WO2022267158A1 - 一种基于视觉的喷涂机器人及喷涂方法 - Google Patents

一种基于视觉的喷涂机器人及喷涂方法 Download PDF

Info

Publication number
WO2022267158A1
WO2022267158A1 PCT/CN2021/108329 CN2021108329W WO2022267158A1 WO 2022267158 A1 WO2022267158 A1 WO 2022267158A1 CN 2021108329 W CN2021108329 W CN 2021108329W WO 2022267158 A1 WO2022267158 A1 WO 2022267158A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
spraying
mounting plate
angle
spray
Prior art date
Application number
PCT/CN2021/108329
Other languages
English (en)
French (fr)
Inventor
杨梅
桂舒宁
郭昌磊
Original Assignee
南京涵铭置智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京涵铭置智能科技有限公司 filed Critical 南京涵铭置智能科技有限公司
Publication of WO2022267158A1 publication Critical patent/WO2022267158A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders

Definitions

  • the invention relates to a vision-based spraying robot and a spraying method, belonging to the technical field of automation.
  • the spraying process is improving day by day.
  • various designs for the surface spraying of large workpieces that bend in one direction are often sprayed by manual spraying.
  • Manual spraying makes up for the spraying of curved surfaces to a certain extent, but manual spraying Based on the experience of the implementers, it is impossible to guarantee the uniformity of spraying, and the workload is heavy.
  • the degree of curvature of the curved surface of the workpiece is not quantitative.
  • Optimal spraying is designed to achieve near-uniform spraying to reduce errors, but the cost of this type of process is too high, and there are some requirements for the degree of freedom and spraying area of spraying equipment, which cannot be applied to large workpieces with curved surfaces.
  • the present invention provides a vision-based spraying robot and a spraying party. Divide the curved surface of the workpiece at equal intervals based on the spraying range and the size of the curved surface of the workpiece, measure the curvature of the curved surface within the equal interval, and adjust the vertical distance from the nozzle to the curved surface so that the vertical distance from the nozzle to the curved surface is always close to the same during spraying to reduce Small errors in spraying.
  • a vision-based painting robot including:
  • Two sets of displacement mechanisms are installed up and down through the support frame, and are used to control other components installed on the displacement mechanism to move along the preset direction.
  • the displacement mechanism is also provided with a movement mechanism, and the upper and lower two groups of the movement mechanisms are vertical;
  • the sight distance measuring instrument is arranged on the above moving mechanism, and is used for measuring the vertical distance from the sight distance measuring instrument body to the workpiece surface, and the data is transferred into the computer;
  • the spraying adjustment mechanism is arranged on the moving mechanism below and the movement direction is perpendicular to the movement direction of the sight distance measuring instrument. It is used to control the vertical distance of the spraying equipment relative to the workpiece surface to keep the same for spraying.
  • the spraying adjustment mechanism There are a first lifting mechanism, a second lifting mechanism and an angle deflection mechanism, the first lifting mechanism and the second lifting mechanism adjust the distance from the nozzle of the spraying robot to the workpiece, and the angle deflection mechanism receives the signal from the computer and deflects a predetermined angle .
  • the workpiece is divided into equidistant areas, and the distance depends on the actual spraying width of the nozzle, and the line of sight measuring instrument is used to measure the curve of the workpiece instant noodle of the predetermined route, and the deflection angle is obtained by using the computer to control the second
  • the first lifting mechanism and the second lifting mechanism adjust the distance to the workpiece, and at the same time deflect the nozzle to the calculated angle to achieve accurate spraying of curved surface workpieces and reduce the error during spraying.
  • Two sets of tracks are arranged in parallel on the support frame
  • the horizontal shaft is set on two groups of rails to slide, and the two groups of rails control the movement of the horizontal shaft to avoid deflection.
  • the horizontal shaft is equipped with a clamping mechanism to assist the relative fixing of the horizontal shaft and the rails.
  • the snap-in mechanism slides on the track, and a moving mechanism is installed on the horizontal axis for positioning the moving direction of the moving mechanism;
  • a first roller mounted on one end of the horizontal shaft and sliding in the track, for assisting the horizontal shaft to slide along the vertical direction of its axial direction;
  • a gear located at the other end of the horizontal shaft, used to drag the horizontal shaft to slide along the track;
  • the chain is arranged on the support frame through the chain mounting seat and meshed with the gear, and the chain drives the gear to move;
  • the first motor is transmission-connected to the chain, and the first motor drives the chain to rotate through gear transmission.
  • the two sets of displacement mechanisms mainly realize the stable horizontal and vertical movement of the spray head of the distance measuring instrument and the spraying robot in the horizontal direction.
  • the clamping mechanism includes;
  • the kit is sleeved on the outside of the horizontal shaft;
  • a plurality of second rollers are arranged on the upper and lower ends of the kit and the second rollers slide on the track;
  • the first air cylinder is arranged at the upper end of the sleeve, and the extension control end of the first air cylinder is used to fix the relative position of the sleeve and the track.
  • the horizontal axis is prone to deflection, and the clamping mechanism and the first roller slide on two sets of tracks respectively, which can avoid the deflection when the horizontal axis slides, and achieve predetermined control of the horizontal axis to move at equal intervals.
  • the moving mechanism includes:
  • a screw rod is rotatably connected to the first mounting part, and a power mechanism is connected to one side of the screw rod;
  • a sliding rod arranged on the mounting part and parallel to the axial direction of the screw rod;
  • the sliding seat is set to slide on the screw rod and the sliding rod passes through the sliding seat.
  • the sliding rod corresponds to the screw rod and is used to assist in controlling the sliding of the sliding seat along a straight line.
  • the line-of-sight measurement The instrument is located on the sliding seat.
  • Structures include:
  • the first mounting plate is connected to the sliding seat of another group of the moving mechanism
  • the second air cylinder is arranged below the first mounting plate and connected to the second mounting plate, the second air cylinder controls the distance from the second mounting plate to the first mounting plate, and the second mounting plate is used for Install the second lifting mechanism;
  • the connecting shaft is arranged between the first mounting plate and the second mounting plate, and is used to assist the second air cylinder in controlling the lifting of the second mounting plate.
  • the first lifting mechanism is used to roughly adjust the vertical distance from the spray head to the workpiece.
  • the second lifting mechanism includes:
  • One end of the rotating shaft is rotatably mounted on the support plate and connected to the second motor through gear transmission, the other end of the rotating shaft is screwed to the third mounting plate, and there is a gap between the supporting plate and the third mounting plate
  • There is a first elastic connecting piece parallel to the rotating shaft the first elastic connecting piece is used to assist the third mounting plate to move up and down relative to the support plate to avoid deflection, and the third mounting plate is used to install the angle deflection mechanism .
  • the second lifting mechanism adjusts the vertical distance from the spray head to the workpiece again, further reducing the error during spraying.
  • the angular deflection mechanism includes:
  • a connecting shaft one end of which is installed under the third mounting plate
  • the second mounting part is rotatably connected to the other end of the connecting shaft, and the second mounting part is used for fixedly installing the spray head;
  • the third air cylinder is installed below the third air cylinder and the telescopic end of the third air cylinder is used to push the second mounting part along the
  • the other end of the connecting shaft is deflected by a predetermined angle
  • the second elastic connecting piece is installed under the third air cylinder and is respectively arranged on both sides of the connecting shaft with the third air cylinder, and the second elastic connecting piece is in a compressed state.
  • the angle measuring instrument arranged on the side of the second mounting part is used to measure the deflection angle data, and transmit the data to the computer, and the computer obtains the difference after calculation, and adjusts the angle deflection mechanism. deflection angle.
  • the angle deflection mechanism controls the nozzle to deflect at a predetermined angle.
  • the second elastic connecting part is always used to maintain a thrust on the second mounting part to avoid such error.
  • Step 1 The workpiece is placed directly below the nozzle of the spraying robot.
  • the displacement mechanism above the support frame works.
  • the computer divides the surface of the workpiece into equal parts. Work, drive the sight distance measuring instrument to move horizontally in the horizontal direction, measure the vertical distance from the body of the sight distance measuring instrument to the workpiece surface, and transfer the data to the computer;
  • Step 2 the computer performs curve analysis on the data measured by the sight distance measuring instrument, and calculates the curve of the deflection angle of the curve;
  • Step 3 The spraying adjustment mechanism is installed on the lower displacement mechanism, and the movement direction of the spraying adjustment mechanism is perpendicular to the movement direction of the sight distance measuring instrument.
  • the spraying adjustment mechanism receives the feedback data calculated by the computer, and the first lifting mechanism performs the first lifting. Make the nozzle reach the applicable distance from the surface of the workpiece, the second lifting mechanism fine-tunes the lifting position, the angle deflection mechanism deflects the preset angle, so that the nozzle travels along the preset calculation path, the nozzle is perpendicular to the equal surface of the workpiece and the distance between the nozzle and the surface of the workpiece The distance remains the same.
  • the curved surface of the workpiece is divided into equal intervals based on the spraying range and the size of the curved surface of the workpiece, and the vertical distance to the surface of the workpiece is measured by a sight distance measuring instrument, and the degree of curvature of the curved surface of the workpiece is calculated by the computer; the first lifting mechanism and the second lifting mechanism are adjusted.
  • the deflection angle of the mechanism and the nozzle makes the vertical distance from the nozzle to the curved surface approximately constant during the moving spraying process, reducing the error during spraying; an angle measuring instrument is used to measure the actual deflection angle, and the data of the actual deflection angle is transmitted to Computer, the computer compares the pre-calculated data, thereby monitoring the error of the spraying robot in the spraying process, and timely feedback and adjustment.
  • Fig. 1 is a schematic diagram of the overall structure of the present invention.
  • Fig. 2 is a structural schematic diagram of the displacement mechanism of the present invention.
  • Fig. 3 is a schematic diagram of the moving mechanism of the present invention.
  • Fig. 4 is a structural schematic diagram of the clamping mechanism of the present invention.
  • Fig. 5 is a schematic structural diagram of the spraying adjustment mechanism of the present invention.
  • these sub-units can be defined by the following language: that is, a continuous and non-intersecting line segment extending along a certain fixed direction in the first plane, such as a broken line, an arc, etc., and the line segment is perpendicular to the The direction of the first plane is translated by a predetermined distance, and the surface it passes through or forms is the surface with the same bending direction as described in this application.
  • the cross section of the surface to be processed is a continuous line segment extending toward a certain fixed direction.
  • its section is a straight line segment.
  • two groups of displacement mechanisms 2 are installed up and down through the support frame 1 and relatively rotated by 90 degrees.
  • the upper displacement mechanism 2 controls the distance measuring instrument to move along the horizontal and transverse direction to measure the curvature of the workpiece surface.
  • the displacement mechanism 2 below controls the spraying equipment to move along the horizontal and transverse direction and spray.
  • the displacement mechanism 2 is also provided with a moving mechanism 28.
  • Two groups of moving mechanisms 28 control the distance measuring instrument and the spraying equipment to move along the preset horizontal and longitudinal directions respectively.
  • the sight distance measuring instrument 3 measures the vertical distance to the workpiece surface, and the data is imported into the computer.
  • the spraying adjustment mechanism 4 is arranged on another group of moving mechanisms 28.
  • the spraying adjustment mechanism 4 is provided with a first lifting mechanism 41, a second lifting mechanism Mechanism 42 and angle deflection mechanism 43, the first lifting mechanism 41 and the second lifting mechanism 42 respectively coarsely adjust and finely adjust the distance from the nozzle 5 of the spraying robot to the workpiece, the first lifting mechanism 41 and the second lifting mechanism 42 cooperate with the angle deflection mechanism 43 receives the signal from the computer and deflects so that the nozzle 5 is always perpendicular to the surface of the workpiece and the distance to the surface of the workpiece is equal.
  • This vision-based design first divides the workpiece into equidistant areas, and the distance depends on the actual spraying width of the nozzle 5.
  • a distance measuring instrument to measure the graph of the workpiece instant noodles of the predetermined route, and use the computer to obtain the deflection angle, control the first lifting mechanism 41 and the second lifting mechanism 42 to adjust the distance to the workpiece, and deflect the nozzle 5 to the calculated distance.
  • Good angle so that the nozzle 5 is always perpendicular to the surface of the workpiece and the distance remains constant.
  • adjust the spraying adjustment mechanism 4 again so that the nozzle 5 is perpendicular to the surface of the workpiece and the distance remains the same as the first time to the workpiece.
  • the vertical distance from the nozzle 5 to the surface of the workpiece is equal when spraying in the equal division area, until the spraying of all the equal division areas of the workpiece is completed. In each equal division area, the nozzle 5 is perpendicular to the surface of the workpiece and keeps the same distance, so as to achieve the best effect on the curved surface workpiece. Accurate spraying, reducing the error when spraying.
  • the workpiece to be processed is a part of the peripheral surface of a cylinder, along the direction parallel to the axis, the cross-section of the workpiece is a straight line segment, and the distance from the nozzle to the surface of the workpiece is equal, while along the circumferential direction, there will be a certain
  • the radians form a shape with both ends raised and the middle sunken, so the distances are unequal.
  • the distances are the same along the section direction perpendicular to the wave height and propagation direction, while the distances are unequal along the propagation direction.
  • a cross-section in one direction can be found. If the cross-section is a straight line segment, then in this direction, the distance between the nozzle and the surface of the workpiece is equal, so the above-mentioned problem can be solved. Improve the efficiency of spraying.
  • the two sets of displacement mechanisms 2 mainly realize the stable horizontal and vertical movement of the sight distance measuring instrument 3 and the nozzle 5 of the spraying robot in the horizontal direction.
  • two sets of tracks 22 are installed in parallel on the support frame 1
  • the clamping mechanism 27 and the first roller 23 are installed at both ends of the horizontal axis 21, and the clamping mechanism 27 and the first roller 23 slide on two groups of tracks 22 respectively, and the end of the horizontal axis 21 is equipped with a gear 24, and the gear 24 and the chain 25 are on one side Engaged and set to a tense state, the first motor 26 drives the chain 25 to rotate through the transmission of the gear 24, the gear 24 starts to slide, the horizontal axis 21 slides horizontally on the two sets of tracks 22, and the first motor 26 drives the chain through the transmission of the gear 24 25 turns to provide power for the sliding of the horizontal axis 21.
  • the horizontal axis 21 Since one end provides power and drags the horizontal axis 21 to slide, the horizontal axis 21 is prone to deflection.
  • the clamping mechanism 27 and the first roller 23 slide on two sets of rails 22 respectively to avoid the horizontal axis. Deflection occurs when 21 slides, and the predetermined control horizontal axis 21 is moved at equal intervals.
  • the clamping mechanism 27 is used to clamp the horizontal shaft 21 and the track 22 when the horizontal shaft 21 reaches a predetermined position and stops, so that the horizontal shaft 21 is axially shifted, and the sleeve 271 is sleeved on the Outside the horizontal shaft 21 and closely matched with the horizontal shaft 21, a plurality of second rollers 272 are installed on the upper and lower end surfaces of the sleeve 271 and the second rollers 272 slide in the track 22.
  • the first cylinder 273 is installed on the upper end of the sleeve 271. At a predetermined position time, the extended control end of the first cylinder 273 arrives at the position where the track 22 clamps the horizontal shaft 21, and finally the position of the horizontal shaft 21 is locked when it stops.
  • the moving mechanism 28 when the moving mechanism 28 is moving, the distance measuring instrument 3 measures its vertical distance to the workpiece surface. Affect the measurement of the sight distance measuring instrument 3, so in order to solve this problem, in a further embodiment, the moving mechanism 28 is fixedly arranged below the horizontal axis 21, for installing the sight distance measuring instrument 3 and the spraying adjustment mechanism 4 and making them stable Linear movement, the first mounting part 281 is connected to the horizontal shaft 21, the screw rod 283 is rotatably mounted on the first mounting part 281, a power mechanism is connected to one side of the screw rod 283, and the sliding rod 282 is installed on the mounting part and is parallel to the screw rod In the axial direction of 283, the sliding seat 284 is located on the screw mandrel 283 to slide and passes through the sliding bar 282 at the same time.
  • the sliding bar 282 is used to control the linear sliding of the sliding seat 284.
  • the distance measuring instrument 3 is located on the sliding seat 284, and the screw mandrel 283
  • the rotation control slide seat 284 moves smoothly along the axial direction of the moving screw rod 283, the slide rod 282 assists the slide seat 284 to move and fixes the direction of the slide seat 284, avoids the deflection of the slide seat 284, and facilitates the measurement of the vertical distance measuring instrument 3 when moving. distance stability.
  • the spraying adjustment mechanism 4 performs one lift.
  • two lifts are used.
  • the first lift mechanism 41 is used to roughly adjust the vertical distance from the spray head 5 to the workpiece
  • the first mounting plate 411 is installed on the sliding seat 284 of a group of moving mechanisms 28, the sliding seat 284 drives the first lifting mechanism 41 to move stably
  • the second cylinder 412 is installed under the first mounting plate 411 and connected to the second mounting plate 414
  • the connecting shaft 413 assists the second cylinder 412 to control the vertical lifting of the second mounting plate 414 .
  • the second lifting mechanism 42 adjusts the distance between the nozzle 5 and the workpiece again. The vertical distance further reduces the error during spraying.
  • the support plate 421 is connected with the second mounting plate 414 to form a space, and the second motor 422 is installed inside.
  • the second motor 422 drives the rotating shaft 423 to rotate, and the other end of the rotating shaft 423 is threadedly connected to the third mounting plate 425, and the rotation of the rotating shaft 423 controls the lifting of the third mounting plate 425, and the supporting plate 421 and the third mounting plate 425 return
  • the first elastic connecting piece 424 assists the third mounting plate 425 to move up and down relative to the support plate 421 to avoid deflection.
  • the bottom of the third mounting plate 425 is equipped with an angle deflection mechanism 43 .
  • the angle deflection mechanism 43 controls the spray head 5 to deflect a predetermined angle
  • one end of the connecting shaft 433 is installed under the third mounting plate 425, and the other end is rotatably connected to the second mounting member 434
  • the second The three cylinders 431 are installed below the third cylinder 431 and the telescopic end of the third cylinder 431 pushes the second mounting member 434 to deflect a predetermined angle along the other end of the connecting shaft 433
  • the second elastic connecting member 432 is installed below the third cylinder 431 and
  • the third cylinder 431 is respectively arranged on both sides of the connecting shaft 433, and the second elastic
  • the spray head 5 produces an opposite force to the second mounting part 434 when spraying the surface of the workpiece.
  • the second mounting part 434 is connected to the second mounting part 434.
  • the shaft 433 moves relative to each other, and the second elastic connecting member 432 always maintains a pushing force on the second mounting member 434 to avoid such errors.
  • the nozzle 5 is carried out in an orderly manner in the preset process, but it cannot be monitored. Therefore, in order to solve this problem, in a further embodiment, the angle measuring instrument 6 is used to measure the deflection angle data, and the data It is transmitted to the computer, and the computer obtains the difference after calculation, and adjusts the deflection angle of the angle deflection mechanism 43. Once the calculated difference continues to exceed the predetermined time, the process is suspended and the spraying robot is detected.
  • the workpiece is placed under the nozzle 5 of the spraying robot, the first group of displacement mechanisms 2 controls the distance measuring instrument 3 to measure the vertical distance to the surface of the workpiece, the first motor 26 drives the chain 25 to rotate through the gear 24 to drag The gear 24 slides, and the gear 24 drives the horizontal shaft 21 to slide on the two sets of rails 22.
  • the first cylinder 273 installed on the upper end of the kit 271 extends the control end to the rail 22 to clamp the horizontal shaft 21.
  • the screw mandrel 283 rotates to control the sliding seat 284 to move smoothly along the axial direction of the moving screw mandrel 283, the sliding bar 282 assists the sliding seat 284 to move and fixes the sliding direction of the sliding seat 284, and the sliding seat 284 drives the distance measuring instrument 3 Carry out linear gliding and distance measurement, and the data is transmitted to the computer.
  • another group of displacement mechanisms 2 controls the spraying adjustment mechanism 4 to spray along the measurement route of the sight distance measuring instrument 3, and the spraying adjustment mechanism 4.
  • the second cylinder 412 After receiving the calculation data from the computer, the second cylinder 412 roughly adjusts the distance between the nozzle 5 and the surface of the workpiece, and the second motor 422 drives the rotating shaft 423 to rotate so that the third mounting plate 425 can further adjust the position, thereby further controlling the vertical distance between the nozzle 5 and the surface of the workpiece , the telescopic end of the third cylinder 431 pushes the second mounting part 434 to deflect a predetermined angle along the other end of the connecting shaft 433, and the second elastic connecting part 432 is always set in a compressed state, that is, the second elastic connecting part 432 is always on the second mounting part.
  • Part 434 has a thrust to further reduce the deflection error.
  • the first lifting mechanism 41 is used to roughly adjust the vertical distance from the nozzle 5 to the workpiece, and the second lifting mechanism 42 adjusts the vertical distance from the nozzle 5 to the workpiece again, and the angle deflection Mechanism 43 deflects the angle, controls the nozzle 5 to be vertical to the surface of the workpiece all the time and keeps the fixed value when the distance is calculated, the angle measuring instrument 6 is used to monitor the deflection angle data, and transmits the data to the computer, and the computer obtains the difference after calculation. Adjust the deflection angle of the angle deflection mechanism 43, and once the calculated difference continues to exceed the predetermined time, the process is suspended and the spraying robot is detected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spray Control Apparatus (AREA)

Abstract

本发明涉及一种基于视觉的喷涂机器人及喷涂方法,属于自动化技术领域,该基于视觉的喷涂机器人包括位移机构、视距测量仪和喷涂调节机构,两组位移机构安装在支撑架上,位移机构上设有移动机构,视距测量仪安装在一组移动机构上,视距测量仪测量至工件表面的垂直距离,并将数据传入计算机中,喷涂调节机构安装在另一组移动机构上,喷涂调节机构设有第一升降机构、第二升降机构和角度偏转机构,第一升降机构和第二升降机构调节喷涂机器人的喷头至工件的距离,角度偏转机构接收计算机的信号并进行偏转。该基于视觉的喷涂机器人计算该工件曲面的弯曲程度,利用喷涂调节机构使喷头至曲面的垂直距离在移动喷涂的过程中近似不变,减小喷涂时的误差。

Description

一种基于视觉的喷涂机器人及喷涂方法 技术领域
本发明涉及一种基于视觉的喷涂机器人及喷涂方法,属于自动化技术领域。
背景技术
目前喷涂工艺日益进步,对于朝着一个方向弯曲的大型工件的曲面喷涂也有多种设计,此类工件往往采用人工喷涂的方式进行喷涂作业,人工喷涂一定程度上弥补了曲面的喷涂,但人工喷涂基于实施人员的经验,无法保证喷涂的均匀,工作量大,同时工件的曲面的弯曲程度不是定量,部分人员对此类大型工件的曲面进行网格化划分,通过网格路线结合计算机软件实现最优喷涂的设计,以达到接近均匀喷涂来减少误差,但此类工艺成本过高,对于喷涂设备的自由度和喷涂面积都做一些要求,无法适用于该带有曲面的大型工件。
技术问题
本发明为解决上述背景技术中存在的技术问题,提供种基于视觉的喷涂机器人及喷涂方。对工件的曲面进行基于喷涂范围和工件曲面的大小的等间距划分,测量等间距内曲面的弯曲程度,调整喷头至曲面的垂直距离,使得喷涂时喷头至曲面的垂直距离始终接近不变来减小喷涂时的误差。
技术解决方案
一种基于视觉的喷涂机器人,包括:
两组位移机构,通过支撑架上下安装,用于控制安装在所述位移机构上的其他组件沿着预设方向移动,所述位移机构还设有移动机构,上下两组所述移动机构垂直;
视距测量仪,设于位于上方的所述移动机构上,用于测量视距测量仪本体至工件表面的垂直距离,并将数据传入计算机中;
喷涂调节机构,设于下方的所述移动机构上且运动方向与所述视距测量仪的运动方向垂直,用于控制喷涂设备相对工件表面的垂直距离保持不变进行喷涂,所述喷涂调节机构设有第一升降机构、第二升降机构和角度偏转机构,所述第一升降机构和第二升降机构调节喷涂机器人的喷头至工件的距离,所述角度偏转机构接收计算机的信号并偏转预定角度。
通过上述技术方案,对工件进行等间距区域划分,间距距离取决于喷头的实际喷射宽度,用视距测量仪测量预定的路线的工件便面的曲线图,并利用计算机得出偏转角度,控制第一升降机构和第二升降机构调整至工件的距离,同时偏转喷头至已经计算好的角度,达到对曲面工件的精确喷涂,缩小喷涂时的误差。
两组轨道,平行设于所述支撑架上;
横轴,设于两组所述轨道滑动,两组所述轨道控制所述横轴的运动时避免偏转,所述横轴安装卡紧机构,辅助所述横轴与所述轨道相对固定,所述卡进机构在所述轨道上滑动,所述横轴上还安装移动机构,用于定位所述移动机构的移动方向;
第一滚轮,安装于所述横轴的一端且在所述轨道内滑动,用于辅助所述横轴沿着其轴向的垂直方向滑行;
齿轮,设于所述横轴的另一端,用于拖动所述横轴沿着所述轨道滑行;
链条,通过链条安装座设于所述支撑架上且啮合于所述齿轮,所述链条带动所述齿轮移动;
第一电机,传动连接于所述链条,所述第一电机通过齿轮传动带动所述链条转动。
通过上述技术方案,两组位移机构主要实现视距测量仪和喷涂机器人的喷头在水平向进行稳定的横向与纵向运动。
在进一步的实施例中,所述卡紧机构包括;
套件,套接于所述横轴外侧;
多个第二滚轮,设于所述套件上下端且所述第二滚轮在所述轨道上滑动;
第一气缸,设于所述套件上端,所述第一气缸伸长控制端用于固定所述套件与所述轨道的相对位置。
通过上述技术方案,横轴易发生偏转,卡紧机构和第一滚轮分别两组轨道上滑动可以避免横轴滑行时发生偏转,实现预定的控制横轴进行等间距的移动。
在进一步的实施例中,所述移动机构包括:
两个第一安装件,固定连接于所述横轴,用于安装所述移动机构的其他组件;
丝杆,旋转连接于所述第一安装件,所述丝杆一侧连接有动力机构;
滑杆,设于所述安装件上且平行所述丝杆的轴向;
滑动座,设于所述丝杆上滑动且所述滑杆穿过所述滑动座,所述滑杆对应所述丝杆用于辅助控制所述滑动座沿着直线滑动,所述视距测量仪设于所述滑动座上。
通过上述技术方案,在横轴到达预定位置时间,第一气缸伸长控制端抵至轨道卡紧横轴的位置。
在进一步的实施例中,所述第一升降机
构包括:
第一安装板,连接于另一组所述移动机构的所述滑动座上;
第二气缸,设于所述第一安装板下方且连接第二安装板,所述第二气缸控制所述第二安装板至所述第一安装板的距离,所述第二安装板用于安装第二升降机构,;
连轴,设于所述第一安装板和所述第二安装板之间,用于辅助所述第二气缸控制所述第二安装板的升降。
通过上述技术方案,第一升降机构用于粗调喷头至工件的垂直距离。
在进一步的实施例中,所述第二升降机构包括:
支撑板,与所述第二安装板连接且组成一个空间用于安装第二电机;
转轴,一端旋转安装在所述支撑板上且通过齿轮传动连接于所述第二电机,所述转轴另一端螺纹连接于第三安装板,所述支撑板和所述第三安装板之间还设有与转轴平行的第一弹性连接件,所述第一弹性连接件用于辅助所述第三安装板相对所述支撑板上下移动避免偏转,所述第三安装板用于安装角度偏转机构。
通过上述技术方案,第二升降机构再次调整喷头至工件的垂直距离,进一步较小喷涂时的误差。
在进一步的实施例中,所述角度偏转机构包括:
连接轴,一端安装于所述第三安装板下方;
第二安装件,旋转连接于所述连接轴的另一端,所述第二安装件用于固定安装喷头;
第三气缸,安装于所述第三气缸下方且所述第三气缸的伸缩端用于推动所述第二安装件沿着
所述连接轴的另一端偏转预定角度;
第二弹性连接件,安装于所述第三气缸下方且与所述第三气缸分别设置于所述连接轴的两侧,所述第二弹性连接件为压缩状态。
在进一步的实施例中,设于所述第二安装件侧面的角度测量仪用于测量偏转角度数据,并将数据传至计算机,计算机经过计算,得出差值,调整所述角度偏转机构的偏转角度。
通过上述技术方案,角度偏转机构控制喷头偏转预定的角度,为了避免喷涂时,第二安装件与连接轴发生相对移动,利用第二弹性连接件始终对第二安装件保持一个推力来避免此类误差。
在进一步的实施例中,包括以下步骤:
步骤一、工件置于喷涂机器人的喷头正下方,设于支撑架上方的位移机构工作,计算机将工件表面等分划分,设于支撑架上方的横轴滑动至预定位置时卡紧,移动机构开始工作,带动视距测量仪进行水平方向上的横向移动,测量视距测量仪的本体至工件表面的垂直距离,并将数据传入计算机中;
步骤二、计算机将视距测量仪测量的数据进行曲线化分析,并计算出曲线的偏转角度的曲线;
步骤三、喷涂调节机构安装在下方的位移机构,且喷涂调节机构的移动方向垂直视距测量仪的移动方向,喷涂调节机构接收计算机计算好的反馈数据,第一升降机构进行第一次升降,使喷头到达离工件表面适用的距离,第二升降机构微调升降位置,角度偏转机构偏转预设角度,使喷头沿着预设的计算路径行进,喷头垂直工件的等分表面且喷头至工件表面的距离保持不变。
有益效果
对工件的曲面进行基于喷涂范围和工件曲面的大小的等间距划分,利用视距测量仪测量至工件表面的垂直距离,由计算机计算该工件曲面的弯曲程度;调整第一升降机构、第二升降机构和喷头的偏转角度,使得喷头至曲面的垂直距离在移动喷涂的过程中近似不变,减小喷涂时的误差;设有角度测量仪用于测量实际偏转角度,实际偏转角度的数据传至计算机,计算机对比预先的计算数据,由此监控喷涂机器人在喷涂过程中的误差,及时反馈调整。
附图说明
图1是本发明的整体结构示意图。
图2是本发明的位移机构结构示意图。
图3是本发明的移动机构示意图。
图4是本发明的卡紧机构结构示意图。
图5是本发明的喷涂调节机构结构示意图。
附图标记:支撑架1、位移机构2、横轴21、轨道22、第一滚轮23、齿轮24、链条25、第一电机26、卡紧机构27、套件271、第二滚轮272、第一气缸273、移动机构28、第一安装件281、滑杆282、丝杆283、滑动座284、视距测量仪3、喷涂调节机构4、第一升降机构41、第一安装板411、第二气缸412、连轴413、第二安装板414、第二升降机构42、支撑板421、第二电机422、转轴423、第一弹性连接件424、第三安装板425、角度偏转机构43、第三气缸431、第二弹性连接件432、连接轴433、第二安装件434、喷头5、角度测量仪6。
本发明的实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施;在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。对于此类工件的曲面,其水平径向的切线为直线状,其水平横向的表面的切线呈无规则曲线状,部分人员对该曲面进行网格化划分,通过网格路线结合计算机软件实现最优喷涂的设计,以达到接近均匀喷涂来减少误差,但此类工艺成本过高,网格化的单位面积越小,喷涂越理想,喷涂口的设计越小,喷涂的次数高,所需时间越长,而网格化的单位面积较大时,喷涂又达不到预定的状态,此类设计工艺只适用于较小范围,小尺寸且要求喷涂精密的特殊工件,无法适用于大部分的工件的曲面的喷涂。
例如在大型圆柱体、多边形体、波浪状的工件或建筑构件中,由于大型零件制作相对困难,通常采用若干个子单元来拼接,从而减少制作难度。广义的讲,这些子单元可以通过以下语言来定义:即第一平面内的一个沿某一固定方向延伸的、连续且不交叉的线段,例如折线、弧线等,该线段向垂直于所述第一平面的方向平移预定的距离,其划过或者说是形成的面,即为本申请中所述的弯曲方向一致的面。
换言之,该待加工的面,其横截面为一个朝着某一固定方向延伸的连续线段。在该待加工的零一个方向上,或者说至少有一个方向上,其截面为一条直线段。
对于上述形状的零件,在工程上是非常多且常见的,因此对于如何提高上述零件的加工效率和质量,是非常重要的。
在进一步的实施例中,两组位移机构2通过支撑架1上下安装且相对旋转90度的位置,上方的位移机构2控制视距测量仪沿着水平横向方向移动,测量工件表面的弯曲度,下方的位移机构2控制喷涂设备沿着水平横向方向移动并且喷涂,位移机构2还设有移动机构28,两组移动机构28分别控制视距测量仪和喷涂设备沿着预设水平纵向方向移动,视距测量仪3测量至工件表面的垂直距离,并将数据传入计算机中,喷涂调节机构4设于另一组移动机构28上,喷涂调节机构4设有第一升降机构41、第二升降机构42和角度偏转机构43,第一升降机构41和第二升降机构42分别粗调和精调调节喷涂机器人的喷头5至工件的距离,第一升降机构41和第二升降机构42配合角度偏转机构43接收计算机的信号并进行偏转,使得喷头5始终垂直工件表面并且到达工件表面的距离相等,该基于视觉的设计,首先对工件进行等间距区域划分,间距距离取决于喷头5的实际喷射宽度,用视距测量仪测量预定的路线的工件便面的曲线图,并利用计算机得出偏转角度,控制第一升降机构41和第二升降机构42调整至工件的距离,同时偏转喷头5至已经计算好的角度,使得喷头5始终垂直工件表面且距离保持不变,在进入下一个待喷涂的等分区域,再次调整喷涂调节机构4使得喷头5垂直工件表面且距离保持与第一次对工件的等分区域喷涂时喷头5至工件表面的垂直距离相等,直至对工件的所有等分区域喷涂完成,在每一次的等分区域内,喷头5垂直工件表面且保持距离相等,达到对曲面工件的精确喷涂,缩小喷涂时的误差。
在进一步的实施例中,由于上述待加工工件的特点,因此沿着其横截面为直线段的方向移动,在该直线段上,喷头与待加工零件的表面距离一致,因此在每个来回的喷涂过程中,无需调整喷头的姿态。在下一个过程中,调整喷头的姿态。因此,大大提高了喷涂的效率。
例如待加工的工件为圆柱体周面的一部分,则沿着平行于轴线的方向,该工件的截面为直线段,喷头到工件的表面距离相等,而沿着周向的方向,则会有一定的弧度,形成有两端翘起,中间凹陷的形状,因此其距离是不等的。
对于波浪状的工件而言,沿着垂直于波高和传播方向形成的截面方向,则其距离是相同的,而沿着传播方向,则距离是不等的。
因此,在上述实施例中,可以根据工件的形态,找到一个方向上的截面,如果该截面为直线段,则在该方向上,喷头与工件表面的距离是相等的,因此能够解决上述问题,提高喷涂的效率。
基于上述机构,存在位移机构2移动时横轴21发生偏转,从而导致视距测量仪3和喷涂机器人的喷头5不在预定的等分区域内移动,因此为了解决这个问题,在进一步的实施例中,两组位移机构2主要实现视距测量仪3和喷涂机器人的喷头5在水平向进行稳定的横向与纵向运动,在一组位移机构2中,两组轨道22平行安装在支撑架1上,横轴21两端安装卡紧机构27和第一滚轮23,且卡紧机构27和第一滚轮23分别在两组轨道22滑动,横轴21的末端安装齿轮24,齿轮24与链条25一侧啮合且设置成绷紧状态,第一电机26通过齿轮24传动带动链条25转动,齿轮24开始滑动,横轴21在两组轨道22上水平王往复滑行,第一电机26通过齿轮24传动带动链条25转动为横轴21滑行提供动力,由于是一端提供动力且拖动横轴21滑动,横轴21易发生偏转,卡紧机构27和第一滚轮23分别两组轨道22上滑动可以避免横轴21滑行时发生偏转,实现预定的控制横轴21进行等间距的移动。
基于上述机构,存在横轴21滑动至预定位置停止时,安装于横轴21上的移动机构28工作时导致横轴21振动,导致横轴21发生位移偏离预定的等分位置,因此为了解决这个问题,在进一步的实施例中,卡紧机构27用于在横轴21到达预定位置停止时,卡紧横轴21与轨道22,放置横轴21发生轴向的偏移,套件271套接于横轴21外侧且与横轴21紧密配合,多个第二滚轮272安装在套件271上下端面且第二滚轮272在轨道22内滑动,第一气缸273安装在套件271上端,在横轴21到达预定位置时间,第一气缸273伸长控制端抵至轨道22卡紧横轴21的位置,最终使横轴21停止时位置卡死。
基于上述机构,存在移动机构28在移动时,视距测量仪3测量其至工件表面的垂直距离,该距离受到移动机构28的滑动座284上下左右偏移的影响,需要解决滑动座284滑动时影响视距测量仪3的测量,因此为了解决这个问题,在进一步的实施例中,移动机构28固定设置在横轴21下方,用于安装视距测量仪3和喷涂调节机构4并且使他们稳定直线运动,第一安装件281连接于横轴21,丝杆283旋转安装在第一安装件281上,丝杆283一侧连接有动力机构,滑杆282安装在安装件上且平行于丝杆283的轴向,滑动座284设于丝杆283上滑动且同时穿过滑杆282,滑杆282用于控制滑动座284直线滑动,视距测量仪3设于滑动座284上,丝杆283转动控制滑动座284平稳沿着移动丝杆283轴向移动,滑杆282辅助滑动座284移动且固定滑动座284的方向,避免滑动座284发生偏转,便于视距测量仪3在移动时测量垂直距离的稳定。
基于上述机构,存在喷涂调节机构4进行一次升降时仍存在误差,为了进一步缩小误差,采用两次升降,在进一步的实施例中,第一升降机构41用于粗调喷头5至工件的垂直距离,第一安装板411安装在一组移动机构28的滑动座284上,滑动座284带动第一升降机构41稳定移动,第二气缸412安装第一安装板411下方且连接第二安装板414,连轴413辅助第二气缸412控制第二安装板414的垂直向升降。
基于上述机构,存在第一次升降机构41在升降后仍需要进一步调整喷头5至工件表面的垂直距离,进一步缩小误差,在进一步的实施例中,第二升降机构42再次调整喷头5至工件的垂直距离,进一步较小喷涂时的误差,支撑板421与第二安装板414连接且组成一个空间,内部安装有第二电机422,转轴423一端旋转安装在支撑板421上且通过齿轮24传动连接于第二电机422,第二电机422带动转轴423旋转,转轴423另一端螺纹连接于第三安装板425,转轴423旋转控制第三安装板425升降,支撑板421和第三安装板425还之间设有与转轴423平行的第一弹性连接件424,第一弹性连接件424辅助第三安装板425相对支撑板421上下移动避免偏转,第三安装板425底部安装角度偏转机构43。
基于上述机构,在两组升降机构工作时,喷头5的喷射方向仍然与工件表面存在角度,同时在偏转时安装为间隙安装,喷头5喷涂时带来的反作用力也将影响喷头5的实际偏转角度,因此为了解决这个问题,在进一步的实施例中,角度偏转机构43控制喷头5偏转预定的角度,连接轴433一端安装于第三安装板425下方,另一端旋转连接第二安装件434,第三气缸431安装于第三气缸431下方且第三气缸431的伸缩端推动第二安装件434沿着连接轴433的另一端偏转预定角度,第二弹性连接件432安装在第三气缸431下方且与第三气缸431分别设置于连接轴433的两侧,第二弹性连接件432始终设置成压缩状态,即第二弹性连接件432始终对第二安装件434有一个推力,第二安装件434与连接轴433的末端通常为间隙配合才能便于第二安装件434旋转,喷头5在喷涂工件表面时产生一个对第二安装件434相反的力,为了避免喷涂时,第二安装件434与连接轴433发生相对移动,利用第二弹性连接件432始终对第二安装件434保持一个推力来避免此类误差。
基于上述机构,喷头5在预设的工序中有序进行,但无法对其进行监测,因此为了解决这个问题,在进一步的实施例中,角度测量仪6用于测量偏转角度数据,并将数据传至计算机,计算机经过计算,得出差值,调整角度偏转机构43的偏转角度,一旦超出预定时间持续产生超出计算差值,则暂停工序,检测喷涂机器人。
工作原理:工件置于喷涂机器人的喷头5下方,第一组位移机构2控制视距测量仪3进行测量其至工件表面的垂直距离,第一电机26通过齿轮24传动带动链条25转动来拖动齿轮24滑行,齿轮24带动横轴21在两组轨道22上滑行,滑行至预定等分位置后,安装在套件271上端的第一气缸273,伸长控制端抵至轨道22卡紧横轴21的位置,此时,丝杆283转动控制滑动座284平稳沿着移动丝杆283轴向移动,滑杆282辅助滑动座284移动且固定滑动座284的滑动方向,滑动座284带动视距测量仪3进行直线滑行并进行测距,数据传入计算机中,待测量完预定数据后,另一组位移机构2沿着视距测量仪3的测量路线,控制喷涂调节机构4进行喷涂,喷涂调节机构4接收计算机的计算数据,第二气缸412粗调喷头5至工件表面的距离,第二电机422带动转轴423旋转使得第三安装板425进一步调整位置,从而进一步控制喷头5至工件表面的垂直距离,第三气缸431的伸缩端推动第二安装件434沿着连接轴433的另一端偏转预定角度,第二弹性连接件432始终设置成压缩状态,即第二弹性连接件432始终对第二安装件434有一个推力,以此来进一步减小偏转的误差,第一升降机构41用于粗调喷头5至工件的垂直距离,第二升降机构42再次调整喷头5至工件的垂直距离,角度偏转机构43进行角度偏转,控制喷头5始终垂直工件便表面且距离保持计算时的定值,角度测量仪6用于监测偏转角度数据,并将数据传至计算机,计算机经过计算,得出差值,调整角度偏转机构43的偏转角度,一旦超出预定时间持续产生超出计算差值,则暂停工序,检测喷涂机器人。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (9)

  1. 一种基于视觉的喷涂机器人,其特征在于,包括:
    两组位移机构,通过支撑架上下安装,用于控制安装在所述位移机构上的其他组件沿着预设方向移动,所述位移机构还设有移动机构,上下两组所述移动机构垂直;
    视距测量仪,设于位于上方的所述移动机构上,用于测量视距测量仪本体至工件表面的垂直距离,并将数据传入计算机中;
    喷涂调节机构,设于下方的所述移动机构上且运动方向与所述视距测量仪的运动方向垂直,用于控制喷涂设备沿工件的预定方向喷涂,该预定方向为工件的某一横截面方向,且该横截面为直线段,从而使控制喷涂设备相对工件表面的垂直距离保持不变;
    所述喷涂调节机构设有第一升降机构、第二升降机构和角度偏转机构,所述第一升降机构和第二升降机构调节喷涂机器人的喷头至工件的距离,所述角度偏转机构接收计算机的信号并偏转预定角度;
    所述工件的表面为在第一平面内的一个沿某一固定方向延伸的连续线段,该连续线段向垂直于所述第一平面的方向平移预定的距离,形成的面。
  2. 根据权利要求1的一种基于视觉的喷涂机器人,其特征在于,所述位移机构包括:
    两组轨道,平行设于所述支撑架上;
    横轴,设于两组所述轨道滑动,两组所述轨道控制所述横轴的运动时避免偏转,所述横轴安装卡紧机构,辅助所述横轴与所述轨道相对固定,所述卡进机构在所述轨道上滑动,所述横轴上还安装移动机构,用于定位所述移动机构的移动方向;
    第一滚轮,安装于所述横轴的一端且在所述轨道内滑动,用于辅助所述横轴沿着其轴向的垂直方向滑行;
    齿轮,设于所述横轴的另一端,用于拖动所述横轴沿着所述轨道滑行;
    链条,通过链条安装座设于所述支撑架上且啮合于所述齿轮,所述链条带动所述齿轮移动;
    第一电机,传动连接于所述链条,所述第一电机通过齿轮传动带动所述链条转动。
  3. 根据权利要求2的一种基于视觉的喷涂机器人,其特征在于,所述卡紧机构包括;
    套件,套接于所述横轴外侧;
    多个第二滚轮,设于所述套件上下端且所述第二滚轮在所述轨道上滑动;
    第一气缸,设于所述套件上端,所述第一气缸伸长控制端用于固定所述套件与所述轨道的相对位置。
  4. 根据权利要求3的一种基于视觉的喷涂机器人,其特征在于,所述移动机构包括:
    两个第一安装件,固定连接于所述横轴,用于安装所述移动机构的其他组件;
    丝杆,旋转连接于所述第一安装件,所述丝杆一侧连接有动力机构;
    滑杆,设于所述安装件上且平行所述丝杆的轴向;
    滑动座,设于所述丝杆上滑动且所述滑杆穿过所述滑动座,所述滑杆对应所述丝杆用于辅助控制所述滑动座沿着直线滑动,所述视距测量仪设于所述滑动座上。
  5. 根据权利要求1的一种基于视觉的喷涂机器人,其特征在于,所述第一升降机
    构包括:
    第一安装板,连接于另一组所述移动机构的所述滑动座上;
    第二气缸,设于所述第一安装板下方且连接第二安装板,所述第二气缸控制所述第二安装板至所述第一安装板的距离,所述第二安装板用于安装第二升降机构,;
    连轴,设于所述第一安装板和所述第二安装板之间,用于辅助所述第二气缸控制所述第二安装板的升降。
  6. 根据权利要求5的一种基于视觉的喷涂机器人,其特征在于,所述第二升降机构包括:
    支撑板,与所述第二安装板连接且组成一个空间用于安装第二电机;
    转轴,一端旋转安装在所述支撑板上且通过齿轮传动连接于所述第二电机,所述转轴另一端螺纹连接于第三安装板,所述支撑板和所述第三安装板之间还设有与转轴平行的第一弹性连接件,所述第一弹性连接件用于辅助所述第三安装板相对所述支撑板上下移动避免偏转,所述第三安装板用于安装角度偏转机构。
  7. 根据权利要求6的一种基于视觉的喷涂机器人,其特征在于,所述角度偏转机构包括:
    连接轴,一端安装于所述第三安装板下方;
    第二安装件,旋转连接于所述连接轴的另一端,所述第二安装件用于固定安装喷头;
    第三气缸,安装于所述第三气缸下方且所述第三气缸的伸缩端用于推动所述第二安装件沿着
    所述连接轴的另一端偏转预定角度;
    第二弹性连接件,安装于所述第三气缸下方且与所述第三气缸分别设置于所述连接轴的两侧,所述第二弹性连接件为压缩状态。
  8. 根据权利要求7的一种基于视觉的喷涂机器人,其特征在于,设于所述第二安装件侧面的角度测量仪用于测量偏转时角度数据,并将数据传至计算机,计算机经过计算,得出差值,调整所述角度偏转机构的偏转角度。
  9. 基于权利要求1至8任一项所述喷涂机器人的喷涂方法,其特征在于,包括以下步骤:
    步骤一、工件置于喷涂机器人的喷头正下方,设于支撑架上方的位移机构工作,计算机将工件表面等分划分,设于支撑架上方的横轴滑动至预定位置时卡紧,移动机构开始工作,带动视距测量仪进行水平方向上的横向移动,测量视距测量仪的本体至工件表面的垂直距离,并将数据传入计算机中;
    步骤二、计算机将视距测量仪测量的数据进行曲线化分析,并计算出曲线的偏转角度的曲线;
    步骤三、喷涂调节机构安装在下方的位移机构,且喷涂调节机构的移动方向垂直视距测量仪的移动方向,喷涂调节机构接收计算机计算好的反馈数据,第一升降机构进行第一次升降,使喷头到达离工件表面适用的距离,第二升降机构微调升降位置,角度偏转机构偏转预设角度,使喷头沿着预设的计算路径行进,喷头垂直工件的等分表面且喷头至工件表面的距离保持不变。
PCT/CN2021/108329 2021-06-25 2021-07-26 一种基于视觉的喷涂机器人及喷涂方法 WO2022267158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110710195 2021-06-25
CN202110710195.9 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267158A1 true WO2022267158A1 (zh) 2022-12-29

Family

ID=84544927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108329 WO2022267158A1 (zh) 2021-06-25 2021-07-26 一种基于视觉的喷涂机器人及喷涂方法

Country Status (1)

Country Link
WO (1) WO2022267158A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117073605A (zh) * 2023-10-18 2023-11-17 常州铂力塑胶有限公司 一种空调隔音隔热件生产检测设备及检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124261A1 (de) * 1991-07-22 1993-01-28 Kaercher Gmbh & Co Alfred Verfahren und vorrichtung zur reinigung zerkluefteter flaechen, insbesondere bei kraftfahrzeugen
JPH10264060A (ja) * 1997-03-27 1998-10-06 Trinity Ind Corp 塗装ロボットのティーチング装置
CN102189055A (zh) * 2010-03-15 2011-09-21 郑绍春 船体外板自动喷涂作业车
CN104941850A (zh) * 2014-03-25 2015-09-30 上海外高桥造船有限公司 造船涂装自动喷漆机器人
CN106423656A (zh) * 2016-08-11 2017-02-22 重庆大学 基于点云与图像匹配的自动喷涂***及方法
CN110090758A (zh) * 2018-01-31 2019-08-06 中国科学院金属研究所 一种导流器热障涂层自动喷涂***
CN110624732A (zh) * 2019-10-17 2019-12-31 上海三菱电梯有限公司 工件自动喷涂***
CN110653137A (zh) * 2019-10-17 2020-01-07 安阳工学院 一种保持喷头垂直于喷涂面的喷涂方法
CN110694828A (zh) * 2019-09-03 2020-01-17 天津大学 一种基于大型复杂曲面模型的机器人喷涂轨迹规划方法
CN112632718A (zh) * 2020-12-10 2021-04-09 浙江工业大学 一种基于改进的点云切片算法的喷涂机器人轨迹规划方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124261A1 (de) * 1991-07-22 1993-01-28 Kaercher Gmbh & Co Alfred Verfahren und vorrichtung zur reinigung zerkluefteter flaechen, insbesondere bei kraftfahrzeugen
JPH10264060A (ja) * 1997-03-27 1998-10-06 Trinity Ind Corp 塗装ロボットのティーチング装置
CN102189055A (zh) * 2010-03-15 2011-09-21 郑绍春 船体外板自动喷涂作业车
CN104941850A (zh) * 2014-03-25 2015-09-30 上海外高桥造船有限公司 造船涂装自动喷漆机器人
CN106423656A (zh) * 2016-08-11 2017-02-22 重庆大学 基于点云与图像匹配的自动喷涂***及方法
CN110090758A (zh) * 2018-01-31 2019-08-06 中国科学院金属研究所 一种导流器热障涂层自动喷涂***
CN110694828A (zh) * 2019-09-03 2020-01-17 天津大学 一种基于大型复杂曲面模型的机器人喷涂轨迹规划方法
CN110624732A (zh) * 2019-10-17 2019-12-31 上海三菱电梯有限公司 工件自动喷涂***
CN110653137A (zh) * 2019-10-17 2020-01-07 安阳工学院 一种保持喷头垂直于喷涂面的喷涂方法
CN112632718A (zh) * 2020-12-10 2021-04-09 浙江工业大学 一种基于改进的点云切片算法的喷涂机器人轨迹规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117073605A (zh) * 2023-10-18 2023-11-17 常州铂力塑胶有限公司 一种空调隔音隔热件生产检测设备及检测方法
CN117073605B (zh) * 2023-10-18 2023-12-15 常州铂力塑胶有限公司 一种空调隔音隔热件生产检测设备及检测方法

Similar Documents

Publication Publication Date Title
CN112917142B (zh) 矫形调姿一体化对接平台
CN112756959B (zh) 一种柔性多自由度对接调姿机构
CN101229569B (zh) 镁合金型材扭曲检测和矫正的方法及装置
WO2022127262A1 (zh) 一种钢桥自动化涂装设备及其涂膜方法
CN103801792A (zh) 喷雾机
CN103990893B (zh) 机械式焊缝跟踪装置
WO2022267158A1 (zh) 一种基于视觉的喷涂机器人及喷涂方法
CN104097789A (zh) 嵌入式舱段轴向水平对接装置及方法
CN104118576A (zh) 一种大角度滚转、调姿一体化架车
WO2022227158A1 (zh) 一种具有大工作空间的可移动式电液复合驱动喷涂机器人
CN111390710B (zh) 螺旋钢管管端螺旋焊缝自动修磨机器人的修磨方法
CN115958322A (zh) 一种钢结构桥梁构件总装线及其装配方法
CN113770615A (zh) 一种用于焊枪的调整装置
CN209925010U (zh) 一种基于机器视觉的盾构管片位置调节装置
CN105500702A (zh) 一种具有两级轨道框架结构的3d打印装置及方法
CN208825229U (zh) 一种板单元半自动热矫正设备
CN112570470A (zh) 一种厚板角轧转钢装置及其使用方法
CN217223039U (zh) 一种新型钢箱梁顶腹板矫正机
CN216468364U (zh) 一种大型水下机器人分段位姿检测对接装置
JP2001131724A (ja) 連続溶融金属めっき設備及び連続溶融金属めっき手段の位置調整装置並びに連続溶融金属めっき手段の位置調整方法
CN104368470B (zh) 一种铁路货车油漆标记位置自动定位装置
CN111775006B (zh) 螺旋钢管管端螺旋焊缝自动修磨机器人
EP3991871A3 (en) Automatic curved plate forming apparatus
CN114534976A (zh) 一种船舶喷涂***
CN221289840U (zh) 主动型跟随焊接机头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946645

Country of ref document: EP

Kind code of ref document: A1