 30.0 or less,
A polyisocyanate composition, wherein the weight average molecular weight of the polyisocyanate composition is 1400 or more and 800000 or less.
(2) The polyisocyanate composition according to (1), wherein the polyisocyanate composition has an average isocyanate functional group number of 2.0 or more and 6.0 or less.
(3) The polyisocyanate composition according to (1) or (2), wherein the polyisocyanate composition has an isocyanate group content of 1.0% by mass or more and 8.7% by mass or less.
(4) the content of the polyester polyol (A) is 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate;
The polyisocyanate composition according to any one of (1) to (3), wherein the content of the polyester polyol (B) is 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate.
(5) The polyisocyanate composition according to any one of (1) to (4), wherein the polyester polyol is polycaprolactone polyol.
(6) A cured film having a thickness of 40 μm formed by coating on glass and storing it for 168 hours in an environment of 23° C. and 65% humidity has a Konig hardness of 60 times or less in an environment of 23° C. ( 1) The polyisocyanate composition according to any one of (5).
(7) The haze value measured with a haze meter is 3.0% or less when the cured film having a thickness of 40 μm is attached on a glass having a haze value of 0.1%. The polyisocyanate composition described.
(8) A cured film of a resin composition containing the polyisocyanate composition according to any one of (1) to (5) and a polyol having a glass transition temperature of 0° C. or higher and 100° C. or lower,
The elongation in a tensile test measured at a speed of 20 mm / min is 140% or more,
The stress at elongation of 140% is 25.0 MPa or less, and
A cured film having a tensile stress at break of 1.2 times or more of the stress at elongation of 140%.
(9) The cured film according to (8), wherein the content of the polyisocyanate composition is 0.01 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyol.
(10) An adhesive resin composition comprising the polyisocyanate composition according to any one of (1) to (7) and a crosslinkable functional group-containing polymer having a glass transition temperature of 0.0° C. or less. .
(11) The adhesive resin composition according to (10), wherein the crosslinkable functional group-containing polymer is an acrylic polymer or a urethane polymer.
(12) The crosslinkable functional group-containing polymer comprises a polymerizable (meth)acrylic monomer having a crosslinkable functional group and a (meth)acrylic acid ester monomer having 1 or more and 18 or less carbon atoms at the end of the ester group. The adhesive resin composition according to (10) or (11), which is copolymerized and has a glass transition temperature Tg of −75.0° C. or more and 0.0° C. or less.
(13) The adhesive resin composition according to any one of (10) to (12), wherein the crosslinkable functional group-containing polymer has a weight average molecular weight of 1.0×10 5 or more and 5.0×10 6 or less. .
(14) Any one of (10) to (13), wherein the crosslinkable functional group is one or more selected from the group consisting of a hydroxyl group, an epoxy group, an oxetane group, a carboxy group, a vinyl group, and an amino group. The described adhesive resin composition.
(15) Any of (10) to (14), wherein the content of the polyisocyanate composition is 0.01 parts by mass or more and 20.00 parts by mass or less with respect to 100 parts by mass of the crosslinkable functional group-containing polymer. The adhesive resin composition according to 1.
(16) An adhesive resin sheet obtained by curing the adhesive resin composition according to any one of (10) to (15) with heat or light.
(17) The adhesive resin sheet according to (16), wherein the adhesive resin sheet has a thickness of 1 μm or more and 1000 μm or less.
(18) The adhesive resin sheet according to (16) or (17), which has a gel fraction of 20.0% by mass or more and 99.9% by mass or less.
(19) The adhesive according to any one of (16) to (18), which has a 180 degree peel adhesive strength of 0.05 N/20 mm or more and 65.00 N/20 mm or less measured at a speed of 300 mm/min at 23°C. flexible resin sheet.
(20) The haze value measured with a haze meter is 2.0% or less when an adhesive resin sheet having a thickness of 50 μm is attached to glass having a haze value of 0.1%, (16) to (19) ) The adhesive resin sheet according to any one of ).
(21) A laminated film comprising a film substrate laminated on at least one side of the adhesive resin sheet according to any one of (16) to (20).
(22) The film substrate is a polyester-based resin, an acetate-based resin, a polyethersulfone-based resin, a polycarbonate-based resin, a polyamide-based resin, a polyimide-based resin, a polyolefin-based resin, a (meth)acrylic-based resin, or a polyvinyl chloride-based resin. The laminate according to (21), which is at least one selected from the group consisting of resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and triacetyl cellulose resins. the film.
(23) The laminated film according to (21) or (22), which is used for optical purposes.
 上記態様のポリイソシアネート組成物によれば、ポリイソシアネート組成物単独を硬化してなる硬化膜の柔軟性及び透明性が良好で、且つ、伸び率、及び引張破断応力に優れる硬化膜、並びに、粘着力、硬化性及び透明性に優れる粘着性樹脂組成物及び粘着性樹脂シートが得られるポリイソシアネート組成物を提供することができる。また、本発明は上記粘着性樹脂シートを備える積層フィルムを提供することができる。 According to the polyisocyanate composition of the above aspect, the cured film obtained by curing the polyisocyanate composition alone has good flexibility and transparency, and has excellent elongation and tensile breaking stress. It is possible to provide a polyisocyanate composition from which a pressure-sensitive adhesive resin composition and a pressure-sensitive adhesive resin sheet having excellent strength, curability and transparency can be obtained. Further, the present invention can provide a laminated film comprising the adhesive resin sheet.
 なお、本明細書において、「ポリオール」とは、一分子中に2つ以上のヒドロキシ基(-OH)を有する化合物を意味する。
 また、本明細書において、「ポリイソシアネート」とは、2つ以上のイソシアネート基(-NCO)を有する単量体化合物が複数結合した反応生成物を意味する。
 また、本明細書において、特に断りがない限り、「(メタ)アクリル」は、メタクリルとアクリルとを包含し、「(メタ)アクリレート」はメタクリレートとアクリレートとを包含するものとする。
As used herein, "polyol" means a compound having two or more hydroxy groups (--OH) in one molecule.
In this specification, "polyisocyanate" means a reaction product in which a plurality of monomeric compounds having two or more isocyanate groups (--NCO) are combined.
In this specification, unless otherwise specified, "(meth)acryl" includes methacryl and acryl, and "(meth)acrylate" includes methacrylate and acrylate.
≪ポリイソシアネート組成物≫
 本実施形態のポリイソシアネート組成物は、ジイソシアネートと、数平均分子量が500以上である2官能のポリエステルポリオール(A)(以下、単に「ポリエステルポリオール(A)」という)及び数平均分子量Mnが500以上の3官能以上のポリエステルポリオール(B)(以下、単に「ポリエステルポリオール(B)」という)からなる群より選ばれる少なくとも1種のポリエステルポリオールと、から誘導されたものである。すなわち、本実施形態のポリイソシアネート組成物は、ジイソシアネートと上記ポリエステルポリオール1種以上との反応生成物であり、1種以上の上記ポリエステルポリオールで変性されたポリイソシアネートを含むものである。ジイソシアネートは、脂肪族ジイソシアネート及び脂環族ジイソシアネートからなる群より選ばれる少なくとも1種である。
<<Polyisocyanate composition>>
The polyisocyanate composition of the present embodiment comprises a diisocyanate, a bifunctional polyester polyol (A) having a number average molecular weight of 500 or more (hereinafter simply referred to as "polyester polyol (A)"), and a number average molecular weight Mn of 500 or more. and at least one polyester polyol selected from the group consisting of trifunctional or higher polyester polyols (B) (hereinafter simply referred to as "polyester polyols (B)"). That is, the polyisocyanate composition of the present embodiment is a reaction product of a diisocyanate and one or more of the above polyester polyols, and contains a polyisocyanate modified with one or more of the above polyester polyols. Diisocyanate is at least one selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates.
 本実施形態のポリイソシアネート組成物において、ポリエステルポリオール(A)及び/又はポリエステルポリオール(B)の水酸基に対するジイソシアネートのイソシアネート基のモル比(イソシアネート基/水酸基のモル比)が1.5以上30.0以下であり、2.0以上25.0以下が好ましく、2.1以上23.0以下がより好ましく、2.2以上20.0以下がさらに好ましく、2.3以上20.0以下がさらに好ましく、2.4以上20.0以下がさらに好ましく、2.5以上20.0以下が特に好ましく、2.52以上20.0以下が最も好ましい。
 イソシアネート基/水酸基のモル比は、例えば、ポリイソシアネート組成物の製造時に用いられるポリエステルポリオール(A)及び/又はポリエステルポリオール(B)の水酸基のモル量と、ジイソシアネートのイソシアネート基のモル量を用いて算出することができる。
In the polyisocyanate composition of the present embodiment, the molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol (A) and/or the polyester polyol (B) (molar ratio of isocyanate groups/hydroxyl groups) is 1.5 or more and 30.0. 2.0 or more and 25.0 or less are preferable, 2.1 or more and 23.0 or less are more preferable, 2.2 or more and 20.0 or less are more preferable, and 2.3 or more and 20.0 or less are more preferable. , is more preferably 2.4 or more and 20.0 or less, particularly preferably 2.5 or more and 20.0 or less, and most preferably 2.52 or more and 20.0 or less.
The isocyanate group/hydroxyl molar ratio is, for example, the molar amount of hydroxyl groups in the polyester polyol (A) and/or polyester polyol (B) used in the production of the polyisocyanate composition, and the molar amount of the isocyanate groups in the diisocyanate. can be calculated.
 本実施形態のポリイソシアネート組成物の重量平均分子量は、1400以上であり、1500以上であることが好ましく、2000以上であることがより好ましく、2500以上であることがさらに好ましく、3000以上であることが特に好ましい。
 本実施形態のポリイソシアネート組成物の重量平均分子量の上限値は、特に限定されないが、800000とすることができる。
 本実施形態のポリイソシアネート組成物の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と略記する場合がある)により測定することができる。
The weight average molecular weight of the polyisocyanate composition of the present embodiment is 1400 or more, preferably 1500 or more, more preferably 2000 or more, further preferably 2500 or more, and 3000 or more. is particularly preferred.
Although the upper limit of the weight average molecular weight of the polyisocyanate composition of the present embodiment is not particularly limited, it can be 800,000.
The weight average molecular weight of the polyisocyanate composition of the present embodiment can be measured, for example, by gel permeation chromatography (hereinafter sometimes abbreviated as "GPC").
 本実施形態のポリイソシアネート組成物は、上記構成を有することで、ポリイソシアネート組成物単独を硬化してなる硬化膜の硬度が従来よりも低く、柔軟性及び透明性が良好なものとなる。また、本実施形態のポリイソシアネート組成物を用いることで、140%伸び率の時の応力が従来よりも低く、伸び率が従来より高く、且つ、引張破断応力が従来より高い硬化膜が得られる。さらに、本実施形態のポリイソシアネート組成物を用いることで、粘着力、硬化性及び透明性に優れる粘着性樹脂シートが得られる。 By having the above configuration, the polyisocyanate composition of the present embodiment has a lower hardness than conventional cured films obtained by curing the polyisocyanate composition alone, and has good flexibility and transparency. Further, by using the polyisocyanate composition of the present embodiment, the stress at 140% elongation is lower than before, the elongation is higher than before, and the tensile breaking stress is higher than before. A cured film can be obtained. . Furthermore, by using the polyisocyanate composition of the present embodiment, an adhesive resin sheet having excellent adhesive strength, curability and transparency can be obtained.
 次いで、本実施形態のポリイソシアネート組成物の各構成成分について以下に詳細を説明する。 Next, details of each component of the polyisocyanate composition of the present embodiment will be described below.
<ポリイソシアネート>
 ポリイソシアネートは、一分子中にジイソシアネートと上記ポリエステルポリオール1種以上に由来する構成単位を有する。
<Polyisocyanate>
A polyisocyanate has structural units derived from a diisocyanate and one or more of the polyester polyols in one molecule.
 本実施形態のポリイソシアネート組成物が、ジイソシアネートとポリエステルポリオール(A)及びポリエステルポリオール(B)と、から誘導されたものである場合に、一分子中にジイソシアネート、ポリエステルポリオール(A)及びポリエステルポリオール(B)に由来する構成単位を全て有するポリイソシアネートであってもよく、一分子中にジイソシアネート及びポリエステルポリオール(A)に由来する構成単位を有するポリイソシアネートと、ジイソシアネート及びポリエステルポリオール(B)に由来する構成単位を有するポリイソシアネートと、の混合物であってもよい。 When the polyisocyanate composition of the present embodiment is derived from diisocyanate, polyester polyol (A) and polyester polyol (B), diisocyanate, polyester polyol (A) and polyester polyol (A) in one molecule It may be a polyisocyanate having all structural units derived from B), a polyisocyanate having structural units derived from diisocyanate and polyester polyol (A) in one molecule, and a polyisocyanate derived from diisocyanate and polyester polyol (B) It may be a mixture with a polyisocyanate having structural units.
 ポリイソシアネートは、アロファネート構造、ウレトジオン構造、イミノオキサジアジンジオン構造、イソシアヌレート構造、ウレア構造、ウレタン構造、及びビウレット構造からなる群より選ばれる少なくとも1つ以上の構造を有することができる。中でも、ウレタン構造、アロファネート構造、ビウレット構造、ウレア構造、ウレトジオン構造、及びイソシアヌレート構造からなる群より選ばれる少なくとも1つの構造を有することが好ましく、ウレタン構造、アロファネート構造、ビウレット構造、ウレア構造、及びウレトジオン構造からなる群より選ばれる少なくとも1つの構造を有することがより好ましく、ウレタン構造、アロファネート構造、ウレア構造、及びウレトジオン構造からなる群より選ばれる少なくとも1つの構造を有することがさらに好ましく、ウレタン構造、アロファネート構造、及びウレトジオン構造からなる群より選ばれる少なくとも1つの構造を有することがさらに好ましく、ウレタン構造、アロファネート構造からなる群より選ばれる少なくとも1つの構造を有することがさらに好ましく、ウレタン構造を有することが特に好ましい。 The polyisocyanate can have at least one structure selected from the group consisting of allophanate structure, uretdione structure, iminooxadiazinedione structure, isocyanurate structure, urea structure, urethane structure, and biuret structure. Among them, it is preferable to have at least one structure selected from the group consisting of a urethane structure, an allophanate structure, a biuret structure, a urea structure, a uretdione structure, and an isocyanurate structure. It more preferably has at least one structure selected from the group consisting of a uretdione structure, more preferably has at least one structure selected from the group consisting of a urethane structure, an allophanate structure, a urea structure, and a uretdione structure, and a urethane structure. , an allophanate structure, and a uretdione structure, more preferably having at least one structure selected from the group consisting of a urethane structure and an allophanate structure, and having a urethane structure is particularly preferred.
[ジイソシアネート]
 ジイソシアネートは、脂肪族ジイソシアネート及び脂環族ジイソシアネートからなる群より選ばれる少なくとも1種である。
[Diisocyanate]
Diisocyanate is at least one selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates.
 脂肪族ジイソシアネートとしては、以下のものに限定されないが、例えば、1,4-ジイソシアナトブタン、1,5-ジイソシアナトペンタン、エチル(2,6-ジイソシアナト)ヘキサノエート、1,6-ジイソシアナトヘキサン(以下、「HDI」と略記する場合がある)、1,9-ジイソシアナトノナン、1,12-ジイソシアナトドデカン、2,2,4-又は2,4,4-トリメチル-1、6-ジイソシアナトヘキサン等が挙げられる。これら脂肪族ジイソシアネートを単独で用いてもよく、2種以上組み合わせて用いてもよい。 Aliphatic diisocyanates include, but are not limited to, 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, ethyl (2,6-diisocyanato)hexanoate, 1,6-diisocyanate natohexane (hereinafter sometimes abbreviated as "HDI"), 1,9-diisocyanatononane, 1,12-diisocyanatododecane, 2,2,4- or 2,4,4-trimethyl-1 , 6-diisocyanatohexane, and the like. These aliphatic diisocyanates may be used alone or in combination of two or more.
 脂環族ジイソシアネートとしては、以下のものに限定されないが、例えば、1,3-又は1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、「水添XDI」と略記する場合がある)、1,3-又は1,4-ジイソシアナトシクロヘキサン、3,5,5-トリメチル1-イソシアナト-3-(イソシアナトメチル)シクロヘキサン(以下、「IPDI」と略記する場合がある)、4-4’-ジイソシアナト-ジシクロヘキシルメタン(以下、「水添MDI」と略記する場合がある)、2,5-又は2,6-ジイソシアナトメチルノルボルナン等が挙げられる。これら脂環族ジイソシアネートを1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 Alicyclic diisocyanates include, but are not limited to, 1,3- or 1,4-bis(isocyanatomethyl)cyclohexane (hereinafter sometimes abbreviated as “hydrogenated XDI”), 1 , 3- or 1,4-diisocyanatocyclohexane, 3,5,5-trimethyl 1-isocyanato-3-(isocyanatomethyl)cyclohexane (hereinafter sometimes abbreviated as "IPDI"), 4-4' -diisocyanato-dicyclohexylmethane (hereinafter sometimes abbreviated as "hydrogenated MDI"), 2,5- or 2,6-diisocyanatomethylnorbornane, and the like. These alicyclic diisocyanates may be used singly or in combination of two or more.
 これら脂肪族ジイソシアネート及び脂環族ジイソシアネートは、いずれを単独で使用してもよく、脂肪族ジイソシアネート及び脂環族ジイソシアネートを2種以上組み合わせて用いてもよい。
 また、柔軟性の観点から、脂肪族ジイソシアネートに対する脂環族ポリイソシアネートの質量比は、0/100以上30/70以下であることが好ましい。
Any of these aliphatic diisocyanates and alicyclic diisocyanates may be used alone, or two or more of these aliphatic diisocyanates and alicyclic diisocyanates may be used in combination.
Moreover, from the viewpoint of flexibility, the mass ratio of the alicyclic polyisocyanate to the aliphatic diisocyanate is preferably 0/100 or more and 30/70 or less.
 中でも、ジイソシアネートとしては、1,4-ジイソシアナトブタン、HDI、1,5-ペンタメチレンジイソシアネート(PDI)、1,7-ジイソシアナトヘプタン、1,8-ジイソシアナトオクタン、IPDI、水添XDI、又は水添MDIが好ましく、HDI、PDI又はIPDIがより好ましく、HDIまたはPDIがさらに好ましく、HDIが特に好ましい。 Among them, diisocyanates include 1,4-diisocyanatobutane, HDI, 1,5-pentamethylene diisocyanate (PDI), 1,7-diisocyanatoheptane, 1,8-diisocyanatooctane, IPDI, hydrogenated XDI or hydrogenated MDI is preferred, HDI, PDI or IPDI is more preferred, HDI or PDI is even more preferred, and HDI is particularly preferred.
 ポリイソシアネートの製造には、上述したジイソシアネートに加えて、以下に示すようなイソシアネートモノマーを更に用いてもよい。
 (1)ジフェニルメタン-4,4’-ジイソシアネート(MDI)、1,5-ナフタレンジイソシアネート、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、m-テトラメチルキシリレンジイソシアネート(TMXDI)等の芳香族ジイソシアネート。
 (2)4-イソシアネートメチル-1,8-オクタメチレンジイソシアネート(以下、「NTI」と称する場合がある)、1,3,6-ヘキサメチレントリイソシアネート(以下、「HTI」と称する場合がある)、ビス(2-イソシアナトエチル)2-イソシアナトグルタレート(以下、「GTI」と称する場合がある)、リジントリイソシアネート(以下、「LTI」と称する場合がある)等のトリイソシアネート。
In addition to the diisocyanates described above, the following isocyanate monomers may be used for the production of polyisocyanates.
(1) Aromatics such as diphenylmethane-4,4'-diisocyanate (MDI), 1,5-naphthalene diisocyanate, tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), m-tetramethylxylylene diisocyanate (TMXDI) Diisocyanate.
(2) 4-isocyanatomethyl-1,8-octamethylene diisocyanate (hereinafter sometimes referred to as "NTI"), 1,3,6-hexamethylene triisocyanate (hereinafter sometimes referred to as "HTI") , bis(2-isocyanatoethyl) 2-isocyanatoglutarate (hereinafter sometimes referred to as "GTI"), lysine triisocyanate (hereinafter sometimes referred to as "LTI"), and other triisocyanates.
[ポリエステルポリオール(A)及びポリエステルポリオール(B)]
 ポリエステルポリオール(A)は、数平均分子量が500以上であり、且つ、2官能のポリエステルポリオール(ジオール)である。
 ポリエステルポリオール(B)は、数平均分子量が500以上であり、且つ、3官能以上のポリエステルポリオールである。
[Polyester polyol (A) and polyester polyol (B)]
The polyester polyol (A) is a bifunctional polyester polyol (diol) having a number average molecular weight of 500 or more.
The polyester polyol (B) is a polyester polyol having a number average molecular weight of 500 or more and a functionality of 3 or more.
 ポリエステルポリオール(A)の数平均分子量は500以上であり、800以上であることが好ましく、1500以上であることがより好ましく、1800以上であることがさらに好ましい。ポリエステルポリオール(A)の数平均分子量が上記下限値以上であることで、ポリイソシアネート組成物単独を硬化させてなる硬化膜の硬度が低く、柔軟性が良好なものとなる。
 一方で、ポリエステルポリオール(A)の数平均分子量の上限値は、特に限定されないが、例えば、12000とすることができ、10000とすることができ、8000とすることができ、7000とすることができ、6000とすることが好ましく、5000とすることがより好ましく、4500とすることがさらに好ましい。
 ポリエステルポリオール(A)の数平均分子量Mnは、例えば、GPC測定によるポリスチレン基準の数平均分子量である。また、ポリエステルポリオール(A)を2種以上混合して用いる場合には、その混合物の数平均分子量を算出して用いる。
The number average molecular weight of the polyester polyol (A) is 500 or more, preferably 800 or more, more preferably 1500 or more, even more preferably 1800 or more. When the number average molecular weight of the polyester polyol (A) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility.
On the other hand, the upper limit of the number average molecular weight of the polyester polyol (A) is not particularly limited. 6000 is preferable, 5000 is more preferable, and 4500 is even more preferable.
The number average molecular weight Mn of the polyester polyol (A) is, for example, a polystyrene-based number average molecular weight measured by GPC. When two or more polyester polyols (A) are mixed and used, the number average molecular weight of the mixture is calculated and used.
 ポリエステルポリオール(B)の数平均分子量は500以上であり、800以上であることが好ましい。ポリエステルポリオール(B)の数平均分子量が上記下限値以上であることで、ポリイソシアネート組成物単独を硬化してなる硬化膜の硬度が低く、柔軟性が良好なものとなる。
 一方で、ポリエステルポリオール(B)の数平均分子量の上限値は、特に限定されないが、例えば、12000とすることができ、10000とすることができ、8000とすることができ、6000とすることができ、4000とすることができ、3500とすることが好ましく、3000とすることがより好ましく、2500とすることがさらに好ましい。
 ポリエステルポリオール(B)の数平均分子量Mnは、例えば、GPC測定によるポリスチレン基準の数平均分子量である。また、ポリエステルポリオール(B)を2種以上混合して用いる場合には、その混合物の数平均分子量を算出して用いる。
The polyester polyol (B) has a number average molecular weight of 500 or more, preferably 800 or more. When the number average molecular weight of the polyester polyol (B) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility.
On the other hand, the upper limit of the number average molecular weight of the polyester polyol (B) is not particularly limited. It can be 4000, preferably 3500, more preferably 3000, even more preferably 2500.
The number average molecular weight Mn of the polyester polyol (B) is, for example, a polystyrene-based number average molecular weight measured by GPC. When two or more polyester polyols (B) are mixed and used, the number average molecular weight of the mixture is calculated and used.
 ポリエステルポリオール(A)としては、例えば、以下の(1)又は(2)のいずれかのポリエステルポリオール等が挙げられる。
(1)二塩基酸の単独又は2種類以上の混合物と、2価のアルコールの単独又は2種類以上の混合物との縮合反応によって得られるポリエステルポリオール。
(2)ε-カプロラクトンを2価のアルコールで開環重合して得られるポリカプロラクトンポリオール。
 前記二塩基酸としては、例えば、コハク酸、アジピン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸等のカルボン酸等が挙げられる。
 前記2価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、トリメチルペンタンジオール、シクロヘキサンジオール等が挙げられる。
The polyester polyol (A) includes, for example, the following polyester polyols (1) or (2).
(1) A polyester polyol obtained by a condensation reaction between a dibasic acid alone or a mixture of two or more kinds and a dihydric alcohol alone or a mixture of two or more kinds.
(2) A polycaprolactone polyol obtained by ring-opening polymerization of ε-caprolactone with a dihydric alcohol.
Examples of the dibasic acid include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and 1,4-cyclohexanedicarboxylic acid.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol and the like.
 中でも、ポリエステルポリオール(A)としては、2官能のポリカプロラクトンポリオールが好ましい。 Among them, bifunctional polycaprolactone polyol is preferable as the polyester polyol (A).
 市販されている2官能のポリカプロラクトンポリオールとしては、例えば、ダイセル社製の商品名「プラクセル210」(数平均分子量1000、水酸基価112.8mgKOH/g、酸価0.09mgKOH/g)、「プラクセル210CP」(数平均分子量1000、水酸基価112.8mgKOH/g、酸価0.16mgKOH/g)、商品名「プラクセル212」(数平均分子量1250、水酸基価90.8mgKOH/g、酸価0.09mgKOH/g)、商品名「プラクセル212CP」(数平均分子量1250、水酸基価90.2mgKOH/g、酸価0.14mgKOH/g)、「プラクセル220」(数平均分子量2000、水酸基価56.7mgKOH/g、酸価0.06mgKOH/g)、「プラクセル220CPB」(数平均分子量2000、水酸基価57.2mgKOH/g、酸価0.16mgKOH/g)、「プラクセル220CPT」(数平均分子量2000、水酸基価56.6mgKOH/g、酸価0.02mgKOH/g)、「プラクセル230」(数平均分子量3000、水酸基価37.6mgKOH/g、酸価0.07mgKOH/g)、「プラクセル240(数平均分子量4000、水酸基価28.5mgKOH/g、酸価0.07mgKOH/g)等が挙げられる。
 2官能のポリカプロラクトンポリオールとしては、耐加水分解性及びポリイソシアネート合成時の反応安定性の観点から、酸価がより低いものを用いることが好ましい。
Commercially available bifunctional polycaprolactone polyols include, for example, Daicel's product name "PLAXEL 210" (number average molecular weight: 1000, hydroxyl value: 112.8 mgKOH/g, acid value: 0.09 mgKOH/g), "PLAXEL 210CP” (number average molecular weight 1000, hydroxyl value 112.8 mgKOH/g, acid value 0.16 mgKOH/g), trade name “PLAXEL 212” (number average molecular weight 1250, hydroxyl value 90.8 mgKOH/g, acid value 0.09 mgKOH / g), trade name “Plaxel 212CP” (number average molecular weight 1250, hydroxyl value 90.2 mgKOH / g, acid value 0.14 mgKOH / g), “Plaxel 220” (number average molecular weight 2000, hydroxyl value 56.7 mgKOH / g , acid value 0.06 mgKOH / g), "Plaxel 220CPB" (number average molecular weight 2000, hydroxyl value 57.2 mgKOH / g, acid value 0.16 mgKOH / g), "Plaxel 220CPT" (number average molecular weight 2000, hydroxyl value 56 .6 mg KOH / g, acid value 0.02 mg KOH / g), "Plaxel 230" (number average molecular weight 3000, hydroxyl value 37.6 mg KOH / g, acid value 0.07 mg KOH / g), "Plaxel 240 (number average molecular weight 4000, hydroxyl value of 28.5 mgKOH/g, acid value of 0.07 mgKOH/g) and the like.
As the bifunctional polycaprolactone polyol, it is preferable to use one having a lower acid value from the viewpoint of hydrolysis resistance and reaction stability during polyisocyanate synthesis.
 ポリエステルポリオール(B)としては、3官能以上のポリエステルポリオールであればよく、3官能以上10官能以下のポリエステルポリオールが好ましく、3官能以上7官能以下のポリエステルポリオールがより好ましく、3官能以上5官能以下のポリエステルポリオールがさらに好ましく、3官能以上4官能以下のポリエステルポリオールが特に好ましく、3官能のポリエステルポリオール(トリオール)が最も好ましい。 The polyester polyol (B) may be a tri- or more functional polyester polyol, preferably a tri- to 10-functional polyester polyol, more preferably a tri- to 7-functional polyester polyol, and tri- to penta-functional. is more preferred, tri- to tetra-functional polyester polyols are particularly preferred, and tri-functional polyester polyols (triols) are most preferred.
 3官能のポリエステルポリオール(B)としては、例えば、以下の(1)又は(2)のいずれかのポリエステルポリオール等が挙げられる。
(1)二塩基酸の単独又は2種類以上の混合物と、3価のアルコールの単独又は2種類以上の混合物との縮合反応によって得られるポリエステルポリオール。
(2)ε-カプロラクトンを3価のアルコールで開環重合して得られるポリカプロラクトンポリオール。
 前記二塩基酸としては、例えば、コハク酸、アジピン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸等のカルボン酸等が挙げられる。
 前記3価のアルコールとしては、例えば、トリメチロールプロパン、グリセリン、ペンタエリスリトール、2-メチロールプロパンジオール、エトキシ化トリメチロールプロパン等が挙げられる。
Examples of the trifunctional polyester polyol (B) include the following polyester polyols (1) or (2).
(1) A polyester polyol obtained by a condensation reaction between a dibasic acid alone or a mixture of two or more kinds and a trihydric alcohol alone or a mixture of two or more kinds.
(2) A polycaprolactone polyol obtained by ring-opening polymerization of ε-caprolactone with a trihydric alcohol.
Examples of the dibasic acid include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and 1,4-cyclohexanedicarboxylic acid.
Examples of the trihydric alcohol include trimethylolpropane, glycerin, pentaerythritol, 2-methylolpropanediol, and ethoxylated trimethylolpropane.
 中でも、3官能のポリエステルポリオール(B)としては、3官能のポリカプロラクトンポリオールが好ましい。 Among them, trifunctional polycaprolactone polyol is preferable as the trifunctional polyester polyol (B).
 市販されている3官能のポリカプロラクトンポリオールとしては、例えば、ダイセル社製の商品名「プラクセル305」(数平均分子量550、水酸基価305.6mgKOH/g、酸価0.50mgKOH/g)、「プラクセル308」(数平均分子量850、水酸基価195.3mgKOH/g、酸価0.38mgKOH/g)、「プラクセル309」(数平均分子量900、水酸基価187.3mgKOH/g、酸価0.20mgKOH/g)、「プラクセル312」(数平均分子量1250、水酸基価136.1mgKOH/g、酸価0.38mgKOH/g)、「プラクセル320」(数平均分子量2000、水酸基価85.4mgKOH/g、酸価0.29mgKOH/g)等が挙げられる。 Commercially available trifunctional polycaprolactone polyols include, for example, Daicel's product name "PLAXEL 305" (number average molecular weight: 550, hydroxyl value: 305.6 mgKOH/g, acid value: 0.50 mgKOH/g), "PLAXEL 308" (number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g), "Placcel 309" (number average molecular weight 900, hydroxyl value 187.3 mgKOH/g, acid value 0.20 mgKOH/g ), “Plaxel 312” (number average molecular weight 1250, hydroxyl value 136.1 mgKOH / g, acid value 0.38 mgKOH / g), “Plaxel 320” (number average molecular weight 2000, hydroxyl value 85.4 mgKOH / g, acid value 0 .29 mg KOH/g).
 本実施形態のポリイソシアネート組成物において、ジイソシアネート100質量部に対して、ポリエステルポリオール(A)の含有量(仕込み量)は、0.1質量部以上900質量部以下であることが好ましく、0.5質量部以上800質量部以下であることがより好ましく、1質量部以上700質量部以下であることがさらに好ましく、1質量部以上600質量部以下であることが特により好ましい。
 ポリエステルポリオール(A)の含有量が上記下限値以上であることで、ポリイソシアネート組成物単独を硬化してなる硬化膜の硬度が低く、柔軟性がより良好なものとなる。また、粘着力及び硬化性により優れる粘着性樹脂シートが得られる。一方で、ポリエステルポリオール(A)の含有量が上記上限値以下であることで、ポリイソシアネート組成物の製造時にゲル化することなく液体状態を維持でき、伸び率及び破断強度が高く、且つ、粘着性樹脂シートとしたときの柔軟性がより良好なものとなる。
 ポリエステルポリオール(A)の含有量は、例えば、ポリイソシアネート組成物の製造時のジイソシアネート及びポリエステルポリオール(A)の配合量、並びに、得られたポリイソシアネート組成物の収率から算出することができる。
In the polyisocyanate composition of the present embodiment, the content (preparation amount) of the polyester polyol (A) is preferably 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate. It is more preferably from 5 parts by mass to 800 parts by mass, even more preferably from 1 part by mass to 700 parts by mass, and even more preferably from 1 part by mass to 600 parts by mass.
When the content of the polyester polyol (A) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility. In addition, an adhesive resin sheet having excellent adhesive strength and curability can be obtained. On the other hand, when the content of the polyester polyol (A) is equal to or less than the above upper limit, the liquid state can be maintained without gelation during the production of the polyisocyanate composition, the elongation rate and breaking strength are high, and the adhesiveness The flexibility of the flexible resin sheet becomes better.
The content of polyester polyol (A) can be calculated, for example, from the blending amounts of diisocyanate and polyester polyol (A) during production of the polyisocyanate composition and the yield of the obtained polyisocyanate composition.
 本実施形態のポリイソシアネート組成物において、ジイソシアネート100質量部に対して、ポリエステルポリオール(B)の含有量(仕込み量)は、0.1質量部以上900質量部以下であることが好ましく、0.5質量部以上800質量部以下であることがより好ましく、1質量部以上700質量部以下であることがさらに好ましく、1質量部以上600質量部以下であることが特により好ましい。
 ポリエステルポリオール(B)の含有量が上記下限値以上であることで、ポリイソシアネート組成物単独を硬化してなる硬化膜の硬度が低く、柔軟性がより良好なものとなる。また、粘着力及び硬化性により優れる粘着性樹脂シートが得られる。一方で、ポリエステルポリオール(B)の含有量が上記上限値以下であることで、ポリイソシアネート組成物の製造時にゲル化することなく液体状態を維持でき、且つ、粘着性樹脂シートとしたときの柔軟性がより良好なものとなる。
 ポリエステルポリオール(B)の含有量は、例えば、ポリイソシアネート組成物の製造時のジイソシアネート及びポリエステルポリオール(B)の配合量、並びに、得られたポリイソシアネート組成物の収率から算出することができる。
In the polyisocyanate composition of the present embodiment, the content (charge amount) of the polyester polyol (B) is preferably 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate. It is more preferably from 5 parts by mass to 800 parts by mass, even more preferably from 1 part by mass to 700 parts by mass, and even more preferably from 1 part by mass to 600 parts by mass.
When the content of the polyester polyol (B) is at least the above lower limit, the cured film obtained by curing the polyisocyanate composition alone has low hardness and good flexibility. In addition, an adhesive resin sheet having excellent adhesive strength and curability can be obtained. On the other hand, when the content of the polyester polyol (B) is the above upper limit or less, the liquid state can be maintained without gelation during the production of the polyisocyanate composition, and the flexibility when made into an adhesive resin sheet It will have better properties.
The content of the polyester polyol (B) can be calculated, for example, from the blending amounts of the diisocyanate and the polyester polyol (B) during production of the polyisocyanate composition and the yield of the resulting polyisocyanate composition.
<ポリイソシアネート組成物の製造方法>
 ポリイソシアネートは、上記ジイソシアネートと、ポリエステルポリオール(A)及びポリエステルポリオール(B)からなる群より選ばれる1種以上のポリエステルポリオールとを反応させて得られる。以下、ポリエステルポリオール(A)及びポリエステルポリオール(B)を併せて、単にポリエステルポリオールと称する場合がある。
<Method for producing polyisocyanate composition>
The polyisocyanate is obtained by reacting the above diisocyanate with one or more polyester polyols selected from the group consisting of polyester polyol (A) and polyester polyol (B). Hereinafter, polyester polyol (A) and polyester polyol (B) may be collectively referred to simply as polyester polyol.
 ポリエステルポリオール(A)及びポリエステルポリオール(B)を組みあわせて用いる場合に、ポリエステルポリオール(A)及びポリエステルポリオール(B)は、それぞれ単独又は混合物として用いることができる。混合物として用いる場合には、ジイソシアネートと反応させる前に混合してもよいし、それぞれのポリエステルポリオールを単独でジイソシアネートと反応させてポリイソシアネートとした後で混合することもできる。
 すなわち、ポリイソシアネート組成物の製造方法としては、例えば、ジイソシアネートと、ポリエステルポリオール(A)と、ポリエステルポリオール(B)とを同時に反応させてポリイソシアネート組成物を得る方法;ジイソシアネートと、ポリエステルポリオール(A)と反応させたものと、ジイソシアネートと、ポリエステルポリオール(B)とを反応させたものとを混合して、ポリイソシアネート組成物を得る方法;ジイソシアネートと、ポリエステルポリオール(A)又はポリエステルポリオール(B)とを反応させた後、残りのポリエステルポリオールをさらに反応させてポリイソシアネート組成物を得る方法等が挙げられる。
When polyester polyol (A) and polyester polyol (B) are used in combination, polyester polyol (A) and polyester polyol (B) can be used individually or as a mixture. When used as a mixture, they may be mixed before reacting with diisocyanate, or each polyester polyol may be reacted with diisocyanate alone to form polyisocyanate and then mixed.
That is, as a method for producing a polyisocyanate composition, for example, a method of simultaneously reacting a diisocyanate, a polyester polyol (A), and a polyester polyol (B) to obtain a polyisocyanate composition; ), a diisocyanate, and a polyester polyol (B) are reacted to obtain a polyisocyanate composition; a diisocyanate and a polyester polyol (A) or a polyester polyol (B) and then further reacting the remaining polyester polyol to obtain a polyisocyanate composition.
 反応に際して、ポリエステルポリオール(A)及びポリエステルポリオール(B)の水酸基に対するジイソシアネートのイソシアネート基のモル比(イソシアネート基/水酸基のモル比)が1.5以上30以下であり、2.0以上25以下が好ましく、2.1以上23以下がより好ましく、2.2以上20以下がさらに好ましく、2.3以上20.0以下がさらに好ましく、2.4以上20.0以下がさらに好ましく、2.5以上20.0以下がさらに好ましく、2.52以上20.0以下が最も好ましい。 During the reaction, the molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol (A) and the polyester polyol (B) (molar ratio of isocyanate groups/hydroxyl groups) is 1.5 or more and 30 or less, and 2.0 or more and 25 or less. preferably 2.1 or more and 23 or less, more preferably 2.2 or more and 20 or less, further preferably 2.3 or more and 20.0 or less, further preferably 2.4 or more and 20.0 or less, and 2.5 or more It is more preferably 20.0 or less, and most preferably 2.52 or more and 20.0 or less.
 ポリエステルポリオールとジイソシアネートとの反応は下記のように行われる。反応温度は、通常、室温(23℃程度)以上200℃以下であり、60℃以上180℃以下が好ましく、60℃以上170℃以下が好ましい。反応温度が上記下限値以上であれば、反応時間がより短くなり、一方、上記上限値以下であれば、望ましくない副反応によるポリイソシアネートの粘度上昇及びゲル化をより回避でき、生成するポリイソシアネートの着色もより回避できる。  The reaction between the polyester polyol and the diisocyanate is carried out as follows. The reaction temperature is generally room temperature (approximately 23° C.) or higher and 200° C. or lower, preferably 60° C. or higher and 180° C. or lower, and preferably 60° C. or higher and 170° C. or lower. If the reaction temperature is at least the above lower limit, the reaction time will be shorter. On the other hand, if it is at most the above upper limit, viscosity increase and gelation of the polyisocyanate due to undesirable side reactions can be further avoided, and the resulting polyisocyanate coloring can also be avoided.
 反応は、無溶媒で行なってもよく、イソシアネート基に不活性な任意の溶媒を用いて行なってもよい。また、必要であれば、イソシアネート基と水酸基の反応を促進するため、公知の触媒を用いてもよい。 The reaction may be carried out without a solvent, or may be carried out using any solvent inert to isocyanate groups. Also, if necessary, a known catalyst may be used to accelerate the reaction between the isocyanate group and the hydroxyl group.
<ポリイソシアネート組成物の物性>
 本実施形態のポリイソシアネート組成物のイソシアネート基含有率(NCO基含有率)は、実質的に溶剤やジイソシアネートを含んでいない状態で、ポリイソシアネート組成物の総質量に対して1.0質量%以上8.7質量%以下であることが好ましく、1.5質量%以上8.6質量%以下であることがより好ましく、2.0質量%以上8.5質量%以下であることがさらに好ましく、2.5質量%以上8.5質量%以下であることがさらに好ましく、2.7質量%以上8.5質量%以下であることがさらに好ましく、2.9質量%以上8.5質量%以下であることが特に好ましい。
 NCO基含有率は、例えば、ポリイソシアネート組成物のイソシアネート基を過剰のアミン(ジブチルアミン等)と反応させ、残ったアミンを塩酸等の酸で逆滴定することによって求めることができる。
<Physical properties of the polyisocyanate composition>
The isocyanate group content (NCO group content) of the polyisocyanate composition of the present embodiment is 1.0% by mass or more with respect to the total mass of the polyisocyanate composition in a state where it does not substantially contain a solvent or diisocyanate. It is preferably 8.7% by mass or less, more preferably 1.5% by mass or more and 8.6% by mass or less, further preferably 2.0% by mass or more and 8.5% by mass or less, It is more preferably 2.5% by mass or more and 8.5% by mass or less, further preferably 2.7% by mass or more and 8.5% by mass or less, and 2.9% by mass or more and 8.5% by mass or less. is particularly preferred.
The NCO group content can be determined, for example, by reacting the isocyanate groups of the polyisocyanate composition with excess amine (such as dibutylamine) and back titrating the remaining amine with an acid such as hydrochloric acid.
 本実施形態のポリイソシアネート組成物の平均イソシアネート官能基数は、粘着性樹脂組成物の硬化性及び柔軟性を高める点で、2.0以上6.0以下が好ましく、2.1以上5.9以下がより好ましい。
 本実施形態のポリイソシアネート組成物の平均イソシアネート官能基数は、後述する実施例に記載の方法を用いて測定することができる。
The average isocyanate functional group number of the polyisocyanate composition of the present embodiment is preferably 2.0 or more and 6.0 or less, and 2.1 or more and 5.9 or less, in terms of improving the curability and flexibility of the adhesive resin composition. is more preferred.
The average number of isocyanate functional groups of the polyisocyanate composition of the present embodiment can be measured using the method described in Examples below.
 本実施形態のポリイソシアネート組成物は、酢酸ブチルや酢酸エチル等の溶剤で希釈した場合に、配合等のハンドリング性の観点から、23℃下で液体であることが好ましい。 When diluted with a solvent such as butyl acetate or ethyl acetate, the polyisocyanate composition of the present embodiment is preferably liquid at 23°C from the viewpoint of handling such as blending.
≪硬化膜1≫
 本実施形態の硬化膜1は、上述したポリイソシアネート組成物を単独硬化させてなる。
<<Cured film 1>>
The cured film 1 of the present embodiment is obtained by curing the above-described polyisocyanate composition alone.
 本実施形態の硬化膜1は、硬度が低く、柔軟性及び透明性が良好である。 The cured film 1 of this embodiment has low hardness and good flexibility and transparency.
 本実施形態の硬化膜1は、例えば、上述したポリイソシアネート組成物を、必要に応じて溶剤で希釈又は溶解して、コーター等を用いて、被着体上に塗工し、必要に応じて乾燥し、熱によって硬化させることにより製造することができる。 The cured film 1 of the present embodiment is obtained by, for example, diluting or dissolving the above-described polyisocyanate composition with a solvent as necessary, using a coater or the like, coating it on the adherend, and optionally It can be produced by drying and curing with heat.
 本実施形態の硬化膜1が、上述したポリイソシアネート組成物のみを、ガラス上に塗工し、23℃、65%湿度環境下で168時間保管後に、空気中の水分と前記ポリイソシアネート組成物との反応により形成された膜厚40μmの硬化膜である場合に、23℃環境下での前記硬化膜のケーニッヒ硬度が60回以下であり、59回以下であることが好ましく、58回以下であることがより好ましい。ケーニッヒ硬度が上記上限値以下であることで、硬度が低く、柔軟性により優れる。一方、前記硬化膜のケーニッヒ硬度の下限値は特に限定されないが、例えば、3回とすることができ、4回とすることができ、5回とすることができる。 The cured film 1 of the present embodiment is obtained by coating only the above-described polyisocyanate composition on glass and storing it for 168 hours in an environment of 23 ° C. and 65% humidity, and the moisture in the air and the polyisocyanate composition In the case of a cured film having a thickness of 40 μm formed by the reaction, the Konig hardness of the cured film at 23 ° C. is 60 times or less, preferably 59 times or less, and 58 times or less. is more preferable. When the Konig hardness is equal to or less than the above upper limit value, the hardness is low and the flexibility is excellent. On the other hand, the lower limit of the Konig hardness of the cured film is not particularly limited, but can be, for example, 3 times, 4 times, or 5 times.
 本実施形態の硬化膜1が、上述したポリイソシアネート組成物のみを、ガラス上に塗工し、23℃、65%湿度環境下で168時間保管後に、空気中の水分と前記ポリイソシアネート組成物との反応により形成された膜厚40μmの硬化膜である場合に、前記硬化膜をヘイズ値が0.1%であるガラス上に貼り付けた状態で、ヘイズメーターで測定されたヘイズ値が3.0%以下であることが好ましく、2.9%以下がより好ましく、2.8%以下であることがさらに好ましい。前記硬化膜のヘイズ値が上記上限値以下であることで、透明性により優れる。一方、前記硬化膜のヘイズ値の下限値は特に限定されず、0.0%に近しいほど好ましいが、例えば、0.0%とすることができ、0.05%とすることができる。 The cured film 1 of the present embodiment is obtained by coating only the above-described polyisocyanate composition on glass and storing it for 168 hours in an environment of 23 ° C. and 65% humidity, and the moisture in the air and the polyisocyanate composition In the case of a cured film having a thickness of 40 μm formed by the reaction of (1), the haze value measured with a haze meter is 3.0 μm when the cured film is adhered to glass having a haze value of 0.1%. It is preferably 0% or less, more preferably 2.9% or less, even more preferably 2.8% or less. When the haze value of the cured film is equal to or less than the above upper limit value, the transparency is more excellent. On the other hand, the lower limit of the haze value of the cured film is not particularly limited, and is preferably as close to 0.0% as possible.
≪硬化膜2≫
 上述したポリイソシアネート組成物は、樹脂組成物の硬化剤成分としても使用することができる。すなわち、本実施形態の硬化膜2は、上述したポリイソシアネート組成物と、ポリオール(好ましくは、アクリルポリオール)と、を含む樹脂組成物を硬化させてなる。前記硬化膜2は、例えば粘着剤層として機能することができる。
<<Cured film 2>>
The polyisocyanate composition described above can also be used as a curing agent component of the resin composition. That is, the cured film 2 of the present embodiment is obtained by curing a resin composition containing the above-described polyisocyanate composition and polyol (preferably acrylic polyol). The cured film 2 can function, for example, as an adhesive layer.
 上記樹脂組成物において、ポリオール100質量部に対して、上述したポリイソシアネート組成物の含有量が0.01質量部以上200質量部以下であることが好ましく、0.05質量部以上190質量部以下であることがより好ましく、0.10質量部以上180質量部以下であることがさらに好ましい。 In the resin composition, the content of the above-described polyisocyanate composition is preferably 0.01 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyol, and 0.05 parts by mass or more and 190 parts by mass or less. and more preferably 0.10 parts by mass or more and 180 parts by mass or less.
 上記樹脂組成物において、ポリオールの水酸基に対するポリイソシアネート組成物のイソシアネート基のモル比NCO/OHは、必要とする樹脂膜の物性により決定されるが、通常、0.01以上50以下である。 In the above resin composition, the molar ratio NCO/OH of the isocyanate groups of the polyisocyanate composition to the hydroxyl groups of the polyol is determined according to the required physical properties of the resin film, but is usually 0.01 or more and 50 or less.
 本実施形態の硬化膜2が、上述したポリイソシアネート組成物と、ガラス転移温度が0℃以上100℃以下であり、水酸基価が10mgKOH/g以上400mgKOH/g以下であり、且つ、重量平均分子量が5.0×10以上×2.0×10以下であるポリオールと、を、前記ポリオールの水酸基に対する前記ポリイソシアネート組成物のイソシアネート基のモル比NCO/OHが1になるように含む樹脂組成物を90℃で30分間硬化させ、23℃、65%湿度環境下で168時間保管後に形成された膜厚40μmの硬化膜である場合に、前記硬化膜を幅10mm、長さ100mmに切断してなる試験片をつかみ具距離20mmになるように引張試験機にセットして、速度20mm/分で測定された引張試験での伸び率が140%以上であり、伸び率140%時の応力が25.0MPa以下であり、且つ、引張破断応力が前記伸び率140%時の応力の1.2倍以上であることが好ましい。 The cured film 2 of the present embodiment is the above-described polyisocyanate composition, a glass transition temperature of 0 ° C. or higher and 100 ° C. or lower, a hydroxyl value of 10 mg KOH / g or higher and 400 mg KOH / g or lower, and a weight average molecular weight of and a polyol of 5.0×10 3 or more×2.0×10 5 or less so that the molar ratio NCO/OH of the isocyanate groups of the polyisocyanate composition to the hydroxyl groups of the polyol is 1. When the product is cured at 90°C for 30 minutes and stored in an environment of 23°C and 65% humidity for 168 hours to form a cured film having a thickness of 40 µm, the cured film is cut into a width of 10 mm and a length of 100 mm. A test piece consisting of the following is set in a tensile tester so that the gripper distance is 20 mm, and the elongation in the tensile test measured at a speed of 20 mm / min is 140% or more, and the stress at the elongation of 140% is It is preferably 25.0 MPa or less, and the tensile breaking stress is preferably 1.2 times or more the stress at elongation of 140%.
 また、前記伸び率は、140%以上が好ましく、145%以上がより好ましく、150%以上がさらに好ましく、155%以上が特に好ましく、160%以上が最も好ましい。一方、前記伸び率の上限は、例えば、5000%とすることができる。 In addition, the elongation rate is preferably 140% or higher, more preferably 145% or higher, even more preferably 150% or higher, particularly preferably 155% or higher, and most preferably 160% or higher. On the other hand, the upper limit of the elongation rate can be, for example, 5000%.
 また、前記伸び率140%時の応力は、25.0MPa以下が好ましく、24.0MPa以下がより好ましく、23.0MPa以下がさらに好ましい。一方、前記前記伸び率140%時の応力の下限は、例えば、0.01MPaとすることができる。 Also, the stress at the elongation rate of 140% is preferably 25.0 MPa or less, more preferably 24.0 MPa or less, and even more preferably 23.0 MPa or less. On the other hand, the lower limit of the stress at the elongation rate of 140% can be set to 0.01 MPa, for example.
 また、引張破断応力が前記伸び率140%時の応力の1.2倍以上であることが好ましく、1.3倍以上であることがより好ましく、1.4倍以上であることがさらにより好ましく、1.5倍以上であることがさらに好ましく、1.6倍であることがよりさらに好ましく、1.7倍であることが特に好ましい。一方、前記伸び率140%時の応力に対する引張破断応力の比の上限は、例えば30倍とすることができる。
 前記伸び率が上記下限値以上であり、前記伸び率140%時の応力が上記上限値以下であり、且つ、前記伸び率140%時の応力に対する引張破断応力の比が上記下限値以上であることで、硬化膜2の被着体への追従性、柔軟性、耐屈曲性、耐衝撃性、及び耐久性がより優れる。
Further, the tensile breaking stress is preferably 1.2 times or more, more preferably 1.3 times or more, and even more preferably 1.4 times or more the stress at 140% elongation. , more preferably 1.5 times or more, even more preferably 1.6 times, and particularly preferably 1.7 times. On the other hand, the upper limit of the ratio of the tensile breaking stress to the stress at the elongation of 140% can be, for example, 30 times.
The elongation is the lower limit or more, the stress at the elongation of 140% is the upper limit or less, and the ratio of the tensile breaking stress to the stress at the elongation of 140% is the lower limit or more. As a result, the adherend conformability, flexibility, bending resistance, impact resistance, and durability of the cured film 2 are more excellent.
≪粘着性樹脂組成物≫
 本実施形態の粘着性樹脂組成物は、上述したポリイソシアネート組成物と、ガラス転移温度が0.0℃以下の架橋性官能基含有ポリマーと、を含む。
<<Adhesive resin composition>>
The adhesive resin composition of this embodiment contains the polyisocyanate composition described above and a crosslinkable functional group-containing polymer having a glass transition temperature of 0.0° C. or less.
 本実施形態の粘着性樹脂組成物は、上述したポリイソシアネート組成物を含むことで、従来よりも高柔軟性を有する粘着剤層を形成することができ、粘着力、保持力、硬化性、透明性、耐屈曲性、段差追従性、耐衝撃性、及び耐久性に優れる粘着性樹脂シートが得られる。 By containing the above-described polyisocyanate composition, the adhesive resin composition of the present embodiment can form an adhesive layer having higher flexibility than before, and has adhesive strength, holding power, curability, and transparency. It is possible to obtain a pressure-sensitive adhesive resin sheet having excellent properties, bending resistance, step conformability, impact resistance, and durability.
 次いで、本実施形態の粘着性樹脂組成物に含まれる各成分について以下に詳細を説明する。 Next, each component contained in the adhesive resin composition of this embodiment will be described in detail below.
<架橋性官能基含有ポリマー>
 架橋性官能基含有ポリマーのガラス転移温度は0.0℃以下であり、-75.0℃以上0.0℃以下が好ましく、-75.0℃以上-5.0℃以下がより好ましく、-75.0℃以上-7.0℃以下がさらに好ましく、-75.0℃以上-10.0℃以下が特に好ましい。架橋性官能基含有ポリマーのガラス転移温度Tgが上記範囲内であることで、粘着性樹脂組成物の硬化物の粘着力がより優れる傾向がある。架橋性官能基含有ポリマーのガラス転移温度は、例えば、架橋性官能基含有ポリマーを溶解又は分散した溶液中の有機溶剤及び水分を減圧下で飛ばした後、真空乾燥したものを、示差走査熱量(DSC)測定装置を用いて、昇温速度5℃/分の条件で測定した値をガラス転移温度として用いることができる。
<Polymer containing crosslinkable functional group>
The glass transition temperature of the crosslinkable functional group-containing polymer is 0.0° C. or less, preferably −75.0° C. or more and 0.0° C. or less, more preferably −75.0° C. or more and −5.0° C. or less, and— 75.0°C or higher and -7.0°C or lower is more preferable, and -75.0°C or higher and -10.0°C or lower is particularly preferable. When the glass transition temperature Tg of the crosslinkable functional group-containing polymer is within the above range, the adhesive strength of the cured product of the adhesive resin composition tends to be more excellent. The glass transition temperature of the crosslinkable functional group-containing polymer is determined, for example, by removing the organic solvent and water in the solution in which the crosslinkable functional group-containing polymer is dissolved or dispersed, under reduced pressure, and then vacuum drying. A value measured using a DSC) measuring device at a heating rate of 5° C./min can be used as the glass transition temperature.
 架橋性官能基含有ポリマーの重量平均分子量Mwは、1.0×10以上5.0×10以下であることが好ましく、1.5×10以上4.0×10以下であることがより好ましく、2.0×10以上3.0×10以下であることがさらに好ましく、2.5×10以上2.5×10以下であることが特に好ましい。架橋性官能基含有ポリマーの重量平均分子量が上記範囲内であることで、粘着性樹脂組成物の硬化物の粘着力、保持力、柔軟性、耐屈曲性、段差追従性、耐衝撃性、及び耐久性がより優れる傾向がある。ポリオールの重量平均分子量Mwは、例えば、後述する実施例に記載の方法を用いて測定することができる。 The weight average molecular weight Mw of the crosslinkable functional group-containing polymer is preferably 1.0×10 5 or more and 5.0×10 6 or less, and is 1.5×10 5 or more and 4.0×10 6 or less. is more preferably 2.0×10 5 or more and 3.0×10 6 or less, and particularly preferably 2.5×10 5 or more and 2.5×10 6 or less. When the weight-average molecular weight of the crosslinkable functional group-containing polymer is within the above range, the cured product of the adhesive resin composition has adhesive strength, holding power, flexibility, bending resistance, step conformability, impact resistance, and It tends to be more durable. The weight-average molecular weight Mw of the polyol can be measured, for example, using the method described in Examples below.
 架橋性官能基含有ポリマーとしては、上記ポリイソシアネート組成物のイソシアネート基と反応し得る架橋性官能基を含有するポリマーであればよい。架橋性官能基としては、例えば、水酸基、チオール基、アミノ基、エポキシ基、オキセタン基、カルボキシ基、ビニル基、アミノ基等が挙げられるが、中でも、水酸基、エポキシ基、カルボキシ基、ビニル基、又はアミノ基が好ましく、水酸基、エポキシ基、オキセタン基、カルボキシ基、又はアミノ基がより好ましく、水酸基、カルボキシ基、アミノ基がさらに好ましく、水酸基が特に好ましい。すなわち、架橋性官能基含有ポリマーとしては、ポリオールが好ましい。
 架橋性官能基含有ポリマーとして具体的には、例えば、脂肪族炭化水素ポリオール、ポリエーテルポリオール、ポリエステルポリオール、エポキシ樹脂、含フッ素ポリオール、アクリル系ポリマー、ウレタン系ポリマー等が挙げられる。
 中でも、架橋性官能基含有ポリマーとしては、アクリル系ポリマー又はウレタン系ポリマーであることが好ましい。
The crosslinkable functional group-containing polymer may be a polymer containing a crosslinkable functional group capable of reacting with the isocyanate group of the polyisocyanate composition. Examples of the crosslinkable functional group include hydroxyl group, thiol group, amino group, epoxy group, oxetane group, carboxy group, vinyl group, amino group, etc. Among them, hydroxyl group, epoxy group, carboxy group, vinyl group, Or an amino group is preferable, a hydroxyl group, an epoxy group, an oxetane group, a carboxy group, or an amino group is more preferable, a hydroxyl group, a carboxy group, or an amino group is more preferable, and a hydroxyl group is particularly preferable. That is, polyol is preferable as the crosslinkable functional group-containing polymer.
Specific examples of crosslinkable functional group-containing polymers include aliphatic hydrocarbon polyols, polyether polyols, polyester polyols, epoxy resins, fluorine-containing polyols, acrylic polymers, and urethane polymers.
Among them, the crosslinkable functional group-containing polymer is preferably an acrylic polymer or a urethane polymer.
[脂肪族炭化水素ポリオール]
 前記脂肪族炭化水素ポリオールとしては、例えば、末端水酸基化ポリブタジエンやその水素添加物等が挙げられる。
[Aliphatic Hydrocarbon Polyol]
Examples of the aliphatic hydrocarbon polyols include hydroxyl-terminated polybutadiene and hydrogenated products thereof.
[ポリエーテルポリオール]
 前記ポリエーテルポリオールとしては、例えば、以下(1)~(3)のいずれかの方法等を用いて得られるものが挙げられる。
(1)多価アルコールの単独又は混合物に、アルキレンオキサイドの単独又は混合物を付加して得られるポリエーテルポリオール又はポリテトラメチレンエーテルグリコール。
(2)アルキレンオキサイドに多官能化合物を反応させて得られるポリエーテルポリオール。
(3)(1)又は(2)で得られたポリエーテルポリオールを媒体としてアクリルアミド等を重合して得られる、いわゆるポリマーポリオール。
 前記多価アルコールとしては、例えば、グリセリンやプロピレングリコール等が挙げられる。
 前記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド等が挙げられる。
 前記多官能化合物としては、例えば、エチレンジアミン、エタノールアミン等が挙げられる。
[Polyether polyol]
Examples of the polyether polyol include those obtained by using any one of the following methods (1) to (3).
(1) Polyether polyols or polytetramethylene ether glycols obtained by adding alkylene oxides alone or in mixtures to polyhydric alcohols alone or in mixtures.
(2) A polyether polyol obtained by reacting an alkylene oxide with a polyfunctional compound.
(3) A so-called polymer polyol obtained by polymerizing acrylamide or the like using the polyether polyol obtained in (1) or (2) as a medium.
Examples of the polyhydric alcohol include glycerin and propylene glycol.
Examples of the alkylene oxide include ethylene oxide and propylene oxide.
Examples of the polyfunctional compound include ethylenediamine and ethanolamine.
[ポリエステルポリオール]
 前記ポリエステルポリオールとしては、例えば、以下の(1)又は(2)のいずれかのポリエステルポリオールが挙げられる。
(1)二塩基酸の単独又は2種類以上の混合物と、多価アルコールの単独又は2種類以上の混合物との縮合反応によって得られるポリエステルポリオール樹脂。
(2)ε-カプロラクトンを多価アルコールで開環重合して得られるポリカプロラクトンポリオール。
 前記二塩基酸としては、例えば、コハク酸、アジピン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸等のカルボン酸等が挙げられる。
 前記多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、トリメチルペンタンジオール、シクロヘキサンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、2-メチロールプロパンジオール、エトキシ化トリメチロールプロパン等が挙げられる。
[Polyester polyol]
Examples of the polyester polyols include the following polyester polyols (1) or (2).
(1) A polyester polyol resin obtained by a condensation reaction between a dibasic acid alone or a mixture of two or more kinds and a polyhydric alcohol alone or a mixture of two or more kinds.
(2) A polycaprolactone polyol obtained by ring-opening polymerization of ε-caprolactone with a polyhydric alcohol.
Examples of the dibasic acid include carboxylic acids such as succinic acid, adipic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, and 1,4-cyclohexanedicarboxylic acid.
Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol, trimethylolpropane, glycerin, and pentaerythritol. , 2-methylolpropanediol, ethoxylated trimethylolpropane, and the like.
[エポキシ樹脂]
 前記エポキシ樹脂としては、例えば、ノボラック型エポキシ樹脂、β-メチルエピクロ型エポキシ樹脂、環状オキシラン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリコールエーテル型エポキシ樹脂、エポキシ型脂肪族不飽和化合物、エポキシ化脂肪酸エステル、エステル型多価カルボン酸、アミノグリシジル型エポキシ樹脂、ハロゲン化型エポキシ樹脂、レゾルシン型エポキシ樹脂等のエポキシ樹脂、及びこれらエポキシ樹脂をアミノ化合物、ポリアミド化合物等で変性した樹脂等が挙げられる。
[Epoxy resin]
Examples of the epoxy resins include novolac type epoxy resins, β-methylepichloro type epoxy resins, cyclic oxirane type epoxy resins, glycidyl ether type epoxy resins, glycol ether type epoxy resins, epoxy type aliphatic unsaturated compounds, and epoxidized fatty acid esters. , ester-type polycarboxylic acids, aminoglycidyl-type epoxy resins, halogenated-type epoxy resins, resorcinol-type epoxy resins, and resins obtained by modifying these epoxy resins with amino compounds, polyamide compounds, and the like.
[含フッ素ポリオール]
 前記含フッ素ポリオールとしては、例えば、参考文献1(特開昭57-34107号公報)、参考文献2(特開昭61-275311号公報)等で開示されているフルオロオレフィン、シクロヘキシルビニルエーテル、ヒドロキシアルキルビニルエーテル、モノカルボン酸ビニルエステル等の共重合体等が挙げられる。
[Fluorinated polyol]
Examples of the fluorine-containing polyol include fluoroolefins, cyclohexyl vinyl ethers, hydroxyalkyls, and the like disclosed in Reference Document 1 (JP-A-57-34107) and Reference Document 2 (JP-A-61-275311). Copolymers such as vinyl ethers and monocarboxylic acid vinyl esters are included.
[アクリル系ポリマー]
 前記アクリル系ポリマーは、架橋性官能基を有する重合性(メタ)アクリルモノマー単位を1種以上含むものである。架橋性官能基としては、水酸基、カルボキシ基、エポキシ基、又はビニル基を含むことが好ましく、水酸基又はカルボキシ基を含むことがより好ましく、水酸基を含むことがさらに好ましい。
 アクリル系ポリマーは、架橋性官能基を単独で含んでいてもよく、異なる種類の架橋性官能基を2種以上組み合わせて含んでいてもよい。すなわち、アクリル系ポリマーは、架橋性官能基を有する重合性(メタ)アクリルモノマーを単独で重合させてなるものであってもよく、異なる種類の架橋性官能基を有する重合性(メタ)アクリルモノマーを2種類以上組み合わせて共重合させてなるものであってもよい。
 アクリル系ポリマーは、架橋性官能基を有する重合性(メタ)アクリルモノマー単位に加えて、架橋性官能基を有さない重合性アクリルモノマー単位を1種以上含むことができる。
 すなわち、アクリル系ポリマーは、1種以上の架橋性官能基を有する重合性(メタ)アクリルモノマーを重合させる、或いは、1種以上の架橋性官能基を有する重合性(メタ)アクリルモノマーと1種以上の架橋性官能基を有さない重合性(メタ)アクリルモノマーとを共重合させることで得られる。
[Acrylic polymer]
The acrylic polymer contains one or more polymerizable (meth)acrylic monomer units having a crosslinkable functional group. The crosslinkable functional group preferably contains a hydroxyl group, a carboxyl group, an epoxy group, or a vinyl group, more preferably a hydroxyl group or a carboxyl group, and still more preferably a hydroxyl group.
The acrylic polymer may contain a single crosslinkable functional group, or may contain a combination of two or more different types of crosslinkable functional groups. That is, the acrylic polymer may be obtained by polymerizing a polymerizable (meth)acrylic monomer having a crosslinkable functional group alone, or a polymerizable (meth)acrylic monomer having different types of crosslinkable functional groups. may be obtained by combining two or more of the above and copolymerizing them.
The acrylic polymer can contain one or more polymerizable acrylic monomer units having no crosslinkable functional group in addition to polymerizable (meth)acrylic monomer units having a crosslinkable functional group.
That is, the acrylic polymer polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups, or polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups and one It can be obtained by copolymerizing a polymerizable (meth)acrylic monomer having no crosslinkable functional group.
 アクリル系ポリマーは、架橋性官能基を有する重合性(メタ)アクリル系モノマー単位に加えて、エステル基末端の炭素数が1以上18以下である(メタ)アクリル酸エステルモノマー単位を1種以上含むことが好ましい。
 すなわち、アクリル系ポリマーは、1種以上の架橋性官能基を有する重合性(メタ)アクリル系モノマーと1種以上のエステル基末端の炭素数が1以上18以下である(メタ)アクリル酸エステルモノマーとを共重合させなるものであってもよい。(メタ)アクリル酸エステルモノマーは、架橋性官能基を有していてもよく、有さなくてもよいが、有さないことが好ましい。
The acrylic polymer contains, in addition to a polymerizable (meth)acrylic monomer unit having a crosslinkable functional group, one or more (meth)acrylic acid ester monomer units having 1 to 18 carbon atoms at the end of the ester group. is preferred.
That is, the acrylic polymer comprises at least one polymerizable (meth)acrylic monomer having a crosslinkable functional group and at least one (meth)acrylic acid ester monomer having at least 1 to 18 carbon atoms at the end of the ester group. It may be one that does not copolymerize with. The (meth)acrylate monomer may or may not have a crosslinkable functional group, but preferably not.
 (メタ)アクリル酸エステルモノマーが有するエステル基末端の炭素数としては、1以上18以下であることが好ましい。 The number of carbon atoms at the end of the ester group of the (meth)acrylate monomer is preferably 1 or more and 18 or less.
 前記架橋性官能基を有する重合性(メタ)アクリル系モノマーとしては、例えば、以下の(i)~(v)に示すものが挙げられる。これらを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(i)アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-2-ヒドロキシブチル、アクリル酸-4-ヒドロキシルブチル、アクリル酸-6-ヒドロキシヘキシル、アクリル酸-8-ヒドロキシルオクチル等の水酸基を持つアクリル酸エステル類。
(ii)メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシブチル、メタクリル酸-4-ヒドロキシルブチル、メタクリル酸-6-ヒドロキシヘキシル、メタクリル酸-8-ヒドロキシルオクチル等の水酸基を持つメタクリル酸エステル類。
(iii)グリセリンのアクリル酸モノエステル又はメタクリル酸モノエステル、トリメチロールプロパンのアクリル酸モノエステル又はメタクリル酸モノエステル等の多価ヒドロキシ基を有する(メタ)アクリル酸エステル類。
(iv)アクリル酸、メタクリル酸等の不飽和カルボン酸。
(v)メタクリル酸グリシジル等のエポキシ基を有する(メタ)アクリル酸エステル類。
Examples of the polymerizable (meth)acrylic monomer having a crosslinkable functional group include the following (i) to (v). These may be used individually by 1 type, and may be used in combination of 2 or more type.
(i) 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 6-hydroxyhexyl acrylate, 8-hydroxyoctyl acrylate acrylic acid esters having a hydroxyl group such as
(ii) 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl methacrylate, 6-hydroxyhexyl methacrylate, 8-hydroxyoctyl methacrylate Methacrylic acid esters having a hydroxyl group such as.
(iii) (meth)acrylic acid esters having a polyvalent hydroxy group, such as glycerol monoacrylate or methacrylic acid monoester, trimethylolpropane acrylic acid monoester or methacrylic acid monoester;
(iv) unsaturated carboxylic acids such as acrylic acid and methacrylic acid;
(v) (meth)acrylic acid esters having an epoxy group such as glycidyl methacrylate;
 エステル基末端の炭素数が1以上18以下である(メタ)アクリル酸エステルモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-sec-ブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸へキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸エステル類等が挙げられる。これらを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the (meth)acrylic acid ester monomer having 1 to 18 carbon atoms at the end of the ester group include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and (meth)acryl isopropyl acid, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, (meth)acrylate isopentyl acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl (meth) acrylate), tridecyl (meth) acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, nonadecyl (meth)acrylate, Examples thereof include (meth)acrylic acid esters such as eicosyl (meth)acrylate, benzyl (meth)acrylate, and cyclohexyl (meth)acrylate. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 アクリル系ポリマーは、架橋性官能基を有する重合性(メタ)アクリル系モノマー単位に加えて、上記(メタ)アクリル酸エステルモノマー以外のその他のモノマー単位を更に含むことができる。
 すなわち、アクリル系ポリマーは、1種以上の架橋性官能基を有する重合性(メタ)アクリル系モノマーを重合させる、或いは、1種以上の架橋性官能基を有する重合性(メタ)アクリル系モノマーと1種以上のその他のモノマーとを共重合させることで得られる。その他のモノマーは、架橋性官能基を有していてもよく、有さなくてもよいが、有さないことが好ましい。
In addition to the polymerizable (meth)acrylic monomer unit having a crosslinkable functional group, the acrylic polymer can further contain monomer units other than the (meth)acrylic acid ester monomer.
That is, the acrylic polymer polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups, or polymerizes a polymerizable (meth)acrylic monomer having one or more crosslinkable functional groups. It is obtained by copolymerizing with one or more other monomers. Other monomers may or may not have a crosslinkable functional group, but preferably not.
 その他モノマーとしては、例えば、以下の(i)~(ii)に示すもの等が挙げられる。これらを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(i)(メタ)アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、ジメチルアミノプロピルアクリルアミド等の不飽和アミド。
(ii)スチレン、ビニルトルエン、酢酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリン、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル。
Other monomers include, for example, the following (i) to (ii). These may be used individually by 1 type, and may be used in combination of 2 or more type.
(i) unsaturated amides such as (meth)acrylamide, N-methylolacrylamide, diacetoneacrylamide, dimethylaminopropylacrylamide;
(ii) styrene, vinyl toluene, vinyl acetate, (meth)acrylonitrile, N-vinylpyrrolidone, N-vinylcaprolactam, acryloylmorpholine, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate.
 さらに、前記架橋性官能基を有する重合性(メタ)アクリル系モノマーと共重合可能な他のモノマーとして、特開平1-261409号公報(参考文献3)、及び、特開平3-006273号公報(参考文献4)等で開示されている重合性紫外線安定性単量体を用いてもよい。 Furthermore, as other monomers copolymerizable with the polymerizable (meth)acrylic monomer having a crosslinkable functional group, JP-A-1-261409 (Reference 3) and JP-A-3-006273 ( A polymerizable UV-stable monomer disclosed in Reference 4) or the like may also be used.
 前記重合性紫外線安定性単量体として具体的には、例えば、4-(メタ)アクリロイルオキシ-2、2、6、6-テトラメチルピペリジン、4-(メタ)アクリロイルアミノ-2、2、6、6-テトラメチルピペリジン、1-クロトノイル-4-クロトノイルオキシ-2、2、6、6-テトラメチルピペリジン、2-ヒドロキシ-4-(3-メタクリルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン等が挙げられる。 Specific examples of the polymerizable UV-stable monomer include 4-(meth)acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-(meth)acryloylamino-2,2,6 , 6-tetramethylpiperidine, 1-crotonoyl-4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 2-hydroxy-4-(3-methacryloxy-2-hydroxypropoxy)benzophenone and the like. be done.
 例えば、上記のモノマー成分を、公知の過酸化物やアゾ化合物等のラジカル重合開始剤の存在下で溶液重合し、必要に応じて有機溶剤等で希釈することによって、アクリル系ポリマーを得ることができる。 For example, an acrylic polymer can be obtained by solution-polymerizing the monomer components described above in the presence of a radical polymerization initiator such as a known peroxide or an azo compound, and diluting with an organic solvent or the like as necessary. can.
 水系ベースのアクリル系ポリマーを得る場合には、オレフィン性不飽和化合物を溶液重合し、水層に転換する方法や乳化重合等の公知の方法で製造することができる。その場合、アクリル酸、メタクリル酸等のカルボン酸含有モノマーやスルホン酸含有モノマー等の酸性部分をアミンやアンモニアで中和することによって水溶性又は水分散性を付与することができる。 When obtaining a water-based acrylic polymer, it can be produced by a known method such as a method of solution-polymerizing an olefinic unsaturated compound and converting it into a water layer, or emulsion polymerization. In that case, water-solubility or water-dispersibility can be imparted by neutralizing acidic moieties such as carboxylic acid-containing monomers such as acrylic acid and methacrylic acid and sulfonic acid-containing monomers with amines or ammonia.
[硬化剤成分との含有量比]
 本実施形態の粘着性樹脂組成物において、架橋性官能基含有ポリマー100質量部に対して、上述したポリイソシアネート組成物の含有量が0.01質量部以上20.00質量部以下であることが好ましく、0.03質量部以上15.00質量部以下であることがより好ましく、0.05質量部以上13.0質量部以下であることがさらに好ましい。
[Content ratio with curing agent component]
In the adhesive resin composition of the present embodiment, the content of the above-described polyisocyanate composition is 0.01 parts by mass or more and 20.00 parts by mass or less with respect to 100 parts by mass of the crosslinkable functional group-containing polymer. It is preferably 0.03 parts by mass or more and 15.00 parts by mass or less, and further preferably 0.05 parts by mass or more and 13.0 parts by mass or less.
<その他成分>
 本実施形態の粘着性樹脂組成物は、その他添加剤を更に含んでもよい。
 その他添加剤としては、例えば、架橋性官能基含有ポリマーと反応しうるポリイソシアネート組成物以外の硬化剤、硬化触媒、溶剤、顔料類(体質顔料、着色顔料、メタリック顔料等)、粘着付与樹脂、光重合開始剤、紫外線吸収剤、光安定剤、ラジカル安定剤、焼付工程時の着色を抑える黄変防止剤、塗面調整剤、流動調整剤、顔料分散剤、消泡剤、増粘剤、造膜助剤等が挙げられる。
<Other ingredients>
The adhesive resin composition of this embodiment may further contain other additives.
Other additives include, for example, curing agents other than polyisocyanate compositions that can react with the crosslinkable functional group-containing polymer, curing catalysts, solvents, pigments (extender pigments, coloring pigments, metallic pigments, etc.), tackifying resins, Photopolymerization initiators, UV absorbers, light stabilizers, radical stabilizers, anti-yellowing agents that suppress coloring during the baking process, coating surface conditioners, flow control agents, pigment dispersants, antifoaming agents, thickeners, Examples include film-forming aids.
 前記硬化剤としては、例えば、メラミン樹脂、尿素樹脂、エポキシ基含有化合物又は樹脂、カルボキシ基含有化合物又は樹脂、酸無水物、アルコキシシラン基含有化合物又は樹脂、ヒドラジド化合物等が挙げられる。 Examples of the curing agent include melamine resins, urea resins, epoxy group-containing compounds or resins, carboxy group-containing compounds or resins, acid anhydrides, alkoxysilane group-containing compounds or resins, and hydrazide compounds.
 前記硬化触媒としては、塩基性化合物であってもよく、ルイス酸性化合物であってもよい。
 前記塩基性化合物としては、例えば、金属ヒドロキシド、金属アルコキシド、金属カルボキシレート、金属アセチルアセチネート、オニウム塩の水酸化物、オニウムカルボキシレート、オニウム塩のハロゲン化物、活性メチレン系化合物の金属塩、活性メチレン系化合物のオニウム塩、アミノシラン類、アミン類、ホスフィン類等が挙げられる。前記オニウム塩としては、アンモニウム塩、ホスホニウム塩又はスルホニウム塩が好適である。
 前記ルイス酸性化合物としては、例えば、有機スズ化合物、有機亜鉛化合物、有機チタン化合物、有機ジルコニウム化合物等が挙げられる。
The curing catalyst may be a basic compound or a Lewis acidic compound.
Examples of the basic compound include metal hydroxides, metal alkoxides, metal carboxylates, metal acetylacetinates, hydroxides of onium salts, onium carboxylates, halides of onium salts, metal salts of active methylene compounds, Examples include onium salts of active methylene compounds, aminosilanes, amines, phosphines, and the like. As the onium salt, an ammonium salt, a phosphonium salt or a sulfonium salt is suitable.
Examples of the Lewis acidic compound include organic tin compounds, organic zinc compounds, organic titanium compounds, organic zirconium compounds, and the like.
 前記溶剤としては、例えば、1-メチルピロリドン、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル(DPDM)、プロピレングリコールジメチルエーテル、メチルエチルケトン、アセトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、エタノール、メタノール、iso-プロパノール、1-プロパノール、iso-ブタノール、1-ブタノール、tert-ブタノール、2-エチルヘキサノール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、酢酸エチル、酢酸イソプロピル、酢酸ブチル、トルエン、キシレン、ペンタン、iso-ペンタン、ヘキサン、iso-ヘキサン、シクロヘキサン、ソルベントナフサ、ミネラルスピリット等が挙げられる。これら溶剤を、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 Examples of the solvent include 1-methylpyrrolidone, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl -1-butanol, ethylene glycol diethyl ether, diethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether (DPDM), propylene glycol dimethyl ether, methyl ethyl ketone, acetone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethanol, methanol , iso-propanol, 1-propanol, iso-butanol, 1-butanol, tert-butanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,4-butane Diol, 1,3-butanediol, ethyl acetate, isopropyl acetate, butyl acetate, toluene, xylene, pentane, iso-pentane, hexane, iso-hexane, cyclohexane, solvent naphtha, mineral spirits and the like. These solvents may be used singly or in combination of two or more.
 また、顔料類(体質顔料、着色顔料、メタリック顔料等)、紫外線吸収剤、光安定剤、ラジカル安定剤、焼付工程時の着色を抑える黄変防止剤、塗面調整剤、流動調整剤、顔料分散剤、消泡剤、増粘剤及び造膜助剤としては、公知のものを適宜選択して用いることができる。 In addition, pigments (extender pigments, color pigments, metallic pigments, etc.), ultraviolet absorbers, light stabilizers, radical stabilizers, anti-yellowing agents that suppress coloring during the baking process, coating surface conditioners, flow control agents, pigments As the dispersant, antifoaming agent, thickener and film-forming aid, known ones can be appropriately selected and used.
<粘着性樹脂組成物の製造方法>
 粘着性樹脂組成物は、従来公知の方法により製造できる。例えば、バンバリーミキサー、単軸スクリュー押出機、2軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解又は分散混合後、コーター等によりキザイフィルムに塗工した後、溶剤を加熱除去する方法等が用いられる。
<Method for producing adhesive resin composition>
The adhesive resin composition can be produced by a conventionally known method. For example, a Banbury mixer, a single-screw extruder, a twin-screw extruder, a co-kneader, a melt-kneading method using a general kneader such as a multi-screw extruder, after dissolving or dispersing and mixing each component, using a coater or the like A method such as removing the solvent by heating after coating on the scratched film is used.
 本実施形態の粘着性樹脂組成物は、軽量化、柔軟化、密着性の向上効果を図るため、発泡させてもよい。発泡方法としては、化学的方法、物理的方法、熱膨張型のマイクロバルーンの利用等がある。各々、無機系発泡剤若しくは有機系発泡剤等の化学的発泡剤又は物理的発泡剤等の添加、或いは熱膨張型のマイクロバルーンの添加等により材料内部に気泡を分布させることができる。 The adhesive resin composition of this embodiment may be foamed in order to reduce weight, increase flexibility, and improve adhesion. Foaming methods include chemical methods, physical methods, and the use of thermally expandable microballoons. Bubbles can be distributed inside the material by adding a chemical foaming agent such as an inorganic foaming agent or an organic foaming agent, or a physical foaming agent, or by adding thermally expandable microballoons.
 また、中空フィラー(既膨張バルーン)を添加することにより、軽量化、柔軟化、密着性の向上を図ってもよい。 In addition, hollow fillers (already inflated balloons) may be added to reduce weight, increase flexibility, and improve adhesion.
 本実施形態の粘着性樹脂組成物は、粘着力調整のため粘着付与樹脂を添加してもよい。粘着付与樹脂としては、例えば、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂、石油系粘着付与樹脂、スチレン系粘着付与樹脂等が挙げられる。これら粘着付与樹脂を1種単独で用いてもよく、2種以上組み合わせて用いてもよい。また、粘着付与樹脂の軟化点は90℃以上160℃以下であることが好ましい。 A tackifying resin may be added to the adhesive resin composition of the present embodiment to adjust adhesive strength. Examples of tackifying resins include rosin-based tackifying resins, terpene-based tackifying resins, petroleum-based tackifying resins, and styrene-based tackifying resins. These tackifying resins may be used singly or in combination of two or more. Also, the softening point of the tackifier resin is preferably 90° C. or higher and 160° C. or lower.
≪粘着性樹脂シート≫
 本実施形態の粘着性樹脂シートは、上述した粘着性樹脂組成物を熱又は光によって硬化させてなる。
 本実施形態の粘着性樹脂シートは、粘着性、耐屈曲性、保持力、硬化性、段差追従性、耐衝撃性、耐久性、及び透明性に優れる。
≪Adhesive resin sheet≫
The adhesive resin sheet of this embodiment is obtained by curing the adhesive resin composition described above with heat or light.
The adhesive resin sheet of the present embodiment is excellent in adhesiveness, bending resistance, holding power, curability, conformability to unevenness, impact resistance, durability, and transparency.
 本実施形態の粘着性樹脂シート(粘着剤層)の厚みとしては、使用される用途に応じて適宜決定することができるが、1μm以上1000μm以下であることが好ましく、2μm以上900μm以下であることがより好ましく、3μm以上800μm以下であることがさらに好ましく、5μm以上700μm以下であることが特に好ましい。 The thickness of the adhesive resin sheet (adhesive layer) of the present embodiment can be appropriately determined depending on the application, but is preferably 1 μm or more and 1000 μm or less, and 2 μm or more and 900 μm or less. is more preferably 3 μm or more and 800 μm or less, and particularly preferably 5 μm or more and 700 μm or less.
 本実施形態の粘着性樹脂シートは、例えば、粘着性樹脂組成物を基材上に塗工し、必要に応じて乾燥し、その後硬化させることによって製造することができる。
 粘着性樹脂組成物を基材上に塗工する方法としては、例えば、アプリケーター、ロールコーター、ナイフコーター、グラビアコーター等を使用して塗布する方法が挙げられる。前記塗工後に乾燥を行う場合は、例えば、得られた積層体を乾燥機等に入れ、例えば、50℃以上150℃以下の温度で、1分間以上30分間以下乾燥させる加熱乾燥方法が挙げられる。或いは、その他の乾燥方法としては、例えば自然乾燥、熱風乾燥、赤外線乾燥等が挙げられる。
The adhesive resin sheet of the present embodiment can be produced, for example, by applying an adhesive resin composition onto a substrate, drying it if necessary, and then curing it.
Examples of the method of applying the adhesive resin composition onto the substrate include a method of applying using an applicator, roll coater, knife coater, gravure coater, and the like. When drying is performed after the coating, for example, the obtained laminate is placed in a dryer or the like, for example, at a temperature of 50 ° C. or more and 150 ° C. or less, a heat drying method of drying for 1 minute or more and 30 minutes or less. . Alternatively, other drying methods include, for example, natural drying, hot air drying, infrared drying, and the like.
 基材としては、特に限定されないが、例えば、上質紙、コート紙、キャストコート紙、感熱紙、インクジェット紙等の紙;織布、不織布等の布;ポリ塩化ビニル、合成紙、ポリエチレンテレフタレート(PET)、ポリプロピレン、ポリエチレン、セルローストリアセテート、セルロースジアセテート、ポリスチレン、ポリカーボネート、ナイロン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、ポリイミド等の樹脂フィルム;多孔質ポリプロピレンフィルム等の多孔質樹脂フィルム;PET、ポリオレフィン等にアルミニウム等を金属蒸着した蒸着フィルム;金属箔等が例示される。基材としては、表面に剥離処理が施されたものであってもよい。 The substrate is not particularly limited, but for example, paper such as woodfree paper, coated paper, cast coated paper, thermal paper, inkjet paper; cloth such as woven fabric and nonwoven fabric; polyvinyl chloride, synthetic paper, polyethylene terephthalate (PET ), polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, polystyrene, polycarbonate, nylon, polyvinyl alcohol, ethylene-vinyl acetate copolymer, resin films such as polyimide; porous resin films such as porous polypropylene film; PET, polyolefin A metal foil is exemplified. The base material may be one whose surface has been subjected to release treatment.
 硬化時の加熱温度としては、70℃以上160℃以下とすることができ、75℃以上155℃以下とすることができ、80℃以上150℃以下とすることができる。 The heating temperature during curing can be from 70°C to 160°C, from 75°C to 155°C, and from 80°C to 150°C.
 本実施形態の粘着性樹脂シートは、上記粘着性樹脂組成物を厚み38μmの剥離処理されたポリエチレンテレフタレートフィルム上に塗工し、135℃で3分間乾燥して硬化させた後、23℃、50%RH環境下で7日間保管した厚み50μmの粘着性樹脂シートを備える積層体から、前記剥離処理されたポリエチレンテレフタレートフィルムを剥離して得られる前記粘着性樹脂シートを、23℃、50%RH環境下で7日間保管後にメッシュ状のシートに包み、酢酸エチル中に23℃で1週間浸漬し、取り出した後、120℃で2時間乾燥することにより算出されるゲル分率が20.0質量%以上99.9質量%以下であることが好ましく、25.0質量%以上99.9質量%以下であることがより好ましく、30.0質量%以上99.9質量%以下であることがさらに好ましく、32.0質量%以上99.9質量%以下であることが特に好ましく、35.0質量%以上99.9質量%以下であることが最も好ましい。ゲル分率が上記下限値以上であることで、粘着力、保持力、耐久性、耐屈曲性、及び硬化性により優れる。
 なお、ここでいうゲル分率は、酢酸エチルに浸漬前の上記粘着性樹脂シートの質量に対する、酢酸エチルに浸漬後に乾燥した上記粘着性樹脂シートの質量の百分率である。
The adhesive resin sheet of the present embodiment is obtained by coating the adhesive resin composition on a polyethylene terephthalate film having a thickness of 38 μm and having undergone release treatment, drying at 135° C. for 3 minutes and curing, followed by curing at 23° C. and 50° C. % RH environment for 7 days, the adhesive resin sheet obtained by peeling off the release-treated polyethylene terephthalate film from a laminate having a 50 μm thick adhesive resin sheet was stored in a 23° C., 50% RH environment. After being stored for 7 days at low temperature, wrapped in a mesh sheet, immersed in ethyl acetate at 23°C for 1 week, taken out, and dried at 120°C for 2 hours, the gel fraction calculated by drying at 120°C for 2 hours is 20.0% by mass. It is preferably at least 99.9% by mass, more preferably at least 25.0% by mass and at most 99.9% by mass, further preferably at least 30.0% by mass and not more than 99.9% by mass. , 32.0% by mass or more and 99.9% by mass or less, and most preferably 35.0% by mass or more and 99.9% by mass or less. When the gel fraction is at least the above lower limit, the adhesive strength, holding power, durability, flex resistance, and curability are excellent.
The gel fraction referred to here is the percentage of the mass of the adhesive resin sheet dried after being immersed in ethyl acetate with respect to the mass of the adhesive resin sheet before being immersed in ethyl acetate.
 本実施形態の粘着性樹脂シートは、上記粘着性樹脂組成物を厚み25μmのポリエチレンテレフタレートフィルム上に塗工し、135℃で3分間乾燥して硬化させた後、23℃、50%RH環境下で7日間保管した厚み50μm、幅20mm及び長さ100mmの粘着性樹脂シートを備える積層体を、被着体であるSUS304BA板に貼り付けて、2kgローラーで1往復圧着し23℃で30分間養生後、23℃、300mm/分の速度で測定された180度ピール粘着力が0.05N/20mm以上65.00N/20mm以下であることが好ましく、0.05N/20mm以上64.50N/20mm以下であることがより好ましく、0.05N/20mm以上64.00N/20mm以下であることがさらに好ましく、0.05N/20mm以上63.50N/20mm以下であることが特に好ましく、0.05N/20mm以上63.00N/20mm以下であることが最も好ましい。180度ピール粘着力が上記下限値以上であることで、粘着力により優れる。 The adhesive resin sheet of the present embodiment is obtained by coating the adhesive resin composition on a polyethylene terephthalate film having a thickness of 25 μm, drying it at 135° C. for 3 minutes and curing it, and then under an environment of 23° C. and 50% RH. A laminate comprising an adhesive resin sheet with a thickness of 50 μm, a width of 20 mm, and a length of 100 mm stored for 7 days is attached to the SUS304BA plate that is the adherend, and is pressed back and forth with a 2 kg roller and cured at 23 ° C. for 30 minutes. After that, the 180 degree peel adhesive strength measured at 23 ° C. and a speed of 300 mm / min is preferably 0.05 N / 20 mm or more and 65.00 N / 20 mm or less, and 0.05 N / 20 mm or more and 64.50 N / 20 mm or less More preferably, 0.05 N/20 mm or more and 64.00 N/20 mm or less is more preferable, and 0.05 N/20 mm or more and 63.50 N/20 mm or less is particularly preferable, and 0.05 N/20 mm It is most preferable to be above 63.00 N/20 mm or below. When the 180-degree peel adhesive strength is equal to or higher than the above lower limit, the adhesive strength is excellent.
 本実施形態の粘着性樹脂シートは、上記粘着性樹脂組成物を厚み38μmの剥離処理されたポリエチレンテレフタレートフィルム上に塗工し、135℃で3分間乾燥して硬化させた後、23℃、50%RH環境下で7日間保管し、前記剥離処理されたポリエチレンテレフタレートフィルムから剥離して得られた、厚み50μmの粘着性樹脂シートをヘイズ値が0.1%であるガラス上に貼り合わせて、ヘイズメーターで測定されたヘイズ値が2.0%以下であることが好ましく、1.8%以下であることがより好ましく、1.6%以下であることがさらに好ましく、1.3%以下であることが特に好ましく、1.0%以下であることが最も好ましい。ヘイズ値が上記上限値以下であることで、透明性により優れる。一方、前記粘着性樹脂シートのヘイズ値の下限値は特に限定されず、0.0%に近しいほど好ましいが、例えば、0.0%とすることができ、0.05%とすることができる。 The adhesive resin sheet of the present embodiment is obtained by coating the adhesive resin composition on a polyethylene terephthalate film having a thickness of 38 μm and having undergone release treatment, drying at 135° C. for 3 minutes and curing, followed by curing at 23° C. and 50° C. % RH environment for 7 days, and an adhesive resin sheet having a thickness of 50 μm obtained by peeling from the polyethylene terephthalate film subjected to the peeling treatment was laminated on glass having a haze value of 0.1%, The haze value measured with a haze meter is preferably 2.0% or less, more preferably 1.8% or less, even more preferably 1.6% or less, and 1.3% or less. It is particularly preferred that the content is 1.0% or less, most preferably 1.0% or less. It is excellent by transparency because a haze value is below the said upper limit. On the other hand, the lower limit of the haze value of the adhesive resin sheet is not particularly limited, and is preferably as close to 0.0% as possible. .
≪積層フィルム≫
 本実施形態の積層フィルムは、上述した粘着性樹脂シートの少なくとも片面にフィルム基材が積層されてなる。
 本実施形態の積層フィルムは、光学部材への適用が好適であり、特に光学用途における、金属薄膜や金属電極に対して貼り付ける用途に好ましく使用される。金属薄膜としては、金属、金属酸化物やこれらの混合物からなる薄膜が挙げられ、特に限定はされないが、例えば、ITO(酸化インジウムスズ)、ZnO、SnO、CTO(酸化カドミウムスズ)の薄膜が挙げられる。金属薄膜の厚みは、特に限定されないが、10~200nm程度である。通常、ITOなどの金属薄膜は、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)等の透明プラスチックフィルム基材上に設けられ、透明導電性フィルムとして使用される。本実施形態の積層フィルムを金属薄膜に貼り付ける際には、粘着性樹脂シート側の表面を金属薄膜に貼り付けることが好ましい。
≪Laminated film≫
The laminated film of this embodiment is obtained by laminating a film substrate on at least one side of the adhesive resin sheet described above.
The laminated film of the present embodiment is suitable for application to optical members, and is particularly preferably used for attachment to metal thin films and metal electrodes in optical applications. Examples of metal thin films include thin films made of metals, metal oxides, and mixtures thereof, and are not particularly limited. Examples include thin films of ITO (indium tin oxide), ZnO, SnO, and CTO (cadmium tin oxide). be done. Although the thickness of the metal thin film is not particularly limited, it is about 10 to 200 nm. A metal thin film such as ITO is usually provided on a transparent plastic film substrate such as a polyethylene terephthalate film (PET film) and used as a transparent conductive film. When attaching the laminated film of the present embodiment to the metal thin film, it is preferable to attach the adhesive resin sheet side surface to the metal thin film.
 また、上記金属電極としては、金属、金属酸化物やこれらの混合物からなる電極であればよく、特に限定されないが、例えば、ITO、銀、銅、CNT(カーボンナノチューブ) の電極が挙げられる。 In addition, the metal electrode is not particularly limited as long as it is an electrode made of metal, metal oxide, or a mixture thereof. Examples include electrodes of ITO, silver, copper, and CNT (carbon nanotube).
 本実施形態の積層フィルムの具体的な用途の一例として、タッチパネルを挙げることができる。タッチパネル用粘着シートは、例えば、静電容量方式のタッチパネルの製造において、ITOなどの金属薄膜が設けられた透明導電フィルムと、ポリメタクリル酸メチル樹脂(PMMA)板、ハードコートフィルム、ガラスレンズ等とを貼り合わせるために用いられる。上記タッチパネルは、特に限定されないが、例えば、携帯電話、タブレットコンピューター、携帯情報端末などに用いられる。 A touch panel can be given as an example of a specific application of the laminated film of the present embodiment. For example, in the production of a capacitive touch panel, the pressure-sensitive adhesive sheet for a touch panel includes a transparent conductive film provided with a metal thin film such as ITO, a polymethyl methacrylate resin (PMMA) plate, a hard coat film, a glass lens, and the like. It is used for pasting together. The touch panel is not particularly limited, but is used for, for example, mobile phones, tablet computers, personal digital assistants, and the like.
 また、本実施形態の積層フィルムのフィルム基材としては、光学部材を用いることができる。この場合、前記粘着性樹脂組成物を、光学部材に直接塗布し、重合溶剤などを乾燥除去することにより、粘着性樹脂シートが光学部材に形成された粘着型光学部材を得ることができる。または、剥離処理したセパレーターに形成した粘着性樹脂シートを、適宜に光学部材に転写して、粘着型光学部材を得ることができる。 Also, an optical member can be used as the film substrate of the laminated film of the present embodiment. In this case, the adhesive resin composition is directly applied to the optical member, and the polymerization solvent and the like are removed by drying to obtain an adhesive optical member in which the adhesive resin sheet is formed on the optical member. Alternatively, the adhesive resin sheet formed on the release-treated separator can be appropriately transferred to the optical member to obtain the adhesive optical member.
 なお、上記の粘着型光学部材の作製にあたって用いた、剥離処理したシートは、そのまま粘着型光学部材のセパレーターとして用いることができ、工程面における簡略化ができる。 It should be noted that the release-treated sheet used in the production of the adhesive optical member can be used as it is as a separator for the adhesive optical member, and the process can be simplified.
 また、前記粘着型光学部材において、粘着剤層の形成にあたっては、光学部材の表面に、アンカー層を形成したり、コロナ処理、プラズマ処理などの各種易接着処理を施した後に粘着剤層を形成することができる。また、粘着剤層の表面には易接着処理を行ってもよい。 In forming the adhesive layer in the adhesive optical member, the adhesive layer is formed after forming an anchor layer on the surface of the optical member, or subjecting the surface of the optical member to various easy-adhesion treatments such as corona treatment and plasma treatment. can do. Further, the surface of the pressure-sensitive adhesive layer may be subjected to an easy-adhesion treatment.
 前記粘着型光学部材は、光学部材として透明導電性フィルムを用いることにより、粘着剤層付き透明導電性フィルムとして用いることができる。透明導電性フィルムは、透明プラスチックフィルム基材の一方の面に、上記ITO等の金属薄膜となる透明導電性薄膜を有する。透明プラスチックフィルム基材の他方の面には、本実施形態の積層フィルムを有する。透明プラスチックフィルム基材には、アンダーコート層を介して透明導電性薄膜を設けることができる。なお、アンダーコート層は複数層設けることができる。透明プラスチックフィルム基材と粘着性樹脂シートの間にオリゴマー移行防止層を設けることができる。 The adhesive optical member can be used as a transparent conductive film with an adhesive layer by using a transparent conductive film as the optical member. The transparent conductive film has a transparent conductive thin film, which is a metal thin film such as the above ITO, on one side of a transparent plastic film substrate. The other surface of the transparent plastic film substrate has the laminated film of the present embodiment. A transparent conductive thin film can be provided on the transparent plastic film substrate via an undercoat layer. A plurality of undercoat layers can be provided. An oligomer migration prevention layer can be provided between the transparent plastic film substrate and the adhesive resin sheet.
 前記透明プラスチックフィルム基材としては、特に制限されないが、透明性を有する各種のプラスチックフィルムが用いられる。当該プラスチックフィルムは1層のフィルムにより形成されている。例えば、その材料として、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂、トリアセチルセルロース系樹脂等が挙げられる。これらの中で特に好ましいのは、ポリエステル系樹脂、ポリイミド系樹脂およびポリエーテルスルホン系樹脂である。前記フィルム基材の厚みは、15~200μmであることが好ましい。 The transparent plastic film substrate is not particularly limited, but various transparent plastic films are used. The plastic film is formed of one layer of film. For example, the materials include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and (meth)acrylic resins. , polyvinyl chloride-based resins, polyvinylidene chloride-based resins, polystyrene-based resins, polyvinyl alcohol-based resins, polyarylate-based resins, polyphenylene sulfide-based resins, triacetyl cellulose-based resins, and the like. Among these, particularly preferred are polyester-based resins, polyimide-based resins and polyethersulfone-based resins. The thickness of the film substrate is preferably 15 to 200 μm.
 前記フィルム基材には、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、この上に設けられる透明導電性薄膜またはアンダーコート層の前記フィルム基材に対する密着性を向上させるようにしてもよい。また、透明導電性薄膜またはアンダーコート層を設ける前に、必要に応じて溶剤洗浄や超音波洗浄などにより除塵、清浄化してもよい。 The surface of the film substrate is preliminarily subjected to sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, etching treatment such as oxidation, or undercoating treatment, and a transparent conductive thin film or undercoat is provided thereon. Adhesion of the layer to the film substrate may be improved. In addition, before providing the transparent conductive thin film or the undercoat layer, dust removal and cleaning may be performed by solvent cleaning, ultrasonic cleaning, or the like, if necessary.
 前記透明導電性薄膜の構成材料、厚みは、特に限定されず、上記金属薄膜で例示したとおりである。アンダーコート層は、無機物、有機物または無機物と有機物との混合物により形成することができる。例えば、無機物として、NaF(1.3)、Na3AlF6(1. 35)、LiF(1.36)、MgF2(1.38)、CaF2(1.4)、BaF2(1. 3)、SiO2(1.46)、LaF3(1.55)、CeF3(1.63)、Al23(1. 63)などの無機物〔上記各材料の()内の数値は、光の屈折率である〕が挙げられる。これらのなかでも、SiO2、MgF2、A123などが好ましく、特に、SiO2が好適である。上記の他、酸化インジウムに対して、酸化セリウムを10~40重量部程度、酸化スズを0~20重量部程度含む複合酸化物を用いることができる。 The constituent material and thickness of the transparent conductive thin film are not particularly limited, and are as exemplified for the metal thin film above. The undercoat layer can be formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material. For example, inorganic substances include NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.4). 3) Inorganic substances such as SiO 2 (1.46), LaF 3 (1.55), CeF 3 (1.63), Al 2 O 3 (1.63) , which is the refractive index of light]. Among these, SiO 2 , MgF 2 , A1 2 O 3 and the like are preferred, and SiO 2 is particularly preferred. In addition to the above, a composite oxide containing about 10 to 40 parts by weight of cerium oxide and about 0 to 20 parts by weight of tin oxide can be used with respect to indium oxide.
 また、有機物としてはアクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられる。これら有機物は、少なくとも1種が用いられる。特に、有機物としては、メラミン樹脂とアルキド樹脂と有機シラン縮合物の混合物からなる熱硬化型樹脂を使用するのが望ましい。 Also, examples of organic substances include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane-based polymers, and organic silane condensates. At least one of these organic substances is used. In particular, it is desirable to use a thermosetting resin composed of a mixture of a melamine resin, an alkyd resin and an organic silane condensate as the organic substance.
 アンダーコート層の厚さは、特に制限されるものではないが、光学設計、前記フィルム基材からのオリゴマー発生防止効果の点から、通常、1~300nm程度であり、好ましくは5~300nmである。 Although the thickness of the undercoat layer is not particularly limited, it is usually about 1 to 300 nm, preferably 5 to 300 nm, from the viewpoint of optical design and the effect of preventing oligomer generation from the film substrate. .
 上記粘着剤層付き透明導電性フィルムは、タッチパネルや液晶ディスプレイ、有機ELディスプレイ、などの種々の装置の形成などにおいて用いられる。特に、タッチパネル用電極板として好ましく用いることができる。タッチパネルは、種々の検出方式(例えば、抵抗膜方式、静電容量方式等)に好適に用いられる。 The adhesive layer-attached transparent conductive film is used in the formation of various devices such as touch panels, liquid crystal displays, and organic EL displays. In particular, it can be preferably used as an electrode plate for a touch panel. A touch panel is suitably used for various detection methods (for example, a resistive film method, a capacitive method, etc.).
 静電容量方式のタッチパネルは、通常、所定のパターン形状を有する透明導電性薄膜を備えた透明導電性フィルムがディスプレイ表示部の全面に形成されている。上記粘着剤層付き透明導電性フィルムは、粘着剤層とパターン化された透明導電性薄膜とが対面するように適宜に積層される。 A capacitive touch panel normally has a transparent conductive film with a transparent conductive thin film having a predetermined pattern formed over the entire display area. The pressure-sensitive adhesive layer-attached transparent conductive film is appropriately laminated so that the pressure-sensitive adhesive layer and the patterned transparent conductive thin film face each other.
 また、前記粘着型光学部材は、光学部材として画像表示装置用の光学フィルムを用いることにより、粘着剤層付き光学フィルムとして用いることができる。 In addition, the adhesive optical member can be used as an optical film with an adhesive layer by using an optical film for an image display device as the optical member.
 光学フィルムとしては、液晶表示装置、有機EL表示装置等の画像表示装置の形成に用いられるものが使用され、その種類は特に制限されない。例えば、光学フィルムとしては偏光板が挙げられる。偏光板は偏光子の片面または両面には透明保護フィルムを有するものが一般に用いられる。 As the optical film, those used for forming image display devices such as liquid crystal display devices and organic EL display devices are used, and the type thereof is not particularly limited. For example, the optical film includes a polarizing plate. A polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used.
 以下、本実施形態を実施例及び比較例に基づいて更に詳しく説明するが、本実施形態は、以下の実施例により何ら限定されるものではない。 Hereinafter, the present embodiment will be described in more detail based on examples and comparative examples, but the present embodiment is not limited by the following examples.
<試験項目>
 実施例及び比較例で製造されたポリイソシアネート組成物について、以下に示す方法に従い、各物性の測定及び各評価を行った。
<Test item>
For the polyisocyanate compositions produced in Examples and Comparative Examples, physical properties were measured and evaluated according to the methods described below.
[物性1]
(イソシアネート基含有率)
 まず、フラスコに測定試料2g以上3g以下を精秤した(Wg)。次いで、トルエン20mLを添加し、測定試料を溶解した。次いで、2規定のジ-n-ブチルアミンのトルエン溶液20mLを添加し、混合後、15分間室温放置した。次いで、イソプロピルアルコール70mLを加え、混合した。次いで、この液を1規定塩酸溶液(ファクターF)で、指示薬に滴定した。得られた滴定値をV2mLとした。次いで、ポリイソシアネート試料無しで、得られた滴定値をV1mlとした。次いで、下記式からポリイソシアネート組成物のイソシアネート基含有率(NCO%)(質量%)を算出した。なお、NCO%は溶剤を含まない状態で算出される値を採用した。
[Physical properties 1]
(Isocyanate group content)
First, 2 g or more and 3 g or less of a measurement sample was accurately weighed in a flask (Wg). Then, 20 mL of toluene was added to dissolve the measurement sample. Next, 20 mL of a toluene solution of 2N di-n-butylamine was added, and after mixing, the mixture was allowed to stand at room temperature for 15 minutes. Then 70 mL of isopropyl alcohol was added and mixed. Then, this liquid was titrated with an indicator with a 1N hydrochloric acid solution (Factor F). The obtained titration value was defined as V2 mL. The titration value obtained without the polyisocyanate sample was then taken as V1 ml. Then, the isocyanate group content (NCO %) (% by mass) of the polyisocyanate composition was calculated from the following formula. For the NCO%, a value calculated in a solvent-free state was adopted.
 イソシアネート基含有率(質量%) = (V1-V2)×F×42/(W×1000)×100 Isocyanate group content (mass%) = (V1-V2) x F x 42/(W x 1000) x 100
[物性2]
(数平均分子量及び重量平均分子量)
 数平均分子量及び重量平均分子量は下記の装置を用いたゲルパーミエーションクロマトグラフ(GPC)測定によるポリスチレン基準の数平均分子量及び重量平均分子量である。
[Physical properties 2]
(Number average molecular weight and weight average molecular weight)
The number average molecular weight and weight average molecular weight are polystyrene-based number average molecular weight and weight average molecular weight measured by gel permeation chromatography (GPC) using the following equipment.
(測定条件)
装置:東ソー(株)製、HLC-802A
カラム:東ソー(株)製、G1000HXL×1本
            G2000HXL×1本
            G3000HXL×1本
キャリアー:テトラヒドロフラン
検出方法:示差屈折計
(Measurement condition)
Apparatus: HLC-802A manufactured by Tosoh Corporation
Column: manufactured by Tosoh Corporation, G1000HXL x 1, G2000HXL x 1, G3000HXL x 1 Carrier: Tetrahydrofuran Detection method: Differential refractometer
[物性3]
(平均イソシアネート官能基数)
 ポリイソシアネート組成物の平均イソシアネート官能基数(平均NCO数)は、下記式により求めた。なお、式中、「Mn」は、数平均分子量を意味し、上記「物性2」において測定された値を用いた。「NCO%」は、上記「物性1」において算出された値を用いた。
[Physical properties 3]
(Average number of isocyanate functional groups)
The average isocyanate functional group number (average NCO number) of the polyisocyanate composition was determined by the following formula. In the formula, "Mn" means number average molecular weight, and the value measured in "Physical properties 2" was used. For "NCO%", the value calculated in "Physical Properties 1" was used.
 平均イソシアネート官能基数 = (Mn×NCO%×0.01)/42 Average number of isocyanate functional groups = (Mn x NCO% x 0.01)/42
[物性4]
(ガラス転移温度Tg)
 樹脂組成物作製用ポリオール及び架橋性官能基含有ポリマーのガラス転移温度は、アクリルポリオール溶液又は架橋性官能基含有ポリマー溶液中の有機溶剤及び水分を減圧下で飛ばした後、真空乾燥したものを、示差走査熱量(DSC)測定装置を用いて、昇温速度5℃/分の条件で測定した値をガラス転移温度として用いた。
[Physical properties 4]
(Glass transition temperature Tg)
The glass transition temperature of the polyol for preparing the resin composition and the crosslinkable functional group-containing polymer is obtained by removing the organic solvent and moisture in the acrylic polyol solution or the crosslinkable functional group-containing polymer solution under reduced pressure, and then vacuum drying. A value measured using a differential scanning calorimeter (DSC) measuring apparatus at a heating rate of 5° C./min was used as the glass transition temperature.
[ポリイソシアネート組成物単独からなる硬化膜1の作製]
 各ポリイソシアネート組成物について、アプリケーターを用いて剥離フィルム上に塗工し、23℃、65%湿度環境下で168時間保管後、膜厚40μmの硬化膜を得た。
[Preparation of cured film 1 consisting of polyisocyanate composition alone]
Each polyisocyanate composition was applied onto a release film using an applicator and stored at 23° C. and 65% humidity for 168 hours to obtain a cured film with a thickness of 40 μm.
[評価1]
(硬化膜の柔軟性)
 硬化膜について、ケーニッヒ硬度計(BYK Gardner社のPendulum hardness tester)により23℃環境下でのケーニッヒ硬度(回)を測定した。ケーニッヒ硬度が60回以下であるものを硬度が低く、柔軟性が良好であると評価した。
[Evaluation 1]
(Flexibility of cured film)
The cured film was measured for Konig hardness (times) at 23° C. using a Konig hardness tester (Pendulum hardness tester manufactured by BYK Gardner). Those having a Konig hardness of 60 times or less were evaluated as having low hardness and good flexibility.
[硬化膜2の作製]
 各ポリイソシアネート組成物と、樹脂組成物作製用ポリオールと、を、樹脂組成物作製用ポリオールの水酸基に対するポリイソシアネート組成物のイソシアネート基のモル比NCO/OHが1になるように混合し、樹脂組成物を得た。得られた各樹脂組成物を、アプリケーターを用いてポリプロピレン(PP)板上に塗工し、90℃で30分間硬化させ、23℃、65%湿度環境下で168時間保管して、膜厚40μmの硬化膜2を得た。
[Preparation of cured film 2]
Each polyisocyanate composition and a polyol for preparing a resin composition are mixed so that the molar ratio NCO/OH of the isocyanate group of the polyisocyanate composition to the hydroxyl group of the polyol for preparing the resin composition is 1, and the resin composition is got stuff Each of the obtained resin compositions was applied onto a polypropylene (PP) plate using an applicator, cured at 90°C for 30 minutes, and stored at 23°C and 65% humidity for 168 hours to give a film thickness of 40 µm. A cured film 2 was obtained.
[評価2]
(伸び率140%時の応力、伸び率、及び引張破断応力)
 得られた硬化膜2について、幅10mm、長さ100mmの試験片をつかみ具距離20mmになるように引張試験機にセットして、速度20mm/分で引張試験を行い、伸び率140%時の応力、伸び率、及び引張破断応力を測定した。伸び率140%時の応力が25.0MPa以下、伸び率が140%以上、及び引張破断応力が伸び率140%時の応力の1.2倍以上であるものを、それぞれ伸び率140%時の応力、伸び率及び伸び率140%時の応力に対する引張破断応力の比が良好であると評価した。また、伸び率が大きく、伸び率140%時の応力が低く、引張破断応力が前記伸び率140%時の応力の1.2倍以上であるものが、耐屈曲性がより良好であると評価した。
[Evaluation 2]
(Stress at elongation of 140%, elongation, and tensile breaking stress)
For the obtained cured film 2, a test piece with a width of 10 mm and a length of 100 mm was set in a tensile tester so that the gripper distance was 20 mm, and a tensile test was performed at a speed of 20 mm / min. Stress, elongation, and tensile breaking stress were measured. The stress at the elongation of 140% is 25.0 MPa or less, the elongation is 140% or more, and the tensile breaking stress is 1.2 times or more of the stress at the elongation of 140%. The stress, elongation and ratio of tensile breaking stress to stress at 140% elongation were evaluated as good. In addition, those having a large elongation rate, a low stress at an elongation rate of 140%, and a tensile breaking stress of 1.2 times or more of the stress at an elongation rate of 140% are evaluated to have better flex resistance. bottom.
[粘着性樹脂組成物Xの作製]
 架橋性官能基含有ポリマー(アクリル系ポリマー)OH1の固形分100質量部に対して、各ポリイソシアネート組成物1.0質量部(固形分量)、及び、酢酸エチルを添加して、固形分25質量%の粘着性樹脂組成物Xを作製した。
[Preparation of adhesive resin composition X]
1.0 parts by mass (solid content) of each polyisocyanate composition and ethyl acetate are added to 100 parts by mass of the solid content of the crosslinkable functional group-containing polymer (acrylic polymer) OH1 to give a solid content of 25 mass. % adhesive resin composition X was prepared.
[粘着性樹脂組成物Yの作製]
 架橋性官能基含有ポリマー(アクリル系ポリマー)OH2の固形分100質量部に対して、各ポリイソシアネート組成物2.0質量部(固形分量)、及び、酢酸エチルを添加して、固形分25質量%の粘着性樹脂組成物Yを作製した。
[Preparation of adhesive resin composition Y]
2.0 parts by mass (solid content) of each polyisocyanate composition and ethyl acetate are added to 100 parts by mass of the solid content of the crosslinkable functional group-containing polymer (acrylic polymer) OH2 to give a solid content of 25 mass. % adhesive resin composition Y was prepared.
[粘着性樹脂シートの作製1]
(180度ピール粘着力測定用粘着性樹脂シートの作製)
 粘着性樹脂組成物X又は粘着性樹脂組成物Yをアプリケーターにより乾燥後の厚みが50μmになるように、厚み25μmポリエチレンテレフタレート(PET)フィルム上に塗工し、135℃で3分間乾燥した。その後、23℃、50%RH環境下で7日間保管し、180度ピール粘着力測定用粘着性樹脂シートを得た。
[Preparation of adhesive resin sheet 1]
(Preparation of adhesive resin sheet for 180 degree peel adhesion measurement)
Adhesive resin composition X or adhesive resin composition Y was applied on a polyethylene terephthalate (PET) film having a thickness of 25 μm using an applicator so that the thickness after drying was 50 μm, and dried at 135° C. for 3 minutes. After that, it was stored for 7 days under an environment of 23° C. and 50% RH to obtain an adhesive resin sheet for 180° peel adhesion measurement.
[評価3]
(粘着力)
 上記「粘着性樹脂シートの作製1」で得られた厚み50μm、幅20mm及び長さ100mmの粘着性樹脂シートを備える積層体を、被着体であるSUS304BA板に貼り付けて、2kgローラーで1往復圧着し23℃で30分間養生後、引張試験機を用いて速度300mm/分、23℃で180度ピール粘着力を測定した。0.05N/20mm以上であるものを粘着力が良好であると評価した。
[Evaluation 3]
(Adhesive force)
A laminate comprising an adhesive resin sheet having a thickness of 50 μm, a width of 20 mm, and a length of 100 mm obtained in the above “Preparation of adhesive resin sheet 1” was attached to a SUS304BA plate as an adherend, and 1 with a 2 kg roller. After reciprocating pressure bonding and aging at 23°C for 30 minutes, the 180 degree peel adhesive strength was measured at 23°C at a speed of 300 mm/min using a tensile tester. Adhesive strength of 0.05 N/20 mm or more was evaluated as good.
[粘着性樹脂シートの作製2]
(ゲル分率測定用粘着性樹脂シートの作製)
 粘着性樹脂組成物X又は粘着性樹脂組成物Yをアプリケーターにより乾燥後の厚みが50μmになるように、厚み38μmの剥離処理をされたPETフィルム上に塗工し、135℃で3分間乾燥した。その後、23℃、50%RH環境下で7日間保管し、ゲル分率測定用粘着性樹脂シートを得た。
[Preparation of adhesive resin sheet 2]
(Preparation of adhesive resin sheet for gel fraction measurement)
Adhesive resin composition X or adhesive resin composition Y was coated on a peel-treated PET film having a thickness of 38 μm with an applicator so that the thickness after drying was 50 μm, and dried at 135 ° C. for 3 minutes. . After that, it was stored in an environment of 23° C. and 50% RH for 7 days to obtain an adhesive resin sheet for gel fraction measurement.
[評価4]
(硬化性)
 上記「粘着性樹脂シートの作製2」で得られた粘着性樹脂シートを0.1g以上0.2g以下程度採取し、メッシュ状のシートにつつみ、酢酸エチルに1週間浸漬させた後、120℃で2時間乾燥した。次いで、以下の式を用いてゲル分率(質量%)を算出した。ゲル分率が20.0質量%以上であるものについて硬化性が良好であると評価した。
[Evaluation 4]
(Curability)
About 0.1 g or more and 0.2 g or less of the adhesive resin sheet obtained in the above "Preparation of adhesive resin sheet 2" was collected, wrapped in a mesh sheet, immersed in ethyl acetate for 1 week, and then heated to 120°C. and dried for 2 hours. Then, the gel fraction (% by mass) was calculated using the following formula. Those having a gel fraction of 20.0% by mass or more were evaluated as having good curability.
 (ゲル分率)
=(乾燥後のサンプル質量)/(酢酸エチル投入前のサンプル質量)×100
(Gel fraction)
= (Sample mass after drying)/(Sample mass before adding ethyl acetate) x 100
[粘着性樹脂シートの作製3]
(ヘイズ値測定用粘着性樹脂シートを備える積層体の作製)
 粘着性樹脂組成物X又は粘着性樹脂組成物Yを厚み38μmの剥離処理されたポリエチレンテレフタレートフィルム上に塗工し、135℃で3分間乾燥して硬化させた後、23℃、50%RH環境下で7日間保管し、前記剥離処理されたポリエチレンテレフタレートフィルムから剥離して得られた、厚み50μmの粘着性樹脂シートを、ヘイズ値が0.1%であるガラス上に貼り合わせて、ヘイズ値測定用粘着性樹脂シートを備える積層体を得た。
[Preparation of adhesive resin sheet 3]
(Preparation of laminate provided with adhesive resin sheet for haze value measurement)
Adhesive resin composition X or adhesive resin composition Y is coated on a polyethylene terephthalate film having a thickness of 38 μm and has been subjected to release treatment, dried at 135° C. for 3 minutes and cured, and then cured in an environment of 23° C. and 50% RH. A 50 μm-thick adhesive resin sheet obtained by peeling from the polyethylene terephthalate film subjected to the peeling treatment was stored for 7 days under a low temperature, and the haze value was 0.1%. A laminate provided with the adhesive resin sheet for measurement was obtained.
[評価5]
(透明性)
 上記「ポリイソシアネート組成物の硬化膜の作製」で得られた硬化膜をヘイズ値が0.1%であるガラス上に貼り合わせた積層体及び上記「粘着性樹脂シートの作製3」で得られた積層体について、スガ試験機製ヘイズメーター(HMG-2DP)を用いて、光源側に、各積層体の2つの面の内、ガラスとは反対側の面(すなわち、ポリイソシアネート組成物又は粘着性樹脂組成物が塗布された面)を配置し、ヘイズを測定した。ヘイズ値が3.0%以下のものについて透明性が良好であると評価した。
[Evaluation 5]
(transparency)
Laminate in which the cured film obtained in the above "Preparation of cured film of polyisocyanate composition" is laminated on glass having a haze value of 0.1% and obtained in the above "Preparation of adhesive resin sheet 3" For the laminate, using a haze meter (HMG-2DP) manufactured by Suga Test Instruments, on the light source side, one of the two surfaces of each laminate, the surface opposite to the glass (i.e., polyisocyanate composition or adhesive The surface to which the resin composition was applied) was placed, and the haze was measured. Those having a haze value of 3.0% or less were evaluated as having good transparency.
<樹脂組成物作製用ポリオールの製造>
[合成例1-1]
(樹脂組成物作製用ポリオールの製造)
 撹拌装置、温度計、冷却管、窒素ガス導入口を備えた四ツ口フラスコに酢酸ブチル:29質量部を仕込み、窒素ガス通気下で112℃に昇温した。112℃に達した後、窒素ガスの通気を止め、2-ヒドロキシエチルメタクリレート:22.3質量部、メチルメタクリレート:8.0質量部、ブチルアクリレート:26.1質量部、スチレン:42.3質量部、アクリル酸:1.3質量部、及び、2,2’-アゾビス(イソブチロニトリル):2質量部からなる混合物を5時間かけて滴下した。次いで、115℃で窒素ガスをフローしながら3時間攪拌した後、60℃まで冷却し、酢酸ブチル溶液を投入し、固形分量60質量%の樹脂組成物作製用ポリオールの溶液を得た。樹脂組成物作製用ポリオールは、ガラス転移温度Tgが29.5℃、樹脂固形分に対する水酸基価が139mgKOH/g、重量平均分子量Mwが2.75×10であった。
<Production of polyol for resin composition preparation>
[Synthesis Example 1-1]
(Production of polyol for preparing resin composition)
A four-necked flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas inlet was charged with 29 parts by mass of butyl acetate, and the temperature was raised to 112°C under nitrogen gas ventilation. After reaching 112 ° C., nitrogen gas ventilation was stopped, 2-hydroxyethyl methacrylate: 22.3 parts by mass, methyl methacrylate: 8.0 parts by mass, butyl acrylate: 26.1 parts by mass, styrene: 42.3 parts by mass. part, acrylic acid: 1.3 parts by mass, and 2,2'-azobis(isobutyronitrile): 2 parts by mass was added dropwise over 5 hours. Then, the mixture was stirred at 115° C. for 3 hours while flowing nitrogen gas, and then cooled to 60° C., and a butyl acetate solution was added to obtain a solution of a polyol for preparing a resin composition having a solid content of 60% by mass. The polyol for resin composition preparation had a glass transition temperature Tg of 29.5° C., a hydroxyl value of 139 mgKOH/g based on the resin solid content, and a weight average molecular weight Mw of 2.75×10 4 .
<架橋性官能基含有ポリマーの合成>
[合成例2-1]
(架橋性官能基含有ポリマー(アクリル系ポリマー)OH1の合成)
 攪拌機、温度計、窒素ガス導入管及び冷却管を備えた四つ口フラスコに、n-ブチルアクリレート(BA)97質量部と、4-ヒドロキシブチルアクリレート(4-HBA)3質量部とを投入し、溶媒として酢酸エチル145質量部を投入した。次いで、窒素ガス雰囲気下で撹拌を行いながら、重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.14質量部を投入し、63℃で9時間反応を行った。反応後、冷却し、固形分濃度42.1質量%のアクリル系ポリマーOH1を得た。アクリル系ポリマーOH1の溶剤を除いて測定した、ガラス転移温度は-54.0℃であり、重量平均分子量は8.2×10であった。
<Synthesis of crosslinkable functional group-containing polymer>
[Synthesis Example 2-1]
(Synthesis of crosslinkable functional group-containing polymer (acrylic polymer) OH1)
97 parts by mass of n-butyl acrylate (BA) and 3 parts by mass of 4-hydroxybutyl acrylate (4-HBA) were charged into a four-necked flask equipped with a stirrer, a thermometer, a nitrogen gas inlet tube and a cooling tube. , and 145 parts by mass of ethyl acetate was added as a solvent. Then, 0.14 parts by mass of 2,2′-azobisisobutyronitrile (AIBN) as a polymerization initiator was added while stirring under a nitrogen gas atmosphere, and the reaction was carried out at 63° C. for 9 hours. After the reaction, the reaction mixture was cooled to obtain an acrylic polymer OH1 having a solid concentration of 42.1% by mass. The acrylic polymer OH1 had a glass transition temperature of −54.0° C. and a weight average molecular weight of 8.2×10 5 , measured without the solvent.
[合成例2-2]
(架橋性官能基含有ポリマー(アクリル系ポリマー)OH2の合成)
 攪拌機、温度計、窒素ガス導入管及び冷却管を備えた四つ口フラスコに、2-エチルへキシルアクリレート(2EHA)97質量部と、4-ヒドロキシブチルアクリレート(4-HBA)3質量部とを投入し、溶媒として酢酸エチル145質量部を投入した。次いで、窒素ガス雰囲気下で撹拌を行いながら、重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.14質量部を投入し、63℃で9時間反応を行った。反応後、冷却し、固形分濃度42.2質量%のアクリル系ポリマーOH2を得た。アクリル系ポリマーOH2の溶剤を除いて測定した、ガラス転移温度は-69.0℃であり、重量平均分子量は8.7×10であった。
[Synthesis Example 2-2]
(Synthesis of crosslinkable functional group-containing polymer (acrylic polymer) OH2)
97 parts by mass of 2-ethylhexyl acrylate (2EHA) and 3 parts by mass of 4-hydroxybutyl acrylate (4-HBA) were placed in a four-necked flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and cooling tube. 145 parts by mass of ethyl acetate was added as a solvent. Then, 0.14 parts by mass of 2,2′-azobisisobutyronitrile (AIBN) as a polymerization initiator was added while stirring under a nitrogen gas atmosphere, and the reaction was carried out at 63° C. for 9 hours. After the reaction, the reaction mixture was cooled to obtain an acrylic polymer OH2 having a solid content concentration of 42.2% by mass. The acrylic polymer OH2 had a glass transition temperature of −69.0° C. and a weight average molecular weight of 8.7×10 5 , which were measured without the solvent.
<ポリイソシアネート組成物の製造>
[実施例1]
(ポリイソシアネート組成物PA-a1の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、2官能のポリカプロラクトンジオール(以下、「ポリエステルポリオールA1」と称する場合がある)(ダイセル社製、商品名「プラクセル220CPT」、数平均分子量2000、水酸基価56.6mgKOH/g、酸価0.02mgKOH/g):120質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が9.8となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が55.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a1を得た。得られたポリイソシアネート組成物PA-a1をH-NMR及びC-NMRで分析し、ウレタン結合及びアロファネート結合の存在を確認し、これらの結合の中でウレタン結合のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
 なお、NMR分析による構造の検出は、アロファネート基、ウレトジオン基、イミノオキサジアジンジオン基、イソシアヌレート基、ウレア基、ウレタン基、及びビウレット基合の検出されたトータルのモル量に対する、個々の結合の割合(モル%)が1%以上のものを、その結合が存在するとカウントした。また、以降の実施例においても同様の方法を採用して、結合をカウントした。
<Production of polyisocyanate composition>
[Example 1]
(Production of polyisocyanate composition PA-a1)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A1" ) (manufactured by Daicel Corporation, trade name “PLAXEL 220CPT”, number average molecular weight 2000, hydroxyl value 56.6 mgKOH / g, acid value 0.02 mgKOH / g): 120 parts by mass (HDI isocyanate group for hydroxyl group of polyester polyol A1 The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 9.8. The reaction was terminated when the yield reached 55.0% by mass. After filtering the reaction solution, unreacted HDI was removed with a thin film distillation apparatus to obtain a polyisocyanate composition PA-a1. The resulting polyisocyanate composition PA-a1 was analyzed by H-NMR and C-NMR to confirm the presence of urethane bonds and allophanate bonds, and the molar ratio of urethane bonds was the largest among these bonds. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
In addition, the detection of the structure by NMR analysis is based on the total molar amount of allophanate groups, uretdione groups, iminooxadiazinedione groups, isocyanurate groups, urea groups, urethane groups, and biuret groups detected for individual bonds. A ratio (mol %) of 1% or more was counted as the presence of the bond. In addition, binding was counted by adopting the same method in the following examples.
[実施例2]
(ポリイソシアネート組成物PA-a2の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、ポリエステルポリオールA1:135質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が8.7となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が58.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a2を得た。得られたポリイソシアネート組成物PA-a2をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 2]
(Production of polyisocyanate composition PA-a2)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and polyester polyol A1: 135 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 8.7. The reaction was terminated when the yield reached 58.0% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a2. The resulting polyisocyanate composition PA-a2 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these groups. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[実施例3]
(ポリイソシアネート組成物PA-a3の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、1,3-ブタンジオール:0.5質量部、ポリエステルポリオールA1:125質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が9.4となる量)を撹拌しながら、反応器内温度を160℃で20分保持後、100℃に下げて保持した。収率が56.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a3を得た。得られたポリイソシアネート組成物PA-a3をH-NMR及びC-NMRで分析し、ウレタン基、アロファネート基、ウレトジオン基、及びウレア基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 3]
(Production of polyisocyanate composition PA-a3)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 0.5 parts by mass of 1,3-butanediol, and 125 parts by mass of polyester polyol A1. The temperature in the reactor was maintained at 160°C for 20 minutes and then lowered to 100°C while stirring the part (an amount that gives a molar ratio of the isocyanate groups of HDI to the hydroxyl groups of polyester polyol A1 of 9.4). The reaction was terminated when the yield reached 56.0% by mass. After filtering the reaction solution, unreacted HDI was removed with a thin film distillation apparatus to obtain a polyisocyanate composition PA-a3. The resulting polyisocyanate composition PA-a3 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[実施例4]
(ポリイソシアネート組成物PA-a4の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、2官能のポリカプロラクトンジオール(以下、「ポリエステルポリオールA2」と称する場合がある)(ダイセル社製、商品名「プラクセル230」、数平均分子量3000、水酸基価37.6mgKOH/g、酸価0.07mgKOH/g):150質量部(ポリエステルポリオールA2の水酸基に対するHDIのイソシアネート基のモル比が11.8となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が60.5質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a4を得た。得られたポリイソシアネート組成物PA-a4をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で固体であった。
[Example 4]
(Production of polyisocyanate composition PA-a4)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A2" ) (manufactured by Daicel Corporation, trade name “PLAXEL 230”, number average molecular weight 3000, hydroxyl value 37.6 mgKOH/g, acid value 0.07 mgKOH/g): 150 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A2 The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 11.8. The reaction was stopped when the yield reached 60.5% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a4. The resulting polyisocyanate composition PA-a4 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these bonds. After that, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass.
[実施例5]
(ポリイソシアネート組成物PA-a5の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、2官能のポリカプロラクトンジオール(以下、「ポリエステルポリオールA3」と称する場合がある)(ダイセル社製、商品名「プラクセル240」、数平均分子量4000、水酸基価28.5mgKOH/g、酸価0.07mgKOH/g):200質量部(ポリエステルポリオールA3の水酸基に対するHDIのイソシアネート基のモル比が11.7となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が67.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a5を得た。得られたポリイソシアネート組成物PA-a5をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で固体であった。
[Example 5]
(Production of polyisocyanate composition PA-a5)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A3" ) (manufactured by Daicel Corporation, trade name “PLAXEL 240”, number average molecular weight 4000, hydroxyl value 28.5 mgKOH/g, acid value 0.07 mgKOH/g): 200 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A3 The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 11.7. The reaction was terminated when the yield reached 67.0% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a5. The resulting polyisocyanate composition PA-a5 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these bonds. After that, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass.
[実施例6]
(ポリイソシアネート組成物PA-a6の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、2-エチルヘキサノールを0.8質量部、ポリエステルポリオールA1:125質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が9.4となる量)を撹拌しながら、反応器内温度を100℃で保持した。収率が56.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a6を得た。得られたポリイソシアネート組成物PA-a6をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 6]
(Production of polyisocyanate composition PA-a6)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 0.8 parts by mass of 2-ethylhexanol, and 125 parts by mass of polyester polyol A1 ( The temperature in the reactor was kept at 100° C. while stirring the amount of the isocyanate groups of HDI to give a molar ratio of 9.4 for the isocyanate groups of the polyester polyol A1 to the hydroxyl groups. The reaction was terminated when the yield reached 56.0% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a6. The resulting polyisocyanate composition PA-a6 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these bonds. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[実施例7]
(ポリイソシアネート組成物PA-a7の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、1,3-ブタンジオール:0.5質量部、ポリエステルポリオールA1:118質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が10.0となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が54.7質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物の中間体を得た。得られたポリイソシアネート組成物の中間体を温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、100質量部に対し、ポリエステルポリオールA1:3質量部仕込み、100℃で2時間保持し、ポリイソシアネート組成物PA-a7を得た。得られたポリイソシアネート組成物PA-a7をH-NMR及びC-NMRで分析し、ウレタン基、アロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 7]
(Production of polyisocyanate composition PA-a7)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 0.5 parts by mass of 1,3-butanediol, and 118 parts by mass of polyester polyol A1. The temperature in the reactor was kept at 100° C. while stirring the part (the amount that the molar ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 is 10.0). The reaction was stopped when the yield reached 54.7% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition. The obtained intermediate of the polyisocyanate composition was placed in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser under a nitrogen stream. C. for 2 hours to obtain a polyisocyanate composition PA-a7. The resulting polyisocyanate composition PA-a7 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups. Among these bonds, the molar ratio of urethane groups was the largest. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[実施例8]
(ポリイソシアネート組成物PA-a8の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、3官能のポリカプロラクトンポリオール(以下、「ポリエステルポリオールB1」と称する場合がある)(ダイセル社製、商品名「プラクセル308」、数平均分子量850、水酸基価195.3mgKOH/g、酸価0.38mgKOH/g):37.5質量部(ポリエステルポリオールB1の水酸基に対するHDIのイソシアネート基のモル比が9.1となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が40.5質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a8を得た。得られたポリイソシアネート組成物PA-a8をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 8]
(Production of polyisocyanate composition PA-a8)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and trifunctional polycaprolactone polyol (hereinafter sometimes referred to as "polyester polyol B1"). ) (manufactured by Daicel Corporation, trade name “PLAXEL 308”, number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g): 37.5 parts by mass (HDI isocyanate for the hydroxyl group of polyester polyol B1 The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 9.1. The reaction was terminated when the yield reached 40.5% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a8. The resulting polyisocyanate composition PA-a8 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these groups. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[実施例9~12]
(ポリイソシアネート組成物PA-a9~PA-a12の製造)
 表2に示す配合となるようにした以外は実施例8と同様の方法を用いて、各ポリイソシアネート組成物を製造した。得られたポリイソシアネート組成物をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Examples 9 to 12]
(Production of polyisocyanate compositions PA-a9 to PA-a12)
Each polyisocyanate composition was produced using the same method as in Example 8 except that the formulation shown in Table 2 was used. The resulting polyisocyanate composition was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, with the urethane groups having the highest molar proportion of these bonds. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[実施例13]
(ポリイソシアネート組成物PA-a13の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、1,3-ブタンジオール:1.0質量部、ポリエステルポリオールA1:115質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が10.2となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が53.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a13を得た。得られたポリイソシアネート組成物PA-a13をH-NMR及びC-NMRで分析し、ウレタン結合及びアロファネート結合の存在を確認し、これらの結合の中でウレタン結合のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 13]
(Production of polyisocyanate composition PA-a13)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 1,3-butanediol: 1.0 parts by mass, and polyester polyol A1: 115 parts by mass. The temperature in the reactor was maintained at 100° C. while stirring the part (the amount that the molar ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was 10.2). The reaction was terminated when the yield reached 53.0% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a13. The resulting polyisocyanate composition PA-a13 was analyzed by H-NMR and C-NMR to confirm the presence of urethane bonds and allophanate bonds, and the molar ratio of urethane bonds was the largest among these bonds. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[実施例14]
(ポリイソシアネート組成物PA-a14の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、1,3-ブタンジオール:1.5質量部、ポリエステルポリオールA1:112質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が10.5となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が51.5質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物の中間体を得た。得られたポリイソシアネート組成物の中間体を温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、100質量部に対し、ポリエステルポリオールA1:3質量部、2-エチルヘキシルアシッドホスフェート(城北化学工業社製、商品名「JP508T」)を樹脂分に対して90質量ppm添加し、反応器内温度を95℃で120分間保持して、ポリイソシアネート成分PA-a14を得た。得られたポリイソシアネート組成物PA-a14をH-NMR及びC-NMRで分析し、ウレタン基、アロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 14]
(Production of polyisocyanate composition PA-a14)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 1.5 parts by mass of 1,3-butanediol, and 112 parts by mass of polyester polyol A1. The temperature in the reactor was maintained at 100° C. while stirring the part (the amount that the molar ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was 10.5). The reaction was terminated when the yield reached 51.5% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition. The obtained intermediate of the polyisocyanate composition was put in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser, under a nitrogen stream, and polyester polyol A1: 3 parts by weight per 100 parts by weight, 2- Ethylhexyl acid phosphate (manufactured by Johoku Kagaku Kogyo Co., Ltd., trade name “JP508T”) was added at 90 ppm by mass to the resin content, and the temperature inside the reactor was maintained at 95° C. for 120 minutes to obtain a polyisocyanate component PA-a14. rice field. The resulting polyisocyanate composition PA-a14 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups. Among these bonds, the molar ratio of urethane groups was the largest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[実施例15]
(ポリイソシアネート組成物PA-a15の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、1,3-ブタンジオール:2.0質量部、ポリエステルポリオールA1:130質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が9.1となる量)を撹拌しながら、反応器内温度を160℃で20分保持後、100℃に下げて保持した。収率が56.3質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物の中間体を得た。得られたポリイソシアネート組成物の中間体を温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、100質量部に対し、ポリエステルポリオールA1:2質量部、メチルポリアルキレングリコール(繰り返し単位n=15)0.2質量部を撹拌しながら、2-エチルヘキシルアシッドホスフェート(城北化学工業社製、商品名「JP508T」)を樹脂分に対して90質量ppm添加し、反応器内温度を95℃で120分間保持して、ポリイソシアネート成分PA-a15を得た。得られたポリイソシアネート組成物PA-a15をH-NMR及びC-NMRで分析し、ウレタン基、アロファネート基、ウレトジオン基、及びウレア基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 15]
(Production of polyisocyanate composition PA-a15)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 2.0 parts by mass of 1,3-butanediol, and 130 parts by mass of polyester polyol A1. The temperature in the reactor was kept at 160°C for 20 minutes and then lowered to 100°C while stirring the part (an amount that gives a molar ratio of 9.1 for the isocyanate group of HDI to the hydroxyl group of polyester polyol A1). The reaction was terminated when the yield reached 56.3% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition. The obtained intermediate of the polyisocyanate composition was placed in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser under a nitrogen stream. While stirring 0.2 parts by mass of alkylene glycol (repeating unit n = 15), 2-ethylhexyl acid phosphate (manufactured by Johoku Kagaku Kogyo Co., Ltd., trade name “JP508T”) was added at 90 mass ppm with respect to the resin content, and the reaction was performed. The temperature inside the vessel was maintained at 95° C. for 120 minutes to obtain a polyisocyanate component PA-a15. The resulting polyisocyanate composition PA-a15 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[実施例16]
(ポリイソシアネート組成物PA-a16の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、1,3-ブタンジオール:2.5質量部、ポリエステルポリオールA1:135質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が8.7となる量)を撹拌しながら、反応器内温度を160℃で20分保持後、100℃に下げて保持した。収率が58.7質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物の中間体を得た。得られたポリイソシアネート組成物の中間体を温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、100質量部に対し、ポリエステルポリオールA1:3質量部、2-エチルヘキシルアシッドホスフェート(城北化学工業社製、商品名「JP508T」)を樹脂分に対して90質量ppm添加し、反応器内温度を95℃で120分間保持して、ポリイソシアネート成分PA-a16を得た。得られたポリイソシアネート組成物PA-a16をH-NMR及びC-NMRで分析し、ウレタン基、アロファネート基、ウレトジオン基、及びウレア基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 16]
(Production of polyisocyanate composition PA-a16)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, 2.5 parts by mass of 1,3-butanediol, and 135 parts by mass of polyester polyol A1. The temperature in the reactor was maintained at 160° C. for 20 minutes and then lowered to 100° C. while stirring the part (an amount that gives a molar ratio of the isocyanate groups of HDI to the hydroxyl groups of polyester polyol A1 of 8.7). The reaction was terminated when the yield reached 58.7% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition. The obtained intermediate of the polyisocyanate composition was put in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser, under a nitrogen stream, and polyester polyol A1: 3 parts by weight per 100 parts by weight, 2- Ethylhexyl acid phosphate (manufactured by Johoku Kagaku Kogyo Co., Ltd., trade name “JP508T”) was added at 90 ppm by mass to the resin content, and the temperature in the reactor was maintained at 95 ° C. for 120 minutes to obtain a polyisocyanate component PA-a16. rice field. The resulting polyisocyanate composition PA-a16 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[実施例17]
(ポリイソシアネート組成物PA-a17の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、2官能のポリカプロラクトンジオール(以下、「ポリエステルポリオールA3」と称する場合がある)(ダイセル社製、商品名「プラクセル240」、数平均分子量4000、水酸基価28.5mgKOH/g、酸価0.07mgKOH/g):215質量部(ポリエステルポリオールA3の水酸基に対するHDIのイソシアネート基のモル比が10.9となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が69.0質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a17を得た。得られたポリイソシアネート組成物PA-a17をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの結合の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で固体であった。
[Example 17]
(Production of polyisocyanate composition PA-a17)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and bifunctional polycaprolactone diol (hereinafter sometimes referred to as "polyester polyol A3" ) (manufactured by Daicel Corporation, trade name “PLAXEL 240”, number average molecular weight 4000, hydroxyl value 28.5 mgKOH/g, acid value 0.07 mgKOH/g): 215 parts by mass (the ratio of isocyanate groups of HDI to the hydroxyl groups of polyester polyol A3 The temperature in the reactor was maintained at 100° C. while stirring the amount that gives a molar ratio of 10.9. The reaction was terminated when the yield reached 69.0% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a17. The resulting polyisocyanate composition PA-a17 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these bonds. Thereafter, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass.
[実施例18]
(ポリイソシアネート組成物PA-a18の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、ポリエステルポリオールA1:115質量部(ポリエステルポリオールA1の水酸基に対するHDIのイソシアネート基のモル比が10.2となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が52.2質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物の中間体を得た。得られたポリイソシアネート組成物の中間体を温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、100質量部に対し、1,3-ブタンジオール:1.0質量部添加し、反応器内温度を160℃で1時間保持して、ポリイソシアネート成分PA-a18を得た。得られたポリイソシアネート組成物PA-a18をH-NMR及びC-NMRで分析し、ウレタン基、アロファネート基、ウレトジオン基、及びウレア基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 18]
(Production of polyisocyanate composition PA-a18)
A four-necked flask equipped with a thermometer, stirring blades, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and polyester polyol A1: 115 parts by mass (the ratio of the isocyanate group of HDI to the hydroxyl group of polyester polyol A1 was The temperature in the reactor was maintained at 100° C. while stirring the amount that gives a molar ratio of 10.2. The reaction was terminated when the yield reached 52.2% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition. The obtained intermediate of the polyisocyanate composition was placed in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser under a nitrogen stream, and 100 parts by mass of 1,3-butanediol: 1.0 Parts by mass were added, and the temperature inside the reactor was maintained at 160° C. for 1 hour to obtain polyisocyanate component PA-a18. The resulting polyisocyanate composition PA-a18 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups, allophanate groups, uretdione groups, and urea groups. ratio was the highest. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[実施例19]
(ポリイソシアネート組成物PA-a19の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、3官能のポリカプロラクトンポリオール(以下、「ポリエステルポリオールB1」と称する場合がある)(ダイセル社製、商品名「プラクセル308」、数平均分子量850、水酸基価195.3mgKOH/g、酸価0.38mgKOH/g):35.0質量部(ポリエステルポリオールB1の水酸基に対するHDIのイソシアネート基のモル比が9.8となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が40.7質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物の中間体を得た。得られたポリイソシアネート組成物の中間体を温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、100質量部に対し、ポリエステルポリオールB1を4.0質量部添加し、2-エチルヘキシルアシッドホスフェート(城北化学工業社製、商品名「JP508T」)を樹脂分に対して90質量ppm添加し、反応器内温度を95℃で120分間保持して、ポリイソシアネート成分PA-a19を得た。得られたポリイソシアネート組成物PA-a19をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 19]
(Production of polyisocyanate composition PA-a19)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and trifunctional polycaprolactone polyol (hereinafter sometimes referred to as "polyester polyol B1"). ) (manufactured by Daicel Corporation, trade name “PLAXEL 308”, number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g): 35.0 parts by mass (HDI isocyanate for the hydroxyl group of polyester polyol B1 The temperature in the reactor was maintained at 100° C. while stirring the amount that would give a molar ratio of 9.8. The reaction was terminated when the yield reached 40.7% by mass. After filtering the reaction liquid, unreacted HDI was removed by a thin film distillation apparatus to obtain an intermediate of a polyisocyanate composition. 4.0 parts by mass of polyester polyol B1 was added to 100 parts by mass of the obtained intermediate of the polyisocyanate composition in a four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser under a nitrogen stream. Then, 2-ethylhexyl acid phosphate (manufactured by Johoku Kagaku Kogyo Co., Ltd., trade name “JP508T”) was added at 90 mass ppm with respect to the resin content, and the temperature in the reactor was maintained at 95 ° C. for 120 minutes to obtain a polyisocyanate component PA. -a19 was obtained. The resulting polyisocyanate composition PA-a19 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these groups. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[実施例20]
(ポリイソシアネート組成物PA-a20の製造)
 温度計、攪拌羽根、還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI:100質量部を仕込み、3官能のポリカプロラクトンポリオール(以下、「ポリエステルポリオールB1」と称する場合がある)(ダイセル社製、商品名「プラクセル308」、数平均分子量850、水酸基価195.3mgKOH/g、酸価0.38mgKOH/g):36.0質量部、と3官能のポリカプロラクトンポリオール(以下、B2:3官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル312」、数平均分子量1250、水酸基価136.1mgKOH/g):4.0質量部、(ポリエステルポリオールB1とB2の水酸基に対するHDIのイソシアネート基のモル比が8.8となる量)を撹拌しながら、反応器内温度を100℃に保持した。収率が41.7質量%になった時点で反応を停止した。反応液をろ過した後、未反応のHDIを薄膜蒸留装置により除去して、ポリイソシアネート組成物PA-a20を得た。得られたポリイソシアネート組成物PA-a20をH-NMR及びC-NMRで分析し、ウレタン基及びアロファネート基の存在を確認し、これらの基の中でウレタン基のモル比率が最も多かった。その後、得られたポリイソシアネート組成物に酢酸エチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Example 20]
(Production of polyisocyanate composition PA-a20)
A four-necked flask equipped with a thermometer, a stirring blade, and a reflux condenser was charged with 100 parts by mass of HDI under a nitrogen stream, and trifunctional polycaprolactone polyol (hereinafter sometimes referred to as "polyester polyol B1"). ) (manufactured by Daicel Corporation, trade name “PLAXEL 308”, number average molecular weight 850, hydroxyl value 195.3 mgKOH / g, acid value 0.38 mgKOH / g): 36.0 parts by mass, and trifunctional polycaprolactone polyol (hereinafter , B2: trifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name "PLAXEL 312", number average molecular weight 1250, hydroxyl value 136.1 mgKOH / g): 4.0 parts by mass, (relative to hydroxyl groups of polyester polyols B1 and B2 The temperature in the reactor was kept at 100° C. while stirring the amount of HDI whose isocyanate group molar ratio was 8.8. The reaction was terminated when the yield reached 41.7% by mass. After filtering the reaction solution, unreacted HDI was removed by a thin film distillation apparatus to obtain a polyisocyanate composition PA-a20. The resulting polyisocyanate composition PA-a20 was analyzed by H-NMR and C-NMR to confirm the presence of urethane groups and allophanate groups, and the molar ratio of urethane groups was the largest among these groups. After that, ethyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and it was liquid at 23°C.
[比較例1]
(ポリイソシアネート組成物PA-b1の製造)
 温度計、攪拌羽根及び還流冷却管を取り付けた四ツ口フラスコに、窒素気流下で、HDI 100質量部、及び、トリメチロールプロパン8.9質量部を仕込み、撹拌下反応器内温度を75℃に5時間保持しウレタン化反応を行った。反応液をろ過した後、薄膜蒸発缶を用いて未反応のHDIを除去して、イソシアヌレート型ポリイソシアネートを含む、ポリイソシアネート組成物PA-b1を得た。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Comparative Example 1]
(Production of polyisocyanate composition PA-b1)
100 parts by mass of HDI and 8.9 parts by mass of trimethylolpropane were charged in a four-necked flask equipped with a thermometer, a stirring blade and a reflux condenser under a nitrogen stream, and the temperature in the reactor was brought to 75°C while stirring. 5 hours to carry out the urethanization reaction. After filtering the reaction solution, unreacted HDI was removed using a thin film evaporator to obtain a polyisocyanate composition PA-b1 containing an isocyanurate-type polyisocyanate. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[比較例2~3]
(ポリイソシアネート組成物PA-b2~PA-b3の製造)
 表3に示す配合となるようにした以外は実施例1と同様の方法を用いて、各ポリイソシアネート組成物を得た。その後、得られたポリイソシアネート組成物に酢酸ブチルを加えて、固形分70質量%となるように希釈した状態は、23℃下で液体であった。
[Comparative Examples 2-3]
(Production of polyisocyanate compositions PA-b2 to PA-b3)
Each polyisocyanate composition was obtained in the same manner as in Example 1 except that the formulation shown in Table 3 was used. Then, butyl acetate was added to the obtained polyisocyanate composition to dilute it to a solid content of 70% by mass, and the resulting composition was liquid at 23°C.
[比較例4]
(ポリイソシアネート組成物PA-b4の製造)
 攪拌器、温度計、冷却管を取り付けた4つ口フラスコの内部を窒素置換し、HDI 1000gを仕込み、60℃で攪拌下、触媒としてテトラメチルアンモニウムカプリエート0.09g、及びイソブタノール1.3gを同時に加えた。4.5時間後、反応液の屈折率測定により設定した反応終点を確認し、リン酸0.2gを添加して反応を停止した。その後、反応液を濾過した後、未反応のHDIモノマーを薄膜蒸留装置により除去することにより、ポリイソシアネートを得た。得られたポリイソシアネートのイソシアネート基含有率は23.1質量%であり、イソシアネート平均官能基数は3.4であった。得られたポリイソシアネート組成物PA-b4をH-NMR及びC-NMRで分析し、イソシアヌレート基の存在を確認し、これらの基の中でイソシアヌレート基のモル比率が最も多かった。
[Comparative Example 4]
(Production of polyisocyanate composition PA-b4)
The inside of a four-necked flask equipped with a stirrer, a thermometer and a condenser tube was purged with nitrogen, charged with 1000 g of HDI, stirred at 60° C., and 0.09 g of tetramethylammonium capriate and 1.3 g of isobutanol were used as catalysts. was added at the same time. After 4.5 hours, the set reaction end point was confirmed by measuring the refractive index of the reaction solution, and 0.2 g of phosphoric acid was added to stop the reaction. Then, after filtering the reaction liquid, the polyisocyanate was obtained by removing the unreacted HDI monomer with a thin-film distillation apparatus. The resulting polyisocyanate had an isocyanate group content of 23.1% by mass and an average isocyanate functional group number of 3.4. The resulting polyisocyanate composition PA-b4 was analyzed by H-NMR and C-NMR to confirm the presence of isocyanurate groups, and among these groups, the isocyanurate groups had the highest molar ratio.
[比較例5]
(ポリイソシアネート組成物PA-b5の製造)
攪拌器、温度計、冷却管を取り付けた4つ口フラスコの内部を窒素置換し、HDI 1000g、水7.2g、酢酸メチルソルブ600gを常温で混合し、140℃で120分間常圧下で反応させた。その後160℃で1時間反応させた。沈殿物や濁りは見られなかった。その後、反応液を濾過した後、未反応のHDIモノマーと溶媒を薄膜蒸留装置により除去することにより、ポリイソシアネートを得た。得られたポリイソシアネートのイソシアネート基含有率は23.4質量%であり、イソシアネート平均官能基数は3.4であった。得られたポリイソシアネート組成物PA-b5をH-NMR及びC-NMRで分析し、ビウレットの存在を確認した。
[Comparative Example 5]
(Production of polyisocyanate composition PA-b5)
The inside of a four-necked flask equipped with a stirrer, a thermometer, and a cooling tube was replaced with nitrogen, and 1000 g of HDI, 7.2 g of water, and 600 g of methylsorb acetate were mixed at room temperature and reacted at 140° C. for 120 minutes under normal pressure. . After that, the mixture was reacted at 160° C. for 1 hour. No sediment or turbidity was observed. Thereafter, after filtering the reaction solution, unreacted HDI monomer and solvent were removed by a thin-film distillation apparatus to obtain a polyisocyanate. The resulting polyisocyanate had an isocyanate group content of 23.4% by mass and an average isocyanate functional group number of 3.4. The resulting polyisocyanate composition PA-b5 was analyzed by H-NMR and C-NMR to confirm the presence of biuret.
 実施例及び比較例で得られたポリイソシアネート組成物の物性、及び上記記載の方法による評価の結果を以下の表1~表3に示す。なお、比較例1において、伸び率140%時の応力の測定時に、伸び率140%まで伸びず、破断点応力73MPaであり、測定不可であったことから、表中の記載を「-」とした。また、比較例4,5も同様である。
 また、表1~表3において、各略称は以下の化合物を意味する。
Tables 1 to 3 below show the physical properties of the polyisocyanate compositions obtained in Examples and Comparative Examples, and the results of evaluation by the methods described above. In Comparative Example 1, when the stress at the elongation rate of 140% was measured, the elongation rate was not elongated until the elongation rate was 140%, the breaking point stress was 73 MPa, and the measurement was impossible. bottom. Moreover, the comparative examples 4 and 5 are also the same.
In Tables 1 to 3, each abbreviation means the following compounds.
(ポリエステルポリオール(A))
 A1:2官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル220CPT」、数平均分子量2000、水酸基価56.6mgKOH/g、酸価0.02mgKOH/g
 A2:2官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル230」、数平均分子量3000、水酸基価37.6mgKOH/g、酸価0.07mgKOH/g
 A3:2官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル240」、数平均分子量4000、水酸基価28.5mgKOH/g、酸価0.07mgKOH/g
(Polyester polyol (A))
A1: Bifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name "PLAXEL 220CPT", number average molecular weight 2000, hydroxyl value 56.6 mgKOH/g, acid value 0.02 mgKOH/g
A2: Bifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name "PLAXEL 230", number average molecular weight 3000, hydroxyl value 37.6 mgKOH/g, acid value 0.07 mgKOH/g
A3: Bifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name "PLAXEL 240", number average molecular weight 4000, hydroxyl value 28.5 mgKOH/g, acid value 0.07 mgKOH/g
(その他の2価のポリオール(A’))
 A’1:ポリテトラメチレンエーテルグリコール、三菱化学(株)製、商品名「PTMG1000」、数平均分子量1000
 A’2:ポリエーテルポリオール、旭硝子(株)製、商品名「Excenol2020」、数平均分子量2000
(Other divalent polyol (A'))
A'1: Polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation, trade name "PTMG1000", number average molecular weight 1000
A'2: Polyether polyol, manufactured by Asahi Glass Co., Ltd., trade name "Excenol 2020", number average molecular weight 2000
(ポリエステルポリオール(B))
 B1:3官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル308」、数平均分子量850、水酸基価195.3mgKOH/g、酸価0.38mgKOH/g
 B2:3官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル312」、数平均分子量1250、水酸基価136.1mgKOH/g、酸価0.38mgKOH/g
 B3:3官能のポリカプロラクトンポリオール、ダイセル社製、商品名「プラクセル305」、数平均分子量550
(Polyester polyol (B))
B1: trifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name "PLAXEL 308", number average molecular weight 850, hydroxyl value 195.3 mgKOH/g, acid value 0.38 mgKOH/g
B2: Trifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name "PLAXEL 312", number average molecular weight 1250, hydroxyl value 136.1 mgKOH/g, acid value 0.38 mgKOH/g
B3: trifunctional polycaprolactone polyol, manufactured by Daicel Corporation, trade name “PLAXEL 305”, number average molecular weight 550
(その他の3価のポリオール(B’))
 B’1:トリメチロールプロパン(TMP)
(Other trivalent polyols (B'))
B'1: trimethylolpropane (TMP)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表3に示すように、脂肪族又は脂環族ジイソシアネートと、特定の物性を有するポリエステルポリオール(A)又はポリエステルポリオール(B)と、から誘導され、ポリエステルポリオールの水酸基に対するジイソシアネートのイソシアネート基のモル比が特定の数値範囲内であり、且つ、重量平均分子量が特定の数値範囲内であるポリイソシアネート組成物PA-a1~PA-a20(実施例1~20)では、ポリイソシアネート組成物単独を硬化してなる硬化膜の硬度が低く、柔軟性及び透明性が良好であり、140%伸び率の時の応力が低く、伸び率及び引張破断応力が高く、且つ、耐屈曲性に優れる硬化膜、並びに、粘着力、硬化性及び透明性に優れる粘着性樹脂シートが得られた。 As shown in Tables 1 to 3, it is derived from an aliphatic or alicyclic diisocyanate and a polyester polyol (A) or polyester polyol (B) having specific physical properties, and the isocyanate group of the diisocyanate relative to the hydroxyl group of the polyester polyol In the polyisocyanate compositions PA-a1 to PA-a20 (Examples 1 to 20) having a molar ratio of within a specific numerical range and a weight average molecular weight within a specific numerical range, the polyisocyanate composition alone The cured film obtained by curing has low hardness, good flexibility and transparency, low stress at 140% elongation, high elongation and tensile breaking stress, and excellent bending resistance Curing A film and an adhesive resin sheet excellent in adhesive strength, curability and transparency were obtained.
 これに対して、表4に示すように、ジイソシアネートと、上記物性を有さないポリオールとから誘導されたポリイソシアネート組成物PA-b1~PA-b5(比較例1~5)では、ポリイソシアネート組成物単独を硬化してなる硬化膜1の硬度及び透明性、硬化膜2としたときの140%伸び率の時の応力、伸び率、及び引張破断応力、並びに、粘着性樹脂シートとしたときの粘着性、硬化性及び透明性の全てに優れるものは得られなかった。 On the other hand, as shown in Table 4, the polyisocyanate compositions PA-b1 to PA-b5 (Comparative Examples 1 to 5) derived from a diisocyanate and a polyol that does not have the above physical properties, the polyisocyanate composition The hardness and transparency of the cured film 1 obtained by curing the product alone, the stress, elongation rate, and tensile breaking stress at 140% elongation when used as the cured film 2, and when used as an adhesive resin sheet A product excellent in all of adhesiveness, curability and transparency was not obtained.
 本実施形態のポリイソシアネート組成物によれば、ポリイソシアネート組成物単独を硬化してなる硬化膜の柔軟性及び透明性が良好で、且つ、伸び率、及び引張破断応力に優れる硬化膜、並びに、粘着力、硬化性及び透明性に優れる粘着性樹脂組成物及び粘着性樹脂シートが得られるポリイソシアネート組成物を提供することができる。また、本発明は上記粘着性樹脂シートを備える積層フィルムを提供することができる。 According to the polyisocyanate composition of the present embodiment, the cured film obtained by curing the polyisocyanate composition alone has good flexibility and transparency, and has excellent elongation and tensile breaking stress. It is possible to provide a polyisocyanate composition from which an adhesive resin composition and an adhesive resin sheet having excellent adhesive strength, curability and transparency can be obtained. Further, the present invention can provide a laminated film comprising the adhesive resin sheet.

Claims (23)

  1.  脂肪族ジイソシアネート及び脂環族ジイソシアネートからなる群より選ばれる少なくとも1種のジイソシアネートと、
     数平均分子量Mnが500以上の2官能のポリエステルポリオール(A)及び数平均分子量Mnが500以上の3官能以上のポリエステルポリオール(B)からなる群より選ばれる少なくとも1種のポリエステルポリオールと、
    から誘導されるポリイソシアネート組成物であって、
     前記ポリエステルポリオールの水酸基に対する前記ジイソシアネートのイソシアネート基のモル比が1.5以上30.0以下であり、
     前記ポリイソシアネート組成物の重量平均分子量が1400以上800000以下である、ポリイソシアネート組成物。
    at least one diisocyanate selected from the group consisting of aliphatic diisocyanates and alicyclic diisocyanates;
    at least one polyester polyol selected from the group consisting of a bifunctional polyester polyol (A) having a number average molecular weight Mn of 500 or more and a trifunctional or higher polyester polyol (B) having a number average molecular weight Mn of 500 or more;
    A polyisocyanate composition derived from
    The molar ratio of the isocyanate groups of the diisocyanate to the hydroxyl groups of the polyester polyol is 1.5 or more and 30.0 or less,
    A polyisocyanate composition, wherein the weight average molecular weight of the polyisocyanate composition is 1400 or more and 800000 or less.
  2.  前記ポリイソシアネート組成物の平均イソシアネート官能基数が2.0以上6.0以下である、請求項1に記載のポリイソシアネート組成物。 The polyisocyanate composition according to claim 1, wherein the polyisocyanate composition has an average isocyanate functional group number of 2.0 or more and 6.0 or less.
  3.  前記ポリイソシアネート組成物のイソシアネート基含有率が1.0質量%以上8.7質量%以下である、請求項1又は2に記載のポリイソシアネート組成物。 The polyisocyanate composition according to claim 1 or 2, wherein the polyisocyanate composition has an isocyanate group content of 1.0% by mass or more and 8.7% by mass or less.
  4.  前記ジイソシアネート100質量部に対して、前記ポリエステルポリオール(A)の含有量が0.1質量部以上900質量部以下であり、
     前記ジイソシアネート100質量部に対して、前記ポリエステルポリオール(B)の含有量が0.1質量部以上900質量部以下である、請求項1又は2に記載のポリイソシアネート組成物。
    The content of the polyester polyol (A) is 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the diisocyanate,
    The polyisocyanate composition according to claim 1 or 2, wherein the content of said polyester polyol (B) is 0.1 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of said diisocyanate.
  5.  前記ポリエステルポリオールがポリカプロラクトンポリオールである、請求項1又は2に記載のポリイソシアネート組成物。 The polyisocyanate composition according to claim 1 or 2, wherein the polyester polyol is polycaprolactone polyol.
  6.  ガラス上に塗工し、23℃、65%湿度環境下で168時間保管後に形成された膜厚40μmの硬化膜の、23℃環境下でのケーニッヒ硬度が60回以下である、請求項1又は2に記載のポリイソシアネート組成物。 Claim 1 or claim 1, wherein a cured film having a thickness of 40 μm formed after coating on glass and storing in an environment of 23° C. and 65% humidity for 168 hours has a Konig hardness of 60 times or less in an environment of 23° C. 2. The polyisocyanate composition according to 2.
  7.  膜厚40μmの前記硬化膜をヘイズ値が0.1%であるガラス上に貼り付けた状態で、ヘイズメーターで測定されたヘイズ値が3.0%以下である、請求項6に記載のポリイソシアネート組成物。 7. The poly according to claim 6, wherein the haze value measured with a haze meter is 3.0% or less when the cured film having a thickness of 40 μm is attached on a glass having a haze value of 0.1%. Isocyanate composition.
  8.  請求項1又は2に記載のポリイソシアネート組成物と、ガラス転移温度が0℃以上100℃以下であるポリオールと、を、含む樹脂組成物の硬化膜であって、
     速度20mm/分で測定された引張試験における伸び率が140%以上であり、
     伸び率140%時の応力が25.0MPa以下であり、且つ、
     引張破断応力が前記伸び率140%時の応力の1.2倍以上である、硬化膜。
    A cured film of a resin composition containing the polyisocyanate composition according to claim 1 or 2 and a polyol having a glass transition temperature of 0 ° C. or higher and 100 ° C. or lower,
    The elongation in a tensile test measured at a speed of 20 mm / min is 140% or more,
    The stress at elongation of 140% is 25.0 MPa or less, and
    A cured film having a tensile stress at break of 1.2 times or more of the stress at elongation of 140%.
  9.  前記ポリオール100質量部に対して、前記ポリイソシアネート組成物の含有量が0.01質量部以上200質量部以下である、請求項8に記載の硬化膜。 The cured film according to claim 8, wherein the content of the polyisocyanate composition is 0.01 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyol.
  10.  請求項1又は2に記載のポリイソシアネート組成物と、ガラス転移温度が0.0℃以下の架橋性官能基含有ポリマーと、を含む、粘着性樹脂組成物。 An adhesive resin composition comprising the polyisocyanate composition according to claim 1 or 2 and a crosslinkable functional group-containing polymer having a glass transition temperature of 0.0°C or less.
  11.  前記架橋性官能基含有ポリマーがアクリル系ポリマー又はウレタン系ポリマーである、請求項10に記載の粘着性樹脂組成物。 The adhesive resin composition according to claim 10, wherein the crosslinkable functional group-containing polymer is an acrylic polymer or a urethane polymer.
  12.  前記架橋性官能基含有ポリマーが、架橋性官能基を有する重合性(メタ)アクリルモノマーと、エステル基末端の炭素数が1以上18以下である(メタ)アクリル酸エステルモノマーと、を共重合してなり、且つ、ガラス転移温度Tgが-75.0℃以上0.0℃以下である、請求項10に記載の粘着性樹脂組成物。 The crosslinkable functional group-containing polymer is obtained by copolymerizing a polymerizable (meth)acrylic monomer having a crosslinkable functional group and a (meth)acrylic acid ester monomer having 1 or more and 18 or less carbon atoms at the end of the ester group. 11. The adhesive resin composition according to claim 10, which consists of a glass transition temperature Tg of −75.0° C. or more and 0.0° C. or less.
  13.  前記架橋性官能基含有ポリマーの重量平均分子量が1.0×10以上5.0×10以下である、請求項10に記載の粘着性樹脂組成物。 The adhesive resin composition according to claim 10, wherein the crosslinkable functional group-containing polymer has a weight average molecular weight of 1.0 x 105 or more and 5.0 x 106 or less.
  14.  前記架橋性官能基が、水酸基、エポキシ基、オキセタン基、カルボキシ基、ビニル基、及びアミノ基からなる群より選ばれる1種以上である、請求項10に記載の粘着性樹脂組成物。 The adhesive resin composition according to claim 10, wherein the crosslinkable functional group is one or more selected from the group consisting of hydroxyl group, epoxy group, oxetane group, carboxy group, vinyl group, and amino group.
  15.  前記架橋性官能基含有ポリマー100質量部に対して、前記ポリイソシアネート組成物の含有量が0.01質量部以上20.00質量部以下である、請求項10に記載の粘着性樹脂組成物。 The adhesive resin composition according to claim 10, wherein the content of the polyisocyanate composition is 0.01 parts by mass or more and 20.00 parts by mass or less with respect to 100 parts by mass of the crosslinkable functional group-containing polymer.
  16.  請求項10に記載の粘着性樹脂組成物を熱又は光によって硬化させてなる、粘着性樹脂シート。 An adhesive resin sheet obtained by curing the adhesive resin composition according to claim 10 with heat or light.
  17.  前記粘着性樹脂シートの厚みが1μm以上1000μm以下である、請求項16に記載の粘着性樹脂シート。 The adhesive resin sheet according to claim 16, wherein the adhesive resin sheet has a thickness of 1 μm or more and 1000 μm or less.
  18.  ゲル分率が20.0質量%以上99.9質量%以下である、請求項16に記載の粘着性樹脂シート。 The adhesive resin sheet according to claim 16, wherein the gel fraction is 20.0% by mass or more and 99.9% by mass or less.
  19.  23℃、300mm/分の速度で測定された180度ピール粘着力が0.05N/20mm以上65.00N/20mm以下である、請求項16に記載の粘着性樹脂シート。 The adhesive resin sheet according to claim 16, wherein the 180 degree peel adhesive strength measured at 23°C and a speed of 300 mm/min is 0.05 N/20 mm or more and 65.00 N/20 mm or less.
  20.  厚み50μmの粘着性樹脂シートをヘイズ値が0.1%であるガラス上に貼り付けて、ヘイズメーターで測定されたヘイズ値が2.0%以下である、請求項16に記載の粘着性樹脂シート。 17. The adhesive resin according to claim 16, wherein an adhesive resin sheet having a thickness of 50 μm is attached on glass having a haze value of 0.1%, and the haze value measured with a haze meter is 2.0% or less. sheet.
  21.  請求項16に記載の粘着性樹脂シートの少なくとも片面にフィルム基材が積層されている、積層フィルム。 A laminated film in which a film substrate is laminated on at least one side of the adhesive resin sheet according to claim 16.
  22.  前記フィルム基材が、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系、トリアセチルセルロース系樹脂からなる群から選ばれる少なくとも1つである、請求項21に記載の積層フィルム。 The film substrate is a polyester-based resin, an acetate-based resin, a polyethersulfone-based resin, a polycarbonate-based resin, a polyamide-based resin, a polyimide-based resin, a polyolefin-based resin, a (meth) acrylic-based resin, a polyvinyl chloride-based resin, a poly The laminated film according to claim 21, which is at least one selected from the group consisting of vinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and triacetylcellulose resins.
  23.  前記積層フィルムが光学用途に用いられる、請求項21に記載の積層フィルム。 The laminated film according to claim 21, wherein the laminated film is used for optical purposes.
PCT/JP2022/030544 2021-08-10 2022-08-10 Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet and multilayer film WO2023017835A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023541457A JPWO2023017835A1 (en) 2021-08-10 2022-08-10
KR1020247003829A KR20240028493A (en) 2021-08-10 2022-08-10 Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet and laminated film
CN202280055540.2A CN117794973A (en) 2021-08-10 2022-08-10 Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet, and laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130608 2021-08-10
JP2021130608 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023017835A1 true WO2023017835A1 (en) 2023-02-16

Family

ID=85200612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030544 WO2023017835A1 (en) 2021-08-10 2022-08-10 Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet and multilayer film

Country Status (4)

Country Link
JP (1) JPWO2023017835A1 (en)
KR (1) KR20240028493A (en)
CN (1) CN117794973A (en)
WO (1) WO2023017835A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128518A (en) * 1984-07-20 1986-02-08 Asahi Chem Ind Co Ltd Production of prepolymer for ductile polyurethane coating
JPS63199720A (en) * 1987-02-10 1988-08-18 バイエル・アクチエンゲゼルシヤフト(番地なし) Production of prepolymer containing isocyanate group, prepolymer produced and its use
JP2007523227A (en) * 2004-01-14 2007-08-16 サイテック サーフェース スペシャリティーズ、エス.エイ. adhesive
JP2016089034A (en) * 2014-11-05 2016-05-23 Dic株式会社 Polyester polyisocyanate, curing agent for two-liquid type urethane adhesive using the same, two-liquid type urethane adhesive, laminate film and back sheet for solar battery
JP2017170658A (en) * 2016-03-19 2017-09-28 三菱ケミカル株式会社 Laminate film
WO2018163959A1 (en) * 2017-03-07 2018-09-13 旭化成株式会社 Polyaspartic coating composition, coating film, and coated article
JP2020090588A (en) * 2018-12-04 2020-06-11 旭化成株式会社 Polyisocyanate composition, coating composition, and coating film
JP2020139017A (en) * 2019-02-27 2020-09-03 旭化成株式会社 Polyisocyanate composition, coating composition and coating film
WO2021020534A1 (en) * 2019-08-01 2021-02-04 旭化成株式会社 Block polyisocyanate composition, one-component coating composition, coating film, and coated article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021718A (en) 1988-02-01 1990-01-08 Asahi Chem Ind Co Ltd Urethane prepolymer and polyurethane coating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128518A (en) * 1984-07-20 1986-02-08 Asahi Chem Ind Co Ltd Production of prepolymer for ductile polyurethane coating
JPS63199720A (en) * 1987-02-10 1988-08-18 バイエル・アクチエンゲゼルシヤフト(番地なし) Production of prepolymer containing isocyanate group, prepolymer produced and its use
JP2007523227A (en) * 2004-01-14 2007-08-16 サイテック サーフェース スペシャリティーズ、エス.エイ. adhesive
JP2016089034A (en) * 2014-11-05 2016-05-23 Dic株式会社 Polyester polyisocyanate, curing agent for two-liquid type urethane adhesive using the same, two-liquid type urethane adhesive, laminate film and back sheet for solar battery
JP2017170658A (en) * 2016-03-19 2017-09-28 三菱ケミカル株式会社 Laminate film
WO2018163959A1 (en) * 2017-03-07 2018-09-13 旭化成株式会社 Polyaspartic coating composition, coating film, and coated article
JP2020090588A (en) * 2018-12-04 2020-06-11 旭化成株式会社 Polyisocyanate composition, coating composition, and coating film
JP2020139017A (en) * 2019-02-27 2020-09-03 旭化成株式会社 Polyisocyanate composition, coating composition and coating film
WO2021020534A1 (en) * 2019-08-01 2021-02-04 旭化成株式会社 Block polyisocyanate composition, one-component coating composition, coating film, and coated article

Also Published As

Publication number Publication date
CN117794973A (en) 2024-03-29
KR20240028493A (en) 2024-03-05
TW202313748A (en) 2023-04-01
JPWO2023017835A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
TWI512075B (en) Composition of photohardenable transparent adhesive sheet
CN110872483B (en) Active energy ray-curable adhesive composition, cured product, and adhesive sheet
KR101598160B1 (en) Active-energy-ray-curable resin composition, adhesive, and laminate film
TWI702240B (en) Urethane (meth)acrylate resin and laminated film
WO2023017835A1 (en) Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet and multilayer film
KR102494970B1 (en) Adhesive Composition and Adhesive Sheet Using the Same
JP6705276B2 (en) Urethane (meth)acrylate resin and laminated film
TWI839801B (en) Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet, and laminated film
KR102446328B1 (en) Adhesive Composition and Adhesive Sheet Using the Same
US20220162360A1 (en) Curable Composition
TWI663471B (en) Active energy ray-curable resin composition, cured product, adhesive, and laminated film
JP2022156488A (en) Pressure sensitive adhesive resin composition for surface-protecting film and surface-protecting film
JP7298108B1 (en) Active energy ray-polymerizable resin composition and laminate
JP2022159124A (en) Optical resin composition and optical resin sheet
JP2023171322A (en) resin film
JP7267531B1 (en) Optical adhesives and adhesive sheets
JP7491457B1 (en) Active energy ray curable adhesive and laminate
JP2023115917A (en) Optical resin composition, and optical resin sheet
JP2023115901A (en) Optical resin composition, and optical resin sheet
JP2022081414A (en) Polyisocyanate composition, cured film, coating film, adhesive composition and adhesive sheet
KR102668471B1 (en) Urethane (meth)acrylate resin and laminated film
JP6718131B2 (en) Urethane (meth)acrylate resin and laminated film
JP2017002104A (en) Urethane (meth)acrylate resin and laminated film
JP6721854B2 (en) Urethane (meth)acrylate resin and laminated film
JP2023170006A (en) Adhesive resin composition, and adhesive resin sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541457

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247003829

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003829

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280055540.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE