WO2023000640A1 - 一种复合擦拭无纺布及其制造方法 - Google Patents

一种复合擦拭无纺布及其制造方法 Download PDF

Info

Publication number
WO2023000640A1
WO2023000640A1 PCT/CN2022/074234 CN2022074234W WO2023000640A1 WO 2023000640 A1 WO2023000640 A1 WO 2023000640A1 CN 2022074234 W CN2022074234 W CN 2022074234W WO 2023000640 A1 WO2023000640 A1 WO 2023000640A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
layer
woven fabric
melt
Prior art date
Application number
PCT/CN2022/074234
Other languages
English (en)
French (fr)
Inventor
巫朝胜
李世煌
陈永恭
Original Assignee
厦门延江新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门延江新材料股份有限公司 filed Critical 厦门延江新材料股份有限公司
Publication of WO2023000640A1 publication Critical patent/WO2023000640A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres

Definitions

  • the invention relates to the field of non-woven fabrics, in particular to an anti-lint and anti-agglomeration non-woven fabric for wiping and a manufacturing method thereof for personal care and infant care.
  • Non-woven fabrics for wiping are favored by consumers because they are quite convenient to carry and store, and are easy to use.
  • non-woven fabrics for wiping can be spunlace non-woven fabrics, melt-blown non-woven fabrics or spunbond non-woven fabrics. Compared with traditional cloth wipes, the production method is convenient, the price is low, and it can be used wet or dry.
  • China's invention patent application number is 93118457.6 discloses a wear-resistant fiber non-woven composite structure, which consists of the following two components (1) a melt-blown fiber matrix with a first outer surface, a second outer surface and an inner part, and (2) at least one is incorporated into the matrix of meltblown fibers such that the concentration of meltblown fibers is at least about 60 percent by weight near each outer surface of the nonwoven structure and the concentration of meltblown fibers in the interior is less than about 40 percent; % (weight) of other fibrous materials.
  • the wiping cloth is formed by the melt-blown fibers on the surface and the melt-blown layer is relatively dense, which prevents the inner auxiliary fibers, such as wood pulp short fibers, from falling out during use to a certain extent, but the inner auxiliary fibers There is no mutual adhesion and fixation between them, and the phenomenon of "powder falling and hair loss" will also appear during use, and there may be agglomeration when wiping after absorbing water, which affects the use effect of the wipes and reduces the service life.
  • the inner auxiliary fibers such as wood pulp short fibers
  • the object of the present invention is to provide a composite wiping non-woven fabric which effectively prevents hair loss and agglomeration and has relatively high mechanical strength and its manufacturing method, so as to overcome the defects of existing products and production methods.
  • the solution of the present invention is: a composite wiping nonwoven fabric, which is a layered structure, including an upper surface layer, an intermediate fiber layer and a lower surface layer in turn, and the upper and lower surface layers of the composite wiping nonwoven fabric
  • the lower surface layer is mainly composed of melt-blown fibers
  • the middle fiber layer is mainly composed of viscose fibers, wherein the weight of the middle layer fibers accounts for ⁇ 65% of the total weight of the composite wiping non-woven fabric, and the viscose fibers
  • the fiber length is 35mm-76mm, and there is a fiber interweaving and interpenetrating area between the upper and lower surface layers and the adjacent layers of the middle fiber layer.
  • the melt-blown fibers are polyolefin fibers, polyamide fibers, polyurethane fibers or their mixtures.
  • the melt-blown fibers are single-component fibers, bi-component melt-blown fibers with low-melting resin on the surface or a mixture of the two.
  • the bi-component melt-blown fiber is a bi-component sheath-core type melt-blown fiber, a bi-component segmented pie type melt-blown fiber or a bi-component side-by-side type melt-blown fiber.
  • the fibers in the middle layer are composed of viscose fibers and natural fibers, single-component or bi-component short fibers, or mixed fibers thereof.
  • the weight percentage of viscose fiber in the intermediate fiber layer is ⁇ 15%.
  • the natural fibers are wood pulp fibers, cotton fibers or their mixed fibers.
  • a method for manufacturing a composite wiping non-woven fabric the specific manufacturing steps of which are: (1) Viscose fibers pass through a carding machine to be carded into a fiber web, and the intermediate fiber layer is formed through a nozzle under the action of an auxiliary airflow , wherein the intermediate fiber layer is mainly composed of viscose fibers.
  • thermoplastic resin is heated and melted, and the hot air flow is used to blow the melt stream sprayed from the spinneret into fiber bundles, so as to form a melt-blown fiber web with the air flow, and in the middle fiber
  • the two sides of the layer intersect to form a multi-layer structure fiber network with melt-blown fiber network layers on both sides and the middle fiber layer mainly composed of viscose fibers.
  • the multi-layer fiber web is consolidated together by a heating device to form a composite wiping non-woven fabric in which the upper and lower layers are melt-blown fiber layers, and the middle fiber layer is mainly composed of viscose fibers.
  • the viscose fiber is blended with other fibers to form a mixed fiber, and the mixed fiber passes through the nozzle under the action of the auxiliary airflow to form the intermediate fiber layer.
  • the heating device is a hot air oven, a hot roll or a combination of the two.
  • the fiber length of the viscose fibers is about 35 mm to 76 mm, while the fiber length of wood pulp fibers usually used for wiping non-woven fabrics is about 1 mm to 4 mm. Therefore, it is not easy to drill out from the fiber pores of the upper and lower surface layers when viscose fibers with longer fiber lengths are used as the middle layer fibers, and in the process of manufacturing composite wiping non-woven fabrics, the melt-blown fibers on both sides are in the middle fiber.
  • the two sides of the layer intersect to form an interwoven network structure, that is, there is a fiber interweaving area between the upper and lower surface layers and the adjacent layers of the middle fiber layer, and the viscose fibers of the middle fiber layer are fixed in its network.
  • the shape structure it makes it difficult for the viscose fiber to move, which not only improves the breaking strength of the composite wiping non-woven fabric, but also prevents the phenomenon of "powder falling and hair loss" during use, and can effectively prevent the composite wiping non-woven fabric from being
  • the fibers of the middle layer will aggregate after absorbing water.
  • viscose fiber has good hygroscopicity and good water retention. Due to the small fiber denier, the formed composite wiping non-woven fabric has a soft hand feel and a large specific surface area of fibers, which enhances the cleaning ability of the composite non-woven fabric during the wiping process. .
  • Figure 1 is a schematic diagram of the manufacture of the composite wiping non-woven fabric in Example 1 of the present invention.
  • Fig. 2 is a cross-sectional view of the composite wiping nonwoven fabric in Example 1 of the present invention.
  • Fig. 3 is a schematic diagram of the manufacture of the composite wiping non-woven fabric in Example 2 of the present invention.
  • Fig. 4 is a cross-sectional view of the composite wiping nonwoven fabric in Example 2 of the present invention.
  • the viscose fiber is passed through the carding machine A1, and it is carded into a viscose fiber web 11, and an intermediate fiber layer 13 composed of viscose fiber is formed by the nozzle B1 under the effect of the auxiliary airflow .
  • the thermoplastic polypropylene resin is heated and melted, and the hot air flow is used to blow the melt jets from the spinnerets C1 and C1' into very fine fiber bundles, and form melt-blown fibers with the airflow Web 12 and 12 ', and meet with the two sides of the middle fiber layer 13 that is made up of viscose fiber, form both sides to be melt-blown fiber net layer 12 and 12 ', middle fiber layer 13 is viscose fiber net 11
  • the multi-layer structure fiber web, wherein, the melt-blown fiber is single-component propylene fiber also can be polyolefin fiber, polyamide fiber, polyurethane fiber or their mixture;
  • the weight of viscose fiber accounts for the total weight of composite wiping non-woven fabric The percentage is 75%.
  • the multi-layer fiber web is consolidated together by a pair of embossing rollers D1 to form upper and lower layers of melt-blown fiber layers 12 and 12', and the middle fiber layer 13 is a composite of viscose fiber web 11. Wipe the non-woven fabric 14, wherein there is a fiber interweaving area between the adjacent layers of the melt-blown fiber layers 12, 12' and the middle fiber layer 13.
  • the tensile strength test is carried out by XLW-100N intelligent electronic tensile testing machine, and the test parameters are as follows.
  • MD longitudinal direction sample width: 50mm, clamping distance: 200mm, tensile speed: 100m/min.
  • CD transverse direction sample width: 50mm, clamp distance: 100mm, tensile speed: 100m/min.
  • Standard bedding standard felt with a square meter weight of 750 ⁇ 50g/m 2 , a thickness of 3 ⁇ 0.5mm, and a diameter of 140mm.
  • Sample back material polyurethane foam with a thickness of 3 ⁇ 0.5 mm, a density of 0.04g/cm 3 and a diameter of 38 ⁇ 2mm.
  • Sampler 1 a disc sampler with a sampling diameter of 140mm, used for sampling the lower abrasive material with a size of ⁇ 140mm.
  • Sampler 2 a disc sampler with a sampling diameter of 38mm, used for sampling the upper abrasive material with a size of ⁇ 38mm.
  • Sample pretreatment put the sample at room temperature for 24H.
  • Test procedure 1) Use the sampler 1 to take the lower layer of abrasive with a diameter of 140mm and cover it on the standard pad, then place the sample loading hammer on the lower layer of abrasive, and tighten the ring clamp to fix the abrasive on the sample platform .
  • sampler 2 Use the sampler 2 to take a sample with a diameter of 38mm, and put the sample into the metal chuck of the A-type friction head with a weight of 200g through the sample holder, and a piece of polyurethane foam with a diameter of 38mm is lined between the metal clip and the friction head.
  • Test steps 1. Take about 150g sample, weigh it with a balance as m1, fold the sample into a sample with a length of 200mm, and keep the long side direction even when folding.
  • X the powder loss rate of the sample, %
  • m 1 the mass of the sample before treatment, in grams (g)
  • m 2 the mass of the sample after treatment, in grams (g).
  • Example 1 Using the above test items and methods, respectively detect and evaluate the composite wiping non-woven fabric and conventional wiping non-woven fabric produced in Example 1, that is, the upper and lower surface layers are melt-blown non-woven fabric layers, and the middle layer is wood pulp fiber.
  • the abrasion resistance test In the abrasion resistance test, the mutual friction between the composite wiping non-woven fabric and the friction head can imitate the actual use in the wiping process, so this test detects the abrasion resistance of the melt-blown layer on the surface of the composite wiping non-woven fabric, while the In the powder rate test, through the left and right swing of the composite wiping non-woven fabric, the ratio of the quality difference of the composite wiping non-woven fabric before and after the swing to the mass before the swing is measured to evaluate the fiber in the middle layer falling on the surface through the surface melt-blown layer, that is, the so-called The severity of the phenomenon of "powder loss and hair loss".
  • the fiber length of the viscose fibers is about 35 mm to 76 mm, while the middle fiber layer of the non-woven fabric conventionally used for wipes
  • the fiber length of the layer is wood pulp fiber is about 1mm ⁇ 4mm, so it is not easy to drill out from the fiber pores of the upper and lower surface layers when viscose fibers with longer fiber length are used as the middle layer fibers.
  • the melt-blown fibers on both sides meet at the two sides of the middle fiber layer to form an interwoven network structure, that is, the upper and lower surface layers and the adjacent layers of the middle fiber layer
  • an interwoven network structure that is, the upper and lower surface layers and the adjacent layers of the middle fiber layer
  • the viscose fiber in the middle fiber layer is fixed in its network structure, making it difficult for the viscose fiber to move, which not only improves the breaking strength of the composite wiping non-woven fabric, but also prevents it from being damaged during use.
  • the phenomenon of "dropping powder and hair loss" appears.
  • viscose fiber has good hygroscopicity and good water retention. Due to the small fiber denier, the formed composite wiping non-woven fabric has a soft hand feel and a large specific surface area of fibers, which makes the composite wiping non-woven fabric more effective in cleaning during the wiping process. strengthen.
  • the viscose fiber is passed through the carding machine A2, and it is carded into a viscose fiber web 21, and the wood pulp fiber 22 is passed through the opening roller E2, and it is opened and loosened, and combined with the viscose fiber web.
  • the intermediate fiber layer 24 formed by blending viscose fiber and wood pulp fiber is formed through the nozzle B2 under the action of the auxiliary airflow.
  • thermoplastic polypropylene PP is heated and melted, and the hot air flow is used to blow the melt jets from the spinnerets C2 and C2' into very fine fiber bundles, and the melt-blown process formed by the airflow Fibrous web 23 and 23 ', and intersect with the two sides of the intermediate fiber layer 24 that is formed after the blending of viscose fiber and wood pulp fiber, form both sides to be melt-blown fiber web layer 23 and 23 ', intermediate fiber Layer 24 is a multi-layer structure fiber web formed after the blending of viscose fibers and wood pulp fibers, wherein the melt-blown fibers are polypropylene fibers, and can also be polyamide fibers, polyurethane fibers or their mixtures, and the polypropylene fibers It is a two-component melt-blown fiber with a low melting point resin on the surface, which can be a two-component sheath-core fiber, or a two-component segmental fiber or a two-component
  • Described multi-layer fiber net first passes through the hot air oven F2 so that the surface layer of the bicomponent polypropylene fiber in the upper and lower surface layers can be melted under the action of hot air, and is bonded together with adjacent fibers, and then Then the fiber web is consolidated together by a pair of embossing rollers D2 to form upper and lower layers of melt-blown fiber layers 23 and 23 ', and the middle fiber layer 24 is made of viscose fiber web 21 and wood pulp fiber 22.
  • the composite wiping non-woven fabric 25 formed in the end there is a fiber interweaving area between adjacent layers of the melt-blown fiber layers 23 , 23 ′ and the intermediate fiber layer 24 .
  • the intermediate fiber layer 24 is composed of viscose fiber web 21 and wood pulp fiber 22 after blending, wherein the wood pulp fiber can also be replaced by a single component or double Component short fiber, natural fiber and other fibers, the addition of other fibers endows the composite wiping non-woven fabric with more characteristics, such as the addition of wood pulp fiber, which can further improve the moisture absorption of the composite non-woven fabric due to the large specific surface area of wood pulp fiber Performance, multi-single-component or bi-component short fibers, such as CoPET short fibers, PE/PET or PE/PP short fibers can further improve the wear resistance of composite wiping non-woven fabrics and prevent hair loss, while natural fibers, For example, the addition of cotton fibers can increase the softness and skin-friendliness of the composite wiping non-woven fabric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

一种复合擦拭无纺布(14),其为层状结构,依次包括上表面层、中间纤维层(13)和下表面层,所述复合擦拭无纺布(14)的上、下表面层主要由熔喷纤维组成,中间纤维层(13)主要由粘胶纤维组成,其中,所述中间层纤维的重量占所述复合无纺布总重量的百分比>65%,所述上、下表面层与中间纤维层(13)的相邻层之间具有纤维交织穿插区域。采用具有较长纤维长度的粘胶纤维作为中间层纤维时不易从上、下表面层的纤维孔隙中钻出,从而不但提高了复合擦拭无纺布的断裂强度,也防止在使用过程中出现"掉粉、掉毛"现象。

Description

一种复合擦拭无纺布及其制造方法 技术领域
本发明涉及无纺布领域,尤其涉及应用于个人护理、婴幼儿护理用的一种防掉毛、防团聚的擦拭用无纺布及其制造方法。
背景技术
擦拭用无纺布由于携带及收纳相当的方便,且使用便利,因此受到广大消费者的喜爱。目前,擦拭用无纺布可以是水刺无纺布制品,也可以是熔喷无纺布或纺粘无纺布制品。较传统的布类擦拭巾,其生产方法方便,价格低廉,并且干湿均可使用。中国发明专利申请号为93118457.6公开了一种耐磨纤维无纺织复合结构物,它由下列两组分组成 (1)具有第一外表面、第二外表面和里部的熔喷纤维基体,和(2)至少一种结合进熔喷纤维基体中使熔喷纤维在无纺织结构的每个外表面附近的浓度至少为约60%(重量),且熔喷纤维在里部的浓度小于约40%(重量)的其它纤维材料。该擦拭布是通过表面的熔喷纤维形成的熔喷层较致密从而在一定程度上防止了里部辅助纤维,例如,木浆短纤维,在使用过程中掉落出来,但是里部辅助纤维之间并没有相互粘连固定,在使用时“掉粉、掉毛”现象也会出现,并且在吸水后擦拭时有可能会出现团聚现象,从而影响了擦拭巾的使用效果和减少了使用寿命。
技术问题
本发明的目的在于提供一种有效防止掉毛和团聚,并且力学强度较大的复合擦拭无纺布及其制造方法,克服现有产品及生产方法的缺陷。
技术解决方案
为实现上述目的,本发明的解决方案是:一种复合擦拭无纺布,其为层状结构,依次包括上表面层、中间纤维层和下表面层,所述复合擦拭无纺布的上、下表面层主要由熔喷纤维组成,中间纤维层主要由粘胶纤维组成,其中,所述中间层纤维的重量占所述复合擦拭无纺布总重量的百分比≥65%,所述粘胶纤维的纤维长度35mm~76mm,所述上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域。
所述的熔喷纤维为聚烯烃纤维、聚酰胺纤维、聚氨酯纤维或它们的混合物。
所述的熔喷纤维为单组分纤维、表面含有低熔点树脂的双组分熔喷纤维或两者相混合。
所述的双组份熔喷纤维为双组份皮芯型熔喷纤维、双组份橘瓣型熔喷纤维或双组份并列型熔喷纤维。
所述中间层纤维由粘胶纤维与天然纤维、单组分或双组份短纤维、或它们的混合纤维共混的混合纤维组成。
所述的中间纤维层中粘胶纤维的重量百分比≥15%。
所述的天然纤维为木浆纤维、棉纤维或它们的混合纤维。
一种复合擦拭无纺布的制造方法,其具体制造步骤为:(1)粘胶纤维通过梳理机,将其梳理成纤维网,在辅助气流的作用下通过喷管形成所述的中间纤维层,其中,所述的中间纤维层主要由粘胶纤维组成。
(2)采用熔喷法工艺,将热塑性树脂加热,熔融,利用热气流将从喷丝板中喷出的溶体细流吹散成纤维束,以伴随气流形成熔喷纤维网,并在中间纤维层的两个侧面处相交汇,形成两侧是熔喷纤维网层,中间纤维层主要由粘胶纤维组成的多层结构纤维网。
(3)所述的多层纤维网通过加热装置将纤维网固结在一起,形成上、下两层为熔喷纤维层,中间纤维层主要由粘胶纤维组成的复合擦拭无纺布。
所述步骤(1)中,粘胶纤维与其他纤维共混后形成混合纤维,该混合纤维在辅助气流的作用下通过喷管形成所述的中间纤维层。
所述的加热装置为热风烘箱、热轧辊或两者相结合。
有益效果
采用上述结构及其制造方法,由于中间纤维层由粘胶纤维组成,粘胶纤维的纤维长度约35mm~76mm,而通常用于擦拭无纺布的木浆纤维的纤维长度约为1mm~4mm,因此采用具有较长纤维长度的粘胶纤维作为中间层纤维时不易从上、下表面层的纤维孔隙中钻出,并且在制造复合擦拭无纺布过程中,两侧的熔喷纤维在中间纤维层的两个侧面处相交汇,形成交织的网状结构,即上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域,将中间纤维层的粘胶纤维固定在其网状结构中,使得粘胶纤维难以移动,从而不但提高了复合擦拭无纺布的断裂强度,也防止在使用过程时出现“掉粉、掉毛”现象,并且可以有效防止复合擦拭无纺布在配合液体使用时中间层纤维在吸水后团聚的现象发生。同时,粘胶纤维吸湿性能好、还具有良好的保水性,由于纤维旦数小,形成的复合擦拭无纺布的手感柔软、纤维比表面积大,使得复合无纺布在擦拭过程中清洁能力加强。
附图说明
图1 为本发明实施例1中复合擦拭无纺布的制造示意图。
图2 为本发明实施例1中复合擦拭无纺布的剖面图。
图3 为本发明实施例2中复合擦拭无纺布的制造示意图。
图4 为本发明实施例2中复合擦拭无纺布的剖面图。
本发明的实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
实施例 1
如图1、图2所示,将粘胶纤维通过梳理机A1,将其梳理成粘胶纤维纤维网11,在辅助气流的作用下通过喷管B1形成由粘胶纤维组成的中间纤维层13。
采用熔喷法工艺,将热塑性聚丙烯树脂加热,熔融,利用热气流将从喷丝板C1 和C1’中喷出的熔体细流吹散成很细的纤维束,伴随气流形成熔喷纤维网12和12’,并与由粘胶纤维组成的中间纤维层13的两个侧面处相交汇,形成两侧是熔喷纤维网层12和12’,中间纤维层13是粘胶纤维网11的多层结构纤维网,其中,熔喷纤维为单组分丙烯纤维,也可以为聚烯烃纤维、聚酰胺纤维、聚氨酯纤维或它们的混合物;粘胶纤维的重量占复合擦拭无纺布总重量的百分比为75%。
所述的多层纤维网通过一对压花辊D1将纤维网固结在一起,形成上、下两层为熔喷纤维层12和12’,中间纤维层13是粘胶纤维网11的复合擦拭无纺布14,其中,熔喷纤维层12、12’和中间纤维层13相邻层之间具有纤维交织穿插区域。
力学性能测试。
通过XLW-100N智能电子拉力试验机进行拉伸强度检测,测试参数如下所示。
MD纵向方向:样品宽度:50mm,夹距:200mm,拉伸速度:100m/min。
CD横向方向:样品宽度:50mm, 夹距:100mm,拉伸速度:100m/min。
耐磨性能测试。
参照标准GB/T13775-92《棉、麻、绢丝机织物耐磨试验方法》。
仪器:YG(B)401E型马丁代尔耐磨仪。
试验使用材料。
标准垫料:平方米重量为750±50g/m 2, 厚度为3±0.5 mm,直径为140mm的标准毡。
试样背面材料:厚度为3±0.5 mm,密度为0.04g/cm 3, 直径为38±2mm的聚氨酯泡沫塑料。
取样器1:取样直径140mm的圆盘取样器,用于取样尺寸为φ140mm的下层磨料。
取样器2:取样直径38mm的圆盘取样器,用于取样尺寸为φ38mm的上层磨料。
样品预处理:将样品置于室温下24H。
试验程序:1)用取样器1取直径140mm的下层磨料并将其覆盖在标准垫料上,然后在下层磨料上放置装样压锤,旋紧圆环夹,使磨料固定在试样台上。
2)用取样器2取直径38mm的试样,通过夹样器将试样装入重量200gA型摩擦头金属夹头内,金属夹与摩擦头之间衬垫一块直径38mm的聚氨酯泡沫塑料。
3)置试样夹头于摩擦平台上使芯轴穿过轴承插在试样夹头上,然后加上395g砝码(395g砝码重量+200g金属夹头重量产生的负荷为583.1CN)。
4)将仪器转速设为20转/分钟,转数为15次。设定结束后,点击“启动”按钮,仪器开始运转,仪器设定的测试次数结束后,仪器停止。查看下层磨料的起毛状况,根据起毛情况判定为L(耐磨性好)、M(耐磨性良)、H(耐磨性差)三个等级。
掉粉率测试。
仪器:掉粉率测定仪、天平。
参考测试标准: GB/T 20810-2018卫生纸 附录B掉粉率的测定。
测试步骤:1、取约150g样品,用天平称其重量计为m1,将样品折叠成长度为200mm的试样,折叠时长边方向保持平齐。
2、将取好的试样长边一端固定在试样夹上,固定时应使试样的表面垂直于摆动方向,并确保测定过程中试样不应与箱体内壁接触。
3、启动仪器,让试样在箱体内摆动2min,往返摆动次数:180±10次/min,摆动距离:100±5mm。
4、试验结束后,关闭仪器,取下试样,称量试样质量计为m2。
5、试样的掉粉率按下式计算:X =(m1-m2)÷m1×100。
式中:X—试样的掉粉率,%; m1—试样处理前的质量,单位为克(g); m2—试样处理后的质量,单位为克(g)。
吸液量测试。
取10cm×10cm样品称重,记录重量M1,然后将样品置于水中使其完全浸湿,60s后,取出后悬空晾置120s后称重,记录重量M2,计算吸液量M=M2-M1。
采用上述测试项目和方法,分别检测并评定实施例1中所生产的复合擦拭无纺布和常规擦拭无纺布,即上下两表面层为熔喷无纺布层,中间层为木浆纤维。
Figure 598161dest_path_image001
在耐磨性测试中,复合擦拭无纺布和摩擦头的相互摩擦,可以模仿在擦拭过程中实际使用情况,因此该测试检测了复合擦拭无纺布表面熔喷层的耐磨性,而掉粉率测试中,通过复合擦拭无纺布的左右摆动,测定摆动前后复合擦拭无纺布的质量差异与摆动前质量的比值来评估中间层纤维通过表面熔喷层掉落在表面即所说的“掉粉、掉毛”现象的严重程度。由以上测试数据可以看出,由于实施例1中的复合擦拭无纺布中间纤维层由粘胶纤维组成,粘胶纤维的纤维长度约35mm~76mm,而常规用于擦拭巾的无纺布中间层为木浆纤维的纤维长度约为1mm~4mm,因此采用具有较长纤维长度的粘胶纤维作为中间层纤维时不易从上、下表面层的纤维孔隙中钻出。并且在制造复合擦拭无纺布过程中,两侧的熔喷纤维在中间纤维层的两个侧面处相交汇,形成交织的网状结构,即上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域,将中间纤维层的粘胶纤维被固定在其网状结构中,使得粘胶纤维难以移动,从而不但提高了复合擦拭无纺布的断裂强度,也防止在使用时出现“掉粉、掉毛”的现象。同时,粘胶纤维吸湿性能好、还具有良好的保水性,由于纤维旦数小,形成的复合擦拭无纺布的手感柔软、纤维比表面积大,使得复合擦拭无纺布在擦拭过程中清洁能力加强。
实施例2。
如图3、图4所示,将粘胶纤维通过梳理机A2,将其梳理成粘胶纤维纤维网21,木浆纤维22通过过开松辊E2,将其开松打散,并与粘胶纤维网21相混合后在辅助气流的作用下通过喷管B2形成由粘胶纤维和木浆纤维共混后组成的中间纤维层24。
采用熔喷法工艺,将热塑性聚丙烯PP加热,熔融,利用热气流将从喷丝板C2 和C2’中喷出的熔体细流吹散成很细的纤维束,伴随气流形成的熔喷纤维网23和23’,并与由粘胶纤维和木浆纤维共混后组成的中间纤维层24的两个侧面处相交汇,形成两侧是熔喷纤维网层23和23’,中间纤维层24是粘胶纤维和木浆纤维共混后组成的多层结构纤维网,其中,熔喷纤维为聚丙烯纤维,也可以为聚酰胺纤维、聚氨酯纤维或它们的混合物,并且该聚丙烯纤维为表面含有低熔点树脂的双组分熔喷纤维,可以是双组份皮芯型纤维,也可以是双组份桔瓣型纤维或双组份并列型纤维;中间层纤维的重量占复合擦拭无纺布总重量的百分比为80%;中间纤维层中粘胶纤维的含量为50%,所述中间纤维层中和粘胶纤维共混的纤维除木浆纤维外,还可以是单组分或双组份短纤维、天然纤维等其他纤维。
所述的多层纤维网先通过热风烘箱F2使得上、下表面层中的双组份聚丙烯纤维的表层可以在热风作用下熔融,并与相邻的纤维之间相互粘结在一起,然后再通过一对压花辊D2将纤维网固结在一起,形成上、下两层为熔喷纤维层23和23’,中间纤维层24是由粘胶纤维网21和木浆纤维22共混后组成的复合擦拭无纺布25,其中,熔喷纤维层23、23’和中间纤维层24相邻层之间具有纤维交织穿插区域。
将实施例2中所生产的复合擦拭无纺布和常规用于擦拭巾的无纺布,即上下两表面层为熔喷无纺布层,中间层为木浆纤维,进行检测和评定,检测数据如下。
Figure 60235dest_path_image002
采用上述结构和制造方法生产的复合擦拭无纺布,中间纤维层24是由粘胶纤维网21和木浆纤维22共混后组成的,其中木浆纤维也可以换成是单组分或双组份短纤维、天然纤维等其他纤维,其他纤维的加入赋予复合擦拭无纺布更多的特性,例如木浆纤维的加入,由于木浆纤维的比表面积大可以进一步提高复合无纺布的吸湿性能,多单组分或双组份短纤维,如CoPET短纤维、PE/PET或PE/PP短纤维的加入可以进一步提高复合擦拭无纺布的耐磨性,防止掉毛,而天然纤维,如棉纤维的加入可以增加复合擦拭无纺布的柔软亲肤性。

Claims (10)

  1. 一种复合擦拭无纺布,其为层状结构,依次包括上表面层、中间纤维层和下表面层,其特征在于:所述复合擦拭无纺布的上、下表面层主要由熔喷纤维组成,中间纤维层主要由粘胶纤维组成,其中,所述中间层纤维的重量占所述复合擦拭无纺布总重量的百分比≥65%,所述粘胶纤维的纤维长度35mm~76mm,所述上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域。
  2. 如权利要求1所述的一种复合擦拭无纺布,其特征在于:所述的熔喷纤维为聚烯烃纤维、聚酰胺纤维、聚氨酯纤维或它们的混合物。
  3. 如权利要求1所述的一种复合擦拭无纺布,其特征在于:所述的熔喷纤维为单组分纤维、表面含有低熔点树脂的双组分熔喷纤维或两者相混合。
  4. 如权利要求3所述的一种复合擦拭无纺布,其特征在于:所述的双组份熔喷纤维为双组份皮芯型熔喷纤维、双组份橘瓣型熔喷纤维或双组份并列型熔喷纤维。
  5. 如权利要求1所述的一种复合擦拭无纺布,其特征在于:所述中间层纤维由粘胶纤维与天然纤维、单组分或双组份短纤维或它们的混合纤维共混的混合纤维组成。
  6. 如权利要求5所述的一种复合擦拭无纺布,其特征在于:所述的中间纤维层中粘胶纤维的重量百分比≥15%。
  7. 如权利要求5所述的一种复合擦拭无纺布,其特征在于:所述的天然纤维为木浆纤维、棉纤维或它们的混合纤维。
  8. 一种如权利要求1所述的复合擦拭无纺布的制造方法,其具体制造步骤为:
    (1)粘胶纤维通过梳理机,将其梳理成纤维网,在辅助气流的作用下通过喷管形成所述的中间纤维层,其中,所述的中间纤维层主要由粘胶纤维组成;
    (2)采用熔喷法工艺,将热塑性树脂加热,熔融,利用热气流将从喷丝板中喷出的溶体细流吹散成纤维束,以伴随气流形成熔喷纤维网,并在中间纤维网层的两个侧面处相交汇,形成两侧是熔喷纤维网层,中间纤维层主要由粘胶纤维组成的多层纤维网;
    (3)所述的多层纤维网通过加热装置将纤维网固结在一起,形成上、下两层为熔喷纤维层,中间纤维层主要由粘胶纤维组成的复合擦拭无纺布。
  9. 如权利要求8所述的一种复合无纺布的制造方法,其特征在于:所述步骤(1)中,粘胶纤维与其他纤维共混后形成混合纤维,该混合纤维在辅助气流的作用下通过喷管形成所述的中间纤维层。
  10. 如权利要求8所述的一种复合无纺布的制造方法,其特征在于:所述的加热装置为热风烘箱、热轧辊或两者相结合。
PCT/CN2022/074234 2021-07-19 2022-01-27 一种复合擦拭无纺布及其制造方法 WO2023000640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110813872.XA CN113445206A (zh) 2021-07-19 2021-07-19 一种复合擦拭无纺布及其制造方法
CN202110813872.X 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023000640A1 true WO2023000640A1 (zh) 2023-01-26

Family

ID=77816590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074234 WO2023000640A1 (zh) 2021-07-19 2022-01-27 一种复合擦拭无纺布及其制造方法

Country Status (2)

Country Link
CN (1) CN113445206A (zh)
WO (1) WO2023000640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116949665A (zh) * 2023-06-20 2023-10-27 浙江中超新材料股份有限公司 一种防钻绒絮片的生产工艺及设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445206A (zh) * 2021-07-19 2021-09-28 厦门延江新材料股份有限公司 一种复合擦拭无纺布及其制造方法
CN115139598B (zh) * 2022-06-24 2023-10-24 厦门延江新材料股份有限公司 一种擦拭无纺布及其制造方法
CN114960034B (zh) * 2022-07-29 2022-10-04 山东希瑞新材料有限公司 一种非织造布生产设备及生产工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470698A (zh) * 2002-07-28 2004-01-28 海南欣龙无纺股份有限公司 一种四层结构复合无纺布及其生产方法
US20040255440A1 (en) * 2003-04-11 2004-12-23 Polymer Group, Inc. Three-dimensionally imaged personal wipe
WO2005012620A1 (en) * 2003-08-04 2005-02-10 Fintex & Partners Italia S.P.A. Composite absorbent material articles using said material and method and device for the production thereof
JP2015192777A (ja) * 2014-03-31 2015-11-05 ダイワボウホールディングス株式会社 対物ワイピング用シートおよびその製造方法
CN109594194A (zh) * 2019-01-15 2019-04-09 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN109629118A (zh) * 2019-01-15 2019-04-16 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN109667063A (zh) * 2019-01-15 2019-04-23 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN209702994U (zh) * 2019-01-15 2019-11-29 厦门延江新材料股份有限公司 一种擦拭巾
CN209722451U (zh) * 2019-01-15 2019-12-03 厦门延江新材料股份有限公司 一种擦拭巾
CN209722450U (zh) * 2019-01-15 2019-12-03 厦门延江新材料股份有限公司 一种擦拭巾
CN112779677A (zh) * 2021-01-11 2021-05-11 厦门延江新材料股份有限公司 一种复合擦拭巾及其制造方法
CN113445206A (zh) * 2021-07-19 2021-09-28 厦门延江新材料股份有限公司 一种复合擦拭无纺布及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321115A (ja) * 1992-05-18 1993-12-07 Toray Ind Inc 積層不織布およびその製造方法
CN106362484A (zh) * 2016-11-18 2017-02-01 四川省纺织科学研究院 一种提高聚苯硫醚无纺布复合滤料层间结合强度的方法
CN208917450U (zh) * 2018-09-21 2019-05-31 大连瑞源非织造布有限公司 一种cscm复合非织造布
CN211641245U (zh) * 2019-12-20 2020-10-09 青岛瑞旭晟海绵复合有限公司 一种海绵复合材料结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470698A (zh) * 2002-07-28 2004-01-28 海南欣龙无纺股份有限公司 一种四层结构复合无纺布及其生产方法
US20040255440A1 (en) * 2003-04-11 2004-12-23 Polymer Group, Inc. Three-dimensionally imaged personal wipe
WO2005012620A1 (en) * 2003-08-04 2005-02-10 Fintex & Partners Italia S.P.A. Composite absorbent material articles using said material and method and device for the production thereof
JP2015192777A (ja) * 2014-03-31 2015-11-05 ダイワボウホールディングス株式会社 対物ワイピング用シートおよびその製造方法
CN109594194A (zh) * 2019-01-15 2019-04-09 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN109629118A (zh) * 2019-01-15 2019-04-16 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN109667063A (zh) * 2019-01-15 2019-04-23 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN209702994U (zh) * 2019-01-15 2019-11-29 厦门延江新材料股份有限公司 一种擦拭巾
CN209722451U (zh) * 2019-01-15 2019-12-03 厦门延江新材料股份有限公司 一种擦拭巾
CN209722450U (zh) * 2019-01-15 2019-12-03 厦门延江新材料股份有限公司 一种擦拭巾
CN112779677A (zh) * 2021-01-11 2021-05-11 厦门延江新材料股份有限公司 一种复合擦拭巾及其制造方法
CN113445206A (zh) * 2021-07-19 2021-09-28 厦门延江新材料股份有限公司 一种复合擦拭无纺布及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116949665A (zh) * 2023-06-20 2023-10-27 浙江中超新材料股份有限公司 一种防钻绒絮片的生产工艺及设备

Also Published As

Publication number Publication date
CN113445206A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2023000640A1 (zh) 一种复合擦拭无纺布及其制造方法
JP3459420B2 (ja) スティッチボンドされた吸収性物品
EP2456585B2 (en) High cellulose content, laminiferous nonwoven fabric
WO2023000641A1 (zh) 一种纺粘复合擦拭无纺布及其制造方法
EP3913125B1 (en) Wear-resistant wipe and manufacturing method therefor
JPH0219223B2 (zh)
US20240200245A1 (en) Super-soft composite wiping non-woven fabric and manufacturing method therefor
US5443893A (en) Multilayer nonwoven thermal insulating batts
CN105051280A (zh) 包含卷曲的双组分或多组分纤维的制毡毛层
JP7149959B2 (ja) バイオ系繊維と熱接着されている洗濯可能な植物系基材
CN216972832U (zh) 一种纺粘复合擦拭无纺布
JP2010065376A (ja) 2またはそれ以上のフィラメント断面を有する不織布
US20060252332A9 (en) Nonwoven fabrics with two or more filament cross sections
RU34549U1 (ru) Нетканый объемный теплоизоляционный материал
TW202017545A (zh) 吸收性物品用不織布、其製造方法、吸收性物品用表面片及吸收性物品
CN216891479U (zh) 一种复合擦拭无纺布
JP4958491B2 (ja) 抄紙用フェルト
JPH0327662B2 (zh)
CN218749742U (zh) 一种擦拭无纺布
CN216891478U (zh) 一种超柔复合擦拭无纺布
CN209890845U (zh) 一种纺粘擦拭巾
CN115139598B (zh) 一种擦拭无纺布及其制造方法
JP2004538388A5 (zh)
Sawhney et al. Effect of laundering hydroentangled cotton nonwoven fabrics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE