WO2024114794A1 - 一种随机接入资源的确定方法及通信装置 - Google Patents

一种随机接入资源的确定方法及通信装置 Download PDF

Info

Publication number
WO2024114794A1
WO2024114794A1 PCT/CN2023/135854 CN2023135854W WO2024114794A1 WO 2024114794 A1 WO2024114794 A1 WO 2024114794A1 CN 2023135854 W CN2023135854 W CN 2023135854W WO 2024114794 A1 WO2024114794 A1 WO 2024114794A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
communication device
ntn
information
reference frame
Prior art date
Application number
PCT/CN2023/135854
Other languages
English (en)
French (fr)
Inventor
汪宇
罗禾佳
孔垂丽
赵斐然
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114794A1 publication Critical patent/WO2024114794A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • Embodiments of the present application relate to the field of communication technologies, and in particular, to a method for determining a random access resource and a communication device.
  • satellite networks With the development of satellite networks, the overall trend of satellite networks is ultra-dense and heterogeneous. The scale of satellite networks has grown from 66 satellites in the Iridium constellation to 720 satellites in the OneWeb constellation, and finally extended to the 12,000+ Starlink ultra-dense low earth orbit (LEO) satellite constellation. Secondly, satellite networks are heterogeneous. From traditional single-layer communication networks to multi-layer communication networks, the functions of communication satellite networks are also becoming more complex and diversified, gradually becoming compatible with and supporting functions such as navigation enhancement, earth observation, and multi-dimensional information on-orbit processing.
  • LEO Starlink ultra-dense low earth orbit
  • the satellite uses beam hopping to provide regional coverage in a time-sharing manner.
  • the movement of the satellite will trigger a group handover of terminal devices in a certain area (i.e., multiple terminal devices in the area initiate handovers almost simultaneously).
  • the current cell handover design is for handovers triggered by the movement of terminal devices.
  • the access resources configured for handover of a single terminal device are not suitable for handovers of a group of terminal devices caused by satellite movement.
  • the embodiments of the present application provide a method for determining a random access resource and a communication device, in order to improve the efficiency and success rate of group switching.
  • an embodiment of the present application provides a method for determining a random access resource, including: a first communication device obtains first configuration information, the first configuration information being used to configure random access opportunities on N consecutive frames in a first random access period, where N is an integer greater than 1; the first communication device determines a first random access resource based on the first configuration information, and the first random access resource is used for the first communication device to access a target cell.
  • the first random access period is greater than the second random access period used for initial access.
  • the first communication device when the first communication device performs cell switching, the first communication device accesses the target cell according to the first random access resources; in another possible design, when the device group corresponding to the area where the first communication device is located performs cell switching, the first communication device accesses the target cell according to the first random access resources.
  • the first configuration information includes first information and second information, the first information is used to determine a starting frame in N consecutive frames in the first random access period, and the second information includes information about a value of N.
  • the first random access period and the N consecutive frames in the first random access period are indirectly configured to the first communication device through indication information, which can reduce signaling overhead.
  • the first information includes a number M of a reference frame, and a number n_f_NTN of a starting frame among N consecutive frames in the first random access period and the number M of the reference frame satisfy the following relationship:
  • the first communication device substitutes M included in the first configuration information and preconfigured x and y into the relationship formula to determine the starting frame where the RO is located in one or more first random access cycles, and the first random access cycle is between two adjacent starting frames in the multiple starting frames.
  • the first information includes a number M of a reference frame, and a number n_f_NTN of a starting frame among N consecutive frames in the first random access period and the reference frame satisfy the following relationship:
  • n_f_NTN mod(2 M *x) y; wherein mod represents a modulo operator, and x and y are preconfigured positive integers.
  • Such a design can reduce the value of M carried in the first configuration information, and can further reduce signaling overhead compared to the first possible design.
  • the first information includes a reference frame number M and a first offset R, and a start frame number n_f_NTN of N consecutive frames in the first random access period and the reference frame number M satisfy the following relationship:
  • the offset introduced in such a design can expand the value range of n_f_NTN compared with the first possible design mentioned above.
  • This design can be applied to the group switching scenario to expand the frame configuration of more ROs used for group switching, avoid conflicts with RO resources used for initial access, and is beneficial to the efficiency and success rate of group switching caused by satellite movement.
  • the first information includes a reference frame number M and a first offset R, and a start frame number n_f_NTN of N consecutive frames in the first random access period satisfies the following relationship with the reference frame:
  • the offset introduced in such a design can expand the value range of n_f_NTN compared with the second possible design mentioned above.
  • This design can be applied to the group switching scenario to expand the frame configuration of more ROs used for group switching, avoid conflicts with RO resources used for initial access, and is beneficial to the efficiency and success rate of group switching caused by satellite movement.
  • the first communication device may also obtain third information, where the third information is used to determine the values of x and y.
  • the first configuration information includes fourth information, and the fourth information is used to indicate the association relationship between at least one switching beam of the first communication device and the random access opportunity in the first random access period. Based on this, the first communication device can select one or more random access opportunities corresponding to the switching beams as the first random access resource, or it can be understood that the first random access resource can include random access opportunities associated with some or all switching beams of the first communication device.
  • the switching beam used when the first communication device performs switching can be described as a target switching beam
  • the first random access resource includes a random access opportunity associated with the target switching beam of the first communication device.
  • the first configuration information includes identification information of the target switching beam, that is, the first communication device can determine the target switching beam according to the first configuration information.
  • an embodiment of the present application provides a method for determining a random access resource, including: a second communication device determines first configuration information, wherein the first configuration information is used to configure random access opportunities on N consecutive frames in a first random access period, where N is an integer greater than 1; the second communication device sends the first configuration information to the first communication device, wherein the first configuration information is used to determine a first random access resource, and the first random access resource is used for the first communication device to access a target cell.
  • the definition and design of the first configuration information can be understood by referring to the relevant design in the first aspect, and the embodiments of the present application will not be repeated.
  • the values of x and y involved in the aforementioned relationship can be indicated by the second communication device to the first communication device.
  • the second communication device can also send third information to the first communication device, and the third information is used to determine the values of x and y.
  • an embodiment of the present application provides a communication device.
  • An embodiment of the present application provides a communication device, which may be a first communication device, or a device, module, or chip in the first communication device, or a device that can be used in combination with the first communication device.
  • the communication device may include a module that executes the method/operation/step/action described in the first aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device may include a processing module and a communication module.
  • a communication module used to obtain first configuration information, where the first configuration information is used to configure random access opportunities on N consecutive frames in a first random access period, where N is an integer greater than 1;
  • the processing module is used to determine a first random access resource according to the first configuration information, where the first random access resource is used for the first communication device to access a target cell.
  • the processing module when the first communication device performs a cell switching, the processing module is used to control the first communication device to access the target cell based on the first random access resource; in another possible design, when the device group corresponding to the area where the first communication device is located performs a cell switching, the processing module is used to control the first communication device to access the target cell based on the first random access resource.
  • the first communication device when the first communication device performs cell switching, the first communication device accesses the target cell according to the first random access resources; in another possible design, when the device group corresponding to the area where the first communication device is located performs cell switching, the first communication device accesses the target cell according to the first random access resources.
  • the first configuration information includes first information and second information, the first information is used to determine the starting frame of N consecutive frames in the first random access period, and the second information includes information on the value of N.
  • the first information includes a number M of a reference frame, and a number n_f_NTN of a starting frame among N consecutive frames in the first random access period and the number M of the reference frame satisfy the following relationship:
  • the first information includes a number M of a reference frame, and a number n_f_NTN of a starting frame among N consecutive frames in the first random access period and the reference frame satisfy the following relationship:
  • n_f_NTN mod(2 M *x) y; wherein mod represents a modulo operator, and x and y are preconfigured positive integers.
  • the first information includes a reference frame number M and a first offset R, and a start frame number n_f_NTN of N consecutive frames in the first random access period and the reference frame number M satisfy the following relationship:
  • the first information includes a reference frame number M and a first offset R, and a start frame number n_f_NTN of N consecutive frames in the first random access period satisfies the following relationship with the reference frame:
  • the communication module is further used to obtain third information, and the third information is used to determine the values of x and y.
  • the first configuration information includes fourth information, and the fourth information is used to indicate an association between at least one switching beam of the first communication device and a random access opportunity in the first random access cycle.
  • the switching beam used when the first communication device performs switching can be described as a target switching beam
  • the first random access resource includes a random access opportunity associated with the target switching beam of the first communication device.
  • the first configuration information includes identification information of the target switching beam, that is, the first communication device can determine the target switching beam according to the first configuration information.
  • an embodiment of the present application provides a communication device, which may be a second communication device, or a device, module, or chip in the second communication device, or a device that can be used in combination with the second communication device.
  • the communication device may include a module that corresponds to the method/operation/step/action described in the second aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device may include a processing module and a communication module.
  • a processing module configured to determine first configuration information, where the first configuration information is used to configure random access opportunities on N consecutive frames in a first random access period, where N is an integer greater than 1;
  • the communication module is used to send the first configuration information to the first communication device, where the first configuration information is used to determine a first random access resource, and the first random access resource is used for the first communication device to access a target cell.
  • the first configuration information includes first information and second information, the first information is used to determine the starting frame of N consecutive frames in the first random access period, and the second information includes information on the value of N.
  • the first information includes a number M of a reference frame, and a number n_f_NTN of a starting frame among N consecutive frames in the first random access period and the number M of the reference frame satisfy the following relationship:
  • the first information includes a number M of a reference frame, and a number n_f_NTN of a starting frame among N consecutive frames in the first random access period and the reference frame satisfy the following relationship:
  • n_f_NTN mod(2 M *x) y; wherein mod represents a modulo operator, and x and y are preconfigured positive integers.
  • the first information includes a reference frame number M and a first offset R, and a start frame number n_f_NTN of N consecutive frames in the first random access period and the reference frame number M satisfy the following relationship:
  • the first information includes a reference frame number M and a first offset R, and a start frame number n_f_NTN of N consecutive frames in the first random access period satisfies the following relationship with the reference frame:
  • the communication module is further configured to send third information, wherein the third information is used to confirm Specify the values of x and y.
  • the first configuration information includes fourth information, and the fourth information is used to indicate the association relationship between at least one switching beam of the first communication device and the random access opportunity in the first random access period. Based on this, the first communication device can select one or more random access opportunities corresponding to the switching beams as the first random access resource, or it can be understood that the first random access resource can include random access opportunities associated with some or all switching beams of the first communication device.
  • the switching beam used by the first communication device when performing switching can be described as a target switching beam
  • the first random access resource includes a random access opportunity associated with the target switching beam of the first communication device.
  • the first configuration information includes identification information of the target switching beam, that is, the first communication device can determine the target switching beam according to the first configuration information.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and is used to implement the method described in the first aspect above.
  • the processor is coupled to a memory, and the memory is used to store instructions and data.
  • the communication device may also include a memory; the communication device may also include a communication interface, and the communication interface is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
  • the communication device includes:
  • a memory for storing instructions
  • a communication interface used to obtain first configuration information, where the first configuration information is used to configure random access opportunities on N consecutive frames in a first random access period, where N is an integer greater than 1;
  • the processor is used to determine a first random access resource according to the first configuration information, where the first random access resource is used for the first communication device to access a target cell.
  • an embodiment of the present application provides a communication device, the communication device including a processor, for implementing the method described in the second aspect above.
  • the processor is coupled to a memory, the memory is used to store instructions and data, and when the processor executes the instructions stored in the memory, the method described in the second aspect above can be implemented.
  • the communication device may also include a memory; the communication device may also include a communication interface, the communication interface is used for the device to communicate with other devices, and exemplarily, the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
  • the communication device includes:
  • a memory for storing instructions
  • a processor configured to determine first configuration information, where the first configuration information is used to configure random access opportunities on N consecutive frames in a first random access period, where N is an integer greater than 1;
  • a communication interface is used to send the first configuration information to the first communication device, where the first configuration information is used to determine a first random access resource, and the first random access resource is used for the first communication device to access a target cell.
  • the present disclosure provides a communication system, comprising a communication device as described in the third aspect or the fifth aspect; and a communication device as described in the fourth aspect or the sixth aspect.
  • the present disclosure further provides a computer program, which, when executed on a computer, enables the computer to execute the method provided in any one of the first to second aspects above.
  • the present disclosure further provides a computer program product, comprising instructions, which, when executed on a computer, enable the computer to execute the method provided in any one of the first to second aspects above.
  • the present disclosure further provides a computer-readable storage medium, in which a computer program or instruction is stored.
  • a computer program or instruction is stored.
  • the computer program or instruction is executed on a computer, the computer executes the method provided in any one of the first to second aspects above.
  • the present disclosure further provides a chip, which is used to read a computer program stored in a memory and execute the method provided in any one of the first to second aspects above, or the chip includes a circuit for executing the method provided in any one of the first to second aspects above.
  • the present disclosure further provides a chip system, which includes a processor for supporting a device to implement the method provided in any one of the first to second aspects above.
  • the chip system also includes a memory, which is used to store programs and data necessary for the device.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • FIG1 is a schematic diagram of the architecture of a land network communication system in an embodiment of the present application.
  • FIG2 is a schematic diagram of the NTN communication system architecture in an embodiment of the present application.
  • FIG3 is a schematic diagram of a 5G satellite communication system architecture in an embodiment of the present application.
  • FIG4 is a schematic diagram of the satellite communication system architecture in an embodiment of the present application.
  • FIG5 is a schematic diagram of a beam hopping communication process in an embodiment of the present application.
  • FIG6 is a schematic diagram of switching of a group of transmitting terminal devices in beam hopping communication according to an embodiment of the present application
  • FIG7 is a schematic diagram of a flow chart of a method for determining a random access resource in an embodiment of the present application
  • FIG8 is a schematic diagram of a random access opportunity configuration in an embodiment of the present application.
  • FIG9 is a schematic diagram of a configuration of a switching-in beam and a random access opportunity in an embodiment of the present application
  • FIG10 is a schematic diagram of a structure of a communication device in an embodiment of the present application.
  • FIG. 11 is one of the structural diagrams of the communication device in the embodiment of the present application.
  • the at least one (item) involved in the embodiments of the present application indicates one (item) or more (items). More than one (item) refers to two (items) or more than two (items).
  • "And/or" describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the objects associated before and after are in an "or” relationship.
  • first, second, etc. may be used to describe each object in the embodiments of the present application, these objects should not be limited to these terms. These terms are only used to distinguish each object from each other.
  • the technology provided in the embodiments of the present application can be applied to various communication systems, such as satellite communication systems, high altitude platform station (HAPS) communication systems, drones and other non-terrestrial network (NTN) systems; for example, integrated communication and navigation (IcaN) systems, global navigation satellite systems (GNSS) and ultra-dense low-orbit satellite communication systems.
  • the communication system applied in the embodiments of the present application can be integrated with the ground communication system.
  • the ground communication system can be a fourth generation (4th generation, 4G) communication system (for example, long term evolution (LTE) system), a worldwide interoperability for microwave access (WiMAX) communication system, a fifth generation (5G) communication system (for example, a new radio (NR) system), and future mobile communication systems such as 6G communication systems.
  • 4G fourth generation
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G for example, a new radio (NR) system
  • future mobile communication systems such as 6G communication systems.
  • a network element in a communication system may send a signal to another network element or receive a signal from another network element.
  • the signal may include information, signaling, or data.
  • the network element may also be replaced by an entity, a network entity, a device, a communication device, a communication module, a node, a communication node, etc.
  • the network element is used as an example for description in the embodiment of the present application.
  • the ground communication system may include at least one terminal device and at least one network device.
  • the network device may send a downlink signal to the terminal device, and/or the terminal device may send an uplink signal to the network device.
  • multiple terminal devices may also send signals to each other, that is, both the signal sending network element and the signal receiving network element may be terminal devices.
  • FIG1 shows the architecture of a mobile communication system.
  • the communication system 100 may include a network device 110 and terminal devices 101 to 106. It should be understood that the communication system 100 may include more or fewer network devices or terminal devices.
  • the network device or terminal device may be hardware, or software divided in terms of function, or a combination of the two.
  • the terminal devices 104 to 106 may also form a communication system, for example, the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106.
  • the network device and the terminal device may communicate through other devices or network elements.
  • the network device 110 may send data to the terminal devices 101 to 106.
  • the terminal devices 101 to 106 may send downlink data and may also receive uplink data sent by the terminal devices 101 to 106.
  • the terminal devices 101 to 106 may also send uplink data to the network device 110 and may also receive downlink data sent by the network device 110.
  • the network device 110 is a node in a radio access network (RAN), which can also be called a base station or a RAN node (or device).
  • RAN radio access network
  • access network devices 101 are: evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP) in a wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point (TP) or transmission reception point (TRP), satellite, drone, etc.
  • WIFI wireless fidelity
  • WIFI wireless relay node
  • TP transmission point
  • TRP transmission reception point
  • satellite drone, etc.
  • the network device may also be a base station (next generation NodeB, gNB) or TRP or TP in a 5G system, or one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G system.
  • the network device may also be a network node constituting a gNB or TP, such as a BBU, or a distributed unit (DU), etc.
  • the network device may also be a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an Internet of Things (IoT), a vehicle network communication system, or a device that performs network-side functions in other communication systems.
  • the network device 110 may also be a network device in a possible future communication system. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • Terminal devices 101 to 106 which may also be referred to as user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, are devices that provide voice or data connectivity to users, and may also be IoT devices.
  • terminal devices 101 to 106 include handheld devices with wireless communication functions, vehicle-mounted devices, etc.
  • terminal devices 101 to 106 can be: mobile phones, tablet computers, laptop computers, PDAs, mobile internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed trains, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, smart home devices (such as refrigerators, televisions, air conditioners, electric meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, flight equipment (such as intelligent robots, hot air balloons, drones, airplanes), etc.
  • the terminal devices 101 to 106 may also be other devices having terminal functions.
  • the terminal devices 101 to 106 may also be devices that serve as terminal functions in D2D communications.
  • NTN non-terrestrial network
  • NTN includes nodes such as satellite networks, high-altitude platforms and drones, and has significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment and no geographical restrictions. It has been widely used in multiple fields such as maritime communications, positioning navigation, disaster relief, scientific experiments, video broadcasting and earth observation.
  • Ground 5G networks and satellite networks are mutually integrated, complementing each other, and jointly constitute a global seamless coverage of sea, land, air, space and ground integrated integrated communication network to meet the user's ubiquitous multiple business needs.
  • NTN communication takes satellite communication as an example, or the NTN communication system takes a satellite system as an example.
  • the NTN communication system includes a satellite 201 and a terminal device 202.
  • the explanation of the terminal device 202 can refer to the relevant description of the above-mentioned terminal devices 101 to 106.
  • Satellite 201 can also be called a high-altitude platform, a high-altitude aircraft, or a satellite base station.
  • the satellite 201 can be regarded as one or more network devices in the terrestrial network communication system architecture.
  • the satellite 201 provides communication services to the terminal device 202, and the satellite 201 can also be connected to the core network device.
  • the structure and functions of the satellite 201 can also refer to the above description of the network device 110.
  • the communication method between the satellite 201 and the terminal device 202 can also refer to the description in Figure 1 above. It will not be repeated here.
  • the scheme in the embodiment of the present application can also be applied to the terrestrial communication network directly or after being slightly modified in a method that can be thought of by a person skilled in the art, which will not be repeated here.
  • a 5G satellite communication system architecture is shown in Figure 3.
  • Ground terminal equipment accesses the network through the 5G new air interface, and the 5G base station is deployed on the satellite and connected to the ground core network through a wireless link.
  • the wireless link there is a wireless link between satellites to complete the signaling interaction and user data transmission between base stations.
  • the devices and interfaces in Figure 3 are described as follows:
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It consists of multiple functional units, which can be divided into functional entities of control plane and data plane. Access and mobility management unit (AMF) is responsible for user access management, security authentication, and mobility management. User plane unit (UPF) is responsible for managing the transmission of user plane data, traffic statistics and other functions.
  • AMF Access and mobility management unit
  • UPF User plane unit
  • Ground station responsible for forwarding signaling and business data between satellite base stations and 5G core network.
  • 5G New Radio The wireless link between the terminal and the base station.
  • Xn interface The interface between 5G base stations, mainly used for signaling interactions such as switching.
  • NG interface The interface between the 5G base station and the 5G core network, which mainly interacts with the core network's NAS and other signaling, as well as the user's business data.
  • the satellite communication system can be regarded as one or more network devices on the ground, such as base stations. Access point 1, access point 2, and even access point 3 to access point n (not shown in the figure), the satellite provides communication services to the terminal equipment, and the satellite can also be connected to the core network equipment (such as access and mobility management function (AMF).
  • the satellite can be a low earth orbit (LEO) satellite or a non-geostationary earth orbit (NGEO) satellite.
  • the satellite communication system in Figure 4 includes satellite 401, satellite 402 and satellite 403.
  • Each satellite can provide communication services, navigation services, positioning services, etc. to terminal devices through multiple beams.
  • the satellite in this scenario can be a LEO satellite.
  • the satellite uses multiple beams to cover the service area, and different beams can communicate through one or more of time division, frequency division and space division.
  • the satellite communicates wirelessly with the terminal device through broadcast communication signals and navigation signals, etc.
  • the satellite can communicate wirelessly with the ground station equipment, as shown in Figure 4 where satellite 403 is connected to the ground station equipment.
  • the satellite mentioned in the embodiments of the present application may be a satellite base station, and may also include an orbital receiver or repeater for relaying information, or a network side device carried on a satellite.
  • ground station equipment examples are as follows: equipment in the core network (CN) of the existing mobile communication architecture (such as the 3GPP access architecture of the 5G network) or equipment in the core network of the future mobile communication architecture.
  • the core network as a bearer network, provides an interface to the data network, provides communication connection, authentication, management, policy control, and data service bearing for the user equipment (UE).
  • CN may further include: access and mobility management function (AMF), session management function (SMF), authentication server function (AUSF), policy control node (PCF), user plane function (UPF) and other network elements.
  • AMF access and mobility management function
  • SMF session management function
  • AUSF authentication server function
  • PCF policy control node
  • UPF user plane function
  • the AMF network element is used to manage the access and mobility of the UE, and is mainly responsible for the authentication of the UE, the mobility management of the UE, the paging of the UE and other functions.
  • Satellite communication systems include transparent satellite architecture and non-transparent satellite architecture.
  • Transparent transmission is also called bent-pipe forwarding transmission: that is, the signal only undergoes frequency conversion, signal amplification and other processes on the satellite, and the satellite is transparent to the signal, as if it does not exist.
  • Non-transparent transmission is also called regeneration (on-board access/processing) transmission: that is, the satellite has some or all of the base station functions.
  • satellites 401 and 402 in Figure 4 are non-transparent satellite architectures
  • satellite 403 is a transparent satellite architecture.
  • the satellite can operate in quasi-earth-fixed mode or satellite-fixed mode.
  • the network devices in the terrestrial communication system and the satellites in the NTN communication system are uniformly regarded as network devices.
  • the device for realizing the function of the network device can be a network device; it can also be a device that can support the network device to realize the function, such as a chip system, which can be installed in the network device.
  • the technical solution provided by the embodiment of the present application is described by taking the device for realizing the function of the network device as a satellite as an example. It can be understood that when the method provided by the embodiment of the present application is applied to a terrestrial network communication system, the actions performed by the satellite can be applied to the base station or network device for execution.
  • the device for realizing the function of the terminal device may be a terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module, which may be installed in the terminal device or used in combination with the terminal device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the coverage range of a satellite can reach thousands or even tens of thousands of kilometers, while the coverage range of a beam can reach tens or even thousands of kilometers.
  • a satellite In order to support the wide-area coverage of satellites, a satellite is usually equipped with dozens, hundreds, or even more beams.
  • beam hopping can be used for regional coverage. That is, a satellite can be configured with more beams to cover a wider area, but only use a smaller number of beams for regional coverage in the same time unit, and use multiple beams used in different time units to cover a wider area.
  • a satellite is configured with 16 beams to cover a wider area, but only uses 4 beams for regional coverage in a time unit.
  • time unit T1 four beams numbered 0, 1, 4, and 5 are used for regional coverage. Coverage; in time unit T2, four beams numbered 2, 3, 6, and 7 are used for regional coverage.
  • all areas covered by a single satellite i.e., the areas corresponding to 16 beams
  • a time unit can be tens of milliseconds, a few milliseconds, or even a smaller time granularity.
  • each beam can be regarded as a beam in a cell or a separate cell.
  • a satellite beam refers to the shape formed on the surface of the earth by the electromagnetic waves emitted by a satellite antenna, just like the beam of a flashlight has a certain range; or the signal emitted by the satellite is not a 360° radiation, but a signal wave concentrated in a certain direction.
  • the movement of the satellite will cause group switching of terminal devices in a certain area (zone).
  • the UE cluster in a single beam position in area Z2 is denoted as UE-G1, and UE-G1 contains multiple UEs.
  • UE-G1 is served by one or more beams of satellite SAT-2;
  • the movement of satellite SAT-2 causes the beam position to be unable to be served, and one or more beams of satellite SAT-1 take over the service of UE-G1, so UE-G1 undergoes group switching.
  • the frequency of group switching is about every time/several seconds to tens of seconds.
  • terminal device group switching triggered by satellite movement becomes the norm.
  • terminal device group switching can also be described as UE group switching, user group switching, etc.
  • the cell switching of the ground network is mainly triggered by the movement of the terminal device.
  • the network device can send the measurement configuration corresponding to the serving cell and the neighboring cell to the terminal device, and the UE measures the cell signal quality according to the measurement configuration, such as measuring the reference signal received power (RSRP) and/or the reference signal received quality (RSRQ).
  • the terminal device reports the measurement results to the network device, and the network device selects a suitable neighboring cell according to the received measurement results, and exchanges user switching related context information, admission control and reserved resources and other information. Then the network device sends the switching related control information to the terminal device through the serving cell, and completes the access process in the new cell.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the efficiency and success rate of the group switching caused by the satellite movement will be low.
  • a group switching may occur every few seconds to tens of seconds, the group switching cycle is long, and a large number of terminal devices simultaneously switch to the same cell, which requires intensive access resources.
  • the current switching cycle triggered by the movement of terminal devices is relatively short, and the access resources occupied by the switching of a single terminal device are relatively small, which cannot meet the aforementioned requirements of long group switching cycles and intensive access resources.
  • an embodiment of the present application provides a method for determining random access resources, which can be applied to group switching scenarios mainly caused by satellite movement, and determines the random access resources dedicated when the terminal device group switches.
  • the first communication device may be a terminal device
  • the second communication device may be a network device or a source service cell that provides services to the terminal device on the network side.
  • the method mainly includes the following processes:
  • S701 The second communication device sends first configuration information to the first communication device.
  • the first configuration information is used to configure random access channel occasions (RO) on N consecutive frames in the first random access cycle.
  • N is a positive integer greater than or equal to 1.
  • the first random access cycle includes multiple frames, and the random access opportunities on N consecutive frames can constitute a dense random access resource, which is suitable for group switching scenarios caused by satellite movement.
  • the RO on N frames involved in the embodiment of the present application can also be referred to as HO-RO, and HO-RO can be a group switching dedicated RO.
  • the first random access cycle is usually larger than the second random access cycle used for initial access.
  • the second communication device may adopt a unicast method, and carry the aforementioned first configuration information in one or more messages such as a radio resource control (RRC) reconfiguration message, a media access control layer control element (MAC CE), and a downlink control information (DCI), and send it to the first communication device.
  • the unicast method can configure UE-level access resources, such as matching the access requirements of different terminal devices and independently configuring access resources for each terminal device.
  • the second communication device may adopt a broadcast method, and carry the aforementioned first configuration information in a related system information block (SIB), a group-level downlink control message (group DCI), etc.
  • SIB system information block
  • group DCI group-level downlink control message
  • the broadcast method can simultaneously configure access resources for a group of terminal devices with similar attributes (such as similar switching times, etc.), which can save signaling overhead.
  • the second communication device may indicate the starting frame or the last frame in N frames, and the value of the number of consecutive frames, i.e., N, so that the first communication device determines the frames occupied by the RO in the first random access period according to the indication.
  • the first configuration information includes first information and second information, the first information is used to determine the starting frame or the last frame in N consecutive frames in the first random access period, and the second information includes information on the value of N.
  • the first configuration information may also include information such as the time-frequency resources and polarization mode of the RO on a frame.
  • there may be one or more ROs on a frame and the number of ROs on each frame in the N frames is the same as the time-frequency resource information of the RO.
  • the first information may include a reference frame number
  • the second information may include a value of N.
  • a certain relationship is satisfied between a designated frame and a reference frame in N consecutive frames in a first random access period.
  • the designated frame may be a start frame, an end frame, or a frame between the start frame and the end frame in the N frames.
  • the relationship may be predefined or obtained through negotiation between the first communication device and the second communication device. The relationship is illustrated below with an example.
  • mod represents the modulus operator
  • x and y are preconfigured positive integers.
  • a candidate value list can be preconfigured, and the candidate value list includes multiple groups of values of x and y, and each group of values corresponds to a value identifier.
  • the first communication device and the second communication device can pre-negotiate a set of values of x and y.
  • the second communication device can send a third information including a value identifier to the first communication device to indicate a set of values of x and y to the first device.
  • the second communication device can include the third information in the first configuration information and send it to the first communication device.
  • the second communication device can also send the third information to the first communication device separately.
  • F_NTN represents the number of any one of the N frames.
  • the numbers of N consecutive frames form a frame number set represented by ⁇ F_NTN ⁇ , and the numbers of N consecutive frames are referred to as ⁇ F_NTN ⁇ , that is, ⁇ F_NTN ⁇ includes the number of each frame in the N consecutive frames.
  • represents the absolute value of the value of (F_NTN-n_f_NTN). It can be understood that the relationship between the number F_NTN of any one of the N consecutive frames and n_f_NTN can also be expressed in other forms besides 0 ⁇
  • the first communication device when it receives the aforementioned first information, second information and third information, it can obtain the values of M, x and y in the relational expression (1), and then determine the n_f_NTN that conforms to the relational expression (1). There can be one or more values of n_f_NTN that conform to the relational expression (1). When there are multiple values of n_f_NTN, the first communication device can regard the frame between two adjacent values of n_f_NTN as a random access cycle, that is, it can also be understood that the number of first random access cycles described in the embodiment of the present application is one or more, and multiple n_f_NTNs are obtained based on the relational expression (1).
  • the frames between every two adjacent n_f_NTNs constitute a first random access cycle, and the multiple first random access cycles are continuous.
  • the frames occupied by RO in each random access cycle of the multiple first random access cycles include 2 consecutive frames, each frame includes one or more HO-ROs, and Figure 8 shows that there are two HO-ROs in each frame.
  • n_f_NTN satisfying equation (1) may be 1, 16001, 32001, or 48001, etc.
  • the number of first random access cycles is multiple.
  • n_f_NTN is the number of the starting frame in N frames
  • N is 3
  • the N frames in the multiple first random access cycles are frames 1-3, frames 16001-16003, frames 32001-32003, frames 48001-48003, etc.
  • the first random access period can be understood as the RO time domain period obtained by extending the reference frame.
  • the long period required for group switching caused by the satellite network is realized by extending the RO time domain period, and the configuration of multiple consecutive frames can realize intensive RO time domain resources dedicated to group switching, which is beneficial to the efficiency and success rate of group switching caused by satellite movement.
  • the first communication device when it receives the aforementioned first information, second information and third information, it can obtain the values of M, x and y in relation (2), and then determine n_f_NTN that conforms to relation (2). There can be one or more values of n_f_NTN that conform to relation (2). When there are multiple values of n_f_NTN, the first communication device can regard the frame between two adjacent values of n_f_NTN as a random access period, that is, it can also be understood that the number of first random access periods described in the embodiment of the present application is one or more, and multiple n_f_NTN are obtained based on relation (2).
  • the frames between every two adjacent n_f_NTN constitute a first random access period, and the multiple first random access periods are continuous.
  • the frames occupied by RO in each random access period of the multiple first random access periods include N consecutive frames, each frame includes one or more HO-ROs, and Figure 8 shows that there are two HO-ROs in each frame.
  • the first random access period is an RO time domain period obtained based on the reference frame extension.
  • n_f_NTN that satisfies equation (1) can be 1, 8193, 16385, or 24577, etc., and the number of the first random access cycle is multiple.
  • n_f_NTN is the starting frame in N frames
  • N is 4, the N frames in the multiple first random access cycles are frames 1-4, frames 8193-8196, frames 16385-16388, frames 24577-24580, etc.
  • Such a design can reduce the signaling overhead of indicating the reference frame in the first configuration information.
  • the first information may include a reference frame number and a first offset
  • the second information includes a value of N.
  • the reference frame and the first offset may be understood according to one of the descriptions in A1 or A2 below.
  • the starting frame (or the last frame) and the reference frame in the N' consecutive frames in the first random access period satisfy a certain relationship.
  • the n_f_NTN in the above relationship (1) or relationship (2) can be replaced with the number n_f_NTN' of the starting frame (or the last frame) in the N' consecutive frames in the first random access period.
  • the above-mentioned first offset is used to indicate the offset of the starting frame (or the last frame) in N* frames, and is used to avoid resource conflicts between the RO configured in the first configuration information and the RO used for initial access.
  • N consecutive frames configured in the first configuration information can be obtained, that is, N' is equal to N, the difference between the starting frame of the N frames and the starting frame of the N' frames is the first offset, or the difference between the last frame of the N frames configured in the first configuration information and the last frame of the N' frames is the first offset.
  • the unit of the first offset may be a time slot, for example, the time slots occupied by the RO in N' frames include the 1st, 3rd, and 5th time slots, and when the first offset is 1 time slot, the time slots occupied by the RO in N frames include the 2nd, 4th, and 6th time slots.
  • the unit of the first offset may be a subframe or a frame, for example, the subframes occupied by the RO in N' frames include the 2nd, 4th, 6th, and 8th subframes, and when the first offset is 2 subframes, the time slots occupied by the RO in N frames include the 4th, 6th, 8th, and 10th subframes.
  • A2 a certain relationship is satisfied between the start frame (or the end frame) of the N consecutive frames in the first random access period and the reference frame and the first offset.
  • the relationship may be predefined or obtained through negotiation between the first communication device and the second communication device. The relationship is illustrated below with an example.
  • the first communication device when it receives the aforementioned first configuration information, it can obtain the values of M, x, y, and R in the relational expression (3), and then determine the n_f_NTN that conforms to the relational expression (3).
  • the value of R is an integer, such as a positive integer, zero, or a negative integer. It can be understood that: when R is a positive integer, it means that (n_f_NTN-R) that conforms to the relational expression (3) is shifted backward in time to obtain n_f_NTN; when R is a negative integer, it means that (n_f_NTN-R) that conforms to the relational expression (3) is shifted forward in time to obtain n_f_NTN.
  • n_f_NTN There may be one or more values of n_f_NTN that conform to equation (3).
  • the first communication device may regard the frame between two adjacent values of n_f_NTN as a random access period, that is, it can also be understood that the number of first random access periods described in the embodiment of the present application is one or more, and multiple n_f_NTNs are obtained based on equation (3).
  • the frames between every two adjacent n_f_NTNs constitute a first random access period, and the multiple first random access periods are continuous.
  • the frames occupied by RO in each random access period of the multiple first random access periods include N consecutive frames, each frame includes one or more HO-ROs, and Figure 8 shows that there are two HO-ROs in each frame.
  • the first communication device when it receives the aforementioned first configuration information, it can obtain the values of M, x, y, and R in the relational expression (4), and then determine the n_f_NTN that conforms to the relational expression (4).
  • the value of R is an integer, such as a positive integer, zero, or a negative integer. It can be understood that: when R is a positive integer, it means that (n_f_NTN-R) that conforms to the relational expression (4) is shifted backward in time to obtain n_f_NTN; when R is a negative integer, it means that (n_f_NTN-R) that conforms to the relational expression (4) is shifted forward in time to obtain n_f_NTN.
  • n_f_NTN There may be one or more values of n_f_NTN that conform to relation (4).
  • the first communication device may regard the frame between two adjacent values of n_f_NTN as a random access period, that is, it can also be understood that the number of the first random access period described in the embodiment of the present application is one or more, and multiple n_f_NTN are obtained based on relation (4), and every two adjacent frames are The frames between n_f_NTN constitute a first random access cycle, and multiple first random access cycles are continuous.
  • the frames occupied by RO in each random access cycle of multiple first random access cycles include N consecutive frames, each frame includes one or more HO-ROs, and FIG8 illustrates that there are two HO-ROs in each frame.
  • the first offset is introduced in the above design, which can be free from the restriction of satisfying the relationship, expand more RO frame configurations that can be used for group switching, avoid conflicts with RO resources used for initial access, and is beneficial to the efficiency and success rate of group switching caused by satellite movement.
  • M is only used as an example to represent the number of reference frames, and the embodiments of the present application are not limited to the expression of M, that is, other characters or field names can also be used to represent the number of reference frames.
  • M in the above examples 1 to 4 can be replaced with prach-ConfigurationPeriodScaling-NTN.
  • N is only used as an example to represent the number of frames where RO is located, and the embodiments of the present application are not limited to the expression of N, that is, other characters or field names can also be used to represent the number of frames where RO is located.
  • N in the above examples 1 to 4 can be replaced with prach-ConfigurationFrameScaling-NTN.
  • first offset R is also only used as an example to represent the frame offset, and the embodiments of the present application are not limited to the expression of R, that is, other characters or field names can also be used to represent the frame offset.
  • R in the above examples 3 to 4 can be replaced with prach-ConfigurationSoffset-NTN.
  • the value range of prach-ConfigurationPeriodScaling-NTN may include ⁇ 1024, 2048, ..., 131072 ⁇ ; in Example 2 or Example 4, the value range of prach-ConfigurationPeriodScaling-NTN may include ⁇ 0, 1, 2, ... 9, 10 ..., 17 ⁇ .
  • the value range of prach-ConfigurationFrameScaling-NTN includes ⁇ 1, 2, 4, 8, 16, 32 ⁇ , and the value range of prach-ConfigurationSoffset-NTN includes ⁇ 0, 1, ..., 128 ⁇ .
  • the second communication device can determine the value of prach-ConfigurationPeriodScaling-NTN and the value of prach-ConfigurationFrameScaling-NTN configured in the aforementioned first configuration information according to the network configuration of NTN.
  • a design can realize RO configuration adapted to a variety of different NTN network scenarios. For example, the greater the orbital altitude of the satellite, the longer the first random access period (or group switching period), the greater the RO time domain period extension, that is, the greater the value of prach-ConfigurationPeriodScaling-NTN, and the smaller the value of prach-ConfigurationFrameScaling-NTN, the number of continuous frames where the RO is located.
  • the group switching period for overall switching becomes longer, the RO time domain period expansion becomes larger, that is, the value of prach-ConfigurationPeriodScaling-NTN becomes larger, and the value of prach-ConfigurationFrameScaling-NTN, the number of consecutive frames in which the RO is located, becomes larger.
  • Table 1 illustrates some NTN network configurations and the corresponding values of prach-ConfigurationPeriodScaling-NTN and prach-ConfigurationFrameScaling-NTN.
  • the first communication device determines a first random access resource according to first configuration information.
  • the first communication device may determine the random access opportunities on N consecutive frames in the first random access period parsed from the first configuration information as the first random access resource. That is, the first random access resource may include random access opportunities on N consecutive frames in the first random access period.
  • the number of the first random access period corresponds to the number of starting frames (end frames) in the N frames calculated by the aforementioned relationship, and the number of the first random access period is one or more.
  • the second communication device may also carry fourth information in the first configuration information, where the fourth information is used to indicate an association relationship between at least one switching beam of the first communication device and a random access opportunity in the first random access period.
  • the first communication device may select a target switching beam by itself, and determine a random access opportunity associated with the target switching beam according to the fourth information. timing, and determining that the first random access resource includes a random access timing associated with the target switching beam.
  • the second communication device may carry the fourth information and the identification information of the target switching beam in the first configuration information, and the first communication device determines that the first random access resource includes a random access timing associated with the target switching beam in the first random access period according to the fourth information and the identification information of the target switching beam.
  • the first communication device uses the random access timing (HO-RO) associated with the target switching beam, which can reduce the collision probability during group switching.
  • HO-RO random access timing
  • the switching beam may be a broadcast beam dedicated to switching by the first communication device, and identification information of a switching beam may be represented as HO-SSB index, where index is an integer.
  • the switching beams of the first communication device may be recorded as HO-SSB0, HO-SSB1, HO-SSB2, and so on.
  • the size of the HO-RO resources associated with each switching beam in the N frames in the first random access cycle may be the same.
  • the fourth information may include HO-ssb-perRACH-Occasion.
  • the HO-ssb-perRACH-Occasion indicates the proportion of the HO-RO resources associated with each switching beam in the N frames in the first random access cycle.
  • the total HO-RO resources in the N frames in the first random access cycle are denoted as P, and the value of HO-ssb-perRACH-Occasion is represents each switching beam associated with P Among them, the HO-RO resources corresponding to HO-SSB0 are The HO-RO resources corresponding to HO-SSB1 are The RO corresponding to HO-SSB2 is Alternatively, if there are one or more HO-ROs in each of the N frames in the first random access cycle, and the resource size of each HO-RO is fixed and the same, then each switching beam can also be set to be associated with the same number of HO-ROs in all the HO-ROs in the N frames in the first random access cycle.
  • FIG9 which illustrates that at time t1, HO-SSB0 and HO-SSB1 are both associated with two HO-ROs.
  • HO-SSB0 is associated with HO-RO1 and HO-RO2.
  • HO-SSB1 is associated with HO-RO3 and HO-RO4.
  • access can be made to HO-RO3 and HO-RO4 at time t1.
  • FIG9 also illustrates that at time t2, HO-SSB0, HO-SSB1, HO-SSB2, and HO-SSB3 are all associated with one HO-RO.
  • HO-SSB0 is associated with HO-RO1. If the first communication device selects HO-SSB0, access can be made to HO-RO1 at time t2; HO-SSB1 is associated with HO-RO2. If the first communication device selects HO-SSB1, access can be made to HO-RO2 at time t2; HO-SSB2 is associated with HO-RO3.
  • HO-SSB2 access can be made to HO-RO3 at time t2; HO-SSB3 is associated with HO-RO4. If the first communication device selects HO-SSB3, access can be made to HO-RO4 at time t2.
  • S703 The first communication device accesses the target cell according to the first random access resource.
  • the first communication device can access the target cell according to the first random access resource when performing a handover.
  • the handover performed by the first communication device can be determined by the first communication device itself, or triggered by a cell handover performed by a device group corresponding to the area where the first communication device is located. For example, when a group handover is caused by satellite movement, and the device group corresponding to the area where the first communication device is located performs a cell handover, the first communication device needs to perform a cell handover.
  • the first random access resource when the number of the aforementioned first random access cycles is multiple, it can be understood that the first random access resource includes ROs configured in multiple first random access cycles, and the first communication device can determine the switching moment, and use a dedicated preamble to access the target cell on the RO after the switching moment. In another optional embodiment, when the number of the aforementioned first random access cycles is multiple, it can be understood that the first random access resource includes ROs associated with the target switching beam in multiple first random access cycles, and the first communication device can determine the switching moment, and use a dedicated preamble to access the target cell on the RO associated with the target switching beam after the switching moment.
  • an embodiment of the present application provides a communication device 1000, which includes a processing module 1001 and a communication module 1002.
  • the communication device 1000 may be a second communication device, or a communication device applied to a second communication device or used in combination with a second communication device, and capable of implementing a method executed by the second communication device; or, the communication device 1000 may be a first communication device, or a communication device applied to a first communication device or used in combination with a first communication device, and capable of implementing a method executed by the first communication device.
  • the communication module may also be referred to as a transceiver module, a transceiver, a transceiver, or a transceiver device, etc.
  • the processing module may also be referred to as a processor, a processing board, a processing unit, or a processing device, etc.
  • the communication module is used to perform the sending operation and the receiving operation on the second communication device side or the first communication device side in the above method, and the device used to implement the receiving function in the communication module may be regarded as a receiving unit, and the device used to implement the sending function in the communication module may be regarded as a sending unit, that is, the communication module includes a receiving unit and a sending unit.
  • the processing module 1001 can be used to implement the processing function of the first communication device in the example shown in FIG7, and the communication module 1002 can be used to implement the transceiver function of the first communication device in the example shown in FIG7.
  • the communication device can also be understood by referring to the description and possible designs in the third aspect of the invention.
  • the processing module 1001 can be used to implement the processing function of the second communication device in the example shown in Figure 7, and the communication module 1002 can be used to implement the transceiver function of the second communication device in the example shown in Figure 7.
  • the communication device can also be understood by referring to the description and possible designs in the fourth aspect of the invention.
  • the aforementioned communication module and/or processing module can be implemented through a virtual module, for example, the processing module can be implemented through a software function unit or a virtual device, and the communication module can be implemented through a software function or a virtual device.
  • the processing module or the communication module can also be implemented through a physical device, for example, if the device is implemented using a chip/chip circuit, the communication module can be an input-output circuit and/or a communication interface, performing input operations (corresponding to the aforementioned receiving operations) and output operations (corresponding to the aforementioned sending operations); the processing module is an integrated processor or microprocessor or integrated circuit.
  • each functional module in each example of the embodiments of the present application may be integrated into one processor, or may exist physically separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules may be implemented in the form of hardware or in the form of software functional modules.
  • the embodiment of the present application also provides a communication device 1100.
  • the communication device 1100 may be a chip or a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the communication device 1100 can be used to implement the functions of any network element in the communication system described in the above examples.
  • the communication device 1100 may include at least one processor 1110.
  • the processor 1110 is coupled to a memory, and the memory may be located within the device, or the memory may be integrated with the processor, or the memory may be located outside the device.
  • the communication device 1100 may also include at least one memory 1120.
  • the memory 1120 stores the necessary computer programs, computer programs or instructions and/or data for implementing any of the above examples; the processor 1110 may execute the computer program stored in the memory 1120 to complete the method in any of the above examples.
  • the communication device 1100 may also include a communication interface 1130, and the communication device 1100 may exchange information with other devices through the communication interface 1130.
  • the communication interface 1130 may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
  • the communication interface 1130 in the device 1100 may also be an input-output circuit, which may input information (or receive information) and output information (or send information)
  • the processor may be an integrated processor or a microprocessor or an integrated circuit or a logic circuit, and the processor may determine the output information based on the input information.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1110 may cooperate with the memory 1120 and the communication interface 1130.
  • the specific connection medium between the above-mentioned processor 1110, the memory 1120 and the communication interface 1130 is not limited in the embodiment of the present application.
  • the processor 1110, the memory 1120, and the communication interface 1130 are interconnected via a bus 1140.
  • the bus 1140 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • the bus may be divided into an address bus, a data bus, a control bus, etc.
  • FIG. 11 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device that can realize a storage function, for storing program instructions and/or data.
  • the communication device 1100 may be applied to a first communication device.
  • the communication device 1100 may be a first communication device, or a device that can support the first communication device and implement the functions of the first communication device in any of the above-mentioned examples.
  • the memory 1120 stores a computer program (or instruction) and/or data that implements the functions of the first communication device in any of the above-mentioned examples.
  • the processor 1110 may execute the computer program stored in the memory 1120 to complete the method performed by the first communication device in any of the above-mentioned examples.
  • the communication interface in the communication device 1100 may be used to interact with a second communication device, and to send information to the second communication device or receive information from the second communication device.
  • the communication device 1100 may be applied to a second communication device.
  • the communication device 1100 may be a second communication device, or may be a device that can support the second communication device and implement the functions of the second communication device in any of the above-mentioned examples.
  • the memory 1120 stores a computer program (or instruction) and/or data that implements the functions of the second communication device in any of the above-mentioned examples.
  • the processor 1110 may execute the computer program stored in the memory 1120 to complete the method performed by the second communication device in any of the above-mentioned examples.
  • the communication interface in the communication device 1100 may be used to interact with the first communication device, send information to the first communication device, or receive information from the first communication device.
  • the communication device 1100 provided in this example can be applied to a first communication device to complete the method performed by the first communication device, or applied to a second communication device to complete the method performed by the second communication device, the technical effects that can be obtained can refer to the above method examples and will not be repeated here.
  • an embodiment of the present application provides a communication system, including a first communication device and a second communication device, wherein the first communication device and the second communication device can implement the method provided in the example shown in FIG. 7 .
  • the technical solution provided in the embodiment of the present application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated therein.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium, etc.
  • the examples may reference each other, for example, the methods and/or terms between method embodiments may reference each other, for example, the functions and/or terms between device embodiments may reference each other, for example, the functions and/or terms between device examples and method examples may reference each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种随机接入资源的确定方法及通信装置,涉及通信技术领域。可以提升群切换的效率和成功率。该方法包括:第一通信装置获取第一配置信息,第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;第一通信装置根据第一配置信息,确定第一随机接入资源,第一随机接入资源用于第一通信装置接入目标小区。

Description

一种随机接入资源的确定方法及通信装置
相关申请的交叉引用
本申请要求在2022年12月02日提交中华人民共和国知识产权局、申请号为202211542962.0、申请名称为“一种随机接入资源的确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种随机接入资源的确定方法及通信装置。
背景技术
随着卫星网络的发展,卫星网络总体呈现超密、异构的趋势。卫星网络的规模从铱星星座的66颗发展到一网星座的720颗,并最终延展到12000+的星链(Starlink)超密低地球轨道(low earth orbit,LEO)卫星星座。其次,卫星网络呈现异构特性,从传统的单层通信网络发展到多层通信网络,通信卫星网络的功能也趋向复杂化、多样化,逐渐兼容并支持导航增强、对地观测、多维信息在轨处理等功能。
在跳波束卫星***中,卫星会采用跳波束的方式分时进行区域覆盖。卫星的运动会触发某个区域内的终端设备发生群切换(即区域内的多个终端设备几乎同时发起切换)。目前的小区切换设计针对的是终端设备移动所触发的切换,针对单个终端设备切换配置的接入资源,不适用于卫星运动引起的终端设备群切换。
发明内容
本申请实施例提供一种随机接入资源的确定方法及通信装置,以期提升群切换的效率和成功率。
第一方面,本申请实施例提供一种随机接入资源的确定方法,包括:第一通信装置获取第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;所述第一通信装置根据所述第一配置信息,确定第一随机接入资源,所述第一随机接入资源用于所述第一通信装置接入目标小区。
通过上述设计,可以实现为终端设备配置长周期且密集型的接入资源,适配于由卫星运动为主引起的群切换场景,提升群切换的效率和成功率。可以理解,所述第一随机接入周期大于用于初始接入的第二随机接入周期。
在一种可能的设计中,当所述第一通信装置进行小区切换时,所述第一通信装置根据所述第一随机接入资源接入目标小区;在另一种可能的设计中,当所述第一通信装置所在区域对应的设备群组进行小区切换时,所述第一通信装置根据所述第一随机接入资源接入目标小区。
在一种可能的设计中,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。这样的设计中,通过指示信息间接的向第一通信装置配置第一随机接入周期以及第一随机接入周期中连续的N个帧,能够减少信令开销。
下面针对第一配置信息,介绍一些可能的设计。
在第一种可能的设计中,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
n_f_NTN mod(M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
基于这样的设计,第一通信装置将第一配置信息所包括的M和预配置的x和y带入关系式,可以确定1个或多个第一随机接入周期内RO所在的起始帧,多个起始帧中两个相邻起始帧之间为1个第一随机接入周期。
在第二种可能的设计中,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
n_f_NTN mod(2M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
这样的设计可以实现第一配置信息中携带的M的取值减小,相较于第一种可能的设计能够进一步降低信令开销。
在第三种可能的设计中,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
(n_f_NTN-R)mod(M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
这样的设计中引入偏移量,相较于前述第一种可能的设计中,能够扩展n_f_NTN的取值范围。该设计应用于群切换场景中可以扩展更多用于群切换的RO的帧配置,避免与用于初始接入的RO资源发生冲突,有利于卫星运动引起的群切换的效率及成功率。
在第四种可能的设计中,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
(n_f_NTN-R)mod(2M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
这样的设计中引入偏移量,相较于前述第二种可能的设计中,能够扩展n_f_NTN的取值范围。该设计应用于群切换场景中可以扩展更多用于群切换的RO的帧配置,避免与用于初始接入的RO资源发生冲突,有利于卫星运动引起的群切换的效率及成功率。
在上述第一种至第四种可能的设计中,所述第一通信装置还可以获取第三信息,所述第三信息用于确定x和y的取值。
在一种可能的设计中,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。基于此,第一通信装置可以选择一个或多个切换波束对应的随机接入时机,作为第一随机接入资源,或可以理解:第一随机接入资源可以包括第一通信装置的部分或全部切换波束关联的随机接入时机。
示例性的,第一通信装置进行切换(如群切换)时所用的切换波束可以描述为目标切换波束,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。可选的,所述第一配置信息中包括所述目标切换波束的标识信息,即第一通信装置可以根据第一配置信息确定目标切换波束。
第二方面,本申请实施例提供一种随机接入资源的确定方法,包括:第二通信装置确定第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;所述第二通信装置向所述第一通信装置发送所述第一配置信息,所述第一配置信息用于第一随机接入资源的确定,所述第一随机接入资源用于所述第一通信装置接入目标小区。
关于第一配置信息的定义和设计可以参照第一方面中相关的设计理解,本申请实施例对此不进行赘述。其中,前述关系式中涉及的x和y的取值可以是第二通信装置指示给第一通信装置的,例如在一种可能的设计中,第二通信装置还可以向第一通信装置发送第三信息,所述第三信息用于确定x和y的取值。
关于第一配置信息中第四信息的定义和设计方式,也可以参照第一方面中相关的设计理解,本申请实施例对此不进行赘述。
第三方面,本申请实施例提供一种通信装置,本申请实施例提供一种通信装置,该通信装置可以是第一通信装置,也可以是第一通信装置中的装置、模块或芯片等,或者是能够和第一通信装置匹配使用的装置。一种设计中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。
通信模块,用于获取第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
处理模块,用于根据所述第一配置信息,确定第一随机接入资源,所述第一随机接入资源用于所述第一通信装置接入目标小区。
在一种可能的设计中,当所述第一通信装置进行小区切换时,所述处理模块用于根据所述第一随机接入资源,控制所述第一通信装置接入目标小区;在另一种可能的设计中,当所述第一通信装置所在区域对应的设备群组进行小区切换时,所述处理模块用于根据所述第一随机接入资源,控制所述第一通信装置接入目标小区。
在一种可能的设计中,当所述第一通信装置进行小区切换时,所述第一通信装置根据所述第一随机接入资源接入目标小区;在另一种可能的设计中,当所述第一通信装置所在区域对应的设备群组进行小区切换时,所述第一通信装置根据所述第一随机接入资源接入目标小区。
在一种可能的设计中,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。
下面针对第一配置信息,介绍一些可能的设计。
在第一种可能的设计中,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
n_f_NTN mod(M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在第二种可能的设计中,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
n_f_NTN mod(2M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在第三种可能的设计中,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
(n_f_NTN-R)mod(M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在第四种可能的设计中,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
(n_f_NTN-R)mod(2M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在上述第一种至第四种可能的设计中,通信模块,还用于获取第三信息,所述第三信息用于确定x和y的取值。
在一种可能的设计中,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。
示例性的,第一通信装置进行切换(如群切换)时所用的切换波束可以描述为目标切换波束,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。可选的,所述第一配置信息中包括所述目标切换波束的标识信息,即第一通信装置可以根据第一配置信息确定目标切换波束。
第四方面,本申请实施例提供一种通信装置,该通信装置可以是第二通信装置,也可以是第二通信装置中的装置、模块或芯片等,或者是能够和第二通信装置匹配使用的装置。一种设计中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。
处理模块,用于确定第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
通信模块,用于向所述第一通信装置发送所述第一配置信息,所述第一配置信息用于第一随机接入资源的确定,所述第一随机接入资源用于所述第一通信装置接入目标小区。
在一种可能的设计中,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。
下面针对第一配置信息,介绍一些可能的设计。
在第一种可能的设计中,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
n_f_NTN mod(M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在第二种可能的设计中,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
n_f_NTN mod(2M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在第三种可能的设计中,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
(n_f_NTN-R)mod(M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在第四种可能的设计中,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
(n_f_NTN-R)mod(2M*x)=y;其中,mod表示取模运算符,x和y为预配置的正整数。
在上述第一种至第四种可能的设计中,所述通信模块,还用于发送第三信息,所述第三信息用于确 定x和y的取值。
在一种可能的设计中,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。基于此,第一通信装置可以选择一个或多个切换波束对应的随机接入时机,作为第一随机接入资源,或可以理解:第一随机接入资源可以包括第一通信装置的部分或全部切换波束关联的随机接入时机。
示例性的,第一通信装置进行切换(如群切换)时所用的切换波束可以描述为目标切换波束,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。可选的,所述第一配置信息中包括所述目标切换波束的标识信息,即第一通信装置可以根据第一配置信息确定目标切换波束。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,用于实现上述第一方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。可选的,所述通信装置还可以包括存储器;所述通信装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
在一种可能的设备中,该通信装置包括:
存储器,用于存储指令;
通信接口,用于获取第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
处理器,用于根据所述第一配置信息,确定第一随机接入资源,所述第一随机接入资源用于所述第一通信装置接入目标小区。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,用于实现上述第二方面所描述的方法。处理器与存储器耦合,存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面描述的方法。可选的,所述通信装置还可以包括存储器;所述通信装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
在一种可能的设备中,该通信装置包括:
存储器,用于存储指令;
处理器,用于确定第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
通信接口,用于向所述第一通信装置发送所述第一配置信息,所述第一配置信息用于第一随机接入资源的确定,所述第一随机接入资源用于所述第一通信装置接入目标小区。
第七方面,本公开提供了一种通信***,包括如第三方面或第五方面中所描述的通信装置;以及如第四方面或第六方面所描述的通信装置。
第八方面,本公开还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面至第二方面中任一方面提供的方法。
第九方面,本公开还提供了一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一方面提供的方法。
第十方面,本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或者指令在计算机上运行时,使得所述计算机执行上述第一方面至第二方面中任一方面提供的方法。
第十一方面,本公开还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述第一方面至第二方面中任一方面提供的方法,或者,所述芯片包括用于执行上述第一方面至第二方面中任一方面提供的方法的电路。
第十二方面,本公开还提供了一种芯片***,该芯片***包括处理器,用于支持装置实现上述第一方面至第二方面中任一方面提供的方法。在一种可能的设计中,所述芯片***还包括存储器,所述存储器用于保存该装置必要的程序和数据。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
如上第二方面至第十二方面的任一方面所提供的方案的效果,可参考第一方面中的相应描述。
附图说明
图1为本申请实施例中陆地网络通信***的架构示意图;
图2为本申请实施例中NTN通信***架构示意图;
图3为本申请实施例中5G卫星通信***架构示意图;
图4为本申请实施例中卫星通信***架构示意图;
图5为本申请实施例中跳波束通信过程示意图;
图6为本申请实施例中跳波束通信发送终端设备群切换的示意图;
图7为本申请实施例中的一种随机接入资源的确定方法的流程示意图;
图8为本申请实施例中的一种随机接入时机配置示意图;
图9为本申请实施例中的一种切入波束和随机接入时机的配置示意图;
图10为本申请实施例中的通信装置的结构示意图之一;
图11为本申请实施例中的通信装置的结构示意图之一。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例如下涉及的至少一个(项),指示一个(项)或多个(项)。多个(项),是指两个(项)或两个(项)以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本申请实施例中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
本申请实施例如下描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何方法或设计方案不应被解释为比其它方法或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的技术可以应用于各种通信***,例如卫星通信***、高空平台(high altitude platform station,HAPS)通信***、无人机等非地面网络(non-terrestrial network,NTN)***;例如,通信、导航一体化(integrated communication and navigation,IcaN)***、全球导航卫星***(global navigation satellite system,GNSS)和超密低轨卫星通信***等。本申请实施例应用的通信***可以与地面通信***相融合。例如:所述地面通信***可以为***(4th generation,4G)通信***(例如,长期演进(long term evolution,LTE)***),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***,第五代(5th generation,5G)通信***(例如,新无线(new radio,NR)***),以及未来的移动通信***如6G通信***等。
通信***中的一个网元可以向另一个网元发送信号或从另一个网元接收信号。其中信号可以包括信息、信令或者数据等。其中,网元也可以被替换为实体、网络实体、设备、通信设备、通信模块、节点、通信节点等等,本申请实施例中以网元为例进行描述。
例如,地面通信***可以包括至少一个终端设备和至少一个网络设备。网络设备可以向终端设备发送下行信号,和/或终端设备可以向网络设备发送上行信号此外可以理解的是,若通信***中包括多个终端设备,多个终端设备之间也可以互发信号,即信号的发送网元和信号的接收网元均可以是终端设备。
图1示出了一种移动通信***的架构。通信***100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信***100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信***,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以向终端设备101~终端设备106 发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备101的举例为:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU)、无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)、卫星、无人机等。该网络设备还可以为5G***中的基站(next generation NodeB,gNB)或TRP或TP,或者5G***中的基站的一个或一组(包括多个天线面板)天线面板。此外,该网络设备还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。或者,该网络设备还可以是设备到设备(device-to-device,D2D)通信***、机器到机器(machine to machine,M2M)通信***、物联网(Internet of Things,IoT)、车联网通信***或者其他通信***中承担网络侧功能的设备。网络设备110还可以是未来可能的通信***中的网络设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备101~终端设备106,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线通信功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备101~终端设备106还可以是其他具有终端功能的设备,例如,终端设备101~终端设备106还可以是D2D通信中担任终端功能的设备。
基于图1所示的地面通信***架构的描述,对本申请实施例可以应用非地面网络(non-terrestrial network,NTN)通信***进行举例说明。NTN包括卫星网络、高空平台和无人机等节点,具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。地面5G网络和卫星网络等相互融,取长补短,共同构成全球无缝覆盖的海、陆、空、天、地一体化综合通信网,满足用户无处不在的多种业务需求。本申请实施例中NTN通信以卫星通信为例,或者说NTN通信***以卫星***为例。如图2所示,NTN通信***中包括卫星201和终端设备202。终端设备202的解释可以参照上述终端设备101~终端设备106的相关描述。卫星201还可以称为高空平台、高空飞行器、或卫星基站。将NTN通信***与陆地网络通信***联系来看,可以将卫星201看作陆地网络通信***架构中的一个或多个网络设备。卫星201向终端设备202提供通信服务,卫星201还可以连接到核心网设备。卫星201具有的结构和功能也可以参照上述对网络设备110的描述。卫星201和终端设备202之间的通信方式也可以参照上述图1中的描述。在此不再赘述。本申请实施例中的方案也可以直接或在以本领域技术人员可以想到的方法稍加修改后应用于地面通信网络,在此不再赘述。
以5G为例,一种5G卫星通信***架构如图3所示。地面终端设备通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图3中的设备和接口的说明如下:
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
如图4所示,为本申请适用的另一种可能的卫星通信***架构示意图。如果将卫星通信***与地面通信***做类比,可以将卫星看做是地面的一个或多个网络设备,例如基站。接入点1、接入点2、甚至接入点3至接入点n(图中未标出),卫星向终端设备提供通信服务,卫星还可以连接到核心网设备(例如接入和移动性管理功能(access and mobility management function,AMF)。卫星可以为低地球轨道(low earth orbit,LEO)卫星或非静止轨道(non-geostationary earth orbit,NGEO)卫星。
作为示例,图4中的卫星通信***包括卫星401、卫星402和卫星403,每颗卫星可以通过多波束向终端设备提供通信服务、导航服务和定位服务等,该场景下的卫星可以为LEO卫星。卫星采用多个波束覆盖服务区域,不同的波束可通过时分、频分和空分中的一种或多种进行通信。卫星通过广播通信信号和导航信号等与终端设备进行无线通信,卫星可与地面站设备进行无线通信,如图4中示意卫星403连接到地面站设备。本申请实施例中提及的卫星,可以为卫星基站,也可包括用于对信息进行中继的轨道接收机或中继器,或者为搭载在卫星上的网络侧设备。
其中,一些地面站设备的举例,如下:现有的移动通信架构(如5G网络的3GPP接入架构)的核心网(core network,CN)中的设备或未来移动通信架构中的核心网中的设备。核心网作为承载网络提供到数据网络的接口,为用户设备(UE)提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又进一步可包括:接入和移动管理网元(access and mobility management function,AMF)、会话管理网元(session management function,SMF),认证服务器网元(authentication server function,AUSF)、策略控制节点(policy control function,PCF)、用户面功能网元(user plane function,UPF)等等网元。其中,AMF网元用于管理UE的接入和移动性,主要负责UE的认证、UE移动性管理,UE的寻呼等功能。
卫星通信***包括透传卫星架构与非透传卫星架构。透传也称为弯管转发传输:即信号在卫星上只进行了频率的转换,信号的放大等过程,卫星对于信号而言是透明的,仿佛不存在一样。非透传也称为再生(星上接入/处理)传输:即卫星具有部分或全部基站功能。例如,图4中的卫星401、卫星402为非透传卫星架构,卫星403为透传卫星架构。此外,卫星可以工作在quasi earth-fixed模式或satellite-fixed模式。
将地面通信***中的网络设备和NTN通信***中的卫星,统一看作网络设备。用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。以下描述本申请实施例提供的技术方案时,以用于实现网络设备的功能的装置是卫星为例,来描述本申请实施例提供的技术方案。可以理解,将本申请实施例提供的方法应用到陆地网络通信***时,可以将卫星执行的动作应用到基站或网络设备来执行。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片***,硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,来描述本申请实施例提供的技术方案。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
一个卫星的覆盖范围可达几千甚至几万公里,而一个波束的覆盖范围可达几十甚至几千公里。为了支持卫星的广域覆盖,一个卫星通常要配置几十、几百、甚至更多波束。为了缓解单个卫星载荷小且覆盖范围广的矛盾,可以采用跳波束的方式进行区域覆盖。即一个卫星可以配置较多的波束覆盖较广的区域,但在同一时间单元内只使用较少数量的波束进行区域覆盖,通过在不同时间单元使用的多个波束覆盖较广的区域。例如可以参见图5所示,一个卫星配置了16个波束来覆盖较广的区域,但在一个时间单元只使用4个波束进行区域覆盖。在时间单元T1中,使用编号为0、1、4、5的四个波束进行区域 覆盖;在时间单元T2中,使用编号为2、3、6、7四个波束进行区域覆盖。依此类推,通过T1、T2、T3、T4分时的方式服务单星覆盖的所有区域(即16个波束对应的区域)。一个时间单元可以是几十毫秒,几毫秒,甚至更小时间粒度。在卫星通信网络中,一个卫星中配置多个波束,每个波束可以看作是一个小区中的波束或一个单独的小区。卫星波束指由卫星天线发射出来的电磁波在地球表面上形成的形状,就像手电筒的光束有一定的范围;或者卫星发射的信号非360°的辐射,而是在一定的方位集中发射的信号波。
跳波束卫星通信***下,卫星的运动会导致某个区域(zone)内的终端设备发生群切换。如图6所示,区域Z2内的单波位里面的UE簇,记作UE-G1,UE-G1内包含多个UE。在时间T1,UE-G1被卫星SAT-2的一个或多个波束服务;在时间T2,卫星SAT-2的运动导致该波位不能被服务,由卫星SAT-1的一个或多个波束接替UE-G1的服务,因此,UE-G1发生了群切换。此外,由于卫星的运动速度较快,约7.5km/s,发生群切换的频次约为每次/几秒到几十秒。换言之,在跳波束卫星***中,卫星移动触发的终端设备群切换成为常态。其中,终端设备群切换也可以描述为UE群切换,用户群切换等。
目前地面网络的小区切换,主要是由终端设备移动触发的。一般地,网络设备可以为终端设备发送服务小区和邻区对应的测量配置,UE根据测量配置对小区信号质量进行测量,例如测量参考信号接收功率(reference signal received power,RSRP)和/或参考信号接收质量(reference signal received quality,RSRQ)。终端设备将测量结果上报给网络设备,网络设备根据收到测量结果选择合适的邻区,并交互用户切换相关的上下文信息、准入控制和预留资源等信息。然后网络设备通过服务小区向终端设备发送切换相关的控制信息,并在新的小区完成接入流程。如果将现有小区切换设计沿用到跳波束卫星***,会造成卫星运动引起的群切换的效率及成功率低下。例如,每隔几秒到几十秒可能发生一次群切换,群切换的周期较长,且大量的终端设备同时群切换接入同一小区需要占用密集型的接入资源。而目前终端设备移动触发的切换周期较短,单个终端设备切换占用的接入资源较小,不能满足前述群切换周期长,接入资源密集的需求。
基于此,本申请实施例提供一种随机接入资源的确定方法,可以应用于由卫星运动为主引起的群切换场景,确定终端设备群切换时专用的随机接入资源。
如图7示意,以第一通信装置和第二通信装置之间的交互为例,对本申请提供的随机接入资源的确定方法进行说明。其中,第一通信装置可以是终端设备,第二通信装置可以是网络侧为终端设备提供服务的网络设备或者源服务小区。该方法主要包括如下流程:
S701,第二通信装置向第一通信装置发送第一配置信息。
该第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机(random access channel occasion,RO)。N为大于或等于1的正整数。可以理解第一随机接入周期中包括多个帧,连续的N个帧上的随机接入时机可以构成密集型的随机接入资源,适用于由卫星运动引起的群切换场景。为与初始接入的RO进行区分,本申请实施例中涉及N个帧上的RO也可以称为HO-RO,HO-RO可以是群切换专用RO。第一随机接入周期通常大于用于初始接入的第二随机接入周期。
可选的,第二通信装置可以采用单播方式,在无线资源控制(radio Resource control ,RRC)重配置(Reconfiguration)消息、媒体接入控制层控制单元(media access control control element,MAC CE)、下行控制信息(downlink control information,DCI)等消息中的一个或者多个携带前述第一配置信息,发送给第一通信装置。单播方式可以配置UE级别的接入资源,如匹配不同终端设备的接入需求,为各个终端设备独立的配置接入资源。或者,第二通信装置可以采用广播方式,在相关***信息块(system information block,SIB)、组级别下行链路控制消息(group DCI)等中携带前述第一配置信息。广播方式可以为具备相近属性(如切换时刻相近等)的一组终端设备同时配置接入资源,能够节省信令开销。
可选的,第二通信装置可以指示N个帧中起始帧或者末尾帧等,以及连续帧数量即N的取值,从而第一通信装置按照指示确定第一随机接入周期中RO所占的帧。例如,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧或末尾帧,所述第二信息包括N的取值的信息。此外,第一配置信息中还可以包括一个帧上RO的时频资源、极化方式等信息。可选的,一个帧上可以存在一个或多个RO,N个帧中每个帧上的RO数量和RO的时频资源信息相同。
下面对第一配置信息中第一信息和第二信息的实现方式进行详细说明。
在一种可选的实现方式中,第一信息可以包括一个参考帧的编号,第二信息可以包括N的取值。 第一随机接入周期内连续的N个帧中的指定帧和参考帧之间满足一定的关系式。其中,该指定帧可以是N个帧中的起始帧、末尾帧、或者起始帧与末尾帧之间的一个帧。该关系式可以是预先定义的,也可以是第一通信装置和第二通信装置协商得到的。下面对该关系式进行举例说明。
示例1,所述第一随机接入周期内连续的N个帧中的起始帧(或末尾帧)的编号n_f_NTN和参考帧的编号M满足如下关系式(1):
n_f_NTN mod(M*x)=y;(1)
0≤|F_NTN-n_f_NTN|≤N-1;
其中,mod表示取模运算符,x和y为预配置的正整数。可选的,关于x和y的取值,可以预先配置一个候选取值列表,该候选取值列表中包括x和y的多组取值,每组取值对应一个取值标识。在一种可选的实施方式中,第一通信装置和第二通信装置可以预先协商x和y的一组取值。在另一种可选的实施方式中,第二通信装置可以向第一通信装置发送包括取值标识的第三信息,以向第一装置指示一组x和y的取值。例如,第二通信装置可以将第三信息包含在第一配置信息中发送给第一通信装置。又如,第二通信装置也可以单独的将第三信息发送给第一通信装置。
F_NTN表示N个帧中的任意一个帧的编号,连续的N个帧的编号组成一个帧编号集合表示为{F_NTN},简称连续的N个帧的编号为{F_NTN},即{F_NTN}中包括连续的N个帧中每个帧的编号。|F_NTN-n_f_NTN|表示(F_NTN-n_f_NTN)的值的绝对值。可以理解的是,连续的N个帧中任意一个帧的编号F_NTN与n_f_NTN之间的关系也可以表示成除0≤|F_NTN-n_f_NTN|≤N-1之外其他的形式,示例性地,也可以表示成F_NTN∈[n_f_NTN,n_f_NTN+N-1]。
基于此,第一通信装置在接收到前述第一信息、第二信息以及第三信息时,即可得到关系式(1)中M、x、y的取值,进而可以确定符合关系式(1)的n_f_NTN。符合关系式(1)的n_f_NTN的取值可以存在一个或多个。n_f_NTN的取值为多个时,第一通信装置可以将n_f_NTN的两个相邻取值之间的帧看作一个随机接入周期,即还可以理解的是,本申请实施例中描述的第一随机接入周期的数量为一个或多个,基于关系式(1)得到多个n_f_NTN,每两个相邻n_f_NTN之间的帧构成一个第一随机接入周期,多个第一随机接入周期之间连续。如图8示意,多个第一随机接入周期的每个随机接入周期中RO所占帧包括连续的2个帧上,每个帧上包括一个或多个HO-RO,图8示意出每个帧上有两个HO-RO。
例如x和y的一组取值为x=16,y=1,参考帧的编号M为1000时,满足关系式(1)的n_f_NTN可以为1、16001、32001或48001等,第一随机接入周期的数量为多个。当n_f_NTN为N个帧中起始帧的编号,N为3时,多个第一随机接入周期中N个帧分别为帧1-3、帧16001-16003、帧32001-32003、帧48001-48003等。
这样的设计中,第一随机接入周期可以理解为基于参考帧扩展得到的RO时域周期,通过扩展RO时域周期实现由卫星网络引起群切换所需的长周期,且配置连续的多个帧可以实现群切换专用密集型RO时域资源,有利于卫星运动引起的群切换的效率及成功率。
示例2,所述第一随机接入周期内连续的N个帧中的起始帧(或末尾帧)的编号n_f_NTN和参考帧的编号M满足如下关系式(2):
n_f_NTN mod(2M*x)=y;(2)
0≤|F_NTN-n_f_NTN|≤N-1;
其中,mod、x和y、以及F_NTN的定义可参照示例1中的描述理解,本申请实施例对此不进行赘述。
基于此,第一通信装置在接收到前述第一信息、第二信息以及第三信息时,即可得到关系式(2)中M、x、y的取值,进而可以确定符合关系式(2)的n_f_NTN。符合关系式(2)的n_f_NTN的取值可以存在一个或多个。n_f_NTN的取值为多个时,第一通信装置可以将n_f_NTN的两个相邻取值之间的帧看作一个随机接入周期,即还可以理解的是,本申请实施例中描述的第一随机接入周期的数量为一个或多个,基于关系式(2)得到多个n_f_NTN,每两个相邻n_f_NTN之间的帧构成一个第一随机接入周期,多个第一随机接入周期之间连续。如图8示意,多个第一随机接入周期的每个随机接入周期中RO所占帧包括连续的N个帧上,每个帧上包括一个或多个HO-RO,图8示意出每个帧上有两个HO-RO可以理解,第一随机接入周期是基于参考帧扩展得到的RO时域周期。
例如x和y的一组取值为x=16,y=1,参考帧的编号M为9时,满足关系式(1)的n_f_NTN可以为1、8193、16385或24577等,第一随机接入周期的数量为多个。当n_f_NTN为N个帧中起始帧 的编号,N为4时,多个第一随机接入周期中N个帧分别为帧1-4、帧8193-8196、帧16385-16388、帧24577-24580等。这样的设计可以减少第一配置信息中指示参考帧的信令开销。
在另一种可选的实现方式中,第一信息可以包括一个参考帧的编号和第一偏移量,第二信息包括N的取值。其中,有关参考帧和第一偏移量可以按照下面A1或A2中的一种描述理解。
A1,第一随机接入周期内连续的N’个帧中的起始帧(或末尾帧)和参考帧之间满足一定的关系式,例如可以将前述关系式(1)或关系式(2)中的n_f_NTN替换为第一随机接入周期内连续的N’个帧中的起始帧(或末尾帧)的编号n_f_NTN’,可以理解n_f_NTN’和参考帧的编号M之间满足n_f_NTN’mod(M*x)=y,或者n_f_NTN’mod(2M*x)=y。前述该第一偏移量用于指示N*个帧中起始帧(或末尾帧)的偏移,用于避免第一配置信息中配置的RO与用于初始接入的RO之间的资源冲突。连续的N’个帧按照第一偏移量进行偏移后即可得到第一配置信息中配置的连续的N个帧,也即N’等于N,N个帧中的起始帧与N’个帧中的起始帧之间的差值为第一偏移量,或者第一配置信息中配置的N个帧中的末尾帧与N’个帧中的末尾帧之间的差值为第一偏移量。
可选的,该第一偏移量的单位可以是时隙,例如,N’个帧中RO所占时隙包括第1、3、5个时隙,第一偏移量为1个时隙时,N个帧中RO所占时隙包括第2、4、6个时隙。或者,该第一偏移量的单位可以是子帧或帧,例如,N’个帧中RO所占子帧包括第2、4、6、8个子帧,第一偏移量为2个子帧时,N个帧中RO所占时隙包括第4、6、8、10个子帧。
A2,第一随机接入周期内连续的N个帧中的起始帧(或末尾帧)和参考帧以及第一偏移量之间满足一定的关系式。该关系式可以是预先定义的,也可以是第一通信装置和第二通信装置协商得到的。下面对该关系式进行举例说明。
示例3,所述第一随机接入周期内连续的N个帧中的起始帧(或末尾帧)的编号n_f_NTN和参考帧的编号M以及第一偏移量R满足如下关系式(3):
(n_f_NTN-R)mod(M*x)=y;(3)
0≤|F_NTN-n_f_NTN|≤N-1;
其中,mod、x和y、以及F_NTN的定义可参照示例1中的描述理解,本申请实施例对此不进行赘述。
基于此,第一通信装置在接收到前述第一配置信息时,即可得到关系式(3)中M、x、y、R的取值,进而可以确定符合关系式(3)的n_f_NTN。可选的,R的取值为整数,例如正整数、零或者负整数。可以理解的是:R为正整数时,表示符合关系式(3)的(n_f_NTN-R)在时间上向后偏移得到n_f_NTN;R为负整数时,表示符合关系式(3)的(n_f_NTN-R)在时间上向前偏移得到n_f_NTN。
符合关系式(3)的n_f_NTN的取值可以存在一个或多个。n_f_NTN的取值为多个时,第一通信装置可以将n_f_NTN的两个相邻取值之间的帧看作一个随机接入周期,即还可以理解的是,本申请实施例中描述的第一随机接入周期的数量为一个或多个,基于关系式(3)得到多个n_f_NTN,每两个相邻n_f_NTN之间的帧构成一个第一随机接入周期,多个第一随机接入周期之间连续。如图8示意,多个第一随机接入周期的每个随机接入周期中RO所占帧包括连续的N个帧上,每个帧上包括一个或多个HO-RO,图8示意出每个帧上有两个HO-RO。
示例4,所述第一随机接入周期内连续的N个帧中的起始帧(或末尾帧)的编号n_f_NTN和参考帧的编号M以及第一偏移量R满足如下关系式(4):
(n_f_NTN-R)mod(2M*x)=y;(4)
0≤|F_NTN-n_f_NTN|≤N-1;
其中,mod、x和y、以及F_NTN的定义可参照示例1中的描述理解,本申请实施例对此不进行赘述。
基于此,第一通信装置在接收到前述第一配置信息时,即可得到关系式(4)中M、x、y、R的取值,进而可以确定符合关系式(4)的n_f_NTN。可选的,R的取值为整数,例如正整数、零或者负整数。可以理解的是:R为正整数时,表示符合关系式(4)的(n_f_NTN-R)在时间上向后偏移得到n_f_NTN;R为负整数时,表示符合关系式(4)的(n_f_NTN-R)在时间上向前偏移得到n_f_NTN。
符合关系式(4)的n_f_NTN的取值可以存在一个或多个。n_f_NTN的取值为多个时,第一通信装置可以将n_f_NTN的两个相邻取值之间的帧看作一个随机接入周期,即还可以理解的是,本申请实施例中描述的第一随机接入周期的数量为一个或多个,基于关系式(4)得到多个n_f_NTN,每两个相邻 n_f_NTN之间的帧构成一个第一随机接入周期,多个第一随机接入周期之间连续。如图8示意,多个第一随机接入周期的每个随机接入周期中RO所占帧包括连续的N个帧上,每个帧上包括一个或多个HO-RO,图8示意出每个帧上有两个HO-RO。
上述设计中引入第一偏移量,可以不受满足关系式的限制,扩展更多可以用于群切换的RO的帧配置,可以避免与用于初始接入的RO资源发生冲突,有利于卫星运动引起的群切换的效率及成功率。
此外可以理解的是,M仅作为表示参考帧的编号的一种举例,本申请实施例并不限于M的表述,即也可以用其他的字符或称字段名称来表示参考帧的编号,例如可以将前述示例1~4中的M替换描述为prach-ConfigurationPeriodScaling-NTN。N仅作为表示RO所在帧的数量的一种举例,本申请实施例并不限于N的表述,即也可以用其他的字符或称字段名称来表示RO所在帧的数量,例如可以将前述示例1~4中的N替换描述为prach-ConfigurationFrameScaling-NTN。类似地,第一偏移量R也是仅作为表示帧偏移的一种举例,本申请实施例并不限于R的表述,即也可以用其他的字符或称字段名称来表示帧偏移,例如可以将前述示例3~4中的R替换描述为prach-ConfigurationSoffset-NTN。
可选的,在示例1或示例3中,prach-ConfigurationPeriodScaling-NTN的取值范围可以包括{1024,2048,…,131072};在示例2或示例4中,prach-ConfigurationPeriodScaling-NTN的取值范围可以包括{0,1,2,…9,10…,17}。在示例1~示例4中,prach-ConfigurationFrameScaling-NTN的取值范围包括{1,2,4,8,16,32},prach-ConfigurationSoffset-NTN的取值范围包括{0,1,…,128}。
具体实施时,第二通信装置可以根据NTN的网络配置,确定前述第一配置信息中配置的prach-ConfigurationPeriodScaling-NTN的取值和prach-ConfigurationFrameScaling-NTN的取值。这样的设计可以实现适配于多种不同NTN网络场景的RO配置。例如,卫星的运行轨道高度越大,第一随机接入周期(或称群切换周期)越长,RO时域周期扩展越大即prach-ConfigurationPeriodScaling-NTN的取值越大,RO所在连续帧的数量prach-ConfigurationFrameScaling-NTN的取值越小。例如,卫星的运行轨道倾角越大,第一随机接入周期越小,RO时域周期扩展越小即prach-ConfigurationPeriodScaling-NTN的取值越小,RO所在连续帧的数量prach-ConfigurationFrameScaling-NTN的取值越大。又如,在群切换场景中进行整体切换的群切换周期变长,RO时域周期扩展变大即prach-ConfigurationPeriodScaling-NTN的取值变大,RO所在连续帧的数量prach-ConfigurationFrameScaling-NTN的取值变大。
结合前述示例2或4中各参数的取值范围,表1中示意出一些NTN网络配置,以及对应的prach-ConfigurationPeriodScaling-NTN和prach-ConfigurationFrameScaling-NTN的取值。
表1
S702,第一通信装置根据第一配置信息,确定第一随机接入资源。
在一种可选的实施方式中,第一通信装置可以将从第一配置信息中解析出的第一随机接入周期中的连续的N个帧上的随机接入时机,确定为第一随机接入资源。即第一随机接入资源可以包括第一随机接入周期中的连续的N个帧上的随机接入时机。其中,第一随机接入周期的数量对应于前述关系式计算得到的N个帧中起始帧(末尾帧)的数量,第一随机接入周期的数量为一个或多个。
在另一种可选的实施方式中,第二通信装置还可以在第一配置信息中携带第四信息,该第四信息用于指示第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。第一通信装置可以自行选择一个目标切换波束,根据前述第四信息确定与目标切换波束关联的随机接入 时机,并确定第一随机接入资源包括与目标切换波束关联的随机接入时机。或者,第二通信装置可以在第一配置信息中携带第四信息以及目标切换波束的标识信息,第一通信装置根据第四信息以及目标切换波束的标识信息,确定第一随机接入资源包括第一随机接入周期中与目标切换波束关联的随机接入时机。通过这样的设计,第一通信装置使用目标切换波束关联的随机接入时机(HO-RO),可以减少群切换时的碰撞概率。
可选的,切换波束可以是第一通信装置专用于切换的广播波束,一个切换波束的标识信息可以表示为HO-SSB index,index为整数。第一通信装置的切换波束可以记作HO-SSB0,HO-SSB1,HO-SSB2,依次类推。
可选的,每个切换波束在第一随机接入周期中的N个帧上关联的HO-RO资源大小可以相同。例如,第四信息中可以包括HO-ssb-perRACH-Occasion。该HO-ssb-perRACH-Occasion指示每个切换波束在第一随机接入周期中的N个帧上所关联的HO-RO资源的比例。例如将第一随机接入周期中的N个帧上的HO-RO的全部资源记作P,HO-ssb-perRACH-Occasion的取值为表示每个切换波束关联P中的其中,HO-SSB0对应的HO-RO资源为HO-SSB1对应的HO-RO资源为HO-SSB2对应的RO为依此类推。或者,如果第一随机接入周期中N个帧的每个帧上存在一个或多个HO-RO,且每个HO-RO的资源大小是固定相同的,那么也可以设定每个切换波束在第一随机接入周期中的N个帧上的全部HO-RO中关联相同数量的HO-RO。
作为示例,在图8的基础上,参见图9示意出了t1时刻HO-SSB0和HO-SSB1均关联两个HO-RO。例如HO-SSB0关联HO-RO1和HO-RO2,若第一通信装置选择HO-SSB0,在t1时刻可以在HO-RO1和HO-RO2上进行接入;HO-SSB1关联HO-RO3和HO-RO4,若第一通信装置选择HO-SSB1,在t1时刻可以在HO-RO3和HO-RO4上进行接入。图9还示意出了t2时刻HO-SSB0、HO-SSB1、HO-SSB2和HO-SSB3均关联一个HO-RO。例如HO-SSB0关联HO-RO1,若第一通信装置选择HO-SSB0,在t2时刻可以在HO-RO1上进行接入;HO-SSB1关联HO-RO2,若第一通信装置选择HO-SSB1,在t2时刻可以在HO-RO2上进行接入;HO-SSB2关联HO-RO3,若第一通信装置选择HO-SSB2,在t2时刻可以在HO-RO3上进行接入;HO-SSB3关联HO-RO4,若第一通信装置选择HO-SSB3,在t2时刻可以在HO-RO4上进行接入。
S703,第一通信装置根据第一随机接入资源接入目标小区。
对应于前述S701~S702的描述,第一通信装置可以在进行切换时,根据第一随机接入资源接入目标小区。其中,第一通信装置进行的切换可以是第一通信装置自己决定的,或者是由于所述第一通信装置所在区域对应的设备群组进行小区切换而触发的。例如,当卫星运动引起群切换时,所述第一通信装置所在区域对应的设备群组进行小区切换,则第一通信装置需要进行小区切换。
在一种可选的实施方式中,当前述第一随机接入周期的数量为多个时,可以理解第一随机接入资源包括多个第一随机接入周期中配置的RO,第一通信装置可以确定切换时刻,并利用专用的前导(preamble)在切换时刻之后的RO上接入目标小区。在另一种可选的实施方式中,当前述第一随机接入周期的数量为多个时,可以理解第一随机接入资源包括多个第一随机接入周期中与目标切换波束关联的RO,第一通信装置可以确定切换时刻,并利用专用的前导(preamble)在切换时刻之后的与目标切换波束关联的RO上接入目标小区。
基于同一构思,参见图10,本申请实施例提供了一种通信装置1000,该通信装置1000包括处理模块1001和通信模块1002。该通信装置1000可以是第二通信装置,也可以是应用于第二通信装置或者和第二通信装置匹配使用,能够实现第二通信装置侧执行的方法的通信装置;或者,该通信装置1000可以是第一通信装置,也可以是应用于第一通信装置或者和第一通信装置匹配使用,能够实现第一通信装置侧执行的方法的通信装置。
其中,通信模块也可以称为收发模块、收发器、收发机、或收发装置等。处理模块也可以称为处理器,处理单板,处理单元、或处理装置等。可选的,通信模块用于执行上述方法中第二通信装置侧或第一通信装置侧的发送操作和接收操作,可以将通信模块中用于实现接收功能的器件视为接收单元,将通信模块中用于实现发送功能的器件视为发送单元,即通信模块包括接收单元和发送单元。
该通信装置1000应用于第一通信装置时,处理模块1001可用于实现图7所述示例中所述第一通信装置的处理功能,通信模块1002可用于实现图7所述示例中所述第一通信装置的收发功能。或者也可以参照发明内容中第三方面中的描述和可能的设计理解该通信装置。
该通信装置1000应用于第二通信装置时,处理模块1001可用于实现图7所述示例中所述第二通信装置的处理功能,通信模块1002可用于实现图7所述示例中所述第二通信装置的收发功能。或者也可以参照发明内容中第四方面中的描述和可能的设计理解该通信装置。
此外需要说明的是,前述通信模块和/或处理模块可通过虚拟模块实现,例如处理模块可通过软件功能单元或虚拟装置实现,通信模块可以通过软件功能或虚拟装置实现。或者,处理模块或通信模块也可以通过实体装置实现,例如若该装置采用芯片/芯片电路实现,所述通信模块可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理模块为集成的处理器或者微处理器或者集成电路。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请实施例各个示例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于相同的技术构思,本申请实施例还提供了一种通信装置1100。例如,该通信装置1100可以是芯片或者芯片***。可选的,在本申请实施例中芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1100可用于实现前述示例描述的通信***中任一网元的功能。通信装置1100可以包括至少一个处理器1110。可选的,该处理器1110与存储器耦合,存储器可以位于该装置之内,或,存储器可以和处理器集成在一起,或,存储器也可以位于该装置之外。例如,通信装置1100还可以包括至少一个存储器1120。存储器1120保存实施上述任一示例中必要计算机程序、计算机程序或指令和/或数据;处理器1110可能执行存储器1120中存储的计算机程序,完成上述任一示例中的方法。
通信装置1100中还可以包括通信接口1130,通信装置1100可以通过通信接口1130和其它设备进行信息交互。示例性的,所述通信接口1130可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。当该通信装置1100为芯片类的装置或者电路时,该装置1100中的通信接口1130也可以是输入输出电路,可以输入信息(或称,接收信息)和输出信息(或称,发送信息),处理器为集成的处理器或者微处理器或者集成电路或则逻辑电路,处理器可以根据输入信息确定输出信息。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1110可能和存储器1120、通信接口1130协同操作。本申请实施例中不限定上述处理器1110、存储器1120以及通信接口1130之间的具体连接介质。
可选的,参见图11,所述处理器1110、所述存储器1120以及所述通信接口1130之间通过总线1140相互连接。所述总线1140可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在一种可能的实施方式中,该通信装置1100可以应用于第一通信装置,具体通信装置1100可以是第一通信装置,也可以是能够支持第一通信装置,实现上述涉及的任一示例中第一通信装置的功能的装置。存储器1120保存实现上述任一示例中的第一通信装置的功能的计算机程序(或指令)和/或数据。处理器1110可执行存储器1120存储的计算机程序,完成上述任一示例中第一通信装置执行的方法。应 用于第一通信装置,该通信装置1100中的通信接口可用于与第二通信装置进行交互,向第二通信装置发送信息或者接收来自第二通信装置的信息。
在另一种可能的实施方式中,该通信装置1100可以应用于第二通信装置,具体通信装置1100可以是第二通信装置,也可以是能够支持第二通信装置,实现上述涉及的任一示例中第二通信装置的功能的装置。存储器1120保存实现上述任一示例中的第二通信装置的功能的计算机程序(或指令)和/或数据。处理器1110可执行存储器1120存储的计算机程序,完成上述任一示例中第二通信装置执行的方法。应用于第二通信装置,该通信装置1100中的通信接口可用于与第一通信装置进行交互,向第一通信装置发送信息或者接收来自第一通信装置的信息。
由于本示例提供的通信装置1100可应用于第一通信装置,完成上述第一通信装置执行的方法,或者应用于第二通信装置,完成第二通信装置执行的方法。因此其所能获得的技术效果可参考上述方法示例,在此不再赘述。
基于以上示例,本申请实施例提供了一种通信***,包括第一通信装置和第二通信装置,其中,第一通信装置和第二通信装置可以实现图7所示的示例中所提供的方法。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各示例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置示例和方法示例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (53)

  1. 一种随机接入资源的确定方法,其特征在于,包括:
    第一通信装置获取第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
    所述第一通信装置根据所述第一配置信息,确定第一随机接入资源,所述第一随机接入资源用于所述第一通信装置接入目标小区。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    当所述第一通信装置进行小区切换时,所述第一通信装置根据所述第一随机接入资源接入目标小区。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    当所述第一通信装置所在区域对应的设备群组进行小区切换时,所述第一通信装置根据所述第一随机接入资源接入目标小区。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。
  5. 如权利要求4所述的方法,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    n_f_NTN mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  6. 如权利要求4所述的方法,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    n_f_NTN mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  7. 如权利要求4所述的方法,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    (n_f_NTN-R)mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  8. 如权利要求4所述的方法,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    (n_f_NTN-R)mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  9. 如权利要求5-8任一项所述的方法,其特征在于,还包括:所述第一通信装置获取第三信息,所述第三信息用于确定x和y的取值。
  10. 如权利要求1-8任一项所述的方法,其特征在于,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。
  11. 如权利要求10所述的方法,其特征在于,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。
  12. 如权利要求11所述的方法,其特征在于,所述第一配置信息中包括所述目标切换波束的标识信息。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述第一随机接入周期大于用于初始接入的第二随机接入周期。
  14. 一种随机接入资源的确定方法,其特征在于,包括:
    第二通信装置确定第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
    所述第二通信装置向所述第一通信装置发送所述第一配置信息,所述第一配置信息用于第一随机接入资源的确定,所述第一随机接入资源用于所述第一通信装置接入目标小区。
  15. 如权利要求14所述的方法,其特征在于,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。
  16. 如权利要求15所述的方法,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    n_f_NTN mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  17. 如权利要求15所述的方法,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    n_f_NTN mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  18. 如权利要求15所述的方法,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    (n_f_NTN-R)mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  19. 如权利要求15所述的方法,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    (n_f_NTN-R)mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  20. 如权利要求16-19任一项所述的方法,其特征在于,还包括:所述第二通信装置发送第三信息,所述第三信息用于确定x和y的取值。
  21. 如权利要求16-19任一项所述的方法,其特征在于,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。
  22. 如权利要求21所述的方法,其特征在于,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。
  23. 如权利要求22所述的方法,其特征在于,所述第一配置信息中包括所述目标切换波束的标识信息。
  24. 如权利要求14-23任一项所述的方法,其特征在于,所述第一随机接入周期大于用于初始接入的第二随机接入周期。
  25. 一种通信装置,其特征在于,包括:
    通信模块,用于获取第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
    处理模块,用于根据所述第一配置信息,确定第一随机接入资源,所述第一随机接入资源用于所述第一通信装置接入目标小区。
  26. 如权利要求25所述的装置,其特征在于,当所述第一通信装置进行小区切换时,所述处理模块,还用于根据所述第一随机接入资源接入目标小区。
  27. 如权利要求25所述的装置,其特征在于,还包括:
    当所述第一通信装置所在区域对应的设备群组进行小区切换时,所述处理模块还用于根据所述第一随机接入资源接入目标小区。
  28. 如权利要求25-27任一项所述的装置,其特征在于,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。
  29. 如权利要求28所述的装置,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    n_f_NTN mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  30. 如权利要求28所述的装置,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    n_f_NTN mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  31. 如权利要求28所述的装置,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    (n_f_NTN-R)mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  32. 如权利要求28所述的装置,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    (n_f_NTN-R)mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  33. 如权利要求29-32任一项所述的装置,其特征在于,还包括:所述第一通信装置获取第三信息,所述第三信息用于确定x和y的取值。
  34. 如权利要求25-32任一项所述的装置,其特征在于,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。
  35. 如权利要求34所述的装置,其特征在于,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。
  36. 如权利要求35所述的装置,其特征在于,所述第一配置信息中包括所述目标切换波束的标识信息。
  37. 如权利要求25-36任一项所述的装置,其特征在于,所述第一随机接入周期大于用于初始接入的第二随机接入周期。
  38. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一配置信息,所述第一配置信息用于配置第一随机接入周期中连续的N个帧上的随机接入时机,N为大于1的整数;
    通信模块,用于向所述第一通信装置发送所述第一配置信息,所述第一配置信息用于第一随机接入资源的确定,所述第一随机接入资源用于所述第一通信装置接入目标小区。
  39. 如权利要求38所述的装置,其特征在于,所述第一配置信息包括第一信息和第二信息,所述第一信息用于确定所述第一随机接入周期内连续的N个帧中的起始帧,所述第二信息包括N的取值的信息。
  40. 如权利要求39所述的装置,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    n_f_NTN mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  41. 如权利要求39所述的装置,其特征在于,所述第一信息包括参考帧的编号M,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    n_f_NTN mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  42. 如权利要求39所述的装置,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧的编号M满足如下关系式:
    (n_f_NTN-R)mod(M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  43. 如权利要求39所述的装置,其特征在于,所述第一信息包括参考帧的编号M和第一偏移量R,所述第一随机接入周期内连续的N个帧中的起始帧的编号n_f_NTN与所述参考帧满足如下关系式:
    (n_f_NTN-R)mod(2M*x)=y;
    其中,mod表示取模运算符,x和y为预配置的正整数。
  44. 如权利要求40-43任一项所述的装置,其特征在于,还包括:所述第二通信装置发送第三信息,所述第三信息用于确定x和y的取值。
  45. 如权利要求40-43任一项所述的装置,其特征在于,所述第一配置信息中包括第四信息,所述第四信息用于指示所述第一通信装置的至少一个切换波束与所述第一随机接入周期中的随机接入时机之间的关联关系。
  46. 如权利要求45所述的装置,其特征在于,所述第一随机接入资源包括所述第一通信装置的目标切换波束关联的随机接入时机。
  47. 如权利要求46所述的装置,其特征在于,所述第一配置信息中包括所述目标切换波束的标识信息。
  48. 如权利要求38-47任一项所述的装置,其特征在于,所述第一随机接入周期大于用于初始接入的第二随机接入周期。
  49. 一种通信装置,其特征在于,包括:
    处理器,所述处理器和存储器耦合,所述处理器用于调用所述存储器存储的计算机程序指令,以执行如权利要求1-13中任一项所述的方法。
  50. 一种通信装置,其特征在于,包括:
    处理器,所述处理器和存储器耦合,所述处理器用于调用所述存储器存储的计算机程序指令,以执行如权利要求14-24中任一项所述的方法。
  51. 一种通信***,其特征在于,包括:如权利要求25-37、以及49中任一项所述的通信装置,以及如权利要求38-48、以及50中任一项所述的通信装置。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法,或者用于实现如权利要求14-24中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法,或者用于实现如权利要求14-24中任一项所述的方法。
PCT/CN2023/135854 2022-12-02 2023-12-01 一种随机接入资源的确定方法及通信装置 WO2024114794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211542962.0 2022-12-02
CN202211542962.0A CN118139202A (zh) 2022-12-02 2022-12-02 一种随机接入资源的确定方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024114794A1 true WO2024114794A1 (zh) 2024-06-06

Family

ID=91239085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135854 WO2024114794A1 (zh) 2022-12-02 2023-12-01 一种随机接入资源的确定方法及通信装置

Country Status (2)

Country Link
CN (1) CN118139202A (zh)
WO (1) WO2024114794A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451585A (zh) * 2018-04-04 2019-03-08 华为技术有限公司 一种通信方法及装置
CN112584507A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种数据处理方法、装置及存储介质
CN113973396A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 一种用于随机接入的方法及通信装置
US20220086774A1 (en) * 2017-05-05 2022-03-17 Samsung Electronics Co., Ltd. Base station, terminal, random access preamble detection method and random access channel configuration method
CN115052348A (zh) * 2021-03-09 2022-09-13 维沃移动通信有限公司 随机接入方法、装置、终端及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086774A1 (en) * 2017-05-05 2022-03-17 Samsung Electronics Co., Ltd. Base station, terminal, random access preamble detection method and random access channel configuration method
CN109451585A (zh) * 2018-04-04 2019-03-08 华为技术有限公司 一种通信方法及装置
CN112584507A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种数据处理方法、装置及存储介质
CN113973396A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 一种用于随机接入的方法及通信装置
CN115052348A (zh) * 2021-03-09 2022-09-13 维沃移动通信有限公司 随机接入方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN118139202A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
US20200267688A1 (en) Terminal device, wireless communication device, wireless communication method, and computer program
EP4307767A1 (en) Wireless communication method, apparatus and system
WO2022027232A1 (zh) 无线通信方法和设备
JP2023536968A (ja) ユーザ機器が登録エリア内に位置しているか否かを判定するための装置および方法
WO2022012446A1 (zh) 一种无线通信的方法及装置
WO2022021225A1 (zh) 无线通信方法、终端设备和网络设备
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2023116335A1 (zh) 一种通信方法及装置
WO2024114794A1 (zh) 一种随机接入资源的确定方法及通信装置
CN117544213A (zh) 一种通信方法和装置
WO2024051448A1 (zh) 一种切换方法及通信装置
CN114641081A (zh) 一种无线通信的方法及装置
WO2024037178A1 (zh) 一种通信方法和通信装置
WO2024149376A1 (zh) 移动性管理的方法和通信装置
WO2024125370A1 (zh) 通信方法和通信装置
WO2024078039A1 (zh) 信息传输方法和通信装置
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
WO2024021945A1 (zh) 传输同步信号块的方法及通信装置
WO2024045543A1 (zh) 通信方法及装置
WO2024140216A1 (zh) 通信方法和通信装置
US20240179592A1 (en) Method and device for timing control in a non-terrestrial network
US20240224105A1 (en) Communication method, terminal device and network device
WO2024008022A1 (zh) 一种非地面网络的通信方法、装置及***
WO2024093735A1 (zh) 一种调度请求处理方法及装置
WO2023143139A1 (zh) 小区移动性管理的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896936

Country of ref document: EP

Kind code of ref document: A1