WO2023011440A1 - 一种软内窥镜***、软内窥镜辅助装置和操作方法 - Google Patents

一种软内窥镜***、软内窥镜辅助装置和操作方法 Download PDF

Info

Publication number
WO2023011440A1
WO2023011440A1 PCT/CN2022/109590 CN2022109590W WO2023011440A1 WO 2023011440 A1 WO2023011440 A1 WO 2023011440A1 CN 2022109590 W CN2022109590 W CN 2022109590W WO 2023011440 A1 WO2023011440 A1 WO 2023011440A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
soft endoscope
mirror body
auxiliary device
control handle
Prior art date
Application number
PCT/CN2022/109590
Other languages
English (en)
French (fr)
Inventor
张承
茹敏涛
时百明
Original Assignee
杭州安杰思医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州安杰思医学科技股份有限公司 filed Critical 杭州安杰思医学科技股份有限公司
Priority to CN202280052109.2A priority Critical patent/CN117813036A/zh
Publication of WO2023011440A1 publication Critical patent/WO2023011440A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery

Definitions

  • This specification relates to the field of endoscopy, in particular to a soft endoscope system, soft endoscope auxiliary device and operation method.
  • Endoscopy has gone through fiber endoscopy, electronic endoscopy, ultrasonic endoscopy and other stages, but it is currently only widely used in the natural cavity of the organism or the lumen with openings in the natural cavity of the organism (such as bile duct, pancreas, etc.) disease treatment.
  • the flexible endoscope includes a control handle at the proximal end and a scope body comprising: a flexible insertion portion attached to the distal end of the control handle, a curved portion attached to the distal end of the flexible insertion portion, a An end effector to the distal end of the bend, an opening and closing mechanism to control the bend of the bend, and an elastic cover covering the bend; the distal end of the elastic cover is attached to the end effector, and the end of the elastic cover
  • the proximal end is attached to the proximal end of the flexible insertion part;
  • the end effector includes a lens exposed at the bending part and surgical instruments, the surgical instruments are connected to the control handle through the control steel wire, and the control handle pulls the control steel wire to control the operation of the surgical instrument.
  • the user bends the distal end of the endoscope body to control the direction of the instrument by operating the operating parts on the control handle of the soft endoscope. Actions usually require the assistance of additional assistants.
  • the existing flexible endoscopes, instruments, and personnel arrangements are not conducive to the user's efficient approach, observation, and treatment of lesions.
  • One of the embodiments of this specification provides a soft endoscope auxiliary device, which is applied to a soft endoscope, and the soft endoscope includes a mirror body;
  • the soft endoscope auxiliary device includes: a moving part arranged on the On the mirror body, it is used to control the movement and/or rotation of the mirror body, and the moving part includes a conveying device and/or an angle control device, and the conveying device is used to control the movement of the mirror body along the axial direction, The angle control device is used to control the rotation of the mirror body around the axial direction.
  • the soft endoscope auxiliary device further includes a control component, the control component is used to generate a control signal for controlling the movement component to move and/or rotate the scope body.
  • the soft endoscope includes a control handle
  • the soft endoscope auxiliary device further includes a control part
  • the control part is arranged on the soft endoscope for collecting the control handle
  • the movement information of the moving part controls the movement and/or rotation of the mirror body according to the movement information.
  • the soft endoscope auxiliary device further includes a first adjustment component, the first adjustment component includes a strut, and the strut is used to support the control component and/or the control handle.
  • control handle is provided with a large dial and a small dial, and the large dial and the small dial are used to control the bending of the distal end of the mirror body.
  • control part is provided with a hollow channel, and the control part is sleeved on the control handle or the mirror body through the channel; the cavity wall of the channel is provided with A touch device, the touch device is used to acquire motion information of the control handle.
  • control component includes an attitude sensor disposed on the control handle, and the attitude sensor is used to obtain motion information of the control handle.
  • the soft endoscope auxiliary device further includes: a control device, configured to receive the motion information collected by the control component, generate a control signal according to the motion information, and send the control signal to To the moving part, the control signal instructs the moving part to control movement or rotation of the mirror body in an axial direction of the mirror body.
  • a control device configured to receive the motion information collected by the control component, generate a control signal according to the motion information, and send the control signal to To the moving part, the control signal instructs the moving part to control movement or rotation of the mirror body in an axial direction of the mirror body.
  • the conveying device includes a first driving motor, a first driving wheel, two first driven wheels, and two conveying wheels, and the first driving motor is in transmission connection with the first driving wheel, so The first driving wheel meshes with one of the two first driven wheels, and the two first driven wheels mesh with each other, and the two first driven wheels mesh with the two conveying wheels respectively.
  • the mirror body is sandwiched between the two conveying wheels; or, the conveying device includes a third drive motor, a second driving wheel, a second driven wheel, a third driven wheel and two sets of belts Wheel sets, each set of pulley sets includes two second pulleys and a second flexible belt, the third drive motor is in transmission connection with the second driving pulley, and the second driving pulley is connected to the second driven pulley meshing, the second driven wheel is meshed with the third driven wheel, the second driven wheel is in transmission connection with one set of pulley sets, and the third driven wheel is in transmission connection with the other set of pulley sets;
  • the mirror body is clamped between the two sets of pulleys, the at least part of the second flexible belt of each pulley set abuts against the mirror body, and the moving direction of the second flexible belt is the same as that of the second flexible belt.
  • the included angle between the axes of the mirror body at the abutting position is 0-5°.
  • the angle control device includes a second driving motor, a first driving pulley, a first driven pulley and a first flexible belt, and the second driving motor is driven by the first driving pulley.
  • the first driving pulley is connected to the first driven pulley through the first flexible belt, the first flexible belt abuts against the mirror body, and the movement of the first flexible belt
  • the included angle between the direction and the axis of the mirror body at the contact point is 85°-90°; or, the angle control device includes a fourth drive motor and a friction ball, and the fourth drive motor is used to drive the The friction ball rotates, the friction ball abuts against the mirror body, and the included angle between the rotation axis of the friction ball and the axis at the abutment is 0-5°.
  • the soft endoscope auxiliary device further includes: a clamping part and a fixed part; the clamping part and the moving part are fixedly arranged on the fixed part in parallel front and rear, and the mirror body passes through the moving part , and then pass through the clamping part for clamping and fixing.
  • the soft endoscope auxiliary device further includes: a first adjustment part, one end of the first adjustment part is used to fix the control part, and the other end is used to be fixed on the fixed part for adjusting The height and angle of the control component; and/or, the second adjustment component and the examination bed, one end of the second adjustment component is fixed on the examination bed, the other end is fixed on the fixed component, and the second adjustment component Used to adjust the height and angle of the mirror body.
  • the first adjustment member and/or the second adjustment member is a mechanical arm.
  • the soft endoscope auxiliary device further includes a force sensing component and a pressure feedback component; the force sensing component is used to sense the resistance information of the mirror body moving or rotating; the pressure The feedback component is used for feeding back the resistance information.
  • the soft endoscope auxiliary device further includes a mechanical arm, the end of the mechanical arm is provided with an adapter flange, the moving part is arranged on the adapter flange, the The force sensing part includes a pressure sensor, and the pressure sensor is arranged between the adapter flange and the moving part.
  • the pressure feedback component includes a clasping mechanism disposed on the control handle, and the clasping mechanism includes a first elastic sleeve, a fifth drive motor, a gear train, and two clasping arms , the first elastic sleeve is set on the control handle, and the fifth driving motor is respectively connected with the two holding arms through the gear transmission system, and is used to drive the two holding arms Compress or loosen the first elastic sleeve.
  • the pressure feedback component includes a resistance mechanism arranged on the control handle, the resistance mechanism includes a second elastic sleeve, a sixth driving motor and a cam, and the second elastic sleeve is sleeved on the On the control handle, the sixth driving motor is connected with the cam and drives the cam to compress or loosen the second elastic sleeve.
  • the pressure feedback component includes a pressure regulating mechanism arranged on the control handle, the pressure regulating mechanism includes an air bag and an air pump, the air bag is arranged on the control handle, and the air pump is used for The inflation amount of the air bag is adjusted to adjust the movement resistance of the control handle.
  • the pressure feedback component includes a pressure prompting device
  • the pressure prompting device includes a display, a voice player and/or an indicator light.
  • One of the embodiments of this specification provides a soft endoscope auxiliary device, which is applied to a soft endoscope, and the soft endoscope includes a control handle and a mirror body; the soft endoscope auxiliary device includes: a moving part, a set On the mirror body, it is used to control the movement or rotation of the mirror body along the axial direction of the mirror body; the force sensing component is used to sense the resistance information on the movement or rotation of the mirror body; pressure feedback A component for feeding back the resistance information.
  • the pressure feedback component is arranged on the control handle, and the pressure feedback component feeds back the resistance information by adjusting the movement resistance of the control handle.
  • the pressure feedback component includes a clasping mechanism disposed on the control handle, and the clasping mechanism includes a first elastic sleeve, a fifth drive motor, a gear train, and two clasping arms , the first elastic sleeve is set on the control handle, and the fifth driving motor is respectively connected with the two holding arms through the gear transmission system, and is used to drive the two holding arms Compress or loosen the first elastic sleeve.
  • the pressure feedback component includes a resistance mechanism arranged on the control handle, the resistance mechanism includes a second elastic sleeve, a sixth driving motor and a cam, and the second elastic sleeve is sleeved on the On the control handle, the sixth driving motor is connected with the cam and drives the cam to compress or loosen the second elastic sleeve.
  • the pressure feedback component includes a pressure regulating mechanism arranged on the control handle, the pressure regulating mechanism includes an air bag and an air pump, the air bag is arranged on the control handle, and the air pump is used for The inflation amount of the air bag is adjusted to adjust the movement resistance of the control handle.
  • the pressure feedback component includes a pressure prompting device
  • the pressure prompting device includes a display, a voice player and/or an indicator light.
  • the soft endoscope auxiliary device further includes a mechanical arm, the end of the mechanical arm is provided with an adapter flange, the moving part is arranged on the adapter flange, the The force sensing part includes a pressure sensor, and the pressure sensor is arranged between the adapter flange and the moving part.
  • One of the embodiments of this specification provides a soft endoscope system, the soft endoscope system includes a soft endoscope and the soft endoscope auxiliary device as described in any one of the above embodiments.
  • One of the embodiments of this specification provides a soft endoscope auxiliary operation method, which is applied to the soft endoscope and the soft endoscope auxiliary operation device as described in any one of the above embodiments; the method includes: receiving control components to collect The motion information of the control handle; generate a control signal according to the motion information, and send the control signal to the moving part, and the control signal instructs the moving part to control the movement or rotation of the mirror body along the axial direction of the mirror body .
  • One of the embodiments of this specification provides a soft endoscope auxiliary operation method, which is applied to the soft endoscope and the soft endoscope auxiliary operation device as described in any one of the above embodiments; the method includes: receiving force sensing The resistance information on the movement or rotation of the mirror body sensed by the component; a feedback signal is generated according to the resistance information, and the feedback signal is sent to the pressure feedback component, and the pressure feedback component is used to feed back the pressure feedback component according to the feedback signal The above resistance information.
  • the control part collects the motion information of the control handle, and the moving part controls the mirror body to move or rotate based on the control information, and the user can realize the control of the soft endoscope by operating the control handle.
  • Control can allow users (especially medical staff, etc.) to maximize their trained control skills, complete operations more safely and effectively, and at the same time reduce the fatigue of users caused by long-term use of mirrors.
  • the user can free the hand that originally needed to hold the mirror body, and operate other medical instruments of the soft endoscope with both hands, so as to complete the operation faster and more efficiently , and can greatly reduce the labor intensity of the user on the premise of ensuring the safety of the operation, improve the concentration of the user, and be more conducive to ensuring the safety of the operation.
  • Fig. 1 is a schematic diagram of an application scene of a soft endoscope and its auxiliary device according to some embodiments of this specification;
  • Fig. 2 is a schematic structural view of a soft endoscope auxiliary device according to some embodiments of this specification
  • Fig. 3 is a schematic structural diagram of a control handle and control components according to some embodiments of the present specification
  • Fig. 4 is a schematic structural diagram of a control component according to some embodiments of the present specification.
  • Fig. 5 is a functional block diagram of a soft endoscope auxiliary device circuit according to some embodiments of the present specification
  • Fig. 6 is a schematic structural diagram of a moving part according to some embodiments of the present specification.
  • Fig. 7 is a schematic structural diagram of a moving part according to other embodiments of the present specification.
  • Fig. 8 is a schematic structural view of soft endoscope auxiliary devices according to other embodiments of the present specification.
  • Fig. 9 is a schematic structural view of a soft endoscope auxiliary device according to some other embodiments of the present specification.
  • Fig. 10 is a structural block diagram of a soft endoscope auxiliary device according to some embodiments of the present specification.
  • Fig. 11 is a structural schematic diagram of a clamping mechanism of a pressure feedback component according to some embodiments of the present specification.
  • Fig. 12 is a structural schematic diagram of a resistance mechanism of a pressure feedback component according to some embodiments of the present specification.
  • Fig. 13 is a schematic structural diagram of a robotic arm according to some embodiments of the present specification.
  • Fig. 14 is a schematic flowchart of a soft endoscope assisted operation method according to some embodiments of the present specification.
  • Fig. 15 is a schematic flowchart of a soft endoscope assisted operation method according to some embodiments of the present specification.
  • reference signs are: 10, soft endoscope; 11, control handle; 111, large dial; 112, small dial; 12, mirror body; 20, control component; 21, cavity; 22, touch Device; 30, moving parts; 31, conveying device; 311, rotating shaft; 312, first driving wheel; 313, first driven wheel; 314, conveying wheel; 315, annular groove; 301, rotating shaft; 302, second driving Wheel; 303, second driven wheel; 304, pulley group; 3041, second pulley; 3042, second flexible belt; 305, third driven wheel; 32, angle control device; 321, second driving motor; 322 , the first driving pulley; 323, the first driven pulley; 324, the first flexible belt; 310, the fourth driving motor; 320, the friction ball; 40, the fixed part; 50, the clamping part; 60, the first Adjusting component; 61, pillar; 70, second adjusting component; 80, examination bed; 90, control device; 100, force sensing component; 110, pressure sensor; 200, pressure feedback component; 210, holding mechanism;
  • Fig. 1 is a schematic diagram of application scenarios of a soft endoscope and its auxiliary devices according to some embodiments of the present specification.
  • the flexible endoscope 10 refers to a medical instrument that completes inspection, diagnosis and treatment through the natural orifice of the human body.
  • the flexible endoscope 10 includes, but is not limited to, a gastroscope, a colonoscope, a laryngoscope, a bronchoscope, and the like.
  • the soft endoscope auxiliary device refers to a device that assists the user in controlling the movement of the soft endoscope 10 .
  • the soft endoscope auxiliary device can be set on the mobile cart 500, a part of the soft endoscope 10 is connected with the soft endoscope auxiliary device, and the other part can be extended to the examination bed 80,
  • the examination bed 80 refers to a platform for a human body to lie on.
  • the user operates the soft endoscope 10 through the soft endoscope auxiliary device, and controls the soft endoscope 10 to perform various inspection actions.
  • proximal end and distal end mentioned in some embodiments of this specification can indicate directions, which means that the side facing the operator is the “proximal end” when viewed along the axial direction of the scope body 12, The side protruding into the human body is the “distal end”, and “proximal end” and “distal end” can be understood as the end surface, end, part near the end and having a certain length, etc. of the component.
  • Fig. 2 is a schematic structural view of a soft endoscope auxiliary device according to some embodiments of the present specification.
  • the soft endoscope auxiliary device is applied to a soft endoscope 10, and the soft endoscope 10 includes a mirror body 12, which can be used to insert into the natural cavity of the human body and perform inspection , diagnosis and treatment and many other tasks.
  • the soft endoscope 10 includes a control handle 11 , and the control handle 11 may be a handle for a user to manually operate the scope body 12 .
  • the soft endoscope 10 includes a control foot pedal (not shown in the figure), which may be a foot pedal that the user presses to operate the scope body 12 .
  • the soft endoscope 10 includes other control operators, such as a control lever, a control steering wheel, etc., which are not limited in this embodiment of the present specification.
  • the soft endoscopic auxiliary device includes: a moving part 30 .
  • the moving part 30 is disposed on the mirror body 12 for controlling the mirror body 12 to move or rotate along the axial direction of the mirror body 12 according to the movement information of the control handle 11 .
  • the mirror body 12 can extend along a straight line or bend along a curve.
  • the axial direction of the mirror body 12 refers to the extending direction along the central axis of the mirror body, including but not limited to a straight line or a curve.
  • the movement of the mirror body 12 may be that the mirror body 12 moves along the central axis direction, and the rotation of the mirror body 12 may be that the outer surface of the mirror body 12 rotates around the central axis direction.
  • the moving part 30 may be a multi-degree-of-freedom robot arm that controls the movement and/or rotation of the mirror body 12 .
  • the moving part 30 can be fixed on the fixed part 40 .
  • the moving part 30 controls the mirror body 12 to move or rotate along the axial direction of the mirror body 12.
  • the moving part 30 may include a linear motor and a rotary motor, and the linear motor controls the linear movement of the mirror body 12.
  • the rotation motor is used to control the rotation of the mirror body 12 .
  • the moving part 30 can also control the mirror body 12 to move along a curve.
  • the moving part 30 can be used in cooperation with the control handle 11 , control pedals or other control operators to realize semi-automatic control of the mirror body 12 .
  • the moving part 30 can be connected with the control device 90, and the movement of the mirror body 12 can also be automatically controlled by the control device 90.
  • the user inputs the patient's parameter information to the control device, and the control device can send a control signal to the control device.
  • the moving part 30 is controlled so that the moving part 30 automatically controls the movement and/or rotation of the mirror body 12 .
  • the control device 90 please refer to FIG. 5 and related descriptions.
  • the soft endoscopic auxiliary device includes a control component 20 .
  • control part 20 is set on the soft endoscope 10, and is used to collect the movement information of the control handle 11, the control pedal or other control operators.
  • movement information include but not limited to the control handle 11, control Movement trajectory information, angle rotation information, etc. of pedals or other control manipulators.
  • control unit 20 is used to generate a control signal for controlling the movement unit 30 to move and/or rotate the mirror body 12 .
  • the control signal can be generated based on the motion information of the control handle 11, the control pedal or other control operators.
  • control signal generated by the control unit 20 to control the moving unit 30 to move and/or rotate the mirror body 12 may be a mechanical signal.
  • the control part 20 can be a mechanical transmission mechanism, the mechanical transmission input side of the control part 20 is connected with the control handle 11, the control pedal or other control operators, and the mechanical transmission output side of the control part 20 is connected with the moving part 30 connected.
  • the control handle 11, the control pedal or other control operators are in motion, the transmission force or torque can be input to the mechanical transmission input side of the control part 20, through the transmission of the control part 20 and from the mechanical transmission output side of the control part 20 output, the moving part 30 is controlled to move and/or rotate the mirror body 12 .
  • the control component 20 includes, but is not limited to, a pull wire, a pull rod, a link mechanism, a gear mechanism, or other structures.
  • control signal generated by the control unit 20 to control the moving unit 30 to move and/or rotate the mirror body 12 may be an electric control signal.
  • control component 20 can be a touch device or a gesture sensor, etc., and these components can be integrated with a chip or a processor.
  • the motion information can also generate a control signal for controlling the moving part 30 to move and/or rotate the mirror body 12 .
  • control component 20 can be sensors such as strain gauges and gyroscopes, which are only used to sense the movement information of the control handle 11, control pedals or other control operators, and then send the sensed movement information to Other processors (such as the control device 90 mentioned below) generate control signals for controlling the moving part 30 to move and/or rotate the mirror body 12 .
  • sensors such as strain gauges and gyroscopes, which are only used to sense the movement information of the control handle 11, control pedals or other control operators, and then send the sensed movement information to Other processors (such as the control device 90 mentioned below) generate control signals for controlling the moving part 30 to move and/or rotate the mirror body 12 .
  • the control component 20 is arranged on the soft endoscope 10 for collecting motion information of the control handle 11 .
  • the control part 20 is fixedly arranged on the mirror body 12 , and the control part 20 is located near the proximal end of the control handle 11 .
  • the control component 20 is disposed on the control handle 11 , for example, the control component 20 is located at the connection between the control handle 11 and the mirror body 12 .
  • the control part 20 is provided with a hollow cavity, the mirror body 12 passes through the hollow cavity, the control part 20 is a detachable part, and can be adapted to various types of mirror bodies 12 or control handles 11.
  • the control part 20 may be provided in the control handle 11 .
  • the control component 20 is used to collect motion information of the user during use of the control handle 11 , the motion information includes but not limited to movement track information and/or angle information.
  • the control part 20 collects the motion information of the control handle 11, and the moving part 30 controls the mirror body 12 to move or rotate based on the control information, and the user controls the control handle 11 to
  • the operation can realize the control of the soft endoscope 10, which can allow the user (especially the medical staff, etc.) Fatigue caused by holding the mirror for a long time. That is to say, with the help of the soft endoscope auxiliary device, the user can free the hand that originally needs to hold the mirror body, and operate other medical instruments of the soft endoscope 10 with both hands, so as to complete the operation more quickly and efficiently. Surgery, and can greatly reduce the labor intensity of the user on the premise of ensuring the safety of the operation, improve the concentration of the user, and is more conducive to ensuring the safety of the operation.
  • Fig. 3 is a schematic structural diagram of a control handle and control components according to some embodiments of the present specification.
  • the control handle 11 is provided with a large dial 111 and a small dial 112 , and the large dial 111 and the small dial 112 are used to control the bending of the distal end of the mirror body 12 .
  • the distal end bending of the mirror body 12 means that the distal end of the mirror body 12 deviates relative to its original axis, that is, the posture in which the distal end of the mirror body 12 swings relative to its original axis.
  • the large dial 111 and the small dial 112 can be connected to the distal end of the mirror body 12 by pulling wires, etc., and the large dial 111 and the small dial can be rotated by turning the large dial 111 and the small dial 112 . 112 pulls the pull wire to drive the distal end of the mirror body 12 to bend.
  • the large dial 111 and the small dial 112 can be respectively used to control the bending of the distal end of the mirror body 12 within different accuracy ranges.
  • the large dial 111 can be used to control the bending of the distal end of the mirror body 12 within a larger precision range
  • the small dial 112 can be used to control the bending of the distal end of the mirror body 12 within a smaller precision range, for example Every time the large dial 111 rotates a unit angle, it can control the distal end of the mirror body 12 to bend by 1°, and every time the small dial 112 rotates a unit angle, it can control the distal end of the mirror body 12 to bend by 0.1°.
  • the large dial 111 and the small dial 112 can be used to respectively control the distal end of the mirror body 12 to bend in different directions.
  • the large dial 111 can be used to control the bending of the distal end of the mirror body 12 in the up-down direction
  • the small dial 112 can be used to control the bending of the distal end of the mirror body 12 in the left-right direction, wherein the up-down direction and the left-right direction can be based on The orientation of the mirror body 12 in the use scene is determined.
  • the large dial 111 and the small dial 112 can also control the bending of the mirror body 12 in other directions.
  • the large dial 111 and the small dial 112 can be coaxially overlapped on the control handle 11 . In some embodiments, the large dial 111 and the small dial 112 can be respectively arranged at different positions of the control handle 11 .
  • the user may have different perceptions of the patient's state and the feedback perception of the mirror body 12 during the operation, and there is no way to make good use of the doctor's long-term training to obtain The feeling of the endoscope is safer to perform the operation.
  • the control handle 11 and the large dial 111 and the small dial 112 the user can not only solve the fatigue and labor intensity of the user's two-hand operation by operating the control handle 11, but also make the The user controls the bending of the mirror body 12 by controlling the large dial 111 and the small dial 112 on the handle 11, so that the doctor can use the trained manipulation skills to the greatest extent, and free the doctor from holding the mirror body 12 originally.
  • the doctor can finely operate the special instruments used by the soft endoscope 10 to complete the operation more safely and quickly.
  • the user can also feel the resistance suffered by the mirror body 12 during the bending process through the large dial 111 and the small dial 112, and the user can participate more intuitively.
  • the doctor can feel the resistance of the bending of the mirror body 12, so that the doctor can timely adjust the posture of the mirror body 12 and make adjustments to the operation, so as to complete the operation more safely and effectively.
  • Fig. 4 is a schematic structural diagram of a control component according to some embodiments of the present specification.
  • control part 20 is provided with a hollow cavity 21, and the control component 20 is sleeved on the control handle 11 or the mirror body 12 through the cavity 21, that is, the mirror body 12 or the control handle 11 The hollow cavity 21 passing through the control part 20 .
  • a touch device 22 is fixedly arranged on the cavity wall of the hollow cavity 21 of the control part 20, and the touch device 22 can obtain Control the movement information of the handle 11 or the mirror body 12, such as movement track information or angle information.
  • the touch device 22 may be a pressure sensor.
  • the control component 20 includes an attitude sensor (not shown in the figure) disposed on the control handle 11 , and the attitude sensor is used to acquire motion information of the control handle 11 .
  • the attitude sensor can perceive the forward tilt, backward tilt, rotation, left and right swing of the control handle 11 .
  • the attitude sensor includes but not limited to sensors such as a three-axis gyroscope and a three-axis accelerometer, and the attitude sensor can sense movement track information or angle information of the control handle 11 .
  • an attitude sensor may be disposed within the lumen 21 .
  • the posture sensor can also be arranged at other positions of the control handle 11 .
  • Fig. 5 is a functional block diagram of a soft endoscope auxiliary device circuit according to some embodiments of the present specification.
  • the soft endoscope auxiliary device further includes a control device 90 .
  • the control unit 20 and the moving unit 30 are respectively connected to the control device 90 in a wired or wireless manner.
  • the soft endoscope 10 can also be connected to the control device 90 in a wired or wireless manner.
  • control device 90 is configured to receive motion information of the control handle 11 collected by the control component 20 , such as movement track information or angle information of the control handle 11 . In some embodiments, the control device 90 generates a control signal according to the movement information of the control handle 11 and sends it to the moving part 30 , the control signal instructs the moving part 30 to control the mirror body 12 to move or rotate along the axial direction of the mirror body 12 .
  • the control part 20 collects the angle information of the two degrees of freedom directions of the control handle 11 or the mirror body 12, and the angle information of the first degree of freedom direction is used to generate the control movement part 30 to move the mirror body 12.
  • the control signal and the angle information in the direction of the second degree of freedom are used to generate a control signal for controlling the rotation of the mirror body 12 by the moving part 30 .
  • the control unit 20 collects the angle information of the control handle 11 or the mirror body 12 in two degrees of freedom directions, including but not limited to the angle information of the control handle 11 or the mirror body 12 such as forward tilt, backward tilt, rotation, and left and right swing.
  • control part 20 collects the movement information of the control handle 11 tilting forward, and then feeds it back to the control device 90, and the control device 90 generates a control command and sends it to the moving part 30, and the moving part 30 controls the mirror body 12 to move distally.
  • the control part 20 collects the movement information of the control handle 11 receding back, and then feeds it back to the control device 90.
  • the control device 90 generates a control command and sends it to the moving part 30.
  • the moving part 30 controls the mirror body 12 to move proximally.
  • the control part 20 collects the movement information of the left and right swing or rotation of the control handle 11, and then feeds it back to the control device 90.
  • the control device 90 generates a control command and sends it to the moving part 30.
  • the moving part 30 controls the mirror body 12 to clockwise or counterclockwise. rotate.
  • Fig. 6 is a schematic structural diagram of a moving part according to some embodiments of the present specification.
  • the moving part 30 includes a delivery device 31 for controlling the movement of the scope 12 along the axial direction of the scope 12 .
  • the conveying device 31 includes a first driving motor (not shown in the figure), a first driving wheel 312 , two first driven wheels 313 and two conveying wheels 314 .
  • the first drive motor is in transmission connection with the first driving wheel 312, the first driving wheel 312 is meshed with one of the first driven wheels 313, the two first driven wheels 313 are meshed with each other, and the two first driven wheels 313 is respectively connected to two transmission wheels 314 by transmission, and the mirror body 12 is sandwiched between the two transmission wheels 314 .
  • the transmission connection may be a direct connection or an indirect connection through other transmission components.
  • the first driving wheel 312 can be directly arranged on the output shaft of the first driving motor, or, the first driving wheel 312 is connected with the first driving motor through other transmission gears, reducers and other mechanisms.
  • one of the first driven wheels 313 and one of the conveying wheels 314 may be arranged on the rotating shaft 311
  • the other first driven wheel 313 and the other conveying wheel 314 may be arranged on the other rotating shaft 311 .
  • the first driving motor can be disposed on the mechanical arm 400 (the mechanical arm 400 will be described in detail in FIG. 13 below).
  • the first driving motor drives the first driving wheel 312 to rotate
  • the first driving wheel 312 drives one of the first driven wheels 313 to rotate
  • one of the first driven wheels 313 drives the other first driven wheel 313 rotates
  • the two first driven wheels 313 respectively drive the two conveying wheels 314 to rotate
  • the mirror body 12 moves along its axial direction through the friction between the two conveying wheels 314 and the mirror body 12 .
  • the included angle between the rotation axis of the delivery wheel 314 and the axis of the mirror body 12 at the abutting position is 85°-90°.
  • the included angles between the rotation axis of the delivery wheel 314 and the axis of the mirror body 12 at the abutting position are 85°, 86°, 87°, 88°, 89°, 90° and so on.
  • the mirror body 12 can be avoided from shifting the axial direction of its abutment as much as possible.
  • the rotation axis of the delivery wheel 314 is perpendicular to the axis of the mirror body 12 at the abutting position.
  • the delivery wheel 314 may be a rubber wheel, which can increase friction with the mirror body 12 and reduce wear on the mirror body 12 at the same time.
  • the side edge of the delivery wheel 314 is formed with an annular groove 315 matching the outer surface of the mirror body 12, and the mirror body 12 can be relatively slidably embedded in the annular groove 315, which can improve the movement of the mirror body 12. The stability of the mirror body 12 is avoided relative to the delivery wheel 314 from tilting.
  • the moving part 30 includes an angle control device 32 for controlling the rotation of the mirror body 12 about the axial direction of the mirror body 12 .
  • the angle control device 32 includes a second driving motor 321 , a first driving pulley 322 , a first driven pulley 323 and a first flexible belt 324 .
  • the second drive motor 321 is in transmission connection with the first driving pulley 322
  • the first driving pulley 322 is in transmission connection with the first driven pulley 323 through the first flexible belt 324
  • the first flexible belt 324 is in transmission connection with the first driven pulley 323.
  • Mirror body 12 abuts.
  • the transmission connection may be a direct connection or an indirect connection through other transmission components.
  • the first driving pulley 322 , the first driven pulley 323 and the first flexible belt 324 can be a group, and are arranged on any side of the mirror body 12 . In some embodiments, the first driving pulley 322 , the first driven pulley 323 and the first flexible belt 324 can be in two groups, which are respectively arranged on both sides of the mirror body 12 .
  • the second drive motor 321 drives the first driving pulley 322 to rotate, and the first driving pulley 322 drives the first flexible belt 324 to rotate around the first driven pulley 323.
  • the friction force between the belt 324 and the mirror body 12 drives the mirror body 12 to rotate about the axial direction of the mirror body 12 .
  • the included angle between the moving direction of the first flexible belt 324 and the axis of the mirror body 12 at the contact point is 85°-90°.
  • the included angles between the moving direction of the first flexible belt 324 and the axis of the mirror body 12 at the contact point are 85°, 86°, 87°, 88°, 89°, 90° and so on.
  • the movement of the mirror body 12 along the axial direction of the abutment can be avoided as far as possible.
  • the moving direction of the first flexible belt 324 is perpendicular to the axis of the mirror body 12 at the contact point.
  • Fig. 7 is a schematic structural diagram of a moving part according to other embodiments of the present specification.
  • the conveying device 31 includes a third drive motor (not shown), a second driving wheel 302, a second driven wheel 303, a third driven wheel 305 and two sets of pulleys Set 304 , each pulley set 304 includes two second pulleys 3041 and a second flexible belt 3042 .
  • the third driving motor is in transmission connection with the second driving wheel 302, the second driving wheel 302 is meshed with the second driven wheel 303, the second driven wheel 303 is meshed with the third driven wheel 305, and the second driven wheel 303
  • One set of pulley sets 304 is connected in transmission
  • the third driven wheel 305 is connected in transmission with another set of pulleys 304
  • the mirror body 12 is clamped between two sets of pulleys 304;
  • the transmission connection can be a direct connection , can also be indirectly connected through other transmission components.
  • the first driving motor may be disposed on the mechanical arm 400 (the mechanical arm 400 will be described in detail in FIG. 13 below).
  • the second driven wheel 303 and one of the second pulleys 3041 in the pulley set 304 are arranged coaxially through the rotating shaft 301 , and the second flexible belt 3042 is wound around the two second pulleys 3041 .
  • the third driving motor drives the second driving wheel 302 to rotate
  • the second driving wheel 302 drives the second driven wheel 303 to rotate
  • the second driven wheel 303 drives the third driven wheel 305 to rotate
  • the second driven wheel 303 drives the third driven wheel 305 to rotate.
  • the driving pulley 303 drives the second pulley 3041 of one set of pulley sets 304 to rotate
  • the third driven pulley 305 drives the second pulley 3041 of the other pulley set 304 to rotate
  • the second pulley 3041 drives the second flexible belt 3042 Rotating, the second flexible belt 3042 drives the mirror body 12 to move in the axial direction through friction.
  • the second flexible belt 3042 of each pulley set 304 abuts against the mirror body 12, and the movement direction of the second flexible belt 3042 is clamped between the axis of the mirror body 12 at the abutment.
  • the angle is 0-5°, for example, the angle between the moving direction of the second flexible belt 3042 and the axis of the mirror body 12 at the contact point is 0°, 1°, 2°, 3°, 4°, 5° .
  • the contact area between the second flexible belt 3042 and the mirror body 12 is larger, which can increase the friction between the second flexible belt 3042 and the mirror body 12 .
  • the second flexible belt 3042 generates a frictional force on the mirror body 12 along the moving direction of the second flexible belt 3042, and the direction of the frictional force can be kept parallel or substantially parallel to the axis of the mirror body 12 at the contact point, and can be avoided as much as possible.
  • the mirror body 12 is offset in the axial direction where it abuts.
  • the moving direction of the second flexible belt 3042 is parallel to the axis of the mirror body 12 at the abutting position.
  • the angle control device includes a fourth drive motor 310 and a friction ball 320, the fourth drive motor 310 is used to drive the friction ball 320 to rotate, the friction ball 320 is in contact with the mirror body 12, and the friction ball 320 can The mirror body 12 is driven to rotate around its axis.
  • the friction ball 320 can be a rubber ball, etc., which can not only increase the friction between the friction ball 320 and the mirror body 12 , but also reduce the wear on the outer surface of the mirror body 12 .
  • the included angle between the rotation axis of the friction ball 320 and the axis at the abutment is 0-5°.
  • the included angles between the rotation axis of the friction ball 320 and the axis at the abutment are 0°, 1°, 2°, 3°, 4°, 5°.
  • Fig. 8 is a schematic structural diagram of a soft endoscope auxiliary device according to other embodiments of the present specification.
  • the soft endoscope auxiliary device further includes a clamping part 50 .
  • the clamping part 50 may be a structure for clamping the mirror body 12.
  • the soft endoscope auxiliary device further includes a fixing part 40 , and the fixing part 40 may be a platform for fixing the clamping part 50 or the scope body 12 .
  • the clamping part 50 and the moving part 30 are fixedly arranged on the fixing part 40 in parallel front and back, and after the mirror body 12 passes through the moving part 30 , it passes through the clamping part 50 for fixing.
  • a displacement sensor is provided on the clamping part 50 to detect the movement information or rotation information of the mirror body 12.
  • the displacement sensor transmits the movement information of the mirror body 12 to Or the rotation information is sent to the control device 90 in real time, and the control device 90 judges whether the movement information, the rotation information and the information corresponding to the control signal are consistent.
  • the movement information detected by the displacement sensor should also be the A length value.
  • the clamping part 50 may also include a pressure sensor, and when the pressure sensor detects that the mirror body 12 receives the pressure along the axial direction of the mirror body 12 greater than the preset threshold In some cases, the control device 90 can stop the work of the moving part 30 to prevent the mirror body 12 from causing damage to the cavity of the patient.
  • the soft endoscopic auxiliary device further includes a first adjustment component 60 .
  • One end of the first adjustment part 60 is used to fix the control part 20, and the other end is used to be fixedly arranged on the fixed part 40.
  • the first adjustment part 60 can be a multi-degree-of-freedom adjustment part, which can be used to adjust the height and height of the control part 20.
  • the control part 20 is fixedly arranged on the first adjustment part 60, which reduces the interference of the user and the environment, and improves the stability and accuracy of the control part 20's operation.
  • the first adjusting member 60 may include a strut 61 for supporting the control handle 11 and/or the control member 20 .
  • the pillar 61 is fixed on the mobile trolley 500 ; one end of the control handle 11 (the lower end as shown in the figure) is connected to the top end of the pillar 61 .
  • the control handle 11 can move relative to the pillar 61 , for example, the control handle 11 can rotate or tilt relative to the pillar 61 .
  • the support of the control handle 11 by the pillar 61 can make it easier for the operator.
  • the support 61 can be a telescopic structure, so that it can be adjusted to different heights to suit different operators.
  • the pillar 61 includes, but is not limited to, telescopic structures such as lifting mechanisms and telescopic rods.
  • Fig. 9 is a schematic structural view of a soft endoscope auxiliary device according to some other embodiments of the present specification.
  • the soft endoscope auxiliary device further includes a second adjustment component 70 and an examination bed 80 .
  • one end of the second adjustment member 70 is fixed on the examination table 80, and the other end is fixed on the fixed member 40.
  • the second adjustment member 70 can be a multi-degree-of-freedom adjustment member.
  • there are five second adjustment members 70 The adjustment part of the degree of freedom is used to move the clamping part 50 where the mirror body 12 is located to a designated position. The user can adjust the height and angle of the mirror body 12 through the second adjustment part 70, so that the user can quickly move the mirror body 12 Moving to the designated position improves the efficiency of using the soft endoscope.
  • the first adjustment member 60 and/or the second adjustment member 70 is a mechanical arm 400 .
  • the robotic arm 400 may be a single-axis robotic arm.
  • the robotic arm 400 may be a multi-axis robotic arm, such as a two-axis, three-axis, four-axis, five-axis, or six-axis robotic arm.
  • first adjustment member 60 and/or the second adjustment member 70 may also be of other structures, such as a link mechanism, a lifting mechanism, a translation mechanism, and the like.
  • Fig. 10 is a structural block diagram of a soft endoscope auxiliary device according to some embodiments of the present specification.
  • Some embodiments of this specification also provide a soft endoscope auxiliary device, which is applied to a soft endoscope 10.
  • the soft endoscope 10 includes a control handle 11 and a mirror body 12.
  • the control handle 11 can be used for the user to operate the mirror body 12, the mirror body 12 can be used to insert into the natural cavity 21 of the human body and perform multiple tasks such as inspection, diagnosis and treatment.
  • the soft endoscope auxiliary device here can be implemented as a separate embodiment, and can also be implemented in combination with the soft endoscope auxiliary device in any one of the above-mentioned embodiments in FIGS. 1 to 9 .
  • the soft endoscope auxiliary device includes: a moving part 30 , a force sensing part 100 and a pressure feedback part 200 .
  • the moving part 30 is arranged on the mirror body 12, and is used to control the movement or rotation of the mirror body 12 along the axial direction of the mirror body 12; it should be understood that the mirror body 12 can extend along a straight line, or can Bending and extending along a curve, the axial direction of the mirror body 12 refers to the extending direction along the central axis of the mirror body 12 , including but not limited to a straight line or a curve.
  • the movement of the mirror body 12 may be that the mirror body 12 moves along the central axis direction, and the rotation of the mirror body 12 may be that the outer surface of the mirror body 12 rotates around the central axis direction.
  • the moving part 30 may be a multi-degree-of-freedom robot arm that controls the movement and/or rotation of the mirror body 12 .
  • the moving part 30 can be fixed on the fixed part 40 .
  • the moving part 30 controls the mirror body 12 to move or rotate along the axial direction of the mirror body 12.
  • the moving part 30 may include a linear motor and a rotary motor, and the linear motor controls the linear movement of the mirror body 12.
  • the rotation motor is used to control the rotation of the mirror body 12 .
  • FIG. 6 and FIG. 7 and their related descriptions please refer to FIG. 6 and FIG. 7 and their related descriptions.
  • the force sensing component 100 is used to sense the resistance information of the mirror body 12 when it moves or rotates.
  • the force sensing component 100 may be a pressure sensor 110 .
  • there may be multiple force sensing components 100 and multiple force sensing components 100 may be disposed on the outer surface of the mirror body 12 along the axial direction of the mirror body 12 .
  • the force sensing component 100 can be disposed at the proximal end of the mirror body 12 .
  • the pressure feedback component 200 is used to feed back resistance information.
  • the pressure feedback component 200 can feed back resistance information in a variety of ways, including but not limited to simulating the resistance information of the mirror body, prompting resistance information through voice, indicator light, display, etc.
  • the pressure feedback component 200 is disposed on the control handle 11 , and the pressure feedback component 200 feedbacks resistance information by adjusting the movement resistance of the control handle 11 .
  • the pressure feedback component 200 can correspondingly adjust the movement resistance value of the handle according to the movement resistance value and/or rotation resistance value of the scope body 12 (such as the front end of the scope body) in the body.
  • the pressure feedback component 200 adjusts the movement resistance of the control handle 11 to an equal resistance value, or a multiplied resistance value, Or exponentially reduced resistance values.
  • the force sensing part 100 can sense the resistance encountered by the mirror body during movement. information, and then the pressure feedback component 200 feedbacks the resistance information by adjusting the motion resistance of the control handle 11 based on the resistance information, and the user can intuitively feel the impact on the mirror body 12 through the motion resistance of the control handle 11 when operating the control handle 11. resistance, it is more convenient for the user to adjust the posture of the mirror body 12 in time or to adjust the operation, so as to improve the safety of the endoscopic operation.
  • Fig. 11 is a structural schematic diagram of a clamping mechanism of a pressure feedback component according to some embodiments of the present specification.
  • the pressure feedback component 200 includes a clasping mechanism 210 disposed on the control handle 11 , and the clasping mechanism 210 adjusts the movement resistance of the control handle 11 by exerting a clasping force on the control handle 11 .
  • the clasping mechanism 210 includes a first elastic sleeve 211 , a fifth driving motor, a gear train 212 and two clasping arms 213 .
  • the first elastic sleeve 211 refers to a sleeve capable of elastic deformation, and the first elastic sleeve 211 can be sleeved on the control handle 11 .
  • the first elastic sleeve 211 is sleeved on the distal end of the control handle 11 .
  • the fifth driving motor (not shown in the figure) is respectively connected to the two holding arms 213 through the gear train 212, and is used to drive the two holding arms 213 to compress or relax the first elastic Set 211.
  • the fifth driving motor drives the two holding arms 213 to compress the first elastic sleeve 211
  • the motion resistance experienced by the control handle 11 increases;
  • the fifth driving motor drives the two holding arms 213 to loosen the first elastic sleeve At 211, the movement resistance suffered by the control handle 11 decreases.
  • the two holding arms 213 are arranged on the outer surface of the first elastic sleeve 211, and are respectively located on both sides of the first elastic sleeve 211 along the radial direction.
  • the holding force on the first elastic sleeve 211 can be increased when they are close to each other, and the holding force on the first elastic sleeve 211 can be reduced when the two holding arms 213 move away from each other in the radial direction.
  • the two holding arms 213 include an arc portion 2131 and a connecting portion 2132 .
  • the arc portion 2131 is configured as an arc-shaped bent rod, which is used to fit the outer surface of the first elastic sleeve 211, so as to increase the contact area with the first elastic sleeve 211, and to facilitate the application of force to the first elastic sleeve 211 toward the central axis.
  • the clamping force in the direction; the connecting portion 2132 is configured as a straight rod for connecting the arc portion 2131 and the gear train 212 .
  • the two clinging arms 213 are rigid arms 213 .
  • the gear transmission system 212 includes a driving gear 2121 and two racks 2122, the driving gear 2121 is connected to the fifth drive motor, and the two racks 2122 are engaged with the two sides of the driving wheel respectively, and the two are tightly locked.
  • the arms 213 are respectively connected to the two racks 2122 .
  • the length directions of the two racks 2122 are parallel or substantially parallel to each other, wherein, being substantially parallel may mean that the angle between the length directions of the two racks 2122 is between 0° and 5°.
  • the first direction A1 may be the direction in which one arm 213 is close to the other arm 213 (the direction shown by the arrow in Figure 11 ), or the first direction A1 may be the direction in which one arm 213 is away from the other arm.
  • the direction of the arm 213 (direction opposite to the direction indicated by the arrow in FIG. 11 ).
  • Fig. 12 is a structural schematic diagram of a resistance mechanism of a pressure feedback component according to some embodiments of the present specification.
  • the pressure feedback component 200 includes a resistance mechanism 220 disposed on the control handle 11 , and the resistance mechanism 220 adjusts the movement resistance of the control handle 11 by applying resistance to the control handle 11 .
  • the resistance mechanism 220 includes a second elastic sleeve 221 , a sixth driving motor 222 and a cam 223 .
  • the second elastic sleeve 221 refers to a sleeve with elastic deformation capability, and the second elastic sleeve 221 can be sleeved on the control handle 11 .
  • the second elastic sleeve 221 is sleeved on the distal end of the control handle 11 .
  • the sixth driving motor 222 is connected to the cam 223 and drives the cam 223 to compress or loosen the second elastic sleeve 221 .
  • the sixth driving motor 222 drives the cam 223 to press the second elastic sleeve 221
  • the motion resistance experienced by the control handle 11 increases; resistance to movement is reduced.
  • the cam 223 includes a concave portion and a convex portion.
  • the sixth driving motor 222 drives the concave portion of the cam 223 to rotate close to or touch the side of the second elastic sleeve 221 , the cam 223 loosens the second elastic sleeve 221 .
  • the sixth driving motor 222 drives the convex portion of the cam 223 to abut against the side of the second elastic sleeve 221 , the cam 223 presses the second elastic sleeve 221 .
  • the pressure feedback component 200 includes a pressure regulating mechanism (not shown in the figure) disposed on the control handle 11 , and the pressure regulating mechanism exerts pressure on the control handle 11 to achieve the purpose of adjusting the movement resistance of the control handle 11 .
  • the pressure regulating mechanism includes an air bag and an air pump
  • the air bag is arranged on the control handle 11
  • the air pump is used to adjust the inflation amount of the air bag to adjust the movement resistance of the control handle 11 .
  • the air pump inflates the airbag
  • the airbag expands and causes the pressure of the airbag on the control handle 11 to increase, thereby increasing the movement resistance of the control handle 11; , thereby reducing the movement resistance of the control handle 11.
  • the pressure regulating mechanism may also include an electronic exhaust valve.
  • the electronic exhaust valve is connected with the air bag for discharging the gas in the air bag.
  • the exhaust volume of the airbag can be controlled through the electronic exhaust valve, thereby controlling the amount of reduction of the pressure of the airbag on the control handle 11 .
  • the pressure regulating mechanism may also include a barometric pressure sensor.
  • the air pressure sensor is arranged between the air bag and the control handle 11 for detecting the pressure generated by the air bag on the control handle 11 .
  • the pressure regulating mechanism may be a structure such as a hydraulic bladder, a hydraulic pump, etc., and the pressure in the hydraulic bladder is adjusted by the hydraulic pump, thereby adjusting the movement resistance of the control handle 11 .
  • the pressure feedback component 200 includes a pressure prompting device, and the pressure prompting device includes but not limited to at least one of a display 241 , a voice player, an indicator light, and the like.
  • the pressure prompting device is used to output resistance information on the control handle 11 and/or the mirror body 12, so as to prompt the user more intuitively.
  • the pressure prompting device may include a display 241 (as shown in FIG. 1 ).
  • the force sensing component 100 can sense the resistance information of the mirror body 12 and feed back the resistance information to the display 241 , and directly display the resistance information of the mirror body 12 through the display 241 .
  • the display 241 can directly display the specific value of the resistance information of the mirror body 12 .
  • the display 241 can display the resistance information of the mirror body 12 through a stress progress bar, wherein the stress progress bar can be a solid color or a color interval.
  • the display 241 may feed back the resistance information of the mirror body 12 in text.
  • the pressure prompt device may include a voice player.
  • the force sensing component 100 can sense the resistance information of the mirror body 12, and feed back the resistance information to the voice player, and directly broadcast the resistance of the mirror body 12 through the voice player information.
  • the voice player can directly broadcast the specific value of the resistance information of the mirror body 12 .
  • the voice player can feed back the resistance information through sound features, wherein the sound features include but not limited to the frequency, urgency, sharpness, etc. of the sound.
  • the pressure reminder device may include an indicator light.
  • the force sensing component 100 can sense the resistance information of the mirror body 12 and feed back the resistance information to the voice indicator light, prompting the resistance information through the blinking of the indicator light.
  • the indicator light can feedback the resistance information of the mirror body 12 by flashing different colors. For example, if the resistance of the mirror body 12 is small, the indicator light flashes green; if the resistance of the mirror body 12 is moderate, the indicator light flashes yellow; In some embodiments, there are multiple indicator lights, and the resistance information of the mirror body 12 is fed back according to the number of bright or flickering indicator lights. For example, the greater the resistance information of the mirror body 12, the more the number of bright or blinking indicator lights; the smaller the resistance information of the mirror body 12, the less the number of bright or blinking indicator lights.
  • the display 241 , the voice player and/or the indicator light can have different output modes based on the magnitude of the resistance to which the mirror body 12 is subjected.
  • the pressure prompting device may further include a processor, and the processor may preset and store the resistance threshold range of the mirror body 12, for example, the resistance threshold range may include a low resistance threshold range, a medium resistance threshold range and a high resistance threshold scope. In some embodiments, if the resistance information acquired by the processor from the force sensing component 100 is within different resistance threshold ranges, the pressure prompting device may output different signals, thereby reminding the user in different degrees and in different ways.
  • the pressure feedback component 200 can be adjusted through the clamping mechanism 210, the pressure regulating mechanism, the resistance mechanism 220, etc.
  • the pressure feedback component 200 can also warn the user through the display 241, voice player and/or indicator light, etc., two or The combination of multiple feedback modes can assist the user to make a more accurate judgment on the current operation of the mirror body 12 .
  • Fig. 13 is a schematic structural diagram of a robotic arm according to some embodiments of the present specification.
  • the soft endoscope auxiliary device further includes a mechanical arm 400, the end of the mechanical arm 400 is provided with an adapter flange 410, the moving part 30 is arranged on the adapter flange 410, and the force sensing part 100 Including the pressure sensor 110 , the pressure sensor 110 is arranged between the adapter flange 410 and the moving part 30 .
  • the moving part 30 will also be subjected to resistance, and then the mechanical arm 400 will be subjected to resistance from the moving part 30, and the pressure sensor 110 arranged on the mechanical arm 400 can detect the resistance .
  • pressure sensor 110 may be a six-axis force sensor.
  • the six-axis force sensor can sense the force of the mechanical arm 400 on the three axes and the torque on the three axes.
  • the three axes may be three orthogonal axes formed by establishing a three-dimensional coordinate system with the robotic arm 400 .
  • the mechanical arm 400 can be used to adjust the spatial position of the moving part 30 and/or the mirror body 12 , such as a height position or a horizontal position.
  • one end of the mechanical arm 400 can be fixed on the mobile cart 500 so as to be convenient to move together with the mobile cart 500 .
  • the mechanical arm 400 can move the moving part 30 and/or the mirror body 12 to the position required for the operation, for example, move the moving part 30 and/or the mirror body 12 to a position close to or contacting the examination bed 80 or the patient, and can be used During the process, the spatial position of the moving part 30 and/or the mirror body 12 is adjusted in real time, so as to improve the efficiency of the use of the soft endoscope.
  • Some embodiments of the present specification also provide a soft endoscope system.
  • the soft endoscope system includes a soft endoscope and the soft endoscope auxiliary device as described in any one of the above embodiments.
  • Fig. 14 is a schematic flowchart of a soft endoscope assisted operation method according to some embodiments of the present specification.
  • the process steps of the soft endoscope assisted operation method 1400 include:
  • Step 1410 receiving motion information of the control handle collected by the control component.
  • control unit 20 collects motion information of the control handle 11 or the mirror body 12 , and the motion information includes but not limited to movement track information and angle information of the control handle 11 or the mirror body 12 .
  • control part 20 can send the movement information to the control device 90 of the soft endoscope 10 .
  • the user of the soft endoscope 10 intends to change the trajectory or angle of the control handle 11 to control the moving part 30 to control the movement or rotation of the scope 12, because the scope 12 and the control
  • a track sensor or an angle sensor is arranged inside or outside the control part 20, and when the control part 20 is fixed on the control handle 11 or the mirror body 12, the movement track or angle sensor of the control handle 11 or the mirror body 12 can be detected. Angle changes.
  • control part 20 can also be integrated inside or outside the control handle 11, and a touch device 22 can also be provided on the control part 20, and the touch device 22 obtains the touch between the control handle 11 and the touch device 22.
  • the touch device 22 acquires a touch signal from the mirror body 12 and the touch device 22, and the touch signal indicates the trajectory information and angle information of the control handle 11 or the mirror body 12.
  • the touch control device 22 is a voltage control device
  • the touch signals are voltage values of different magnitudes, and the voltage values of different magnitudes indicate the deflection angle of the control handle 11 or the mirror body 12 .
  • Step 1420 generate a control signal according to the motion information, and send the control signal to the moving part, and the control signal instructs the moving part to control the mirror body to move or rotate along the axial direction of the mirror body.
  • the control device 90 generates a control signal according to the motion information, and sends the control signal to the moving part 30, for example, taking the angle information of the mirror body 12 as an example, the angle information is the direction of the first degree of freedom
  • query the correspondence table between the angle information and the control signal to obtain the control signal corresponding to the angle A value
  • the control signal indicates the movement control or rotation control of the mirror body 12 by the moving part 30 .
  • the moving part 30 controls the movement or rotation of the mirror body 12 according to the control signal.
  • the mirror body 12 can move forward or backward along the axial direction where the moving part 30 is located, and can also move along the axial direction where the moving part 30 is located.
  • the axis rotates left and right, and the control signal carries information such as the length of forward or backward, the speed of movement, and the angle and speed of rotation.
  • the control part 20 collects the movement trajectory and angle change of the user's operation control handle 11, generates a control signal and instructs the moving part 30 to control the movement or rotation of the mirror body 12.
  • the user needs one hand to operate the control handle 11, and the other hand is used to control the movement or rotation of the mirror body 12.
  • the technical solution in the embodiment of this specification allows the user to only use the One hand can realize the control of the control handle 11, and control the movement or rotation of the mirror body 12 according to the movement track and angle change of the control handle 11, which solves the problem that frequent two-hand operation will cause user fatigue and distract the user's attention
  • the problem of making it difficult to achieve the best effect of the operation saves the energy of the user, concentrates the attention of the user, and improves the effect of the operation.
  • control unit 20 can also collect the voice information of the user, and generate the control signal according to the voice information.
  • Fig. 15 is a schematic flowchart of a soft endoscope assisted operation method according to some embodiments of the present specification.
  • the embodiment of this specification also provides a soft endoscope auxiliary operation method
  • the soft endoscope auxiliary operation method 1500 is applied to soft endoscopes and soft endoscopes as described in any of the above embodiments Mirror auxiliary operating device; the method 1500 can be executed by the control device 90 .
  • Step 1510 receiving the resistance information of the movement or rotation of the mirror body 12 sensed by the force sensing component 100 .
  • the mirror body 12 is subjected to external resistance during movement or rotation.
  • the force sensing component 100 can sense the resistance information, and the resistance information includes a resistance value, a resistance direction, and the like.
  • the force sensing component 100 can feed back the resistance information of the mirror body 12 to the control device 90 .
  • Step 1520 generate a feedback signal according to the resistance information, and send the feedback signal to the pressure feedback component 200, and the pressure feedback component 200 is used to feed back the resistance information according to the feedback signal.
  • control device 90 generates a feedback signal according to the resistance information sensed by the force-sensing component 100 , wherein resistance information of different value ranges may generate different feedback signals.
  • the control device 90 also sends a feedback signal to the pressure feedback component 200, and the pressure feedback component 200 is used to feed back resistance information according to the feedback signal.
  • the pressure feedback component 200 has different feedback modes according to the magnitude of the resistance information. For example, when the resistance information is large, the pressure feedback component 200 provides feedback in a way that is easier to attract attention, such as using a red indicator light, a longer progress bar, or a more rapid warning sound; for example, when the resistance information is small, the pressure feedback component 200 The 200 can give feedback in a way that can be normally observed, such as using a green indicator light, a short progress bar or a gentle prompt sound.
  • the control part collects the motion information of the control handle, and the moving part controls the mirror body to move or rotate based on the control information, and the user can realize the soft endoscope by operating the control handle.
  • the control of the speculum can allow the user (especially the medical staff, etc.) to maximize the trained manipulation skills, complete the operation more safely and effectively, and also reduce the fatigue of the user caused by holding the spectacle for a long time feel.
  • the user can free the hand that originally needed to hold the mirror body, and operate other medical instruments of the soft endoscope with both hands, so as to complete the operation faster and more efficiently , and can greatly reduce the labor intensity of the user on the premise of ensuring the safety of the operation, improve the concentration of the user, and be more conducive to ensuring the safety of the operation;
  • a displacement sensor is arranged on the clamping part to detect the movement information or rotation information of the mirror body, so as to prevent unnecessary damage to the human body caused by the wrong operation of the auxiliary device.
  • the clamping part can also include a pressure sensor, which can When the sensor detects that the lens body receives a pressure greater than the preset threshold along the lens body axis, the control device can stop the work of the moving parts to prevent the lens body from causing damage to the patient's cavity;
  • the first adjusting part can be used to adjust the height and angle of the control part, which is convenient for the user to operate, reduces the interference of the user and the environment, and improves the stability and accuracy of the operation of the control part;
  • the support of the control handle by the pillar can make the operator more relaxed, and the pillar can be a telescopic structure, which is suitable for different operators;
  • the force sensing part can sense the resistance information received by the mirror body during the movement process , and then the pressure feedback component feeds back the resistance information by adjusting the movement resistance of the control handle based on the resistance information, and the user can intuitively feel the resistance of the mirror body through the movement resistance of the control handle when operating the control handle, which is more convenient to use
  • the patient adjusts the posture of the mirror body or adjusts the operation in time to improve the safety of endoscopic surgery;
  • the mechanical arm can move the moving parts and/or the mirror body to the position required for the operation, for example, move the moving parts and/or the mirror body to a position close to or in contact with the examination bed, and can adjust the moving parts during use And/or the spatial position of the mirror body is adjusted in real time to improve the efficiency of using the soft endoscope.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)

Abstract

一种软内窥镜***、软内窥镜辅助装置和操作方法。软内窥镜辅助装置应用于软内窥镜(10),软内窥镜(10)包括镜体(12);软内窥镜辅助装置包括:移动部件(30),设置在镜体(12)上,用于控制镜体(12)移动和/或旋转;移动部件(30)包括输送装置(31)和/或角度控制装置(32),输送装置(31)用于控制镜体(12)沿镜体(12)的轴向方向移动,角度控制装置(32)用于控制镜体(12)绕轴向方向旋转。

Description

一种软内窥镜***、软内窥镜辅助装置和操作方法
交叉引用
本申请要求2021年08月02日提交的中国专利申请202110881646.5的优先权,全部内容通过引用并入本文。
技术领域
本说明书内窥镜领域,特别是一种软内窥镜***、软内窥镜辅助装置和操作方法。
背景技术
内镜历经纤维内镜、电子内镜、超声内镜等阶段,但目前仅被广泛的使用于生物体自然腔道内或在生物体自然腔道内有开口的管腔(如胆管、胰腺等部位)疾病的治疗。
在相关技术中,软内窥镜中***患者的体腔内的一端称为远端,由软内窥镜的使用者握持的一端称为近端。软内窥镜包括在近端的控制手柄和镜体,镜体包括:被附接到控制手柄的远端的柔性***部、被附接到柔性***部的远端的弯曲部、被附接到弯曲部的远端的端部执行器、控制弯曲部弯曲的开合机构和包覆该弯曲部的弹性覆盖件;弹性覆盖件的远端附接到该端部执行器,弹性覆盖件的近端附接到柔性***部的近端;端部执行器包括外露于弯曲部的镜头和手术器械,手术器械通过控制钢丝与控制手柄连接,控制手柄牵拉控制钢丝控制手术器械动作。
一般情况下,使用者通过操作软内窥镜控制手柄上的操作部件来弯曲镜体远端以控制器械的朝向,在手术过程中,使用者通常还需要兼顾执行器械的进退、旋转与执行等动作,通常需要额外的助手辅助实现,现有的软内窥镜、器械及***都不利于使用者高效接近、观察与处理病灶。
发明内容
本说明书实施例之一提供一种软内窥镜辅助装置,应用于软内窥镜,所述软内窥镜包括镜体;所述软内窥镜辅助装置包括:移动部件,设置在所述镜体上,用于控制所述镜体移动和/或旋转,所述移动部件包括输送装置和/或角度控制装置,所述输送装置用于控制所述镜体沿所述轴向方向移动,所述角度控制装置用于控制所述镜体绕所述轴向方向旋转。
在一些实施例中,所述软内窥镜辅助装置还包括控制部件,所述控制部件用于生成控制所述移动部件对所述镜体进行移动和/或旋转的控制信号。
在一些实施例中,所述软内窥镜包括控制手柄,所述软内窥镜辅助装置还包括控制部件,所述控制部件设置在所述软内窥镜上,用于采集所述控制手柄的运动信息,所述移动部件根据所述运动信息对所述镜体进行移动和/或旋转控制。
在一些实施例中,所述软内窥镜辅助装置还包括第一调整部件,所述第一调整部件包括支柱,所述支柱用于支撑所述控制部件和/或所述控制手柄。
在一些实施例中,所述控制手柄上设有大拨轮和小拨轮,所述大拨轮和所述小拨轮用于控制所述镜体的远端弯曲。
在一些实施例中,所述控制部件设有中空的腔道,所述控制部件通过所述腔道套设在所述控制手柄或所述镜体上;所述腔道的腔壁上设有触控装置,所述触控装置用于获取所述控制手柄的运动信息。
在一些实施例中,所述控制部件包括设置在所述控制手柄上的姿态传感器,所述姿态传感器用于获取所述控制手柄的运动信息。
在一些实施例中,所述软内窥镜辅助装置还包括:控制装置,用于接收所述控制部件采集的所述运动信息,并根据所述运动信息生成控制信号,将所述控制信号发送给所述移动部件,所述控制信号指示所述移动部件沿镜体的轴向方向控制镜体移动或者旋转。
在一些实施例中,所述输送装置包括第一驱动电机、第一主动轮、两个第一从动轮和两个输送轮,所述第一驱动电机与所述第一主动轮传动连接,所述第一主动轮与所述两个第一从动轮中的其中一个第一从动轮啮合,所述两个第一从动轮彼此啮合,所述两个第一从动轮分别与所述两个输送轮传动连接,所述镜体夹设在所述两个输送轮之间;或者,所述输送装置包括第三驱动电机、第二主动轮、第二从动轮、第三从动轮和两组带轮组,每组带轮组包括两个第二带轮和第二柔性带,所述第三驱动电机与所述第二主动轮传动连接,所述第二主动轮与所述第二从动轮啮合,所述第二从动轮与所述第三从动轮啮合,所述第二从动轮与其中一组带轮组传动连接,所述第三从动轮与另一组带轮组传动连接;所述镜体夹持在所述两组 带轮组之间,每组带轮组的第二柔性带的所述至少部分与所述镜体抵接,所述第二柔性带的移动方向与所述镜体在抵接处的轴线之间的夹角为0~5°。
在一些实施例中,所述角度控制装置包括第二驱动电机、第一主动带轮、第一从动带轮和第一柔性带,所述第二驱动电机与所述第一主动带轮传动连接,所述第一主动带轮通过所述第一柔性带与所述第一从动带轮传动连接,所述第一柔性带与所述镜体抵接,所述第一柔性带的移动方向与所述镜体在抵接处的轴线之间的夹角为85°~90°;或者,所述角度控制置包括第四驱动电机和摩擦球,所述第四驱动电机用于驱动所述摩擦球旋转,所述摩擦球与所述镜体抵接,所述摩擦球的旋转轴线与在抵接处的轴线之间的夹角为0~5°。
在一些实施例中,所述软内窥镜辅助装置还包括:夹持部件和固定部件;所述夹持部件和所述移动部件前后并行固定设置在固定部件上,镜体穿过移动部件后,再穿过夹持部件进行夹持固定。
在一些实施例中,所述软内窥镜辅助装置还包括:第一调整部件,所述第一调整部件一端用于固定设置控制部件,另一端用于固定设置在固定部件上,用于调整所述控制部件的高度和角度;和/或,第二调整部件和检查床,所述第二调整部件一端固定在所述检查床,另一端固定在所述固定部件,所述第二调整部件用于调整所述镜体的高度和角度。
在一些实施例中,所述第一调整部件和/或所述第二调整部件为机械臂。
在一些实施例中,所述软内窥镜辅助装置还包括受力感应部件和压力反馈部件;所述受力感应部件用于感应所述镜体移动或者旋转所受的阻力信息;所述压力反馈部件用于反馈所述阻力信息。
在一些实施例中,所述软内窥镜辅助装置还包括机械臂,所述机械臂的末端设置有转接法兰盘,所述移动部件设置在所述转接法兰盘上,所述受力感应部件包括压力传感器,所述压力传感器设置在所述转接法兰盘与所述移动部件之间。
在一些实施例中,所述压力反馈部件包括设置在所述控制手柄上的抱紧机构,所述抱紧机构包括第一弹性套、第五驱动电机、齿轮传动系和两个抱紧支臂,所述第一弹性套套设在所述控制手柄上,所述第五驱动电机通过所述齿轮传动系分别与所述两个抱紧支臂相连,用于驱动所述两个抱紧支臂压紧或放松所述第一弹性套。
在一些实施例中,所述压力反馈部件包括设置在所述控制手柄上的阻力机构,所述阻力机构包括第二弹性套、第六驱动电机和凸轮,所述第二弹性套套设在所述控制手柄上,所述第六驱动电机与所述凸轮相连并驱动所述凸轮压紧或放松所述第二弹性套。
在一些实施例中,所述压力反馈部件包括设置在所述控制手柄上的调压机构,所述调压机构包括气囊和气泵,所述气囊设置在所述控制手柄上,所述气泵用于调节所述气囊的充气量以调节所述控制手柄的运动阻力。
在一些实施例中,所述压力反馈部件包括压力提示设备,所述压力提示设备包括显示器、语音播放器和/或指示灯。
本说明书实施例之一提供一种软内窥镜辅助装置,应用于软内窥镜,所述软内窥镜包括控制手柄和镜体;所述软内窥镜辅助装置包括:移动部件,设置在所述镜体上,用于沿所述镜体的轴向方向控制所述镜体移动或者旋转;受力感应部件,用于感应所述镜体移动或者旋转所受的阻力信息;压力反馈部件,用于反馈所述阻力信息。
在一些实施例中,所述压力反馈部件设置在所述控制手柄上,所述压力反馈部件通过调节所述控制手柄的运动阻力来反馈所述阻力信息。
在一些实施例中,所述压力反馈部件包括设置在所述控制手柄上的抱紧机构,所述抱紧机构包括第一弹性套、第五驱动电机、齿轮传动系和两个抱紧支臂,所述第一弹性套套设在所述控制手柄上,所述第五驱动电机通过所述齿轮传动系分别与所述两个抱紧支臂相连,用于驱动所述两个抱紧支臂压紧或放松所述第一弹性套。
在一些实施例中,所述压力反馈部件包括设置在所述控制手柄上的阻力机构,所述阻力机构包括第二弹性套、第六驱动电机和凸轮,所述第二弹性套套设在所述控制手柄上,所述第六驱动电机与所述凸轮相连并驱动所述凸轮压紧或放松所述第二弹性套。
在一些实施例中,所述压力反馈部件包括设置在所述控制手柄上的调压机构,所述调压机构包括气囊和气泵,所述气囊设置在所述控制手柄上,所述气泵用于调节所述气囊的充气量以调节所述控制手柄的运动阻力。
在一些实施例中,所述压力反馈部件包括压力提示设备,所述压力提示设备包括显示器、语音播放器和/或指示灯。
在一些实施例中,所述软内窥镜辅助装置还包括机械臂,所述机械臂的末端设置有转接法兰盘,所述移动部件设置在所述转接法兰盘上,所述受力感应部件包括压力传感器,所述压力传感器设置在所述 转接法兰盘与所述移动部件之间。
本说明书实施例之一提供一种软内窥镜***,所述软内窥镜***包括软内窥镜以及如上任一项实施例所述的软内窥镜辅助装置。
本说明书实施例之一提供一种软内窥镜辅助操作方法,应用于软内窥镜和如上任一项实施例所述的软内窥镜辅助操作装置;所述方法包括:接收控制部件采集的控制手柄的运动信息;根据所述运动信息生成控制信号,将所述控制信号发送给移动部件,所述控制信号指示所述移动部件沿镜体的轴向方向控制所述镜体移动或者旋转。
本说明书实施例之一提供一种软内窥镜辅助操作方法,应用于软内窥镜和如上任一项实施例所述的软内窥镜辅助操作装置;所述方法包括:接收受力感应部件感应的镜体移动或者旋转所受的阻力信息;根据所述阻力信息生成反馈信号,将所述反馈信号发送给所述压力反馈部件,所述压力反馈部件用于根据所述反馈信号反馈所述阻力信息。
根据软内窥镜辅助装置的结构,控制部件采集控制手柄的运动信息,移动部件基于该控制信息控制镜体移动或旋转,则使用者通过对控制手柄进行操作就可以实现对软内窥镜的控制,能够让使用者(尤其是医护人员等)被训练出的操控技术得以最大程度的发挥,更安全有效的完成操作,同时也可减轻使用者因长时间持镜带来的疲劳感。也就是说,借助于软内窥镜辅助装置,使用者可以解放出原来需要握持镜身的那只手,通过双手操作软内窥镜的其他医用器械,从而更快速、更高效地完成手术,并且可以在保障手术安全的前提下大大减轻使用者的劳动强度,提高使用者的专注程度,更有利于保障手术的安全性。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的软内窥镜及其辅助装置的应用场景示意图;
图2是根据本说明书一些实施例所示的软内窥镜辅助装置的结构示意图;
图3是根据本说明书一些实施例所示的控制手柄和控制部件的结构示意图;
图4是根据本说明书一些实施例所示的控制部件的结构示意图;
图5是根据本说明书一些实施例所示的软内窥镜辅助装置电路的原理框图;
图6是根据本说明书一些实施例所示的移动部件的结构示意图;
图7是根据本说明书另一些实施例所示的移动部件的结构示意图;
图8是根据本说明书另一些实施例的软内窥镜辅助装置的结构示意图;
图9是根据本说明书又一些实施例的软内窥镜辅助装置的结构示意图;
图10是根据本说明书一些实施例的软内窥镜辅助装置的结构框图;
图11是根据本说明书一些实施例的压力反馈部件的抱紧机构的结构示意图;
图12是根据本说明书一些实施例的压力反馈部件的阻力机构的结构示意图;
图13是根据本说明书一些实施例的机械臂的结构示意图;
图14是根据本说明书一些实施例的软内窥镜辅助操作方法的流程示意图;
图15是根据本说明书一些实施例的软内窥镜辅助操作方法的流程示意图。
其中,附图标记为:10、软内窥镜;11、控制手柄;111、大拨轮;112、小拨轮;12、镜体;20、控制部件;21、腔道;22、触控装置;30、移动部件;31、输送装置;311、转轴;312、第一主动轮;313、第一从动轮;314、输送轮;315、环形凹槽;301、转轴;302、第二主动轮;303、第二从动轮;304、带轮组;3041、第二带轮;3042、第二柔性带;305、第三从动轮;32、角度控制装置;321、第二驱动电机;322、第一主动带轮;323、第一从动带轮;324、第一柔性带;310、第四驱动电机;320、摩擦球;40、固定部件;50、夹持部件;60、第一调整部件;61、支柱;70、第二调整部件;80、检查床;90、控制装置;100、受力感应部件;110、压力传感器;200、压力反馈部件;210、抱紧机构;211、第一弹性套;212、齿轮传动系;2121、主动齿轮;2122、齿条;213、支臂;2131、弧形部;2132、连接部;220、阻力机构;221、第二弹性套;222、第六驱动电机;223、凸轮;241、显示器;400、机械臂;410、转接法兰盘;500、移动推车;A1、第一方向;A2、第二方向。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
图1是根据本说明书一些实施例所示的软内窥镜及其辅助装置的应用场景示意图。
在一些实施例中,软内窥镜10是指通过人体的自然腔道来完成检查、诊断和治疗的医疗器械。软内窥镜10包括但不限于胃镜、肠镜、喉镜、支气管镜等。
在一些实施例中,软内窥镜辅助装置是指辅助使用者控制软内窥镜10运动的装置。在一些实施例的应用场景中,软内窥镜辅助装置可以设置在移动推车500上,软内窥镜10的一部分与软内窥镜辅助装置相连,另一部分可以延伸到检查床80上,检查床80是指供人体躺卧的平台。在一些实施例中,使用者通过软内窥镜辅助装置来操作软内窥镜10,控制软内窥镜10执行各种检查动作。
本说明书的一些实施例所涉及到的“近端”、“远端”可以表示方向,是指沿着镜体12的轴向方向上看,朝向操作人员所在的一侧为“近端”,朝向伸入人体的一侧为“远端”,“近端”和“远端”可以理解为构件的端面、端部、靠近端部且具有一定长度的部分等。
图2是根据本说明书一些实施例所示的软内窥镜辅助装置的结构示意图。
如图2所示,在一些实施例中,软内窥镜辅助装置应用于软内窥镜10,软内窥镜10包括镜体12镜体12可以用于***人体的自然腔道并执行检查、诊断和治疗等多项任务。
在一些实施例中,软内窥镜10包括控制手柄11,控制手柄11可以是供使用者手动操作镜体12的手柄。
在一些实施例中,软内窥镜10包括控制脚踏板(图中未示出),控制脚踏板可以是使用者脚部踩压操作镜体12的脚踏板。
在一些实施例中,软内窥镜10包括其他控制操作器,例如控制拉杆、控制方向盘等,本说明书实施例对此不作限制。
在一些实施例中,该软内窥镜辅助装置包括:移动部件30。
在一些实施例中,移动部件30设置在镜体12上,用于根据控制手柄11的运动信息沿镜体12的轴向方向控制镜体12移动或者旋转。其中,镜体12可以沿直线延伸,也可以沿曲线弯曲延伸,镜体12的轴向方向是指沿镜体的中轴线的延伸方向,包括但不限于直线方向或曲线方向。镜体12移动可以是镜体12沿其中轴线方向移动,镜体12旋转可以是镜体12的外表面绕其中轴线方向旋转。在一些实施例中,该移动部件30可以为控制镜体12移动和/或旋转的多自由度的机器人手臂。在一些实施例中,该移动部件30可以固定在固定部件40上。在一些实施例中,该移动部件30沿镜体12的轴向方向控制镜体12移动或者旋转,例如,该移动部件30可以包括直线电机和旋转电机,直线电机来控制镜体12的直线移动,旋转电机来控制镜体12的旋转。有关移动部件30的更详细内容可以参见图6和图7及其相关描述。在一些实施例中,移动部件30也可以控制镜体12沿曲线移动。
在一些实施例中,移动部件30可以与控制手柄11、控制脚踏板或其他控制操作器等配合使用,以实现对镜体12的半自动化控制。
在一些实施例中,移动部件30可以与控制装置90相连,镜体12的移动也可以通过控制装置90全自动控制,使用者向控制装置输入患者的参数信息,则控制装置可以发送控制信号给移动部件30,从而控制移动部件30自动控制镜体12的移动和/或旋转。有关控制装置90的更多内容可以参见图5及其相关描述。
在一些实施例中,该软内窥镜辅助装置包括控制部件20。
在一些实施例中,控制部件20设置在软内窥镜10上,用于采集控制手柄11、控制脚踏板或其他控制操作器的运动信息,这些运动信息包括但不限于控制手柄11、控制脚踏板或其他控制操作器的运动轨迹信息、角度转动信息等。
在一些实施例中,控制部件20用于生成控制移动部件30对镜体12进行移动和/或旋转的控制信号。该控制信号可以基于控制手柄11、控制脚踏板或其他控制操作器运动信息生成。
在一些实施例中,控制部件20生成控制移动部件30对镜体12进行移动和/或旋转的控制信号可以是机械信号。在一些实施例中,控制部件20可以是机械传动机构,控制部件20的机械传动输入侧与控制手柄11、控制脚踏板或其他控制操作器相连,控制部件20的机械传动输出侧与移动部件30相连。当控制手柄11、控制脚踏板或其他控制操作器产生运动时,能够向控制部件20的机械传动输入侧输入传动力或扭矩,经过控制部件20的传动并从控制部件20的机械传动输出侧输出,则控制移动部件30对镜体12进行移动和/或旋转。在一些实施例中,控制部件20包括但不限于拉线、拉杆、连杆机构、齿轮机构或其他结构。
在一些实施例中,控制部件20生成控制移动部件30对镜体12进行移动和/或旋转的控制信号可 以是电控信号。在一些实施例中,控制部件20可以是触控装置或姿态传感器等,这些部件可以自身集成有芯片或处理器,控制部件20不仅能够采集控制手柄11、控制脚踏板或其他控制操作器的运动信息,还能生成控制移动部件30对镜体12进行移动和/或旋转的控制信号。在一些实施例中,控制部件20可以是应变片、陀螺仪等传感器,其自身只用于感应控制手柄11、控制脚踏板或其他控制操作器运动信息,然后将感应到的运动信息发送至其他处理器(例如下文提及的控制装置90),由其他处理器生成控制移动部件30对镜体12进行移动和/或旋转的控制信号。
在一些实施例中,控制部件20设置在软内窥镜10上,用于采集控制手柄11的运动信息。在一些实施例中,控制部件20固定设置在镜体12上,控制部件20位于靠近控制手柄11的近端。在一些实施例中,控制部件20设置在控制手柄11上,如控制部件20位于控制手柄11与镜体12的连接处。在一些实施例中,控制部件20设有中空的腔道,该镜体12穿过该中空的腔道,该控制部件20为可拆卸部件,可以适配多种型号的镜体12或控制手柄11。在一些实施例中,控制部件20可以设置在控制手柄11中。在一些实施例中,控制部件20用于采集使用者在使用控制手柄11过程中的运动信息,该运动信息包括但不限于移动轨迹信息和/或角度信息等。
根据一些实施例中的软内窥镜辅助装置的结构,控制部件20采集控制手柄11的运动信息,移动部件30基于该控制信息控制镜体12移动或旋转,则使用者通过对控制手柄11进行操作就可以实现对软内窥镜10的控制,能够让使用者(尤其是医护人员等)被训练出的操控技术得以最大程度的发挥,更安全有效的完成操作,同时也可减轻使用者因长时间持镜带来的疲劳感。也就是说,借助于软内窥镜辅助装置,使用者可以解放出原来需要握持镜身的那只手,通过双手操作软内窥镜10的其他医用器械,从而更快速、更高效地完成手术,并且可以在保障手术安全的前提下大大减轻使用者的劳动强度,提高使用者的专注程度,更有利于保障手术的安全性。
图3是根据本说明书一些实施例所示的控制手柄和控制部件的结构示意图。
在一些实施例中,控制手柄11上设有大拨轮111和小拨轮112,大拨轮111和小拨轮112用于控制镜体12的远端弯曲。其中,镜体12的远端弯曲是指镜体12的远端相对于其原来的轴线偏移,即镜体12的远端相对于其原来的轴线摆动的姿态。在一些实施例中,大拨轮111和小拨轮112可以通过拉线等方式与镜体12的远端相连,通过转动大拨轮111和小拨轮112,使大拨轮111和小拨轮112牵拉拉线而带动镜体12的远端弯曲。
在一些实施例中,大拨轮111和小拨轮112可以分别用于控制镜体12的远端在不同的精度范围内的弯曲。示例地,大拨轮111可以用于控制镜体12的远端在更大的精度范围内弯曲,小拨轮112可以用于控制镜体12的远端在更小的精度范围内弯曲,例如大拨轮111每转动单位角度,可以控制镜体12的远端弯曲1°,小拨轮112每转动单位角度,可以控制镜体12的远端弯曲0.1°。
在一些实施例中,大拨轮111和小拨轮112可以分别用于控制镜体12的远端朝向不同方向弯曲。示例地,大拨轮111可以用于控制镜体12的远端在上下方向弯曲,小拨轮112可以用于控制镜体12的远端在左右方向弯曲,其中,上下方向和左右方向可以基于镜体12在使用场景中的方位所确定。在其他实施例中,大拨轮111和小拨轮112也可以控制镜体12在其他方向弯曲。
在一些实施例中,大拨轮111和小拨轮112可以同轴重叠设置在控制手柄11上。在一些实施例中,大拨轮111和小拨轮112可以分别设置在控制手柄11的不同位置。
对于一些实施例中全自动化控制镜体12移动的方案,使用者在手术操作中,对病人的状态及镜体12的反馈感知可能处在差异,也没有办法很好的利用医生经过长期训练获得的对内镜的感受更安全的进行手术操作。而在一些实施例中,通过设置控制手柄11以及大拨轮111和小拨轮112,使用者通过对控制手柄11进行操作,不仅能够解决使用者双手操作的疲劳感和劳动强度,还能让使用者通过控制手柄11上的大拨轮111和小拨轮112来控制镜体12的弯曲,使医生以被训练出的操控技术得以最大程度的发挥,使医生解放出原本握持镜体12的那只手,医生就可以精细的操作软内窥镜10所使用的专用器械,以更安全的更快速的完成手术。相比于一些实施例中全自动化控制镜体12移动的方案,使用者还能够通过大拨轮111和小拨轮112感受镜体12弯曲过程中所受的阻力,使用者能够更直观的参与到手术操作过程中,并感受到镜体12的弯曲所受的阻力等,以便医生及时调试镜体12的姿态和对操作作出调整,更安全有效的完成操作。
图4是根据本说明书一些实施例所示的控制部件的结构示意图。
如图4所示,在一些实施例中,控制部件20设有中空的腔道21,控制部件20通过腔道21套设在控制手柄11或镜体12上,即镜体12或控制手柄11穿过该控制部件20中空的腔道21。
在一些实施例中,控制部件20固定设置在控制手柄11的近端的情况下,在控制部件20中空的腔道21的腔壁上固定设置触控装置22,该触控装置22可以获取到控制手柄11或者镜体12的运动信息,例如移动轨迹信息或者角度信息。
在一些实施例中,触控装置22可以为多个,多个触控装置22分别沿腔道21的内壁的圆周方向间隔设置,以便于检测镜体12或控制手柄11在各个方向上的运动信息。在一些实施例中,触控装置22可以为压力传感器。
在一些实施例中,控制部件20包括设置在控制手柄11上的姿态传感器(图中未示出),姿态传感器用于获取控制手柄11的运动信息。例如姿态传感器能够感知控制手柄11的前倾、后仰、旋转、左右摆动等。在一些实施例中,姿态传感器包括但不限于三轴陀螺仪、三轴加速度计等传感器,姿态传感器能够感应控制手柄11的移动轨迹信息或者角度信息。
在一些实施例中,姿态传感器可以设置在腔道21内。在其他一些实施例中,姿态传感器也可以设置在控制手柄11的其他位置。
图5是根据本说明书一些实施例所示的软内窥镜辅助装置电路的原理框图。
如图5所示,软内窥镜辅助装置还包括控制装置90。在一些实施例中,控制部件20、移动部件30分别通过有线或者无线的方式与控制装置90连接。在一些实施例中,软内窥镜10也可以通过有线或无线的方式与控制装置90连接。
在一些实施例中,控制装置90用于接收控制部件20采集的控制手柄11的运动信息,例如控制手柄11的移动轨迹信息或者角度信息等。在一些实施例中,控制装置90根据控制手柄11的运动信息生成控制信号发送给移动部件30,该控制信号指示移动部件30沿镜体12的轴向方向控制镜体12进行移动或者旋转。
在一些实施例中,该控制部件20采集控制手柄11或者镜体12的两个自由度方向的角度信息,第一自由度方向的角度信息用于生成控制移动部件30对镜体12进行移动的控制信号,第二自由度方向的角度信息用于生成控制移动部件30对镜体12进行旋转的控制信号。其中,控制部件20采集控制手柄11或者镜体12的两个自由度方向的角度信息包括但不限于控制手柄11或者镜体12的前倾、后仰、旋转、左右摆动等角度信息。示例地,控制部件20采集到控制手柄11前倾的运动信息,则反馈给控制装置90,控制装置90生成控制指令发送给移动部件30,移动部件30控制镜体12向远端移动。示例地,控制部件20采集到控制手柄11后仰的运动信息,则反馈给控制装置90,控制装置90生成控制指令发送给移动部件30,移动部件30控制镜体12向近端移动。示例地,控制部件20采集到控制手柄11左右摆动或者转动的运动信息,则反馈给控制装置90,控制装置90生成控制指令发送给移动部件30,移动部件30控制镜体12顺时针或逆时针旋转。
图6是根据本说明书一些实施例所示的移动部件的结构示意图。
如图6所示,在一些实施例中,移动部件30包括输送装置31,输送装置31用于控制镜体12沿镜体12的轴向方向移动。
在一些实施例中,输送装置31包括第一驱动电机(图中未示出)、第一主动轮312、两个第一从动轮313和两个输送轮314。在一些实施例中,第一驱动电机与第一主动轮312传动连接,第一主动轮312与其中一个第一从动轮313啮合,两个第一从动轮313彼此啮合,两个第一从动轮313分别与两个输送轮314传动连接,镜体12夹设在两个输送轮314之间。其中,传动连接可以是直接连接,也可以是通过其他传动部件间接连接。在一些实施例中,第一主动轮312可以直接设置在第一驱动电机的输出轴上,或者,第一主动轮312通过其他传动齿轮、减速器等机构与第一驱动电机相连。在一些实施例中,其中一个第一从动轮313与其中一个输送轮314可以设置在转轴311上,另一个第一从动轮313与另一个输送轮314可以设置在另一个转轴311上。
在一些实施例中,第一驱动电机可以设置在机械臂400(机械臂400将在下文图13中详细说明)上。
根据上述输送装置31的连接关系,第一驱动电机驱动第一主动轮312转动,第一主动轮312驱动其中一个第一从动轮313转动,其中一个第一从动轮313驱动另一个第一从动轮313转动,两个第一从动轮313分别带动两个输送轮314转动,通过两个输送轮314与镜体12之间的摩擦力使镜体12沿其轴向移动。
在一些实施例中,输送轮314的旋转轴线与镜体12在抵接处的轴线之间的夹角为85°~90°。例如,输送轮314的旋转轴线与镜体12在抵接处的轴线之间的夹角为85°、86°、87°、88°、89°、90°等。采用这种布置方式,输送轮314转动时会对镜体12产生沿输送轮314的轮缘切向的摩擦力,该摩擦力的方向能够与镜体12在抵接处的轴线保持平行或基本平行,能够尽量避免镜体12偏移其抵接处的轴向方向。在一些实施例中,输送轮314的旋转轴线与镜体12在抵接处的轴线相互垂直。
在一些实施例中,输送轮314可以是橡胶轮,橡胶轮能够增加与镜体12之间的摩擦力,同时也能减少对镜体12的磨损。在一些实施例中,输送轮314的侧边缘形成有与镜体12的外表面配合的环形凹槽315,镜体12可相对滑动地嵌设在环形凹槽315内,能够提高镜体12移动的稳定性,并避免镜体12相 对于输送轮314倾斜。
在一些实施例中,移动部件30包括角度控制装置32,角度控制装置32用于控制镜体12绕镜体12的轴向方向旋转。
在一些实施例中,角度控制装置32包括第二驱动电机321、第一主动带轮322、第一从动带轮323和第一柔性带324。在一些实施例中,第二驱动电机321与第一主动带轮322传动连接,第一主动带轮322通过第一柔性带324与第一从动带轮323传动连接,第一柔性带324与镜体12抵接。其中,传动连接可以是直接连接,也可以是通过其他传动部件间接连接。
在一些实施例中,第一主动带轮322、第一从动带轮323和第一柔性带324可以为一组,设置在镜体12的任意一侧。在一些实施例中,第一主动带轮322、第一从动带轮323和第一柔性带324可以为两组,分别设置在镜体12的两侧。
根据上述角度控制装置32的连接关系,第二驱动电机321驱动第一主动带轮322转动,第一主动带轮322带动第一柔性带324绕第一从动带轮323转动,通过第一柔性带324与镜体12之间的摩擦力带动镜体12绕镜体12的轴向方向旋转。
在一些实施例中,第一柔性带324的移动方向与镜体12在抵接处的轴线之间的夹角为85°~90°。例如,第一柔性带324的移动方向与镜体12在抵接处的轴线之间的夹角为85°、86°、87°、88°、89°、90°等。采用这种布置方式,第一柔性带324转动时对镜体12产生沿第一柔性带324移动方向的摩擦力,该摩擦力的方向能够与镜体12在抵接处的轴线保持垂直或基本垂直,能够尽量避免镜体12沿其抵接处的轴线方向移动。在一些实施例中,第一柔性带324的移动方向与镜体12在抵接处的轴线相互垂直。
图7是根据本说明书另一些实施例所示的移动部件的结构示意图。
如图7所示,在一些实施例中,输送装置31包括第三驱动电机(图中未示出)、第二主动轮302、第二从动轮303、第三从动轮305和两组带轮组304,每组带轮组304包括两个第二带轮3041和第二柔性带3042。在一些实施例中,第三驱动电机与第二主动轮302传动连接,第二主动轮302与第二从动轮303啮合,第二从动轮303与第三从动轮305啮合,第二从动轮303与其中一组带轮组304传动连接,第三从动轮305与另一组带轮组304传动连接,镜体12夹持在两组带轮组304之间;其中,传动连接可以是直接连接,也可以是通过其他传动部件间接连接。
在一些实施例中,在一些实施例中,第一驱动电机可以设置在机械臂400(机械臂400将在下文图13中详细说明)上。
在一些实施例中,第二从动轮303与带轮组304中的其中一个第二带轮3041通过转轴301同轴设置,第二柔性带3042绕接在两个第二带轮3041上。
根据上述输送装置31的连接关系,第三驱动电机驱动第二主动轮302转动,第二主动轮302驱动第二从动轮303转动,第二从动轮303驱动第三从动轮305转动,第二从动轮303带动其中一组带轮组304的第二带轮3041转动,第三从动轮305带动另一组带轮组304的第二带轮3041转动,第二带轮3041带动第二柔性带3042转动,第二柔性带3042通过摩擦力带动镜体12沿轴向方向移动。
在一些实施例中,每组带轮组304的第二柔性带3042的至少部分与镜体12抵接,第二柔性带3042的移动方向与镜体12在抵接处的轴线之间的夹角为0~5°,例如,第二柔性带3042的移动方向与镜体12在抵接处的轴线之间的夹角为0°、1°、2°、3°、4°、5°。采用这种布置方式,第二柔性带3042与镜体12之间的接触面积较大,能增加第二柔性带3042与镜体12之间的摩擦力。并且,第二柔性带3042对镜体12产生沿第二柔性带3042的移动方向的摩擦力,该摩擦力的方向能够与镜体12在抵接处的轴线保持平行或基本平行,能够尽量避免镜体12偏移其抵接处的轴向方向。在一些实施例中,第二柔性带3042的移动方向与镜体12在抵接处的轴线相互平行。
在一些实施例中,角度控制置包括第四驱动电机310和摩擦球320,第四驱动电机310用于驱动摩擦球320旋转,摩擦球320与镜体12抵接,摩擦球320可以通过摩擦力驱动镜体12绕其轴线方向旋转。
在一些实施例中,摩擦球320可以是橡胶球等,既能增加摩擦球320与镜体12之间的摩擦力,也能减轻对镜体12外表面的磨损。
在一些实施例中,摩擦球320的旋转轴线与在抵接处的轴线之间的夹角为0~5°。例如,摩擦球320的旋转轴线与在抵接处的轴线之间的夹角为0°、1°、2°、3°、4°、5°。采用这种布置方式,摩擦球320转动时对镜体12产生与摩擦球320的旋转方向相切的摩擦力,该摩擦力的方向能够与镜体12在抵接处的轴线保持垂直或基本垂直,能够尽量避免镜体12沿其抵接处的轴线方向移动。在一些实施例中,摩擦球320的旋转轴线与在抵接处的轴线相互平行。
图8是根据本说明书另一些实施例的软内窥镜辅助装置的结构示意图。
如图8所示,在一些实施例中,该软内窥镜辅助装置还包括夹持部件50。夹持部件50可以是用 于夹持镜体12的结构。在一些实施例中,该软内窥镜辅助装置还包括固定部件40,固定部件40可以是用于固定夹持部件50或镜体12的平台。
在一些实施例中,该夹持部件50和该移动部件30前后并行固定设置在固定部件40上,在镜体12穿过移动部件30之后,再穿过夹持部件50进行固定。
在一些实施例中,该夹持部件50上设置位移传感器,用于检测镜体12的移动信息或者旋转信息,可选的,该位移传感器通过有线或者无线的方式,将镜体12的移动信息或者旋转信息实时发送给控制装置90,控制装置90判断该移动信息、旋转信息与控制信号对应的信息是否一致,例如,在控制信号指示移动部件30将镜体12移动A长度值的情况下,软内窥镜辅助装置正常运行的情况下,该位移传感器检测的移动信息应该也是A长度值,在不一致的情况下,可以停止移动部件30的工作或者将镜体12恢复到初始位置,通过上述方式,防止辅助装置的错误运行造成对人体不必要的伤害,该夹持部件50还可以包括压力传感器,在压力传感器检测的镜体12收到沿镜体12轴向的压力大于预设阈值的情况下,控制装置90可以停止移动部件30的工作,防止镜体12对患者的腔道造成损伤。
在一些实施例中,软内窥镜辅助装置还包括第一调整部件60。第一调整部件60一端用于固定设置控制部件20,另一端用于固定设置在固定部件40上,第一调整部件60可以为多自由度的调整部件,可以用于调整控制部件20的高度和角度,方便使用者进行操作,另外,控制部件20以固定的方式设置在第一调整部件60上,减少了使用者和环境的干扰,提高了控制部件20进行操作的稳定性和精度。
结合图1和图8所示,在一些实施例中,第一调整部件60可以包括支柱61,支柱61用于支撑控制手柄11和/或控制部件20。
在一些实施例中,支柱61固定在移动推车500上;控制手柄11的一端(如图示下端)与支柱61的顶端连接。在一些实施例中,控制手柄11能够相对于支柱61运动,例如控制手柄11能够相对于支柱61转动或倾斜等。通过支柱61对控制手柄11的支撑,能够使操作者更轻松。
在一些实施例中,支柱61可以是伸缩结构,从而可以调节不同高度,以适于不同的操作者。例如,支柱61包括但不限于升降机构、伸缩杆等伸缩结构。
图9是根据本说明书又一些实施例的软内窥镜辅助装置的结构示意图。
如图9所示,在一些实施例中,该软内窥镜辅助装置还包括第二调整部件70和检查床80。
在一些实施例中,第二调整部件70一端固定在检查床80,另一端固定在固定部件40,第二调整部件70可以为多自由度的调整部件,例如,第二调整部件70为五个自由度的调整部件,用于将镜体12所在的夹持部件50移动到指定位置,使用者可以通过第二调整部件70调整镜体12的高度和角度,让使用者快速的将镜体12移动到指定位置,提高了软内窥镜使用的效率。
在一些实施例中,第一调整部件60和/或第二调整部件70为机械臂400。在一些实施例中,机械臂400可以是单轴机械臂。在一些实施例中,机械臂400可以是多轴机械臂,例如两轴、三轴、四轴、五轴、六轴的机械臂。
在其他的一些实施例中,第一调整部件60和/或第二调整部件70还可以为其他结构,例如连杆机构、升降机构、平移机构等。
图10是根据本说明书一些实施例的软内窥镜辅助装置的结构框图。
本说明书的一些实施例还提供一种软内窥镜辅助装置,应用于软内窥镜10,软内窥镜10包括控制手柄11和镜体12,控制手柄11可以是供使用者操作镜体12的手柄,镜体12可以用于***人体的自然腔道21并执行检查、诊断和治疗等多项任务。其中,这里的软内窥镜辅助装置可以作为单独的实施例进行实施,也可以与上述图1至图9中任一项实施例中的软内窥镜辅助装置结合实施。
在一些实施例中,如图10所示,软内窥镜辅助装置包括:移动部件30、受力感应部件100和压力反馈部件200。
在一些实施例中,移动部件30设置在镜体12上,用于沿镜体12的轴向方向控制镜体12移动或者旋转;其中应理解的是,镜体12可以沿直线延伸,也可以沿曲线弯曲延伸,镜体12的轴向方向是指沿镜体12的中轴线的延伸方向,包括但不限于直线方向或曲线方向。镜体12移动可以是镜体12沿其中轴线方向移动,镜体12旋转可以是镜体12的外表面绕其中轴线方向旋转。在一些实施例中,该移动部件30可以为控制镜体12移动和/或旋转的多自由度的机器人手臂。在一些实施例中,该移动部件30可以固定在固定部件40上。在一些实施例中,该移动部件30沿镜体12的轴向方向控制镜体12移动或者旋转,例如,该移动部件30可以包括直线电机和旋转电机,直线电机来控制镜体12的直线移动,旋转电机来控制镜体12的旋转。有关移动部件30的更详细内容可以参见图6和图7及其相关描述。
在一些实施例中,受力感应部件100用于感应镜体12移动或者旋转所受的阻力信息。在一些实施例中,受力感应部件100可以是压力传感器110。在一些实施例中,受力感应部件100可以为多个,多个受力感应部件100可以沿镜体12的轴向设置在镜体12的外表面。在一些实施例中,受力感应部件100 可以设置在镜体12的近端。
在一些实施例中,压力反馈部件200用于反馈阻力信息。压力反馈部件200可以通过多种方式反馈阻力信息,包括但不限于模拟镜体所受的阻力信息,通过语音、指示灯、显示器等提示阻力信息等。
在一些实施例中,压力反馈部件200设置在控制手柄11上,压力反馈部件200通过调节控制手柄11的运动阻力来反馈阻力信息。在一些实施例中,压力反馈部件200能够根据镜体12(如镜体前端)在体内受到的移动阻力值和/或旋转阻力值的大小,来对应调节手柄的运动阻力值大小。在一些实施例中,基于镜体12在体内受到的移动阻力和/或旋转阻力值,压力反馈部件200将控制手柄11的运动阻力调整为等量的阻力值、或成倍增加的阻力值、或成倍减少的阻力值。
通过设置受力感应部件100和压力反馈部件200,使用者在操作控制手柄11使镜身沿轴向移动和/或旋转时,受力感应部件100可以感应镜身在运动过程中所受到的阻力信息,然后压力反馈部件200基于该阻力信息,通过调节控制手柄11的运动阻力来反馈阻力信息,使用者在操作控制手柄11时可以通过控制手柄11的运动阻力直观的感受到镜体12所受的阻力,更方便使用者及时调整镜体12姿态或对操作进行调整,提高内窥镜手术的安全性。
图11是根据本说明书一些实施例的压力反馈部件的抱紧机构的结构示意图。
在一些实施例中,压力反馈部件200包括设置在控制手柄11上的抱紧机构210,抱紧机构210通过对控制手柄11施加抱紧力以达到调节控制手柄11的运动阻力的目的。
结合图3和图11所示,在一些实施例中,抱紧机构210包括第一弹性套211、第五驱动电机、齿轮传动系212和两个抱紧支臂213。在一些实施例中,第一弹性套211是指具有弹性变形能力的套筒,第一弹性套211可以套设在控制手柄11上。示例地,第一弹性套211套设在控制手柄11的远端。在一些实施例中,第五驱动电机(图中未示出)通过齿轮传动系212分别与两个抱紧支臂213相连,用于驱动两个抱紧支臂213压紧或放松第一弹性套211。当第五驱动电机驱动两个抱紧支臂213压紧第一弹性套211时,控制手柄11所受到的运动阻力增加;当第五驱动电机驱动两个抱紧支臂213放松第一弹性套211时,控制手柄11所受到的运动阻力减小。
在一些实施例中,两个抱紧支臂213设置在第一弹性套211的外表面,且分别位于第一弹性套211沿径向的两侧,当两个抱紧支臂213沿径向彼此靠近时可以增加对第一弹性套211的抱紧力,当两个抱紧支臂213沿径向彼此远离时可以减小对第一弹性套211的抱紧力。
在一些实施例中,两个抱紧支臂213包括弧形部2131和连接部2132。弧形部2131构造为弧形的弯杆,用于贴合第一弹性套211的外表面,以增加与第一弹性套211的接触面积,并且更便于向第一弹性套211施加朝向其中轴线方向的抱紧力;连接部2132构造为直杆,用于连接弧形部2131和齿轮传动系212。在一些实施例中,两个抱紧支臂213为刚性支臂213。
在一些实施例中,齿轮传动系212包括主动齿轮2121和两个齿条2122,主动齿轮2121与第五驱动电机传动相连,两个齿条2122分别与主动轮的两侧啮合,两个抱紧支臂213分别连接在两个齿条2122上。
在一些实施例中,两个齿条2122的长度方向彼此平行或基本平行,其中,基本平行可以是两个齿条2122的长度方向之间的夹角在0~5°之间。
根据上述齿轮传动系212的结构,当第五驱动电机驱动主动轮旋转时,一个齿条2122沿第一方向A1移动,另一个齿条2122沿第二方向A2移动,第一方向A1与第二方向A2彼此相反。其中,第一方向A1可以是其中一个支臂213靠近另一个支臂213的方向(如图11中箭头所示的方向),或者,第一方向A1可以是其中一个支臂213远离另一个支臂213的方向(与图11中箭头所示的方向相反的方向)。
图12是根据本说明书一些实施例的压力反馈部件的阻力机构的结构示意图。
在一些实施例中,压力反馈部件200包括设置在控制手柄11上的阻力机构220,阻力机构220通过对控制手柄11施加阻力以达到调节控制手柄11的运动阻力的目的。
如图12所示,阻力机构220包括第二弹性套221、第六驱动电机222和凸轮223。在一些实施例中,第二弹性套221是指具有弹性变形能力的套筒,第二弹性套221可以套设在控制手柄11上。示例地,第二弹性套221套设在控制手柄11的远端。在一些实施例中,第六驱动电机222与凸轮223相连并驱动凸轮223压紧或放松第二弹性套221。当第六驱动电机222驱动凸轮223压紧第二弹性套221时,控制手柄11所受到的运动阻力增加;当第六驱动电机222驱动凸轮223放松第二弹性套221时,控制手柄11所受到的运动阻力减小。
在一些实施例中,凸轮223包括凹部和凸部,当第六驱动电机222驱动凸轮223的凹部转动到靠近或接触第二弹性套221的侧面时,凸轮223放松第二弹性套221。当第六驱动电机222驱动凸轮223的凸部抵接到第二弹性套221的侧面时,凸轮223压紧第二弹性套221。
在一些实施例中,压力反馈部件200包括设置在控制手柄11上的调压机构(图中未示出),调压 机构通过对控制手柄11施加压力以达到调节控制手柄11的运动阻力的目的。
在一些实施例中,调压机构包括气囊和气泵,气囊设置在控制手柄11上,气泵用于调节气囊的充气量以调节控制手柄11的运动阻力。当气泵向气囊充气时,气囊膨胀而导致气囊对控制手柄11的压力增加,从而增加控制手柄11的运动阻力;当气泵从气囊排气时,气囊收缩而导致气囊对控制手柄11的压力减小,从而减小控制手柄11的运动阻力。
在一些实施例中,调压机构还可以包括电子排气阀。电子排气阀与气囊相连,用于排放气囊中的气体。通过电子排气阀可以控制气囊的排气量,从而控制气囊对控制手柄11的压力的减小的量。
在一些实施例中,调压机构还可以包括气压压力传感器。气压压力传感器设置在气囊和控制手柄11之间,用于检测气囊对控制手柄11产生的压力。
在其他一些实施例中,调压机构可以是液压囊、液压泵等结构,通过液压泵调节液压囊内的压力,从而调节控制手柄11所受的运动阻力。
在一些实施例中,压力反馈部件200包括压力提示设备,压力提示设备包括但不限于显示器241、语音播放器、指示灯等中的至少一者。压力提示设备用于输出控制手柄11和/或镜体12所受的阻力信息,以更直观地提示使用者。
在一些实施例中,压力提示设备可以包括显示器241(如图1中所示)。当镜体12在移动或旋转过程中受到阻力时,受力感应部件100可以感应镜体12的阻力信息,并将该阻力信息反馈到显示器241,通过显示器241直接显示镜体12的阻力信息。在一些实施例中,显示器241可以直接显示镜体12的阻力信息的具体数值。在一些实施例中,显示器241可以通过受力进度条来显示镜体12的阻力信息,其中,受力进度条可以是纯色或彩色间距。镜体12的阻力信息越大,受力进度条越长或者颜色越醒目;镜体12的阻力信息越小,受力进度条越短或者颜色越不醒目。在一些实施例中,显示器241可以通过文字的方式反馈镜体12的阻力信息。
在一些实施例中,压力提示设备可以包括语音播放器。当镜体12在移动或旋转过程中受到阻力时,受力感应部件100可以感应镜体12的阻力信息,并将该阻力信息反馈到语音播放器,通过语音播放器直接播报镜体12的阻力信息。在一些实施例中,语音播放器可以直接播报镜体12的阻力信息的具体数值。在一些实施例中,语音播放器可以通过声音的特征来反馈阻力信息,其中,声音的特征包括但不限于声音的频率、急促程度、尖锐程度等。镜体12的阻力信息越大,语音播放器发出的声音频率越高、或越急促、或越尖锐等;镜体12的阻力信息越小,语音播放器发出的声音频率越低、或越平缓、或越低沉等。
在一些实施例中,压力提示设备可以包括指示灯。当镜体12在移动或旋转过程中受到阻力时,受力感应部件100可以感应镜体12的阻力信息,并将该阻力信息反馈到语音指示灯,通过指示灯的闪烁提示阻力信息。在一些实施例中,指示灯可以通过闪烁不同颜色来反馈镜体12的阻力信息。例如,镜体12的阻力较小,指示灯闪烁绿色;镜体12的阻力为中等程度,指示灯闪烁黄色;镜体12的阻力较大,指示灯闪烁红色。在一些实施例中,指示灯为多个,根据指示灯明亮或闪烁的数量来反馈镜体12的阻力信息。例如,镜体12的阻力信息越大,指示灯明亮或闪烁的数量越多;镜体12的阻力信息越小,指示灯明亮或闪烁的数量越少。
在一些实施例中,显示器241、语音播放器和/或指示灯可以基于镜体12所受阻力的大小而具有不同的输出模式。在一些实施例中,压力提示设备还可以包括处理器,处理器可以预先设置并存储镜体12的阻力阈值范围,例如,阻力阈值范围可以包括低阻力阈值范围、中阻力阈值范围和高阻力阈值范围。在一些实施例中,处理器从受力感应部件100获取的阻力信息位于不同的阻力阈值范围内,则可以通过压力提示设备输出不同的信号,从而对使用者进行不同程度、不同方式的提醒。
根据上述压力反馈部件200的不同实施例,受力感应部件100在感应到镜体12所受的阻力之后,压力反馈部件200可以通过抱紧机构210、调压机构、阻力机构220等方式来调节控制手柄11的运动阻力,则可以通过使用者操作动作直观的感受到阻力信息,压力反馈部件200也可以通过显示器241、语音播放器和/或指示灯等方式对使用者进行警示,两种或多种反馈方式相互结合,能够辅助使用者对镜体12目前的操作做出更精准的判断。
图13是根据本说明书一些实施例的机械臂的结构示意图。
在一些实施例中,软内窥镜辅助装置还包括机械臂400,机械臂400的末端设置有转接法兰盘410,移动部件30设置在转接法兰盘410上,受力感应部件100包括压力传感器110,压力传感器110设置在转接法兰盘410与移动部件30之间。当镜体12在移动或旋转时受到阻力时,移动部件30也会受到阻力作用,进而机械臂400会受到来自移动部件30的阻力,设置在机械臂400上的压力传感器110可以检测到该阻力。
在一些实施例中,压力传感器110可以是六轴力传感器。六轴力传感器能够感受机械臂400在三个轴上的力以及该三个轴上的扭矩。其中,三个轴可以是以机械臂400建立三维坐标系形成的三个正交轴。
结合图1和图13所示,机械臂400可以用于调整移动部件30和/或镜体12的空间位置,例如高度位置或水平位置。在一些实施例中,机械臂400的一端可以固定在移动推车500上,方便随移动推车500一起移动。机械臂400可以将移动部件30和/或镜体12移动到手术所需的位置,例如将移动部件30和/或镜体12移动到靠近或接触检查床80或患者的位置,并能够在使用过程中对移动部件30和/或镜体12的空间位置进行实时调节,提高软内窥镜使用的效率。
本说明书的一些实施例还提供一种软内窥镜***。该软内窥镜***包括软内窥镜以及如上任一项实施例所述的软内窥镜辅助装置。
图14是根据本说明书一些实施例的软内窥镜辅助操作方法的流程示意图。
如图14所示,该软内窥镜辅助操作方法1400的流程步骤包括:
步骤1410,接收控制部件采集的控制手柄的运动信息。
在一些实施例中,该控制部件20采集控制手柄11或者镜体12的运动信息,运动信息包括但不限于控制手柄11或者镜体12的移动轨迹信息、角度信息等。在一些实施例中,控制部件20可以将该运动信息发送给软内窥镜10的控制装置90。
在一些实施例中,软内窥镜10的使用者有操作意图的改变控制手柄11的移动轨迹或者角度,去控制移动部件30对镜体12进行移动控制或者旋转控制,因为镜体12与控制手柄11的连接关系,在控制手柄11的移动轨迹或者角度有变化的情况下,镜体12的移动轨迹和角度也相应的发生变化,该控制部件20可以直接或者间接的获取控制手柄11或者镜体12的角度信息。
在一些实施例中,控制部件20内部或者外部设置轨迹传感器或者角度传感器,在控制部件20固定在控制手柄11或者镜体12的情况下,可以检测到控制手柄11或者镜体12的移动轨迹或者角度变化。
在一些实施例中,该控制部件20也可以集成到控制手柄11内部或者外部,也可以在控制部件20上设置触控装置22,该触控装置22获取控制手柄11与触控装置22的触控信号,或者,该触控装置22获取镜体12与触控装置22的触控信号,该触控信号指示控制手柄11或者镜体12的轨迹信息和角度信息。在一些实施例中,在触控装置22为电压控制装置的情况下,触控信号为不同大小的电压值,不同大小的电压值指示控制手柄11或者镜体12偏转角度的大小。
步骤1420,根据运动信息生成控制信号,将控制信号发送给移动部件,控制信号指示移动部件沿镜体的轴向方向控制镜体移动或者旋转。
在一些实施例中,控制装置90根据该运动信息生成控制信号,并发送该控制信号给移动部件30,例如,以镜体12的角度信息为例,该角度信息为第一自由度的方向上A角度值的情况下,查询角度信息和控制信号的对应表,获取A角度值对应的控制信号,该控制信号指示移动部件30对镜体12的移动控制或者旋转控制。
在一些实施例中,移动部件30根据该控制信号控制镜体12的移动或者旋转,例如,该镜体12可以沿移动部件30所在的轴向方向前进或者后退,也可以沿移动部件30所在的轴向方向左右旋转,该控制信号中携带前进或者后退的长度、移动的速率、以及旋转的角度和速率等信息。
通过上述1410至1420的步骤,控制部件20采集使用者操作控制手柄11的移动轨迹和角度变化,生成控制信号并指示该移动部件30控制镜体12的移动或者旋转,相对于现有技术中,使用者需要一只手用于操作控制手柄11,另一只手用于控制镜体12的移动或者旋转,两只手需要同时工作的情形,本说明书实施例中的技术方案,使用者只通过一只手就实现了控制手柄11的操控,以及根据控制手柄11的移动轨迹和角度变化控制镜体12的移动或者旋转,解决了频繁的双手操作会引起使用者疲劳,分散使用者的注意力使手术难以达到最佳效果的问题,节省了使用者的精力,集中了使用者的注意力,提高了手术效果。
需要说明的是,除了控制部件20可以采集使用者操作控制手柄11的移动轨迹和角度变化生成控制信号外,控制部件20还可以采集使用者的语音信息,根据语音信息生成该控制信号。
图15是根据本说明书一些实施例的软内窥镜辅助操作方法的流程示意图。
如图15所示,本说明书实施例还提供一种软内窥镜辅助操作方法,该软内窥镜辅助操作方法1500应用于软内窥镜和如上任一项实施例所述的软内窥镜辅助操作装置;所述方法1500可以通过控制装置90来执行。
步骤1510,接收受力感应部件100感应的镜体12移动或者旋转所受的阻力信息。
在一些实施例中,镜体12在移动或者旋转过程中,会受到外界的阻力。受力感应部件100能够感应到该阻力信息,阻力信息包括阻力值、阻力方向等。受力感应部件100可以将镜体12所受的阻力信息反馈到控制装置90。
步骤1520,根据阻力信息生成反馈信号,将反馈信号发送给压力反馈部件200,压力反馈部件200用于根据反馈信号反馈阻力信息。
在一些实施例中,控制装置90根据受力感应部件100感应的阻力信息生成反馈信号,其中,不同数值范围的阻力信息可以生成不同的反馈信号。
控制装置90还将反馈信号发送给压力反馈部件200,压力反馈部件200用于根据反馈信号反馈阻力信息。在一些实施例中,压力反馈部件200根据阻力信息的数值大小而具有不同的反馈方式。例如阻力信息较大时,压力反馈部件200采用更容易引起注意的方式进行反馈,如采用红色指示灯、较长的进度条或更急促的警示声等;再例如阻力信息较小时,压力反馈部件200可以采用能正常观察到的方式进行反馈,例如用绿色的指示灯、较短的进度条或平缓的提示声等。
本申请实施例可能带来的有益效果包括但不限于:
(1)根据软内窥镜辅助装置的结构,控制部件采集控制手柄的运动信息,移动部件基于该控制信息控制镜体移动或旋转,则使用者通过对控制手柄进行操作就可以实现对软内窥镜的控制,能够让使用者(尤其是医护人员等)被训练出的操控技术得以最大程度的发挥,更安全有效的完成操作,同时也可减轻使用者因长时间持镜带来的疲劳感。也就是说,借助于软内窥镜辅助装置,使用者可以解放出原来需要握持镜身的那只手,通过双手操作软内窥镜的其他医用器械,从而更快速、更高效地完成手术,并且可以在保障手术安全的前提下大大减轻使用者的劳动强度,提高使用者的专注程度,更有利于保障手术的安全性;
(2)在夹持部件上设置位移传感器,用于检测镜体的移动信息或者旋转信息,防止辅助装置的错误运行造成对人体不必要的伤害,该夹持部件还可以包括压力传感器,在压力传感器检测的镜体收到沿镜体轴向的压力大于预设阈值的情况下,控制装置可以停止移动部件的工作,防止镜体对患者的腔道造成损伤;
(3)通过第一调整部件可以用于调整控制部件的高度和角度,方便使用者进行操作,减少了使用者和环境的干扰,提高了控制部件进行操作的稳定性和精度;
(4)通过支柱对控制手柄的支撑,能够使操作者更轻松,且支柱可以是伸缩结构,适于不同的操作者;
(5)通过设置受力感应部件和压力反馈部件,使用者在操作控制手柄使镜身沿轴向移动和/或旋转时,受力感应部件可以感应镜身在运动过程中所受到的阻力信息,然后压力反馈部件基于该阻力信息,通过调节控制手柄的运动阻力来反馈阻力信息,使用者在操作控制手柄时可以通过控制手柄的运动阻力直观的感受到镜体所受的阻力,更方便使用者及时调整镜体姿态或对操作进行调整,提高内窥镜手术的安全性;
(6)机械臂可以将移动部件和/或镜体移动到手术所需的位置,例如将移动部件和/或镜体移动到靠近或接触检查床的位置,并能够在使用过程中对移动部件和/或镜体的空间位置进行实时调节,提高软内窥镜使用的效率。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的***组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的***。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上” 表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (29)

  1. 一种软内窥镜辅助装置,其特征在于,应用于软内窥镜,所述软内窥镜包括镜体;所述软内窥镜辅助装置包括:
    移动部件,设置在所述镜体上,用于控制所述镜体移动和/或旋转;
    所述移动部件包括输送装置和/或角度控制装置,所述输送装置用于控制所述镜体沿所述镜体的轴向方向移动,所述角度控制装置用于控制所述镜体绕所述轴向方向旋转。
  2. 根据权利要求1所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括控制部件,所述控制部件用于生成控制所述移动部件对所述镜体进行移动和/或旋转的控制信号。
  3. 根据权利要求1所述的软内窥镜辅助装置,其特征在于,所述软内窥镜包括控制手柄,所述软内窥镜辅助装置还包括控制部件,所述控制部件设置在所述软内窥镜上,用于采集所述控制手柄的运动信息,所述移动部件根据所述运动信息对所述镜体进行移动和/或旋转控制。
  4. 根据权利要求3所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括第一调整部件,所述第一调整部件包括支柱,所述支柱用于支撑所述控制部件和/或所述控制手柄。
  5. 根据权利要求3所述的软内窥镜辅助装置,其特征在于,所述控制手柄上设有大拨轮和小拨轮,所述大拨轮和所述小拨轮用于控制所述镜体的远端弯曲。
  6. 根据权利要求2或3所述的软内窥镜辅助装置,其特征在于,所述控制部件设有中空的腔道,所述控制部件通过所述腔道套设在所述控制手柄或所述镜体上;
    所述腔道的腔壁上设有触控装置,所述触控装置用于获取所述控制手柄的运动信息。
  7. 根据权利要求2或3所述的软内窥镜辅助装置,其特征在于,所述控制部件包括设置在所述控制手柄上的姿态传感器,所述姿态传感器用于获取所述控制手柄的运动信息。
  8. 根据权利要求3所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括:
    控制装置,用于接收所述控制部件采集的所述运动信息,并根据所述运动信息生成控制信号,将所述控制信号发送给所述移动部件,所述控制信号指示所述移动部件沿镜体的轴向方向控制镜体移动或者旋转。
  9. 根据权利要求1所述的软内窥镜辅助装置,其特征在于,所述输送装置包括第一驱动电机、第一主动轮、两个第一从动轮和两个输送轮,所述第一驱动电机与所述第一主动轮传动连接,所述第一主动轮与所述两个第一从动轮中的其中一个第一从动轮啮合,所述两个第一从动轮彼此啮合,所述两个第一从动轮分别与所述两个输送轮传动连接,所述镜体夹设在所述两个输送轮之间;或者,
    所述输送装置包括第三驱动电机、第二主动轮、第二从动轮、第三从动轮和两组带轮组,每组带轮组包括两个第二带轮和第二柔性带,所述第三驱动电机与所述第二主动轮传动连接,所述第二主动轮与所述第二从动轮啮合,所述第二从动轮与所述第三从动轮啮合,所述第二从动轮与其中一组带轮组传动连接,所述第三从动轮与另一组带轮组传动连接;所述镜体夹持在所述两组带轮组之间,每组带轮组的第二柔性带的所述至少部分与所述镜体抵接,所述第二柔性带的移动方向与所述镜体在抵接处的轴线之间的夹角为0~5°。
  10. 根据权利要求1所述的软内窥镜辅助装置,其特征在于,所述角度控制装置包括第二驱动电机、第一主动带轮、第一从动带轮和第一柔性带,所述第二驱动电机与所述第一主动带轮传动连接,所述第一主动带轮通过所述第一柔性带与所述第一从动带轮传动连接,所述第一柔性带与所述镜体抵接,所述第一柔性带的移动方向与所述镜体在抵接处的轴线之间的夹角为85°~90°;或者,
    所述角度控制置包括第四驱动电机和摩擦球,所述第四驱动电机用于驱动所述摩擦球旋转,所述摩擦球与所述镜体抵接,所述摩擦球的旋转轴线与在抵接处的轴线之间的夹角为0~5°。
  11. 根据权利要求1所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括:夹持部件和固定部件;
    所述夹持部件和所述移动部件前后并行固定设置在固定部件上,镜体穿过移动部件后,再穿过夹持部件进行夹持固定。
  12. 根据权利要求11所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括:
    第一调整部件,所述第一调整部件一端用于固定设置控制部件,另一端用于固定设置在固定部件上,用于调整所述控制部件的高度和角度;和/或,
    第二调整部件和检查床,所述第二调整部件一端固定在所述检查床,另一端固定在所述固定部件,所述第二调整部件用于调整所述镜体的高度和角度。
  13. 根据权利要求12所述的软内窥镜辅助装置,其特征在于,所述第一调整部件和/或所述第二调整部件为机械臂。
  14. 根据权利要求3所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括受力感应部件和压力反馈部件;
    所述受力感应部件用于感应所述镜体移动或者旋转所受的阻力信息;
    所述压力反馈部件用于反馈所述阻力信息。
  15. 根据权利要求14所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括机械臂,所述机械臂的末端设置有转接法兰盘,所述移动部件设置在所述转接法兰盘上,所述受力感应部件包括压力传感器,所述压力传感器设置在所述转接法兰盘与所述移动部件之间。
  16. 根据权利要求14所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括设置在所述控制手柄上的抱紧机构,所述抱紧机构包括第一弹性套、第五驱动电机、齿轮传动系和两个抱紧支臂,所述第一弹性套套设在所述控制手柄上,所述第五驱动电机通过所述齿轮传动系分别与所述两个抱紧支臂相连,用于驱动所述两个抱紧支臂压紧或放松所述第一弹性套。
  17. 根据权利要求14所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括设置在所述控制手柄上的阻力机构,所述阻力机构包括第二弹性套、第六驱动电机和凸轮,所述第二弹性套套设在所述控制手柄上,所述第六驱动电机与所述凸轮相连并驱动所述凸轮压紧或放松所述第二弹性套。
  18. 根据权利要求14所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括设置在所述控制手柄上的调压机构,所述调压机构包括气囊和气泵,所述气囊设置在所述控制手柄上,所述气泵用于调节所述气囊的充气量以调节所述控制手柄的运动阻力。
  19. 根据权利要求14所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括压力提示设备,所述压力提示设备包括显示器、语音播放器和/或指示灯。
  20. 一种软内窥镜辅助装置,其特征在于,应用于软内窥镜,所述软内窥镜包括控制手柄和镜体;所述软内窥镜辅助装置包括:
    移动部件,设置在所述镜体上,用于沿所述镜体的轴向方向控制所述镜体移动或者旋转;
    受力感应部件,用于感应所述镜体移动或者旋转所受的阻力信息;
    压力反馈部件,用于反馈所述阻力信息。
  21. 根据权利要求20所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件设置在所述控制手柄上,所述压力反馈部件通过调节所述控制手柄的运动阻力来反馈所述阻力信息。
  22. 根据权利要求21所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括设置在所述控制手柄上的抱紧机构,所述抱紧机构包括第一弹性套、第五驱动电机、齿轮传动系和两个抱紧支臂,所述第一弹性套套设在所述控制手柄上,所述第五驱动电机通过所述齿轮传动系分别与所述两个抱紧支臂相连,用于驱动所述两个抱紧支臂压紧或放松所述第一弹性套。
  23. 根据权利要求21所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括设置在所述控制手柄上的阻力机构,所述阻力机构包括第二弹性套、第六驱动电机和凸轮,所述第二弹性套套设在所述控制手柄上,所述第六驱动电机与所述凸轮相连并驱动所述凸轮压紧或放松所述第二弹性套。
  24. 根据权利要求21所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括设置在所述控 制手柄上的调压机构,所述调压机构包括气囊和气泵,所述气囊设置在所述控制手柄上,所述气泵用于调节所述气囊的充气量以调节所述控制手柄的运动阻力。
  25. 根据权利要求21所述的软内窥镜辅助装置,其特征在于,所述压力反馈部件包括压力提示设备,所述压力提示设备包括显示器、语音播放器和/或指示灯。
  26. 根据权利要求21所述的软内窥镜辅助装置,其特征在于,所述软内窥镜辅助装置还包括机械臂,所述机械臂的末端设置有转接法兰盘,所述移动部件设置在所述转接法兰盘上,所述受力感应部件包括压力传感器,所述压力传感器设置在所述转接法兰盘与所述移动部件之间。
  27. 一种软内窥镜***,其特征在于,所述软内窥镜***包括软内窥镜以及如权利要求1-26中任一项所述的软内窥镜辅助装置。
  28. 一种软内窥镜辅助操作方法,其特征在于,应用于软内窥镜和如权利要求1-19中任一项所述的软内窥镜辅助操作装置;所述方法包括:
    接收控制部件采集的控制手柄的运动信息;
    根据所述运动信息生成控制信号,将所述控制信号发送给移动部件,所述控制信号指示所述移动部件沿镜体的轴向方向控制所述镜体移动或者旋转。
  29. 一种软内窥镜辅助操作方法,其特征在于,应用于软内窥镜和如权利要求20-26中任一项所述的软内窥镜辅助操作装置;所述方法包括:
    接收受力感应部件感应的镜体移动或者旋转所受的阻力信息;
    根据所述阻力信息生成反馈信号,将所述反馈信号发送给压力反馈部件,所述压力反馈部件用于根据所述反馈信号反馈所述阻力信息。
PCT/CN2022/109590 2021-08-02 2022-08-02 一种软内窥镜***、软内窥镜辅助装置和操作方法 WO2023011440A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280052109.2A CN117813036A (zh) 2021-08-02 2022-08-02 一种软内窥镜***、软内窥镜辅助装置和操作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110881646 2021-08-02
CN202110881646.5 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023011440A1 true WO2023011440A1 (zh) 2023-02-09

Family

ID=85155208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109590 WO2023011440A1 (zh) 2021-08-02 2022-08-02 一种软内窥镜***、软内窥镜辅助装置和操作方法

Country Status (2)

Country Link
CN (1) CN117813036A (zh)
WO (1) WO2023011440A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116269780A (zh) * 2023-02-23 2023-06-23 之江实验室 进给机构和手术机器人

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118177982B (zh) * 2024-05-15 2024-07-09 中国人民解放军西部战区总医院 一种应用机械臂的消化内镜机器人与消化内镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102697442A (zh) * 2012-04-24 2012-10-03 王东 基于电控驱动器械的软式内窥镜***
CN202776532U (zh) * 2012-04-24 2013-03-13 王东 一种软式内窥镜手术机器人***
JP2013192623A (ja) * 2012-03-16 2013-09-30 Univ Of Occupational & Environmental Health Japan 内視鏡操作システム
CN104027061A (zh) * 2012-04-24 2014-09-10 王东 基于电控驱动器械的软式内窥镜***
US20140296637A1 (en) * 2013-03-27 2014-10-02 Industry-University Cooperation Foundation Hanyang University Erica Campus Endoscope apparatus
US20160338789A1 (en) * 2014-01-23 2016-11-24 Universite De Strasbourg (Etablissement Public National À Caractère Scientifique, Culturel Et Pro Master Interface Device For A Motorised Endoscopic System And Installation Comprising Such A Device
CN111887994A (zh) * 2020-07-16 2020-11-06 安徽航天生物科技股份有限公司 基于闭环反馈的软性内窥镜手术机器人***及其控制方法
CN213310265U (zh) * 2020-07-17 2021-06-01 安徽航天生物科技股份有限公司 一种基于闭环反馈的软性内窥镜手术机器人模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192623A (ja) * 2012-03-16 2013-09-30 Univ Of Occupational & Environmental Health Japan 内視鏡操作システム
CN102697442A (zh) * 2012-04-24 2012-10-03 王东 基于电控驱动器械的软式内窥镜***
CN202776532U (zh) * 2012-04-24 2013-03-13 王东 一种软式内窥镜手术机器人***
CN104027061A (zh) * 2012-04-24 2014-09-10 王东 基于电控驱动器械的软式内窥镜***
US20140296637A1 (en) * 2013-03-27 2014-10-02 Industry-University Cooperation Foundation Hanyang University Erica Campus Endoscope apparatus
US20160338789A1 (en) * 2014-01-23 2016-11-24 Universite De Strasbourg (Etablissement Public National À Caractère Scientifique, Culturel Et Pro Master Interface Device For A Motorised Endoscopic System And Installation Comprising Such A Device
CN111887994A (zh) * 2020-07-16 2020-11-06 安徽航天生物科技股份有限公司 基于闭环反馈的软性内窥镜手术机器人***及其控制方法
CN213310265U (zh) * 2020-07-17 2021-06-01 安徽航天生物科技股份有限公司 一种基于闭环反馈的软性内窥镜手术机器人模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116269780A (zh) * 2023-02-23 2023-06-23 之江实验室 进给机构和手术机器人
CN116269780B (zh) * 2023-02-23 2023-10-10 之江实验室 进给机构和手术机器人

Also Published As

Publication number Publication date
CN117813036A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2023011440A1 (zh) 一种软内窥镜***、软内窥镜辅助装置和操作方法
CN111084661B (zh) 手术辅助装置、以及记录介质
US10420625B2 (en) Vibration detection module, vibration detection method, and surgical system
KR102306959B1 (ko) 수술 로봇 및 수술 로봇 제어 방법
JP5384869B2 (ja) 内視鏡処置システム
EP2064984B1 (en) Therapeutic device system and manipulator system
JP4781492B2 (ja) 多関節マニピュレータ装置及びそれを有する内視鏡システム
JP5085684B2 (ja) 処置具システム及びマニピュレータシステム
US20050222496A1 (en) Ballon control apparatus
JP6546361B1 (ja) 手術支援装置
CN104394751B (zh) 机械手***
WO2015005072A1 (ja) 手術支援ロボット
JP3628743B2 (ja) 医療用マニピュレータ
JP6246093B2 (ja) 処置具及び処置具システム
JP3679440B2 (ja) 医療用マニピュレータ
US20230126099A1 (en) Endoscope system, controller, and stand
KR20150112286A (ko) 내시경 장치
JP3800223B2 (ja) 内視鏡装置
WO2024046147A1 (zh) 一种外科手术***及力反馈方法
CN210697805U (zh) 用于内镜控制柄的内镜操作器械驱动装置和内镜控制柄
Ruiter et al. Robotic Control of a Traditional Flexible Endoscope
García et al. Robotic Sensorized Gastroendoscopy with Wireless Single-Hand Control
CN117653351A (zh) 一种外科手术***
CN116649876A (zh) 一种软镜机器人的驱动***以及软镜机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052109.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE