WO2023017707A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023017707A1
WO2023017707A1 PCT/JP2022/027699 JP2022027699W WO2023017707A1 WO 2023017707 A1 WO2023017707 A1 WO 2023017707A1 JP 2022027699 W JP2022027699 W JP 2022027699W WO 2023017707 A1 WO2023017707 A1 WO 2023017707A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
semiconductor device
semiconductor
semiconductor elements
thickness direction
Prior art date
Application number
PCT/JP2022/027699
Other languages
English (en)
French (fr)
Inventor
昂平 谷川
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN202280054464.3A priority Critical patent/CN117795675A/zh
Priority to DE112022003321.5T priority patent/DE112022003321T5/de
Priority to JP2023541380A priority patent/JPWO2023017707A1/ja
Publication of WO2023017707A1 publication Critical patent/WO2023017707A1/ja
Priority to US18/532,726 priority patent/US20240234361A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0605Shape
    • H01L2224/06051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/40175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49527Additional leads the additional leads being a multilayer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Definitions

  • the present disclosure relates to semiconductor devices.
  • Patent Document 1 discloses a conventional semiconductor device (power module).
  • a semiconductor device described in Patent Document 1 includes a semiconductor element, a support substrate, and a sealing resin.
  • the semiconductor element is, for example, an IGBT made of Si (silicon).
  • the support substrate supports the semiconductor element.
  • the support substrate includes an insulating base material and conductor layers laminated on the main surface and the back surface of the base material.
  • a base material consists of ceramics, for example.
  • Each conductor layer is made of Cu (copper), for example, and a semiconductor element is joined to one conductor layer.
  • the semiconductor element is covered with a sealing resin.
  • a semiconductor device provided by the present disclosure includes: a conductive substrate having a principal surface facing one side in a thickness direction and a back surface facing the opposite side of the principal surface; one first semiconductor element, a first conductive member forming a path of a main circuit current switched by the first semiconductor element, at least part of the conductive substrate, the first semiconductor element and the first conductive member
  • the conductive substrate includes a first conductive portion and a second conductive portion spaced apart from each other on one side and the other side in a first direction orthogonal to the thickness direction.
  • the first semiconductor element is electrically connected to the first conductive portion
  • the first conductive member is connected to both the first conductive portion and the second conductive portion when viewed in the thickness direction. It includes a first portion that overlaps and is positioned away from the main surface in the thickness direction to one side in the thickness direction, the first portion having a first opening.
  • the semiconductor device of the present disclosure for example, it is possible to provide a structure that is preferable for suppressing non-filling of the sealing resin and allowing a large current to flow.
  • FIG. 1 is a perspective view showing a semiconductor device according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a perspective view of FIG. 1 with the sealing resin omitted.
  • FIG. 3 is a perspective view of FIG. 2 with the first conductive member omitted.
  • 4 is a plan view of the semiconductor device shown in FIG. 1.
  • FIG. FIG. 5 is a diagram showing the encapsulating resin in imaginary lines in the plan view of FIG.
  • FIG. 6 is a right side view of the semiconductor device shown in FIG. 1, showing the encapsulating resin in imaginary lines.
  • FIG. 7 is a partially enlarged view enlarging a part of FIG. 5, omitting the sealing resin.
  • FIG. 8 is a plan view of the second conducting member.
  • FIG. 9 is a plan view of FIG.
  • FIG. 10 is a diagram showing the first conducting member in imaginary lines in the plan view of FIG. 9.
  • FIG. 11 is a right side view of the semiconductor device shown in FIG. 1.
  • FIG. 12 is a bottom view of the semiconductor device shown in FIG. 1.
  • FIG. 13 is a cross-sectional view along line XIII-XIII in FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 5.
  • FIG. 15 is a partially enlarged view enlarging a part of FIG. 14.
  • FIG. FIG. 16 is a partially enlarged view enlarging a part of FIG. 14.
  • FIG. 17 is a partially enlarged view enlarging a part of FIG. 14.
  • FIG. 18 is a cross-sectional view along line XVIII-XVIII in FIG. 19 is a cross-sectional view along line XIX-XIX in FIG. 5.
  • FIG. FIG. 20 is a cross-sectional view along line XX-XX in FIG.
  • FIG. 21 is a plan view similar to FIG. 7 (with sealing resin omitted) showing a semiconductor device according to a modification of the first embodiment.
  • FIG. 22 is a plan view showing a semiconductor device according to a modification of the first embodiment, omitting a sealing resin and a second conductive member.
  • 23 is a cross-sectional view taken along line XXIII-XXIII of FIG. 21.
  • FIG. FIG. 24 is a partially enlarged view enlarging a part of FIG. 23.
  • a certain entity A is formed on a certain entity B” and “a certain entity A is formed on a certain entity B” mean “a certain entity A is formed on a certain entity B”. It includes "being directly formed in entity B” and “being formed in entity B while another entity is interposed between entity A and entity B”.
  • ⁇ an entity A is placed on an entity B'' and ⁇ an entity A is located on an entity B'' mean ⁇ an entity A is located on an entity B.'' It includes "directly placed on B” and "some entity A is placed on an entity B while another entity is interposed between an entity A and an entity B.”
  • ⁇ an object A is located on an object B'' means ⁇ an object A is adjacent to an object B and an object A is positioned on an object B. and "the thing A is positioned on the thing B while another thing is interposed between the thing A and the thing B".
  • ⁇ an object A overlaps an object B when viewed in a certain direction'' means ⁇ an object A overlaps all of an object B'' and ⁇ an object A overlaps an object B.'' It includes "overlapping a part of a certain thing B".
  • the semiconductor device A1 of this embodiment includes a plurality of first semiconductor elements 10A, a plurality of second semiconductor elements 10B, a conductive substrate 2, a support substrate 3, a first terminal 41, a second terminal 42, a plurality of third terminals 43, A fourth terminal 44 , a plurality of control terminals 45 , a control terminal support 48 , a first conductive member 5 , a second conductive member 6 and a sealing resin 8 are provided.
  • FIG. 1 is a perspective view showing the semiconductor device A1.
  • FIG. 2 is a perspective view of FIG. 1 with the sealing resin 8 omitted.
  • FIG. 3 is a perspective view of FIG. 2 with the first conducting member 5 omitted.
  • FIG. 4 is a plan view showing the semiconductor device A1.
  • FIG. 5 is a diagram showing the sealing resin 8 in imaginary lines in the plan view of FIG.
  • FIG. 6 is a right side view of the semiconductor device A1, showing the sealing resin 8 in phantom lines.
  • FIG. 7 is a partially enlarged view enlarging a part of FIG. 5, and the sealing resin 8 is omitted.
  • 8 is a plan view of the second conducting member 6.
  • FIG. FIG. 9 is a plan view of FIG.
  • FIG. 10 is a diagram showing the first conductive member 5 in imaginary lines in the plan view of FIG.
  • FIG. 11 is a right side view of the semiconductor device A1.
  • FIG. 12 is a bottom view of the semiconductor device A1.
  • FIG. 13 is a cross-sectional view along line XIII-XIII in FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 5.
  • FIG. 15 to 17 are partially enlarged views enlarging a part of FIG. 14.
  • FIG. FIG. 18 is a cross-sectional view along line XVIII-XVIII in FIG. 19 is a cross-sectional view along line XIX-XIX in FIG. 5.
  • FIG. FIG. 20 is a cross-sectional view along line XX-XX in FIG.
  • the z-direction is, for example, the thickness direction of the semiconductor device A1.
  • the x direction is the horizontal direction in the plan view (see FIG. 4) of the semiconductor device A1.
  • the y direction is the vertical direction in the plan view (see FIG. 4) of the semiconductor device A1.
  • "planar view” means when viewed in the z direction.
  • the x-direction is an example of a "first direction” and the y-direction is an example of a "second direction.”
  • Each of the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B is an electronic component that serves as the functional core of the semiconductor device A1.
  • a constituent material of each first semiconductor element 10A and each second semiconductor element 10B is a semiconductor material mainly including SiC (silicon carbide), for example. This semiconductor material is not limited to SiC, and may be Si (silicon), GaN (gallium nitride), C (diamond), or the like.
  • Each first semiconductor element 10A and each second semiconductor element 10B is, for example, a power semiconductor chip having a switching function such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the first semiconductor element 10A and the second semiconductor element 10B are MOSFETs, but are not limited to this, and other transistors such as IGBTs (Insulated Gate Bipolar Transistors) There may be.
  • Each first semiconductor element 10A and each second semiconductor element 10B are the same element.
  • Each first semiconductor element 10A and each second semiconductor element 10B is, for example, an n-channel MOSFET, but may be a p-channel MOSFET.
  • the first semiconductor element 10A and the second semiconductor element 10B each have an element main surface 101 and an element rear surface 102, as shown in FIGS.
  • the element main surface 101 and the element back surface 102 are separated in the z direction.
  • the element main surface 101 faces the z2 direction
  • the element back surface 102 faces the z1 direction.
  • the semiconductor device A1 includes four first semiconductor elements 10A and four second semiconductor elements 10B. It is not limited to the configuration, and can be changed as appropriate according to the performance required of the semiconductor device A1. In the examples of FIGS. 9 and 10, four first semiconductor elements 10A and four second semiconductor elements 10B are arranged. The number of the first semiconductor elements 10A and the number of the second semiconductor elements 10B may be two or three, or may be five or more. The number of first semiconductor elements 10A and the number of second semiconductor elements 10B may be equal or different. The number of first semiconductor elements 10A and second semiconductor elements 10B is determined by the current capacity handled by semiconductor device A1.
  • the semiconductor device A1 is configured, for example, as a half-bridge switching circuit.
  • the plurality of first semiconductor elements 10A form an upper arm circuit of the semiconductor device A1
  • the plurality of second semiconductor elements 10B form a lower arm circuit.
  • the plurality of first semiconductor elements 10A are connected in parallel
  • the plurality of second semiconductor elements 10B are connected in parallel.
  • Each first semiconductor element 10A and each second semiconductor element 10B are connected in series to form a bridge layer.
  • Each of the plurality of first semiconductor elements 10A is mounted on the conductive substrate 2, as shown in FIGS. 9, 10 and 20.
  • the plurality of first semiconductor elements 10A are arranged, for example, in the y direction and are separated from each other.
  • Each first semiconductor element 10A is electrically connected to a conductive substrate 2 (a first conductive portion 2A to be described later) via a conductive bonding material 19 .
  • the element rear surface 102 faces the first conductive portion 2A.
  • Each of the plurality of second semiconductor elements 10B is mounted on the conductive substrate 2 as shown in FIGS. 9, 10 and 19, and the like.
  • the plurality of second semiconductor elements 10B are arranged, for example, in the y direction and are separated from each other.
  • Each second semiconductor element 10B is conductively joined to the conductive substrate 2 (second conductive portion 2B described later) via a conductive joint material 19 .
  • the element rear surface 102 faces the second conductive portion 2B.
  • the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B overlap when viewed in the x direction, but they do not have to overlap.
  • the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B each have a first principal surface electrode 11, a second principal surface electrode 12, a third principal surface electrode 13 and a back surface electrode 15.
  • the configurations of the first main surface electrode 11, the second main surface electrode 12, the third main surface electrode 13, and the rear surface electrode 15 described below are common to each first semiconductor element 10A and each second semiconductor element 10B.
  • the first principal surface electrode 11 , the second principal surface electrode 12 and the third principal surface electrode 13 are provided on the element principal surface 101 .
  • the first principal surface electrode 11, the second principal surface electrode 12 and the third principal surface electrode 13 are insulated by an insulating film (not shown).
  • the back surface electrode 15 is provided on the element back surface 102 .
  • the first main surface electrode 11 is, for example, a gate electrode, and receives a drive signal (for example, gate voltage) for driving the first semiconductor element 10A (second semiconductor element 10B).
  • the second main surface electrode 12 is, for example, a source electrode through which a source current flows.
  • the third principal-surface electrode 13 is, for example, a source sense electrode through which a source current flows.
  • Back surface electrode 15 is, for example, a drain electrode through which drain current flows.
  • the back surface electrode 15 covers the entire area (or substantially the entire area) of the element back surface 102 .
  • the back surface electrode 15 is configured by Ag (silver) plating, for example.
  • each of the first semiconductor elements 10A (each of the second semiconductor elements 10B) is in a conductive state and a cut-off state according to the drive signal. state is switched.
  • a current flows from the back surface electrode 15 (drain electrode) to the second main surface electrode 12 (source electrode) in the conductive state, and does not flow in the cutoff state. That is, each first semiconductor element 10A (each second semiconductor element 10B) performs a switching operation.
  • the semiconductor device A1 is input between one fourth terminal 44 and two first terminals 41 and second terminals 42 by switching functions of the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B. For example, the DC voltage is converted into an AC voltage, and the AC voltage is output from the third terminal 43 .
  • the semiconductor device A1 includes a thermistor 17 as shown in FIGS. 5, 9, 10, and the like.
  • the thermistor 17 is used as a temperature detection sensor.
  • the conductive substrate 2 supports the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B.
  • the conductive substrate 2 is bonded onto the support substrate 3 via a conductive bonding material 29 .
  • the conductive substrate 2 has, for example, a rectangular shape in plan view.
  • the conductive substrate 2, together with the first conductive member 5 and the second conductive member 6, configures the path of the main circuit current switched by the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B.
  • the conductive substrate 2 includes a first conductive portion 2A and a second conductive portion 2B.
  • Each of the first conductive portion 2A and the second conductive portion 2B is a plate-like member made of metal. This metal is, for example, Cu (copper) or a Cu alloy.
  • the first conductive portion 2A and the second conductive portion 2B, along with the first terminal 41, the second terminal 42, the plurality of third terminals 43, and the fourth terminal 44, are connected to the plurality of first semiconductor elements 10A and the plurality of second semiconductors. It constitutes a conduction path to the element 10B.
  • the first conductive portion 2A and the second conductive portion 2B are each bonded onto the support substrate 3 via a conductive bonding material 29, as shown in FIGS. 13 to 20.
  • FIG. A plurality of first semiconductor elements 10A are bonded to the first conductive portion 2A via a conductive bonding material 19, respectively.
  • a plurality of second semiconductor elements 10B are bonded to the second conductive portion 2B via conductive bonding materials 19, respectively.
  • the constituent materials of the conductive bonding material 19 and the conductive bonding material 29 are not particularly limited, and examples thereof include solder, metal paste material, or sintered metal.
  • the first conductive portion 2A and the second conductive portion 2B are separated in the x-direction as shown in FIGS. 3, 9, 10, 13 and 14. FIG. In the examples shown in these figures, the first conductive portion 2A is positioned in the x2 direction from the second conductive portion 2B.
  • Each of first conductive portion 2A and second conductive portion 2B has, for example, a rectangular shape in plan view. The first conductive portion 2A and the second conductive portion 2B overlap when viewed in the x direction. Each of the first conductive portion 2A and the second conductive portion 2B has, for example, a dimension in the x direction of 15 mm to 25 mm, a dimension in the y direction of 30 mm to 40 mm, and a dimension in the z direction of 1.0 mm to 5.0 mm. (preferably about 2.0 mm).
  • the conductive substrate 2 has a main surface 201 and a back surface 202 .
  • the major surface 201 and the back surface 202 are spaced apart in the z-direction as shown in FIGS. 13, 14 and 18-20.
  • the main surface 201 faces the z2 direction, and the back surface 202 faces the z1 direction.
  • a main surface 201 is a combination of the upper surface of the first conductive portion 2A and the upper surface of the second conductive portion 2B.
  • the back surface 202 is a combination of the lower surface of the first conductive portion 2A and the lower surface of the second conductive portion 2B.
  • the back surface 202 is bonded to the support substrate 3 so as to face the support substrate 3 .
  • the support substrate 3 supports the conductive substrate 2.
  • the support substrate 3 is composed of, for example, an AMB (Active Metal Brazing) substrate.
  • the support substrate 3 includes an insulating layer 31 , a first metal layer 32 and a second metal layer 33 .
  • the insulating layer 31 is, for example, ceramics with excellent thermal conductivity. Such ceramics include, for example, SiN (silicon nitride).
  • the insulating layer 31 is not limited to ceramics, and may be an insulating resin sheet or the like.
  • the insulating layer 31 has, for example, a rectangular shape in plan view.
  • the first metal layer 32 is formed on the upper surface of the insulating layer 31 (the surface facing the z2 direction).
  • the constituent material of the first metal layer 32 includes, for example, Cu.
  • the constituent material may contain Al (aluminum) instead of Cu.
  • the first metal layer 32 includes a first portion 32A and a second portion 32B.
  • the first portion 32A and the second portion 32B are spaced apart in the x-direction.
  • the first portion 32A is located on the x2 direction side of the second portion 32B.
  • the first portion 32A is joined to the first conductive portion 2A and supports the first conductive portion 2A.
  • the second portion 32B is joined to the second conductive portion 2B and supports the second conductive portion 2B.
  • Each of the first portion 32A and the second portion 32B has, for example, a rectangular shape in plan view.
  • the second metal layer 33 is formed on the lower surface of the insulating layer 31 (the surface facing the z1 direction).
  • the constituent material of the second metal layer 33 is the same as the constituent material of the first metal layer 32 .
  • the lower surface of the second metal layer 33 (bottom surface 302 to be described later) is exposed from the sealing resin 8, for example, in the example shown in FIG.
  • the lower surface may be covered with the sealing resin 8 without being exposed from the sealing resin 8 .
  • the second metal layer 33 overlaps both the first portion 32A and the second portion 32B in plan view.
  • the support substrate 3 has a support surface 301 and a bottom surface 302, as shown in FIGS.
  • the support surface 301 and the bottom surface 302 are spaced apart in the z direction.
  • the support surface 301 faces the z2 direction and the bottom surface 302 faces the z1 direction.
  • the bottom surface 302 is exposed from the sealing resin 8 as shown in FIG.
  • the support surface 301 is the upper surface of the first metal layer 32, and is the combination of the upper surface of the first portion 32A and the upper surface of the second portion 32B.
  • the support surface 301 faces the conductive substrate 2 and is bonded to the conductive substrate 2 .
  • the bottom surface 302 is the bottom surface of the second metal layer 33 .
  • a heat dissipating member for example, a heat sink (not shown) or the like can be attached to the bottom surface 302 .
  • the dimension of the support substrate 3 in the z direction is, for example, 0.7 mm to 2.0 mm.
  • the first terminal 41, the second terminal 42, the plurality of third terminals 43, and the fourth terminal 44 are each made of a plate-like metal plate.
  • the constituent material of this metal plate is, for example, Cu or a Cu alloy.
  • the semiconductor device A1 has one first terminal 41, one second terminal 42 and one fourth terminal 44, and two third terminals 43. and
  • a DC voltage to be converted into power is input to the first terminal 41, the second terminal 42 and the fourth terminal 44.
  • the fourth terminal 44 is a positive electrode (P terminal), and the first terminal 41 and the second terminal 42 are each a negative electrode (N terminal).
  • P terminal positive electrode
  • N terminal negative electrode
  • Each of the first terminal 41 , the second terminal 42 , the plurality of third terminals 43 , and the fourth terminal 44 includes a portion covered with the sealing resin 8 and a portion exposed from the sealing resin 8 .
  • the fourth terminal 44 is formed integrally with the first conductive portion 2A, as shown in FIG. Unlike this configuration, the fourth terminal 44 may be separated from the first conductive portion 2A and conductively joined to the first conductive portion 2A. As shown in FIGS. 9 and 10, the fourth terminal 44 is positioned on the x2 direction side with respect to the plurality of second semiconductor elements 10B and the second conductive portion 2B (conductive substrate 2). The fourth terminal 44 is electrically connected to the first conductive portion 2A, and is electrically connected to the rear surface electrode 15 (drain electrode) of each first semiconductor element 10A via the first conductive portion 2A.
  • the first terminal 41 and the second terminal 42 are separated from the first conductive portion 2A, as shown in FIG.
  • the first terminal 41 and the second terminal 42 are joined to the second conductive member 6, as shown in FIGS. 5 and 7, respectively.
  • the first terminals 41 and the second terminals 42 are positioned on the x2 direction side with respect to the plurality of first semiconductor elements 10A and the first conductive portions 2A (conductive substrate 2), respectively, as shown in FIGS. do.
  • the first terminal 41 and the second terminal 42 are each electrically connected to the second conductive member 6 and connected to the second main surface electrode 12 (source electrode) of each second semiconductor element 10B through the second conductive member 6. conduct.
  • the first terminal 41, the second terminal 42, and the fourth terminal 44 each protrude from the sealing resin 8 in the x2 direction in the semiconductor device A1.
  • the first terminal 41, the second terminal 42 and the fourth terminal 44 are separated from each other.
  • the first terminal 41 and the second terminal 42 are positioned opposite to each other with the fourth terminal 44 interposed therebetween in the y direction.
  • the first terminal 41 is located on the y2 direction side of the fourth terminal 44
  • the second terminal 42 is located on the y1 direction side of the fourth terminal 44 .
  • the first terminal 41, the second terminal 42 and the fourth terminal 44 overlap each other when viewed in the y direction.
  • Each of the two third terminals 43 is formed integrally with the second conductive portion 2B, as can be understood from FIGS. 9, 10 and 13. Unlike this configuration, the third terminal 43 may be separated from the second conductive portion 2B and conductively joined to the second conductive portion 2B. Each of the two third terminals 43 is located on the x1 direction side with respect to the plurality of second semiconductor elements 10B and the second conductive portions 2B (conductive substrate 2), as shown in FIG. 9 and the like. Each third terminal 43 is electrically connected to the second conductive portion 2B, and is electrically connected to the back surface electrode 15 (drain electrode) of each second semiconductor element 10B via the second conductive portion 2B.
  • the number of third terminals 43 is not limited to two, and may be, for example, one or three or more. For example, when there is one third terminal 43, it is desirable that it is connected to the central portion of the second conductive portion 2B in the y direction.
  • the plurality of control terminals 45 are pin-shaped terminals for controlling each first semiconductor element 10A and each second semiconductor element 10B.
  • the plurality of control terminals 45 includes a plurality of first control terminals 46A-46E and a plurality of second control terminals 47A-47D.
  • a plurality of first control terminals 46A to 46E are used for control of each first semiconductor element 10A.
  • a plurality of second control terminals 47A to 47D are used for control of each second semiconductor element 10B.
  • a plurality of first control terminals 46A to 46E are arranged at intervals in the y direction. As shown in FIGS. 9 and 14, each first control terminal 46A to 46E is supported by the first conductive portion 2A via a control terminal support 48 (first support portion 48A, which will be described later). Each of the first control terminals 46A to 46E is arranged between the plurality of first semiconductor elements 10A and the first terminal 41, the second terminal 42 and the fourth terminal 44 in the x direction, as shown in FIGS. Located in
  • the first control terminal 46A is a terminal (gate terminal) for driving signal input of the plurality of first semiconductor elements 10A.
  • a drive signal for driving the plurality of first semiconductor elements 10A is input to the first control terminal 46A (for example, a gate voltage is applied).
  • the first control terminal 46B is a terminal (source sense terminal) for detecting source signals of the plurality of first semiconductor elements 10A.
  • a voltage (voltage corresponding to the source current) applied to each second main surface electrode 12 (source electrode) of the plurality of first semiconductor elements 10A is detected from the first control terminal 46B.
  • the first control terminal 46C and the first control terminal 46D are terminals that are electrically connected to the thermistor 17.
  • the first control terminal 46E is a terminal for drain signal detection (drain sense terminal) of the plurality of first semiconductor elements 10A.
  • a voltage (a voltage corresponding to the drain current) applied to each back surface electrode 15 (drain electrode) of the plurality of first semiconductor elements 10A is detected from the first control terminal 46E.
  • a plurality of second control terminals 47A to 47D are arranged at intervals in the y direction. As shown in FIGS. 9 and 14, each of the second control terminals 47A to 47D is supported by the second conductive portion 2B via a control terminal support 48 (second support portion 48B, which will be described later). Each of the second control terminals 47A-47D is positioned between the plurality of second semiconductor elements 10B and the two third terminals 43 in the x-direction, as shown in FIGS.
  • the second control terminal 47A is a terminal (gate terminal) for driving signal input of the plurality of second semiconductor elements 10B.
  • a drive signal for driving the plurality of second semiconductor elements 10B is input to the second control terminal 47A (for example, a gate voltage is applied).
  • the second control terminal 47B is a terminal for source signal detection (source sense terminal) of the plurality of second semiconductor elements 10B.
  • a voltage (voltage corresponding to the source current) applied to each second main surface electrode 12 (source electrode) of the plurality of second semiconductor elements 10B is detected from the second control terminal 47B.
  • the second control terminal 47C and the second control terminal 47D are terminals electrically connected to the thermistor 17 .
  • the plurality of control terminals 45 each include a holder 451 and a metal pin 452.
  • the holder 451 is made of a conductive material. As shown in FIGS. 15 and 16, the holder 451 is bonded to the control terminal support 48 (first metal layer 482 described later) via a conductive bonding material 459 .
  • the holder 451 includes a tubular portion, an upper flange, and a lower flange. The upper brim part is connected to the upper part of the tubular part, and the lower end brim part is connected to the lower part of the tubular part.
  • a metal pin 452 is inserted through at least the upper end collar portion and the cylindrical portion of the holder 451 .
  • the holder 451 is covered with the sealing resin 8 (second projecting portion 852 described later).
  • the metal pin 452 is a rod-shaped member extending in the z-direction.
  • the metal pin 452 is supported by being press-fitted into the holder 451 .
  • the metal pin 452 is electrically connected to the control terminal support 48 (first metal layer 482 described later) through at least the holder 451 . 15 and 16, when the lower end of the metal pin 452 (the end on the z1 direction side) is in contact with the conductive bonding material 459 in the insertion hole of the holder 451, the metal pin 452 is , through the conductive bonding material 459 to the control terminal support 48 .
  • the control terminal support 48 supports multiple control terminals 45 .
  • the control terminal support 48 is interposed between the main surface 201 (the conductive substrate 2) and the plurality of control terminals 45 in the z-direction.
  • the control terminal support 48 includes a first support 48A and a second support 48B.
  • the first support portion 48A is arranged on the first conductive portion 2A of the conductive substrate 2 and supports the plurality of first control terminals 46A to 46E among the plurality of control terminals 45.
  • the first support portion 48A is joined to the first conductive portion 2A via a joining material 49, as shown in FIG.
  • the bonding material 49 may be conductive or insulating, and solder is used, for example.
  • the second support portion 48B is arranged on the second conductive portion 2B of the conductive substrate 2 and supports the plurality of second control terminals 47A to 47D among the plurality of control terminals 45.
  • the second support portion 48B is joined to the second conductive portion 2B via a joining material 49, as shown in FIG.
  • the control terminal support 48 (each of the first support 48A and the second support 48B) is composed of, for example, a DBC (Direct Bonded Copper) substrate.
  • the control terminal support 48 has an insulating layer 481, a first metal layer 482 and a second metal layer 483 laminated together.
  • the insulating layer 481 is made of ceramics, for example.
  • the insulating layer 481 has, for example, a rectangular shape in plan view.
  • the first metal layer 482 is formed on the upper surface of the insulating layer 481, as shown in FIGS. Each control terminal 45 is erected on the first metal layer 482 .
  • the first metal layer 482 is Cu or Cu alloy, for example.
  • the first metal layer 482 includes a first portion 482A, a second portion 482B, a third portion 482C, a fourth portion 482D, a fifth portion 482E and a sixth portion 482F.
  • the first portion 482A, the second portion 482B, the third portion 482C, the fourth portion 482D, the fifth portion 482E and the sixth portion 482F are separated from each other and insulated.
  • a plurality of wires 71 are joined to the first portion 482A, and the wires 71 are electrically connected to the first main surface electrodes 11 (gate electrodes) of the first semiconductor elements 10A (second semiconductor elements 10B).
  • a plurality of wires 73 are connected to the first portion 482A and the sixth portion 482F.
  • the sixth portion 482F is electrically connected to the first main surface electrode 11 (gate electrode) of each first semiconductor element 10A (each second semiconductor element 10B) through the wire 73 and the wire 71.
  • the first control terminal 46A is joined to the sixth portion 482F of the first support portion 48A
  • the second control terminal 47A is joined to the sixth portion 482F of the second support portion 48B. are spliced.
  • a plurality of wires 72 are joined to the second portion 482B, and the wires 72 are electrically connected to the second principal surface electrodes 12 (source electrodes) of the first semiconductor elements 10A (second semiconductor elements 10B).
  • the first control terminal 46B is joined to the second portion 482B of the first support portion 48A
  • the second control terminal 47B is joined to the second portion 482B of the second support portion 48B. are spliced.
  • the thermistor 17 is joined to the third portion 482C and the fourth portion 482D.
  • the first control terminals 46C and 46D are joined to the third portion 482C and the fourth portion 482D of the first support portion 48A, and the third portion 482C and the fourth portion 482C of the second support portion 48B.
  • Second control terminals 47C and 47D are joined to the four portions 482D.
  • a wire 74 is joined to the fifth portion 482E of the first support portion 48A, and the wire 74 is electrically connected to the first conductive portion 2A. As shown in FIG. 9, the first control terminal 46E is joined to the fifth portion 482E of the first support portion 48A. The fifth portion 482E of the second support portion 48B is not electrically connected to other components.
  • Each of the wires 71 to 74 described above is, for example, a bonding wire.
  • the constituent material of each wire 71-74 includes, for example, Au (gold), Al or Cu.
  • the second metal layer 483 is formed on the bottom surface of the insulating layer 481, as shown in FIGS.
  • the second metal layer 483 of the first support portion 48A is bonded to the first conductive portion 2A via the bonding material 49, as shown in FIG.
  • the second metal layer 483 of the second support portion 48B is bonded to the second conductive portion 2B via the bonding material 49, as shown in FIG.
  • the first conduction member 5 and the second conduction member 6, together with the conductive substrate 2, configure the path of the main circuit current switched by the plurality of first semiconductor elements 10A and the plurality of second semiconductor elements 10B.
  • the first conductive member 5 and the second conductive member 6 are separated from the principal surface 201 (conductive substrate 2) in the z2 direction and overlap the principal surface 201 in plan view.
  • the first conduction member 5 and the second conduction member 6 are each made of a metal plate material.
  • the metal is for example Cu or a Cu alloy.
  • the first conductive member 5 and the second conductive member 6 are suitably bent metal plate members.
  • the first conductive member 5 is connected to the second main surface electrode 12 (source electrode) and the second conductive portion 2B of each first semiconductor element 10A, and is connected to the second main surface electrode 12 and the second conductive portion 2B of each first semiconductor element 10A. 2 Conducting with the conductive portion 2B.
  • the first conductive member 5 constitutes a path of main circuit current switched by the plurality of first semiconductor elements 10A.
  • the first conducting member 5 includes a first portion 51, a plurality of first joints 52 and a plurality of second joints 53, as shown in FIGS.
  • the first portion 51 is a strip-shaped portion located between the plurality of first semiconductor elements 10A and the second conductive portions 2B in the x direction and extending in the y direction in plan view.
  • the first portion 51 overlaps both the first conductive portion 2A and the second conductive portion 2B in plan view, and is separated from the main surface 201 in the z direction in the z2 direction.
  • the first portion 51 is positioned in the z1 direction with respect to a second belt-shaped portion 622 of the second conduction member 6, which will be described later, and is positioned closer to the main surface 201 (the conductive substrate 2) than the second belt-shaped portion 622 is. ).
  • the first portion 51 has a flat portion 511 , multiple first curved portions 512 and multiple second curved portions 513 .
  • the flat portion 511 is arranged parallel to the main surface 201 and overlaps both the first conductive portion 2A and the second conductive portion 2B in plan view.
  • the expression that the flat portion 511 is arranged “parallel” to the main surface 201 includes the fact that the main surface 201 and the flat portion 511 are substantially parallel, and includes a range of manufacturing variations.
  • the flat portion 511 extends continuously in the y direction corresponding to the region where the plurality of first semiconductor elements 10A are arranged.
  • a plurality of first openings 514 are formed in the flat portion 511, as shown in FIGS. 7, 9, 14, and the like.
  • Each of the plurality of first openings 514 is a through hole penetrating in, for example, the z direction (thickness direction of the first portion 51).
  • the plurality of first openings 514 are arranged at intervals in the y2 direction.
  • the plurality of first openings 514 are provided corresponding to each of the plurality of first semiconductor elements 10A.
  • four first openings 514 are provided in the flat portion 511, and the positions of the first openings 514 and the plurality (four) of the first semiconductor elements 10A are equal to each other in the y direction.
  • each first opening 514 overlaps the gap 205 between the first conductive portion 2A and the second conductive portion 2B in plan view.
  • Each first opening 514 overlaps the first conductive portion 2A in plan view.
  • the plurality of first openings 514 are formed above (z2 direction side) and below in the vicinity of the first portion 51 (first conductive member 5). side (z1 direction side) to facilitate the flow of the resin material.
  • each first bent portion 512 and the plurality of second bent portions 513 are each connected to the flat portion 511 and arranged corresponding to the plurality of first semiconductor elements 10A.
  • each first bent portion 512 is connected to the x2-direction end of the flat portion 511 and is positioned in the z1-direction along the x2-direction.
  • Each second bent portion 513 is connected to the x1-direction end of the flat portion 511 and positioned in the z1-direction along the x1-direction.
  • each first joint portion 52 and the plurality of second joint portions 53 are each connected to the first portion 51 and arranged corresponding to the plurality of first semiconductor elements 10A.
  • each first joint portion 52 is positioned in the x2 direction with respect to the first portion 51 and connected to one of the plurality of first bent portions 512 .
  • Each second joint portion 53 is positioned in the x1 direction with respect to the first portion 51 and connected to one of the plurality of second bent portions 513 .
  • each first joint portion 52 and the corresponding second principal surface electrode 12 of any one of the first semiconductor elements 10A are joined via a conductive joint material 59. be.
  • each second joint portion 53 and the second conductive portion 2B are joined via a conductive joint material 59 .
  • a constituent material of the conductive bonding material 59 is not particularly limited, and may be, for example, solder, a metal paste material, or a sintered metal.
  • an opening 521 is formed in each first joint portion 52 .
  • Each opening 521 is preferably formed to overlap the central portion of the first semiconductor element 10A in plan view.
  • the opening 521 is, for example, a through hole penetrating in the z direction.
  • the opening 521 is used, for example, when positioning the first conductive member 5 with respect to the conductive substrate 2 .
  • the planar shape of the opening 521 may be a perfect circle, or may be another shape such as an ellipse or a rectangle.
  • the second conductive member 6 is connected to the second main-surface electrode 12 (source electrode) of each second semiconductor element 10B, the first terminal 41 and the second terminal 42, and is connected to the second main surface electrode 12 (source electrode) of each second semiconductor element 10B.
  • the surface electrode 12 and the first terminal 41 and the second terminal 42 are electrically connected.
  • the second conductive member 6 constitutes a path of main circuit current switched by the plurality of second semiconductor elements 10B.
  • the second conductive member 6 has a maximum dimension in the x direction of, for example, 25 mm to 40 mm, and a maximum dimension in the y direction of, for example, 30 mm to 45 mm.
  • the second conducting member 6 includes a first wiring portion 61, a second wiring portion 62, a third wiring portion 63 and a fourth wiring portion 64, as shown in FIGS.
  • the first wiring portion 61 is a strip-shaped portion extending in the y direction in plan view. As can be understood from FIG. 7 and the like, the first wiring portion 61 overlaps the plurality of second semiconductor elements 10B in plan view. The first wiring part 61 is connected to each second semiconductor element 10B, as shown in FIG.
  • the first wiring portion 61 has a plurality of recessed regions 611 .
  • Each recessed region 611 has a shape that protrudes in the z1 direction from other portions of the first wiring portion 61, as shown in FIG. 19 and the like.
  • Each of the multiple recessed regions 611 is bonded to one of the multiple second semiconductor elements 10B.
  • Each recessed region 611 of the first wiring portion 61 and the second main surface electrode 12 of each second semiconductor element 10B are bonded via a conductive bonding material 69 .
  • a constituent material of the conductive bonding material 69 is not particularly limited, and may be, for example, solder, a metal paste material, or a sintered metal.
  • each recessed region 611 is formed with an opening 611a.
  • Each opening 611a is preferably formed so as to overlap with the central portion of the second semiconductor element 10B in plan view.
  • the openings 611a are through holes formed in the recessed regions 611 of the first wiring portion 61, for example.
  • the opening 611a is used when positioning the second conductive member 6 with respect to the conductive substrate 2, for example.
  • the planar shape of the opening 611a may be a perfect circle, or may be another shape such as an ellipse or a rectangle.
  • the second wiring portion 62 is positioned in the x2 direction with respect to the first wiring portion 61. As shown in FIG. The second wiring portion 62 overlaps the plurality of first semiconductor elements 10A and the plurality of first bonding portions 52 in plan view.
  • the second wiring portion 62 includes a first strip portion 621 and a second strip portion 622 .
  • the first strip-shaped portion 621 is a strip-shaped portion of the second wiring portion 62 that is separated from the first wiring portion 61 in the x-direction and extends in the y-direction in plan view.
  • the first belt-shaped portion 621 overlaps the plurality of first semiconductor elements 10A and the plurality of first bonding portions 52 in plan view.
  • the first band-shaped portion 621 has a plurality of convex regions 621a. Each convex region 621a has a shape that protrudes in the z2 direction from other portions of the first band-shaped portion 621, as shown in FIG. 20 and the like.
  • the plurality of convex regions 621a and the plurality of first semiconductor elements 10A overlap each other in plan view.
  • the plurality of concave regions 611 and the plurality of convex regions 621a in the first wiring portion 61 are positioned at the same position in the y direction.
  • the second belt-shaped portion 622 is connected to both the first belt-shaped portion 621 and the first wiring portion 61 .
  • the second belt-shaped portion 622 is a belt-shaped portion extending in the x direction in plan view.
  • the second wiring portion 62 has a plurality (three) of second strip portions 622 .
  • the plurality of second band-shaped portions 622 are spaced apart in the y direction.
  • the plurality of second band-shaped portions 622 are arranged in parallel (or substantially parallel).
  • the x2-direction end of each of the plurality of second band-shaped portions 622 is connected between two convex regions 621a of the first band-shaped portions 621 that are adjacent in the y-direction.
  • each of the plurality of second band-shaped portions 622 are connected between the first semiconductor elements 10A adjacent to each other with respect to the first band-shaped portion 621 .
  • the x1-direction end of each of the plurality of second band-shaped portions 622 is connected between two recessed regions 611 of the first wiring portion 61 that are adjacent in the y-direction.
  • the ends in the x1 direction of the plurality of second belt-shaped portions 622 are connected between the second semiconductor elements 10B adjacent to each other with respect to the first wiring portion 61 .
  • each second belt-shaped portion 622 overlaps the first portion 51 (flat portion 511) of the first conduction member 5 in plan view.
  • the second band-shaped portion 622 (second conductive member 6) does not overlap any of the plurality of first openings 514 in the first portion 51 in plan view.
  • the boundary between each second strip portion 622 and the first strip portion 621 and the boundary between each second strip portion 622 and the first wiring portion 61 are represented by imaginary lines.
  • the third wiring portion 63 has a first end portion 631 , a second end portion 632 and a plurality of openings 633 .
  • the first end 631 is connected to the first terminal 41 .
  • the first end portion 631 and the first terminal 41 are joined with a conductive joint material 69 .
  • the third wiring portion 63 is a strip-shaped portion extending in the x direction as a whole in plan view.
  • the third wiring portion 63 overlaps both the first conductive portion 2A and the second conductive portion 2B in plan view.
  • the second end 632 is spaced apart from the first end 631 in the x-direction. As shown in FIGS. 7, 8, etc., the second end 632 is located in the x1 direction with respect to the first end 631. As shown in FIG.
  • the third wiring portion 63 is connected to both the y2 direction end of the first wiring portion 61 and the y2 direction end of the first strip portion 621 . More specifically, the second end portion 632 is connected to the y2 direction end of the first wiring portion 61 . A portion between the first end portion 631 and the second end portion 632 is connected to the y2 direction end of the first strip portion 621 .
  • Each of the plurality of openings 633 is a partially excised portion in plan view.
  • the multiple openings 633 are spaced apart from each other in the x-direction.
  • the third wiring portion 63 has three openings 633 .
  • the opening 633 on the x2 direction side and the central opening 633 in the X direction overlap the main surface 201 of the first conductive portion 2A (conductive substrate 2) in plan view, and overlap the plurality of first semiconductor elements 10A in plan view. in a position where it should not
  • the opening 633 on the x1 direction side overlaps the main surface 201 of the second conductive portion 2B (conductive substrate 2) in plan view, and is positioned so as not to overlap the plurality of second semiconductor elements 10B in plan view.
  • Each opening 633 is provided near the y2 direction of the first conductive portion 2A (second conductive portion 2B) in plan view.
  • the opening 633 is an arcuate notch recessed in the y2 direction from the y1 direction side end of the third wiring portion 63 .
  • the planar shape of the opening 633 is not limited, and may be a notch as in the present embodiment, or may be a hole unlike the present embodiment.
  • the fourth wiring portion 64 has a third end portion 641 , a fourth end portion 642 and a plurality of openings 643 .
  • the third end 641 is connected to the second terminal 42 .
  • the third end portion 641 and the second terminal 42 are joined by a conductive joining material 69 .
  • the fourth wiring portion 64 is a strip-shaped portion extending in the x direction as a whole in plan view.
  • the fourth wiring portion 64 is arranged apart from the third wiring portion 63 in the y direction.
  • the fourth wiring portion 64 is positioned in the y1 direction with respect to the third wiring portion 63 .
  • the fourth wiring portion 64 overlaps both the first conductive portion 2A and the second conductive portion 2B in plan view.
  • the fourth end 642 is separated from the third end 641 in the x-direction. As shown in FIGS. 7, 8, etc., the fourth end 642 is located in the x1 direction with respect to the third end 641. As shown in FIG.
  • the fourth wiring portion 64 is connected to both the y1 direction end of the first wiring portion 61 and the y1 direction end of the first strip portion 621 . More specifically, the fourth end portion 642 is connected to the y1 direction end of the first wiring portion 61 . A portion between the third end portion 641 and the fourth end portion 642 is connected to the y1 direction end of the first strip portion 621 .
  • Each of the plurality of openings 643 is a partially excised portion in plan view.
  • the multiple openings 643 are spaced apart from each other in the x-direction.
  • the fourth wiring section 64 has three openings 643 .
  • the opening 643 on the x2 direction side and the central opening 643 in the X direction overlap the main surface 201 of the first conductive portion 2A (conductive substrate 2) in plan view, and overlap the plurality of first semiconductor elements 10A in plan view. in a position where it should not
  • the opening 643 on the x1 direction side overlaps the principal surface 201 of the second conductive portion 2B (conductive substrate 2) in plan view, and is positioned so as not to overlap the plurality of second semiconductor elements 10B in plan view.
  • Each opening 643 is provided near the y1 direction of the first conductive portion 2A (second conductive portion 2B) in plan view.
  • the opening 643 is an arcuate notch recessed in the y1 direction from the y2 direction side end of the fourth wiring portion 64 .
  • the planar shape of the opening 643 is not limited, and may be a notch as in this embodiment, or may be a hole unlike this embodiment.
  • the sealing resin 8 includes the plurality of first semiconductor elements 10A, the plurality of second semiconductor elements 10B, the conductive substrate 2, the support substrate 3 (excluding the bottom surface 302), the first terminals 41, the second terminals 42, a portion of each of the plurality of third terminals 43 and the fourth terminals 44, a portion of each of the plurality of control terminals 45, a control terminal support 48, a first conduction member 5, a second conduction member 6; Each of the wires 71 to 74 is covered.
  • Sealing resin 8 is made of, for example, black epoxy resin.
  • the sealing resin 8 is formed by molding, for example.
  • the sealing resin 8 has, for example, an x-direction dimension of about 35 mm to 60 mm, a y-direction dimension of about 35 mm to 50 mm, and a z-direction dimension of about 4 mm to 15 mm. These dimensions are the largest part sizes along each direction.
  • the sealing resin 8 has a resin main surface 81, a resin back surface 82 and a plurality of resin side surfaces 831-834.
  • the resin main surface 81 and the resin back surface 82 are spaced apart in the z-direction as shown in FIGS. 11, 13 and 19.
  • the resin main surface 81 faces the z2 direction
  • the resin back surface 82 faces the z1 direction.
  • a plurality of control terminals 45 protrude from the resin main surface 81 .
  • the resin back surface 82 has a frame shape surrounding the bottom surface 302 (the bottom surface of the second metal layer 33) of the support substrate 3 in plan view.
  • the bottom surface 302 of the support substrate 3 is exposed from the resin back surface 82 and is flush with the resin back surface 82, for example.
  • Each of the plurality of resin side surfaces 831 to 834 is connected to both the resin main surface 81 and the resin back surface 82 and sandwiched between them in the z direction.
  • the resin side surface 831 and the resin side surface 832 are spaced apart in the x direction.
  • the resin side surface 831 faces the x1 direction, and the resin side surface 832 faces the x2 direction.
  • Two third terminals 43 protrude from the resin side surface 831
  • the first terminal 41 , the second terminal 42 and the fourth terminal 44 protrude from the resin side surface 832 .
  • the resin side surface 833 and the resin side surface 834 are spaced apart in the y direction.
  • the resin side surface 833 faces the y1 direction
  • the resin side surface 834 faces the y2 direction.
  • the resin side surface 832 is formed with a plurality of recesses 832a.
  • Each recess 832a is a portion recessed in the x direction in plan view.
  • the plurality of recesses 832a include those formed between the first terminal 41 and the fourth terminal 44 and those formed between the second terminal 42 and the fourth terminal 44 in plan view.
  • the plurality of recesses 832a are formed to increase the creeping distance along the resin side surface 832 between the first terminal 41 and the fourth terminal 44 and the creeping distance along the resin side surface 832 between the second terminal 42 and the fourth terminal 44. is provided.
  • the sealing resin 8 has a plurality of first projecting portions 851, a plurality of second projecting portions 852, and resin voids 86, as shown in FIGS.
  • Each of the plurality of first protrusions 851 protrudes from the resin main surface 81 in the z direction.
  • the plurality of first protrusions 851 are arranged near the four corners of the sealing resin 8 in plan view.
  • a first protruding end face 851a is formed at the tip of each first protruding portion 851 (the end in the z2 direction).
  • Each first protruding end face 851a of the plurality of first protruding portions 851 is parallel (or substantially parallel) to the resin main surface 81 and on the same plane (xy plane).
  • Each first projecting portion 851 has, for example, a bottomed hollow truncated cone shape.
  • the plurality of first protrusions 851 are used as spacers when the semiconductor device A1 is mounted on a control circuit board or the like of the device that uses the power source generated by the semiconductor device A1.
  • Each of the plurality of first protrusions 851 has a recess 851b and an inner wall surface 851c formed in the recess 851b.
  • the shape of each first projecting portion 851 may be columnar, and is preferably columnar. It is preferable that the concave portion 851b has a columnar shape, and the inner wall surface 851c has a single perfect circle shape in a plan view.
  • the semiconductor device A1 may be mechanically fixed to a control circuit board or the like by a method such as screwing.
  • the inner wall surfaces 851c of the recesses 851b of the plurality of first projections 851 can be formed with internal threads.
  • An insert nut may be embedded in the concave portion 851 b of the plurality of first protrusions 851 .
  • the plurality of second protrusions 852 protrude from the resin main surface 81 in the z-direction, as shown in FIG. 14 and the like.
  • the plurality of second projecting portions 852 overlap the plurality of control terminals 45 in plan view.
  • Each metal pin 452 of the plurality of control terminals 45 protrudes from each second protrusion 852 .
  • Each second protrusion 852 has a truncated cone shape.
  • the second protrusion 852 covers the holder 451 and part of the metal pin 452 at each control terminal 45 .
  • the resin void 86 extends from the resin main surface 81 to the main surface 201 of the conductive substrate 2 in the z direction.
  • the resin void 86 is tapered from the resin main surface 81 to the main surface 201 such that the cross-sectional area decreases in the z-direction.
  • the resin void portion 86 is formed when the sealing resin 8 is molded, and is a portion where the sealing resin 8 is not formed during the molding.
  • the resin void 86 is formed by, for example, being occupied by a pressing member during molding of the sealing resin 8 and not being filled with a fluid resin material.
  • the pressing member applies pressing force to the main surface 201 of the conductive substrate 2 during molding, and is inserted through each opening 633 and each opening 643 of the second conductive member 6 .
  • the conductive substrate 2 can be pressed by the pressing member without interfering with the second conductive member 6, and warping of the support substrate 3 to which the conductive substrate 2 is bonded can be suppressed.
  • the semiconductor device A1 includes a resin-filled portion 88.
  • the resin filling portion 88 fills the resin void portion 86 so as to fill the resin void portion 86 .
  • Resin-filled portion 88 is made of, for example, an epoxy resin similar to sealing resin 8 , but may be made of a material different from that of sealing resin 8 .
  • the semiconductor device A1 includes a plurality of first semiconductor elements 10A, a conductive substrate 2, a first conductive member 5 and a sealing resin 8.
  • Each of the plurality of first semiconductor elements 10A has a switching function and is joined to the first conductive portion 2A (conductive substrate 2).
  • the first conductive member 5 constitutes a path of main circuit current switched by the plurality of first semiconductor elements 10A.
  • the first conducting member 5 includes a first portion 51 .
  • the first portion 51 overlaps both the first conductive portion 2A and the second conductive portion 2B in plan view, and is separated from the main surface 201 in the z direction in the z2 direction.
  • the first portion 51 (flat portion 511 ) has a first opening 514 .
  • the first conduction member 5 (first portion 51) can secure a relatively large area in plan view.
  • the semiconductor device A1 the main circuit current flowing from the plurality of first semiconductor elements 10A to the first conductive member 5 flows along a large-area current path. Therefore, the semiconductor device A1 has a preferable structure for passing a large current.
  • the first part 51 has a first opening 514 .
  • the lower side (z1 direction side) and the upper side (z1 direction side) of the first portion 51 (first conductive member 5 ) are passed through the first opening 514 .
  • z2 direction side the air bubbles will pass through the first opening 514 to the upper side of the first part 51 (z2 direction side). Therefore, it is possible to prevent the sealing resin 8 from being left unfilled on the lower side (the z1 direction side) of the first portion 51, thereby preventing the generation of voids.
  • the semiconductor device A1 having such a configuration has improved reliability when a large current flows.
  • a plurality of first openings 514 are provided in the first portion 51, and each first opening 514 overlaps the gap 205 between the first conductive portion 2A and the second conductive portion 2B in plan view. According to such a configuration, incomplete filling of the sealing resin 8 in the gap 205 between the first conductive portion 2A and the second conductive portion 2B can be appropriately suppressed. A high potential difference can occur between the first conductive portion 2A and the second conductive portion 2B separated from each other in the conductive substrate 2 . According to the semiconductor device A1 of this embodiment, the reliability is further improved when a large current flows.
  • the first opening 514 overlaps the first conductive portion 2A (conductive substrate 2) in plan view. According to such a configuration, it is possible to suppress unfilling of the sealing resin 8 in a relatively narrow gap in the z direction between the first portion 51 and the first conductive portion 2A (conductive substrate 2).
  • the first portion 51 has a flat portion 511 , a first curved portion 512 and a second curved portion 513 .
  • a plurality of first semiconductor elements 10A are arranged at intervals in the y direction.
  • the flat portion 511 extends continuously in the y direction corresponding to the region where the plurality of first semiconductor elements 10A are arranged.
  • a plurality of first openings 514 are formed in the flat portion 511 .
  • the plurality of first openings 514 are provided corresponding to each of the plurality of first semiconductor elements 10A.
  • the semiconductor device A1 having such a flat portion 511 has a more preferable structure for allowing a large current to flow.
  • by providing the plurality of first openings 514 in the flat portion 511 it is possible to more reliably prevent the sealing resin 8 from being left unfilled on the lower side (z1 direction side) of the first portion 51 .
  • the semiconductor device A1 includes a plurality of second semiconductor elements 10B and second conduction members 6. Each of the plurality of second semiconductor elements 10B has a switching function and is joined to the second conductive portion 2B (conductive substrate 2). The second conductive member 6 constitutes a path of main circuit current switched by the plurality of second semiconductor elements 10B.
  • the semiconductor device A1 having such a configuration has a more preferable structure for allowing a large current to flow.
  • the second conductive member 6 includes a first wiring portion 61, a second wiring portion 62 (a first belt-shaped portion 621 and a second belt-shaped portion 622), a third wiring portion 63, and a fourth wiring portion 64, and is arranged vertically and horizontally in plan view. has a mesh-like current path.
  • the second conductive member 6 can secure a relatively large area in a plan view while being restricted by other components in the semiconductor device A1.
  • the main circuit current flowing through the second conductive member 6 from the plurality of second semiconductor elements 10B through the first wiring portion 61 flows through large-area dispersed current paths. Therefore, the semiconductor device A1 has a more preferable structure for allowing a large current to flow.
  • the second belt-shaped portion 622 of the second conduction member 6 overlaps the first portion 51 (flat portion 511) of the first conduction member 5 in plan view.
  • the semiconductor device A1 having such a configuration is suitable for reducing the inductance component, and has a preferable structure for allowing a large current to flow.
  • the second band-shaped portion 622 (second conduction member 6) does not overlap any of the plurality of first openings 514 in the first portion 51 in plan view. This prevents the second conductive member 6 from reducing the effect of the first opening 514 (suppressing the sealing resin 8 from being unfilled and preventing the occurrence of voids).
  • FIG. 21 to 24 show semiconductor devices according to modifications of the first embodiment.
  • FIG. 21 is a plan view similar to FIG. 7 shown in the above embodiment.
  • FIG. 22 is a plan view omitting the sealing resin and the second conductive member.
  • 23 is a cross-sectional view taken along line XXIII-XXIII of FIG. 21.
  • FIG. FIG. 24 is a partially enlarged view enlarging a part of FIG. 23.
  • FIG. In the drawings after FIG. 21, elements that are the same as or similar to those of the semiconductor device A1 of the above embodiment are assigned the same reference numerals as those of the above embodiment, and description thereof will be omitted as appropriate.
  • each first opening 514 has a rectangular shape in plan view.
  • Each first opening 514 is formed across the flat portion 511 , the first curved portion 512 and the second curved portion 513 .
  • Each first opening 514 is a through hole penetrating through the first portion 51 in the plate thickness direction.
  • Each first opening 514 overlaps the gap 205 between the first conductive portion 2A and the second conductive portion 2B in plan view. Further, in this modification, each first opening 514 overlaps both the first conductive portion 2A and the second conductive portion 2B.
  • the first conductive member 5 (first portion 51) can secure a relatively large area in plan view.
  • the main circuit current flowing from the plurality of first semiconductor elements 10A to the first conductive member 5 flows through a large-area current path. Therefore, the semiconductor device A2 has a preferable structure for passing a large current.
  • the first part 51 has a first opening 514 .
  • the lower side (z1 direction side) and the upper side (z1 direction side) of the first portion 51 (first conductive member 5 ) are passed through the first opening 514 .
  • z2 direction side the air bubbles will pass through the first opening 514 to the upper side of the first part 51 (z2 direction side). Therefore, it is possible to prevent the sealing resin 8 from being left unfilled on the lower side (the z1 direction side) of the first portion 51, thereby preventing the generation of voids.
  • the semiconductor device A2 having such a configuration has improved reliability when a large current flows.
  • each first opening 514 is formed across the flat portion 511, the first bent portion 512 and the second bent portion 513.
  • Each first opening 514 overlaps the gap 205 between the first conductive portion 2A and the second conductive portion 2B and both the first conductive portion 2A and the second conductive portion 2B in plan view. According to such a configuration, when injecting a fluid resin material to form the sealing resin 8, the flow of the resin material and movement of air bubbles through the first openings 514 are further promoted. Therefore, it is possible to further suppress unfilling of the sealing resin 8 on the lower side (z1 direction side) of the first portion 51, and appropriately prevent the generation of voids.
  • the second bent portion 513 is arranged in the vicinity of the first semiconductor element 10A, and the second bent portion 513 is formed with the first opening 514 .
  • incomplete filling of the sealing resin 8 and generation of voids can be effectively prevented in the vicinity of the first semiconductor element 10A.
  • space discharge due to voids can be prevented around the first semiconductor element 10A. Therefore, according to the semiconductor device A2, reliability is further improved when a large current flows.
  • the same effects as those of the above embodiment can be obtained.
  • the semiconductor device according to the present disclosure is not limited to the above-described embodiments.
  • the specific configuration of each part of the semiconductor device according to the present disclosure can be changed in various ways.
  • first conduction members 5 may be provided so as to individually correspond to a plurality of first semiconductor elements 10A.
  • Appendix 1 a conductive substrate having a main surface facing one side in the thickness direction and a back surface facing the opposite side of the main surface; at least one first semiconductor element bonded to the main surface and having a switching function; a first conduction member forming a path of a main circuit current switched by the first semiconductor element; a sealing resin that covers at least part of the conductive substrate, the first semiconductor element, and the first conductive member;
  • the conductive substrate includes a first conductive portion and a second conductive portion spaced apart from each other on one side and the other side in a first direction perpendicular to the thickness direction,
  • the first semiconductor element is electrically joined to the first conductive portion,
  • the first conductive member overlaps both the first conductive portion and the second conductive portion when viewed in the thickness direction, and is separated from the main surface to one side in the thickness direction in the thickness direction.
  • the semiconductor device including a first part located The semiconductor device, wherein the first part has a first opening.
  • Appendix 2. The semiconductor device according to appendix 1, wherein the first conduction member is made of a metal plate.
  • Appendix 3. The semiconductor device according to appendix 2, wherein the first opening overlaps a gap between the first conductive portion and the second conductive portion when viewed in the thickness direction.
  • Appendix 4. The semiconductor device according to appendix 3, wherein the first opening overlaps at least one of the first conductive portion and the second conductive portion when viewed in the thickness direction.
  • the first conductive member includes a first joint portion positioned on one side in the first direction with respect to the first portion and joined to the first semiconductor element, and the first conductive member with respect to the first portion. 5.
  • the semiconductor device according to any one of appendices 2 to 4, further comprising: a second joint portion located on the other side in one direction and joined to the second conductive portion.
  • Appendix 6 The first portion includes a flat portion arranged parallel to the main surface and overlapping the first conductive portion and the second conductive portion when viewed in the thickness direction, and one side of the flat portion in the first direction. a first bent portion connected to both the side end and the first joint portion and positioned on the other side in the thickness direction toward one side in the first direction; and the other side of the flat portion in the first direction. a second bent portion connected to both the side end and the second joint portion and positioned on the other side in the thickness direction toward the other side in the first direction; 6.
  • the semiconductor device according to appendix 5 wherein the first opening is formed at least in the flat portion.
  • Appendix 7. The semiconductor device according to appendix 6, wherein the first opening is formed in at least one of the first bent portion and the second bent portion.
  • the at least one first semiconductor element includes a plurality of first semiconductor elements spaced apart in a second direction orthogonal to both the thickness direction and the first direction. 8.
  • Appendix 9. The semiconductor device according to appendix 8, wherein the first opening includes a plurality of openings provided corresponding to the plurality of first semiconductor elements in the second direction.
  • the semiconductor device according to claim 9, wherein the flat portion extends continuously in the second direction corresponding to the region where the plurality of first semiconductor elements are arranged.
  • Appendix 12. a plurality of second semiconductor elements electrically connected to the second conductive portion and having a switching function; a second conduction member made of a metal plate, The second conducting member includes a first wiring portion and a second wiring portion, The first wiring portion is connected to the plurality of second semiconductor elements, Notes 9 to 11, wherein the second wiring portion is positioned on one side of the first wiring portion in the first direction and overlaps both the plurality of first semiconductor elements and the first bonding portion.
  • the semiconductor device according to any one of 1.
  • the plurality of second semiconductor elements are spaced apart in the second direction, 13.
  • Appendix 14 The second wiring portion has a first belt-shaped portion and a second belt-shaped portion, The first belt-like portion is spaced apart from the first wiring portion in the first direction and overlaps both the plurality of first semiconductor elements and the first bonding portion when viewed in the thickness direction, The second belt-shaped portion has one end in the first direction connected between adjacent first semiconductor elements with respect to the first belt-shaped portion, and the other end in the first direction is connected to the first wiring. 14.
  • the semiconductor device includes a third wiring portion and a fourth wiring portion, The third wiring portion is connected to both the one side end of the first wiring portion in the second direction and the one side end of the first strip portion in the second direction, and extends in the first direction. cage, The fourth wiring portion is connected to both the other side end of the first wiring portion in the second direction and the other side end of the first strip portion in the second direction, and extends in the first direction. 16.
  • the semiconductor device according to appendix 14 or 15.
  • Appendix 17. The semiconductor device according to any one of appendices 12 to 15, wherein the second conductive member overlaps none of the plurality of openings of the first opening when viewed in the thickness direction. Appendix 18. 18. The semiconductor device according to any one of appendices 12 to 17, wherein the first conduction member and the second conduction member contain copper. Appendix 19. 19. The semiconductor device according to any one of Appendixes 2 to 18, wherein the first opening is a through hole penetrating through the first portion in a plate thickness direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

半導体装置は、厚さ方向の一方側を向く主面、および前記主面とは反対側を向く裏面を有する導電基板と、前記主面に接合され、スイッチング機能を有する少なくとも1つの第1半導体素子と、前記第1半導体素子によってスイッチングされる主回路電流の経路を構成する第1導通部材と、前記導電基板の少なくとも一部、前記第1半導体素子および前記第1導通部材を覆う封止樹脂とを備える。前記導電基板は、前記厚さ方向に直交する第1方向の一方側および他方側に互いに離間して配置された第1導電部および第2導電部を含む。前記第1半導体素子は、前記第1導電部に電気的に接合されている。前記第1導通部材は、前記厚さ方向に見て前記第1導電部および前記第2導電部の双方に重なり、且つ前記厚さ方向において前記主面から前記厚さ方向の一方側に離れて位置する第1部を含む。前記第1部は、第1開口を有する。

Description

半導体装置
 本開示は、半導体装置に関する。
 従来、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などの電力用スイッチング素子を備える半導体装置が知られている。このような半導体装置は、産業機器から家電や情報端末、自動車用機器まで、種々の電子機器に搭載される。特許文献1には、従来の半導体装置(パワーモジュール)が開示されている。特許文献1に記載の半導体装置は、半導体素子、支持基板、および封止樹脂を備えている。半導体素子は、たとえばSi(シリコン)製のIGBTである。支持基板は、半導体素子を支持する。支持基板は、絶縁性の基材と、基材の主面および裏面に積層された導体層とを含む。基材は、たとえばセラミックからなる。各導体層は、たとえばCu(銅)からなり、一方の導体層には、半導体素子が接合される。半導体素子は、封止樹脂により覆われている。
特開2015-220382号公報
 近年、電子機器の高性能化や小型化などが求められている。そのためには、電子機器に搭載する半導体モジュールの性能向上や小型化などが必要となる。
 本開示は、上記した事情のもとで考え出されたものであって、上述した要請に応え得る半導体装置(半導体モジュール)を提供することを一の課題とする。また、本開示は、封止樹脂の未充填を抑制し、大電流を流すのに適した半導体装置を提供することを別の課題とする。
 本開示によって提供される半導体装置は、厚さ方向の一方側を向く主面、および前記主面とは反対側を向く裏面を有する導電基板と、前記主面に接合され、スイッチング機能を有する少なくとも1つの第1半導体素子と、前記第1半導体素子によってスイッチングされる主回路電流の経路を構成する第1導通部材と、前記導電基板の少なくとも一部、前記第1半導体素子および前記第1導通部材を覆う封止樹脂と、を備え、前記導電基板は、前記厚さ方向に直交する第1方向の一方側および他方側に互いに離間して配置された第1導電部および第2導電部を含み、前記第1半導体素子は、前記第1導電部に電気的に接合されており、前記第1導通部材は、前記厚さ方向に見て前記第1導電部および前記第2導電部の双方に重なり、且つ前記厚さ方向において前記主面から前記厚さ方向の一方側に離れて位置する第1部を含み、前記第1部は、第1開口を有する。
 本開示の半導体装置によれば、たとえば、封止樹脂の未充填を抑制し、大電流を流す上で好ましい構造を提供することができる。
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
図1は、本開示の第1実施形態に係る半導体装置を示す斜視図である。 図2は、図1の斜視図において、封止樹脂を省略した図である。 図3は、図2の斜視図において、第1導通部材を省略した図である。 図4は、図1に示す半導体装置の平面図である。 図5は、図4の平面図において、封止樹脂を想像線で示した図である。 図6は、図1に示す半導体装置の右側面図であり、封止樹脂を想像線で示した図である。 図7は、図5の一部を拡大した部分拡大図であって、封止樹脂を省略している。 図8は、第2導通部材の平面図である。 図9は、図5の平面図において、封止樹脂および第2導通部材を省略した図である。 図10は、図9の平面図において、第1導通部材を想像線で示した図である。 図11は、図1に示す半導体装置の右側面図である。 図12は、図1に示す半導体装置の底面図である。 図13は、図5のXIII-XIII線に沿う断面図である。 図14は、図5のXIV-XIV線に沿う断面図である。 図15は、図14の一部を拡大した部分拡大図である。 図16は、図14の一部を拡大した部分拡大図である。 図17は、図14の一部を拡大した部分拡大図である。 図18は、図5のXVIII-XVIII線に沿う断面図である。 図19は、図5のXIX-XIX線に沿う断面図である。 図20は、図5のXX-XX線に沿う断面図である。 図21は、第1実施形態の変形例に係る半導体装置を示す、図7と同様の平面図(封止樹脂を省略)である。 図22は、第1実施形態の変形例に係る半導体装置を示し、封止樹脂および第2導通部材を省略した平面図である。 図23は、図21のXXIII-XXIII線に沿う断面図である。 図24は、図23の一部を拡大した部分拡大図である。
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。
 本開示における「第1」、「第2」、「第3」等の用語は、単にラベルとして用いたものであり、必ずしもそれらの対象物に順列を付することを意図していない。
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。
 図1~図20は、本開示の第1実施形態に係る半導体装置を示している。本実施形態の半導体装置A1は、複数の第1半導体素子10A、複数の第2半導体素子10B、導電基板2、支持基板3、第1端子41、第2端子42、複数の第3端子43、第4端子44、複数の制御端子45、制御端子支持体48、第1導通部材5、第2導通部材6および封止樹脂8を備えている。
 図1は、半導体装置A1を示す斜視図である。図2は、図1の斜視図において、封止樹脂8を省略した図である。図3は、図2の斜視図において、第1導通部材5を省略した図である。図4は、半導体装置A1を示す平面図である。図5は、図4の平面図において、封止樹脂8を想像線で示した図である。図6は、半導体装置A1の右側面図であり、封止樹脂8を想像線で示した図である。図7は、図5の一部を拡大した部分拡大図であって、封止樹脂8を省略している。図8は、第2導通部材6の平面図である。図9は、図5の平面図において、封止樹脂8および第2導通部材6を省略した図である。図10は、図9の平面図において、第1導通部材5を想像線で示した図である。図11は、半導体装置A1の右側面図である。図12は、半導体装置A1の底面図である。図13は、図5のXIII-XIII線に沿う断面図である。図14は、図5のXIV-XIV線に沿う断面図である。図15~図17は、図14の一部を拡大した部分拡大図である。図18は、図5のXVIII-XVIII線に沿う断面図である。図19は、図5のXIX-XIX線に沿う断面図である。図20は、図5のXX-XX線に沿う断面図である。
 説明の便宜上、互いに直交する3つの方向(x方向、y方向、z方向)を参照する。z方向は、たとえば、半導体装置A1の厚さ方向である。x方向は、半導体装置A1の平面図(図4参照)における左右方向である。y方向は、半導体装置A1の平面図(図4参照)における上下方向である。以下の説明において、「平面視」とは、z方向に見たときをいう。x方向は「第1方向」の一例であり、y方向は「第2方向」の一例である。
 複数の第1半導体素子10Aおよび複数の第2半導体素子10Bはそれぞれ、半導体装置A1の機能中枢となる電子部品である。各第1半導体素子10Aおよび各第2半導体素子10Bの構成材料は、たとえばSiC(炭化ケイ素)を主とする半導体材料である。この半導体材料は、SiCに限定されず、Si(シリコン)、GaN(窒化ガリウム)あるいはC(ダイヤモンド)などであってもよい。各第1半導体素子10Aおよび各第2半導体素子10Bは、たとえば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのスイッチング機能を有するパワー半導体チップである。本実施形態においては、第1半導体素子10Aおよび第2半導体素子10BがMOSFETである場合を示すが、これに限定されず、IGBT(Insulated Gate Bipolar Transistor;絶縁ゲートバイポーラトランジスタ)などの他のトランジスタであってもよい。各第1半導体素子10Aおよび各第2半導体素子10Bは、いずれも同一素子である。各第1半導体素子10Aおよび各第2半導体素子10Bは、たとえばnチャネル型のMOSFETであるが、pチャネル型のMOSFETであってもよい。
 第1半導体素子10Aおよび第2半導体素子10Bはそれぞれ、図15、図16に示すように、素子主面101および素子裏面102を有する。各第1半導体素子10Aおよび各第2半導体素子10Bにおいて、素子主面101と素子裏面102とはz方向に離間する。素子主面101は、z2方向を向き、素子裏面102は、z1方向を向く。
 本実施形態では、半導体装置A1は、4つの第1半導体素子10Aと4つの第2半導体素子10Bとを備えているが、第1半導体素子10Aの数および第2半導体素子10Bの数は、本構成に限定されず、半導体装置A1に要求される性能に応じて適宜変更される。図9、図10の例では、第1半導体素子10Aおよび第2半導体素子10Bがそれぞれ4個ずつ配置される。第1半導体素子10Aおよび第2半導体素子10Bの数は、それぞれ2個または3個でもよく、それぞれ5個以上でもよい。第1半導体素子10Aの数と第2半導体素子10Bの数とは、等しくてもよく、異なってもよい。第1半導体素子10Aおよび第2半導体素子10Bの数は、半導体装置A1が取り扱う電流容量によって決定される。
 半導体装置A1は、たとえばハーフブリッジ型のスイッチング回路として構成される。この場合、複数の第1半導体素子10Aは、半導体装置A1の上アーム回路を構成し、複数の第2半導体素子10Bは、下アーム回路を構成する。上アーム回路において、複数の第1半導体素子10Aは互いに並列に接続され、下アーム回路において、複数の第2半導体素子10Bは互いに並列に接続される。各第1半導体素子10Aと各第2半導体素子10Bとは、直列に接続され、ブリッジ層を構成する。
 複数の第1半導体素子10Aはそれぞれ、図9、図10および図20などに示すように、導電基板2に搭載されている。図9、図10に示す例では、複数の第1半導体素子10Aは、たとえばy方向に並んでおり、互いに離間している。各第1半導体素子10Aは、導電性接合材19を介して、導電基板2(後述の第1導電部2A)に導通接合されている。各第1半導体素子10Aは、第1導電部2Aに接合された際、素子裏面102が第1導電部2Aに対向する。
 複数の第2半導体素子10Bはそれぞれ、図9、図10および図19などに示すように、導電基板2に搭載されている。図9、図10に示す例では、複数の第2半導体素子10Bは、たとえばy方向に並んでおり、互いに離間している。各第2半導体素子10Bは、導電性接合材19を介して、導電基板2(後述の第2導電部2B)に導通接合されている。各第2半導体素子10Bは、第2導電部2Bに接合された際、素子裏面102が第2導電部2Bに対向する。図10から理解されるように、x方向に見て、複数の第1半導体素子10Aと複数の第2半導体素子10Bとは、重なっているが、重なっていなくてもよい。
 複数の第1半導体素子10Aおよび複数の第2半導体素子10Bはそれぞれ、第1主面電極11、第2主面電極12、第3主面電極13および裏面電極15を有する。以下で説明する第1主面電極11、第2主面電極12、第3主面電極13および裏面電極15の構成は、各第1半導体素子10Aおよび各第2半導体素子10Bにおいて共通する。第1主面電極11、第2主面電極12および第3主面電極13は、素子主面101に設けられている。第1主面電極11、第2主面電極12および第3主面電極13は、図示しない絶縁膜により絶縁されている。裏面電極15は、素子裏面102に設けられている。
 第1主面電極11は、たとえばゲート電極であって、第1半導体素子10A(第2半導体素子10B)を駆動させるための駆動信号(たとえばゲート電圧)が入力される。第1半導体素子10A(第2半導体素子10B)において、第2主面電極12は、たとえばソース電極であって、ソース電流が流れる。第3主面電極13は、たとえばソースセンス電極であって、ソース電流が流れる。裏面電極15は、たとえばドレイン電極であって、ドレイン電流が流れる。裏面電極15は、素子裏面102の全域(あるいは略全域)を覆っている。裏面電極15は、たとえばAg(銀)めっきにより構成される。
 各第1半導体素子10A(各第2半導体素子10B)は、第1主面電極11(ゲート電極)に駆動信号(ゲート電圧)が入力されると、この駆動信号に応じて、導通状態と遮断状態とが切り替わる。導通状態では、裏面電極15(ドレイン電極)から第2主面電極12(ソース電極)に電流が流れ、遮断状態では、この電流が流れない。つまり、各第1半導体素子10A(各第2半導体素子10B)は、スイッチング動作を行う。半導体装置A1は、複数の第1半導体素子10Aおよび複数の第2半導体素子10Bのスイッチング機能により、1つの第4端子44と2つの第1端子41および第2端子42との間に入力される直流電圧をたとえば交流電圧に変換して、第3端子43から交流電圧を出力する。
 半導体装置A1では、図5、図9、図10などに示すように、サーミスタ17を備える。サーミスタ17は、温度検出用センサとして用いられる。
 導電基板2は、複数の第1半導体素子10Aおよび複数の第2半導体素子10Bを支持する。導電基板2は、支持基板3上に導電性接合材29を介して接合されている。導電基板2は、たとえば平面視矩形状である。導電基板2は、第1導通部材5および第2導通部材6とともに、複数の第1半導体素子10Aおよび複数の第2半導体素子10Bによってスイッチングされる主回路電流の経路を構成する。
 導電基板2は、第1導電部2Aおよび第2導電部2Bを含む。第1導電部2Aおよび第2導電部2Bはそれぞれ、金属製の板状部材である。この金属は、たとえばCu(銅)あるいはCu合金である。第1導電部2Aおよび第2導電部2Bは、第1端子41、第2端子42、複数の第3端子43、および第4端子44とともに、複数の第1半導体素子10Aおよび複数の第2半導体素子10Bへの導通経路を構成している。第1導電部2Aおよび第2導電部2Bはそれぞれが、図13~図20に示すように、導電性接合材29を介して支持基板3上に接合されている。第1導電部2Aには、導電性接合材19を介して複数の第1半導体素子10Aがそれぞれ接合されている。第2導電部2Bには、導電性接合材19を介して複数の第2半導体素子10Bがそれぞれ接合されている。導電性接合材19および導電性接合材29の構成材料は特に限定されず、たとえばはんだ、金属ペースト材、あるいは、焼結金属などである。第1導電部2Aおよび第2導電部2Bは、図3、図9、図10、図13および図14に示すように、x方向に離間する。これらの図に示す例では、第1導電部2Aは、第2導電部2Bよりもx2方向に位置する。第1導電部2Aおよび第2導電部2Bはそれぞれ、たとえば平面視矩形状である。第1導電部2Aおよび第2導電部2Bは、x方向に見て重なる。第1導電部2Aおよび第2導電部2Bはそれぞれ、たとえばx方向の寸法が15mm~25mmであり、たとえばy方向の寸法が30mm~40mmであり、z方向の寸法が1.0mm~5.0mm(好ましくは2.0mm程度)である。
 導電基板2は、主面201および裏面202を有する。主面201および裏面202は、図13、図14および図18~図20に示すように、z方向に離間する。主面201は、z2方向を向き、裏面202は、z1方向を向く。主面201は、第1導電部2Aの上面と第2導電部2Bの上面とを合わせたものである。裏面202は、第1導電部2Aの下面と第2導電部2Bの下面とを合わせたものである。裏面202は、支持基板3に対向するように支持基板3に接合されている。
 支持基板3は、導電基板2を支持する。支持基板3は、たとえばAMB(Active Metal Brazing)基板で構成される。支持基板3は、絶縁層31、第1金属層32および第2金属層33を含む。
 絶縁層31は、たとえば熱伝導性の優れたセラミックスである。このようなセラミックスとしては、たとえばSiN(窒化ケイ素)がある。絶縁層31は、セラミックスに限定されず、絶縁樹脂シートなどであってもよい。絶縁層31は、たとえば平面視矩形状である。
 第1金属層32は、絶縁層31の上面(z2方向を向く面)に形成されている。第1金属層32の構成材料は、たとえばCuを含む。当該構成材料はCuではなくAl(アルミニウム)を含んでいてもよい。第1金属層32は、第1部分32Aおよび第2部分32Bを含む。第1部分32Aおよび第2部分32Bは、x方向に離間する。第1部分32Aは、第2部分32Bのx2方向側に位置する。第1部分32Aは、第1導電部2Aが接合され、第1導電部2Aを支持する。第2部分32Bは、第2導電部2Bが接合され、第2導電部2Bを支持する。第1部分32Aおよび第2部分32Bはそれぞれ、たとえば平面視矩形状である。
 第2金属層33は、絶縁層31の下面(z1方向を向く面)に形成されている。第2金属層33の構成材料は、第1金属層32の構成材料と同じである。第2金属層33の下面(後述の底面302)は、図11に示す例では、たとえば封止樹脂8から露出する。当該下面は、封止樹脂8から露出せず、封止樹脂8に覆われていてもよい。第2金属層33は、平面視において、第1部分32Aおよび第2部分32Bの双方に重なる。
 支持基板3は、図13~図20に示すように、支持面301および底面302を有する。支持面301と底面302とは、z方向に離間する。支持面301は、z2方向を向き、底面302は、z1方向を向く。底面302は、図12に示すように、封止樹脂8から露出する。支持面301は、第1金属層32の上面であり、第1部分32Aの上面と第2部分32Bの上面とをあわせたものである。支持面301は、導電基板2に対向し、導電基板2が接合されている。底面302は、第2金属層33の下面である。底面302には、図示しない放熱部材(たとえばヒートシンク)などが取り付け可能である。支持基板3のz方向の寸法(支持面301から底面302までのz方向に沿う距離)は、たとえば0.7mm~2.0mmである。
 第1端子41、第2端子42、複数の第3端子43、および第4端子44はそれぞれ、板状の金属板からなる。この金属板の構成材料は、たとえばCuまたはCu合金である。図1~図5、図9、図10および図12に示す例では、半導体装置A1は、1つずつの第1端子41、第2端子42および第4端子44と、2つの第3端子43とを備えている。
 第1端子41、第2端子42および第4端子44には、電力変換対象となる直流電圧が入力される。第4端子44は正極(P端子)であり、第1端子41および第2端子42はそれぞれ負極(N端子)である。複数の第3端子43から、第1半導体素子10Aおよび第2半導体素子10Bにより電力変換された交流電圧が出力される。第1端子41、第2端子42、複数の第3端子43、および第4端子44はそれぞれ、封止樹脂8に覆われた部分と封止樹脂8から露出した部分とを含む。
 第4端子44は、図14に示すように、第1導電部2Aと一体的に形成されている。本構成と異なり、第4端子44は、第1導電部2Aと分離され、第1導電部2Aに導通接合されていてもよい。第4端子44は、図9、図10などに示すように、複数の第2半導体素子10Bおよび第2導電部2B(導電基板2)に対して、x2方向側に位置する。第4端子44は、第1導電部2Aに導通し、かつ、第1導電部2Aを介して、各第1半導体素子10Aの裏面電極15(ドレイン電極)に導通する。
 第1端子41および第2端子42はそれぞれ、図9に示すように、第1導電部2Aから離間している。第1端子41および第2端子42はそれぞれ、図5および図7に示すように、第2導通部材6が接合されている。第1端子41および第2端子42はそれぞれ、図5、図9などに示すように、複数の第1半導体素子10Aおよび第1導電部2A(導電基板2)に対して、x2方向側に位置する。第1端子41および第2端子42はそれぞれ、第2導通部材6に導通し、かつ、第2導通部材6を介して、各第2半導体素子10Bの第2主面電極12(ソース電極)に導通する。
 図1~図5および図12などに示すように、第1端子41、第2端子42および第4端子44はそれぞれ、半導体装置A1において、封止樹脂8からx2方向に突き出ている。第1端子41、第2端子42および第4端子44は、互いに離間している。第1端子41および第2端子42は、y方向において第4端子44を挟んで互いに反対側に位置する。第1端子41は、第4端子44のy2方向側に位置し、第2端子42は、第4端子44のy1方向側に位置する。第1端子41、第2端子42および第4端子44は、y方向に見て互いに重なる。
 2つの第3端子43はそれぞれ、図9、図10および図13から理解されるように、第2導電部2Bと一体的に形成されている。本構成と異なり、第3端子43は、第2導電部2Bと分離され、第2導電部2Bに導通接合されていてもよい。2つの第3端子43はそれぞれ、図9などに示すように、複数の第2半導体素子10Bおよび第2導電部2B(導電基板2)に対して、x1方向側に位置する。各第3端子43は、第2導電部2Bに導通し、かつ、第2導電部2Bを介して、各第2半導体素子10Bの裏面電極15(ドレイン電極)に導通する。なお、第3端子43の数は、2つに限定されず、たとえば1つであってもよいし、3つ以上であってもよい。たとえば、第3端子43が1つである場合、第2導電部2Bのy方向における中央部分につながっていることが望ましい。
 複数の制御端子45はそれぞれ、各第1半導体素子10Aおよび各第2半導体素子10Bを制御するためのピン状の端子である。複数の制御端子45は、複数の第1制御端子46A~46Eおよび複数の第2制御端子47A~47Dを含む。複数の第1制御端子46A~46Eは、各第1半導体素子10Aの制御などに用いられる。複数の第2制御端子47A~47Dは、各第2半導体素子10Bの制御などに用いられる。
 複数の第1制御端子46A~46Eは、y方向に間隔を隔てて配置されている。各第1制御端子46A~46Eは、図9および図14などに示すように、制御端子支持体48(後述の第1支持部48A)を介して、第1導電部2Aに支持される。各第1制御端子46A~46Eは、図5および図9に示すように、x方向において、複数の第1半導体素子10Aと、第1端子41、第2端子42および第4端子44との間に位置する。
 第1制御端子46Aは、複数の第1半導体素子10Aの駆動信号入力用の端子(ゲート端子)である。第1制御端子46Aには、複数の第1半導体素子10Aを駆動させるための駆動信号が入力される(たとえばゲート電圧が印加される)。
 第1制御端子46Bは、複数の第1半導体素子10Aのソース信号検出用の端子(ソースセンス端子)である。第1制御端子46Bから、複数の第1半導体素子10Aの各第2主面電極12(ソース電極)に印加される電圧(ソース電流に対応した電圧)が検出される。
 第1制御端子46Cおよび第1制御端子46Dは、サーミスタ17に導通する端子である。
 第1制御端子46Eは、複数の第1半導体素子10Aのドレイン信号検出用の端子(ドレインセンス端子)である。第1制御端子46Eから、複数の第1半導体素子10Aの各裏面電極15(ドレイン電極)に印加される電圧(ドレイン電流に対応した電圧)が検出される。
 複数の第2制御端子47A~47Dは、y方向に間隔を隔てて配置されている。各第2制御端子47A~47Dは、図9および図14などに示すように、制御端子支持体48(後述の第2支持部48B)を介して、第2導電部2Bに支持される。各第2制御端子47A~47Dは、図5および図9に示すように、x方向において、複数の第2半導体素子10Bと2つの第3端子43との間に位置する。
 第2制御端子47Aは、複数の第2半導体素子10Bの駆動信号入力用の端子(ゲート端子)である。第2制御端子47Aには、複数の第2半導体素子10Bを駆動させるための駆動信号が入力される(たとえばゲート電圧が印加される)。第2制御端子47Bは、複数の第2半導体素子10Bのソース信号検出用の端子(ソースセンス端子)である。第2制御端子47Bから、複数の第2半導体素子10Bの各第2主面電極12(ソース電極)に印加される電圧(ソース電流に対応した電圧)が検出される。第2制御端子47Cおよび第2制御端子47Dは、サーミスタ17に導通する端子である。
 複数の制御端子45(複数の第1制御端子46A~46Eおよび複数の第2制御端子47A~47D)はそれぞれ、ホルダ451および金属ピン452を含む。
 ホルダ451は、導電性材料からなる。ホルダ451は、図15、図16に示すように、導電性接合材459を介して、制御端子支持体48(後述の第1金属層482)に接合されている。ホルダ451は、筒状部、上端鍔部および下端鍔部を含む。上端鍔部は、筒状部の上方につながり、下端鍔部は、筒状部の下方につながる。ホルダ451のうちの少なくとも上端鍔部および筒状部に、金属ピン452が挿通されている。ホルダ451は、封止樹脂8(後述の第2突出部852)に覆われている。
 金属ピン452は、z方向に延びる棒状部材である。金属ピン452は、ホルダ451に圧入されることで支持されている。金属ピン452は、少なくともホルダ451を介して、制御端子支持体48(後述の第1金属層482)に導通する。図15、図16に示す例のように、金属ピン452の下端(z1方向側の端部)がホルダ451の挿通孔内で導電性接合材459に接している場合には、金属ピン452は、導電性接合材459を介して、制御端子支持体48に導通する。
 制御端子支持体48は、複数の制御端子45を支持する。制御端子支持体48は、z方向において、主面201(導電基板2)と複数の制御端子45との間に介在する。
 制御端子支持体48は、第1支持部48Aおよび第2支持部48Bを含む。第1支持部48Aは、導電基板2の第1導電部2A上に配置され、複数の制御端子45のうちの複数の第1制御端子46A~46Eを支持する。第1支持部48Aは、図15に示すように、接合材49を介して、第1導電部2Aに接合されている。接合材49は、導電性でも絶縁性でもよいが、たとえばはんだが用いられる。第2支持部48Bは、導電基板2の第2導電部2B上に配置され、複数の制御端子45のうちの複数の第2制御端子47A~47Dを支持する。第2支持部48Bは、図16に示すように、接合材49を介して、第2導電部2Bに接合されている。
 制御端子支持体48(第1支持部48Aおよび第2支持部48Bのそれぞれ)は、たとえばDBC(Direct Bonded Copper)基板で構成される。制御端子支持体48は、互いに積層された絶縁層481、第1金属層482および第2金属層483を有する。
 絶縁層481は、たとえばセラミックスからなる。絶縁層481は、たとえば平面視矩形状である。
 第1金属層482は、図15、図16などに示すように、絶縁層481の上面に形成されている。各制御端子45は、第1金属層482上に立設されている。第1金属層482は、たとえばCuまたはCu合金である。図9などに示すように、第1金属層482は、第1部分482A、第2部分482B、第3部分482C、第4部分482D、第5部分482Eおよび第6部分482Fを含む。第1部分482A、第2部分482B、第3部分482C、第4部分482D、第5部分482Eおよび第6部分482Fは、互いに離間し、絶縁されている。
 第1部分482Aは、複数のワイヤ71が接合され、各ワイヤ71を介して、各第1半導体素子10A(各第2半導体素子10B)の第1主面電極11(ゲート電極)に導通する。第1部分482Aと第6部分482Fとは、複数のワイヤ73が接続されている。これにより、第6部分482Fは、ワイヤ73およびワイヤ71を介して、各第1半導体素子10A(各第2半導体素子10B)の第1主面電極11(ゲート電極)に導通する。図9に示すように、第1支持部48Aの第6部分482Fには、第1制御端子46Aが接合されており、第2支持部48Bの第6部分482Fには、第2制御端子47Aが接合されている。
 第2部分482Bは、複数のワイヤ72が接合され、各ワイヤ72を介して、各第1半導体素子10A(各第2半導体素子10B)の第2主面電極12(ソース電極)に導通する。図9に示すように、第1支持部48Aの第2部分482Bには、第1制御端子46Bが接合されており、第2支持部48Bの第2部分482Bには、第2制御端子47Bが接合されている。
 第3部分482Cおよび第4部分482Dは、サーミスタ17が接合されている。図9に示すように、第1支持部48Aの第3部分482Cおよび第4部分482Dには、第1制御端子46C,46Dが接合されており、第2支持部48Bの第3部分482Cおよび第4部分482Dには、第2制御端子47C,47Dが接合されている。
 第1支持部48Aの第5部分482Eは、ワイヤ74が接合され、ワイヤ74を介して、第1導電部2Aに導通する。図9に示すように、第1支持部48Aの第5部分482Eには、第1制御端子46Eが接合されている。第2支持部48Bの第5部分482Eは、他の構成部位とは導通していない。上記の各ワイヤ71~74は、たとえばボンディングワイヤである。各ワイヤ71~74の構成材料は、たとえばAu(金)、AlあるいはCuのいずれかを含む。
 第2金属層483は、図15、図16などに示すように、絶縁層481の下面に形成されている。第1支持部48Aの第2金属層483は、図15に示すように、接合材49を介して、第1導電部2Aに接合される。第2支持部48Bの第2金属層483は、図16に示すように、接合材49を介して、第2導電部2Bに接合される。
 第1導通部材5および第2導通部材6は、導電基板2とともに、複数の第1半導体素子10Aおよび複数の第2半導体素子10Bによってスイッチングされる主回路電流の経路を構成する。第1導通部材5および第2導通部材6は、主面201(導電基板2)からz2方向に離間し、かつ、平面視において主面201に重なる。本実施形態では、第1導通部材5および第2導通部材6はそれぞれ、金属製の板材により構成される。当該金属は、たとえばCuまたはCu合金である。具体的には、第1導通部材5および第2導通部材6は、適宜折り曲げられた金属製の板材である。
 第1導通部材5は、各第1半導体素子10Aの第2主面電極12(ソース電極)と第2導電部2Bとに接続され、各第1半導体素子10Aの第2主面電極12と第2導電部2Bとを導通させる。第1導通部材5は、複数の第1半導体素子10Aによってスイッチングされる主回路電流の経路を構成する。第1導通部材5は、図7および図9に示すように、第1部51、複数の第1接合部52および複数の第2接合部53を含む。
 第1部51は、x方向において、複数の第1半導体素子10Aと第2導電部2Bとの間に位置し、平面視においてy方向に延びる帯状の部位である。第1部51は、平面視において第1導電部2Aおよび第2導電部2Bの双方に重なり、z方向において主面201からz2方向に離れている。図18などに示すように、第1部51は、後述する第2導通部材6の第2帯状部622に対してz1方向に位置し、第2帯状部622よりも主面201(導電基板2)に近接する位置にある。
 本実施形態において、第1部51は、平坦部511、複数の第1屈曲部512および複数の第2屈曲部513を有する。平坦部511は、主面201と平行に配置されており、平面視において第1導電部2Aおよび第2導電部2Bの双方に重なる。ここで、平坦部511が主面201と「平行」に配置されるとは、主面201と平坦部511とが略平行であることを含み、製造上のばらつきの範囲を含むものとする。
 図9などに示すように、平坦部511は、y方向において複数の第1半導体素子10Aが配置された領域に対応して一連に延びている。本実施形態では、図7、図9、図14などに示すように、平坦部511には、複数の第1開口514が形成される。複数の第1開口514はそれぞれ、たとえばz方向(第1部51の板厚方向)に貫通する貫通孔である。複数の第1開口514は、y2方向に間隔を隔てて並ぶ。複数の第1開口514は、複数の第1半導体素子10Aそれぞれに対応して設けられる。本実施形態では、平坦部511には4つの第1開口514が設けられており、これら第1開口514と複数(4つ)の第1半導体素子10Aとは、y方向における位置が互いに等しい。
 本実施形態では、図9、図14などに示すように、各第1開口514は、平面視において、第1導電部2Aと第2導電部2Bとの間の隙間205に重なる。また、各第1開口514は、平面視において、第1導電部2Aに重なる。複数の第1開口514は、封止樹脂8を形成するために流動性の樹脂材料を注入する際に、第1部51(第1導通部材5)の付近において上側(z2方向側)と下側(z1方向側)との間で樹脂材料を流動しやすくするために形成される。
 図9などに示すように、複数の第1屈曲部512および複数の第2屈曲部513はそれぞれ、平坦部511につながっており、複数の第1半導体素子10Aに対応して配置される。図17に示すように、各第1屈曲部512は、平坦部511におけるx2方向端につながり、x2方向に向かうにつれてz1方向に位置する。各第2屈曲部513は、平坦部511におけるx1方向端につながり、x1方向に向かうにつれてz1方向に位置する。
 図9などに示すように、複数の第1接合部52および複数の第2接合部53はそれぞれ、第1部51につながっており、複数の第1半導体素子10Aに対応して配置される。具体的には、各第1接合部52は、第1部51に対してx2方向に位置しており、複数の第1屈曲部512のいずれかにつながる。各第2接合部53は、第1部51に対してx1方向に位置しており、複数の第2屈曲部513のいずれかにつながる。図15、図17などに示すように、各第1接合部52とこれに対応するいずれかの第1半導体素子10Aの第2主面電極12とは、導電性接合材59を介して接合される。図17に示すように、各第2接合部53と第2導電部2Bとは、導電性接合材59を介して接合される。導電性接合材59の構成材料は特に限定されず、たとえばはんだ、金属ペースト材、あるいは、焼結金属などである。なお、本実施形態において、各第1接合部52には開口521が形成される。各開口521は、平面視において第1半導体素子10Aの中央部に重なって形成されることが好ましい。開口521は、たとえばz方向に貫通する貫通孔である。開口521は、たとえば導電基板2に対して第1導通部材5を位置決めする際に使用される。開口521の平面形状は真円であってもよく、楕円形、矩形などの他の形状であってもよい。
 第2導通部材6は、各第2半導体素子10Bの第2主面電極12(ソース電極)と、第1端子41および第2端子42とに接続され、各第2半導体素子10Bの第2主面電極12と第1端子41および第2端子42とを導通させる。第2導通部材6は、複数の第2半導体素子10Bによってスイッチングされる主回路電流の経路を構成する。第2導通部材6は、x方向の最大寸法がたとえば25mm~40mmであり、y方向の最大寸法がたとえば30mm~45mmである。第2導通部材6は、図7および図8に示すように、第1配線部61、第2配線部62、第3配線部63および第4配線部64を含む。
 第1配線部61は、平面視においてy方向に延びる帯状の部位である。図7などから理解されるように、第1配線部61は、平面視において複数の第2半導体素子10Bに重なる。第1配線部61は、図19に示すように、各第2半導体素子10Bに接続される。
 第1配線部61は、複数の凹状領域611を有する。各凹状領域611は、図19などに示すように、第1配線部61の他の部位よりもz1方向に突き出た形状である。複数の凹状領域611の各々は、複数の第2半導体素子10Bのいずれかと接合されている。第1配線部61の各凹状領域611と各第2半導体素子10Bの第2主面電極12とは、導電性接合材69を介して接合される。導電性接合材69の構成材料は特に限定されず、たとえばはんだ、金属ペースト材、あるいは、焼結金属などである。本実施形態において、各凹状領域611には、開口611aが形成されている。各開口611aは、平面視において第2半導体素子10Bの中央部に重なって形成されることが好ましい。開口611aは、たとえば第1配線部61の各凹状領域611に形成された貫通孔である。開口611aは、たとえば導電基板2に対して第2導通部材6を位置決めする際に使用される。開口611aの平面形状は真円であってもよく、楕円形、矩形などの他の形状であってもよい。
 図5、図7、図8などに示すように、第2配線部62は、第1配線部61に対してx2方向に位置する。第2配線部62は、平面視において複数の第1半導体素子10Aと複数の第1接合部52とに重なる。第2配線部62は、第1帯状部621および第2帯状部622を含む。
 第1帯状部621は、x方向において第1配線部61と離間し、第2配線部62のうち、平面視において、y方向に延びる帯状の部位である。第1帯状部621は、平面視において複数の第1半導体素子10Aと複数の第1接合部52とに重なる。第1帯状部621は、複数の凸状領域621aを有する。各凸状領域621aは、図20などに示すように、第1帯状部621の他の部位よりもz2方向に突き出た形状である。図7、図20などに示すように、複数の凸状領域621aと複数の第1半導体素子10Aとは、平面視において互いに重なる。本実施形態では、図7、図8などから理解されるように、第1配線部61における複数の凹状領域611と、複数の凸状領域621aとは、y方向における位置が互いに等しい。
 第2帯状部622は、第1帯状部621および第1配線部61の双方につながる。第2帯状部622は、平面視において、x方向に延びる帯状の部位である。本実施形態では、第2配線部62は、複数(3つ)の第2帯状部622を有する。複数の第2帯状部622は、y方向に間隔を隔てて配置される。複数の第2帯状部622は、平行(あるいは略平行)に配置されている。複数の第2帯状部622それぞれのx2方向端は、第1帯状部621のうちy方向に隣接する2つの凸状領域621aの間に連結されている。これにより、複数の第2帯状部622それぞれのx2方向端は、第1帯状部621に対して互いに隣接する第1半導体素子10Aの間につながる。複数の第2帯状部622それぞれのx1方向端は、第1配線部61のうちy方向に隣接する2つの凹状領域611の間に連結されている。これにより、複数の第2帯状部622それぞれのx1方向端は、第1配線部61に対して互いに隣接する第2半導体素子10Bの間につながる。本実施形態では、図18などに示すように、各第2帯状部622は、平面視において第1導通部材5の第1部51(平坦部511)に重なる。一方、第2帯状部622(第2導通部材6)は、平面視において、第1部51における複数の第1開口514のいずれにも重ならない。なお、図8において、各第2帯状部622と第1帯状部621との境界、および各第2帯状部622と第1配線部61との境界を、想像線で表している。
 第3配線部63は、第1端部631、第2端部632および複数の開口633を有する。第1端部631は、第1端子41に接続される。第1端部631と第1端子41とは、導電性接合材69により接合される。第3配線部63は、平面視において、全体としてx方向に延びる帯状の部位である。第3配線部63は、平面視において、第1導電部2Aおよび第2導電部2Bの双方と重なる。第2端部632は、第1端部631に対してx方向に離れている。図7、図8などに示すように、第2端部632は、第1端部631に対して、x1方向に位置する。
 第3配線部63は、第1配線部61におけるy2方向端および第1帯状部621におけるy2方向端の双方に連結される。より具体的には、第1配線部61におけるy2方向端に、第2端部632が連結される。第1帯状部621におけるy2方向端に、第1端部631と第2端部632との間の部位が連結される。
 複数の開口633の各々は、平面視において部分的に切除された部位である。複数の開口633は、x方向において互いに離間する。図示された例では、第3配線部63は、3つの開口633を有する。x2方向側の開口633およびX方向における中央の開口633は、平面視において第1導電部2A(導電基板2)の主面201に重なり、かつ、平面視において複数の第1半導体素子10Aに重ならない位置にある。x1方向側の開口633は、平面視において第2導電部2B(導電基板2)の主面201に重なり、かつ、平面視において複数の第2半導体素子10Bに重ならない位置にある。各開口633は、平面視において、第1導電部2A(第2導電部2B)のy2方向寄りに設けられている。本実施形態において、開口633は、第3配線部63においてy1方向側端からy2方向に凹む円弧状の切欠きである。なお、開口633の平面形状は限定されず、本実施形態のように切欠きであってもよく、本実施形態とは異なり孔であってもよい。
 第4配線部64は、第3端部641、第4端部642および複数の開口643を有する。第3端部641は、第2端子42に接続される。第3端部641と第2端子42とは、導電性接合材69により接合される。第4配線部64は、平面視において、全体としてx方向に延びる帯状の部位である。第4配線部64は、第3配線部63に対してy方向に離れて配置されている。第4配線部64は、第3配線部63に対してy1方向に位置する。第4配線部64は、平面視において、第1導電部2Aおよび第2導電部2Bの双方と重なる。第4端部642は、第3端部641に対してx方向に離れている。図7、図8などに示すように、第4端部642は、第3端部641に対して、x1方向に位置する。
 第4配線部64は、第1配線部61におけるy1方向端および第1帯状部621におけるy1方向端の双方に連結される。より具体的には、第1配線部61におけるy1方向端に、第4端部642が連結される。第1帯状部621におけるy1方向端に、第3端部641と第4端部642との間の部位が連結される。
 複数の開口643の各々は、平面視において部分的に切除された部位である。複数の開口643は、x方向において互いに離間する。図示された例では、第4配線部64は、3つの開口643を有する。x2方向側の開口643およびX方向における中央の開口643は、平面視において第1導電部2A(導電基板2)の主面201に重なり、かつ、平面視において複数の第1半導体素子10Aに重ならない位置にある。x1方向側の開口643は、平面視において第2導電部2B(導電基板2)の主面201に重なり、かつ、平面視において複数の第2半導体素子10Bに重ならない位置にある。各開口643は、平面視において、第1導電部2A(第2導電部2B)のy1方向寄りに設けられている。本実施形態において、開口643は、第4配線部64においてy2方向側端からy1方向に凹む円弧状の切欠きである。なお、開口643の平面形状は限定されず、本実施形態のように切欠きであってもよく、本実施形態とは異なり孔であってもよい。
 封止樹脂8は、複数の第1半導体素子10Aと、複数の第2半導体素子10Bと、導電基板2と、支持基板3(底面302を除く)と、第1端子41、第2端子42、複数の第3端子43、および第4端子44の一部ずつと、複数の制御端子45の一部ずつと、制御端子支持体48と、第1導通部材5と、第2導通部材6と、複数のワイヤ71~ワイヤ74と、をそれぞれ覆っている。封止樹脂8は、たとえば黒色のエポキシ樹脂で構成される。封止樹脂8は、たとえばモールド成形により形成される。封止樹脂8は、たとえばx方向の寸法が35mm~60mm程度であり、たとえばy方向の寸法が35mm~50mm程度であり、たとえばz方向の寸法が4mm~15mm程度である。これらの寸法は、各方向に沿う最大部分の大きさである。封止樹脂8は、樹脂主面81、樹脂裏面82および複数の樹脂側面831~834を有する。
 樹脂主面81と樹脂裏面82とは、図11、図13および図19などに示すように、z方向に離間する。樹脂主面81は、z2方向を向き、樹脂裏面82は、z1方向を向く。樹脂主面81から複数の制御端子45(複数の第1制御端子46A~46Eおよび複数の第2制御端子47A~47D)が突き出ている。樹脂裏面82は、図12に示すように、平面視において支持基板3の底面302(第2金属層33の下面)を囲む枠状である。支持基板3の底面302は、樹脂裏面82から露出し、たとえば樹脂裏面82と面一である。複数の樹脂側面831~834はそれぞれ、樹脂主面81および樹脂裏面82の双方につながり、かつ、z方向においてこれらに挟まれている。図4などに示すように、樹脂側面831と樹脂側面832とはx方向に離間する。樹脂側面831はx1方向を向き、樹脂側面832は、x2方向を向く。樹脂側面831から2つの第3端子43が突き出ており、樹脂側面832から第1端子41、第2端子42および第4端子44が突き出ている。図4などに示すように、樹脂側面833と樹脂側面834とは、y方向に離間する。樹脂側面833は、y1方向を向き、樹脂側面834は、y2方向を向く。
 樹脂側面832には、図4に示すように、複数の凹部832aが形成されている。各凹部832aは、平面視においてx方向に窪んだ部位である。複数の凹部832aは、平面視において第1端子41と第4端子44との間に形成されたものと、第2端子42と第4端子44との間に形成されたものとがある。複数の凹部832aは、第1端子41と第4端子44との樹脂側面832に沿う沿面距離、および、第2端子42と第4端子44との樹脂側面832に沿う沿面距離を大きくするために設けられている。
 封止樹脂8は、図13および図14などに示すように、複数の第1突出部851、複数の第2突出部852および樹脂空隙部86を有する。
 複数の第1突出部851はそれぞれ、樹脂主面81からz方向に突出している。複数の第1突出部851は、平面視において封止樹脂8の四隅付近に配置されている。各第1突出部851の先端(z2方向の端部)には、第1突出端面851aが形成されている。複数の第1突出部851における各第1突出端面851aは、樹脂主面81と平行(あるいは略平行)であり、かつ、同一平面(x-y平面)上にある。各第1突出部851は、たとえば有底中空の円錐台状である。複数の第1突出部851は、半導体装置A1によって生成された電源を利用する機器において、その機器が有する制御用の回路基板などに半導体装置A1が搭載される際に、スペーサーとして利用される。複数の第1突出部851は、それぞれ、凹部851bと、当該凹部851bに形成された内壁面851cとを有する。各第1突出部851の形状は柱状であればよく、円柱状であることが好ましい。凹部851bの形状は円柱状であって、平面視において内壁面851cは単一の真円状であることが好ましい。
 半導体装置A1は、制御用の回路基板などに対して、ねじ止めなどの方法によって機械的に固定される場合がある。この場合には、複数の第1突出部851における凹部851bの内壁面851cに、めねじのねじ山を形成することができる。複数の第1突出部851における凹部851bにインサートナットを埋め込んでもよい。
 複数の第2突出部852は、図14などに示すように、樹脂主面81からz方向に突出している。複数の第2突出部852は、平面視において複数の制御端子45に重なる。複数の制御端子45の各金属ピン452は、各第2突出部852から突き出ている。各第2突出部852は、円錐台状である。第2突出部852は、各制御端子45において、ホルダ451と金属ピン452の一部とを覆う。
 樹脂空隙部86は、図13に示すように、z方向において、樹脂主面81から、導電基板2の主面201に通じる。樹脂空隙部86は、樹脂主面81から主面201にz方向に向かうにつれて断面積が小さくなるテーパー状に形成されている。樹脂空隙部86は、封止樹脂8のモールド成形時に形成され、当該モールド成形時に封止樹脂8が形成されない部分である。
 図示説明は省略するが、樹脂空隙部86は、たとえば封止樹脂8のモールド成形の際、押さえ部材が占めていたことによって流動性の樹脂材料が充填されなかったことで形成される。当該押さえ部材は、モールド成形の際に導電基板2の主面201へ押圧力を与えるものであり、第2導通部材6の各開口633および各開口643に挿通される。これにより、第2導通部材6に干渉することなく上記の押さえ部材により導電基板2を押さえることができ、導電基板2が接合される支持基板3の反りを抑制することができる。
 本実施形態において、図13に示すように、半導体装置A1は、樹脂充填部88を備える。樹脂充填部88は、樹脂空隙部86を埋めるように、樹脂空隙部86に充填されている。樹脂充填部88は、たとえば封止樹脂8と同様にエポキシ樹脂からなるが、封止樹脂8と異なる材料であってもよい。
 次に、本実施形態の作用効果について説明する。
 半導体装置A1は、複数の第1半導体素子10A、導電基板2、第1導通部材5および封止樹脂8を備える。複数の第1半導体素子10Aはそれぞれ、スイッチング機能を有し、第1導電部2A(導電基板2)に接合されている。第1導通部材5は、複数の第1半導体素子10Aによってスイッチングされる主回路電流の経路を構成する。第1導通部材5は、第1部51を含む。第1部51は、平面視において第1導電部2Aおよび第2導電部2Bの双方に重なり、z方向において主面201からz2方向に離れている。第1部51(平坦部511)は、第1開口514を有する。
 このような構成によれば、第1導通部材5(第1部51)は、平面視において比較的大きな面積を確保することができる。これにより、半導体装置A1において、複数の第1半導体素子10Aから第1導通部材5を流れる主回路電流は、大面積の電流経路を流れる。したがって、半導体装置A1は、大電流を流す上で好ましい構造である。
 第1部51は第1開口514を有する。これにより、封止樹脂8を形成するために流動性の樹脂材料を注入する際、第1開口514を通じて、第1部51(第1導通部材5)における下側(z1方向側)と上側(z2方向側)との間で樹脂材料が流動しやすくなる。また、流動性の樹脂材料を注入する際、第1部51の下側(z1方向側)に気泡が存在しても、当該気泡は第1開口514を通じて第1部51の上側(z2方向側)に移動する。したがって、第1部51の下側(z1方向側)において封止樹脂8の未充填を抑制し、ボイドの発生を防止することができる。このような構成の半導体装置A1は、大電流を流す上で信頼性が向上する。
 第1部51には複数の第1開口514が設けられており、各第1開口514は、平面視において第1導電部2Aと第2導電部2Bとの間の隙間205に重なる。このような構成によれば、第1導電部2Aと第2導電部2Bとの間の隙間205において、封止樹脂8の未充填を適切に抑制することができる。導電基板2において、互いに分離した第1導電部2Aと第2導電部2Bとの間には高電位差が生じうる。本実施形態の半導体装置A1によれば、大電流を流す上での信頼性がより向上する。
 第1開口514は、平面視において第1導電部2A(導電基板2)に重なる。このような構成によれば、第1部51と第1導電部2A(導電基板2)との間のz方向において比較的狭い隙間において、封止樹脂8の未充填を抑制することができる。
 第1部51は、平坦部511、第1屈曲部512および第2屈曲部513を有する。本実施形態では、複数の第1半導体素子10Aがy方向に間隔を隔てて配置されている。平坦部511は、y方向において複数の第1半導体素子10Aが配置された領域に対応して一連に延びている。平坦部511には、複数の第1開口514が形成されている。複数の第1開口514は、複数の第1半導体素子10Aそれぞれに対応して設けられている。このような平坦部511を備えた半導体装置A1は、大電流を流す上でより好ましい構造である。また、平坦部511に複数の第1開口514が設けられることで、第1部51の下側(z1方向側)において、封止樹脂8の未充填をより確実に抑制することができる。
 半導体装置A1は、複数の第2半導体素子10B、および第2導通部材6を備える。複数の第2半導体素子10Bはそれぞれ、スイッチング機能を有し、第2導電部2B(導電基板2)に接合されている。第2導通部材6は、複数の第2半導体素子10Bによってスイッチングされる主回路電流の経路を構成する。このような構成の半導体装置A1は、大電流を流す上でより好ましい構造である。
 第2導通部材6は、第1配線部61、第2配線部62(第1帯状部621および第2帯状部622)、第3配線部63および第4配線部64を含み、平面視において縦横に網目状の電流経路を有する。これにより、半導体装置A1において他の構成要素の制約を受けつつ、第2導通部材6は、平面視において比較的大きな面積を確保することができる。半導体装置A1において、複数の第2半導体素子10Bから第1配線部61を通じて第2導通部材6を流れる主回路電流は、大面積の分散した電流経路を流れる。したがって、半導体装置A1は、大電流を流す上でより好ましい構造である。
 本実施形態において、第2導通部材6の第2帯状部622は、平面視において第1導通部材5の第1部51(平坦部511)に重なる。このような構成の半導体装置A1は、インダクタンス成分を低減するのに適しており、大電流を流す上でより好ましい構造である。その一方、第2帯状部622(第2導通部材6)は、平面視において、第1部51における複数の第1開口514のいずれにも重ならない。これにより、第1開口514による効果(封止樹脂8の未充填の抑制、およびボイド発生の防止)が第2導通部材6によって低減されることは、防止される。
 図21~図24は、第1実施形態の変形例に係る半導体装置を示している。図21は、上記実施形態において示した図7と同様の平面図である。図22は、封止樹脂および第2導通部材を省略した平面図である。図23は、図21のXXIII-XXIII線に沿う断面図である。図24は、図23の一部を拡大した部分拡大図である。なお、図21以降の図面において、上記実施形態の半導体装置A1と同一または類似の要素には、上記実施形態と同一の符号を付しており、適宜説明を省略する。
 本変形例の半導体装置A2においては、第1導通部材5の構成が上記実施形態と異なっており、主に第1部51に形成された第1開口514の構成が異なる。本変形例では、各第1開口514は、平面視において矩形状をなす。各第1開口514は、平坦部511、第1屈曲部512および第2屈曲部513に跨って形成されている。各第1開口514は、第1部51の板厚方向に貫通する貫通孔である。各第1開口514は、平面視において、第1導電部2Aと第2導電部2Bとの間の隙間205に重なる。また、本変形例では、各第1開口514は、第1導電部2Aおよび第2導電部2Bの双方に重なる。
 半導体装置A2において、第1導通部材5(第1部51)は、平面視において比較的大きな面積を確保することができる。これにより、半導体装置A2において、複数の第1半導体素子10Aから第1導通部材5を流れる主回路電流は、大面積の電流経路を流れる。したがって、半導体装置A2は、大電流を流す上で好ましい構造である。
 第1部51は第1開口514を有する。これにより、封止樹脂8を形成するために流動性の樹脂材料を注入する際、第1開口514を通じて、第1部51(第1導通部材5)における下側(z1方向側)と上側(z2方向側)との間で樹脂材料が流動しやすくなる。また、流動性の樹脂材料を注入する際、第1部51の下側(z1方向側)に気泡が存在しても、当該気泡は第1開口514を通じて第1部51の上側(z2方向側)に移動する。したがって、第1部51の下側(z1方向側)において封止樹脂8の未充填を抑制し、ボイドの発生を防止することができる。このような構成の半導体装置A2は、大電流を流す上で信頼性が向上する。
 半導体装置A2において、各第1開口514は、平坦部511、第1屈曲部512および第2屈曲部513に跨って形成されている。各第1開口514は、平面視において、第1導電部2Aと第2導電部2Bとの間の隙間205と、第1導電部2Aおよび第2導電部2Bの双方と、に重なる。このような構成によれば、封止樹脂8を形成するために流動性の樹脂材料を注入する際、第1開口514を通じての樹脂材料の流動や気泡の移動が、より促進される。したがって、第1部51の下側(z1方向側)において封止樹脂8の未充填をより抑制し、ボイドの発生を適切に防止することができる。
 本変形例では、第2屈曲部513は第1半導体素子10Aの近傍に配置されており、この第2屈曲部513に第1開口514が形成されている。これにより、第1半導体素子10Aの周辺において、封止樹脂8の未充填やボイド発生を効果的に防止することができる。このような構成によれば、第1半導体素子10Aの周囲において、ボイドに起因する空間放電を防止することができる。したがって、半導体装置A2によれば、大電流を流す上での信頼性がより向上する。その他にも、上記実施施形態の半導体装置A1と同様の構成の範囲において、上記実施形態と同様の作用効果を奏する。
 本開示に係る半導体装置は、上述した実施形態に限定されるものではない。本開示に係る半導体装置の各部の具体的な構成は、種々に設計変更自在である。
 上記実施形態では、複数の第1半導体素子10Aに対して共通する1つの第1導通部材5を具備する構成について説明したが、本開示はこれに限定されない。たとえば複数の第1半導体素子10Aに個々に対応するように、複数の第1導通部材5を設けてもよい。
 本開示は、以下の付記に記載した実施形態を含む。
 付記1.
 厚さ方向の一方側を向く主面、および前記主面とは反対側を向く裏面を有する導電基板と、
 前記主面に接合され、スイッチング機能を有する少なくとも1つの第1半導体素子と、
 前記第1半導体素子によってスイッチングされる主回路電流の経路を構成する第1導通部材と、
 前記導電基板の少なくとも一部、前記第1半導体素子および前記第1導通部材を覆う封止樹脂と、を備え、
 前記導電基板は、前記厚さ方向に直交する第1方向の一方側および他方側に互いに離間して配置された第1導電部および第2導電部を含み、
 前記第1半導体素子は、前記第1導電部に電気的に接合されており、
 前記第1導通部材は、前記厚さ方向に見て前記第1導電部および前記第2導電部の双方に重なり、且つ前記厚さ方向において前記主面から前記厚さ方向の一方側に離れて位置する第1部を含み、
 前記第1部は、第1開口を有する、半導体装置。
 付記2.
 前記第1導通部材は、金属製の板材により構成される、付記1に記載の半導体装置。
 付記3.
 前記第1開口は、前記厚さ方向に見て前記第1導電部と前記第2導電部との間の隙間に重なる、付記2に記載の半導体装置。
 付記4.
 前記第1開口は、前記厚さ方向に見て前記第1導電部および前記第2導電部の少なくとも一方に重なる、付記3に記載の半導体装置。
 付記5.
 前記第1導通部材は、前記第1部に対して前記第1方向の一方側に位置し、且つ前記第1半導体素子に接合された第1接合部と、前記第1部に対して前記第1方向の他方側に位置し、且つ前記第2導電部に接合された第2接合部と、を含む、付記2ないし4のいずれかに記載の半導体装置。
 付記6.
 前記第1部は、前記主面と平行に配置され、且つ前記厚さ方向に見て前記第1導電部および前記第2導電部に重なる平坦部と、前記平坦部における前記第1方向の一方側端および前記第1接合部の双方につながり、且つ前記第1方向の一方側に向かうにつれて前記厚さ方向の他方側に位置する第1屈曲部と、前記平坦部における前記第1方向の他方側端および前記第2接合部の双方につながり、且つ前記第1方向の他方側に向かうにつれて前記厚さ方向の他方側に位置する第2屈曲部と、を有し、
 前記第1開口は、少なくとも前記平坦部に形成されている、付記5に記載の半導体装置。
 付記7.
 前記第1開口は、前記第1屈曲部および前記第2屈曲部の少なくとも一方に形成されている、付記6に記載の半導体装置。
 付記8.
 前記少なくとも1つの第1半導体素子は、複数の第1半導体素子を含み、当該複数の第1半導体素子は、前記厚さ方向および前記第1方向の双方に直交する第2方向に間隔を隔てて配置されている、付記6または7に記載の半導体装置。
 付記9.
 前記第1開口は、前記第2方向において前記複数の第1半導体素子それぞれに対応して設けられた複数の開口を含む、付記8に記載の半導体装置。
 付記10.
 前記平坦部は、前記第2方向において前記複数の第1半導体素子が配置された領域に対応して一連に延びる、付記9に記載の半導体装置。
 付記11.
 前記第1接合部、前記第2接合部、前記第1屈曲部および前記第2屈曲部は、前記第2方向において前記複数の第1半導体素子それぞれに対応して配置されている、付記9または10に記載の半導体装置。
 付記12.
 前記第2導電部に電気的に接合され、スイッチング機能を有する複数の第2半導体素子と、
 金属製の板材により構成された第2導通部材と、をさらに備え、
 前記第2導通部材は、第1配線部および第2配線部を含み、
 前記第1配線部は、前記複数の第2半導体素子に接続されており、
 前記第2配線部は、前記第1配線部に対して前記第1方向の一方側に位置し、且つ前記複数の第1半導体素子と前記第1接合部との双方に重なる、付記9ないし11のいずれかに記載の半導体装置。
 付記13.
 前記複数の第2半導体素子は、前記第2方向に間隔を隔てて配置されており、
 前記複数の第1半導体素子と前記複数の第2半導体素子とは、前記第1方向に見て互いに重なる、付記12に記載の半導体装置。
 付記14.
 前記第2配線部は、第1帯状部および第2帯状部を有し、
 前記第1帯状部は、前記第1方向において前記第1配線部と離間し、且つ厚さ方向に見て前記複数の第1半導体素子と前記第1接合部との双方に重なり、
 前記第2帯状部は、前記第1方向の一方側端が前記第1帯状部に対して互いに隣接する第1半導体素子の間につながり、且つ前記第1方向の他方側端が前記第1配線部に対して互いに隣接する第2半導体素子の間につながる、付記13に記載の半導体装置。
 付記15.
 前記第2帯状部は、前記厚さ方向に見て前記第1導通部材の前記平坦部に重なる、付記14に記載の半導体装置。
 付記16.
 前記第2導通部材は、第3配線部および第4配線部を含み、
 前記第3配線部は、前記第1配線部における前記第2方向の一方側端および前記第1帯状部における前記第2方向の一方側端の双方に連結され、且つ前記第1方向に延びており、
 前記第4配線部は、前記第1配線部における前記第2方向の他方側端および前記第1帯状部における前記第2方向の他方側端の双方に連結され、且つ前記第1方向に延びる、付記14または15に記載の半導体装置。
 付記17.
 前記第2導通部材は、前記厚さ方向に見て、前記第1開口の前記複数の開口のいずれにも重ならない、付記12ないし15のいずれかに記載の半導体装置。
 付記18.
 前記第1導通部材および前記第2導通部材は、銅を含有する、付記12ないし17のいずれかに記載の半導体装置。
 付記19.
 前記第1開口は、前記第1部の板厚方向に貫通する貫通孔である、付記2ないし18のいずれかに記載の半導体装置。
A1,A2:半導体装置   10A:第1半導体素子
10B:第2半導体素子   101:素子主面
102:素子裏面   11:第1主面電極   12:第2主面電極
13:第3主面電極   15:裏面電極   17:サーミスタ
19:導電性接合材   2:導電基板   2A:第1導電部
2B:第2導電部   201:主面   202:裏面
205:隙間   29:導電性接合材   3:支持基板
301:支持面   302:底面   31:絶縁層
32:第1金属層   32A:第1部分   32B:第2部分
321:第1接合層   33:第2金属層   41:第1端子
42:第2端子   43:第3端子   44:第4端子
45:制御端子   451:ホルダ   452:金属ピン
459:導電性接合材
46A,46B,46C,46D,46E:第1制御端子
47A,47B,47C,47D:第2制御端子
48:制御端子支持体   481:絶縁層   482:第1金属層
482A:第1部分   482B:第2部分
482C:第3部分   482D:第4部分
482E:第5部分   482F:第6部分
483:第2金属層   49:接合材   5:第1導通部材
51:第1部   511:平坦部   512:第1屈曲部
513:第2屈曲部   514:第1開口   52:第1接合部
521:開口   53:第2接合部   59:導電性接合材
6:第2導通部材   61:第1配線部   611:凹状領域
611a:開口   62:第2配線部   621:第1帯状部
621a:凸状領域   622:第2帯状部   63:第3配線部
631:第1端部   632:第2端部   633:開口
64:第4配線部   641:第3端部   642:第4端部
643:開口   69:導電性接合材
71,72,73,74:ワイヤ   8:封止樹脂
81:樹脂主面   82:樹脂裏面   831,832:樹脂側面
832a:凹部   833,834:樹脂側面
851:第1突出部   851a:第1突出端面
851b:凹部   851c:内壁面   852:第2突出部
86:樹脂空隙部   88:樹脂充填部

Claims (19)

  1.  厚さ方向の一方側を向く主面、および前記主面とは反対側を向く裏面を有する導電基板と、
     前記主面に接合され、スイッチング機能を有する少なくとも1つの第1半導体素子と、
     前記第1半導体素子によってスイッチングされる主回路電流の経路を構成する第1導通部材と、
     前記導電基板の少なくとも一部、前記第1半導体素子および前記第1導通部材を覆う封止樹脂と、を備え、
     前記導電基板は、前記厚さ方向に直交する第1方向の一方側および他方側に互いに離間して配置された第1導電部および第2導電部を含み、
     前記第1半導体素子は、前記第1導電部に電気的に接合されており、
     前記第1導通部材は、前記厚さ方向に見て前記第1導電部および前記第2導電部の双方に重なり、且つ前記厚さ方向において前記主面から前記厚さ方向の一方側に離れて位置する第1部を含み、
     前記第1部は、第1開口を有する、半導体装置。
  2.  前記第1導通部材は、金属製の板材により構成される、請求項1に記載の半導体装置。
  3.  前記第1開口は、前記厚さ方向に見て前記第1導電部と前記第2導電部との間の隙間に重なる、請求項2に記載の半導体装置。
  4.  前記第1開口は、前記厚さ方向に見て前記第1導電部および前記第2導電部の少なくとも一方に重なる、請求項3に記載の半導体装置。
  5.  前記第1導通部材は、前記第1部に対して前記第1方向の一方側に位置し、且つ前記第1半導体素子に接合された第1接合部と、前記第1部に対して前記第1方向の他方側に位置し、且つ前記第2導電部に接合された第2接合部と、を含む、請求項2ないし4のいずれかに記載の半導体装置。
  6.  前記第1部は、前記主面と平行に配置され、且つ前記厚さ方向に見て前記第1導電部および前記第2導電部に重なる平坦部と、前記平坦部における前記第1方向の一方側端および前記第1接合部の双方につながり、且つ前記第1方向の一方側に向かうにつれて前記厚さ方向の他方側に位置する第1屈曲部と、前記平坦部における前記第1方向の他方側端および前記第2接合部の双方につながり、且つ前記第1方向の他方側に向かうにつれて前記厚さ方向の他方側に位置する第2屈曲部と、を有し、
     前記第1開口は、少なくとも前記平坦部に形成されている、請求項5に記載の半導体装置。
  7.  前記第1開口は、前記第1屈曲部および前記第2屈曲部の少なくとも一方に形成されている、請求項6に記載の半導体装置。
  8.  前記少なくとも1つの第1半導体素子は、複数の第1半導体素子を含み、当該複数の第1半導体素子は、前記厚さ方向および前記第1方向の双方に直交する第2方向に間隔を隔てて配置されている、請求項6または7に記載の半導体装置。
  9.  前記第1開口は、前記第2方向において前記複数の第1半導体素子それぞれに対応して設けられた複数の開口を含む、請求項8に記載の半導体装置。
  10.  前記平坦部は、前記第2方向において前記複数の第1半導体素子が配置された領域に対応して一連に延びる、請求項9に記載の半導体装置。
  11.  前記第1接合部、前記第2接合部、前記第1屈曲部および前記第2屈曲部は、前記第2方向において前記複数の第1半導体素子それぞれに対応して配置されている、請求項9または10に記載の半導体装置。
  12.  前記第2導電部に電気的に接合され、スイッチング機能を有する複数の第2半導体素子と、
     金属製の板材により構成された第2導通部材と、をさらに備え、
     前記第2導通部材は、第1配線部および第2配線部を含み、
     前記第1配線部は、前記複数の第2半導体素子に接続されており、
     前記第2配線部は、前記第1配線部に対して前記第1方向の一方側に位置し、且つ前記複数の第1半導体素子と前記第1接合部との双方に重なる、請求項9ないし11のいずれかに記載の半導体装置。
  13.  前記複数の第2半導体素子は、前記第2方向に間隔を隔てて配置されており、
     前記複数の第1半導体素子と前記複数の第2半導体素子とは、前記第1方向に見て互いに重なる、請求項12に記載の半導体装置。
  14.  前記第2配線部は、第1帯状部および第2帯状部を有し、
     前記第1帯状部は、前記第1方向において前記第1配線部と離間し、且つ厚さ方向に見て前記複数の第1半導体素子と前記第1接合部との双方に重なり、
     前記第2帯状部は、前記第1方向の一方側端が前記第1帯状部に対して互いに隣接する第1半導体素子の間につながり、且つ前記第1方向の他方側端が前記第1配線部に対して互いに隣接する第2半導体素子の間につながる、請求項13に記載の半導体装置。
  15.  前記第2帯状部は、前記厚さ方向に見て前記第1導通部材の前記平坦部に重なる、請求項14に記載の半導体装置。
  16.  前記第2導通部材は、第3配線部および第4配線部を含み、
     前記第3配線部は、前記第1配線部における前記第2方向の一方側端および前記第1帯状部における前記第2方向の一方側端の双方に連結され、且つ前記第1方向に延びており、
     前記第4配線部は、前記第1配線部における前記第2方向の他方側端および前記第1帯状部における前記第2方向の他方側端の双方に連結され、且つ前記第1方向に延びる、請求項14または15に記載の半導体装置。
  17.  前記第2導通部材は、前記厚さ方向に見て、前記第1開口の前記複数の開口のいずれにも重ならない、請求項12ないし15のいずれかに記載の半導体装置。
  18.  前記第1導通部材および前記第2導通部材は、銅を含有する、請求項12ないし17のいずれかに記載の半導体装置。
  19.  前記第1開口は、前記第1部の板厚方向に貫通する貫通孔である、請求項2ないし18のいずれかに記載の半導体装置。
PCT/JP2022/027699 2021-08-10 2022-07-14 半導体装置 WO2023017707A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280054464.3A CN117795675A (zh) 2021-08-10 2022-07-14 半导体装置
DE112022003321.5T DE112022003321T5 (de) 2021-08-10 2022-07-14 Halbleiterbauteil
JP2023541380A JPWO2023017707A1 (ja) 2021-08-10 2022-07-14
US18/532,726 US20240234361A9 (en) 2021-08-10 2023-12-07 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130755 2021-08-09
JP2021130755 2021-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/532,726 Continuation US20240234361A9 (en) 2021-08-10 2023-12-07 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2023017707A1 true WO2023017707A1 (ja) 2023-02-16

Family

ID=85199939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027699 WO2023017707A1 (ja) 2021-08-10 2022-07-14 半導体装置

Country Status (4)

Country Link
JP (1) JPWO2023017707A1 (ja)
CN (1) CN117795675A (ja)
DE (1) DE112022003321T5 (ja)
WO (1) WO2023017707A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098368A1 (ja) * 2017-11-20 2019-05-23 ローム株式会社 半導体装置
JP2021034638A (ja) * 2019-08-28 2021-03-01 三菱電機株式会社 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300633B2 (ja) 2014-05-20 2018-03-28 三菱電機株式会社 パワーモジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098368A1 (ja) * 2017-11-20 2019-05-23 ローム株式会社 半導体装置
JP2021034638A (ja) * 2019-08-28 2021-03-01 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
CN117795675A (zh) 2024-03-29
JPWO2023017707A1 (ja) 2023-02-16
DE112022003321T5 (de) 2024-04-18
US20240136320A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
CN108735692B (zh) 半导体装置
US7479693B2 (en) Arrangement of conductive connectors in a power semiconductor device
JP7411849B2 (ja) 半導体モジュール
JP7352753B2 (ja) 半導体モジュール
JP7354475B1 (ja) 半導体モジュール
WO2021010210A1 (ja) 半導体装置
US10658253B2 (en) Semiconductor device including a warped printed circuit board disposed in a case and method of manufacturing same
WO2023017707A1 (ja) 半導体装置
WO2022080072A1 (ja) 半導体モジュール
WO2023017708A1 (ja) 半導体装置
WO2022264834A1 (ja) 半導体装置
JP7131708B2 (ja) 半導体装置
WO2020241239A1 (ja) 半導体装置
JP7473376B2 (ja) 半導体装置
JP7392319B2 (ja) 半導体装置
JP5682511B2 (ja) 半導体モジュール
WO2023214500A1 (ja) 半導体装置
US20240234361A9 (en) Semiconductor device
WO2023140050A1 (ja) 半導体装置
WO2022259824A1 (ja) 接合構造および半導体装置
WO2022270306A1 (ja) 半導体装置
WO2024024372A1 (ja) 半導体装置、電力変換ユニットおよび半導体装置の製造方法
WO2024075514A1 (ja) 接合構造体および半導体装置
WO2024116851A1 (ja) 半導体装置および電力変換ユニット
JP2023130642A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541380

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280054464.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003321

Country of ref document: DE