WO2023010926A1 - 大电流低压伺服电动机 - Google Patents

大电流低压伺服电动机 Download PDF

Info

Publication number
WO2023010926A1
WO2023010926A1 PCT/CN2022/091742 CN2022091742W WO2023010926A1 WO 2023010926 A1 WO2023010926 A1 WO 2023010926A1 CN 2022091742 W CN2022091742 W CN 2022091742W WO 2023010926 A1 WO2023010926 A1 WO 2023010926A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
magnetic steel
stator
arc surface
coil
Prior art date
Application number
PCT/CN2022/091742
Other languages
English (en)
French (fr)
Inventor
王瑞豪
张恒帅
徐伟
赵逢茂
Original Assignee
济南科亚电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南科亚电子科技有限公司 filed Critical 济南科亚电子科技有限公司
Priority to US18/062,940 priority Critical patent/US20230094808A1/en
Publication of WO2023010926A1 publication Critical patent/WO2023010926A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present application relates to the field of servo motors, in particular to a high-current low-voltage servo motor.
  • Low-voltage servo motors include permanent magnet synchronous motors and excitation motors.
  • Permanent magnet synchronous motors are new types of motors developed in recent years, but the existing permanent magnet synchronous motors are not stable and accurate at low speeds.
  • the main purpose of this application is to provide a high-current low-voltage servo motor, which aims to solve the technical problem of poor stability of the existing motor when running at low speed.
  • the embodiment of the present application proposes a high-current low-voltage servo motor, and the high-current low-voltage servo motor includes:
  • a stator assembly the stator assembly includes a stator core arranged in the installation space, a stator slot for embedding a coil is opened on the inner peripheral surface of the stator core, and a coil winding is embedded in the stator slot, the The coil winding is a three-phase coil winding, and each phase coil winding includes two parallel branches, and each parallel branch includes two coils connected in series, and the two sides of each coil are respectively embedded in adjacent In the two stator slots, each of the stator slots is embedded with two sides, and one of the two sides of each of the coils is selected as an effective side, so as to realize double stacking of the coil windings around;
  • the rotor assembly includes a rotor core, the stator core is sleeved on the outer peripheral surface of the rotor core, the outer peripheral surface of the rotor core is adsorbed with magnetic steel, and the magnetic steel is arc-shaped,
  • the magnetic steel has an inner arc surface and an outer arc surface, the inner arc surface and the outer arc surface are arranged eccentrically, and there are multiple magnet steels, and the multiple magnet steels are distributed in an alternating order of N-S polarity.
  • the arrangement of the effective sides of the coils in the stator slots corresponds to the first phase, the second phase, the second phase, the third phase, and the third phase in sequence. , first phase, first phase, second phase, second phase, third phase, third phase, first phase.
  • the two adjacent coils in the same phase are a parallel branch, and/or, among the coils of the two parallel branches in the same phase, the coils that are close to each other The two coils in the same phase are connected in series.
  • the stator slot has two opposite and spaced first sides, and a second side connecting the two first sides, and the two first sides
  • the side and the second side surround a cavity for embedding the coil, and a notch communicating with the cavity for the coil to be exposed, wherein the first side and the second side There is a smooth transition between them.
  • an extension part is provided at one end of each of the first side faces away from the second side face, and the extension part extends toward the other first side face , the notch is formed between the two extensions, wherein the extensions are arranged obliquely toward the side of the cavity in a direction away from the cavity.
  • the vertical distance between the center of the inner arc surface and the horizontal plane is smaller than the vertical distance between the center of the outer arc surface and the horizontal plane, so as to realize the inner arc The eccentric setting of the surface and the outer arc surface.
  • the rotor assembly further includes a fixing ring, the fixing ring is sleeved on the outside of the rotor core, and the magnetic steel is clamped between the fixing ring and the between the rotor cores.
  • the side of the fixing ring facing the magnetic steel is provided with an elastic part, and the elastic part is in contact with the outer arc surface of the magnetic steel, so that the The magnetic steel has a tendency to move close to the axis of the rotor core.
  • a limiting groove is provided on the outer arc surface of the magnetic steel, and one end of the elastic part is snapped into the limiting groove.
  • the outer peripheral surface of the rotor core is provided with a magnetic isolation slot
  • the magnetic isolation slot has a bottom surface and an opening
  • the inner arc surface of the magnetic steel is connected to the isolation slot.
  • the bottom surfaces of the magnetic grooves are in contact with each other, the outer arc surface of the magnetic steel is exposed in the opening, and the magnetic steel is clamped between the fixed ring and the bottom surface of the magnetic isolation groove.
  • the stator slot is opened on the stator core to install the coil winding, which interacts with the magnetic steel set on the rotor core and passes through the coil winding.
  • the coil winding of each phase includes two parallel branches, and each parallel branch includes two series coils, which can provide a stable and continuous current for the motor to run.
  • the structure of the coil winding is improved, that is, the two sides of each coil are placed in two adjacent stator slots, And select one of them as the effective side, and two sides belonging to different coils are embedded in each stator slot, so as to realize the double-layer stacking of the coil windings.
  • This setting reduces the cogging torque of the motor, and on the other hand On the one hand, the back electromotive force of the motor is properly improved, thereby ensuring the smooth operation of the motor.
  • the eccentric setting of the inner arc surface and the outer arc surface makes the outer arc surface of the magnetic steel closer to the coil winding on the stator core, reducing the distance between the outer arc surface of the magnet steel and the coil winding, and improving the magnetism.
  • the utilization rate of the steel can fully exert the performance of the magnetic steel, thereby improving the working efficiency of the motor.
  • Fig. 1 is a schematic diagram of an explosion structure of an embodiment of a high-current low-voltage servo motor of the present application
  • Fig. 2 is a schematic structural view of the stator assembly in Fig. 1;
  • Fig. 3 is a partial enlarged structural schematic diagram of part A in Fig. 2;
  • Fig. 4 is a schematic diagram 1 of coil winding expansion
  • Fig. 5 is a second schematic diagram of coil winding expansion
  • Fig. 6 is a structural schematic diagram of the rotor assembly in Fig. 1;
  • Fig. 7 is a structural schematic diagram of the magnetic steel part in Fig. 6;
  • Fig. 8 is a structural schematic diagram of the fixed ring part in Fig. 6;
  • FIG. 9 is a schematic structural view of the rotor core in FIG. 6 .
  • first, second, etc. are only for descriptive purposes, and should not be understood as indicating or implying their relative importance or implicitly indicating the number of indicated technical features .
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • connection and “fixation” should be understood in a broad sense.
  • “fixation” can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • a high-current low-voltage servo motor proposed in the embodiment of the present application, the high-current low-voltage servo motor includes:
  • the casing 4 an installation space is formed inside the casing 4;
  • the stator assembly includes a stator core 1 arranged in the installation space, and the inner peripheral surface of the stator core 1 is provided with a stator slot 2 for embedding coils;
  • the coil winding is a three-phase coil winding
  • each phase coil winding includes two parallel branches
  • each parallel branch includes two coils 3
  • the two sides of each coil 3 are respectively embedded in adjacent In the two stator slots 2, two sides are embedded in each stator slot 2, and one of the two sides of each coil 3 is selected as an effective side, so as to realize double-layer stacking of the coil winding;
  • the rotor assembly includes a rotor core 6, the stator core 1 is sleeved on the outer peripheral surface of the rotor core 6, the outer peripheral surface of the rotor core 6 is adsorbed with a magnetic steel 7, the magnetic steel 7 is arc-shaped, and the magnetic steel 7 has The inner arc surface 71 and the outer arc surface 72 are arranged eccentrically with the inner arc surface 71 and the outer arc surface 72, and there are multiple magnet steels 7 arranged in alternating order of N-S polarity.
  • stator slots 2 are provided on the stator core 1 to install the coil windings, interact with the ten magnetic poles set on the rotor, and feed the sine wave current into the coil windings. At this time, a rotating magnetic field can be generated to make the rotor rotate continuously.
  • the coil winding of each phase includes two parallel branches, and each parallel branch includes two series coils 3, which can provide a stable and continuous current for the motor to run.
  • the structure of the coil winding is improved, that is, the two sides of each coil 3 are placed in two adjacent stator slots 2, and one of them is selected as the effective side, and two sides belonging to different coils are embedded in each stator slot 2, so as to realize double-layer stacking of the coil windings.
  • Such setting reduces the cogging of the motor.
  • the back electromotive force of the motor is properly increased, thereby ensuring the smooth operation of the motor.
  • the stator assembly of the motor generally includes a stator core 1 and a coil 3, the coil 3 is embedded in the stator slot 2 of the stator core 1, and there are usually multiple sets of coils 3, and multiple sets of coils 3 can be connected in series or in parallel to form coil winding.
  • the coil winding is three-phase, that is, it includes the first phase, the second phase and the third phase coil winding, and each phase coil winding includes two parallel branches, and each parallel branch Consists of two coils 3 connected in series. That is to say, the coil windings of each phase include four coils 3 , which can feed a sine wave current into the coil windings and cooperate with the magnetic poles on the rotor to generate a rotating magnetic field, making the rotor rotate continuously.
  • each phase coil winding includes four coils 3, and each coil 3 is placed in two different stator slots 2, and the number of stator slots 2 is twelve. It can be understood that all The coils 3 are arranged in double layers in the stator slot 2. In addition, only one of the two sides of the same coil 3 can be selected as an effective side. For example, referring to Fig. 3 and Fig.
  • the two sides of the first coil 3 are in the first stator slot 2 and the twelfth stator slot 2, and the two sides of the second coil 3 are in the first In the stator slot 2 and the second stator slot 2, the two sides of the third coil 3 are in the second stator slot 2 and the third stator slot 2, then, the effective side in the first stator slot 2 can be It is the first coil 3, correspondingly, the effective side in the second stator slot 2 is the second coil 3, the effective side in the third stator slot 2 is the third coil 3, and the twelfth stator slot
  • the effective side in 2 is not the first coil 3; or, the effective side in the first stator slot 2 can be the second coil 3, correspondingly, the effective side in the second stator slot 2 is the third coil 3 , the effective side in the third stator slot 2 is not the third coil 3, and the effective side in the twelfth stator slot 2 is the first coil 3...and so on, and will not be described in detail.
  • the eccentric setting of the outer arc surface 72 and the inner arc surface 71 of the magnet steel 7 makes the outer arc surface 72 of the magnet steel 7 closer to the coil winding on the stator, reducing the distance between the outer arc surface 72 of the magnet steel 7 and the coil winding.
  • the distance between them can increase the utilization rate of the magnetic steel 7, give full play to the performance of the magnetic steel 7, and then improve the working efficiency of the motor.
  • the rotor core 6 is usually formed by lamination of silicon steel sheets, and the magnetic steel 7 is arranged on the outer peripheral surface of the rotor core 6. Since the magnetic steel 7 is magnetic, it can be directly adsorbed on the outer peripheral surface of the rotor core 6. At the same time, The magnetic steel 7 can protrude from the outer peripheral surface of the rotor iron core 6, or can be embedded in the rotor iron core 6, that is to say, the magnetic steel 7 can be directly adsorbed on the outer peripheral surface of the rotor iron core 6, or can be placed on the outer peripheral surface of the rotor iron core 6.
  • the outer peripheral surface of 6 is first provided with a hollow structure, and then the magnetic steel 7 is accommodated in the hollow structure, and the hollow structure can be a square groove, a circular groove or other irregularly shaped grooves.
  • the magnetic steel 7 is directly attached to the outer peripheral surface of the rotor iron core 6, since the rotor iron core 6 and the magnetic steel 7 are mainly adsorbed together through magnetic fixation, when an external force is applied, due to the If the fixation is not firm, the position of the magnetic steel 7 may be easily shifted, thereby adversely affecting the rotating magnetic field, which in turn is not conducive to the normal operation of the servo motor.
  • the magnetic steel 7 is housed in the outer peripheral surface of the rotor core 6 .
  • accommodating the magnetic steel 7 in the hollow structure increases the distance between the magnetic steel 7 and the coil winding of the stator, and reduces the utilization rate of the magnetic steel 7 .
  • the vertical distance between the circle center of the inner arc surface 71 of the magnetic steel 7 and the horizontal plane is set to be smaller than the vertical distance between the circle center of the outer arc surface 72 and the horizontal plane, so that the inner arc surface 71 The center of circle is lower than the center of circle of the outer arc surface 72.
  • the outer arc surface 72 can be closer to the coil winding on the stator, which reduces the distance between the outer arc surface 72 of the magnetic steel 7 and the coil winding, and can improve The utilization rate of the magnetic steel 7 can give full play to the performance of the magnetic steel 7, thereby improving the working efficiency of the motor.
  • the distance between the center of the inner arc surface 71 and the center of the outer arc surface 72 can be selected according to specific usage conditions, and is not limited here.
  • the outer arc surface 72 protrudes slightly from the outer peripheral surface of the rotor core 6. It can be understood that the outer arc surface 72 is exposed in the hollowed out structure.
  • the movement of the magnetic steel 7 can be restricted by the hollowed out structure.
  • the outer arc surface 72 can be closer to the coil winding, and the utilization rate of the magnetic steel 7 can be improved.
  • the magnetization method of the magnetic steel 7 is parallel magnetization, which is simple and convenient to use.
  • the arrangement of the effective sides of the coil 3 in the stator slot 2 corresponds to the first phase, the second phase, the second phase, the third phase, the third phase, the first phase, the First phase, second phase, second phase, third phase, third phase, first phase.
  • the twelve coils 3 in the coil winding have and have only one side as an effective side, and all the coils 3 constitute the entire three-phase coil winding, and each effective side corresponds to a coil 3
  • the phases they belong to are the first phase, the second phase, the second phase, the third phase, the third phase, the first phase, the first phase, the second phase, the second phase, the third phase, the third phase, the third phase, the third phase
  • One phase, correspondingly, the phase corresponding to the inactive side is the second phase, the second phase, the third phase, the third phase, the first phase, the first phase, the second phase, the second phase, the third phase phase, third phase, first phase, first phase.
  • Such setting is beneficial to form a stable rotating magnetic field, ensure the effective rotation of the rotor, and improve the stability of the motor operation.
  • two adjacent coils 3 of the same phase form a parallel branch, and among the coils 3 of the two parallel branches of the same phase, two coils 3 of the same phase that are close to each other are connected in series.
  • the three-phase coil winding includes twelve coils 3 altogether, and each phase has four coils 3, and the four coils 3 in each phase are divided into two parallel branches, and each A parallel branch includes two coils 3.
  • two adjacent coils 3 in the same phase are a parallel branch.
  • two coils 3 of the parallel branch of the same phase are connected in series.
  • the phases corresponding to the effective sides in the first to twelfth stator slots 2 are the first phase, the second phase, the second phase, the third phase, the third phase, the first phase, and the first phase , second phase, second phase, third phase, third phase, first phase, then the coils 3 in the first stator slot 2 and the twelfth stator slot 2 are connected in parallel, and the sixth stator slot 2
  • the coil 3 in the seventh stator slot 2 is connected in parallel, while the coil 3 in the first stator slot 2 and the sixth stator slot 2 are connected in series, the seventh stator slot 2 and the twelfth stator slot
  • the coils 3 in 2 are connected in series; the coils 3 in the second stator slot 2 and the third stator slot 2 are connected in parallel, and the coils 3 in the eighth stator slot 2 and the ninth stator slot 2 are connected in parallel , while the coil 3 in the second stator slot 2 and the ninth stator slot 2 is connected in series, the coil 3 in the third stator slot 2 and the
  • the stator slot 2 has two opposite and spaced apart first sides 21 , and a second side 22 connecting the two first sides 21 , the two first sides 21 and the second side 22 enclose a cavity 23 for embedding the coil 3, and a notch 24 communicating with the cavity 23 for the coil 3 to be exposed, wherein the first side 21 and the second side 22 are smooth transition.
  • the coil 3 when the coil 3 is embedded, the coil 3 can be extended from the notch 24 into the cavity 23 to facilitate disassembly and assembly of the coil 3 .
  • the smooth curved surface between the first side 21 and the second side 22 can avoid damage to the coil 3 and ensure the stability of the rotating magnetic field.
  • the smooth surface is an arc surface.
  • the notch 24 and the second side 22 are located at opposite ends of the first side 21, that is, the two opposite ends of the two first sides 21 are provided with the second side 22, and in addition Notches 24 are formed at the two opposite ends.
  • an extension 25 is provided at one end of each first side 21 away from the second side 22 , and the extension 25 extends toward the other first side 21 .
  • a notch 24 is formed between the two extensions 25 , wherein the extensions 25 are arranged obliquely toward the side of the cavity 23 and away from the cavity 23 .
  • the extension part 25 can provide support for the coil 3 and prevent the coil 25 from detaching from the cavity 23 .
  • the extension part 25 is arranged obliquely away from the cavity 23 , which can reduce the distance between the coil 3 and the magnetic poles on the rotor, and facilitates the electromagnetic interaction between the magnetic poles and the coil 3 .
  • the side of the extension 25 facing the cavity 23 is inclined away from the cavity 23. It can be understood that the distance from the end of the extension 25 close to the notch 24 to the second side 22 is greater than the distance from the end of the extension 25 away from the notch 24 to the second side 22. The distance from the second side 22.
  • stator core 1 and/or the rotor core 6 are formed by stamping, lamination and welding of silicon steel sheets.
  • the alternating current in the coil can generate alternating magnetic flux, and this changing magnetic flux will generate an induced current in the stator core 1, and the induced current is perpendicular to the direction of the magnetic flux. Circulating in the plane, it is called eddy current.
  • the eddy current loss will cause the stator core 1 to heat up.
  • the stator core 1 is made of silicon steel sheets insulated from each other, so that the eddy current passes through a small section in the narrow and long circuit to increase the eddy current path.
  • the silicon in the silicon steel increases the resistivity of the material and also reduces the eddy current.
  • the rotor core 6 is laminated and formed of silicon steel sheets, and the multi-layer silicon steel sheets are insulated from each other, which can reduce the flow area, eddy current loss and hysteresis loss, and can also reduce the heat generation of the rotor core 6 .
  • a positioning slot 5 is opened on the outer peripheral surface of the stator core 1 , and the positioning slot 5 is located between two adjacent stator slots 2 .
  • the stator can be positioned conveniently through the positioning slot 5 provided, and the positioning slot 5 is located between two adjacent stator slots 2, that is, on the teeth, which can ensure that the stator core 1 strength.
  • the positioning slot 5 can be a square slot and can extend along the axial direction of the stator core 1 .
  • a plurality of positioning slots 5 can also be provided.
  • one positioning slot 5 is provided between two adjacent stator slots 2 .
  • the rotor assembly further includes a fixing ring 8 , the fixing ring 8 is sleeved on the outside of the rotor core 6 , and the magnetic steel 7 is clamped between the fixing ring 8 and the rotor core 6 between.
  • a fixing ring 8 is provided.
  • the fixed ring 8 and the rotor core 6 clamp the magnetic steel 7, so that the magnetic steel 7 is fixed between the fixed ring 8 and the rotor core 6, so as to ensure that the rotating magnetic field can drive the rotor core 6 to rotate.
  • the fixing ring 8 can include a first sub-ring and a second sub-ring that are movably connected, and the two ends of the first sub-ring and the second sub-ring can be clamped and bolted. connect.
  • one end of the first sub-ring and the second sub-ring may be connected by rotation, while the other end may be connected by clamping or bolting.
  • Such setting can facilitate the disassembly and assembly of the fixing ring 8 and improve the convenience of use.
  • the material of the fixing ring 8 is a non-magnetic material.
  • the material of the fixed ring 8 is a non-magnetic material, which can avoid adverse effects on the magnetic steel 7 attracted by the rotating magnetic field, so that the rotating magnetic field can effectively drive the magnetic steel 7 to rotate.
  • metals and corresponding alloys other than iron-cobalt-nickel and its alloys can be used as the non-magnetic material, such as stainless steel and copper.
  • the side of the fixing ring 8 facing the magnetic steel 7 is provided with an elastic portion 9 , and the elastic portion 9 abuts against the outer arc surface 72 of the magnetic steel 7 so that the magnetic steel 7 has a tendency to move closer to the axis of the rotor core 6 .
  • an elastic part 9 is provided.
  • One end of the elastic part 9 can be connected to the fixed ring 8, and the other end Extending towards the direction close to the rotor core 6, when the fixed ring 8 is sleeved on the outside of the magnetic steel 7, the elastic part 9 is compressed and deformed, thereby generating elastic force, so that the end of the elastic part 9 close to the magnetic steel 7 is firmly against the
  • the outer arc surface 72 of the magnetic steel 7 cooperates with the rotor iron core 6 to clamp the magnetic steel 7 to improve the fixing reliability of the magnetic steel 7 .
  • the elastic part 9 may be any one of a spring and an elastic sheet.
  • a pressing part can also be provided at the end of the elastic part 9 away from the fixed ring 8.
  • the pressing part is made of flexible material, such as any one of silica gel and rubber.
  • the pressing part is in direct contact with the magnetic steel 7 to prevent the elastic part 9 of relatively hard material from scratching the outer arc surface 72 of the magnetic steel 7 .
  • the pressing part is hemispherical.
  • the outer arc surface 72 of the magnetic steel 7 is provided with a limiting groove 73 , and one end of the elastic part 9 is snapped into the limiting groove 73 .
  • the end of the elastic portion 9 away from the fixed ring 8 can be snapped into the limiting groove 73 through the provided limiting groove 73, and the inner wall of the limiting groove 73 cooperates with the elastic portion 9, which can The lateral and radial movement of the magnetic steel 7 is restricted, and the firmness of the magnetic steel 7 is further improved.
  • the inner surface of the limiting groove 73 is adapted to the outer surface of the end of the elastic portion 9 away from the fixed ring 8, so that the limiting groove 73 is in close contact with the elastic portion 9, and better limits the lateral and horizontal directions of the magnetic steel 7. radial movement. If a pressing portion is provided at the end of the elastic portion 9 away from the fixing ring 8 , the inner surface of the limiting groove 73 fits with the outer surface of the pressing portion.
  • a guide groove communicating with the limit groove 73 can be provided on the outer arc surface of the magnetic steel 7, and the guide groove extends along the axial direction of the rotor core 6.
  • the elastic part 9 may slide along the guide groove until the elastic part 9 snaps into the limiting groove 73 .
  • the depth of the guide groove is smaller than the depth of the limiting groove 73, so as to prevent the elastic part 9 from slipping out of the limiting groove 73 when the magnetic steel 7 is stressed, and the magnetic steel 7 can be better fixed.
  • the outer peripheral surface of the rotor core 6 is provided with a magnetic isolation slot 61
  • the magnetic isolation slot 61 has a bottom surface and an opening
  • the inner arc surface 71 of the magnetic steel 7 is connected to the magnetic isolation slot.
  • the bottom surfaces of 61 are in contact with each other, the outer arc surface 72 of the magnetic steel 7 is exposed in the opening, and the magnetic steel 7 is clamped between the fixed ring 8 and the bottom surface of the magnetic isolation groove 61 .
  • the magnetic isolation groove 61 provided can be used to install the magnetic steel 7, and the magnetic steel 7 is magnetically adsorbed on the bottom surface of the magnetic isolation groove 61, that is, the inner arc surface 71 and the magnetic isolation groove 61 The bottom surface of the suction connection.
  • the bottom surface of the magnetic isolation groove 61 is adapted to the inner arc surface 71 .
  • a notch communicating with the interior of the magnetic isolation groove 61 may also be provided, and the magnetic steel 7 is slid into the interior of the magnetic isolation groove 61 through the notch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请公开一种大电流低压伺服电动机,包括机壳,机壳的内部形成一安装空间;定子组件,定子组件包括设于安装空间内的定子铁芯,定子铁芯的内周面开设有嵌放线圈的定子槽,定子槽内嵌设有线圈绕组,线圈绕组为三相线圈绕组;转子组件,转子组件包括转子铁芯,定子铁芯套设在转子铁芯的外周面,转子铁芯的外周面吸附有磁钢,磁钢为弧形,磁钢具有内弧面和外弧面,内弧面与外弧面偏心设置,磁钢设置有多个,多个磁钢按照N-S极***替顺序分布。

Description

大电流低压伺服电动机
本申请要求于2021年8月5号申请的、申请号为202110899177.X的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及伺服电动机领域,尤其涉及一种大电流低压伺服电动机。
背景技术
随着信息技术的飞速发展,自动化领域需要更加方便快捷的传动方式,而采用蓄电池供电的传动***可以大大提高传动***的灵活性和适应能力,因此,低压伺服电机的需求接踵而来。
低压伺服电机包括永磁同步电机和励磁电机,永磁同步电机是近年来发展的新型电机,但是现有的永磁同步电机在低速运转时的平稳性和精度欠佳。
技术问题
本申请的主要目的是提供一种大电流低压伺服电动机,旨在解决现有的电机在低速运转时平稳性欠佳的技术问题。
技术解决方案
为实现上述目的,本申请实施例提出一种大电流低压伺服电动机,所述大电流低压伺服电动机包括:
机壳,所述机壳的内部形成一安装空间;
定子组件,所述定子组件包括设于所述安装空间内的定子铁芯,所述定子铁芯的内周面开设有嵌放线圈的定子槽,所述定子槽内嵌设有线圈绕组,所述线圈绕组为三相线圈绕组,每一相线圈绕组包括两个并联的支路,每一个并联的支路包括串联的两个线圈,每一个所述线圈的两个边分别嵌设在相邻的两个所述定子槽内,每一个所述定子槽内均嵌设有两个边,且每一个所述线圈的两个边中择一作为有效边,以实现所述线圈绕组的双层叠绕;
转子组件,所述转子组件包括转子铁芯,所述定子铁芯套设在所述转子铁芯的外周面,所述转子铁芯的外周面吸附有磁钢,所述磁钢为弧形,所述磁钢具有内弧面和外弧面,所述内弧面与所述外弧面偏心设置,所述磁钢设置有多个,多个所述磁钢按照N-S极***替顺序分布。
在一实施方式中,在本申请一实施例中,所述线圈的有效边在所述定子槽中的排列,依次对应第一相、第二相、第二相、第三相、第三相、第一相、第一相、第二相、第二相、第三相、第三相、第一相。
在一实施方式中,在本申请一实施例中,相邻的两个同相的所述线圈为一个并联支路,和/或,两个同相的并联支路的所述线圈中,彼此靠近的两个同相的所述线圈为串联。
在一实施方式中,在本申请一实施例中,所述定子槽具有两个相对且间隔设置的第一侧面,以及连接两个所述第一侧面的第二侧面,两个所述第一侧面和所述第二侧面围成一个供嵌设所述线圈的腔体,以及与所述腔体连通的供所述线圈显露的槽口,其中,所述第一侧面和所述第二侧面之间为圆滑过渡。
在一实施方式中,在本申请一实施例中,每一个所述第一侧面远离所述第二侧面的一端设置有延伸部,所述延伸部朝靠近另一个所述第一侧面的方向延伸,两个所述延伸部之间形成所述槽口,其中,所述延伸部朝向所述腔体的侧面向远离所述腔体的方向倾斜设置。
在一实施方式中,在本申请一实施例中,所述内弧面的圆心与水平面之间的垂直距离小于所述外弧面的圆心与水平面之间的垂直距离,以实现所述内弧面与所述外弧面的偏心设置。
在一实施方式中,在本申请一实施例中,所述转子组件还包括固定环,所述固定环套设于所述转子铁芯的外部,所述磁钢夹紧于所述固定环和转子铁芯之间。
在一实施方式中,在本申请一实施例中,所述固定环朝向所述磁钢的一侧设置有弹性部,所述弹性部与所述磁钢的外弧面抵接,以使所述磁钢具有向靠近所述转子铁芯的轴线方向运动的趋势。
在一实施方式中,在本申请一实施例中,所述磁钢的外弧面开设有限位槽,所述弹性部的一端卡入所述限位槽内。
在一实施方式中,在本申请一实施例中,所述转子铁芯的外周面开设有隔磁槽,所述隔磁槽具有底面和开口,所述磁钢的内弧面与所述隔磁槽的底面相贴,所述磁钢的外弧面显露于所述开口,所述磁钢夹紧于所述固定环和所述隔磁槽的底面之间。
有益效果
本申请相对于现有技术,本申请提出的技术方案中,通过在定子铁芯上开设定子槽,用来安装线圈绕组,与转子铁芯上设置的磁钢作用,在线圈绕组通入正弦波电流的时候,可以产生旋转磁场,使得转子组件不停的转动。另外,每一相的线圈绕组都包括两个并联的支路,而每一个并联的支路都包括两个串联的线圈,可以为电机运转提供稳定持续的电流。而且,为了适应电机在运行时低电压的需求,在不改变电机额定功率的情况下,对线圈绕组的结构进行改进,即每一个线圈的两个边置于相邻的两个定子槽中,且选择其中一个作为有效边,而每一个定子槽中嵌入有属于不同线圈的两个边,从而实现线圈绕组的双层叠绕,如此设置,一方面降低了电机的齿槽作转矩,另一方面使得电机反电势得到适当的提高,进而保证电机的平稳运行。同时,内弧面与外弧面的偏心设置,使得磁钢的外弧面可以更加靠近定子铁芯上的线圈绕组,减少了磁钢的外弧面与线圈绕组之间的距离,能够提高磁钢的使用率,充分发挥磁钢性能,进而提高电机工作效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请大电流低压伺服电动机实施例的***结构示意图;
图2为图1中定子组件的结构示意图;
图3为图2中A部分的局部放大结构示意图;
图4为线圈绕组的绕线展开示意图一;
图5为线圈绕组的绕线展开示意图二;
图6为图1中转子组件的结构示意图;
图7为图6中磁钢部分的结构示意图;
图8为图6中固定环部分的结构示意图;
图9为图6中转子铁芯部分的结构示意图。
附图标号说明:
标号 名称 标号 名称
1 定子铁芯 2 定子槽
21 第一侧面 22 第二侧面
23 腔体 24 槽口
25 延伸部 3 线圈
4 机壳 5 定位槽
6 转子铁芯 7 磁钢
71 内弧面 72 外弧面
73 限位槽 61 隔磁槽
8 固定环 9 弹性部
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请实施例中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请实施例要求的保护范围之内。
如图1、图2、图5-图7所示,本申请实施例提出的一种大电流低压伺服电动机,所述大电流低压伺服电动机包括:
机壳4,机壳4的内部形成一安装空间;
定子组件,定子组件包括设于安装空间内的定子铁芯1,定子铁芯1的内周面开设有嵌放线圈的定子槽2;
线圈绕组,线圈绕组为三相线圈绕组,每一相线圈绕组包括两个并联的支路,每一个并联的支路包括两个线圈3,每一个线圈3的两个边分别嵌设在相邻的两个定子槽2内,每一个定子槽2内均嵌设有两个边,且每一个线圈3的两个边中择一作为有效边,以实现线圈绕组的双层叠绕;
转子组件,转子组件包括转子铁芯6,定子铁芯1套设在转子铁芯6的外周面,转子铁芯6的外周面吸附有磁钢7,磁钢7为弧形,磁钢7具有内弧面71和外弧面72,内弧面71与外弧面72偏心设置,磁钢7设置有多个,多个磁钢7按照N-S极***替顺序分布。
在该实施例采用的技术方案中,通过在定子铁芯1上开设十二个定子槽2,用来安装线圈绕组,与转子上设置的十个磁极作用,在线圈绕组通入正弦波电流的时候,可以产生旋转磁场,使得转子不停的转动。另外,每一相的线圈绕组都包括两个并联的支路,而每一个并联的支路都包括两个串联的线圈3,可以为电机运转提供稳定持续的电流。而且,为了适应电机在运行时低电压的需求,在不改变电机额定功率的情况下,对线圈绕组的结构进行了改进,即每一个线圈3的两个边置于相邻的两个定子槽2中,且选择其中一个作为有效边,而每一个定子槽2中嵌入有属于不同线圈的两个边,从而实现线圈绕组的双层叠绕,如此设置,一方面降低了电机的齿槽作转矩,另一方面使得电机反电势得到适当的提高,进而保证电机的平稳运行。
具体的,电动机的定子组件一般包括定子铁芯1和线圈3,线圈3嵌设在定子铁芯1的定子槽2中,线圈3通常设置有多组,多组线圈3可以串联、并联而形成线圈绕组。在本实施例中,线圈绕组为三相,即包括第一相、第二相和第三相线圈绕组,而每一相线圈绕组都包括两个并联的支路,而每一个并联的支路包括两个串联的线圈3。也就是说,每一相线圈绕组都包括四个线圈3,可以为线圈绕组通入正弦波电流,与转子上的磁极配合作用,从而产生旋转磁场,使得转子不停的旋转。
另外,为了适应电机在运行时低电压的需求,在不改变电机额定功率的情况下,对线圈绕组的结构进行了改进。具体的,上文提到每一相线圈绕组都包括四个线圈3,每一个线圈3都置于两个不同的定子槽2中,而定子槽2是十二个,可以理解的是,所有的线圈3在定子槽2中是呈双层排列的,另外,同一个线圈3的两个边,只能选择一个作为有效边。举例来说,参照图3、图4,第一个线圈3的两个边在第一个定子槽2和第十二个定子槽2中,第二个线圈3的两个边在第一个定子槽2和第二个定子槽2中,第三个线圈3的两个边在第二个定子槽2和第三个定子槽2中,那么,第一个定子槽2中的有效边可以是第一个线圈3,对应的,第二个定子槽2中的有效边是第二个线圈3,第三个定子槽2中的有效边是第三个线圈3,第十二个定子槽2中有效边不是第一个线圈3;或者,第一个定子槽2中的有效边可以是第二个线圈3,对应的,第二个定子槽2中的有效边是第三个线圈3,第三个定子槽2中的有效边不是第三个线圈3,第十二个定子槽2中的有效边是第一个线圈3……依次类推,不再详述。如此,实现了线圈绕组的双层叠绕,一方面可以降低电机的齿槽作转矩,另一方面可提高电机反电势,进而保证电机的平稳运行。
同时,磁钢7的外弧面72与内弧面71的偏心设置,使得磁钢7的外弧面72可以更加靠近定子上的线圈绕组,减少了磁钢7的外弧面72与线圈绕组之间的距离,能够提高磁钢7的使用率,充分发挥磁钢7的性能,进而提高电机工作效率。
具体的,转子铁芯6通常是由硅钢片叠压成型,磁钢7设置在转子铁芯6的外周面,由于磁钢7具有磁性,可以直接吸附在转子铁芯6的外周面,同时,磁钢7可以凸出于转子铁芯6的外周面,也可以嵌入在转子铁芯6内,也就是说,可以在转子铁芯6的外周面直接吸附磁钢7,也可以在转子铁芯6的外周面先设置挖空结构,然后将磁钢7收容在挖空结构内,挖空结构可以为方形槽、圆形槽或其他不规则形状的槽体。当磁钢7直接贴附在转子铁芯6的外周面的时候,由于转子铁芯6和磁钢7之间主要是通过磁性固定吸附在一起的,在受到外力的时候,因两者之间固定不牢靠,容易造成磁钢7位置的偏移,从而对旋转磁场产生不利影响,进而不利于伺服电机的正常运行。所以,在一实施例中,优先采用将磁钢7收容在转子铁芯6的外周面的挖空结构内。但是,将磁钢7收容在挖空结构内,增加了磁钢7与定子的线圈绕组之间的距离,降低了磁钢7的使用率。为此,在本实施例中,将磁钢7的内弧面71的圆心与水平面之间的垂直距离设置成小于外弧面72的圆心与水平面之间的垂直距离,使得内弧面71的圆心低于外弧面72的圆心,在相同直径的条件下,外弧面72可以更加靠近定子上的线圈绕组,减少了磁钢7的外弧面72与线圈绕组之间的距离,能够提高磁钢7的使用率,充分发挥磁钢7的性能,进而提高电机工作效率。当然,内弧面71的圆心与外弧面72的圆心之间的距离,可以根据具体使用情况进行选择,在此不做限定。可选的,外弧面72略微凸出于转子铁芯6的外周面,可以理解的是,外弧面72显露于挖空结构,一方面通过挖空结构可以对磁钢7的运动进行限制,另一方面使外弧面72可以更加靠近线圈绕组,提高磁钢7的使用率。另外,磁钢7的充磁方式为平行充磁,充磁简单,方便使用。
进一步的,在本申请一实施例中,线圈3的有效边在定子槽2中的排列,依次对应第一相、第二相、第二相、第三相、第三相、第一相、第一相、第二相、第二相、第三相、第三相、第一相。
在该实施例采用的技术方案中,线圈绕组中的十二个线圈3都有且仅有一个边作为有效边,而所有的线圈3构成整个三相线圈绕组,每一个有效边对应的线圈3所属的相依次是第一相、第二相、第二相、第三相、第三相、第一相、第一相、第二相、第二相、第三相、第三相、第一相,相应的,不起作用的边对应的相依次是第二相、第二相、第三相、第三相、第一相、第一相、第二相、第二相、第三相、第三相、第一相、第一相。如此设置,有利于形成稳定的旋转磁场,保证转子的有效旋转,提高电机运行的稳定性。
进一步的,在本申请一实施例中,相邻的两个同相的线圈3为一个并联支路,两个同相的并联支路的线圈3中,彼此靠近的两个同相的线圈3为串联。
在该实施例采用的技术方案中,三相线圈绕组一共包括十二个线圈3,每一相有四个线圈3,每一相中的四个线圈3分成两个并联的支路,而每一个并联的支路包括两个线圈3,为了方便线圈绕组的绕线,且保证线圈绕组在通电时能够产生稳定的旋转磁场,相邻的两个同相的线圈3为一个并联支路,两个同相的并联支路的线圈3中,彼此靠近的两个同相的线圈3为串联。具体的,如果第一个~第十二个定子槽2中有效边对应的相分别是第一相、第二相、第二相、第三相、第三相、第一相、第一相、第二相、第二相、第三相、第三相、第一相,那么第一个定子槽2和第十二个定子槽2中的线圈3是并联的,第六个定子槽2和第七个定子槽2中的线圈3是并联的,而第一个定子槽2和第六个定子槽2中的线圈3是串联的,第七个定子槽2和第十二个定子槽2中的线圈3是串联的;第二个定子槽2和第三个定子槽2中的线圈3是并联的,第八个定子槽2和第九个定子槽2中的线圈3是并联的,而第二个定子槽2和第九个定子槽2中的线圈3是串联的,第三个定子槽2和第八个定子槽2中的线圈3是串联的……依次类推,不再详述。如此设置,方便线圈绕组的布设,可以提高工作效率,能够形成稳定的旋转磁场,保证电机的平稳运行。
进一步的,参照图3,在本申请一实施例中,定子槽2具有两个相对且间隔设置的第一侧面21,以及连接两个第一侧面21的第二侧面22,两个第一侧面21和第二侧面22围成一个供嵌设线圈3的腔体23,以及与腔体23连通的供线圈3显露的槽口24,其中,第一侧面21和第二侧面22之间为圆滑过渡。
在该实施例采用的技术方案中,在嵌装线圈3的时候,可以将线圈3从槽口24伸入腔体23内,方便线圈3的拆装。另外,第一侧面21和第二侧面22之间的圆滑曲面,可以避免对线圈3造成损伤,保证旋转磁场的稳定性。可选的,圆滑曲面为弧面。在本实施例中,槽口24与第二侧面22位于第一侧面21的相对两端,也就是说,两个第一侧面21的两个相对的端部设置有第二侧面22,而另外两个相对的端部开设有槽口24。
进一步的,参照图3,在本申请一实施例中,每一个第一侧面21远离第二侧面22的一端设置有延伸部25,延伸部25朝靠近另一个第一侧面21的方向延伸,两个延伸部25之间形成槽口24,其中,延伸部25朝向腔体23的侧面向远离腔体23的方向倾斜设置。
在该实施例采用的技术方案中,延伸部25可以对线圈3提供支撑,避免线圈25从腔体23中脱离。另外,延伸部25向远离腔体23的方向倾斜设置,能够降低线圈3与转子上的磁极之间的距离,有利于磁极与线圈3产生电磁作用。延伸部25朝向腔体23的侧面向远离腔体23的方向倾斜设置,可以理解为,延伸部25靠近槽口24的一端至第二侧面22的距离大于延伸部25远离槽口24的一端至第二侧面22的距离。
在一实施例中,相邻的两个定子槽2之间为齿,延伸部25和齿共同围成一用于安装转子的安装腔,其中,延伸部25和齿面向安装腔的侧面为弧形,使得所有的延伸部25和齿围成一个圆形的安装腔,与转子的形状适配,方便转子的安装,也有利于转子上的磁极与线圈3发生电磁作用。
进一步的,在本申请一实施例中,定子铁芯1和/或转子铁芯6为硅钢片冲压叠压焊接成型。
在该实施例采用的技术方案中,线圈中的交变电流可产生交变的磁通,这个变化的磁通在定子铁芯1中会产生感应电流,该感应电流在垂直于磁通方向的平面内环流着,因此称作涡流。涡流损耗会使定子铁芯1发热,为了减小涡流损耗,定子铁芯1用彼此绝缘的硅钢片叠成,使涡流在狭长形的回路中,通过较小的截面,以增大涡流通路上的电阻;同时,硅钢中的硅使材料的电阻率增大,也起到减小涡流的作用。同理,转子铁芯6为硅钢片材质叠压成型,多层硅钢片间彼此绝缘,可以减小过流面积、涡流损耗以及磁滞损耗,还能够降低转子铁芯6发热。
进一步的,参照图3,在本申请一实施例中,定子铁芯1的外周面开设有定位槽5,定位槽5位于两个相邻的定子槽2之间。
在该实施例采用的技术方案中,通过设置的定位槽5可以方便的对定子进行定位,而定位槽5位于两个相邻的定子槽2之间,也就是齿上,可以保证定子铁芯1的强度。定位槽5可以为方形槽,可以沿定子铁芯1的轴向延伸。定位槽5也可以设置为多个,可选的,相邻的两个定子槽2之间均设置一个所述定位槽5。
进一步的,参照图6,在本申请一实施例中,转子组件还包括固定环8,固定环8套设于转子铁芯6的外部,磁钢7夹紧于固定环8和转子铁芯6之间。
在该实施例采用的技术方案中,由于磁钢7的外弧面72是凸出转子铁芯6的外周面,为了提高磁钢7与转子铁芯6固定的牢靠性,设置了固定环8,固定环8和转子铁芯6将磁钢7夹紧,使磁钢7固定在固定环8和转子铁芯6之间,保证旋转磁场能够驱使转子铁芯6旋转。
具体的,固定环8可以设置多个,多个固定环8沿转子铁芯6的轴向间隔设置,如此,能够进一步提高固定环8对磁钢7的固定牢靠性。另外,为了方便固定环8套在磁钢7的外面,固定环8可以包括活动连接的第一子环和第二子环,第一子环和第二子环的两端可以卡接、螺栓连接。当然,第一子环和第二子环的一端可以为转动连接,而另外一端可以采用卡接或螺栓连接的方式。如此设置,可以方便固定环8的拆装,提高使用的便利性。
可选的,固定环8的材质为非导磁材料。固定环8的材质为非导磁材料,可以避免对旋转磁场吸引磁钢7造成不利影响,使旋转磁场可以有效的驱使磁钢7转动。具体的,非导磁材料可以采用铁钴镍及其合金以外的金属和对应合金,比如不锈钢、铜。
进一步的,参照图8,在本申请一实施例中,固定环8朝向磁钢7的一侧设置有弹性部9,弹性部9与磁钢7的外弧面72抵接,以使磁钢7具有向靠近转子铁芯6的轴线方向运动的趋势。
在该实施例采用的技术方案中,为了进一步提高固定环8和转子铁芯6对磁钢7的夹紧效果,设置了弹性部9,弹性部9的一端可以连接在固定环8,另一端向靠近转子铁芯6的方向延伸,当固定环8套在磁钢7的外部时,弹性部9受到压缩而发生形变,从而产生弹力,使弹性部9靠近磁钢7的一端紧紧抵在磁钢7的外弧面72,进而与转子铁芯6配合夹紧磁钢7,提高磁钢7固定的牢靠性。具体的,弹性部9可以为弹簧、弹性片中的任意一种。另外,为了避免弹性部9划伤磁钢7,还可以在弹性部9远离固定环8的一端设置压紧部,压紧部采用柔性材料制成,比如硅胶、橡胶中的任意一种,通过压紧部与磁钢7直接接触,避免较硬材质的弹性部9划伤磁钢7的外弧面72。可选的,压紧部为半球形。
进一步的,参照图7,在本申请一实施例中,磁钢7的外弧面72开设有限位槽73,弹性部9的一端卡入限位槽73内。
在该实施例采用的技术方案中,通过设置的限位槽73,可以将弹性部9远离固定环8的一端卡入限位槽73中,限位槽73的内壁与弹性部9配合,可以限制磁钢7的横向和径向运动,进一步提高磁钢7固定的牢靠性。可选的,限位槽73的内表面与弹性部9远离固定环8的一端的外表面适配,可以使得限位槽73与弹性部9紧密接触,更好的限制磁钢7的横向和径向运动。如果弹性部9远离固定环8的一端设置了压紧部,限位槽73的内表面与压紧部的外表面适配。
另外,为了实现弹性部9方便的卡入限位槽73内,可以在磁钢7的外弧面开设与限位槽73连通的导向槽,导向槽沿转子铁芯6的轴向延伸,在将固定环8套在转子铁芯6的外部时,可以是弹性部9沿着导向槽滑动,直至弹性部9卡入限位槽73内。需要指出的是,导向槽的深度要小于限位槽73的深度,避免磁钢7在受力的时候,使弹性部9从限位槽73中滑出,能够更好的固定磁钢7。
进一步的,参照图9,在本申请一实施例中,转子铁芯6的外周面开设有隔磁槽61,隔磁槽61具有底面和开口,磁钢7的内弧面71与隔磁槽61的底面相贴,磁钢7的外弧面72显露于开口,磁钢7夹紧于固定环8和隔磁槽61的底面之间。
在该实施例采用的技术方案中,通过设置的隔磁槽61,可以用来安装磁钢7,磁钢7通过磁性吸附在隔磁槽61的底面,即内弧面71与隔磁槽61的底面吸附连接。可选的,隔磁槽61的底面与内弧面71适配。另外,为了方便安装磁钢7,还可以设置有与隔磁槽61的内部连通的缺口,通过缺口将磁钢7滑动至隔磁槽61的内部。
以上所述仅为本申请的可选实施例,并非因此限制本申请实施例的专利范围,凡是在本申请实施例的发明构思下,利用本申请实施例说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请实施例的专利保护范围内。

Claims (10)

  1. 一种大电流低压伺服电动机,其中,所述大电流低压伺服电动机包括:
    机壳,所述机壳的内部形成一安装空间;
    定子组件,所述定子组件包括设于所述安装空间内的定子铁芯,所述定子铁芯的内周面开设有嵌放线圈的定子槽,所述定子槽内嵌设有线圈绕组,所述线圈绕组为三相线圈绕组,每一相线圈绕组包括两个并联的支路,每一个并联的支路包括串联的两个线圈,每一个所述线圈的两个边分别嵌设在相邻的两个所述定子槽内,每一个所述定子槽内均嵌设有两个边,且每一个所述线圈的两个边中择一作为有效边,以实现所述线圈绕组的双层叠绕;
    转子组件,所述转子组件包括转子铁芯,所述定子铁芯套设在所述转子铁芯的外周面,所述转子铁芯的外周面吸附有磁钢,所述磁钢为弧形,所述磁钢具有内弧面和外弧面,所述内弧面与所述外弧面偏心设置,所述磁钢设置有多个,多个所述磁钢按照N-S极***替顺序分布。
  2. 如权利要求1所述的大电流低压伺服电动机,其中,所述线圈的有效边在所述定子槽中的排列,依次对应第一相、第二相、第二相、第三相、第三相、第一相、第一相、第二相、第二相、第三相、第三相、第一相。
  3. 如权利要求2所述的大电流低压伺服电动机,其中,相邻的两个同相的所述线圈为一个并联支路,和/或,两个同相的并联支路的所述线圈中,彼此靠近的两个同相的所述线圈为串联。
  4. 如权利要求1-3任一项所述的大电流低压伺服电动机,其中,所述定子槽具有两个相对且间隔设置的第一侧面,以及连接两个所述第一侧面的第二侧面,两个所述第一侧面和所述第二侧面围成一个供嵌设所述线圈的腔体,以及与所述腔体连通的供所述线圈显露的槽口,其中,所述第一侧面和所述第二侧面之间为圆滑过渡。
  5. 如权利要求4所述的大电流低压伺服电动机,其中,每一个所述第一侧面远离所述第二侧面的一端设置有延伸部,所述延伸部朝靠近另一个所述第一侧面的方向延伸,两个所述延伸部之间形成所述槽口,其中,所述延伸部朝向所述腔体的侧面向远离所述腔体的方向倾斜设置。
  6. 如权利要求1所述的大电流低压伺服电动机,其中,所述内弧面的圆心与水平面之间的垂直距离小于所述外弧面的圆心与水平面之间的垂直距离,以实现所述内弧面与所述外弧面的偏心设置。
  7. 如权利要求6所述的大电流低压伺服电动机,其中,所述转子组件还包括固定环,所述固定环套设于所述转子铁芯的外部,所述磁钢夹紧于所述固定环和转子铁芯之间。
  8. 如权利要求7所述的大电流低压伺服电动机,其中,所述固定环朝向所述磁钢的一侧设置有弹性部,所述弹性部与所述磁钢的外弧面抵接,以使所述磁钢具有向靠近所述转子铁芯的轴线方向运动的趋势。
  9. 如权利要求8所述的大电流低压伺服电动机,其中,所述磁钢的外弧面开设有限位槽,所述弹性部的一端卡入所述限位槽内。
  10. 如权利要求9所述的大电流低压伺服电动机,其中,所述转子铁芯的外周面开设有隔磁槽,所述隔磁槽具有底面和开口,所述磁钢的内弧面与所述隔磁槽的底面相贴,所述磁钢的外弧面显露于所述开口,所述磁钢夹紧于所述固定环和所述隔磁槽的底面之间。
PCT/CN2022/091742 2021-08-05 2022-05-09 大电流低压伺服电动机 WO2023010926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/062,940 US20230094808A1 (en) 2021-08-05 2022-12-07 Large-current and low-voltage servo motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110899177.XA CN113644764A (zh) 2021-08-05 2021-08-05 大电流低压伺服电动机
CN202110899177.X 2021-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/062,940 Continuation US20230094808A1 (en) 2021-08-05 2022-12-07 Large-current and low-voltage servo motor

Publications (1)

Publication Number Publication Date
WO2023010926A1 true WO2023010926A1 (zh) 2023-02-09

Family

ID=78419866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091742 WO2023010926A1 (zh) 2021-08-05 2022-05-09 大电流低压伺服电动机

Country Status (3)

Country Link
US (1) US20230094808A1 (zh)
CN (1) CN113644764A (zh)
WO (1) WO2023010926A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644764A (zh) * 2021-08-05 2021-11-12 济南科亚电子科技有限公司 大电流低压伺服电动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037954A (ja) * 2001-07-25 2003-02-07 Asmo Co Ltd ロータ及びブラシレスモータ
CN104810944A (zh) * 2014-01-23 2015-07-29 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN204597648U (zh) * 2015-05-18 2015-08-26 威灵(芜湖)电机制造有限公司 定子冲片、定子铁芯、定子及电机
CN111146890A (zh) * 2019-11-20 2020-05-12 浙江吉利控股集团有限公司 一种三相电机定子及电机
CN212751935U (zh) * 2020-06-09 2021-03-19 广东德昌电机有限公司 一种电机及其转子
CN113644764A (zh) * 2021-08-05 2021-11-12 济南科亚电子科技有限公司 大电流低压伺服电动机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644922B2 (ja) * 2000-09-25 2011-03-09 日産自動車株式会社 同期電動機のロータ構造
CN202513681U (zh) * 2012-04-24 2012-10-31 重庆通赛机电有限公司 电机磁瓦
CN204794437U (zh) * 2015-04-11 2015-11-18 上海德愚新能源科技有限公司 一种单齿并联式绕组电机结构
CN204597671U (zh) * 2015-04-15 2015-08-26 上海上电电机股份有限公司 一种低谐波电机绕组结构
CN208299658U (zh) * 2018-06-19 2018-12-28 安徽美芝精密制造有限公司 永磁同步电机及压缩机
CN108539943B (zh) * 2018-06-19 2024-03-29 广东威灵汽车部件有限公司 永磁同步电机及压缩机
CN212381014U (zh) * 2020-04-20 2021-01-19 精基科技有限公司 用于永磁电机的绕组结构及具有该绕组结构的永磁电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037954A (ja) * 2001-07-25 2003-02-07 Asmo Co Ltd ロータ及びブラシレスモータ
CN104810944A (zh) * 2014-01-23 2015-07-29 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN204597648U (zh) * 2015-05-18 2015-08-26 威灵(芜湖)电机制造有限公司 定子冲片、定子铁芯、定子及电机
CN111146890A (zh) * 2019-11-20 2020-05-12 浙江吉利控股集团有限公司 一种三相电机定子及电机
CN212751935U (zh) * 2020-06-09 2021-03-19 广东德昌电机有限公司 一种电机及其转子
CN113644764A (zh) * 2021-08-05 2021-11-12 济南科亚电子科技有限公司 大电流低压伺服电动机

Also Published As

Publication number Publication date
US20230094808A1 (en) 2023-03-30
CN113644764A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP6939543B2 (ja) 回転電機
US20040251759A1 (en) Radial airgap, transverse flux motor
US20040251761A1 (en) Radial airgap, transverse flux motor
WO2019161624A1 (zh) 一种非对称双三相弧线永磁同步电机
JP2002369473A (ja) 永久磁石を使用したシンクロナスモーター
JP4576873B2 (ja) 永久磁石電動機並びにその駆動方法及び製造方法、圧縮機、送風機及び空気調和機
Tsai et al. Design of a miniature axial-flux spindle motor with rhomboidal PCB winding
CN113489274B (zh) 双边交替极型混合励磁无刷电机
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
WO2023010926A1 (zh) 大电流低压伺服电动机
WO2004091076A1 (fr) Machine a reluctance et distorsion magnetique comportant un circuit magnetique exterieur, pourvue d'aimants permanents
CN211908613U (zh) 基于磁链正弦化永磁体的轴向磁通高速永磁电机
CN111884364B (zh) 定转子总成和轴向磁场电机
CN117081280A (zh) 定子组件及电机
KR20210120081A (ko) 축 방향 자속 전기 기계
CN115411904A (zh) 一种永磁电机
US20220069681A1 (en) Method for winding a heavy gauge toroidal coil of an electric machine
CN106803709B (zh) 永磁同步电机及其装配方法
CN111641307B (zh) 一种高速表面镶嵌式双转子轴向磁通永磁电机
JP4650707B2 (ja) 永久磁石形電動機の固定子及び永久磁石形電動機
JP2008187863A (ja) アキシャルギャップ型回転電機及び圧縮機
CN112953043A (zh) 一种定子组件、转子组件及中心盘轴芯双转子电机
JP2008220128A (ja) アキシャルギャップ型回転電機及び圧縮機
CN110797993A (zh) 一种定子轭分段拼块式电机
CN215528717U (zh) 电动机定子组件及伺服电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE