WO2022261948A1 - 随机接入方法及装置 - Google Patents

随机接入方法及装置 Download PDF

Info

Publication number
WO2022261948A1
WO2022261948A1 PCT/CN2021/100940 CN2021100940W WO2022261948A1 WO 2022261948 A1 WO2022261948 A1 WO 2022261948A1 CN 2021100940 W CN2021100940 W CN 2021100940W WO 2022261948 A1 WO2022261948 A1 WO 2022261948A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
resources
initial access
network device
resource
Prior art date
Application number
PCT/CN2021/100940
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/100940 priority Critical patent/WO2022261948A1/zh
Priority to CN202180095538.3A priority patent/CN116965140A/zh
Publication of WO2022261948A1 publication Critical patent/WO2022261948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the technical field of communications, and in particular, to a random access method and device.
  • the terminal device can establish a connection with a network device in a random access manner. After establishing a connection with the network device, the terminal device can communicate with the core network through the network device.
  • Non-Terrestrial Network NTN
  • NTN non-terrestrial Network
  • the present application provides a random access method and device, which can enable a network device to obtain the current location area of a terminal device.
  • a random access method including: according to the current location area of the terminal device and the association relationship between multiple location areas and multiple initial access resources, the terminal device selects from the Selecting a first initial access resource from multiple initial access resources; the terminal device sends a message 1 in a random access process to the network device according to the first initial access resource.
  • a random access method including: a network device receiving message 1 in the random access process sent by a terminal device based on a first initial access resource; the network device according to the first initial access resource The resources, and the association relationship between the multiple location areas and the multiple initial access resources determine the location area where the terminal device is currently located.
  • a terminal device including: a selection unit configured to select from the location area where the terminal device is currently located and the association relationship between multiple location areas and multiple initial access resources. Selecting a first initial access resource from the plurality of initial access resources; a sending unit configured to send message 1 in the random access process to the network device according to the first initial access resource.
  • a network device including: a receiving unit, configured to receive a message 1 in a random access process sent by a terminal device based on a first initial access resource; a determining unit, configured to The access resources, and the association relationship between the multiple location areas and the multiple initial access resources determine the current location area of the terminal device.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes the method in the second aspect.
  • an apparatus including a processor, configured to call and run a computer program from a memory, so that the apparatus executes the method in the first aspect or the second aspect above.
  • a chip for implementing the method in the first aspect or the second aspect above.
  • the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or the second aspect above.
  • a ninth aspect provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the first aspect or the second aspect above.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the method in the first aspect or the second aspect above.
  • a computer program which, when running on a computer, causes the computer to execute the method in the first aspect or the second aspect above.
  • This application introduces multiple initial access resources and associates the multiple initial access resources with multiple location areas, so that the terminal device can use the initial access resources associated with the location area during initial random access. Initiate random access to incoming resources.
  • the network device may implicitly judge the location area where the terminal device is located based on the initial access resource selected by the terminal device, and then perform core network addressing.
  • FIG. 1 is a schematic diagram of a scenario of a wireless communication system.
  • Fig. 2 is a schematic flowchart of a contention-based random access method.
  • Fig. 3 is a schematic flowchart of a method for non-contention-based random access.
  • FIG. 4 is a schematic diagram of a transparent transmission-based NTN communication scenario.
  • Fig. 5 is a schematic diagram of a scenario of NTN communication based on non-transparent transmission.
  • Fig. 6 is a schematic flowchart of a random access method provided by an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of an association relationship between multiple location areas and multiple RACH resources.
  • FIG. 8 is a schematic diagram showing an association relationship between multiple location areas and multiple preamble sets.
  • FIG. 9 is a schematic diagram showing an association relationship between multiple location areas and multiple initial uplink BWPs.
  • Fig. 10 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a device provided by an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 .
  • the network device 110 may be a device that communicates with terminal devices.
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and each network device may include other numbers of terminals within the coverage area. Examples are not limited to this.
  • the wireless communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G 5G
  • the terminal may include but not limited to a terminal device applied in the Internet of Things, for example, it may be a terminal device connected to NB-IoT (may be referred to as "NB-IoT terminal") : smart meter reading equipment, logistics tracking equipment, environmental monitoring equipment, etc.; the terminal can also include but not limited to mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal), mobile phone (Mobile Telephone), user equipment (User Equipment, UE), mobile phone (handset) and portable equipment (portable equipment), etc., the terminal equipment can communicate with one or more core networks through the radio access network (Radio Access Network, RAN), for example, the terminal equipment can be Mobile phones (or “cellular” phones), computers with wireless communication functions, etc., and terminal equipment can also be portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices.
  • RAN Radio Access Network
  • the network device may be an access network device, such as a base station, a transmitting and receiving point (Transmit and Receive Point, TRP) or an access point
  • the base station may be a base station (Base Transceiver Station) in GSM or CDMA , BTS), it can also be a base station (NodeB) in WCDMA, it can also be an evolved base station (evolved Node B, eNB or e-NodeB) in LTE, it can also be a base station of NR or 5G (next Generation Node B, gNB), which is not specifically limited in this embodiment of the present application.
  • a base station such as a base station, a transmitting and receiving point (Transmit and Receive Point, TRP) or an access point
  • the base station may be a base station (Base Transceiver Station) in GSM or CDMA , BTS)
  • NodeB base station
  • eNB evolved base station
  • LTE Long Term Evolution Node B
  • gNB
  • the maximum channel bandwidth supported by the NR system can reach 400MHz, which is also called a wideband carrier. If the terminal equipment keeps working on the broadband carrier, the power consumption of the UE is very large.
  • the embodiment of the present application can adjust the radio frequency (Radio Frequency, RF) bandwidth of the terminal device according to the actual throughput of the terminal device to optimize the power consumption of the terminal device, which is the motivation for introducing the Bandwidth Part (BWP).
  • RF Radio Frequency
  • a terminal device in the connected state can only have at most one active downlink BWP and one active uplink BWP at a time.
  • the network device can configure at most 4 uplink (uplink, UP) BWPs and at most 4 downlink (downlink, DL) BWPs for the connected state terminal device.
  • uplink BWP uplink
  • downlink downlink
  • the network device may configure four uplink BWPs (indexes (indexes) are 0, 1, 2, 3 respectively) and four downlink BWPs (indexes are 0, 1, 2, 3) for a connected terminal device.
  • the currently activated UL BWP index can be 0, and the currently activated downlink BWP index can be 1; if the downlink BWP is switched to another BWP through the downlink control information (Downlink Control Information, DCI) command, for example, from the currently activated DL BWP 1 Switch to DL BWP 2, UL BWP can remain unchanged.
  • DCI Downlink Control Information
  • the terminal device can obtain BWP configuration information through system messages.
  • the terminal device can obtain the master information block (master information block, MIB) and system information block 1 (system information block 1, SIB1) of the cell where it resides through the cell defining synchronization signal block (CD-SSB). )information.
  • SIB1 indicates related configuration information of an initial (initial) BWP used for initial access of the terminal equipment, and the initial BWP may be used for random access of the terminal equipment.
  • the initial BWP may include an initial uplink BWP and an initial downlink BWP, and the terminal device may use the initial uplink BWP to perform random access.
  • contention-based random access There are two ways of random access, one is contention-based random access, and the other is non-contention-based random access.
  • the two random access modes are described below with reference to FIG. 2 and FIG. 3 .
  • FIG. 2 is a flowchart of a contention-based random access method provided by an embodiment of the present application, and the method includes steps S210 to S240.
  • step S210 the terminal device sends a message 1 (message 1, Msg1) in the random access process to the network device, and the message 1 includes a preamble (preamble).
  • the terminal device may select a random access channel (random access channel, RACH) resource and a preamble, and send the selected preamble on the selected resource.
  • RACH random access channel
  • the RACH resource may also be called a physical random access channel (physical random access channel, PRACH) resource.
  • the network device may send RACH configuration information to the terminal device in the form of broadcast.
  • the RACH configuration information may include RACH time-frequency resource configuration information and initial preamble root sequence configuration information.
  • the configuration information of the time domain resources of the RACH can be indicated by one RACH configuration index.
  • the RACH configuration index may include at least one of the repetition period of the RACH resource, the number of RACH occasions (RACH occasion, RO) included in one RACH resource repetition period, and the duration of each RO.
  • the configuration information of RACH frequency domain resources may include one RACH start frequency domain resource index and the number of RACH resources that can be frequency division multiplexed at the same moment (ie the number of continuous RACH frequency domain resources).
  • a segment of continuous frequency domain resources can be determined through the configuration information of the RACH frequency domain resources.
  • the initial preamble root sequence can be broadcast by cells, and each cell can broadcast one preamble root sequence. Based on the configured starting preamble root sequence, the available preamble set of the cell can be obtained through cyclic shift.
  • the configuration information of the RACH can be carried in a system message, that is, the network device can send the configuration information of the RACH through the system message.
  • the system message may include a synchronization signal block (synchronization signal block, SSB), and the network device may broadcast the SSB to the terminal device, and the SSB may be a CD-SSB.
  • the SSB may include the master information block (MIB) and system information block of the cell where the cell resides.
  • a system information block may include SIB1 and other SIBs.
  • SIB1 may indicate related configuration information of the initial BWP used for initial access of the terminal device, and the configuration information may include an initial uplink BWP and an initial downlink BWP.
  • the network device may configure random access resources for the initially accessed terminal device.
  • the network device can control the selection of random access resources by the terminal device by configuring a reference signal receiving power (RSRP) threshold.
  • RSRP reference signal receiving power
  • the terminal device can select the SSB whose measured RSRP value satisfies the RSRP threshold, and select the corresponding random access resource to send the preamble according to the correspondence between the SSB and the random access resource.
  • the network device sends a Msg2 to the terminal device, and the Msg2 may also be called a random access response (random access response, RAR).
  • the Msg2 may be carried by a physical downlink control channel (physical downlink control channel, PDCCH).
  • RA-RNTI random access-radio network temporary identifier
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • s_id represents the first Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol index (0 ⁇ s_id ⁇ 14) of the RACH resource;
  • t_id represents the index of the first time slot of the RACH resource in the system frame (0 ⁇ t_id ⁇ 80);
  • f_id represents the index of the RACH resource in the frequency domain (0 ⁇ f_id ⁇ 8);
  • ul_carrier_id is the uplink carrier used for preamble transmission, where 0 represents the normal uplink carrier and 1 represents the supplementary uplink Road (supplementary uplink, SUL) carrier.
  • the RA-RNTI is related to the time-frequency resource of the RACH used by the terminal device to send Msg1. After receiving the PDCCH, the terminal device can use the RA-RNTI to decode the PDCCH.
  • Msg2 may also include the preamble sent by the terminal device. If the terminal device receives the PDCCH scrambled with RA-RNTI and Msg2 contains the preamble sent by itself, the terminal device may consider that it has successfully received the random access response.
  • the terminal device can obtain a physical downlink shared channel (physical downlink shared channel, PDSCH) scheduled by the PDCCH, wherein the PDSCH includes the RAR.
  • the RAR can contain several pieces of information.
  • the subheader (subheader) of the RAR can contain a backoff indicator (backoff indicator, BI), which can be used to indicate the backoff time for retransmitting Msg1;
  • the random access preamble identification (random access preamble identification) in the RAR , RAPID) indicates that the network device responds to the received preamble index;
  • the load (payload) in the RAR can include a timing advance group (timing advance group, TAG), which can be used to adjust the uplink timing;
  • the RAR can also include uplink authorization (UL grant), used to schedule the uplink resource indication of Msg3;
  • the RAR may also include a temporary cell-radio network temporary identifier (cell-radio network temporary identifier, C-RNTI), for
  • Step S230 the terminal device sends Msg3 to the network device.
  • the terminal device may send Msg3 on the uplink grant scheduled by the network device.
  • the Msg3 may also be called a radio resource control (Radio Resource Control, RRC) connection establishment request message.
  • RRC Radio Resource Control
  • the Msg3 is mainly used to notify the network equipment of what event triggers the random access process. For example, if it is an initial access random process, the terminal device may carry UE identity (Identity, ID) and establishment cause (establishment cause) in Msg3. If it is RRC re-establishment, the terminal device can carry the connected state UE identity and establishment cause in Msg3.
  • Step S240 the network device sends Msg4 to the terminal device.
  • the Msg4 has two functions, one is to resolve contention conflicts, and the other is to send an RRC configuration message to the terminal device. If the terminal device carries C-RNTI in Msg3, Msg4 uses the PDCCH scrambled by the C-RNTI for scheduling. Correspondingly, the terminal device can use the C-RNTI in Msg3 to decode the PDCCH to obtain Msg4. If the terminal device does not carry the C-RNTI in Msg3, such as initial access, Msg4 can use the temporary C-RNTI scrambled PDCCH scheduling, and accordingly, the terminal device can use the temporary C-RNTI in Msg2 to decode the PDCCH, Get Msg4.
  • the terminal device After successfully decoding the PDCCH, the terminal device obtains the PDSCH carrying Msg4.
  • the terminal device can compare the common control channel (common control channel, CCCH) service data unit (service data unit, SDU) in the PDSCH with the CCCH SDU in Msg3, and if the two are the same, it means that the contention is resolved successfully.
  • CCCH common control channel
  • SDU service data unit
  • FIG. 3 is a flowchart of a non-contention-based random access method provided by an embodiment of the present application. The method includes steps S310-S330.
  • step S310 the network device sends preamble configuration information to the terminal device, and the configuration information includes the preamble and RACH resources required in the random access process.
  • the terminal device may send Msg1 to the network device according to the preamble configuration information, that is, the terminal device may send the preamble to the network device on the RACH resource.
  • step S330 the network device sends a Msg2 to the terminal device, and the Msg2 may include the RAR. After the terminal device receives the RAR, it indicates that the random access process is over.
  • the main purpose of random access is to achieve uplink synchronization between the terminal device and the network device.
  • the network device can know the time when the terminal device sends the preamble by receiving the RACH time-frequency resource used by the terminal to send the preamble, so as to determine the initial time advance of the terminal device according to the sending time and receiving time of the preamble amount (time advance, TA), and notify the terminal device through Msg2.
  • the terminal device After the random access is successful, the terminal device establishes a connection with the network device. Further, the terminal device can communicate with the core network through the network device, that is, the core network can route and forward the data sent by the terminal device.
  • the core network may include at least one of the following: access and mobility management function (Access and Mobility Management Function, AMF) network element, session management function (Session Management Function, SMF) network element, user plane function (User Plane Function, UPF) network element, unified data management function (Unified Data Management, UDM) network element, policy control function (Policy Control Function, PCF) network element, etc.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • UDM Unified Data Management
  • PCF Policy Control Function
  • NTN Non Terrestrial Network
  • NTN generally adopts satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user's region.
  • general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or due to sparse population.
  • satellite communication because a satellite can cover a large area, and satellites can orbit the earth, theoretically every corner of the earth can be covered by satellite communication.
  • satellite communication has great social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting development of these areas. Again, the distance of satellite communication is long, and the cost of communication does not increase significantly when the communication distance increases. Finally, satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites can be divided into low-earth orbit (Low-Earth Orbit, LEO) satellites, medium-earth orbit (Medium-Earth Orbit, MEO) satellites, geosynchronous earth orbit (Geostationary Earth Orbit, GEO) satellites, high elliptical Orbit (High Elliptical Orbit, HEO) satellites, etc.
  • LEO low-earth orbit
  • MEO medium-earth orbit
  • GEO geosynchronous earth orbit
  • GEO Global Stationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low orbit satellites is 500km ⁇ 1500km, and the corresponding orbit period is about 1.5 hours ⁇ 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite visible time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirements for the transmission power of the terminal equipment are not high.
  • the orbital height is 35786km
  • the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites can use multiple beams to cover the ground, and a satellite can form dozens or even hundreds of beams to cover the ground.
  • a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers.
  • the transmission types of NTN can include transparent transmission and non-transparent transmission.
  • Transparent transmission can also be called bent pipe forwarding transmission.
  • the signal only undergoes frequency conversion and signal amplification on the satellite.
  • the satellite is transparent to the signal.
  • Non-transparent transmission can also be called regenerative transmission, or on-board access/processing transmission.
  • the satellite has some or all base station functions, and the satellite can also be called a non-terrestrial base station.
  • FIG. 4 shows a schematic diagram of a scenario based on transparent transmission.
  • the coverage area of the satellite 430 is the area 420, which is also referred to as the coverage area of an NTN cell.
  • the terminal device 410 in the NTN cell 420 can send a signal to the satellite 430, and the satellite 430 can send the signal to the network device 440 (or access network device) on the ground.
  • the terminal device 410 may initiate random access to the network device 440 through the satellite 430 to establish a connection between the terminal device 410 and the network device 440 .
  • the network device 440 may send the signal sent by the terminal device 410 to a corresponding core network, so that the core network routes and forwards the signal.
  • the network device 440 is a network device on the ground, the coverage of the network device 440 is still determined by the coverage of the satellite 430, that is, the coverage of the network device 440 is the coverage of the NTN cell 420 scope.
  • FIG. 5 shows a schematic diagram of a scenario based on non-transparent transmission.
  • the coverage area of the satellite 430 is the area 420, which is also referred to as the coverage area of an NTN cell.
  • the terminal device 410 in the NTN cell 420 can send a signal to the satellite 430. Since the satellite 430 has the function of a base station, after receiving the signal sent by the terminal device, the satellite can send the signal to the corresponding core network. For initial access, the terminal device 410 may initiate random access to the satellite 430 . After the terminal device 410 establishes a connection with the satellite 430 , the satellite 430 may send the signal sent by the terminal device 410 to the corresponding core network 450 . In this transmission mode, the satellite 430 is equivalent to a base station or an access network device.
  • the coverage of the access network equipment is the coverage of the NTN cell. Since the NTN cell has a large coverage area, for example, its coverage radius can reach several thousand kilometers. At this time, one NTN cell may cover geographic locations in multiple countries. Usually, the coverage of the NTN cell is larger than that of the core network, and the large coverage brings new challenges to the addressing of the core network. For example, for an NTN cell covering multiple countries or regions, when a terminal device initiates initial access in the cell (for example, the terminal device initiates an emergency call), since the network device does not know the country/region where the terminal is located, Correct core network addressing may not be possible, i.e. the correct core network cannot be selected.
  • V2X Vehicle-to-everything
  • one NTN cell can be divided into multiple location areas, so that Divide NTN cells into areas with smaller granularity.
  • the network device can address according to the smaller granularity area.
  • the embodiment of the present application does not specifically limit the manner of dividing location areas.
  • the division may be performed according to at least one of map information, geographical shape information, and area parameters.
  • the NTN cell can be divided into multiple location areas according to the border information of the country and/or the border information of the region. For example, if the NTN cell includes areas of multiple countries, the NTN cell may be divided into multiple location areas according to the borders of the countries.
  • the geographic shape may be a regular geographic shape, such as a rectangle, a circle, a hexagon, and the like.
  • the NTN cell can be divided into multiple areas according to information such as the center position and side length or radius of a regular geographical shape. Taking a circle as an example, the NTN cell can be divided into multiple location areas according to the center and radius of the circle.
  • the area parameter may include at least one of the length L of the area, the width W, and the number of areas (Nx, Ny) in the longitude and latitude directions.
  • the area parameter may be obtained by broadcasting by the network device, or may also be pre-configured. Mark the reference position coordinates of the area as (x0, y0), then the calculation formula of the area identification can be as follows:
  • L represents the length of each region
  • W represents the width of each region
  • Nx represents the total number of regions in the longitude direction
  • Ny represents the total number of regions in the latitude direction
  • x represents the position of the terminal device in the longitude direction
  • y represents the position of the terminal device in the latitude direction.
  • the terminal device can determine its location area according to its current location, and report the zone ID (zone ID) of the location area to the network device during the random access process, so as to assist the network device in core network addressing.
  • a feasible way is to send the area identifier through Msg3.
  • the size of the transmission resource of Msg3 is limited.
  • the size of the Msg3 transmission resource has a great impact on the uplink coverage. If the network device allocates a large Msg3 transmission resource for the terminal device, the area covered by the uplink will become smaller, so the network device usually does not allocate a large Msg3 transmission resource. , so that the terminal device may not have available resources to report the area identifier. To sum up, how to determine the current location area of the terminal device and save the transmission resources of the Msg3 has become an urgent problem to be solved.
  • the embodiment of the present application provides a random access method, which not only enables the network device to determine the current location area of the terminal device, but also saves the transmission resources of Msg3. As shown in FIG. 6, the method includes step S610 to step S630, and these steps will be described in detail below.
  • step S610 the terminal device selects the first initial access resource from the multiple initial access resources according to the current location area of the terminal device and the association relationship between the multiple location areas and the multiple initial access resources .
  • the terminal device in this embodiment of the present application may be a terminal device in an initial access state.
  • the current location area of the terminal device may refer to the location area of the terminal device in the NTN cell.
  • NTN cells can be divided according to any of the methods described above, such as map information, geographic shape information, and area parameters.
  • An NTN cell can be divided into multiple areas, and the terminal device can determine the current location area from the multiple areas according to its own location information.
  • a terminal device may obtain a current location area through a Global Navigation Satellite System (Global Navigation Satellite System, GNSS).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • Beidou Beidou
  • Glonass Glonass
  • Galileo Galileo
  • the association relationship between multiple location areas and multiple initial access resources may be pre-configured, or may also be sent by the network device to the terminal device.
  • the terminal device may use the initial access resource corresponding to the current location area among the multiple location areas as the first initial access resource.
  • step S620 the terminal device sends Msg1 to the network device according to the first initial access resource.
  • the network device may receive the Msg1 sent by the terminal device based on the first initial access resource.
  • the network device in the embodiment of the present application is a network device in the NTN communication system, and the network device may be, for example, the network device 440 in FIG. 4 .
  • the network device determines the current location area of the terminal device according to the first initial access resource and the association relationship between the multiple location areas and the multiple initial access resources.
  • the network device may determine the area corresponding to the first initial access resource among the multiple location areas as the location area where the terminal device is currently located.
  • the network device may perform core network addressing according to the current location area of the terminal device. For example, assuming that the location area where the terminal device is currently located is area 1, and the core network that can cover area 1 is core network 1, then the network device can select core network 1 for the terminal device, so that the terminal device can communicate with the core network through the network device. 1 to communicate.
  • This application introduces multiple initial access resources and associates the multiple initial access resources with multiple location areas, so that the terminal device can use the initial access resources associated with the location area during initial access.
  • the resource initiates random access.
  • the network device may implicitly judge the location area where the terminal device is located based on the initial access resource selected by the terminal device, and then perform core network addressing.
  • the above method does not need to additionally occupy the transmission resources of the Msg3, thereby saving the transmission resources of the Msg3 and ensuring that the uplink coverage of the Msg3 is not affected.
  • the configuration information of multiple location areas, the configuration information of multiple initial access resources, and/or the association relationship between multiple location areas and multiple initial access resources may be configured by the network device to the terminal device.
  • the network device may broadcast a system message to the terminal device, and the system message may include configuration information of multiple location areas, configuration information of multiple initial access resources, and configuration information between multiple location areas and multiple initial access resources. At least one of the association relationships.
  • first configuration information For convenience of description, the configuration information of multiple location areas, the configuration information of multiple initial access resources, and the association system between multiple location areas and multiple initial access resources are referred to as first configuration information hereinafter.
  • a system message may include multiple system information blocks, such as SIB1, SIB2, . . . , SIBn, and so on.
  • the first configuration information may be carried in an existing system information block, such as SIB1; or, the first configuration information may also be carried in a new system information block, and the new system information block is for carrying the first configuration information
  • the newly set, that is to say, the system information block is dedicated to carrying the first configuration information.
  • Different configuration information in the first configuration information may be carried in the same system information block, or may be carried in different system information blocks, which is not specifically limited in this embodiment of the present application.
  • the configuration information of multiple location areas and the configuration information of multiple initial access resources are carried in the same system information block, for example, they are all carried in SIB1, or they are all carried in other SIBs.
  • configuration information of multiple location areas and multiple initial access resources are carried in different system information blocks, for example, configuration information of multiple location areas is carried in SIB1, and configuration information of multiple initial access resources is carried in SIB1.
  • SIBs or configuration information of multiple initial access resources is carried in SIB1
  • configuration information of multiple location areas is carried in other SIBs.
  • the system message may also include indication information, which is used to indicate the association relationship between multiple location areas and multiple initial access resources.
  • indication information which is used to indicate the association relationship between multiple location areas and multiple initial access resources.
  • the embodiment of the present application does not specifically limit the association relationship between multiple location areas and multiple initial access resources. For example, there is a one-to-one correspondence between multiple location areas and multiple initial access resources, that is, one location area corresponds to one initial access resource. For another example, one location area among the multiple location areas corresponds to at least two of the multiple initial access resources. For another example, one resource among the multiple initial access resources may correspond to at least two of the multiple location areas. For example, if two location areas are covered by the same core network, one initial access resource may be configured for the two areas to improve resource utilization.
  • the initial access resources may include one or more of the following: RACH resources, preambles, and initial uplink BWP.
  • the initial access resource may include any one of RACH resource, preamble, and initial uplink BWP.
  • the initial access resource may include any two of the RACH resource, the preamble, and the initial uplink BWP.
  • the initial access resource may include RACH resource, preamble and initial uplink BWP.
  • the first initial access resource may be the first RACH resource in multiple (sets) of RACH resources.
  • the terminal device can obtain the current location through GNSS, and determine the current location area according to the current location.
  • the terminal device may select the first RACH resource from the multiple RACH resources according to the current location area and the association relationship between the multiple RACH resources and the multiple location areas.
  • the first RACH resource is the RACH resource corresponding to the current location area of the terminal device among the multiple RACH resources.
  • the terminal device may send the Msg1 to the network device on the first RACH resource, and correspondingly, the network device may receive the Msg1 sent by the terminal device on the first RACH resource.
  • any two RACH resources in the multiple RACH resources have different time domain/frequency domain resources, that is, different RACH resources among the multiple RACH resources correspond to different time domains and/or different frequency domains.
  • Each RACH resource may include time-frequency resource parameters, etc., and different time-frequency resource parameters may correspond to different time-frequency resources.
  • association relationships between multiple RACH resources and multiple location areas which are not specifically limited in this embodiment of the present application.
  • there may be a one-to-one correspondence between multiple RACH resources and multiple location areas that is, one RACH resource corresponds to one location area.
  • one RACH resource among the multiple RACH resources may be associated with at least two location areas among the multiple location areas.
  • one location area among the multiple location areas may be associated with at least two RACH resources among the multiple RACH resources.
  • Fig. 7 shows a schematic diagram of an association relationship between multiple RACH resources and multiple location areas. Taking one RACH resource corresponding to one location area as an example, the NTN cell 420 shown in FIG. 7 is divided into eight areas, and each area has its own corresponding RACH resource. For example, location area 1 corresponds to RACH resource 1, location area 2 corresponds to RACH resource 2, and so on. Assuming that the terminal device is currently in location area 2, the terminal device can use RACH resource 2 to send Msg1 to the network device.
  • FIG. 7 is a hexagonal area division method, which is not specifically limited in the embodiment of the present application, and any one or more of the above-described methods can be used for area division , such as country boundaries, regional parameters, regular geographic shapes, etc.
  • FIG. 7 only shows 8 location areas, but this is only an example, and one NTN cell may include more or less location areas.
  • the first configuration information may include configuration information of multiple RACH resources, configuration information of multiple location areas, and an association relationship between the multiple RACH resources and the multiple location areas.
  • the network device may send the first configuration information to the terminal device by broadcasting a system message.
  • the network device may broadcast the first configuration information through SIB1 and/or other SIBs, and correspondingly, the terminal device may obtain the first configuration information by receiving SIB1 and/or other SIBs.
  • SIBs may include any SIBs except SIB1, such as SIB2, SIB3 or SIB4 and so on.
  • Configuration information of multiple RACH resources and configuration information of multiple location areas may be broadcast through the same SIB, or configuration information of multiple RACH resources and configuration information of multiple location areas may be broadcast through different SIBs.
  • configuration information of multiple RACH resources and configuration information of multiple location areas may be broadcast through SIB1, or configuration information of multiple RACH resources and configuration information of multiple location areas may be broadcast through other SIBs.
  • configuration information of multiple RACH resources is broadcast through SIB1, and configuration information of multiple location areas is broadcast through other SIBs; or configuration information of multiple location areas is broadcast through SIB1, and configuration information of multiple RACH resources is broadcast through other SIBs.
  • the network device may determine the current location area of the terminal device according to the first RACH resource used to receive the Msg1, that is, the location of the time-frequency resource where the Msg1 is received. Further, the network device may determine the current location area of the terminal device according to the first RACH resource and the association relationship between multiple RACH resources and multiple location areas. For example, the network device may determine the location area corresponding to the first RACH resource among the multiple location areas as the current location area of the terminal device.
  • the network device After determining the current location area of the terminal device, the network device can address the core network based on the location area, that is, select the corresponding core network for the terminal device, so that the terminal device can communicate with the core network through the network device.
  • the embodiment of the present application introduces multiple RACH resources and binds the multiple RACH resources to multiple location areas, so that the terminal device can use the RACH resources associated with the location area to initiate the initial access. access.
  • the network device can determine the location area of the terminal device implicitly through the RACH resource selected by the terminal device, and then perform core network addressing.
  • the above method does not need to additionally occupy the transmission resources of the Msg3, thereby saving the transmission resources of the Msg3 and ensuring that the uplink coverage of the Msg3 is not affected.
  • the first initial access resource may be a first preamble set in multiple preamble sets.
  • the terminal device can obtain the current location through GNSS, and determine the current location area according to the current location.
  • the terminal device may select the first preamble set from the multiple preamble sets according to the current location area and the association relationship between the multiple preamble sets and the multiple location areas.
  • the first preamble set may be a preamble set corresponding to the location area where the terminal device is currently located among the multiple preamble sets.
  • the terminal device may send a Msg1 to the network device, the Msg1 including the preamble in the first preamble set, and correspondingly, the network device may receive the Msg1 sent by the terminal device, the Msg1 including the preamble in the first preamble set the preamble. If the first preamble set includes multiple preambles, the terminal device may randomly select a preamble, and send the selected preamble to the network device.
  • any two preamble sets in the multiple preamble sets do not overlap with each other, that is, different preamble sets in the multiple preamble sets do not include the same preamble.
  • association relationships between multiple preamble sets and multiple location areas which are not specifically limited in this embodiment of the present application.
  • there may be a one-to-one correspondence between multiple preamble sets and multiple location areas that is, one preamble set corresponds to one location area.
  • one preamble set in the plurality of preamble sets may be associated with at least two location areas in the plurality of location areas.
  • one location area among the plurality of location areas may be associated with at least two preamble sets among the plurality of preamble sets.
  • FIG. 8 is a schematic diagram showing an association relationship between multiple preamble sets and multiple location areas. Taking one preamble set corresponding to one location area as an example, the NTN cell 420 shown in FIG. 8 is divided into eight areas, and each area has its own corresponding preamble set. For example, location area 1 corresponds to preamble set 1, location area 2 corresponds to preamble set 2, and so on. Assuming that the terminal device is currently in location area 2, the terminal device may select a preamble from the preamble set 2, and send the preamble to the network device.
  • FIG. 8 is a method of dividing regions by hexagons, which is not specifically limited in the embodiment of the present application, and any one or more methods described above can be used to divide regions , such as country boundaries, regional parameters, regular geographic shapes, etc.
  • Fig. 8 only shows 8 location areas, but this is only an example, and one NTN cell may include more or less location areas.
  • the first configuration information may include configuration information of multiple preamble sets, configuration information of multiple location areas, and an association relationship between the multiple preamble sets and the multiple location areas.
  • the network device may send the first configuration information to the terminal device by broadcasting a system message.
  • the network device may broadcast the first configuration information through SIB1 and/or other SIBs, and correspondingly, the terminal device may obtain the first configuration information by receiving SIB1 and/or other SIBs.
  • SIBs may include any SIBs except SIB1, such as SIB2, SIB3 or SIB4 and so on.
  • the configuration information of multiple preamble sets and the configuration information of multiple location areas may be broadcast through the same SIB, or the configuration information of multiple preamble sets and the configuration information of multiple location areas may be broadcast through different SIBs.
  • configuration information of multiple preamble sets and configuration information of multiple location areas may be broadcast through SIB1, or configuration information of multiple preamble sets and configuration information of multiple location areas may be broadcast through other SIBs.
  • the configuration information of multiple preamble sets is broadcast through SIB1, and the configuration information of multiple location areas is broadcast through other SIBs; or the configuration information of multiple location areas is broadcast through SIB1, and the configuration information of multiple preamble sets is broadcast through other SIBs broadcast.
  • the network device can determine the current location area of the terminal device according to the preamble contained in the Msg1.
  • the network device may determine the first preamble set including the preamble according to the preamble. Further, the network device may determine the current location area of the terminal device according to the first preamble set and the association relationship between multiple preamble sets and multiple location areas. For example, the network device may determine the location area corresponding to the first preamble set among the multiple location areas as the location area where the terminal device is currently located.
  • the network device After determining the current location area of the terminal device, the network device can address the core network based on the location area, that is, select the corresponding core network for the terminal device, so that the terminal device can communicate with the core network through the network device.
  • the network device can configure only one RACH resource for the terminal device.
  • the existing RACH resource can be reused, but implicitly through the association between multiple preamble sets and multiple location areas. Indicates the location area where the terminal device is currently located.
  • the terminal device can use the preamble in the preamble set associated with the location area to initiate initial access during initial access.
  • the network device can implicitly determine the current location area of the terminal device through the preamble sent by the terminal device, and then perform core network addressing.
  • the above method does not need to additionally occupy the transmission resources of the Msg3, thereby saving the transmission resources of the Msg3 and ensuring that the uplink coverage of the Msg3 is not affected.
  • the first initial access resource may be the first initial uplink BWP among multiple initial uplink BWPs.
  • the terminal device can obtain the current location through GNSS, and determine the current location area according to the current location.
  • the terminal device may select the first initial uplink BWP from the multiple initial uplink BWPs according to the current location area and the association relationship between the multiple initial uplink BWPs and the multiple location areas.
  • the first initial uplink BWP is a BWP corresponding to the current location area of the terminal device among the multiple initial uplink BWPs.
  • the terminal device may select an RACH resource from the BWP, and send Msg1 to the network device on the RACH resource, and correspondingly, the network device may receive the Msg1 sent by the terminal device on the RACH resource in the first initial uplink BWP. If the first initial uplink BWP includes multiple RACH resources, the terminal device may randomly select one RACH resource, and send Msg1 to the network device on the RACH resource.
  • Any two BWPs in the multiple initial uplink BWPs do not overlap with each other, that is, frequency domains corresponding to different BWPs in the multiple initial uplink BWPs do not overlap.
  • multiple initial uplink BWPs there are various association relationships between multiple initial uplink BWPs and multiple location areas, which are not specifically limited in this embodiment of the present application.
  • one BWP among the multiple initial uplink BWPs may be associated with at least two location areas among the multiple location areas.
  • one location area among the multiple location areas may be associated with at least two BWPs among the multiple initial uplink BWPs.
  • FIG. 9 is a schematic diagram showing an association relationship between multiple initial uplink BWPs and multiple location areas.
  • the NTN cell shown in Figure 9 is divided into four areas, and each area has its own corresponding BWP.
  • location area 0 corresponds to BWP#0
  • location area 1 corresponds to BWP#1, and so on.
  • the terminal device can select RACH resources from BWP#2, and send Msg1 to the network device on the RACH resources.
  • FIG. 9 is a way of dividing regions by quadrilaterals, which is not specifically limited in this embodiment of the present application, and any one or more of the methods described above can be used to divide regions, such as Country borders, regional parameters, regular geographic shapes, etc.
  • FIG. 9 only shows 4 location areas, but this is only an example, and one NTN cell may include more or less location areas.
  • the first configuration information may include configuration information of multiple initial uplink BWPs, configuration information of multiple location areas, and associations between the multiple initial uplink BWPs and the multiple location areas.
  • the network device may send the first configuration information to the terminal device by broadcasting a system message.
  • the network device may broadcast the first configuration information through SIB1 and/or other SIBs, and correspondingly, the terminal device may obtain the first configuration information by receiving SIB1 and/or other SIBs.
  • SIBs may include any SIBs except SIB1, such as SIB2, SIB3 or SIB4 and so on.
  • Configuration information of multiple initial uplink BWPs and configuration information of multiple location areas may be broadcast through the same SIB, or configuration information of multiple initial uplink BWPs and configuration information of multiple location areas may be broadcast through different SIBs.
  • configuration information of multiple initial uplink BWPs and configuration information of multiple location areas may be broadcast through SIB1, or configuration information of multiple initial uplink BWPs and configuration information of multiple location areas may be broadcast through other SIBs.
  • the configuration information of multiple initial uplink BWPs is broadcast through SIB1, and the configuration information of multiple location areas is broadcast through other SIBs; or the configuration information of multiple location areas is broadcast through SIB1, and the configuration information of multiple initial uplink BWPs is broadcast through other SIBs broadcast.
  • the network device may determine the current location area of the terminal device according to the first BWP used to receive the Msg1, that is, the frequency domain resource location where the Msg1 is received. Further, the network device may determine the current location area of the terminal device according to the first initial uplink BWP and the association relationship between multiple initial uplink BWPs and multiple location areas. For example, the network device may determine the location area corresponding to the first initial uplink BWP among the multiple location areas as the current location area of the terminal device.
  • the network device After determining the current location area of the terminal device, the network device can address the core network based on the location area, that is, select the corresponding core network for the terminal device, so that the terminal device can communicate with the core network through the network device.
  • the embodiment of the present application introduces multiple initial uplink BWPs and binds the multiple initial uplink BWPs to multiple location areas, so that the terminal device can use the initial uplink associated with the location area during initial access.
  • BWP initiates initial access.
  • the network device may determine the location area where the terminal device is located implicitly through the frequency domain resource of the Msg1 sent by the terminal device, and then perform core network addressing.
  • the above method does not need to additionally occupy the transmission resources of the Msg3, thereby saving the transmission resources of the Msg3 and ensuring that the uplink coverage of the Msg3 is not affected.
  • terminal devices in different location areas can use different initial uplink BWPs for initial access, so as to achieve load balancing and increase uplink capacity.
  • the terminal device may select the first RACH resource and the first preamble set according to the current location area, and send the first RACH resource to the network device on the first RACH resource.
  • Msg1 where the Msg1 includes the preambles in the first preamble set.
  • the network device may determine the current location area of the terminal device according to the first RACH resource and the first preamble set used by the Msg1.
  • Fig. 10 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device may be any terminal device described above.
  • the terminal device 1000 may include a selection unit 1010 and a sending unit 1020, and these units will be described in detail below.
  • the selection unit 1010 may be configured to select the first resource from the multiple initial access resources according to the current location area of the terminal device and the association relationship between the multiple location areas and the multiple initial access resources. Initial access to resources.
  • the sending unit 1020 may be configured to send the message 1 in the random access process to the network device according to the first initial access resource.
  • the initial access resource includes one or more of the following resources: random access channel RACH resource; preamble; initial uplink bandwidth part.
  • the first initial access resource is a first RACH resource among multiple RACH resources, and any two RACH resources among the multiple RACH resources have different time domain/frequency Domain resource
  • the sending unit 1020 may be configured to send the message 1 to the network device on the first RACH resource.
  • the first initial access resource is a first preamble set in multiple preamble sets, and any two preamble sets in the multiple preamble sets do not overlap with each other
  • the sending unit 1020 may be configured to send the message 1 to the network device, where the preamble in the message 1 is a preamble in the first preamble set.
  • the first initial access resource is a first initial uplink bandwidth part among multiple initial uplink bandwidth parts
  • the sending unit 1020 may be configured to start from the first initial uplink bandwidth part. Select a random access resource in the bandwidth part; send the message 1 to the network device on the random access resource.
  • the terminal device further includes a receiving unit, and the receiving unit may be configured to receive a system message broadcast by the network device, where the system message includes the location information of the plurality of location areas.
  • Configuration information, configuration information of the multiple initial access resources, and an association relationship between the multiple location areas and the multiple initial access resources may be configured to receive a system message broadcast by the network device, where the system message includes the location information of the plurality of location areas.
  • the system message includes multiple system information blocks, and the configuration information of the multiple location areas and the configuration information of the multiple initial access resources are carried in the multiple system information blocks.
  • the configuration information of the multiple location areas and the configuration information of the multiple initial access resources are respectively carried in different system information blocks in the multiple system information blocks .
  • the multiple initial access resources are used for random access of non-terrestrial network NTN cells.
  • Fig. 11 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the network device may be any network device described above.
  • the network device 1100 may include a receiving unit 1110 and a determining unit 1120, and these units will be described in detail below.
  • the receiving unit 1110 may be configured to receive message 1 in the random access process sent by the terminal device based on the first initial access resource.
  • the determining unit 1120 may be configured to determine the current location area of the terminal device according to the first initial access resource and the association relationship between multiple location areas and multiple initial access resources.
  • the initial access resource includes one or more of the following resources: random access channel RACH resource; preamble; initial uplink bandwidth part.
  • the first initial access resource is a first RACH resource among multiple RACH resources, and any two RACH resources among the multiple RACH resources have different time domain/frequency domain resource, the receiving unit 1110 may be configured to receive the message 1 on the first RACH resource.
  • the first initial access resource is a first preamble set in multiple preamble sets, and any two preamble sets in the multiple preamble sets do not overlap with each other
  • the receiving unit 1110 may be configured to receive the message 1 from the terminal device, where the preamble in the message 1 is a preamble in the first preamble set.
  • the first initial access resource is a first initial uplink bandwidth part among multiple initial uplink bandwidth parts
  • the receiving unit 1110 may be configured to The message 1 is received on a random access resource in the bandwidth part.
  • the network device further includes a broadcast unit, and the broadcast unit may be configured to broadcast a system message to the terminal device, where the system message includes configurations of the multiple location areas information, configuration information of the multiple initial access resources, and an association relationship between the multiple location areas and the multiple initial access resources.
  • the system message includes multiple system information blocks, and the configuration information of the multiple location areas and the configuration information of the multiple initial access resources are carried in the multiple system information blocks.
  • the configuration information of the multiple location areas and the configuration information of the multiple initial access resources are respectively carried in different system information blocks in the multiple system information blocks .
  • the network device further includes an addressing unit, and the addressing unit may be configured to perform core network addressing according to the current location area of the terminal device.
  • the multiple initial access resources are used for random access of non-terrestrial network NTN cells.
  • Fig. 12 is a schematic structural diagram of an apparatus for random access provided by an embodiment of the present application.
  • the dashed line in Figure 12 indicates that the unit or module is optional.
  • the apparatus 1200 may be used to implement the methods described in the foregoing method embodiments.
  • the apparatus 1200 may be a chip, a terminal device or a network device.
  • Apparatus 1200 may include one or more processors 1210 .
  • the processor 1210 can support the device 1200 to implement the methods described in the foregoing method embodiments.
  • the processor 1210 may be a general purpose processor or a special purpose processor.
  • the processor may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • Apparatus 1200 may also include one or more memories 1220 .
  • a program is stored in the memory 1220, and the program can be executed by the processor 1210, so that the processor 1210 executes the methods described in the foregoing method embodiments.
  • the memory 1220 may be an independent device independent of the processor 1210 , or may be integrated in the processor 1210 .
  • the apparatus 1200 may also include a transceiver 1230 .
  • the processor 1220 can communicate with other devices or chips through the transceiver 1230 .
  • the processor 1210 may send and receive data with other devices or chips through the transceiver 1230 .
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include a terminal device 1310 and a network device 1320 .
  • the terminal device 1310 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1320 can be used to realize the corresponding functions realized by the network device in the above method. repeat.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the Let me repeat For the sake of brevity, the Let me repeat.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be read by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (Digital Video Disc, DVD)) or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种随机接入方法及装置,该方法包括:终端设备根据所述终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从所述多个初始接入资源中选择第一初始接入资源;所述终端设备根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1。终端设备可以使用与所处位置区域相关联的初始接入资源发起随机接入。对应地,网络设备可以隐式地通过终端设备选择的初始接入资源判断终端设备所处的位置区域,进而进行核心网寻址。

Description

随机接入方法及装置 技术领域
本申请涉及通信技术领域,并且具体地,涉及一种随机接入方法及装置。
背景技术
对于处于初始接入状态的终端设备来说,终端设备可以通过随机接入的方式与网络设备建立连接。在与网络设备建立连接之后,终端设备可以通过该网络设备与核心网进行通信。
然而,对于非地面网络(Non-Terrestrial Network,NTN)通信,由于一个NTN小区的覆盖范围很大,如一个NTN小区可以覆盖多个国家或地区,终端设备在与网络设备建立连接后,网络设备无法获知终端设备当前所处的位置区域,从而无法进行正确的核心网寻址。
发明内容
本申请提供一种随机接入方法及装置,能够使网络设备获得终端设备当前所处的位置区域。
第一方面,提供了一种随机接入方法,包括:终端设备根据所述终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从所述多个初始接入资源中选择第一初始接入资源;所述终端设备根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1。
第二方面,提供了一种随机接入方法,包括:网络设备接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1;所述网络设备根据所述第一初始接入资源,以及多个位置区域与多个初始接入资源之间的关联关系,确定所述终端设备当前所处的位置区域。
第三方面,提供了一种终端设备,包括:选择单元,用于根据所述终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从所述多个初始接入资源中选择第一初始接入资源;发送单元,用于根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1。
第四方面,提供了一种网络设备,包括:接收单元,用于接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1;确定单元,用于根据所述第一初始接入资源,以及多个位置区域与多个初始接入资源之间的关联关系,确定所述终端设备当前所处的位置区域。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第二方面中的方法。
第七方面,提供了一种装置,包括处理器,用于从存储器中调用并运行计算机程序,使得所述装置执行上述第一方面或第二方面中的方法。
第八方面,提供一种芯片,用于实现上述第一方面或第二方面中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述第一方面或第二方面中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第二方面中的方法。
第十方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第二方面中的方法。
第十一方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中的方法。
本申请通过引入多个初始接入资源,并将该多个初始接入资源与多个位置区域进行关联,使得终端设备在初始随机接入时,可以使用与所处位置区域相关联的初始接入资源发起随机接入。对应地,网络设备可以隐式地通过终端设备选择的初始接入资源判断终端设备所处的位置区域,进而进行核心网寻址。
附图说明
图1是一种无线通信***的场景示意图。
图2是一种基于竞争的随机接入的方法的示意性流程图。
图3是一种基于非竞争的随机接入的方法的示意性流程图。
图4是一种基于透传的NTN通信的场景示意图。
图5是一种基于非透传的NTN通信的场景示意图。
图6是本申请实施例提供的一种随机接入方法的示意性流程图。
图7示出的是一种多个位置区域与多个RACH资源之间的关联关系的示意图。
图8示出的是一种多个位置区域与多个前导码集合之间的关联关系的示意图。
图9示出的是一种多个位置区域与多个初始上行BWP之间的关联关系的示意图。
图10是本申请实施例提供的一种终端设备的示意性框图。
图11是本申请实施例提供的一种网络设备的示意性框图。
图12是本申请实施例提供的一种装置的示意性框图。
图13是本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信***100。该无线通信***100可以包括网络设备110。网络设备110可以是与终端设备通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该无线通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、新无线(New Radio,NR)、5G等。
还应理解,在本申请实施例中,终端可以包括但不限于应用于物联网中的终端设备,例如,可以是接入NB-IoT中的终端设备(可以称为“NB-IoT终端”):智能抄表设备、物流追踪设备、环境监测设备等;该终端还可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本申请实施例中,网络设备可以是接入网设备,例如可以是基站、发射和接收点(Transmit and Receive Point,TRP)或接入点,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB或e-NodeB),还可以是NR或5G的基站(next Generation Node B,gNB),本申请实施例对此不作具体限定。
以NR***为例,NR***中支持的最大信道带宽可以达到400MHz,也称为宽带载波(wideband carrier)。如果终端设备一直保持工作在宽带载波上,则UE的功率消耗是很大的。本申请实施例可以根据终端设备实际的吞吐量来调整终端设备的射频(Radio Frequency,RF)带宽可以优化终端设备的功率消耗,这就是引入带宽部分(Bandwidth Part,BWP)的动机。
处于连接状态的终端设备,一个时刻最多只能有一个激活的下行BWP和一个激活的上行BWP。网络设备可以给连接态终端设备配置至多4个上行链路(uplink,UP)BWP以及至多4个下行链路(downlink,DL)BWP。对于频分双工(frequency division duplex,FDD)***,上行BWP和下行BWP之间没有显示的对应(association)关系。比如,网络设备可以为一个连接态终端设备配置4个上行BWP(索引(index)分别是0,1,2,3)和4个下行BWP(index分别是0,1,2,3)。当前激活的UL BWP index可以是0,当前激活的下行BWP index可以是1;如果通过下行控制信息(Downlink Control Information,DCI)指令将下行BWP切换到另外一个BWP,比如从当前激活的DL BWP 1切换到DL BWP 2,UL BWP可以保持不变。
处于空闲(idle)状态和非活动(inactive)状态的终端设备,终端设备可以通过***消息获取 BWP的配置信息。例如,终端设备可以通过小区定义的同步信号块(cell defining synchronization signal block,CD-SSB)获取驻留小区的主信息块(master information block,MIB)和***信息块1(system information block 1,SIB1)信息。SIB1中指示了用于终端设备初始接入的初始(initial)BWP的相关配置信息,该初始BWP可用于终端设备随机接入。该初始BWP可以包括初始上行BWP和初始下行BWP,终端设备可以使用该初始上行BWP进行随机接入。
随机接入的方式有两种,一种是基于竞争的随机接入,另一种是基于非竞争的随机接入。下面结合图2和图3对这两种随机接入方式进行描述。
图2是本申请实施例提供的一种基于竞争的随机接入方法的流程图,该方法包括步骤S210~步骤S240。
在步骤S210中、终端设备向网络设备发送随机接入过程中的消息1(message 1,Msg1),该消息1中包括前导码(preamble)。
终端设备可以选择随机接入信道(random access channel,RACH)资源和前导码,并在选择的资源上发送选择的前导码。该RACH资源也可以称为物理随机接入信道(physical random access channel,PRACH)资源。
网络设备可以通过广播的形式向终端设备发送RACH的配置信息。RACH的配置信息可以包括RACH的时频资源的配置信息以及起始的前导码根序列的配置信息。
RACH的时域资源的配置信息可以通过1个RACH配置索引进行指示。该RACH配置索引中可以包括RACH资源的重复周期、一个RACH资源重复周期内包含的RACH时机(RACH occasion,RO)个数、每个RO的持续时间中的至少一种。RACH的频域资源的配置信息可以包括1个RACH起始频域资源索引和同一个时刻可以频分复用的RACH资源个数(即连续的RACH频域资源个数)。通过RACH频域资源的配置信息可以确定一段连续的频域资源。起始的前导码根序列可以通过小区广播,每个小区可以广播一个前导码根序列。基于配置的该起始前导码根序列,通过循环移位可以得到本小区可用的前导码集合。
RACH的配置信息可以承载在***消息中,即网络设备可以通过***消息来发送RACH的配置信息。***消息可以包括同步信号块(synchronization signal block,SSB),网络设备可以向终端设备广播SSB,该SSB可以是CD-SSB。该SSB中可以包括驻留小区的主信息块MIB和***信息块。***信息块可以包括SIB1和其他SIB。SIB1可以指示用于终端设备初始接入的初始BWP的相关配置信息,该配置信息中可以包括初始上行BWP和初始下行BWP。在初始上行BWP中,网络设备可以为初始接入的终端设备配置随机接入资源。该随机接入资源和SSB之间存在对应关系。例如,网络设备可以通过配置一个参考信号接收功率(reference signal receiving power,RSRP)门限,来控制终端设备对随机接入资源的选择。在随机接入过程被触发时,终端设备可以选择RSRP测量值满足RSRP门限的SSB,并按照SSB与随机接入资源的对应关系,选择对应的随机接入资源来发送前导码。
在步骤S220中、网络设备向终端设备发送Msg2,该Msg2也可以称为随机接入响应(random access response,RAR)。该Msg2可以通过物理下行控制信道(physical downlink control channel,PDCCH)承载。
终端设备发送Msg1后,可以开启一个随机接入响应时间窗,并在该时间窗内监测随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)加扰的PDCCH。RA-RNTI可以采用以下公式进行计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中,s_id表示RACH资源的第一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的索引(0≤s_id<14);t_id表示***帧中RACH资源的第一个时隙的索引(0≤t_id<80);f_id表示频域中的RACH资源的索引(0≤f_id<8);ul_carrier_id是用于前导码传输的上行载波,其中,0表示正常上行载波,1表示补充上行链路(supplementary uplink,SUL)载波。
由以上公式可知,RA-RNTI与终端设备发送Msg1所使用的RACH的时频资源有关。终端设备接收到PDCCH后,可以使用RA-RNTI对该PDCCH进行解码。
Msg2中还可以包括终端设备发送的前导码,如果终端设备接收到用RA-RNTI加扰的PDCCH,并且Msg2中包含自己发送的前导码,则终端设备可以认为成功接收到随机接入响应。
终端设备成功接收到PDCCH后,终端设备能够获得该PDCCH调度的物理下行共享信道(physical downlink shared channel,PDSCH),其中,该PDSCH中包含了RAR。该RAR可以包含多个信息。例如,RAR的子头(subheader)中可以包含回退指示(backoff indicator,BI),该BI可用于指示重传Msg1的回退时间;RAR中的随机接入前导码标识符(random access preamble identification,RAPID)指示网络设备响应收到的前导码索引;RAR中的负载(payload)中可以包含 定时提前组(timing advance group,TAG),该TAG可用于调整上行定时;RAR中还可以包括上行授权(UL grant),用于调度Msg3的上行资源指示;RAR中还可以包括临时小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI),对于初始接入的终端设备来说,终端设备可以使用该临时C-RNTI解码Msg4的PDCCH。
步骤S230、终端设备向网络设备发送Msg3。终端设备可以在网络设备调度的上行授权上发送Msg3。该Msg3也可以称为无线资源控制(Radio Resource Control,RRC)连接建立请求消息。
该Msg3主要用于通知网络设备该随机接入过程是由什么事件触发的。比如,如果是初始接入随机过程,终端设备可以在Msg3中携带UE标识(Identity,ID)以及建立原因(establishment cause)。如果是RRC重建,终端设备可以在Msg3中携带连接态的UE标识和establishment cause。
步骤S240、网络设备向终端设备发送Msg4。
该Msg4具有两个作用,一个是用于竞争冲突解决,另一个是向终端设备发送RRC配置消息。如果终端设备在Msg3中携带了C-RNTI,则Msg4采用该C-RNTI加扰的PDCCH调度,相应地,终端设备可以使用Msg3中的C-RNTI对PDCCH进行解码,得到Msg4。如果终端设备在Msg3中没有携带C-RNTI,如初始接入,则Msg4可以采用临时C-RNTI加扰的PDCCH调度,相应地,终端设备可以使用Msg2中的临时C-RNTI对PDCCH进行解码,得到Msg4。终端设备在解码PDCCH成功后,得到承载Msg4的PDSCH。终端设备可以将该PDSCH中的公共控制信道(common control channel,CCCH)服务数据单元(service data unit,SDU)与Msg3中的CCCH SDU进行比较,如果两者相同,则表示竞争解决成功。
图3是本申请实施例提供的一种基于非竞争的随机接入方法的流程图。该方法包括步骤S310~S330。
在步骤S310中,网络设备向终端设备发送前导码配置信息,该配置信息中包括随机接入过程中需要的前导码和RACH资源。
在步骤S320中,终端设备可以根据该前导码配置信息,向网络设备发送Msg1,也就是说,终端设备可以在该RACH资源上向网络设备发送该前导码。
在步骤S330中,网络设备向终端设备发送Msg2,该Msg2中可以包括RAR。终端设备接收到该RAR后,表示该随机接入过程结束。
从以上随机接入的过程可以看出,随机接入的主要目的就是终端设备与网络设备取得上行同步。在随机接入过程中,网络设备可以通过接收终端发送preamble所使用的RACH时频资源,就可以知道终端设备发送preamble的时刻,从而根据preamble的发送时刻和接收时刻确定该终端设备的初始时间提前量(time advance,TA),并通过Msg2告知终端设备。
在随机接入成功后,终端设备就建立了与网络设备之间的连接。进一步地,终端设备可以通过网络设备与核心网进行通信,也就是说,核心网可以对终端设备发送的数据进行路由和转发。
本申请实施例对核心网不做具体限定,例如,该核心网可以包括以下中的至少一种:接入和移动管理功能(Access and Mobility Management Function,AMF)网元、会话管理功能(Session Management Function,SMF)网元、用户面功能(User Plane Function,UPF)网元、统一数据管理功能(Unified Data Management,UDM)网元、策略控制功能(Policy Control Function,PCF)网元等。
对于地面通信***,需要在地面搭设通信设备,对于海洋、高山、沙漠等地区,地面网络设备由于成本或物理条件限制,很难采用地面网络设备的方式进行覆盖。由此,出现了一种非地面网络(Non Terrestrial Network,NTN)通信技术。
NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面通信***,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如,一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域。而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大时通讯的成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同可以分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
对于LEO,低轨道卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间为20分钟。信号传播距离短,链路损 耗少,对终端设备的发射功率要求不高。
对于GEO,地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信***的***容量,卫星可以采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面。一个卫星波束可以覆盖直径几十至上百公里的地面区域。
NTN的传输类型可以包括透传和非透传两种,下面以卫星为例,对这两种传输方式进行描述。透传也可以称为弯管转发传输,信号在卫星上只进行了频率的转换、信号的放大等过程,卫星对信号而言是透明的,在这种传输模式下,卫星相当于中继节点。非透传也可以称为再生传输、或星上接入/处理传输。在该传输模式下,卫星具有部分或全部基站功能,该卫星也可以称为非地面基站。
图4示出的是一种基于透传的场景示意图。卫星430的覆盖范围为区域420,该区域也称为NTN小区的覆盖范围。处于该NTN小区420中的终端设备410,可以向该卫星430发送信号,卫星430可以将该信号发送至地面上的网络设备440(或称接入网设备)。对于初始接入,终端设备410可以通过卫星430向网络设备440发起随机接入,以建立终端设备410与网络设备440之间的连接。终端设备410与网络设备440建立连接后,网络设备440可以将终端设备410发送的信号发送至对应的核心网,使核心网对该信号进行路由和转发。在该传输模式下,网络设备440虽然为地面上的网络设备,但是该网络设备440的覆盖范围仍是由卫星430的覆盖范围决定的,即该网络设备440的覆盖范围为NTN小区420的覆盖范围。
图5示出的是一种基于非透传的场景示意图。卫星430的覆盖范围为区域420,该区域也称为NTN小区的覆盖范围。处于该NTN小区420中的终端设备410,可以向该卫星430发送信号,由于该卫星430具有基站的功能,则在接收到终端设备发送的信号后,该卫星可以将该信号发送至对应的核心网。对于初始接入,终端设备410可以向该卫星430发起随机接入。在终端设备410与卫星430建立连接后,该卫星430可以将终端设备410发送的信号发送至对应的核心网450。在该传输模式下,卫星430就相当于基站或接入网设备。
不论是上述哪种传输模式,接入网设备的覆盖范围都是NTN小区的覆盖范围。由于NTN小区的覆盖范围很大,例如,其覆盖半径可以达到几千公里。此时,一个NTN小区可能覆盖了多个国家的地理位置。通常,NTN小区的覆盖范围大于核心网的覆盖范围,大的覆盖范围给核心网寻址带来了新的挑战。例如,对于一个覆盖跨越多个国家或地区的NTN小区,当终端设备在该小区内发起初始接入(例如终端设备发起紧急呼叫)时,由于网络设备并不知道终端所处的国家/地区,可能无法进行正确的核心网寻址,即无法选择正确的核心网。
为了辅助网络设备进行正确的核心网寻址,本申请实施例引入车联网(Vehicle-to-everything,V2X)中区域(zone)的概念,如可以将一个NTN小区划分为多个位置区域,从而将NTN小区划分成粒度更小的区域。网络设备在进行核心网寻址时,可以根据该更小粒度的区域进行寻址。
本申请实施例对为位置区域的划分方式不做具体限定。例如,可以根据地图信息、地理形状信息、区域参数中的至少一种进行划分。
对于地图信息,可以根据国家的边界信息和/或地区的边界信息将NTN小区划分成多个位置区域。例如,如果NTN小区中包括多个国家的区域,则可以根据国家的边界线将NTN小区分成多个位置区域。
对于地理形状信息,该地理形状可以是规则的地理形状,如矩形、圆形、六边形等。在进行区域划分时,可以根据规则地理形状的中心位置以及边长或半径等信息将NTN小区划分为多个区域。以圆形为例,可以根据圆形的圆心以及半径将NTN小区划分为多个位置区域。
对于区域参数,该区域参数可以包括区域的长度L、宽度W、经度和纬度方向上的区域个数(Nx,Ny)中的至少一种。该区域参数可以是由网络设备广播获得的,或者也可以是预先配置的。将区域的参考位置坐标记为(x0,y0),则区域标识的计算公式可以如下:
x1=Floor((x-x0)/L)Mod Nx
y1=Floor((y-y0)/W)Mod Ny
Zone_id=y1*Nx+x1
其中,L表示每个区域的长度;W表示每个区域的宽度;Nx表示在经度方向上的总区域数;Ny表示在纬度方向上的总区域数;x表示终端设备在经度方向上的位置;y表示终端设备在纬度方向上的位置。
终端设备可以根据当前所在的位置,确定自己所在的位置区域,并在随机接入的过程中将该位置区域的区域标识(zone ID)上报给网络设备,以辅助网络设备进行核心网寻址。
一种可行的方式是通过Msg3发送该区域标识。然而,在初始接入过程中,Msg3的传输资源的大小是受限的。Msg3传输资源的大小对上行覆盖有很大影响,如果网络设备为终端设备分配较大的Msg3传输资源,就会使上行覆盖的区域变小,因而网络设备通常不会分配较大的Msg3传输资源,这样终端设备就很有可能没有可用的资源上报该区域标识。综上,如何确定终端设备当前所处的位置区域,并节省Msg3的传输资源成为亟需解决的问题。
为了解决上述问题,本申请实施例提供一种随机接入的方法,不仅能够使网络设备确定终端设备当前所处的位置区域,而且还能够节省Msg3的传输资源。如图6所示,该方法包括步骤S610~步骤S630,下面对这些步骤进行详细描述。
在步骤S610中,终端设备根据终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从多个初始接入资源中选择第一初始接入资源。本申请实施例中的终端设备可以为处于初始接入状态的终端设备。
终端设备当前所处的位置区域可以指终端设备在NTN小区中的位置区域。NTN小区可以按照上文描述的任一种方式进行区域划分,如地图信息、地理形状信息、区域参数等。一个NTN小区可以被划分为多个区域,终端设备可以根据自身的位置信息,从多个区域中确定当前所处的位置区域。
终端设备获取自身位置信息的方式有多种,例如,终端设备可以通过全球导航卫星***(Global Navigation Satellite System,GNSS)获取当前的位置区域。GNSS可以包括以下中的至少一种:全球定位***(Global Positioning System,GPS)、北斗、格洛纳斯(Glonass)、伽利略(Galileo)等。
多个位置区域与多个初始接入资源之间的关联关系可以是预先配置的,或者也可以是网络设备发送给终端设备的。终端设备在选择第一初始接入资源时,可以将多个位置区域中与当前所处的位置区域对应的初始接入资源作为第一初始接入资源。
在步骤S620中,终端设备根据第一初始接入资源向网络设备发送Msg1。对于网络设备来说,网络设备可以接收终端设备基于第一初始接入资源发送的Msg1。本申请实施例中的网络设备为NTN通信***中的网络设备,该网络设备例如可以为图4中的网络设备440。
在步骤S630中,网络设备根据第一初始接入资源,以及多个位置区域与多个初始接入资源之间的关联关系,确定终端设备当前所处的位置区域。网络设备在确定终端设备所在的区域时,可以将多个位置区域中与第一初始接入资源对应的区域确定为终端设备当前所处的位置区域。
网络设备在确定出终端设备当前所处的位置区域之后,可以根据终端设备当前所处的位置区域进行核心网寻址。例如,假设终端设备当前所处的位置区域为区域1,能够覆盖区域1的核心网为核心网1,则网络设备可以为该终端设备选择核心网1,使得终端设备可以通过网络设备与核心网1进行通信。
本申请通过引入多个初始接入资源,并将该多个初始接入资源与多个位置区域进行关联,使得终端设备在初始接入时,可以使用与所处位置区域相关联的初始接入资源发起随机接入。对应地,网络设备可以隐式地通过终端设备选择的初始接入资源判断终端设备所处的位置区域,进而进行核心网寻址。上述方式不需要额外占用Msg3的传输资源,从而能够节省Msg3的传输资源,保证Msg3的上行覆盖不受影响。
多个位置区域的配置信息、多个初始接入资源的配置信息、和/或多个位置区域与多个初始接入资源之间的关联关系可以是网络设备配置给终端设备的。例如,网络设备可以向终端设备广播***消息,该***消息中可以包括多个位置区域的配置信息、多个初始接入资源的配置信息、多个位置区域与多个初始接入资源之间的关联关系中的至少一种。
为方便描述,下文将多个位置区域的配置信息、多个初始接入资源的配置信息、以及多个位置区域与多个初始接入资源之间的关联关***称为第一配置信息。
***消息可以包括多个***信息块,如SIB1、SIB2、…、SIBn等等。第一配置信息可以承载在现有的***信息块中,如SIB1中;或者,第一配置信息也可以承载在新的***信息块中,该新的***信息块是为了承载该第一配置信息而新设置的,也就是说,该***信息块是专用于承载该第一配置信息的。
第一配置信息中不同的配置信息可以承载在相同的***信息块中,也可以承载在不同的***信息块中,本申请实施例对此不作具体限定。例如,多个位置区域的配置信息和多个初始接入资源的配置信息承载在同一个***信息块中,如都承载在SIB1中,或者都承载在其他SIB中。又例如,多个位置区域的配置信息和多个初始接入资源分别承载在不同的***信息块中,如多个位置区域的配置信息承载在SIB1中,多个初始接入资源的配置信息承载在其他SIB中,或者多个初始接入资源的配置信息承载在SIB1中,多个位置区域的配置信息承载在其他SIB中。
***消息中还可以包括指示信息,该指示信息用于指示多个位置区域与多个初始接入资源之间的 关联关系。本申请实施例对多个位置区域与多个初始接入资源之间的关联关系不做具体限定。例如,多个位置区域与多个初始接入资源之间具有一一对应的关系,即一个位置区域对应一个初始接入资源。又例如,多个位置区域中的一个位置区域对应多个初始接入资源中的至少两个。再例如,多个初始接入资源中的一个资源可以对应多个位置区域中的至少两个。举例说明,如果两个位置区域被同一个核心网覆盖,则可以为这两个区域配置一个初始接入资源,以提高资源的利用率。
初始接入资源可以包括以下中的一种或多种:RACH资源、前导码、初始上行BWP。例如,初始接入资源可以包括RACH资源、前导码、初始上行BWP中的任意一种。又例如,初始接入资源可以包括RACH资源、前导码、初始上行BWP中的任意两种。再例如,初始接入资源可以包括RACH资源、前导码和初始上行BWP。
下面结合图7-图9,分别对上述三种类型的初始接入资源进行描述。
以RACH资源为例,第一初始接入资源可以为多个(套)RACH资源中的第一RACH资源。终端设备可以通过GNSS获取当前位置,并根据当前位置确定当前所处的位置区域。终端设备可以根据当前所处的位置区域,以及多个RACH资源与多个位置区域之间的关联关系,从多个RACH资源中选择第一RACH资源。该第一RACH资源为多个RACH资源中与终端设备当前所处的位置区域对应的RACH资源。进一步地,终端设备可以在该第一RACH资源上向网络设备发送Msg1,相应地,网络设备可以在第一RACH资源上接收终端设备发送的Msg1。
该多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,也就是说,多个RACH资源中不同RACH资源对应的时域不同和/或频域不同。每个RACH资源可以包括时频资源参数等,不同的时频资源参数可以对应不同的时频资源。
多个RACH资源与多个位置区域之间的关联关系有多种,本申请实施例对此不做具体限定。例如,多个RACH资源与多个位置区域之间可以具有一一对应的关系,也就是说,一个RACH资源对应一个位置区域。又例如,多个RACH资源中的一个RACH资源可以与多个位置区域中的至少两个位置区域相关联。再例如,多个位置区域中的一个位置区域可以与多个RACH资源中的至少两个RACH资源相关联。
图7示出的是一种多个RACH资源与多个位置区域之间的关联关系的示意图。以一个RACH资源对应一个位置区域为例,图7所示的NTN小区420被划分为8个区域,每个区域都有各自对应的RACH资源。如位置区域1对应RACH资源1,位置区域2对应RACH资源2,以此类推。假设终端设备当前处于位置区域2,则终端设备可以使用RACH资源2向网络设备发送Msg1。
可以理解的是,图7示出的是一种以六边形进行区域划分的方式,本申请实施例对此不作具体限定,可以使用上文描述的任意一种或多种方式进行区域的划分,如国家或地区边界、区域参数、规则地理形状等。另外,图7仅示出了8个位置区域,但这仅是一种示例,一个NTN小区可以包括更多或更少的位置区域。
第一配置信息可以包括多个RACH资源的配置信息、多个位置区域的配置信息、以及多个RACH资源与多个位置区域之间的关联关系。网络设备可以通过广播***消息的方式向终端设备发送第一配置信息。例如,网络设备可以通过SIB1和/或其他SIB广播第一配置信息,相应地,终端设备可以通过接收SIB1和/或其他SIB来获得第一配置信息。其中,其他SIB可以包括除SIB1之外的任意SIB,如SIB2、SIB3或SIB4等等。
多个RACH资源的配置信息和多个位置区域的配置信息可以通过相同的SIB广播,或者,多个RACH资源的配置信息和多个位置区域的配置信息可以通过不同的SIB广播。例如,多个RACH资源的配置信息和多个位置区域的配置信息可以都通过SIB1广播,或者多个RACH资源的配置信息和多个位置区域的配置信息都通过其他SIB广播。又例如,多个RACH资源的配置信息通过SIB1广播,多个位置区域的配置信息通过其他SIB广播;或者多个位置区域的配置信息通过SIB1广播,多个RACH资源的配置信息通过其他SIB广播。
网络设备在接收到Msg1后,可以根据接收Msg1所使用的第一RACH资源,即接收Msg1所在的时频资源位置,确定终端设备当前所处的位置区域。进一步地,网络设备可以根据第一RACH资源,以及多个RACH资源与多个位置区域之间的关联关系,确定终端设备当前所处的位置区域。例如,网络设备可以将多个位置区域中与第一RACH资源对应的位置区域确定为终端设备当前所处的位置区域。
在确定出终端设备当前所处的位置区域后,网络设备可以基于该位置区域进行核心网寻址,即为终端设备选择对应的核心网,使得终端设备可以通过网络设备与该核心网进行通信。
本申请实施例通过引入多个RACH资源,并将该多个RACH资源与多个位置区域进行绑定,使得终端设备在初始接入时,可以使用与所处位置区域相关联的RACH资源发起初始接入。网络设备可以 隐式地通过终端设备选择的RACH资源判断终端设备所处的位置区域,进而进行核心网寻址。上述方式不需要额外占用Msg3的传输资源,从而能够节省Msg3的传输资源,保证Msg3的上行覆盖不受影响。
以前导码为例,第一初始接入资源可以为多个前导码集合中的第一前导码集合。终端设备可以通过GNSS获取当前位置,并根据当前位置确定当前所处的位置区域。终端设备可以根据当前所处的位置区域,以及多个前导码集合与多个位置区域之间的关联关系,从多个前导码集合中选择第一前导码集合。该第一前导码集合可以为多个前导码集合中与终端设备当前所处的位置区域对应的前导码集合。进一步地,终端设备可以向网络设备发送Msg1,该Msg1中包括该第一前导码集合中的前导码,相应地,网络设备可以接收终端设备发送的Msg1,该Msg1中包括第一前导码集合中的前导码。如果第一前导码集合中包括多个前导码,终端设备设备可以随机选择一个前导码,并将选择的前导码发送给网络设备。
该多个前导码集合中的任意两个前导码集合互不重叠,也就是说,多个前导码集合中不同前导码集合不包含相同的前导码。
多个前导码集合与多个位置区域之间的关联关系有多种,本申请实施例对此不做具体限定。例如,多个前导码集合与多个位置区域之间可以具有一一对应的关系,也就是说,一个前导码集合对应一个位置区域。又例如,多个前导码集合中的一个前导码集合可以与多个位置区域中的至少两个位置区域相关联。再例如,多个位置区域中的一个位置区域可以与多个前导码集合中的至少两个前导码集合相关联。
图8示出的是一种多个前导码集合与多个位置区域之间的关联关系的示意图。以一个前导码集合对应一个位置区域为例,图8所示的NTN小区420被划分为8个区域,每个区域都有各自对应的前导码集合。如位置区域1对应前导码集合1,位置区域2对应前导码集合2,以此类推。假设终端设备当前处于位置区域2,则终端设备可以从前导码集合2中选择一个前导码,并向网络设备发送该前导码。
可以理解的是,图8示出的是一种以六边形进行区域划分的方式,本申请实施例对此不作具体限定,可以使用上文描述的任意一种或多种方式进行区域的划分,如国家或地区边界、区域参数、规则地理形状等。另外,图8仅示出了8个位置区域,但这仅是一种示例,一个NTN小区可以包括更多或更少的位置区域。
第一配置信息可以包括多个前导码集合的配置信息、多个位置区域的配置信息、以及多个前导码集合与多个位置区域之间的关联关系。网络设备可以通过广播***消息的方式向终端设备发送第一配置信息。例如,网络设备可以通过SIB1和/或其他SIB广播第一配置信息,相应地,终端设备可以通过接收SIB1和/或其他SIB来获得第一配置信息。其中,其他SIB可以包括除SIB1之外的任意SIB,如SIB2、SIB3或SIB4等等。
多个前导码集合的配置信息和多个位置区域的配置信息可以通过相同的SIB广播,或者,多个前导码集合的配置信息和多个位置区域的配置信息可以通过不同的SIB广播。例如,多个前导码集合的配置信息和多个位置区域的配置信息可以都通过SIB1广播,或者多个前导码集合的配置信息和多个位置区域的配置信息都通过其他SIB广播。又例如,多个前导码集合的配置信息通过SIB1广播,多个位置区域的配置信息通过其他SIB广播;或者多个位置区域的配置信息通过SIB1广播,多个前导码集合的配置信息通过其他SIB广播。
网络设备在接收到Msg1后,可以根据Msg1中包含的前导码,确定终端设备当前所处的位置区域。网络设备可以根据该前导码,确定包含该前导码的第一前导码集合。进一步地,网络设备可以根据第一前导码集合,以及多个前导码集合与多个位置区域之间的关联关系,确定终端设备当前所处的位置区域。例如,网络设备可以将多个位置区域中与第一前导码集合对应的位置区域确定为终端设备当前所处的位置区域。
在确定出终端设备当前所处的位置区域后,网络设备可以基于该位置区域进行核心网寻址,即为终端设备选择对应的核心网,使得终端设备可以通过网络设备与该核心网进行通信。
在该场景中,网络设备可以仅为终端设备配置一个RACH资源,例如,可以复用现有的RACH资源,而是通过多个前导码集合与多个位置区域之间的关联关系,隐式地指示终端设备当前所处的位置区域。通过将多个前导码集合与多个位置区域进行绑定,使得终端设备在初始接入时,可以使用与所处位置区域相关联的前导码集合中的前导码发起初始接入。网络设备可以隐式地通过终端设备发送的前导码来判断终端设备当前所处的位置区域,进而进行核心网寻址。上述方式不需要额外占用Msg3的传输资源,从而能够节省Msg3的传输资源,保证Msg3的上行覆盖不受影响。
以BWP为例,第一初始接入资源可以为多个初始上行BWP中的第一初始上行BWP。终端设备 可以通过GNSS获取当前位置,并根据当前位置确定当前所处的位置区域。终端设备可以根据当前所处的位置区域,以及多个初始上行BWP与多个位置区域之间的关联关系,从多个初始上行BWP中选择第一初始上行BWP。该第一初始上行BWP为多个初始上行BWP中与终端设备当前所处的位置区域对应的BWP。进一步地,终端设备可以从该BWP中选择RACH资源,并在该RACH资源上向网络设备发送Msg1,相应地,网络设备可以在第一初始上行BWP中的RACH资源上接收终端设备发送的Msg1。如果第一初始上行BWP中包括多个RACH资源,则终端设备可以随机选择一个RACH资源,并在该RACH资源上向网络设备发送Msg1。
该多个初始上行BWP中的任意两个BWP互不重叠,也就是说,多个初始上行BWP中不同BWP对应的频域不重叠。
多个初始上行BWP与多个位置区域之间的关联关系有多种,本申请实施例对此不做具体限定。例如,多个初始上行BWP与多个位置区域之间可以具有一一对应的关系,也就是说,一个BWP对应一个位置区域。又例如,多个初始上行BWP中的一个BWP可以与多个位置区域中的至少两个位置区域相关联。再例如,多个位置区域中的一个位置区域可以与多个初始上行BWP中的至少两个BWP相关联。
图9示出的是一种多个初始上行BWP与多个位置区域之间的关联关系的示意图。以一个BWP对应一个位置区域为例,图9所示的NTN小区被划分为4个区域,每个区域都有各自对应的BWP。如位置区域0对应BWP#0,位置区域1对应BWP#1,以此类推。假设终端设备当前处于位置区域2,则终端设备可以从BWP#2中选择RACH资源,并在该RACH资源上向网络设备发送Msg1。
可以理解的是,图9示出的是一种以四边形进行区域划分的方式,本申请实施例对此不作具体限定,可以使用上文描述的任意一种或多种方式进行区域的划分,如国家或地区边界、区域参数、规则地理形状等。另外,图9仅示出了4个位置区域,但这仅是一种示例,一个NTN小区可以包括更多或更少的位置区域。
第一配置信息可以包括多个初始上行BWP的配置信息、多个位置区域的配置信息、以及多个初始上行BWP与多个位置区域之间的关联关系。网络设备可以通过广播***消息的方式向终端设备发送第一配置信息。例如,网络设备可以通过SIB1和/或其他SIB广播第一配置信息,相应地,终端设备可以通过接收SIB1和/或其他SIB来获得第一配置信息。其中,其他SIB可以包括除SIB1之外的任意SIB,如SIB2、SIB3或SIB4等等。
多个初始上行BWP的配置信息和多个位置区域的配置信息可以通过相同的SIB广播,或者,多个初始上行BWP的配置信息和多个位置区域的配置信息可以通过不同的SIB广播。例如,多个初始上行BWP的配置信息和多个位置区域的配置信息可以都通过SIB1广播,或者多个初始上行BWP的配置信息和多个位置区域的配置信息都通过其他SIB广播。又例如,多个初始上行BWP的配置信息通过SIB1广播,多个位置区域的配置信息通过其他SIB广播;或者多个位置区域的配置信息通过SIB1广播,多个初始上行BWP的配置信息通过其他SIB广播。
网络设备在接收到Msg1后,可以根据接收Msg1所使用的第一BWP,即接收Msg1所在的频域资源位置,确定终端设备当前所处的位置区域。进一步地,网络设备可以根据第一初始上行BWP,以及多个初始上行BWP与多个位置区域之间的关联关系,确定终端设备当前所处的位置区域。例如,网络设备可以将多个位置区域中与第一初始上行BWP对应的位置区域确定为终端设备当前所在的位置区域。
在确定出终端设备当前所处的位置区域后,网络设备可以基于该位置区域进行核心网寻址,即为终端设备选择对应的核心网,使得终端设备可以通过网络设备与该核心网进行通信。
本申请实施例通过引入多个初始上行BWP,并将该多个初始上行BWP与多个位置区域进行绑定,使得终端设备在初始接入时,可以使用与所处位置区域相关联的初始上行BWP发起初始接入。网络设备可以隐式地通过终端设备发送Msg1的频域资源来判断终端设备所处的位置区域,进而进行核心网寻址。上述方式不需要额外占用Msg3的传输资源,从而能够节省Msg3的传输资源,保证Msg3的上行覆盖不受影响。另外,不同位置区域的终端设备可以使用不同的初始上行BWP进行初始接入,从而可以达到负载均衡,增加上行容量。
上文描述的多种方式可以单独使用,也可以相互结合使用,本申请实施例对此不做具体限定。例如,以第一前导码集合和第一RACH资源为例,终端设备可以根据当前所处的位置区域,选择第一RACH资源以及第一前导码集合,并在第一RACH资源上向网络设备发送Msg1,该Msg1中包括第一前导码集合中的前导码。网络设备接收到该Msg1后,可以根据Msg1使用的第一RACH资源以及第一前导码集合,确定终端设备当前所处的位置区域。
上文结合图1至图9,详细描述了本申请的方法实施例,下面结合图10-图13,详细描述本申请的 装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图10是本申请实施例提供的一种终端设备的示意性框图。该终端设备可以为上文描述的任意一种终端设备。该终端设备1000可以包括选择单元1010和发送单元1020,下面对这些单元进行详细介绍。
选择单元1010可以被配置为根据所述终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从所述多个初始接入资源中选择第一初始接入资源。
发送单元1020可以被配置为根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1。
可选地,在一些实施例中,所述初始接入资源包括以下资源中的一种或多种:随机接入信道RACH资源;前导码;初始上行带宽部分。
可选地,在一些实施例中,所述第一初始接入资源为多个RACH资源中的第一RACH资源,所述多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,所述发送单元1020可以被配置为在所述第一RACH资源上向所述网络设备发送所述消息1。
可选地,在一些实施例中,所述第一初始接入资源为多个前导码集合中的第一前导码集合,所述多个前导码集合中的任意两个前导码集合互不重叠,所述发送单元1020可以被配置为向所述网络设备发送所述消息1,所述消息1中的前导码为所述第一前导码集合中的前导码。
可选地,在一些实施例中,所述第一初始接入资源为多个初始上行带宽部分中的第一初始上行带宽部分,所述发送单元1020可以被配置为从所述第一初始上行带宽部分中选择随机接入资源;在所述随机接入资源上向所述网络设备发送所述消息1。
可选地,在一些实施例中,所述终端设备还包括接收单元,所述接收单元可以被配置为接收所述网络设备广播的***消息,所述***消息中包括所述多个位置区域的配置信息、所述多个初始接入资源的配置信息、以及所述多个位置区域与所述多个初始接入资源之间的关联关系。
可选地,在一些实施例中,所述***消息包括多个***信息块,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息承载在所述多个***信息块中的同一个***信息块中,或者,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息分别承载在所述多个***信息块中的不同***信息块中。
可选地,在一些实施例中,所述多个初始接入资源用于非地面网络NTN小区的随机接入。
图11是本申请实施例提供的一种网络设备的示意性框图。该网络设备可以为上文描述的任意一种网络设备。该网络设备1100可以包括接收单元1110和确定单元1120,下面对这些单元进行详细介绍。
接收单元1110可以被配置为接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1。
确定单元1120可以被配置为根据所述第一初始接入资源,以及多个位置区域与多个初始接入资源之间的关联关系,确定所述终端设备当前所处的位置区域。
可选地,在一些实施例中,所述初始接入资源包括以下资源中的一种或多种:随机接入信道RACH资源;前导码;初始上行带宽部分。
可选地,在一些实施例中,所述第一初始接入资源为多个RACH资源中的第一RACH资源,所述多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,所述接收单元1110可以被配置为在所述第一RACH资源上接收所述消息1。
可选地,在一些实施例中,所述第一初始接入资源为多个前导码集合中的第一前导码集合,所述多个前导码集合中的任意两个前导码集合互不重叠,所述接收单元1110可以被配置为从所述终端设备接收所述消息1,所述消息1中的前导码为所述第一前导码集合中的前导码。
可选地,在一些实施例中,所述第一初始接入资源为多个初始上行带宽部分中的第一初始上行带宽部分,所述接收单元1110可以被配置为在所述第一初始上行带宽部分中的随机接入资源上接收所述消息1。
可选地,在一些实施例中,所述网络设备还包括广播单元,所述广播单元可以被配置为向所述终端设备广播***消息,所述***消息中包括所述多个位置区域的配置信息、所述多个初始接入资源的配置信息、以及所述多个位置区域与所述多个初始接入资源之间的关联关系。
可选地,在一些实施例中,所述***消息包括多个***信息块,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息承载在所述多个***信息块中的同一个***信息块中,或者,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息分别承载在所述多个***信息块中的不 同***信息块中。
可选地,在一些实施例中,所述网络设备还包括寻址单元,所述寻址单元可以被配置为根据所述终端设备当前所处的位置区域进行核心网寻址。
可选地,在一些实施例中,所述多个初始接入资源用于非地面网络NTN小区的随机接入。
图12是本申请实施例提供的用于随机接入的装置的示意性结构图。图12中的虚线表示该单元或模块为可选的。该装置1200可用于实现上述方法实施例中描述的方法。该装置1200可以是芯片、终端设备或网络设备。
装置1200可以包括一个或多个处理器1210。该处理器1210可支持装置1200实现前文方法实施例所描述的方法。该处理器1210可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1200还可以包括一个或多个存储器1220。存储器1220上存储有程序,该程序可以被处理器1210执行,使得处理器1210执行前文方法实施例所描述的方法。存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
装置1200还可以包括收发器1230。处理器1220可以通过收发器1230与其他设备或芯片进行通信。例如,处理器1210可以通过收发器1230与其他设备或芯片进行数据收发。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图13是本申请实施例提供的一种通信***的示意性框图。如图13所示,该通信***可以包括终端设备1310和网络设备1320。其中,该终端设备1310可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 ***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(Digital Video Disc,DVD))或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种随机接入方法,其特征在于,包括:
    终端设备根据所述终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从所述多个初始接入资源中选择第一初始接入资源;
    所述终端设备根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1。
  2. 根据权利要求1所述的方法,其特征在于,所述初始接入资源包括以下资源中的一种或多种:
    随机接入信道RACH资源;
    前导码;
    初始上行带宽部分。
  3. 根据权利要求2所述的方法,其特征在于,所述第一初始接入资源为多个RACH资源中的第一RACH资源,所述多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,
    所述终端设备根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1,包括:
    所述终端设备在所述第一RACH资源上向所述网络设备发送所述消息1。
  4. 根据权利要求2所述的方法,其特征在于,所述第一初始接入资源为多个前导码集合中的第一前导码集合,所述多个前导码集合中的任意两个前导码集合互不重叠,
    所述终端设备根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1,包括:
    所述终端设备向所述网络设备发送所述消息1,所述消息1中的前导码为所述第一前导码集合中的前导码。
  5. 根据权利要求2所述的方法,其特征在于,所述第一初始接入资源为多个初始上行带宽部分中的第一初始上行带宽部分,
    所述终端设备根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1,包括:
    所述终端设备从所述第一初始上行带宽部分中选择随机接入资源;
    所述终端设备在所述随机接入资源上向所述网络设备发送所述消息1。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备广播的***消息,所述***消息中包括所述多个位置区域的配置信息、所述多个初始接入资源的配置信息、以及所述多个位置区域与所述多个初始接入资源之间的关联关系。
  7. 根据权利要求6所述的方法,其特征在于,所述***消息包括多个***信息块,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息承载在所述多个***信息块中的同一个***信息块中,或者,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息分别承载在所述多个***信息块中的不同***信息块中。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述多个初始接入资源用于非地面网络NTN小区的随机接入。
  9. 一种随机接入方法,其特征在于,包括:
    网络设备接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1;
    所述网络设备根据所述第一初始接入资源,以及多个位置区域与多个初始接入资源之间的关联关系,确定所述终端设备当前所处的位置区域。
  10. 根据权利要求9所述的方法,其特征在于,所述初始接入资源包括以下资源中的一种或多种:
    随机接入信道RACH资源;
    前导码;
    初始上行带宽部分。
  11. 根据权利要求10所述的方法,其特征在于,所述第一初始接入资源为多个RACH资源中的第一RACH资源,所述多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,
    所述网络设备接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1,包括:
    所述网络设备在所述第一RACH资源上接收所述消息1。
  12. 根据权利要求10所述的方法,其特征在于,所述第一初始接入资源为多个前导码集合中的第一前导码集合,所述多个前导码集合中的任意两个前导码集合互不重叠,
    所述网络设备接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1,包括:
    所述网络设备从所述终端设备接收所述消息1,所述消息1中的前导码为所述第一前导码集合中的前导码。
  13. 根据权利要求10所述的方法,其特征在于,所述第一初始接入资源为多个初始上行带宽部分中的第一初始上行带宽部分,
    所述网络设备接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1,包括:
    所述网络设备在所述第一初始上行带宽部分中的随机接入资源上接收所述消息1。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备广播***消息,所述***消息中包括所述多个位置区域的配置信息、所述多个初始接入资源的配置信息、以及所述多个位置区域与所述多个初始接入资源之间的关联关系。
  15. 根据权利要求14所述的方法,其特征在于,所述***消息包括多个***信息块,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息承载在所述多个***信息块中的同一个***信息块中,或者,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息分别承载在所述多个***信息块中的不同***信息块中。
  16. 根据权利要求9-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述终端设备当前所处的位置区域进行核心网寻址。
  17. 根据权利要求9-16中任一项所述的方法,其特征在于,所述多个初始接入资源用于非地面网络NTN小区的随机接入。
  18. 一种终端设备,其特征在于,包括:
    选择单元,用于根据所述终端设备当前所处的位置区域,以及多个位置区域与多个初始接入资源之间的关联关系,从所述多个初始接入资源中选择第一初始接入资源;
    发送单元,用于根据所述第一初始接入资源向网络设备发送随机接入过程中的消息1。
  19. 根据权利要求18所述的终端设备,其特征在于,所述初始接入资源包括以下资源中的一种或多种:
    随机接入信道RACH资源;
    前导码;
    初始上行带宽部分。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一初始接入资源为多个RACH资源中的第一RACH资源,所述多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,所述发送单元具体用于:
    在所述第一RACH资源上向所述网络设备发送所述消息1。
  21. 根据权利要求19所述的终端设备,其特征在于,所述第一初始接入资源为多个前导码集合中的第一前导码集合,所述多个前导码集合中的任意两个前导码集合互不重叠,所述发送单元具体用于:
    向所述网络设备发送所述消息1,所述消息1中的前导码为所述第一前导码集合中的前导码。
  22. 根据权利要求19所述的终端设备,其特征在于,所述第一初始接入资源为多个初始上行带宽部分中的第一初始上行带宽部分,所述发送单元具体用于:
    从所述第一初始上行带宽部分中选择随机接入资源;
    在所述随机接入资源上向所述网络设备发送所述消息1。
  23. 根据权利要求18-22中任一项所述的终端设备,其特征在于,所述终端设备还包括接收单元,所述接收单元用于:
    接收所述网络设备广播的***消息,所述***消息中包括所述多个位置区域的配置信息、所述多个初始接入资源的配置信息、以及所述多个位置区域与所述多个初始接入资源之间的关联关系。
  24. 根据权利要求23所述的终端设备,其特征在于,所述***消息包括多个***信息块,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息承载在所述多个***信息块中的同一个***信息块中,或者,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息分别承载在所述多个***信息块中的不同***信息块中。
  25. 根据权利要求18-24中任一项所述的终端设备,其特征在于,所述多个初始接入资源用于非地面网络NTN小区的随机接入。
  26. 一种网络设备,其特征在于,包括:
    接收单元,用于接收终端设备基于第一初始接入资源发送的随机接入过程中的消息1;
    确定单元,用于根据所述第一初始接入资源,以及多个位置区域与多个初始接入资源之间的关联关系,确定所述终端设备当前所处的位置区域。
  27. 根据权利要求26所述的网络设备,其特征在于,所述初始接入资源包括以下资源中的一种或 多种:
    随机接入信道RACH资源;
    前导码;
    初始上行带宽部分。
  28. 根据权利要求27所述的网络设备,其特征在于,所述第一初始接入资源为多个RACH资源中的第一RACH资源,所述多个RACH资源中的任意两个RACH资源具有不同的时域/频域资源,所述接收单元具体用于:
    在所述第一RACH资源上接收所述消息1。
  29. 根据权利要求27所述的网络设备,其特征在于,所述第一初始接入资源为多个前导码集合中的第一前导码集合,所述多个前导码集合中的任意两个前导码集合互不重叠,所述接收单元具体用于:
    从所述终端设备接收所述消息1,所述消息1中的前导码为所述第一前导码集合中的前导码。
  30. 根据权利要求27所述的网络设备,其特征在于,所述第一初始接入资源为多个初始上行带宽部分中的第一初始上行带宽部分,所述接收单元具体用于:
    在所述第一初始上行带宽部分中的随机接入资源上接收所述消息1。
  31. 根据权利要求26-30中任一项所述的网络设备,其特征在于,所述网络设备还包括广播单元,所述广播单元用于:
    向所述终端设备广播***消息,所述***消息中包括所述多个位置区域的配置信息、所述多个初始接入资源的配置信息、以及所述多个位置区域与所述多个初始接入资源之间的关联关系。
  32. 根据权利要求31所述的网络设备,其特征在于,所述***消息包括多个***信息块,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息承载在所述多个***信息块中的同一个***信息块中,或者,所述多个位置区域的配置信息和所述多个初始接入资源的配置信息分别承载在所述多个***信息块中的不同***信息块中。
  33. 根据权利要求26-32中任一项所述的网络设备,其特征在于,所述网络设备还包括寻址单元,所述寻址单元用于:
    根据所述终端设备当前所处的位置区域进行核心网寻址。
  34. 根据权利要求26-33中任一项所述的网络设备,其特征在于,所述多个初始接入资源用于非地面网络NTN小区的随机接入。
  35. 一种终端设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1-8中任一项所述的随机接入方法。
  36. 一种网络设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求9-17中任一项所述的随机接入方法。
  37. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得所述装置执行如权利要求1-8中任一项所述的方法。
  38. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得所述装置执行如权利要求9-17中任一项所述的方法。
  39. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-8中任一项所述的方法。
  40. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求9-17中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序或指令被执行时,实现如权利要求1-8中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被执行时,实现如权利要求9-17中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1-8中任一项所述的方法。
  44. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求9-17中任一项所述的方法。
  45. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-8中任一项所述的方法。
  46. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求9-17中任一项所述的方法。
PCT/CN2021/100940 2021-06-18 2021-06-18 随机接入方法及装置 WO2022261948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/100940 WO2022261948A1 (zh) 2021-06-18 2021-06-18 随机接入方法及装置
CN202180095538.3A CN116965140A (zh) 2021-06-18 2021-06-18 随机接入方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100940 WO2022261948A1 (zh) 2021-06-18 2021-06-18 随机接入方法及装置

Publications (1)

Publication Number Publication Date
WO2022261948A1 true WO2022261948A1 (zh) 2022-12-22

Family

ID=84525899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100940 WO2022261948A1 (zh) 2021-06-18 2021-06-18 随机接入方法及装置

Country Status (2)

Country Link
CN (1) CN116965140A (zh)
WO (1) WO2022261948A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511156A (zh) * 2018-11-29 2019-03-22 华为技术有限公司 一种选择prach资源的方法及装置
WO2020167091A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
US20210022055A1 (en) * 2019-07-16 2021-01-21 FG Innovation Company Limited Method and apparatus for sidelink operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511156A (zh) * 2018-11-29 2019-03-22 华为技术有限公司 一种选择prach资源的方法及装置
WO2020167091A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
US20210022055A1 (en) * 2019-07-16 2021-01-21 FG Innovation Company Limited Method and apparatus for sidelink operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""Discussion on Decoupled Cell ID"", 3GPP TSG RAN WG2 #114-E R2-2105610, 11 May 2021 (2021-05-11), XP052007181 *

Also Published As

Publication number Publication date
CN116965140A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2023123514A1 (zh) Gnss有效性的处理方法、装置、设备及存储介质
WO2021142807A1 (zh) 两步随机接入msg a资源的配置方法及相关装置
EP4207873A1 (en) Network slicing information processing method, terminal device, and network device
US20230156489A1 (en) Wireless communication method and apparatus
US20220346154A1 (en) Random access method and apparatus
US20220240219A1 (en) Method and apparatus for information transmission, device, and storage medium
CN115669133A (zh) 无线通信的方法、终端设备和网络设备
US20230042104A1 (en) Wireless communication method, terminal device, and network device
JP2023535967A (ja) ユーザ機器のための非地上系ネットワークのためのrach手順
WO2023071843A1 (zh) 资源映射方法与装置、终端和网络设备
WO2022261948A1 (zh) 随机接入方法及装置
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
CN114828152A (zh) ***信息更新方法与装置、中继设备、终端及存储介质
WO2023010586A1 (zh) 无线通信方法、终端设备和网络设备
WO2024114794A1 (zh) 一种随机接入资源的确定方法及通信装置
CN115299092B (zh) 一种无线链路测量方法、电子设备及存储介质
WO2024051448A1 (zh) 一种切换方法及通信装置
WO2022155976A1 (zh) 初始接入方法、终端设备和网络设备
WO2022253273A1 (zh) 一种随机接入方法、用户设备及网络侧设备
WO2023115350A1 (en) Enhanced mechanism on uu interface for mt sdt
WO2023015406A1 (zh) 通信方法及装置
WO2021146836A1 (zh) 随机接入类型选择方法及装置
WO2022241793A1 (zh) 小区接入控制方法、装置、设备及存储介质
WO2023004552A1 (zh) 随机接入方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095538.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945533

Country of ref document: EP

Kind code of ref document: A1